SlideShare a Scribd company logo
BEST Robotics and 
The Engineering Design Process

Mark D. Conner
The Engineering Academy at
Hoover High School
www.eahoover.com
Setting the Stage
Editorial comments are provided free of charge!
• “Learning” in the absence of context is
memorization.
• True learning requires context – a bigger picture.
– When we will ever use this?
• So, how do you make participation in BEST a true
learning experience?
– Use BEST as a context
– Place BEST into context
On the continuum of learning environments…

Predictable
How do you tame the BEaST?

BEST
One idea is to focus on the process … at this 
stage, it’s more important than the product!

+
What is design?

+

What is the Engineering Design Process?

Examples help

What tools are available?
Originality can be overrated.
What is Design?
First, what it isn’t…

Design isn’t discovery!
The Scientific Method is an algorithm for 
discovery.
Design is about creating – form and function
achieving objectives within given constraints.
The Engineering Design Process is an algorithm 
for creation and invention.
What is the Engineering 
Design Process?
Problem‐solving isn’t necessarily design, but it 
provides a good starting point.
Define the problem:
Cause of problem
What is the need?  Requirements?
What are constraints?

Analysis

Generate and select possible solutions

Synthesis

Evaluate solution:
Consequences?
Is it reasonable?
How well does it solve problem?

Evaluation

Select best solution

Engineering Design, 
Alan Wilcox – Figure 1.3

Decision

Implement best solution:
Coordinate
Control

Action
The Engineering Design Process mirrors 
standard steps in problem‐solving.
Problem Definition         (Analysis)
Conceptual Design      (Synthesis)
Preliminary Design    (Evaluation)
Design Decision        (Decision ☺)
Detailed Design      (Action)
Define the problem in detail without implying a 
particular solution.
Problem Definition
• Clarify design objectives
Establish requirements
Establish functions
Identify constraints
• Identify constraints • actions the design must perform
restrictions or limitations on a 
• non‐negotiable objectives
desired attributes and behavior
• Establish functions • behavior, a value, or some other 
• expressed as “doing” statements
and/or functions
• aspect of performance
expressed as “being” statements 
• Establish requirements
• typically involve output based on 
• (not “doing”)
stated as clearly defined limits
input
• often the result of guidelines and 
standards
Objectives, constraints, functions and 
requirements may be broad‐based.
• Some items are absolute – others may be negotiable
– Functionality (inputs, outputs, operating modes)
– Performance (speed, resolution)
– Cost
– Ease of use
– Reliability, durability, security
– Physical (size, weight, temperature)
– Power (voltage levels, battery life)
– Conformance to applicable standards
– Compatibility with existing product(s)
Both functional and non‐functional 
requirements may be placed on a design.
• Functional requirements:
– support a given load
– respond to voice commands
– (output based on input)
• Non-functional requirements (usually form-focused):
– size, weight, color, etc.
– power consumption
– reliability
– durability
– etc.
Design involves creativity within boundaries.  
Consider any viable solution concept.
Conceptual Design
• Establish design 
• Generate design 
Establish design 
alternatives
specifications
specifications
• Generate design
alternatives

• precise descriptions of properties
• must live within the design space
• numerical values corresponding 
• let the creativity flow
to performance parameters and 
• attributes
don’t marry the first idea
• beware of “you/we can’t…” and 
“you/we have to…”
Nail down enough design details that a decision 
can be made.
Preliminary Design
• “Flesh out” leading 
conceptual designs
• “Flesh out” leading 
conceptual designs
• Model, analyze, test, and 
evaluate
• Model conceptual 
Model, analyze, test
Model, analyze
designs
• determine the optimal design
proof‐of‐concept
cardboard or scale models
qualitative and/or quantitative
• simulation results
computer models (CAD, FEM)
• mathematical models
The “optimal” design solution may or may not 
be obvious.
Design Decision
• Select the optimal design 
based on the findings 
from the previous stage
Time to go from idea to reality.
Detailed Design
• Refine and optimize 
choices made in 
preliminary design
• Articulate specific parts 
and dimensions
• Fabricate prototype and 
move toward production
The Engineering Design Process is generally 
iterative, not linear.
Problem Definition         (Analysis)
Conceptual Design      (Synthesis)
Preliminary Design    (Evaluation)
Design Decision        (Decision ☺)
Detailed Design         (Action)
How is the Engineering 
Design Process applied?
(Part 1 – Asking Questions)

engineering design: a project‐based 
introduction, dym & little
The design process begins with some initial 
problem statement.
• Initial Problem Statement
– Design a “safe” ladder.
• Design problems are often ill-structured and openended.
• Asking questions is a great way to begin defining the
problem to be addressed.
Learning to ask good questions is a valuable 
tool for a successful designer.
Problem Definition

• Clarifying objectives
– How is the ladder to be used?
– How much should it cost?
• Identifying constraints
– How is safety defined?
– What is the most the client is willing to spend?
• Establishing functions
– Can the ladder lean against a supporting surface?
– Must the ladder support someone carrying
something?
• Establishing requirements
– Should the ladder be portable?
– How much can it cost?
It’s best to ask as many questions as possible at 
the beginning of the process!
Conceptual Design

• Establishing design specifications
– How much weight should a safe ladder support?
– What is the “allowable load” on a step?
– How high should someone on the ladder be able
to reach?
• Generating design alternatives
– Could the ladder be a stepladder or an extension
ladder?
– Could the ladder be made of wood, aluminum, or
fiberglass?
More specific questions are needed as you 
move through the stages of the design process.
Preliminary Design

• Planning for modeling and analyzing
– What is the maximum stress in a step support the
“design load?”
– How does the bending deflection of a loaded step
vary with the material of which the step is made?
• Planning for testing and evaluating
– Can someone on the ladder reach the specified
height?
– Does the ladder meet OSHA’s safety
specifications?
Questions also help in the iterative nature of 
the design process.
Detailed Design

• Refining and optimizing the design
– Is there a more economic design?
– Is there a more efficient design (e.g. less
material)?
Engineering design process
Remember, ill‐structured and open‐ended.
• Initial Problem “Statement”
– “How would you feel about a four-year
engineering program?”
– “Great! Go figure out what it looks like.”
Knowing who to ask is sometimes more 
important than knowing what to ask.
Problem Definition
• Clarifying objectives
– Who is the target audience?
– What personnel resources are available?
• Identifying constraints
– What budget will be available?
– How many sections are permitted?
– What academic infrastructure exists?
– Where does this live relative to the SDE?
• Establishing functions
– What should graduates be prepared for?
– Will the program encompass only electives or will it
include core courses?
• Establishing requirements
– What are appropriate pre-requisites, if any?
– Can students skip electives?
Conceptual Design

• Establishing design specifications
– Can/should the engineering electives have a
weighted GPA?
– Is a minimum GPA required to stay in the
program?
• Generating design alternatives
– Could the program be curricular?
Extracurricular? Both?
– Are we required to use an existing curriculum?
– Will dedicated computer resources be available?
Preliminary Design

• Planning for modeling and analyzing
– What high school engineering curricula are
already available?
– What schools are implementing the various
models?
– Is data available from these schools?
– Are site visits a possibility?
• Planning for testing and evaluating
– How do we know if the program is successful
during start-up?
– How do we measure success relative to our stated
objective(s)?
Detailed Design

• Refining and optimizing the design
– From the teachers’ perspectives, what is definitely
working and what isn’t?
– From the students’ perspectives, what is definitely
working and what isn’t?
– What needs modifying before we know?
– What software/hardware is considered state-ofthe-art?
– What feedback are we getting from graduates
once they enter college?
What tools are available to aid in 
the Engineering Design Process?
Some simple tools can help organize the design 
process.
Problem Definition

Conceptual Design

Preliminary Design

• Attributes List
• Pairwise Comparison Chart
•Objectives/Constraints Tree

•Design Specifications

• Function‐Means Tree
• 6‐3‐5 Method
• Gallery Method
An Attributes List contains a list of objectives, 
constraints, functions, and requirements.
•

Problem Definition

Partial attributes list for “safe ladder” design
– Used outdoors on level ground
– Used indoors on floors or other smooth surfaces
– Could be a stepladder or short extension ladder
– Step deflections should be less than 0.05 inches
– Should allow a person of medium height to reach/work at
levels up to 11 feet
– Must support weight of an average worker
– Must be safe
– Must meet OSHA requirements
– Must be portable between job sites
– Should be relatively inexpensive
– Must not conduct electricity
– Should be light
A Pairwise Comparison Chart allows the 
designer to order/rank the objectives
• “0” if column objective > row objective
• “1” if row objective > column objective
• Higher score = more important

Problem Definition

Pairwise comparison chart (PCC) for a ladder design

Goals

Cost

Portability

Usefulness

Durability

Score

Cost

••••

0

0

1

1

Portability

1

••••

1

1

3

Usefulness

1

0

••••

1

2

Durability

0

0

0

••••

0
An Objectives/Constraints Tree provides a 
hierarchical view of key attributes.
Stable
Stiff 
Safe

On floors

Problem Definition

On level ground

OSHA req.
Insulator
Indoors

Ladder
Design

Electrical
Maintenance

Useful

Outdoors

< $200

Of right height

Marketable
Portable

Light in weight
Small, transportable

Objectives

Durable
Constraints
Sample Design Specifications for the Ladder 
project.
Conceptual Design

•
•
•
•
•
•

Extended length of 8 feet
Unextended length of 5 feet
Support 350 pounds with a deflection of < 0.1 inches
Total weight not to exceed 20 pounds
Outside width of 20 inches
Inside width of at least 16 inches
A Function‐Means Tree shows means for 
achieving primary functions…and the fallout.
Preliminary Design

IGNITE 
LEAFY 
MATERIALS
Electrically 
Heated 
Wire

Convert 
electricity 
to heat

Generate 
electric 
current

Apply heat 
to leafy 
materials

Focused 
Sunlight

Protect 
users from 
post‐usage 
burns

Laser

Flame

Store fuel

Control 
flame

Supply fuel 
for flame

Ignite fuel

Butane
Miniature 
heat pump

Resistive 
wire
Spark

Wall‐outlet‐
based system

Control 
electrical 
current

Battery‐based 
system

Store 
electricity

Gasoline 

Convert chemical 
energy to 
electrical current

Electrical 
resistance

Protect 
electric 
current from 
flame

Generate 
electric current

Function
Means
The 6‐3‐5 Method is one way to begin 
generating design alternatives.
Preliminary Design

• 6 team members
• 3 ideas each (described in words or pictures)
• 5 other team members review each design idea
• No discussions allowed during the process
• Can be modified to N–3–(N-1)
The Gallery Method can be used in small or 
large groups to develop design alternatives.
Preliminary Design

• Each individual sketches a design idea
• All sketches are posted
• Every member can comment on any idea
The Engineering Design Process can help 
organize the chaos.
The Engineering Design Process can be applied 
to the overall robot and each subsystem.
Robot

Grabber

Powertrain

Control System
The Engineering Design Process can also be 
applied to the other aspects of BEST.
Notebook

Display

Website

T‐Shirt
Engineering design process
Bonus Slides
Questions for BEST Robot
• The scoring strategy tends to drive the design
– What type of steering is desired?
– How many degrees-of-freedom does the robot
need?
– What maximum reach must the robot have?
– How fast does the robot need to be?
– How much weight must the robot lift?
– What physical obstacles must the robot
overcome?
A Pairwise Comparison Chart for a BEST Robot
•
•
•

“0” if column objective > row objective
“1” if row objective > column objective
Higher score = more important

Goals

Speed

Drive 
Power

Lift 
Power

Degrees‐of‐
freedom

Simple 
Controls

Score

Speed

••••

1

1

1

1

4

Drive
Power

0

••••

1

0

0

1

Lift Power

0

0

••••

1

0

1

Degrees‐of‐
freedom

0

1

0

••••

0

1

Simple 
Controls

0

1

1

1

••••

3
A partial Attributes List for a 2008 BEST robot
•
•
•
•
•
•
•
•
•

Must be less than 24 pounds
Must fit into a 24-inch cube
Able to pick up individual plane parts
Able to assemble plane parts
Able to drive over a 1” x 4” board
Able to close and open switch
Should have zero-radius turn
Should be able to carry a fully-assembled plane
Should be able to lift a fully-assembled plane to a
height of at least 36 inches
Sample Goals/Constraints for a 2008 BEST 
robot
• Goals
– Assemble parts on the warehouse racks
– Grabber rotation of at least 90 degrees
– Single grabber to grab/hold each individual part
and the assembled plane
– Reach the part on the top, back rack position
• Constraints
– Must fit in a 24-inch cube
– Must weigh less than 24 pounds
– Fixed height between warehouse racks

More Related Content

PPT
Machining Process
PPT
Engineering design process
PPT
Engineering Design Process
PPTX
Description of design process new
PPTX
Intro to CAD CAM Tools
PDF
Design and Analysis of Progressive tool in Sheet metal manufacturing
PDF
Solid works manual
PPT
RAPID TOOLING - presentationupdate
Machining Process
Engineering design process
Engineering Design Process
Description of design process new
Intro to CAD CAM Tools
Design and Analysis of Progressive tool in Sheet metal manufacturing
Solid works manual
RAPID TOOLING - presentationupdate

What's hot (20)

PPTX
Limits, fits and tolerances
PPT
Tooling Design
PPTX
PDF
Introduction to automation - Module 01
PPT
Cooling towers
PPTX
Ppt for power plant
PDF
Additive Manufacturing Simulation - Design and Process
PPTX
Mechanical engineers and society
PPTX
Hot and cold working
PDF
Unit 5-cad standards
PPTX
Application of Additive Manufacturing in Aerospace Industry
PPT
Fundamentals of Engineering Design
PPT
Compressor
PPTX
Top down assembly
PPTX
Aircraft refrigeration system (air cooling system)
PDF
Boy's gas calorimeter
PPT
Non-Traditional Machining Process (UCMP)
DOC
Project Report on Analysis of Boiler- Aditya
PPT
Design process
PPT
power plant engineering Unit 1
Limits, fits and tolerances
Tooling Design
Introduction to automation - Module 01
Cooling towers
Ppt for power plant
Additive Manufacturing Simulation - Design and Process
Mechanical engineers and society
Hot and cold working
Unit 5-cad standards
Application of Additive Manufacturing in Aerospace Industry
Fundamentals of Engineering Design
Compressor
Top down assembly
Aircraft refrigeration system (air cooling system)
Boy's gas calorimeter
Non-Traditional Machining Process (UCMP)
Project Report on Analysis of Boiler- Aditya
Design process
power plant engineering Unit 1
Ad

Similar to Engineering design process (20)

PDF
502062783-Week-2-Introduction-to-Engineering-Design-Process.pdf
PDF
Introduction to Engineering Design Process
PPT
engineering_design_process_basics_slides.ppt
PDF
A Case Study In Creative Problem Solving In Engineering Design
PPTX
The Ins and Outs of Project Lead the Way
PPTX
Introduction to Engineering Design
PPTX
GENN001 Fall2013 Session #8 Problem Solving
PPTX
Module 1 Engineering Design Process.pptx
PDF
this contain engineering design with capstone
PPT
C3Problems and Brainstorming.ppt
PDF
Chapter 1 - INTRODUCTION TO ENGINEERING DESIGN PROCESS - PART 1.pdf
PPTX
WAYS ENGINEERS SOLVE PROBLEMS LECTURE 9.pptx
PDF
Engineering design.pdf
PPTX
lesson-4.pptx
PPTX
lecture_02_-_overview_of_engineering_design_ams_oct01_17.pptx
PPTX
PPTX
Communication Skills Lecture # 1.pptx
PDF
Creativity and Innovation: Engineering Design Process
PPTX
Resource and technology design process
502062783-Week-2-Introduction-to-Engineering-Design-Process.pdf
Introduction to Engineering Design Process
engineering_design_process_basics_slides.ppt
A Case Study In Creative Problem Solving In Engineering Design
The Ins and Outs of Project Lead the Way
Introduction to Engineering Design
GENN001 Fall2013 Session #8 Problem Solving
Module 1 Engineering Design Process.pptx
this contain engineering design with capstone
C3Problems and Brainstorming.ppt
Chapter 1 - INTRODUCTION TO ENGINEERING DESIGN PROCESS - PART 1.pdf
WAYS ENGINEERS SOLVE PROBLEMS LECTURE 9.pptx
Engineering design.pdf
lesson-4.pptx
lecture_02_-_overview_of_engineering_design_ams_oct01_17.pptx
Communication Skills Lecture # 1.pptx
Creativity and Innovation: Engineering Design Process
Resource and technology design process
Ad

Recently uploaded (20)

PPTX
Cell Structure & Organelles in detailed.
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Pre independence Education in Inndia.pdf
PPTX
Cell Types and Its function , kingdom of life
PDF
Classroom Observation Tools for Teachers
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
Pharma ospi slides which help in ospi learning
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Week 4 Term 3 Study Techniques revisited.pptx
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
Cell Structure & Organelles in detailed.
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
STATICS OF THE RIGID BODIES Hibbelers.pdf
Complications of Minimal Access Surgery at WLH
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Pre independence Education in Inndia.pdf
Cell Types and Its function , kingdom of life
Classroom Observation Tools for Teachers
Microbial disease of the cardiovascular and lymphatic systems
Pharma ospi slides which help in ospi learning
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Abdominal Access Techniques with Prof. Dr. R K Mishra
O5-L3 Freight Transport Ops (International) V1.pdf
Renaissance Architecture: A Journey from Faith to Humanism
Anesthesia in Laparoscopic Surgery in India
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Week 4 Term 3 Study Techniques revisited.pptx
Module 4: Burden of Disease Tutorial Slides S2 2025
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
2.FourierTransform-ShortQuestionswithAnswers.pdf

Engineering design process