SlideShare a Scribd company logo
Module 6.0
Fault Current Calculation
By: Dr. Hamid Jaffari
Power system Review
Fault Currents
 Symmetrical Fault
 Asymmetrical fault
Power System Review
Fault Analysis
 Analysis Type
 Power Flow: normal operating conditions
 Faults: abnormal operating conditions
 Fault Types
 Balanced or Symmetrical Fault
 Three Phase Short Circuit
 Unbalanced or Unsymmetrical Faults
 Single line-to-ground
 Double line-to-ground
 Line-to-line
 What are the results used for?
o Determining the circuit breaker rating
o Protective Relaying settings
Various Types of Faults
Fault
l
Symmetrica
)
a
Fault
cal
Unsymmetri
)
b
Fault
line
-
to
-
line Fault
ground
-
to
-
line
double Fault
ground
-
to
-
line
fault
1
F
Z
Z
V
)
(3
I



l-fault
Symmetrica
fault
0
2
1
F
fault
3Z
)
3
Z
(
Z
Z
3V
ground)
-
to
-
(Line
I





n
Z
fault
2
1
F
fault
Z
Z
Z
V
3
line)
-
to
-
(line
I




j
a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

Asymmetrical
Fault Calculation
Power System Review
R-L Circuit Transients
R
+
-
0
@

t
Closed
SW
L
)
sin(
2
)
( 

 wt
V
t
e
0
)
sin(
2
)
(
)
(
: 


 t
t
V
t
Ri
dt
t
di
L
Equation 

]
)
sin(
)
[sin(
2
)
(
)
(
)
(
: T
t
e
t
Z
V
t
i
t
i
t
i
Solution dc
ac







 




amp
t
Z
V
t
iac )
sin(
2
)
( 

 


T
t
e
Z
V
t
idc


 )
sin(
2
)
( 





 2
2
2
2
)
( l
R
X
R
Z 













 

R
wl
tg
R
X
tg 1
1

fR
X
R
X
R
L
T

 2



:
)
(
/ forced
Current
Fault
State
Steady
Fault
l
Symmetrica :
)
(transient
Current
Offset
dc
Solution
forced Solution
natural
Asymmetrical fault
]
)
sin(
)
[sin(
2
)
(
)
(
)
( T
t
e
t
Z
V
t
i
t
i
t
i dc
ac







 




•Dc offset Magnitude depends on angle α:
ac
I
offset
dc 2
0 

)
2
(



 


Z
V
current
fault
ac
rms
I
where ac 
)
(
:
]
)
2
[sin(
2
)
(
)
(
)
(
)
2
(
:
T
t
e
t
I
t
i
t
i
t
i
Set
ac
dc
ac













•In order to get the largest fault current:
Asymmetrical fault
 Note: i(t) is not completely periodic. So, how do we
get the rms value of i(t) ?
 Assume :
 Now calculate the RMS Asymmetrical Fault Current:
)
constant
(
C
e T
t


Amp
e
I
e
I
I
I
I
t
i T
t
ac
T
t
dc
ac
dc
ac
rms
2
2
2
2
2
2
1
]
2
[
]
[
)
(
)
(
)
(








cycles
in
time
is
where
f
t
fR
X
R
X
R
X
R
L
T
Note 



 ;
&
2
: 




Amp
e
I
e
I
e
I
t
i R
X
ac
fR
X
f
ac
T
t
ac
rms
)
/
(
4
2
2
2
2
1
2
1
2
1
)
(




















Unit
Per
2
1
factor
al
asymmetric
)
(
:
)
(
)
( )
/
(
4
R
X
ac
rms e
k
where
I
k
I









Asymmetrical Fault Calculation
 Example: In the following Circuit, V=2.4kV, L=8mH,
R=0.4Ω, and ω=2π60 rad/sec. Determine (a) the rms
symmetrical fault current; (b) the rms asymmetrical fault
current; (c) the rms asymmetrical fault current for .1 cycle
& 3 cycle after the switch closes, assuming the maximum
dc offset.
+
- 0
@ 
t
Closed
SW
mH
L 20

)
sin(
2400
2
)
( 

 wt
t
e

 4
R
Asymmetrical Fault Calculation
 Solution:

















 
4
.
82
042
.
3
4
.
82
042
.
3
016
.
3
4
.
0
)
10
8
)(
60
2
(
4
.
0
)
(
) 3



Z
Z
j
x
j
L
j
R
jX
R
Z
a
A
95
.
788
042
.
3
2400



volts
Z
V
Iac
A
46
.
1366
2
1
95
.
788
)
0
(
)
0
(
;
0
@
) 



 k
I
I
t
b ac
rms
00
.
1
10
739
.
6
1
2
1
)
3
(
641
.
1
693
.
1
1
2
1
)
1
.
0
(
54
.
7
4
.
0
016
.
3
)
(
)
3
54
.
7
)
3
(
4
54
.
7
)
1
.
0
(
4

















x
e
cycle
k
e
cycle
k
Ratio
R
X
c




A
95
.
788
)
3
(
)
3
(
A
69
.
294
,
1
641
.
1
)
1
.
0
(
)
1
.
0
(








cycle
k
I
cycle
I
x
cycle
k
I
cycle
I
ac
rms
ac
rms


+
- 0
@

t
Closed
SW
mH
L 20

)
sin(
400
,
2
2
)
( 

 wt
t
e

 4
R
Asymmetrical Fault-Unloaded
Synchronous Machine
 Three Stages: Subtransient, Transient, and Steady State
constant
time
armature
T
/
I
/
I
/
I
:
offset
dc
Maximum
2
2
)
(
)
2
sin(
]
1
)
1
1
(
)
1
1
[(
2
)
(
Current
ous
Instantane
)
(
)
(
)
(
A
Reactance
State
Steady
Reactance/
s
Synchronou
axix
direct
'
'
Reactance
Transient
axix
direct
'
Reactance
nt
Subtransie
axix
direct
"
/
"
/
"
'
'
"
"
"
'
"























d
g
d
d
g
d
d
g
d
T
t
T
t
d
g
dc
d
T
t
d
d
T
t
d
d
g
ac
X
E
X
X
E
X
X
E
X
Where
e
I
e
X
E
t
i
t
X
e
X
X
e
X
X
E
t
i
t
i
t
i
t
i
A
A
d
d
dc
ac



A
d
d
d
d
d X
X
X
T
,
T
,
T
Constants
Time
&
Reactances
Machine
:
provide
eres
Manufactur
:
Note
'
"
,
'
,
"
Stator
Uniform air-gap
Stator winding
Rotor
Rotor winding
N
S
d-axis
q-axis
axis
quadrature
axis
q
axis
direct
axis
d




Synchronous Machine
Asymmetrical Fault Envelopes
 Asymmetry Sources: (1) Open Phase and (2) SLG Fault
d
g
X
E
I "
"

d
g
X
E
I '
'

d
g
X
E
I 
Current
fault
nt
Subtransie
Current
fault
Transient
Current
fault
S.S
)
(t
iac
t

envelopes
current
AC
A
A T
t
T
t
d
g
e
I
e
X
E 


 "
"
MAX
-
dc 2
2
(t)
i
"
2I
I
2
'
2I
nt
Subtransie
Transient
State
Steady
offset
dc
Fault
al
Asymmetric
Generator
near
Fault
al
Asymmetric
of
Stages
d
g
X
E
I "
"

"
2I
d
g
X
E
I '
'

'
2I
d
g
X
E
I 
"
2I
'
2I
Fault Current
Calculation
Power System Review
Fault Current Analysis
Power System Review
Four methods to calculate the fault current:
1.Ohmic Method (not preferred)
2.Infinite Bus Method (Convenient & Easy)
3.Per Unit Method (Most Common)
4.MVA Method (Quick & Easy)
Note: This course will focus on PU & MVA Methods
Fault Current Analysis
Power System Review
Ohmic Method
Ohmic Method
Power System Review
This Method Requires:
 Transferring all impedances to high/low
voltage side of transformer using square
of XFMR turn ratio
Using your AC circuit theory knowledge
Voltage & Current dividers
Thevenin & Norton equivalents
Kramer’s Rule, etc
2
1
2
2
2
1












N
N
OR
N
N
Infinite Bus method
Power System Review
Fault Current Analysis
Infinite Bus Calculation
SC
Bsae
pu
pu
SC
r
transforme
utility
pu
total
I
x
I
Z
Z
Z





actual
I
:
Step4
kV
x
3
3
KVA
I
Calculate
:
Step3
0
.
1
I
Calculate
:
Step2
Z
Calculate
:
Step1
SC
LL
Base
)
(

•Infinite Bus calculation is a convenient way to
estimate the maximum 3ᶲ fault current flow on the sec
side of the transformer
•The following steps are necessary to calculate the ISC
100
%
&
;
Known
is
Circuit
Short
Utility
If
:
Note1
)
(
Z
Z
MVA
MVA
Z
where
Z
Z
Z
r
transforme
SC
base
utility
r
transforme
utility
pu
total




0
&
100
%
;
Unknown
is
Circuit
Short
Utility
If
:
Note2



utility
r
transforme
r
transforme
total
Z
pu
Z
Z
where
Z
Z
total
Z
7.5%
Z
kV
kV/4.16
13.8
KVA
5000

VS
Infinite Bus Calculation
Unknown Utility SC Data
A
4
.
9252
95
.
693
333
.
13
actual
I
:
Step4
A
95
.
693
16
.
4
3
5000
kV
x
3
3
KVA
I
Calculate
:
Step3
333
.
13
075
.
0
.
1
0
.
1
I
Calculate
:
Step2
075
.
0
100
5
.
7
100
Z%
Z
Calculate
:
Step1
SC
LL
Base
pu












x
I
x
I
kV
x
Z
pu
SC
Bsae
pu
pu
SC

Example1: Calculate the maximum 3ᶲ fault current on 5000 KVA
Transformer’s secondary bus.
Data
Source
No
7.5%
Z
kV
kV/4.16
13.8
KVA
5000

VS
Infinite Bus Calculation
with Known Utility SC Data
A
6426
95
.
693
26
.
9
actual
I
:
Step4
A
95
.
693
16
.
4
3
5000
kV
x
3
3
KVA
I
Calculate
:
Step3
26
.
9
108
.
0
0
.
1
0
.
1
I
Calculate
:
Step2
108
.
0
075
.
033
.
0
Z
Calculate
:
Step1
SC
LL
Base
)
(
total














x
I
x
I
kV
x
Z
pu
Z
Z
SC
Bsae
pu
total
pu
SC
r
transforme
utility

Example2: Calculate the maximum 3ᶲ fault current on 5000 KVA
Transformer’s secondary bus.
150MVA
SC 
pu
Z
Z
pu
x
S
S
kV
kV
Z
Z
pu
r
transforme
Old
base
New
base
new
old
pu
Utility
SC
base
utility
Old
New
075
.
0
100
5
.
7
100
%
033
.
150
5
16
.
4
16
.
4
1
1
150
150
MVA
MBA
Z
Z
Z
Z
Calculate
2
2
r
transforme
utility
toal





































pu
108
.
0
33
0
.
0
0.075
Ztotal 


utility
Z
:
Steps
n
Calculatio
Fault Current Analysis
Power System Review
Per-Unit Method
Power System Review
Fault Current Analysis:
Per-Unit Method
PU analysis is used for both symmetrical &
unsymmetrical fault calculations.
•All components are defined in PU system.
•Analysis is performed using equivalent per phase
circuit modeling.
•Requires knowledge of symmetrical components
•Requires selecting two system bases for
calculating all base & PU quantities:
kVBase & MVAbase
Power System Review
Fault Current Analysis:
Per-Unit Method
This Method requires:
•Knowledge of symmetrical components
Positive sequence (+ SEQ)
Negative sequence(-SEQ)
Zero sequence (0 SEQ)
•Interconnecting positive, negative, and
zero networks for calculating the various
unsymmetrical faults(LG, LL/LLG, and 3ᶲ)
Symmetrical Components
Power System Review
Steps involved:
1. Draw a single-line diagram of the desired
power system(equivalent per phase)
2. Define zones using transformation point as
a point of demarcation
3. Select a common MVAbase for all zones
4. Select a kVBase for one zone & Calculate
a. kVBase for other zones
b. Zbase, and Ibase for all zones
Symmetrical Components..cont
Power System Review
6. Replace each component with its
equivalent reactance in per-unit
7. Draw sequence networks(+, -, 0)
8. Use (+)SEQ network for Symmetrical
Fault analysis
9. Combine appropriate networks for
calculating various Unsymmetrical
Fault analysis
Symmetrical
Fault Calculation
Power System Review
3Φ Symmetrical Fault Analysis
(PU Method)
 Symmetrical Fault refers to a balanced 3Φ
fault, in a balanced 3Φ system operating in
steady state, which is either :
 Bolted fault: LLLG fault with Zfault=0
 Non-Bolted fault: LLLG fault with Zfault≠0
 Only the (+)SEQ network exists.
 (0)SEQ & (-)SEQ currents are equal to “Zero”.
Power System Review
Symmetrical Fault Modeling
for a Bolted Fault (PU Method)
Z0 eq
Note: VF=Pre Fault Voltage
+
_
Vo=0
Z2 eq
VF
Z1 eq
+
_
+
_
V1=0
I0=0
I1 Ia
Ib
Ic
Vc
Vb
Va
+
+
+
_ _ _
Ib = -Ia = Ic = ISC
Vbg = Vag = Vcg =0
Phase
g
+
_
V2=0
I2=0
)
(
1
)
(
)
(
1
PU
eq
PU
f
Z
V
I PU
fault 
0
2 
I
0
0 
I
SEQ
SEQ
)
(
SEQ
)
(
SEQ
)
0
(
Practice Example (PU Method):
 In the following power system Calculate(a)3ᶲ Symmetrical
fault current @ Bus3 and select an appropriate Breaker
Size @ Bus 3
G1
G2
PU
.15
0
X
kV
13.8
MVA
500
"

.15PU
0
T1
Υ
115kV
/
Δ
13.8kV
MVA
500
"
X 
PU
.20
0
X
kV
13.2
MVA
750
"

.18PU
0
T2
kV
8
.
13
/
115kV
MVA
750
"
X 



 6
XT1

 2
X 13
T
17.63
Zbase
115kV
Kvbase
MVA
750



Sbase
1
Bus 2
Bus
3
Bus

 4
X 23
T
.254
Zbase
13.8kV
Kvbase
MVA
750



Sbase
.254
Zbase
13.8kV
Kvbase
MVA
750



Sbase
MVA
750
SBase 
Breaker Selection
 Modern Circuit Breaker standards are designed based on
ISymmetrical. The following steps are required to determine an
appropriate breaker size:
1. Use “E/X” method to calculate the minimum ISymmetrical.
2. Calculate X/R ratio:
1. If X/R <15 →Use ISymmetrical
2. If X/R>15 →It means the dc offset has not decayed
to an acceptable level. Thus, calculate IAsymmetrical.
3. Calculate IAsymmetrical at calculated fault location.
4. Breaker Interrupting Capability should be 20% greater
than the calculated fault current.
Breaker Selection Criterion
 Generator/ Synchronous Motor/Large Induction motors
Breakers:
 Use subtransient Reactance X”d to calculate ISymmetrical.
 Use 2 cycle Breaker
 Transmission Breakers:
 Use 3 cycle Breakers if X/R>15
 Use 5 cycle Breaker if X/R<15
 Distribution Breakers:
 Use 3 cycle or 5 cycle Breakers
 If X/R ratio is unknown Use:
8
.
0
I
I
l
Symmetrica
Capability
ng
Interrupti
Breaker 

Unknown
R
X
A
2
.
614
,
16
8
.
0
13,291.2
I Capability
ng
Interrupti
Breaker 

G1 G2
PU
.15
0
X
kV
13.8
MVA
500
"

.15PU
0
T1
Υ
115kV
/
Δ
13.8kV
MVA
500
"
X 
PU
.20
0
X
kV
13.2
MVA
750
"

.18PU
0
T2
kV
8
.
13
/
115kV
MVA
750
"
X 



 6
XT1

 2
X 13
T
17.63
Zbase
115kV
Kvbase
MVA
750



Sbase
1
Bus 2
Bus
3
Bus

 4
X 23
T
.254
Zbase
13.8kV
Kvbase
MVA
750



Sbase
.254
Zbase
13.8kV
Kvbase
MVA
750



Sbase
MVA
750
SBase 
kV
115
:
Class
Voltage
Breaker
:
Selection
Breaker
cycle
3
:
Cycle
Breaker
Practice Example (PU Method):
A
2
.
291
,
13
I l
Symmetrica 
Symmetrical Fault Current
Analysis…MVA-Method
MVA Method
Power System Review
Fault Current Calculation-MVA Method
 This method follows a four steps process:
1. Calculate the Admittance of every component in its own
infinite bus.
2. Multiply the calculated admittances in step(1) by the
MVA rating of each component to get MVASC.
3. Combine short-circuit MVAs & follow the Admittance
series & parallel rules:
4. Convert MVAs to Symmetrical fault current
Power System Review
%
100
)
Admittance
(
Z
Y 
)
Admittance
(
Y
x
MVA
MVAsc 
n
total MVA
MVA
MVA
MVA ........
:
MVAs
Parallel
a)
2
1 


n
total MVA
MVA
MVA
MVA
1
........
1
1
1
:
MVAs
Series
b)
2
1



ll
kV
x
Total
MVAsc
al
Isymmetric
3
)
(

MVA Equivalent Network
n
total MVA
MVA
MVA
MVA ........
:
MVAs
Parallel
2
1 


n
total MVA
MVA
MVA
MVA
1
........
1
1
1
:
MVAs
Series
2
1



1
MVA 2
MVA 3
MVA
1
MVA 2
MVA 3
MVA
3
2
1 MVA
MVA
MVA
MVAtotal 


3
2
1
1
1
1
1
MVA
MVA
MVA
MVAtotal



Total
MVA
Total
MVA
Why Use the MVA Method?
 This method is internationally used and accepted by most
protection engineers.
 The network set up is easier than Ohmic or PU method.
 You can calculate Ifault in a shorter time period.
 This method makes it easier to see the fault contributions
@ every point in the system.
 Calculation accuracy is within 3% to 5% compared to PU &
Ohmic method.
Power System Review
MVA Method Assumptions
Power System Review
10
.
1 
R
X
Two Conditions must be satisfied:
Operation
State
Steady
.
2
Symmetrical Fault Current
Analysis...MVA-Method
Power System Review
)
(
3
: KA
I
x
kV
x
MVAsc
MVA
Utility sc
ll
fault 

)
(
:
2


Z
kV
MVA
Cable
ll
fault
%
100
:
/ "
Gen
d
fault
X
x
MVA
MVA
Motor
us
Sycnhroono
Generator 
%
100
:
xfmr
fault
Z
x
MVA
MVA
r
Transforme 
 Formulas:
Note: Impedances (Z) are steady state values
Where: X”d=direct-axis Subtransient Reactance
X”d= I Full-load amp/I Locked Rotor amp
Power System Review
Symmetrical Fault Current
Analysis...MVA-Method
%
100
: "
Gen
d
motor
fault
X
x
MVA
MVA
Motor 
amp
load
full
rotor
locked
motor
fault
I
I
x
MVA
MVA
Motor
Induction


:
:
Motor
 Summary:
Power System Review
Symmetrical Fault Current
Analysis...MVA-Method
LL
kV
x
MVA
I
total
KA
fault
3
)
( 
)]
/
1
(
)
/
1
(
)
/
1
[(
1
2
1 n
MVA
MVA
MVA
total
series
MVA








n
MVA
MVA
MVA
total
parallel
MVA 






 2
1
Example1:Fault Calculation(MVA method)
Generator
M
Utility Source
13.8kV, 15KA fault current
Motor
2MVA Y
4.16kV
X”d=0.25pu
3-500McM cables, 2000 ft
Z=0.2Ω
Transformer
7MVA
13.8kV/4.16kV
Z=9%
1.5MVA Y
4.16kV
X”d=0.15pu
Bus 1 13.8kV
Bus 2 4.16kV
In the following Power System, Calculate the fault current @ Bus2 & fault current
contributions from both Gen & Motor?
Step1:Network Modeling(MVA Method)
Generator
M
Utility Source
13.8kV, 15KA fault current
Motor
2MVA Y
4.16kV
X”d=0.25
3-500McM cables, 2000 ft
Z=0.2Ω
Transformer
7MVA
13.8kV/4.16kV
Z=9%
1.5MVA Y
4.16kV
X”d=0.15
MVA
x
x
MVAsource 5
.
358
)
kA
15
(
)
kv
8
.
13
(
3 

MVA
x
Z
x
MVA
MVA
xfmr
r
transforme 77
.
77
9
100
7
%
100



MVA
x
X
x
MVA
MVA
d
Generator 10
15
.
0
1
5
.
1
1
"



MVA
x
X
x
MVA
MVA
d
Motor 8
25
.
0
1
2
1
"



52
.
358
77
.
77
10
8
MVA
Z
kV
MVA
line
Line 53
.
86
2
.
0
)
16
.
4
( 2
2



53
.
86
Bus1 13.8kV
Bus2 4.16kV
Step 2: Network Reduction(MVA Method)
52
.
358
77
.
77
10
8
53
.
86 10
8
76
.
36
53
.
86
1
77
.
77
1
52
.
358
1
1
:
MVAs
Series



total
MVA
76
.
36
53
.
86
1
77
.
77
1
52
.
358
1
1




MVAtotal
3
2
1
:
MVA
MVA
MVA
MVA
MVAs
Parallel
total 


76
.
54
8
76
.
36
10 



total
MVA
76
.
54
MVA
Fault
Step 3:Fault MVA Conversion to Ifault
76
.
54

fault
MVA
6003
.
7
)
16
.
4
(
3
76
.
54
)
16
.
4
(
3
)
3
(
)
( 


LL
LL
fault
fault
kV
x
kV
x
MVA
kA
I

Amp
l
Symmetrica
Ifault 3
.
600
,
7
)
( 
kV
kVll 16
.
4

:
2 Quantities
Bus
Bus2 Fault Current:
Generator
M
Utility Source
13.8kV, 15KA fault current
Motor
2MVA Y
4.16kV
X”d=0.25
3-500McM cables, 2000 ft
Z=0.2Ω
Transformer
7MVA
13.8kV/4.16kV
Z=9%
1.5MVA
Y
4.16kV
X”d=0.15
Bus1 13.8kV
Bus2 4.16kV
pu
Vf 0
.
1

2
)
( Bus
for
Network
SEQ

utility
Z
Xfmr
Z
Line
Z
Gen
Z motor
Z
In the following Power System, Calculate the fault current @ Bus2 & fault current
contributions from both Gen & Motor using PU Method?
Example1:Fault Analysis(PU Method)
Example 1: Symmetrical Fault Current
Calculation Comparison between
PU & MVA Methods
Amp
I Bus
fault 3
.
600
,
7
2
@ 
A
7
.
605
,
7
A
879
,
13
548
.
0
)
(
2
@ 

 x
xI
pu
I
I base
fault
Bus
fault
:
n
calculatio
method
MVA
:
n
calculatio
Method
Unit
Per 
76
.
36
8
10
A
kV
x
MVA
I
on
Contributi
Generator
Gen
fault 9
.
387
,
1
16
.
4
3
10
:



Gen
MVA
Motor
MVA
)
( Line
Xfmr
Utility
MVA 

A
kV
x
MVA
I
on
Contributi
Motor
motor
fault 3
.
110
,
1
16
.
4
3
8
:



Ex1: Motor/Gen Fault Contribution
(MVA Method)
A
kV
x
MVA
I
on
Contributi
Utility
fault 102
,
5
205
.
7
76
.
36
16
.
4
3
76
.
36
:



A
2
.
600
,
7
3
.
110
,
1
9
.
387
,
1
102
,
5
:






 

 Gen
f
utility
f
motor
f
fault I
I
I
I
Current
Fault
Total
Ex1:Symmetrical Fault Current Analysis
PU & MVA Methods Comparison
Amp
I motor
f 3
.
110
,
1


A
110
,
1

f-motor
I
:
n
calculatio
method
MVA
:
n
calculatio
Method
Unit
Per 
Symmetrical Fault Current Calculation
MVA Method
Example2: Calculate the Symmetrical fault current @ Bus2 using the MVA Method
Generator
M
M
Generator
Utility Source
22.86kV, 15KA fault current
Transformer
20MVA Delta-Yn
22.86/4.16kV
Z=9% 5MVA
4.16kV
Z=12%
Transformer
3.5MVA Delta-Yn
4.16kV/480V
Z=7%
Motor
2MVA Y
4.16kV
Z=15%
Motor
1.5MVA Y
480V
Z=16%
Y
Y
3-500McM cables, 2000 ft
Z=.18 Ω
Bolted Fault
Generator
2MVA
480 V
Z=14%
BUS 1
BUS 2
903
.
593
15
86
.
22
3 
 kA
x
kV
x
MVA LL
fault
22
.
903
,
2
18
.
0
)
86
.
22
( 2
2


kV
Z
kV
MVA
line
fault
50
07
.
0
5
.
3
100
%
222
.
222
09
.
0
20
100
%


















Z
MVA
MVA
Z
MVA
MVA
Xfmr
fault
Xfmr
fault
MVA
Z
MVA
G
MVA
MVA
Z
MVA
G
MVA
fault
fault
286
.
14
14
.
0
2
100
%
)
2
(
667
.
41
12
.
0
5
100
%
)
1
(


















MVA
Z
MVA
G
MVA
MVA
Z
MVA
M
MVA
fault
fault
375
.
9
16
.
0
5
.
1
100
%
)
2
(
333
.
13
15
.
0
2
100
%
)
1
(


















 22.86 kV Utility Source:
 Line:
 Transformers:
Power System Review
903
.
593
15
86
.
22
3 
 kA
x
kV
x
MVA LL
fault
22
.
903
,
2
18
.
0
)
86
.
22
( 2
2


kV
Z
kV
MVA
line
fault
50
07
.
0
5
.
3
100
%
222
.
222
09
.
0
20
100
%


















Z
MVA
MVA
Z
MVA
MVA
Xfmr
fault
Xfmr
fault
Solution to Example2 (MVA method):
Solution to Example2 (MVA method):
 Generators:
 Motors:
Power System Review
MVA
Z
MVA
G
MVA
MVA
Z
MVA
G
MVA
fault
fault
286
.
14
14
.
0
2
100
%
)
2
(
667
.
41
12
.
0
5
100
%
)
1
(


















MVA
Z
MVA
G
MVA
MVA
Z
MVA
M
MVA
fault
fault
375
.
9
16
.
0
5
.
1
100
%
)
2
(
333
.
13
15
.
0
2
100
%
)
1
(


















Example 2:Symmetrical Fault Current
Calculation (MVA-method)
Power System Review
593.903
MVA
2903.220
MVA
222.222
MVA
41.667
MVA
50 MVA 13.333
MVA
9.375
MVA
14.286
MVA
BUS 1
BUS 2
Modeling
Network
:
Step1
Symmetrical Fault Current
Analysis…MVA-Method
 Series MVAs:
 Parallel MVAs:
Power System Review
)]
/
1
(
)
/
1
(
)
/
1
[(
1
2
1 n
MVA
MVA
MVA
total
series
MVA








n
MVA
MVA
MVA
total
parallel
MVA 






 2
1
Reduction
MVA
Network
:
Step2
Example2: Symmetrical Fault Current
Analysis…MVA-Method
 MVA series:
MVA=1/[(1/593.903)+(1/2,903.220)+(1/222.222)]
MVA=1/[(.0017)+(.0003)+(.0045)]=153.846
 Bus1 (parallel)=153.846+41.667+13.333=208.846
 MVA series @Bus2:
MVA=1/[(1/208.846)+(1/50)]
MVA=1/[(.0048)+(.0200)]=40.323
Power System Review
Reduction
MVA
Network
:
Step2
50 MVA
9.375
MVA
14.286
MVA
BUS 2
208.846MVA
Ex2: Short Circuit MVA Calculation
@ Bus 2(MVA method)
153.846
MVA
41.667
MVA
50
MVA
13.333
MVA
9.375
MVA
14.286
MVA
BUS 1
BUS 2
846
.
153
)]
22
.
222
/
1
(
)
22
.
903
,
2
/
1
(
)
903
.
593
/
1
[(
1




total
series
MVA
50
MVA
9.375
MVA
14.286
MVA
BUS 2
MVA
846
.
208
333
.
13
667
.
41
846
.
153 



parallel
MVA
208.846
MVA
n
Calculatio
MVA
Fault
:
Step3
40.323
MVA
9.375
MVA
14.286
MVA
BUS 2
MVA
984
.
63
375
.
9
286
.
14
323
.
40
2
@ 



Bus
MVA
323
.
40
)]
50
/
1
(
)
846
.
208
/
1
[(
1



series
MVA
MVA
984
.
63
2
@ 
Bus
MVA fault
Ex2: Short Circuit MVA Calculation
@ Bus 2(MVA method)
Example2: Symmetrical Fault
Current Analysis…MVA-Method
 Bus2 (total) = 40.323+14.286+9.375=63.984 MVA
 Now, Calculate the Short Circuit MVA @Bus1?
Power System Review
Available Fault Current @Bus 2:
Ifault=63.984 MVA/[ x 0.48kV]=76,963 A
3
Ex2:Calculate Short Circuit MVA@ Bus1
(MVA method)
153.864
MVA
41.667
MVA
50 MVA
9.375
MVA
14.286
MVA
13.333
MVA
195.531
MVA
13.333
MVA
50
MVA
9.375+14.286=23.661
MVA

208.864+16.051=224.915 MVA

208.864= 195.531+13.333
MVA
1/[(1/50)+(1/23.661)]=1/.0623=16.051
MVA
Power System Review
BUS 1 BUS 1
BUS 1
BUS 1
BUS 2
MVA
531
.
195
667
.
41
846
.
153 


parallel
MVA
MVA
915
.
224
1
@ 
Bus
fault
MVA
 S.C or Fault MVA @ Bus1:
 S.C or Fault MVA= 224.915
I fault @Bus1= 224.915 MVA/( x4.16kV)
Power System Review
Ex2: Calculate Short Circuit MVA
@ Bus 1 (MVA method)
3
Available Fault Current at Bus 1:
I fault @Bus1=31,216 A
Example 3: Symmetrical Fault Analysis
Power System Review
Source M
1500 MVA
Fault
69 kV
X=2.8Ω
10 MVA
X=8.5%
69kV Δ/Υ-n 13.8kV
13.2 kV
X=0.2
Calculate the symmetrical fault current at the secondary terminals of a 10 MVA XFMR
using both the PU-Method & the MVA Method. Use 15 MVA & 69 kV base values for
the transmission line.
5 MVA Υ-n
Zone 1 Zone 2
kV
V 69
1
Base
-
lL 
A
kV
x
S
IBase 57
.
627
3 1
Base
Base
2 




 4
.
317
15
69
S
2
Base
Base
2
Base
1
1
1
kV
Z
MVA
S 15
Base 
MVA
S 15
Base 


 7
.
12
15
8
.
13 2
Base2
Z
kV
V 8
.
13
2
Base
-
lL 
Example3: Symmetrical Fault
Analysis(MVA-method)
Power System Review
1700.36
MVA
1500
MVA
117.65
MVA
27.32
MVA
5 MVA_____
(13.2/13.8)²x0.2
=27.32
102.52
MVA
27.32
MVA
MVA Fault= 102.52+27.32
= 129.84
Ifault= 129.84/(1.732x13.8)
= 5,432.3 Amps
65
.
117
1
36
.
1700
1
1500
1
1



MVA
r
Transforme
Line
Source
Motor
Symmetrical Fault Calculation
Comparison Between PU & MVA
Methods
I fault= 5,410.3 Amp
I fault = 5,432.3 Amp
:
method
PU
:
method
MVA
Example 3:
Power System Review
References
1. J.D. Golver, M.S. Sarma, Power System Analysis and design,
4th ed., (Thomson Crop, 2008).
2. M.S. Sarma, Electric Machines, 2nd ed., (West Publishing Company,
1985).
3. A.E. Fitzgerald, C. Kingsley, and S. Umans, Electric
Machinery, 4th ed. (New York: McGraw-Hill, 1983).
4. P.M. Anderson, Analysis of Faulted Power systems(Ames, IA: Iowa
Satate university Press, 1973).
5.W.D. Stevenson, Jr., Elements of Power System Analysis, 4th
ed. (New York: McGraw-Hill, 1982).
Solution
 Answer: 37.5 KVA
Break Time !!!!!

More Related Content

PDF
Fundamentals of power system
PDF
Power flow analysis
PPTX
Testing of circuit breakers
PPT
Resistance,bundled conductor,skin effect,proximity effect
PDF
Generator protection calculations settings
PPTX
Power system stability and control using facts devices
PDF
Ee 791 drives lab maual
PPTX
Current Transformer
Fundamentals of power system
Power flow analysis
Testing of circuit breakers
Resistance,bundled conductor,skin effect,proximity effect
Generator protection calculations settings
Power system stability and control using facts devices
Ee 791 drives lab maual
Current Transformer

What's hot (20)

PPTX
Speed control of Three phase Induction motor using AC voltage regulator
PDF
33 kv substation vt report
PPTX
Symmetrical and un-symmetrical fault
PPTX
FAULT ANALYSIS IN HVDC & HVAC TRANSMISSION LINE
PPTX
HVDC System
PPTX
The Excitation system by SAI
PPT
POWER SYSTEM PROTECTION
PPT
Unit 4
PPTX
Unit 5 Economic Load Dispatch and Unit Commitment
PDF
substation 220 kv
PPT
Lec # 03 equivalent circuit of a synchronous generator
PDF
MPPT Solar Charge Controller
PPTX
Power Electronics-Introduction
PPSX
Switch yard & Protection
PPTX
120 & 180 degree Conduction Mode of Inverter.pptx
PPTX
Electrical Machine II -lecture#1_introduction
PDF
Power system stability
PDF
INDUCTANCE & CAPACITANCE CALCULATIONS
PPTX
Static var compensator
PDF
SWITCHYARD EQUIPMENTS & PROTECTION SYSTEMS
Speed control of Three phase Induction motor using AC voltage regulator
33 kv substation vt report
Symmetrical and un-symmetrical fault
FAULT ANALYSIS IN HVDC & HVAC TRANSMISSION LINE
HVDC System
The Excitation system by SAI
POWER SYSTEM PROTECTION
Unit 4
Unit 5 Economic Load Dispatch and Unit Commitment
substation 220 kv
Lec # 03 equivalent circuit of a synchronous generator
MPPT Solar Charge Controller
Power Electronics-Introduction
Switch yard & Protection
120 & 180 degree Conduction Mode of Inverter.pptx
Electrical Machine II -lecture#1_introduction
Power system stability
INDUCTANCE & CAPACITANCE CALCULATIONS
Static var compensator
SWITCHYARD EQUIPMENTS & PROTECTION SYSTEMS
Ad

Similar to fault_current_analysis.pdf (20)

PPT
fault level analysis fault level analysis
PDF
06 -synchronous_machine_parameter_measurement
ODT
A step-by-step approach to prepare fault studies of electrical power systems
PDF
DigSILENT PF - 05 short circuit theory
PDF
DigSILENT PF - 06 (es) short circuit theory
PDF
Symmetrical Components Fault Calculations
PDF
Ay03303170322
PPT
Lecture_18.ppt
PPT
Lecture_18.ppt Power System Analysis for Protection Engineers
PDF
Power System Analysis and Design
PDF
A novel four wire inverter system using SVPWM technique for ups applications
PPTX
Verifying Transformer Rated Service Installations
PDF
ETAP - Short circuit ansi standard
PDF
Power system Analysis By Sharif Kakar
PDF
Lecture1
PPT
Presentation1.ppt
PPTX
UNSYMMETRICAL FAULTS IN POWER SYSTEM
PPT
Power systems symmetrical components
PPTX
ECNG 3015 Industrial and Commercial Electrical Systems
PPT
EE8501-POWER SYSTEM ANALYSIS for engineering.ppt
fault level analysis fault level analysis
06 -synchronous_machine_parameter_measurement
A step-by-step approach to prepare fault studies of electrical power systems
DigSILENT PF - 05 short circuit theory
DigSILENT PF - 06 (es) short circuit theory
Symmetrical Components Fault Calculations
Ay03303170322
Lecture_18.ppt
Lecture_18.ppt Power System Analysis for Protection Engineers
Power System Analysis and Design
A novel four wire inverter system using SVPWM technique for ups applications
Verifying Transformer Rated Service Installations
ETAP - Short circuit ansi standard
Power system Analysis By Sharif Kakar
Lecture1
Presentation1.ppt
UNSYMMETRICAL FAULTS IN POWER SYSTEM
Power systems symmetrical components
ECNG 3015 Industrial and Commercial Electrical Systems
EE8501-POWER SYSTEM ANALYSIS for engineering.ppt
Ad

Recently uploaded (20)

PPTX
Lesson notes of climatology university.
PDF
Updated Idioms and Phrasal Verbs in English subject
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Cell Types and Its function , kingdom of life
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Trump Administration's workforce development strategy
PDF
Classroom Observation Tools for Teachers
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Lesson notes of climatology university.
Updated Idioms and Phrasal Verbs in English subject
A systematic review of self-coping strategies used by university students to ...
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Cell Types and Its function , kingdom of life
Supply Chain Operations Speaking Notes -ICLT Program
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
LDMMIA Reiki Yoga Finals Review Spring Summer
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Chinmaya Tiranga quiz Grand Finale.pdf
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Microbial diseases, their pathogenesis and prophylaxis
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Trump Administration's workforce development strategy
Classroom Observation Tools for Teachers
Orientation - ARALprogram of Deped to the Parents.pptx
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc

fault_current_analysis.pdf

  • 1. Module 6.0 Fault Current Calculation By: Dr. Hamid Jaffari Power system Review
  • 2. Fault Currents  Symmetrical Fault  Asymmetrical fault Power System Review
  • 3. Fault Analysis  Analysis Type  Power Flow: normal operating conditions  Faults: abnormal operating conditions  Fault Types  Balanced or Symmetrical Fault  Three Phase Short Circuit  Unbalanced or Unsymmetrical Faults  Single line-to-ground  Double line-to-ground  Line-to-line  What are the results used for? o Determining the circuit breaker rating o Protective Relaying settings
  • 4. Various Types of Faults Fault l Symmetrica ) a Fault cal Unsymmetri ) b Fault line - to - line Fault ground - to - line double Fault ground - to - line fault 1 F Z Z V ) (3 I    l-fault Symmetrica fault 0 2 1 F fault 3Z ) 3 Z ( Z Z 3V ground) - to - (Line I      n Z fault 2 1 F fault Z Z Z V 3 line) - to - (line I     j a  b  c  a  b  c  a  b  c  a  b  c  a  b  c 
  • 6. R-L Circuit Transients R + - 0 @  t Closed SW L ) sin( 2 ) (    wt V t e 0 ) sin( 2 ) ( ) ( :     t t V t Ri dt t di L Equation   ] ) sin( ) [sin( 2 ) ( ) ( ) ( : T t e t Z V t i t i t i Solution dc ac              amp t Z V t iac ) sin( 2 ) (       T t e Z V t idc    ) sin( 2 ) (        2 2 2 2 ) ( l R X R Z                  R wl tg R X tg 1 1  fR X R X R L T   2    : ) ( / forced Current Fault State Steady Fault l Symmetrica : ) (transient Current Offset dc Solution forced Solution natural
  • 7. Asymmetrical fault ] ) sin( ) [sin( 2 ) ( ) ( ) ( T t e t Z V t i t i t i dc ac              •Dc offset Magnitude depends on angle α: ac I offset dc 2 0   ) 2 (        Z V current fault ac rms I where ac  ) ( : ] ) 2 [sin( 2 ) ( ) ( ) ( ) 2 ( : T t e t I t i t i t i Set ac dc ac              •In order to get the largest fault current:
  • 8. Asymmetrical fault  Note: i(t) is not completely periodic. So, how do we get the rms value of i(t) ?  Assume :  Now calculate the RMS Asymmetrical Fault Current: ) constant ( C e T t   Amp e I e I I I I t i T t ac T t dc ac dc ac rms 2 2 2 2 2 2 1 ] 2 [ ] [ ) ( ) ( ) (         cycles in time is where f t fR X R X R X R L T Note      ; & 2 :      Amp e I e I e I t i R X ac fR X f ac T t ac rms ) / ( 4 2 2 2 2 1 2 1 2 1 ) (                     Unit Per 2 1 factor al asymmetric ) ( : ) ( ) ( ) / ( 4 R X ac rms e k where I k I         
  • 9. Asymmetrical Fault Calculation  Example: In the following Circuit, V=2.4kV, L=8mH, R=0.4Ω, and ω=2π60 rad/sec. Determine (a) the rms symmetrical fault current; (b) the rms asymmetrical fault current; (c) the rms asymmetrical fault current for .1 cycle & 3 cycle after the switch closes, assuming the maximum dc offset. + - 0 @  t Closed SW mH L 20  ) sin( 2400 2 ) (    wt t e   4 R
  • 10. Asymmetrical Fault Calculation  Solution:                    4 . 82 042 . 3 4 . 82 042 . 3 016 . 3 4 . 0 ) 10 8 )( 60 2 ( 4 . 0 ) ( ) 3    Z Z j x j L j R jX R Z a A 95 . 788 042 . 3 2400    volts Z V Iac A 46 . 1366 2 1 95 . 788 ) 0 ( ) 0 ( ; 0 @ )      k I I t b ac rms 00 . 1 10 739 . 6 1 2 1 ) 3 ( 641 . 1 693 . 1 1 2 1 ) 1 . 0 ( 54 . 7 4 . 0 016 . 3 ) ( ) 3 54 . 7 ) 3 ( 4 54 . 7 ) 1 . 0 ( 4                  x e cycle k e cycle k Ratio R X c     A 95 . 788 ) 3 ( ) 3 ( A 69 . 294 , 1 641 . 1 ) 1 . 0 ( ) 1 . 0 (         cycle k I cycle I x cycle k I cycle I ac rms ac rms   + - 0 @  t Closed SW mH L 20  ) sin( 400 , 2 2 ) (    wt t e   4 R
  • 11. Asymmetrical Fault-Unloaded Synchronous Machine  Three Stages: Subtransient, Transient, and Steady State constant time armature T / I / I / I : offset dc Maximum 2 2 ) ( ) 2 sin( ] 1 ) 1 1 ( ) 1 1 [( 2 ) ( Current ous Instantane ) ( ) ( ) ( A Reactance State Steady Reactance/ s Synchronou axix direct ' ' Reactance Transient axix direct ' Reactance nt Subtransie axix direct " / " / " ' ' " " " ' "                        d g d d g d d g d T t T t d g dc d T t d d T t d d g ac X E X X E X X E X Where e I e X E t i t X e X X e X X E t i t i t i t i A A d d dc ac    A d d d d d X X X T , T , T Constants Time & Reactances Machine : provide eres Manufactur : Note ' " , ' , " Stator Uniform air-gap Stator winding Rotor Rotor winding N S d-axis q-axis axis quadrature axis q axis direct axis d    
  • 12. Synchronous Machine Asymmetrical Fault Envelopes  Asymmetry Sources: (1) Open Phase and (2) SLG Fault d g X E I " "  d g X E I ' '  d g X E I  Current fault nt Subtransie Current fault Transient Current fault S.S ) (t iac t  envelopes current AC A A T t T t d g e I e X E     " " MAX - dc 2 2 (t) i " 2I I 2 ' 2I
  • 15. Fault Current Analysis Power System Review Four methods to calculate the fault current: 1.Ohmic Method (not preferred) 2.Infinite Bus Method (Convenient & Easy) 3.Per Unit Method (Most Common) 4.MVA Method (Quick & Easy) Note: This course will focus on PU & MVA Methods
  • 16. Fault Current Analysis Power System Review Ohmic Method
  • 17. Ohmic Method Power System Review This Method Requires:  Transferring all impedances to high/low voltage side of transformer using square of XFMR turn ratio Using your AC circuit theory knowledge Voltage & Current dividers Thevenin & Norton equivalents Kramer’s Rule, etc 2 1 2 2 2 1             N N OR N N
  • 18. Infinite Bus method Power System Review Fault Current Analysis
  • 19. Infinite Bus Calculation SC Bsae pu pu SC r transforme utility pu total I x I Z Z Z      actual I : Step4 kV x 3 3 KVA I Calculate : Step3 0 . 1 I Calculate : Step2 Z Calculate : Step1 SC LL Base ) (  •Infinite Bus calculation is a convenient way to estimate the maximum 3ᶲ fault current flow on the sec side of the transformer •The following steps are necessary to calculate the ISC 100 % & ; Known is Circuit Short Utility If : Note1 ) ( Z Z MVA MVA Z where Z Z Z r transforme SC base utility r transforme utility pu total     0 & 100 % ; Unknown is Circuit Short Utility If : Note2    utility r transforme r transforme total Z pu Z Z where Z Z total Z
  • 20. 7.5% Z kV kV/4.16 13.8 KVA 5000  VS Infinite Bus Calculation Unknown Utility SC Data A 4 . 9252 95 . 693 333 . 13 actual I : Step4 A 95 . 693 16 . 4 3 5000 kV x 3 3 KVA I Calculate : Step3 333 . 13 075 . 0 . 1 0 . 1 I Calculate : Step2 075 . 0 100 5 . 7 100 Z% Z Calculate : Step1 SC LL Base pu             x I x I kV x Z pu SC Bsae pu pu SC  Example1: Calculate the maximum 3ᶲ fault current on 5000 KVA Transformer’s secondary bus. Data Source No
  • 21. 7.5% Z kV kV/4.16 13.8 KVA 5000  VS Infinite Bus Calculation with Known Utility SC Data A 6426 95 . 693 26 . 9 actual I : Step4 A 95 . 693 16 . 4 3 5000 kV x 3 3 KVA I Calculate : Step3 26 . 9 108 . 0 0 . 1 0 . 1 I Calculate : Step2 108 . 0 075 . 033 . 0 Z Calculate : Step1 SC LL Base ) ( total               x I x I kV x Z pu Z Z SC Bsae pu total pu SC r transforme utility  Example2: Calculate the maximum 3ᶲ fault current on 5000 KVA Transformer’s secondary bus. 150MVA SC  pu Z Z pu x S S kV kV Z Z pu r transforme Old base New base new old pu Utility SC base utility Old New 075 . 0 100 5 . 7 100 % 033 . 150 5 16 . 4 16 . 4 1 1 150 150 MVA MBA Z Z Z Z Calculate 2 2 r transforme utility toal                                      pu 108 . 0 33 0 . 0 0.075 Ztotal    utility Z : Steps n Calculatio
  • 22. Fault Current Analysis Power System Review Per-Unit Method
  • 23. Power System Review Fault Current Analysis: Per-Unit Method PU analysis is used for both symmetrical & unsymmetrical fault calculations. •All components are defined in PU system. •Analysis is performed using equivalent per phase circuit modeling. •Requires knowledge of symmetrical components •Requires selecting two system bases for calculating all base & PU quantities: kVBase & MVAbase
  • 24. Power System Review Fault Current Analysis: Per-Unit Method This Method requires: •Knowledge of symmetrical components Positive sequence (+ SEQ) Negative sequence(-SEQ) Zero sequence (0 SEQ) •Interconnecting positive, negative, and zero networks for calculating the various unsymmetrical faults(LG, LL/LLG, and 3ᶲ)
  • 25. Symmetrical Components Power System Review Steps involved: 1. Draw a single-line diagram of the desired power system(equivalent per phase) 2. Define zones using transformation point as a point of demarcation 3. Select a common MVAbase for all zones 4. Select a kVBase for one zone & Calculate a. kVBase for other zones b. Zbase, and Ibase for all zones
  • 26. Symmetrical Components..cont Power System Review 6. Replace each component with its equivalent reactance in per-unit 7. Draw sequence networks(+, -, 0) 8. Use (+)SEQ network for Symmetrical Fault analysis 9. Combine appropriate networks for calculating various Unsymmetrical Fault analysis
  • 28. 3Φ Symmetrical Fault Analysis (PU Method)  Symmetrical Fault refers to a balanced 3Φ fault, in a balanced 3Φ system operating in steady state, which is either :  Bolted fault: LLLG fault with Zfault=0  Non-Bolted fault: LLLG fault with Zfault≠0  Only the (+)SEQ network exists.  (0)SEQ & (-)SEQ currents are equal to “Zero”. Power System Review
  • 29. Symmetrical Fault Modeling for a Bolted Fault (PU Method) Z0 eq Note: VF=Pre Fault Voltage + _ Vo=0 Z2 eq VF Z1 eq + _ + _ V1=0 I0=0 I1 Ia Ib Ic Vc Vb Va + + + _ _ _ Ib = -Ia = Ic = ISC Vbg = Vag = Vcg =0 Phase g + _ V2=0 I2=0 ) ( 1 ) ( ) ( 1 PU eq PU f Z V I PU fault  0 2  I 0 0  I SEQ SEQ ) ( SEQ ) ( SEQ ) 0 (
  • 30. Practice Example (PU Method):  In the following power system Calculate(a)3ᶲ Symmetrical fault current @ Bus3 and select an appropriate Breaker Size @ Bus 3 G1 G2 PU .15 0 X kV 13.8 MVA 500 "  .15PU 0 T1 Υ 115kV / Δ 13.8kV MVA 500 " X  PU .20 0 X kV 13.2 MVA 750 "  .18PU 0 T2 kV 8 . 13 / 115kV MVA 750 " X      6 XT1   2 X 13 T 17.63 Zbase 115kV Kvbase MVA 750    Sbase 1 Bus 2 Bus 3 Bus   4 X 23 T .254 Zbase 13.8kV Kvbase MVA 750    Sbase .254 Zbase 13.8kV Kvbase MVA 750    Sbase MVA 750 SBase 
  • 31. Breaker Selection  Modern Circuit Breaker standards are designed based on ISymmetrical. The following steps are required to determine an appropriate breaker size: 1. Use “E/X” method to calculate the minimum ISymmetrical. 2. Calculate X/R ratio: 1. If X/R <15 →Use ISymmetrical 2. If X/R>15 →It means the dc offset has not decayed to an acceptable level. Thus, calculate IAsymmetrical. 3. Calculate IAsymmetrical at calculated fault location. 4. Breaker Interrupting Capability should be 20% greater than the calculated fault current.
  • 32. Breaker Selection Criterion  Generator/ Synchronous Motor/Large Induction motors Breakers:  Use subtransient Reactance X”d to calculate ISymmetrical.  Use 2 cycle Breaker  Transmission Breakers:  Use 3 cycle Breakers if X/R>15  Use 5 cycle Breaker if X/R<15  Distribution Breakers:  Use 3 cycle or 5 cycle Breakers  If X/R ratio is unknown Use: 8 . 0 I I l Symmetrica Capability ng Interrupti Breaker   Unknown R X
  • 33. A 2 . 614 , 16 8 . 0 13,291.2 I Capability ng Interrupti Breaker   G1 G2 PU .15 0 X kV 13.8 MVA 500 "  .15PU 0 T1 Υ 115kV / Δ 13.8kV MVA 500 " X  PU .20 0 X kV 13.2 MVA 750 "  .18PU 0 T2 kV 8 . 13 / 115kV MVA 750 " X      6 XT1   2 X 13 T 17.63 Zbase 115kV Kvbase MVA 750    Sbase 1 Bus 2 Bus 3 Bus   4 X 23 T .254 Zbase 13.8kV Kvbase MVA 750    Sbase .254 Zbase 13.8kV Kvbase MVA 750    Sbase MVA 750 SBase  kV 115 : Class Voltage Breaker : Selection Breaker cycle 3 : Cycle Breaker Practice Example (PU Method): A 2 . 291 , 13 I l Symmetrica 
  • 35. Fault Current Calculation-MVA Method  This method follows a four steps process: 1. Calculate the Admittance of every component in its own infinite bus. 2. Multiply the calculated admittances in step(1) by the MVA rating of each component to get MVASC. 3. Combine short-circuit MVAs & follow the Admittance series & parallel rules: 4. Convert MVAs to Symmetrical fault current Power System Review % 100 ) Admittance ( Z Y  ) Admittance ( Y x MVA MVAsc  n total MVA MVA MVA MVA ........ : MVAs Parallel a) 2 1    n total MVA MVA MVA MVA 1 ........ 1 1 1 : MVAs Series b) 2 1    ll kV x Total MVAsc al Isymmetric 3 ) ( 
  • 36. MVA Equivalent Network n total MVA MVA MVA MVA ........ : MVAs Parallel 2 1    n total MVA MVA MVA MVA 1 ........ 1 1 1 : MVAs Series 2 1    1 MVA 2 MVA 3 MVA 1 MVA 2 MVA 3 MVA 3 2 1 MVA MVA MVA MVAtotal    3 2 1 1 1 1 1 MVA MVA MVA MVAtotal    Total MVA Total MVA
  • 37. Why Use the MVA Method?  This method is internationally used and accepted by most protection engineers.  The network set up is easier than Ohmic or PU method.  You can calculate Ifault in a shorter time period.  This method makes it easier to see the fault contributions @ every point in the system.  Calculation accuracy is within 3% to 5% compared to PU & Ohmic method. Power System Review
  • 38. MVA Method Assumptions Power System Review 10 . 1  R X Two Conditions must be satisfied: Operation State Steady . 2
  • 39. Symmetrical Fault Current Analysis...MVA-Method Power System Review ) ( 3 : KA I x kV x MVAsc MVA Utility sc ll fault   ) ( : 2   Z kV MVA Cable ll fault % 100 : / " Gen d fault X x MVA MVA Motor us Sycnhroono Generator  % 100 : xfmr fault Z x MVA MVA r Transforme   Formulas: Note: Impedances (Z) are steady state values
  • 40. Where: X”d=direct-axis Subtransient Reactance X”d= I Full-load amp/I Locked Rotor amp Power System Review Symmetrical Fault Current Analysis...MVA-Method % 100 : " Gen d motor fault X x MVA MVA Motor  amp load full rotor locked motor fault I I x MVA MVA Motor Induction   : : Motor
  • 41.  Summary: Power System Review Symmetrical Fault Current Analysis...MVA-Method LL kV x MVA I total KA fault 3 ) (  )] / 1 ( ) / 1 ( ) / 1 [( 1 2 1 n MVA MVA MVA total series MVA         n MVA MVA MVA total parallel MVA         2 1
  • 42. Example1:Fault Calculation(MVA method) Generator M Utility Source 13.8kV, 15KA fault current Motor 2MVA Y 4.16kV X”d=0.25pu 3-500McM cables, 2000 ft Z=0.2Ω Transformer 7MVA 13.8kV/4.16kV Z=9% 1.5MVA Y 4.16kV X”d=0.15pu Bus 1 13.8kV Bus 2 4.16kV In the following Power System, Calculate the fault current @ Bus2 & fault current contributions from both Gen & Motor?
  • 43. Step1:Network Modeling(MVA Method) Generator M Utility Source 13.8kV, 15KA fault current Motor 2MVA Y 4.16kV X”d=0.25 3-500McM cables, 2000 ft Z=0.2Ω Transformer 7MVA 13.8kV/4.16kV Z=9% 1.5MVA Y 4.16kV X”d=0.15 MVA x x MVAsource 5 . 358 ) kA 15 ( ) kv 8 . 13 ( 3   MVA x Z x MVA MVA xfmr r transforme 77 . 77 9 100 7 % 100    MVA x X x MVA MVA d Generator 10 15 . 0 1 5 . 1 1 "    MVA x X x MVA MVA d Motor 8 25 . 0 1 2 1 "    52 . 358 77 . 77 10 8 MVA Z kV MVA line Line 53 . 86 2 . 0 ) 16 . 4 ( 2 2    53 . 86 Bus1 13.8kV Bus2 4.16kV
  • 44. Step 2: Network Reduction(MVA Method) 52 . 358 77 . 77 10 8 53 . 86 10 8 76 . 36 53 . 86 1 77 . 77 1 52 . 358 1 1 : MVAs Series    total MVA 76 . 36 53 . 86 1 77 . 77 1 52 . 358 1 1     MVAtotal 3 2 1 : MVA MVA MVA MVA MVAs Parallel total    76 . 54 8 76 . 36 10     total MVA 76 . 54 MVA Fault
  • 45. Step 3:Fault MVA Conversion to Ifault 76 . 54  fault MVA 6003 . 7 ) 16 . 4 ( 3 76 . 54 ) 16 . 4 ( 3 ) 3 ( ) (    LL LL fault fault kV x kV x MVA kA I  Amp l Symmetrica Ifault 3 . 600 , 7 ) (  kV kVll 16 . 4  : 2 Quantities Bus Bus2 Fault Current:
  • 46. Generator M Utility Source 13.8kV, 15KA fault current Motor 2MVA Y 4.16kV X”d=0.25 3-500McM cables, 2000 ft Z=0.2Ω Transformer 7MVA 13.8kV/4.16kV Z=9% 1.5MVA Y 4.16kV X”d=0.15 Bus1 13.8kV Bus2 4.16kV pu Vf 0 . 1  2 ) ( Bus for Network SEQ  utility Z Xfmr Z Line Z Gen Z motor Z In the following Power System, Calculate the fault current @ Bus2 & fault current contributions from both Gen & Motor using PU Method? Example1:Fault Analysis(PU Method)
  • 47. Example 1: Symmetrical Fault Current Calculation Comparison between PU & MVA Methods Amp I Bus fault 3 . 600 , 7 2 @  A 7 . 605 , 7 A 879 , 13 548 . 0 ) ( 2 @    x xI pu I I base fault Bus fault : n calculatio method MVA : n calculatio Method Unit Per 
  • 48. 76 . 36 8 10 A kV x MVA I on Contributi Generator Gen fault 9 . 387 , 1 16 . 4 3 10 :    Gen MVA Motor MVA ) ( Line Xfmr Utility MVA   A kV x MVA I on Contributi Motor motor fault 3 . 110 , 1 16 . 4 3 8 :    Ex1: Motor/Gen Fault Contribution (MVA Method) A kV x MVA I on Contributi Utility fault 102 , 5 205 . 7 76 . 36 16 . 4 3 76 . 36 :    A 2 . 600 , 7 3 . 110 , 1 9 . 387 , 1 102 , 5 :           Gen f utility f motor f fault I I I I Current Fault Total
  • 49. Ex1:Symmetrical Fault Current Analysis PU & MVA Methods Comparison Amp I motor f 3 . 110 , 1   A 110 , 1  f-motor I : n calculatio method MVA : n calculatio Method Unit Per 
  • 50. Symmetrical Fault Current Calculation MVA Method Example2: Calculate the Symmetrical fault current @ Bus2 using the MVA Method Generator M M Generator Utility Source 22.86kV, 15KA fault current Transformer 20MVA Delta-Yn 22.86/4.16kV Z=9% 5MVA 4.16kV Z=12% Transformer 3.5MVA Delta-Yn 4.16kV/480V Z=7% Motor 2MVA Y 4.16kV Z=15% Motor 1.5MVA Y 480V Z=16% Y Y 3-500McM cables, 2000 ft Z=.18 Ω Bolted Fault Generator 2MVA 480 V Z=14% BUS 1 BUS 2 903 . 593 15 86 . 22 3   kA x kV x MVA LL fault 22 . 903 , 2 18 . 0 ) 86 . 22 ( 2 2   kV Z kV MVA line fault 50 07 . 0 5 . 3 100 % 222 . 222 09 . 0 20 100 %                   Z MVA MVA Z MVA MVA Xfmr fault Xfmr fault MVA Z MVA G MVA MVA Z MVA G MVA fault fault 286 . 14 14 . 0 2 100 % ) 2 ( 667 . 41 12 . 0 5 100 % ) 1 (                   MVA Z MVA G MVA MVA Z MVA M MVA fault fault 375 . 9 16 . 0 5 . 1 100 % ) 2 ( 333 . 13 15 . 0 2 100 % ) 1 (                  
  • 51.  22.86 kV Utility Source:  Line:  Transformers: Power System Review 903 . 593 15 86 . 22 3   kA x kV x MVA LL fault 22 . 903 , 2 18 . 0 ) 86 . 22 ( 2 2   kV Z kV MVA line fault 50 07 . 0 5 . 3 100 % 222 . 222 09 . 0 20 100 %                   Z MVA MVA Z MVA MVA Xfmr fault Xfmr fault Solution to Example2 (MVA method):
  • 52. Solution to Example2 (MVA method):  Generators:  Motors: Power System Review MVA Z MVA G MVA MVA Z MVA G MVA fault fault 286 . 14 14 . 0 2 100 % ) 2 ( 667 . 41 12 . 0 5 100 % ) 1 (                   MVA Z MVA G MVA MVA Z MVA M MVA fault fault 375 . 9 16 . 0 5 . 1 100 % ) 2 ( 333 . 13 15 . 0 2 100 % ) 1 (                  
  • 53. Example 2:Symmetrical Fault Current Calculation (MVA-method) Power System Review 593.903 MVA 2903.220 MVA 222.222 MVA 41.667 MVA 50 MVA 13.333 MVA 9.375 MVA 14.286 MVA BUS 1 BUS 2 Modeling Network : Step1
  • 54. Symmetrical Fault Current Analysis…MVA-Method  Series MVAs:  Parallel MVAs: Power System Review )] / 1 ( ) / 1 ( ) / 1 [( 1 2 1 n MVA MVA MVA total series MVA         n MVA MVA MVA total parallel MVA         2 1 Reduction MVA Network : Step2
  • 55. Example2: Symmetrical Fault Current Analysis…MVA-Method  MVA series: MVA=1/[(1/593.903)+(1/2,903.220)+(1/222.222)] MVA=1/[(.0017)+(.0003)+(.0045)]=153.846  Bus1 (parallel)=153.846+41.667+13.333=208.846  MVA series @Bus2: MVA=1/[(1/208.846)+(1/50)] MVA=1/[(.0048)+(.0200)]=40.323 Power System Review Reduction MVA Network : Step2 50 MVA 9.375 MVA 14.286 MVA BUS 2 208.846MVA
  • 56. Ex2: Short Circuit MVA Calculation @ Bus 2(MVA method) 153.846 MVA 41.667 MVA 50 MVA 13.333 MVA 9.375 MVA 14.286 MVA BUS 1 BUS 2 846 . 153 )] 22 . 222 / 1 ( ) 22 . 903 , 2 / 1 ( ) 903 . 593 / 1 [( 1     total series MVA 50 MVA 9.375 MVA 14.286 MVA BUS 2 MVA 846 . 208 333 . 13 667 . 41 846 . 153     parallel MVA 208.846 MVA n Calculatio MVA Fault : Step3
  • 58. Example2: Symmetrical Fault Current Analysis…MVA-Method  Bus2 (total) = 40.323+14.286+9.375=63.984 MVA  Now, Calculate the Short Circuit MVA @Bus1? Power System Review Available Fault Current @Bus 2: Ifault=63.984 MVA/[ x 0.48kV]=76,963 A 3
  • 59. Ex2:Calculate Short Circuit MVA@ Bus1 (MVA method) 153.864 MVA 41.667 MVA 50 MVA 9.375 MVA 14.286 MVA 13.333 MVA 195.531 MVA 13.333 MVA 50 MVA 9.375+14.286=23.661 MVA  208.864+16.051=224.915 MVA  208.864= 195.531+13.333 MVA 1/[(1/50)+(1/23.661)]=1/.0623=16.051 MVA Power System Review BUS 1 BUS 1 BUS 1 BUS 1 BUS 2 MVA 531 . 195 667 . 41 846 . 153    parallel MVA MVA 915 . 224 1 @  Bus fault MVA
  • 60.  S.C or Fault MVA @ Bus1:  S.C or Fault MVA= 224.915 I fault @Bus1= 224.915 MVA/( x4.16kV) Power System Review Ex2: Calculate Short Circuit MVA @ Bus 1 (MVA method) 3 Available Fault Current at Bus 1: I fault @Bus1=31,216 A
  • 61. Example 3: Symmetrical Fault Analysis Power System Review Source M 1500 MVA Fault 69 kV X=2.8Ω 10 MVA X=8.5% 69kV Δ/Υ-n 13.8kV 13.2 kV X=0.2 Calculate the symmetrical fault current at the secondary terminals of a 10 MVA XFMR using both the PU-Method & the MVA Method. Use 15 MVA & 69 kV base values for the transmission line. 5 MVA Υ-n Zone 1 Zone 2 kV V 69 1 Base - lL  A kV x S IBase 57 . 627 3 1 Base Base 2       4 . 317 15 69 S 2 Base Base 2 Base 1 1 1 kV Z MVA S 15 Base  MVA S 15 Base     7 . 12 15 8 . 13 2 Base2 Z kV V 8 . 13 2 Base - lL 
  • 62. Example3: Symmetrical Fault Analysis(MVA-method) Power System Review 1700.36 MVA 1500 MVA 117.65 MVA 27.32 MVA 5 MVA_____ (13.2/13.8)²x0.2 =27.32 102.52 MVA 27.32 MVA MVA Fault= 102.52+27.32 = 129.84 Ifault= 129.84/(1.732x13.8) = 5,432.3 Amps 65 . 117 1 36 . 1700 1 1500 1 1    MVA r Transforme Line Source Motor
  • 63. Symmetrical Fault Calculation Comparison Between PU & MVA Methods I fault= 5,410.3 Amp I fault = 5,432.3 Amp : method PU : method MVA Example 3: Power System Review
  • 64. References 1. J.D. Golver, M.S. Sarma, Power System Analysis and design, 4th ed., (Thomson Crop, 2008). 2. M.S. Sarma, Electric Machines, 2nd ed., (West Publishing Company, 1985). 3. A.E. Fitzgerald, C. Kingsley, and S. Umans, Electric Machinery, 4th ed. (New York: McGraw-Hill, 1983). 4. P.M. Anderson, Analysis of Faulted Power systems(Ames, IA: Iowa Satate university Press, 1973). 5.W.D. Stevenson, Jr., Elements of Power System Analysis, 4th ed. (New York: McGraw-Hill, 1982).
  • 65. Solution  Answer: 37.5 KVA Break Time !!!!!