SlideShare a Scribd company logo
Foundations of complex systems Nonlinear dynamic
statistical physics information and prediction
Gregoire Nicolis pdf download
https://ebookgate.com/product/foundations-of-complex-systems-
nonlinear-dynamic-statistical-physics-information-and-prediction-
gregoire-nicolis/
Get Instant Ebook Downloads – Browse at https://ebookgate.com
Instant digital products (PDF, ePub, MOBI) available
Download now and explore formats that suit you...
Foundations of complex systems emergence information and
predicition 2nd Edition G Nicolis
https://ebookgate.com/product/foundations-of-complex-systems-
emergence-information-and-predicition-2nd-edition-g-nicolis/
ebookgate.com
Foundations of Physics Tom Hsu
https://ebookgate.com/product/foundations-of-physics-tom-hsu/
ebookgate.com
Nonlinear Dynamic Modeling of Physiological Systems IEEE
Press Series on Biomedical Engineering 1st Edition
Professor Vasilis Z. Marmarelis
https://ebookgate.com/product/nonlinear-dynamic-modeling-of-
physiological-systems-ieee-press-series-on-biomedical-engineering-1st-
edition-professor-vasilis-z-marmarelis/
ebookgate.com
Nonlinear Dynamics From Lasers to Butterflies Selected
Lectures from the 15th Canberra Int l Physics Summer
School World Scientific Lecture Notes in Complex Systems
Akhmediev
https://ebookgate.com/product/nonlinear-dynamics-from-lasers-to-
butterflies-selected-lectures-from-the-15th-canberra-int-l-physics-
summer-school-world-scientific-lecture-notes-in-complex-systems-
akhmediev/
ebookgate.com
Fundamentals of Statistical and Thermal Physics Frederick
Reif
https://ebookgate.com/product/fundamentals-of-statistical-and-thermal-
physics-frederick-reif/
ebookgate.com
Methods of statistical physics First Edition Tomoyasu
Tanaka
https://ebookgate.com/product/methods-of-statistical-physics-first-
edition-tomoyasu-tanaka/
ebookgate.com
Advances in Chemical Physics Advancing Theory for Kinetics
and Dynamics of Complex Many Dimensional Systems Clusters
and Proteins Volume 145 Tamiki Komatsuzaki
https://ebookgate.com/product/advances-in-chemical-physics-advancing-
theory-for-kinetics-and-dynamics-of-complex-many-dimensional-systems-
clusters-and-proteins-volume-145-tamiki-komatsuzaki/
ebookgate.com
Case Studies in System of Systems Enterprise Systems and
Complex Systems Engineering 1st Edition Alex Gorod
https://ebookgate.com/product/case-studies-in-system-of-systems-
enterprise-systems-and-complex-systems-engineering-1st-edition-alex-
gorod/
ebookgate.com
Supervision and Safety of Complex Systems 1st Edition Nada
Matta
https://ebookgate.com/product/supervision-and-safety-of-complex-
systems-1st-edition-nada-matta/
ebookgate.com
Foundations of complex systems Nonlinear dynamic statistical physics information and prediction Gregoire Nicolis
Foundations of complex systems Nonlinear dynamic statistical physics information and prediction Gregoire Nicolis
FOUNDATIONS OF
COMPLEX SYSTEMS
Nonlinear Dynamics, StatisticalPhysics, Information
and Prediction
This page intentionally left blank
This page intentionally left blank
FOUNDATIONS OF
COMPLEX SYSTEMS
Nonlinear Dynamics, StatisticalPhysics, Information
and Prediction
Gregoire Nicolis
University o
f Brussels,Belgium
Catherine Nicolis
Royal MeteorologicalInstitute o
f Belgium, Belgium
vpWorld Scientific
NEW JERSEY - LONDON * SINGAPORE * BElJlNG SHANGHAI * HONG KONG * TAIPEI * CHENNAI
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.
ISBN-13 978-981-270-043-8
ISBN-10 981-270-043-9
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.
Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd.
Published by
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
Printed in Singapore.
FOUNDATIONS OF COMPLEX SYSTEMS
Nonlinear Dynamics, Statistical Physics, Information and Prediction
To Helen, Stamatis and little Katy
v
This page intentionally left blank
This page intentionally left blank
Preface
Complexity became a major scientific field in its own right as recently as 15
years ago, and since then it has modified considerably the scientific land-
scape through thousands of high-impact publications as well as through the
creation of specialized journals, Institutes, learned societies and University
chairs devoted specifically to it. It constitutes today a paradigm for ap-
proaching a large body of phenomena of concern at the crossroads of physical,
engineering, environmental, life and human sciences from a unifying point of
view.
Nonlinear science and statistical physics had been addressing for some
time phenomena of this kind: self-organization in nonequilibrium systems,
glassy materials, pattern formation, deterministic chaos are landmarks, wit-
nessing the success they have achieved in explaining how unexpected struc-
tures and events can be generated from the laws of nature in systems involv-
ing interacting subunits when appropriate conditions are satisfied - an issue
closely related to the problematics of complexity. And yet, on the one side,
for quite some time these attempts were progressing in rather disconnected
ways following their own momentum and success; and on the other side,
they were remaining confined to a large extent within a community of strong
background in physical and mathematical science, and did not incorporate
to a sufficient degree insights from the practitioner confronted with naturally
occurring systems where issues eliciting the idea of complexity show up in
a most pressing way. Last but not least, there was a lack of insight and of
illustrative power of just what are the minimal ingredients for observing the
sort of behaviors that would qualify as “complex”.
A first breakthrough that contributed significantly to the birth of com-
plexity research occurred in the late 1980’s - early 1990’s. It arose from the
cross-fertilization of ideas and tools from nonlinear science, statistical physics
and numerical simulation, the latter being a direct offspring of the increasing
availability of computers. By bringing chaos and irreversibility together it
showed that deterministic and probabilistic views, causality and chance, sta-
bility and evolution were different facets of a same reality when addressing
vii
viii Preface
certain classes of systems. It also provided insights on the relative roles of the
number of elements involved in the process and the nature of the underlying
dynamics. Paul Anderson’s well-known aphorism, “more is different”, that
contributed to the awareness of the scientific community on the relevance of
complexity, is here complemented in a most interesting way.
The second breakthrough presiding in the birth of complexity coincides
with the increasing input of fields outside the strict realm of physical science.
The intrusion of concepts that were till then not part of the vocabulary of fun-
damental science forced a reassessment of ideas and practices. Predictability,
in connection with the increasing concern about the evolution of the atmo-
sphere, climate and financial activities; algorithms, information, symbols,
networks, optimization in connection with life sciences, theoretical informat-
ics, computer science, engineering and management; adaptive behavior and
cognitive processes in connection with brain research, ethology and social
sciences are some characteristic examples.
Finally, time going on, it became clear that generic aspects of the complex
behaviors observed across a wide spectrum of fields could be captured by
minimal models governed by simple local rules. Some of them gave rise in
their computer implementation to attractive visualizations and deep insights,
from Monte Carlo simulations to cellular automata and multi-agent systems.
These developments provided the tools and paved the way to an under-
standing, both qualitative and quantitative, of the complex systems encoun-
tered in nature, technology and everyday experience. In parallel, natural
complexity acted as a source of inspiration generating progress at the funda-
mental level. Spontaneously, in a very short time interval complexity became
in this way a natural reference point for all sorts of communities and prob-
lems. Inevitably, in parallel with the substantial progress achieved ambiguous
statements and claims were also formulated related in one way or the other
to the diversity of backgrounds of the actors involved and their perceptions
as to the relative roles of hard facts, mechanisms, analogies and metaphors.
As a result complexity research is today both one of the most active and
fastest growing fields of science and a forum for the exchange of sometimes
conflicting ideas and views cutting across scientific disciplines.
In this book the foundations of complex systems are outlined. The vision
conveyed is that of complexity as a part of fundamental science, in which
the insights provided by its cross-fertilization with other disciplines are in-
corporated. What is more, we argue that by virtue of this unique blending
complexity ranks among the most relevant parts of fundamental science as it
addresses phenomena that unfold on our own scale, phenomena in the course
of which the object and the observer are co-evolving. A unifying presentation
of the concepts and tools needed to analyze, to model and to predict com-
Preface ix
plex systems is laid down and links between key concepts such as emergence,
irreversibility, evolution, randomness and information are established in the
light of the complexity paradigm. Furthermore, the interdisciplinary dimen-
sion of complexity research is brought out through representative examples.
Throughout the presentation emphasis is placed on the need for a multi-
level approach to complex systems integrating deterministic and probabilis-
tic views, structure and dynamics, microscopic, mesoscopic and macroscopic
level descriptions.
The book is addressed primarily to graduate level students and to re-
searchers in physics, mathematics and computer science, engineering, envi-
ronmental and life sciences, economics and sociology. It can constitute the
material of a graduate-level course and we also hope that, outside the aca-
demic community, professionals interested in interdisciplinary issues will find
some interest in its reading. The choice of material, the style and the cov-
erage of the items reflect our concern to do justice to the multiple facets
of complexity. There can be no “soft” approach to complexity: observing,
monitoring, analyzing, modeling, predicting and controlling complex systems
can only be achieved through the time-honored approach provided by “hard”
science. The novelty brought by complex systems is that in this endeavor the
goals are reassessed and the ways to achieve them are reinvented in a most
unexpected way as compared to classical approaches.
Chapter 1 provides an overview of the principal manifestations of com-
plexity. Unifying concepts such as instability, sensitivity, bifurcation, emer-
gence, self-organization, chaos, predictability, evolution and selection are
sorted out in view of later developments and the need for a bottom-up ap-
proach to complexity is emphasized. In Chapter 2 the basis of a deterministic
approach to the principal behaviors characteristic of the phenomenology of
complex systems at different levels of description is provided, using the for-
malism of nonlinear dynamical systems. The fundamental mechanism under-
lying emergence is identified. At the same time the limitations of a universal
description of complex systems within the framework of a deterministic ap-
proach are revealed and the “open future” character of their evolution is
highlighted. Some prototypical ways to model complexity in physical science
and beyond are also discussed, with emphasis on the role of the coupling
between constituting elements. In Chapter 3 an analysis incorporating the
probabilistic dimension of complex systems is carried out. It leads to some
novel ways to characterize complex systems, allows one to recover universal
trends in their evolution and brings out the limitations of the determinis-
tic description. These developments provide the background for different
ways to simulate complex systems and for understanding the relative roles
of dynamics and structure in their behavior. The probabilistic approach to
x Preface
complexity is further amplified in Chapter 4 by the incorporation of the con-
cepts of symbolic dynamics and information. A set of entropy-like quantities
is introduced and their connection with their thermodynamic counterparts is
discussed. The selection rules presiding the formation of complex structures
are also studied in terms of these quantities and the nature of the underlying
dynamics. The stage is thus set for the analysis of the algorithmic aspects of
complex systems and for the comparison between algorithmic complexity as
defined in theoretical computer science and natural complexity.
Building on the background provided by Chapters 1 to 4, Chapter 5 ad-
dresses “operational” aspects of complexity, such as monitoring and data
analysis approaches targeted specifically to complex systems. Special em-
phasis is placed on the mechanisms underlying the propagation of prediction
errors and the existence of a limited predictability horizon. The chapter ends
with a discussion of recurrence and extreme events, two prediction-oriented
topics of increasing concern. Finally, in Chapter 6 complexity is shown “in
action” on a number of selected topics. The choices made in this selection out
of the enormous number of possibilities reflect our general vision of complex-
ity as part of fundamental science but also, inevitably, our personal interests
and biases. We hope that this coverage illustrates adequately the relevance
and range of applicability of the ideas and tools outlined in the book. The
chapter ends with a section devoted to the epistemological aspects of com-
plex systems. Having no particular background in epistemology we realize
that this is a risky enterprise, but we feel that it cannot be dispensed with
in a book devoted to complexity. The presentation of the topics of this final
section is that of the practitioner of physical science, and contains only few
elements of specialized jargon in a topic that could by itself give rise to an
entire monograph.
In preparing this book we have benefitted from discussions with, com-
ments and help in the preparation of figures by Y. Almirantis, V. Basios, A.
Garcia Cantu, P. Gaspard, M. Malek Mansour, J. S. Nicolis, S. C. Nicolis,
A. Provata, R. Thomas and S. Vannitsem. S. Wellens assumed the hard task
of typing the first two versions of the manuscript.
Our research in the subject areas covered in this book is sponsored by
The University of Brussels, the Royal Meteorological Institute of Belgium,
the Science Policy Office of the Belgian Federal Government, the European
Space Agency and the European Commission. Their interest and support
are gratefully acknowledged.
G. Nicolis, C. Nicolis
Brussels, February 2007
Contents
Preface vii
1 The phenomenology of complex systems 1
1.1 Complexity, a new paradigm . . . . . . . . . . . . . . . . . . . 1
1.2 Signatures of complexity . . . . . . . . . . . . . . . . . . . . . 3
1.3 Onset of complexity . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Four case studies . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 Rayleigh-Bénard convection . . . . . . . . . . . . . . . 8
1.4.2 Atmospheric and climatic variability . . . . . . . . . . 11
1.4.3 Collective problem solving: food recruitment in ants . . 15
1.4.4 Human systems . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Summing up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2 Deterministic view 25
2.1 Dynamical systems, phase space, stability . . . . . . . . . . . 25
2.1.1 Conservative systems . . . . . . . . . . . . . . . . . . . 27
2.1.2 Dissipative systems . . . . . . . . . . . . . . . . . . . . 27
2.2 Levels of description . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 The microscopic level . . . . . . . . . . . . . . . . . . . 34
2.2.2 The macroscopic level . . . . . . . . . . . . . . . . . . 36
2.2.3 Thermodynamic formulation . . . . . . . . . . . . . . . 38
2.3 Bifurcations, normal forms, emergence . . . . . . . . . . . . . 41
2.4 Universality, structural stability . . . . . . . . . . . . . . . . . 46
2.5 Deterministic chaos . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6 Aspects of coupling-induced complexity . . . . . . . . . . . . . 53
2.7 Modeling complexity beyond physical science . . . . . . . . . . 59
3 The probabilistic dimension of complex systems 64
3.1 Need for a probabilistic approach . . . . . . . . . . . . . . . . 64
3.2 Probability distributions and their evolution laws . . . . . . . 65
3.3 The retrieval of universality . . . . . . . . . . . . . . . . . . . 72
xi
xii Contents
3.4 The transition to complexity in probability space . . . . . . . 77
3.5 The limits of validity of the macroscopic description . . . . . . 82
3.5.1 Closing the moment equations in the mesoscopic
description . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5.2 Transitions between states . . . . . . . . . . . . . . . . 84
3.5.3 Average values versus fluctuations in
deterministic chaos . . . . . . . . . . . . . . . . . . . . 88
3.6 Simulating complex systems . . . . . . . . . . . . . . . . . . . 90
3.6.1 Monte Carlo simulation . . . . . . . . . . . . . . . . . 91
3.6.2 Microscopic simulations . . . . . . . . . . . . . . . . . 92
3.6.3 Cellular automata . . . . . . . . . . . . . . . . . . . . . 94
3.6.4 Agents, players and games . . . . . . . . . . . . . . . . 95
3.7 Disorder-generated complexity . . . . . . . . . . . . . . . . . . 96
4 Information, entropy and selection 101
4.1 Complexity and information . . . . . . . . . . . . . . . . . . . 101
4.2 The information entropy of a history . . . . . . . . . . . . . . 104
4.3 Scaling rules and selection . . . . . . . . . . . . . . . . . . . . 106
4.4 Time-dependent properties of information.
Information entropy and thermodynamic entropy . . . . . . . 115
4.5 Dynamical and statistical properties of time histories.
Large deviations, fluctuation theorems . . . . . . . . . . . . . 117
4.6 Further information measures. Dimensions and Lyapunov
exponents revisited . . . . . . . . . . . . . . . . . . . . . . . . 120
4.7 Physical complexity, algorithmic complexity,
and computation . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.8 Summing up: towards a thermodynamics of
complex systems . . . . . . . . . . . . . . . . . . . . . . . . . 128
5 Communicating with a complex system: monitoring,
analysis and prediction 131
5.1 Nature of the problem . . . . . . . . . . . . . . . . . . . . . . 131
5.2 Classical approaches and their limitations . . . . . . . . . . . . 131
5.2.1 Exploratory data analysis . . . . . . . . . . . . . . . . 132
5.2.2 Time series analysis and statistical forecasting . . . . . 135
5.2.3 Sampling in time and in space . . . . . . . . . . . . . . 138
5.3 Nonlinear data analysis . . . . . . . . . . . . . . . . . . . . . . 139
5.3.1 Dynamical reconstruction . . . . . . . . . . . . . . . . 139
5.3.2 Symbolic dynamics from time series . . . . . . . . . . . 143
5.3.3 Nonlinear prediction . . . . . . . . . . . . . . . . . . . 148
5.4 The monitoring of complex fields . . . . . . . . . . . . . . . . 151
Contents xiii
5.4.1 Optimizing an observational network . . . . . . . . . . 153
5.4.2 Data assimilation . . . . . . . . . . . . . . . . . . . . . 157
5.5 The predictability horizon and the limits of modeling . . . . . 159
5.5.1 The dynamics of growth of initial errors . . . . . . . . 160
5.5.2 The dynamics of model errors . . . . . . . . . . . . . . 164
5.5.3 Can prediction errors be controlled? . . . . . . . . . . . 170
5.6 Recurrence as a predictor . . . . . . . . . . . . . . . . . . . . 171
5.6.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . 172
5.6.2 Recurrence time statistics and dynamical
complexity . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.7 Extreme events . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.7.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . 180
5.7.2 Statistical theory of extremes . . . . . . . . . . . . . . 182
5.7.3 Signatures of a deterministic dynamics in
extreme events . . . . . . . . . . . . . . . . . . . . . . 185
5.7.4 Statistical and dynamical aspects of the Hurst
phenomenon . . . . . . . . . . . . . . . . . . . . . . . . 191
6 Selected topics 195
6.1 The arrow of time . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.1.1 The Maxwell-Boltzmann revolution, kinetic theory,
Boltzmann’s equation . . . . . . . . . . . . . . . . . . . 196
6.1.2 First resolution of the paradoxes: Markov processes,
master equation . . . . . . . . . . . . . . . . . . . . . . 200
6.1.3 Generalized kinetic theories . . . . . . . . . . . . . . . 202
6.1.4 Microscopic chaos and nonequilibrium statistical
mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 204
6.2 Thriving on fluctuations: the challenge of being small . . . . . 208
6.2.1 Fluctuation dynamics in nonequilibrium steady
states revisited . . . . . . . . . . . . . . . . . . . . . . 210
6.2.2 The peculiar energetics of irreversible paths
joining equilibrium states . . . . . . . . . . . . . . . . . 211
6.2.3 Transport in a fluctuating environment far from
equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 214
6.3 Atmospheric dynamics . . . . . . . . . . . . . . . . . . . . . . 217
6.3.1 Low order models . . . . . . . . . . . . . . . . . . . . . 218
6.3.2 More detailed models . . . . . . . . . . . . . . . . . . . 222
6.3.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . 223
6.3.4 Modeling and predicting with probabilities . . . . . . . 224
6.4 Climate dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 226
6.4.1 Low order climate models . . . . . . . . . . . . . . . . 227
xiv Contents
6.4.2 Predictability of meteorological versus climatic fields . 230
6.4.3 Climatic change . . . . . . . . . . . . . . . . . . . . . . 233
6.5 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.5.1 Geometric and statistical properties of networks . . . . 236
6.5.2 Dynamical origin of networks . . . . . . . . . . . . . . 239
6.5.3 Dynamics on networks . . . . . . . . . . . . . . . . . . 244
6.6 Perspectives on biological complexity . . . . . . . . . . . . . . 247
6.6.1 Nonlinear dynamics and self-organization at the
biochemical, cellular and organismic level . . . . . . . . 249
6.6.2 Biological superstructures . . . . . . . . . . . . . . . . 251
6.6.3 Biological networks . . . . . . . . . . . . . . . . . . . . 253
6.6.4 Complexity and the genome organization . . . . . . . . 260
6.6.5 Molecular evolution . . . . . . . . . . . . . . . . . . . . 263
6.7 Equilibrium versus nonequilibrium in complexity and
self-organization . . . . . . . . . . . . . . . . . . . . . . . . . . 267
6.7.1 Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . 268
6.7.2 Stabilization of nanoscale patterns . . . . . . . . . . . 272
6.7.3 Supramolecular chemistry . . . . . . . . . . . . . . . . 274
6.8 Epistemological insights from complex systems . . . . . . . . . 276
6.8.1 Complexity, causality and chance . . . . . . . . . . . . 277
6.8.2 Complexity and historicity . . . . . . . . . . . . . . . . 279
6.8.3 Complexity and reductionism . . . . . . . . . . . . . . 283
6.8.4 Facts, analogies and metaphors . . . . . . . . . . . . . 285
Color plates 287
Suggestions for further reading 291
Index 321
´
 ˜
 ´
  ´
 ´
 `
 ´

 ´
 ´
 
The whole is more than the sum
of its parts
Aristotle Metaphysica 1045a
Chapter 1
The phenomenology of complex
systems
1.1 Complexity, a new paradigm
Complexity is part of our ordinary vocabulary. It has been used in everyday
life and in quite different contexts for a long time and suddenly, as recently
as 15 years ago it became a major field of interdisciplinary research that
has since then modified considerably the scientific landscape. What is in
the general idea of complexity that was missing in our collective knowledge
-one might even say, in our collective consciousness- which, once recognized,
conferred to it its present prominent status? What makes us designate certain
systems as “complex” distinguishing them from others that we would not
hesitate to call “simple”, and to what extent could such a distinction be
the starting point of a new approach to a large body of phenomena at the
crossroads of physical, engineering, environmental, life and human sciences?
For the public and for the vast majority of scientists themselves science is
usually viewed as an algorithm for predicting, with a theoretically unlimited
precision, the future course of natural objects on the basis of their present
state. Isaac Newton, founder of modern physics, showed more than three
centuries ago how with the help of a few theoretical concepts like the law of
universal gravitation, whose statement can be condensed in a few lines, one
can generate data sets as long as desired allowing one to interpret the essence
of the motion of celestial bodies and predict accurately, among others, an
eclipse of the sun or of the moon thousands of years in advance. The impact
of this historical achievement was such that, since then, scientific thinking
has been dominated by the Newtonian paradigm whereby the world is re-
ducible to a few fundamental elements animated by a regular, reproducible
1
2 Foundations of Complex Systems
and hence predictable behavior: a world that could in this sense be qualified
as fundamentally simple.
During the three-century reign of the Newtonian paradigm science reached
a unique status thanks mainly to its successes in the exploration of the very
small and the very large: the atomic, nuclear and subnuclear constitution
of matter on the one side; and cosmology on the other. On the other hand
man’s intuition and everyday experience are essentially concerned with the
intermediate range of phenomena involving objects constituted by a large
number of interacting subunits and unfolding on his own, macroscopic, space
and time scales. Here one cannot avoid the feeling that in addition to regular
and reproducible phenomena there exist other that are, manifestly, much less
so. It is perfectly possible as we just recalled to predict an eclipse of the sun
or of the moon thousands of years in advance but we are incapable of pre-
dicting the weather over the region we are concerned more than a few days
in advance or the electrical activity in the cortex of a subject a few minutes
after he started performing a mental task, to say nothing about next day’s
Dow Jones index or the state of the planet earth 50 years from now. Yet the
movement of the atmosphere and the oceans that governs the weather and
the climate, the biochemical reactions and the transport phenomena that
govern the functioning of the human body and underlie, after all, human
behavior itself, obey to the same dispassionate laws of nature as planetary
motion.
It is a measure of the fascination that the Newtonian paradigm exerted
on scientific thought that despite such indisputable facts, which elicit to the
observer the idea of “complexity”, the conviction prevailed until recently that
the irregularity and unpredictability of the vast majority of phenomena on
our scale are not authentic: they are to be regarded as temporary drawbacks
reflecting incomplete information on the system at hand, in connection with
the presence of a large number of variables and parameters that the observer
is in the practical impossibility to manage and that mask some fundamental
underlying regularities.
If evidence on complexity were limited to the intricate, large scale systems
of the kind mentioned above one would have no way to refute such an asser-
tion and fundamental science would thus have nothing to say on complexity.
But over the years evidence has accumulated that quite ordinary systems
that one would tend to qualify as “simple”, obeying to laws known to their
least detail, in the laboratory, under strictly controlled conditions, generate
unexpected behaviors similar to the phenomenology of complexity as we en-
counter it in nature and in everyday experience: Complexity is not a mere
metaphor or a nice way to put certain intriguing things, it is a phenomenon
that is deeply rooted into the laws of nature, where systems involving large
The Phenomenology of Complex Systems 3
numbers of interacting subunits are ubiquitous.
This realization opens the way to a systematic search of the physical
and mathematical laws governing complex systems. The enterprise was
crowned with success thanks to a multilevel approach that led to the de-
velopment of highly original methodologies and to the unexpected cross-
fertilizations and blendings of ideas and tools from nonlinear science, sta-
tistical mechanics and thermodynamics, probability theory and numerical
simulation. Thanks to the progress accomplished complexity is emerging as
the new, post-Newtonian paradigm for a fresh look at problems of current
concern. On the one side one is now in the position to gain new understand-
ing, both qualitative and quantitative, of the complex systems encountered
in nature and in everyday experience based on advanced modeling, analysis
and monitoring strategies. Conversely, by raising issues and by introducing
concepts beyond the traditional realm of physical science, natural complexity
acts as a source of inspiration for further progress at the fundamental level.
It is this sort of interplay that confers to research in complexity its unique,
highly interdisciplinary character.
The objective of this chapter is to compile some representative facts il-
lustrating the phenomenology associated with complex systems. The subse-
quent chapters will be devoted to the concepts and methods underlying the
paradigm shift brought by complexity and to showing their applicability on
selected case studies.
1.2 Signatures of complexity
The basic thesis of this book is that a system perceived as complex induces a
characteristic phenomenology the principal signature of which is multiplicity.
Contrary to elementary physical phenomena like the free fall of an object
under the effect of gravity where a well-defined, single action follows an initial
cause at any time, several outcomes appear to be possible. As a result the
system is endowed with the capacity to choose between them, and hence
to explore and to adapt or, more generally, to evolve. This process can be
manifested in the form of two different expressions.
• The emergence, within a system composed of many units, of global
traits encompassing the system as a whole that can in no way be
reduced to the properties of the constituent parts and can on these
grounds be qualified as “unexpected”. By its non-reductionist charac-
ter emergence has to do with the creation and maintenance of hierar-
chical structures in which the disorder and randomness that inevitably
4 Foundations of Complex Systems
exist at the local level are controlled, resulting in states of order and
long range coherence. We refer to this process as self-organization. A
classical example of this behavior is provided by the communication
and control networks in living matter, from the subcellular to the or-
ganismic level.
• The intertwining, within the same phenomenon, of large scale regu-
larities and of elements of “surprise” in the form of seemingly erratic
evolutionary events. Through this coexistence of order and disorder
the observer is bound to conclude that the process gets at times out
of control, and this in turn raises the question of the very possibility
of its long-term prediction. Classical examples are provided by the
all-familiar difficulty to issue satisfactory weather forecasts beyond a
horizon of a few days as well as by the even more dramatic extreme
geological or environmental phenomena such as earthquakes or floods.
If the effects generated by some underlying causes were related to these
causes by a simple proportionality -more technically, by linear relationships-
there would be no place for multiplicity. Nonlinearity is thus a necessary con-
dition for complexity, and in this respect nonlinear science provides a natural
setting for a systematic description of the above properties and for sorting
out generic evolutionary scenarios. As we see later nonlinearity is ubiquitous
in nature on all levels of observation. In macroscopic scale phenomena it is
intimately related to the presence of feedbacks, whereby the occurrence of a
process affects (positively or negatively) the way it (or some other coexisting
process) will further develop in time. Feedbacks are responsible for the onset
of cooperativity, as illustrated in the examples of Sec. 1.4.
In the context of our study a most important question to address con-
cerns the transitions between states, since the question of complexity would
simply not arise in a system that remains trapped in a single state for ever.
To understand how such transitions can happen one introduces the concept
of control parameter, describing the different ways a system is coupled to its
environment and affected by it. A simple example is provided by a ther-
mostated cell containing chemically active species where, depending on the
environmental temperature, the chemical reactions will occur at different
rates. Another interesting class of control parameters are those associated to
a constraint keeping the system away of a state of equilibrium of some sort.
The most clearcut situation is that of the state of thermodynamic equilib-
rium which, in the absence of phase transitions, is known to be unique and
lack any form of dynamical activity on a large scale. One may then choose
this state as a reference, switch on constraints driving the system out of equi-
librium for instance in the form of temperature or concentration differences
The Phenomenology of Complex Systems 5
across the interface between the system and the external world, and see to
what extent the new states generated as a response to the constraint could
exhibit qualitatively new properties that are part of the phenomenology of
complexity. These questions, which are at the heart of complexity theory,
are discussed in the next section.
1.3 Onset of complexity
The principal conclusion of the studies of the response of a system to changes
of a control parameter is that the onset of complexity is not a smooth process.
Quite to the contrary, it is manifested by a cascade of transition phenomena
of an explosive nature to which is associated the universal model of bifurcation
and the related concepts of instability and chaos. These catastrophic events
are not foreseen in the fundamental laws of physics in which the dependence
on the parameters is perfectly smooth. To use a colloquial term, one might
say that they come as a “surprise”.
Figure 1.1 provides a qualitative representation of the foregoing. It de-
picts a typical evolution scenario in which, for each given value of a control
parameter λ, one records a certain characteristic property of the system as
provided, for instance, by the value of one of the variables X (temperature,
chemical concentration, population density, etc.) at a given point. For values
of λ less than a certain limit λc only one state can be realized. This state
possesses in addition to uniqueness the property of stability, in the sense that
the system is capable of damping or at least of keeping under control the in-
fluence of the external perturbations inflicted by the environment or of the
internal fluctuations generated continuously by the locally prevailing disor-
der, two actions to which a natural system is inevitably subjected. Clearly,
complexity has no place and no meaning under these conditions.
The situation changes radically beyond the critical value λc. One sees that
if continued, the unique state of the above picture would become unstable:
under the influence of external perturbations or of internal fluctuations the
system responds now as an amplifier, leaves the initial “reference” state and
is driven to one or as a rule to several new behaviors that merge to the
previous state for λ = λc but are differentiated from it for λ larger than λc.
This is the phenomenon of bifurcation: a phenomenon that becomes possible
thanks to the nonlinearity of the underlying evolution laws allowing for the
existence of multiple solutions (see Chapter 2 for quantitative details). To
understand its necessarily catastrophic character as anticipated earlier in this
section it is important to account for the following two important elements.
(a) An experimental measurement -the process through which we com-
6 Foundations of Complex Systems
X
λc
λ
(a)
(b1)
(a' )
(b2)
Fig. 1.1. A bifurcation diagram, describing the way a variable X characteriz-
ing the state of a system is affected by the variations of a control parameter
λ. Bifurcation takes place at a critical value λc beyond which the original
unique state (a) loses its stability, giving rise to two new branches of solutions
(b1) and (b2).
municate with a system- is necessarily subjected to finite precision. The
observation of a system for a given value of control parameter entails that
instead of the isolated point of the λ axis in Fig. 1.1 one deals in reality with
an “uncertainty ball” extending around this axis. The system of interest lies
somewhere inside this ball but we are unable to specify its exact position,
since for the observer all of its points represent one and the same state.
(b) Around and beyond the criticality λc we witness a selection between
the states available that will determine the particular state to which the sys-
tem will be directed (the two full lines surrounding the intermediate dotted
one -the unstable branch in Fig. 1.1- provide an example). Under the con-
ditions of Fig. 1.1 there is no element allowing the observer to determine
beforehand this state. Chance and fluctuations will be the ones to decide.
The system makes a series of attempts and eventually a particular fluctu-
ation takes over. By stabilizing this choice it becomes a historical object,
since its subsequent evolution will be conditioned by this critical choice. For
the observer, this pronounced sensitivity to the parameters will signal its in-
ability to predict the system’s evolution beyond λc since systems within the
uncertainty ball, to him identical in any respect, are differentiated and end
up in states whose distance is much larger than the limits of resolution of
the experimental measurement.
The Phenomenology of Complex Systems 7
0.25
0.5
0.75
0 5 10 15 20 25
x
n
Fig. 1.2. Illustration of the phenomenon of sensitivity to the initial conditions
in a model system giving rise to deterministic chaos. Full and dashed lines
denote the trajectories (the set of successive values of the state variable X)
emanating from two initial conditions separated by a small difference  =
10−3
.
We now have the basis of a mechanism of generation of complexity. In
reality this mechanism is the first step of a cascade of successive bifurca-
tions through which the multiplicity of behaviors may increase dramatically,
culminating in many cases in a state in which the system properties change
in time (and frequently in space as well) in a seemingly erratic fashion, not
any longer because of external disturbances or random fluctuations as be-
fore but, rather, as a result of deterministic laws of purely intrinsic origin.
The full line of Fig. 1.2 depicts a time series -a succession of values of a
relevant variable in time- corresponding to this state of deterministic chaos.
Its comparison with the dotted line reveals what is undoubtedly the most
spectacular property of deterministic chaos, the sensitivity to the initial con-
ditions: two systems whose initial states are separated by a small distance,
smaller than the precision of even the most advanced method of experimen-
tal measurement, systems that will therefore be regarded by the observer as
indistinguishable (see also point (a) above) will subsequently diverge in such
a way that the distance between their instantaneous states (averaged over
many possible initial states, see Chapters 2 and 3) will increase exponentially.
As soon as this distance will exceed the experimental resolution the systems
will cease to be indistinguishable for the observer. As a result, it will be
impossible to predict their future evolution beyond this temporal horizon.
8 Foundations of Complex Systems
We here have a second imperative reason forcing us to raise the question of
predictability of the phenomena underlying the behavior of complex systems.
All elements at our disposal from the research in nonlinear science and
chaos theory lead to the conclusion that one cannot anticipate the full list of
the number or the type of the evolutionary scenarios that may lead a system
to complex behavior. In addition to their limited predictability complex
systems are therefore confronting us with the fact that we seem to be stuck
with a mode of description of a limited universality. How to reconcile this
with the requirement that the very mission of science is to provide a universal
description of phenomena and to predict their course? The beauty of complex
systems lies to a great extent in that despite the above limitations this mission
can be fulfilled, but that its realization necessitates a radical reconsideration
of the concepts of universality and prediction. We defer a fuller discussion of
this important issue to Chapters 2 and 3.
1.4 Four case studies
1.4.1 Rayleigh-Bénard convection
Consider a shallow layer of a fluid limited by two horizontal plates brought to
identical temperatures. As prescribed by the second law of thermodynamics,
left to itself the fluid will tend rapidly to a state where all its parts along
the horizontal are macroscopically identical and where there is neither bulk
motion nor internal differentiation of temperatures: T = T1 = T2, T2 and T1
being respectively the temperatures of the lower and upper plate. This is the
state we referred to in Sec. 1.2 as the state of thermodynamic equilibrium.
Imagine now that the fluid is heated from below. By communicating to
it in this way energy in the form of heat one removes it from the state of
equilibrium, since the system is now submitted to a constraint ∆T = T2 −
T1  0, playing in this context the role of the control parameter introduced
in Sec. 1.2. As long at ∆T remains small the flux of energy traversing
the system will merely switch on a process of heat conduction, in which
temperature varies essentially linearly between the hot (lower) zone and the
cold (upper) one. This state is maintained thanks to a certain amount of
energy that remains trapped within the system -one speaks of dissipation-
but one can in no way speak here of complexity and emergence, since the
state is unique and the differentiation observed is dictated entirely by the
way the constraint has been applied: the behavior is as “simple” as the one
in the state of equilibrium.
If one removes now the system progressively from equilibrium, by increas-
The Phenomenology of Complex Systems 9
Fig. 1.3. Rayleigh-Bénard convection cells appearing in a liquid maintained
between a horizontal lower hot plate and an upper cold one, below a critical
value of the temperature difference ∆T (see Color Plates).
ing ∆T, one suddenly observes, for a critical value ∆Tc, the onset of bulk
motion in the layer. This motion is far from sharing the randomness of the
motion of the individual molecules: the fluid becomes structured and displays
a succession of cells along a direction transversal to that of the constraint, as
seen in Fig. 1.3. This is the regime of thermal, or Rayleigh-Bénard convec-
tion. Now one is entitled to speak of complexity and emergence, since the
spatial differentiation along a direction free from any constraint is the result
of processes of internal origin specific to the system, maintained by the flow
of energy communicated by the external world and hence by the dissipation.
We have thus witnessed a particular manifestation of emergence, in the form
of the birth of a dissipative structure. In a way, one is brought from a static,
geometric view of space, to one where space is modeled by the dynamical
processes switched on within the system. One can show that the state of rest
is stable below the threshold ∆Tc but loses its stability above it while still
remaining a solution -in the mathematical sense of the term- of the evolution
laws of the fluid. As for the state of thermal convection, it simply does not
exist below ∆Tc and inherits above it the stability of the state of rest. For
∆T = ∆Tc there is degeneracy in the sense that the two states merge. We
here have a concrete illustration of the generic phenomenon of bifurcation
introduced in Sec. 1.3, see Fig. 1.1. Similar phenomena are observed in
a wide range of laboratory scale systems, from fluid mechanics to chemical
kinetics, optics, electronics or materials science. In each case one encoun-
10 Foundations of Complex Systems
ters essentially the same phenomenology. The fact that this is taking place
under perfectly well controlled conditions allows one to sort out common fea-
tures and set up a quantitative theory, as we see in detail in the subsequent
chapters.
A remarkable property of the state of thermal convection is to possess a
characteristic space scale -the horizontal extent of a cell (Fig. 1.3) related,
in turn, to the depth of the layer. The appearance of such a scale reflects the
fact that the states generated by the bifurcation display broken symmetries.
The laws of fluid dynamics describing a fluid heated from below and con-
tained between two plates that extend indefinitely in the horizontal direction
remain invariant -or more plainly look identical- for all observers displaced
to one another along this direction (translational invariance). This invari-
ance property is shared by the state realized by the fluid below the threshold
∆Tc but breaks down above it, since a state composed of a succession of
Bénard cells displays an intrinsic differentiation between its different parts
that makes it less symmetrical than the laws that generated it. A differentia-
tion of this sort may become in many cases one of the prerequisites for further
complexification, in the sense that processes that would be impossible in an
undifferentiated medium may be switched on. In actual fact this is exactly
what is happening in the Rayleigh-Bénard and related problems. In addition
to the first bifurcation described above, as the constraint increases beyond
∆Tc the system undergoes a whole series of successive transitions. Several
scenarios have been discovered. If the horizontal extent of the cell is much
larger than the depth the successive transition thresholds are squeezed in a
small vicinity of ∆Tc. The convection cells are first maintained globally but
are subsequently becoming fuzzy and eventually a regime of turbulence sets
in, characterized by an erratic-looking variability of the fluid properties in
space (and indeed in time as well). In this regime of extreme spatio-temporal
chaos the motion is ordered only on a local level. The regime dominated by
a characteristic space scale has now been succeeded by a scale-free state in
which there is a whole spectrum of coexisting spatial modes, each associated
to a different space scale. Similar phenomena arise in the time domain, where
the first bifurcation may lead in certain types of systems to a strictly periodic
clock-like state which may subsequently lose its coherence and evolve to a
regime of deterministic chaos in which the initial periodicity is now part of
a continuous spectrum of coexisting time scales.
As we see throughout this book states possessing a characteristic scale
and scale-free states are described, respectively, by exponential laws and by
power laws. There is no reason to restrict the phenomenology of complexity
to the class of scale free states as certain authors suggest since, for one thing,
coherence in living matter is often reflected by the total or partial synchro-
The Phenomenology of Complex Systems 11
nization of the activities of the individual cells to a dominant temporal or
spatial mode.
In concluding this subsection it is appropriate to stress that configurations
of matter as unexpected a priori as the Bénard cells, involving a number of
molecules (each in disordered motion !) of the order of the Avogadro number
N ≈ 1023
are born spontaneously, inevitably, at a modest energetic and
informational cost, provided that certain conditions related to the nature
of the system and the way it is embedded to its environment are fulfilled.
Stated differently the overall organization is not ensured by a centralized
planification and control but, rather, by the “actors” (here the individual
fluid parcels) present. We refer to this process as the bottom-up mechanism.
1.4.2 Atmospheric and climatic variability
Our natural environment plays a central role in this book, not only on the
grounds of its importance in man’s everyday activities but also because it
qualifies in any respect as what one intuitively means by complex system and
forces upon the observer the need to cope with the problem of prediction.
Contrary to the laboratory scale systems considered in the previous subsec-
tion we have no way to realize at will the successive transitions underlying
its evolution to complexity. The best one can expect is that a monitoring
in the perspective of the complex systems approach followed by appropriate
analysis and modeling techniques, will allow one to constitute the salient
features of the environment viewed as a dynamical system and to arrive at a
quantitative characterization of the principal quantities of interest.
To an observer caught in the middle of a hurricane, a flood or a long
drought the atmosphere appears as an irrational medium. Yet the atmo-
spheric and climatic variables are far from being distributed randomly. Our
environment is structured in both space and time, as witnessed by the strati-
fication of the atmospheric layers, the existence of global circulation patterns
such as the planetary waves, and the periodicities arising from the daily or
the annual cycle. But in spite of this global order one observes a pronounced
superimposed variability, reflected by marked deviations from perfect or even
approximate regularity.
An example of such a variability is provided by the daily evolution of
air temperature at a particular location (Fig. 1.4). One observes small
scale irregular fluctuations that are never reproduced in an identical fashion,
superimposed on the large scale regular seasonal cycle of solar radiation. A
second illustration of variability pertains to the much larger scale of global
climate. All elements at our disposal show indeed that the earth’s climate
has undergone spectacular changes in the past, like the succession of glacial-
12 Foundations of Complex Systems
-10
0
10
20
30
1998 2000 2002 2004
Temperature
Year
Fig. 1.4. Mean daily temperature at Uccle (Brussels) between January 1st,
1998 and December 31, 2006.
Time (103
yrs B.P.)
Ice
volume
0 200 400 600 800 1000
Fig. 1.5. Evolution of the global ice volume on earth during the last million
years as inferred from oxygen isotope data.
The Phenomenology of Complex Systems 13
interglacial periods. Figure 1.5 represents the variation of the volume of
continental ice over the last million years as inferred from the evolution of
the composition of marine sediments in oxygen 16 and 18 isotopes. Again,
one is struck by the intermittent character of the evolution, as witnessed
by a marked aperiodic component masking to a great extent an average
time scale of 100 000 years that is sometimes qualified as the Quaternary
glaciation “cycle”. An unexpected corollary is that the earth’s climate can
switch between quite different modes over a short time in the geological scale,
of the order of a few thousand years.
Rainfall
departures
(×
10
mm)
3
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
1910 1930 1950 1970 Year
Fig. 1.6. Yearly rainfall departures from the long time average value at Kaédi
(Mauritania) between 1904 and 1987.
Figure 1.6 depicts another example of climatic variability and regime
switching, on a scale that is intermediate between those in Figs 1.4 and 1.5.
It has to do with the time variation of the precipitation in western Sahel, and
signals the onset of a regime of drought in this region, a phenomenon known
to occur in several other areas of the globe. Again, one is struck by the
irregular character of the process. The new element as compared to Figs 1.4
and 1.5 is that in the language of statistics the signal is no longer stationary:
rather than succeeding each other without exhibiting a systematic trend, the
states are here undergoing an abrupt transition between a regime of a quasi-
normal and a weak rainfall that one can locate using traditional statistical
analysis around the mid-1960’s. It is likely that observations over a much
longer time scale will reestablish the stationarity of the process, in the sense
that the state of drought will sooner or later be succeeded by a quasi-normal
state which will subsequently switch again to a state of drought, and so forth.
14 Foundations of Complex Systems
A fundamental consequence of the aperiodicity of the atmospheric and
climate dynamics is the well-known difficulty to make reliable predictions.
Contrary to simple periodic or multiperiodic phenomena for which a long
term prediction is possible, predictions in meteorology are limited in time.
The most plausible (and currently admitted) explanation is based on the re-
alization that a small uncertainty in the initial conditions used in a prediction
scheme (usually referred as “error”) seems to be amplified in the course of
the evolution. Such uncertainties are inherent in the process of experimen-
tal measurement, as pointed out already in Sec. 1.3. A great deal of effort
is devoted in atmospheric sciences in the development of data assimilation
techniques aiming to reduce them as much as possible (cf. also Sec. 5.4), but
it is part of the laws of nature that they will never be fully eliminated. This
brings us to the picture drawn in connection with Fig. 1.2, suggesting that
the atmosphere displays sensitivity to the initial conditions because it is in
a state of deterministic chaos. This conjecture seems to be compatible both
with the analysis of the data available and with the modeling of atmospheric
dynamics. This aspect is discussed more amply in Chapters 5 and 6, but
one may already notice at this stage that much like experiment, modeling
is also limited in practice by a finite resolution (of the order of several kilo-
meters) and the concomitant omission of “subgrid” processes like e.g. local
turbulence. Furthermore, many of the parameters are not known to a great
precision. In addition to initial errors prediction must thus cope with model
errors, reflecting the fact that a model is only an approximate representa-
tion of nature. This raises the problem of sensitivity to the parameters and
brings us to the picture drawn in connection with Fig. 1.1. If the dynamics
were simple like in the part of Fig. 1.1 left to λc neither of these errors would
matter. But this is manifestly not the case. Initial and model errors can thus
be regarded as probes revealing the fundamental instability and complexity
underlying the atmosphere.
In all the preceding examples it was understood that the characteristic
parameters of the atmosphere remained fixed. Over the last years there
has been growing interest in the response of the weather and climate to
changing parameter values - for instance, as a result of anthropogenic effects.
In the representation of Fig. 1.1, the question would then be, whether the
underlying dynamical system would undergo transitions to new regimes and
if so, what would be the nature of the most plausible transition scenarios.
This raises a whole new series of problems, some of which will be taken up
in the sequel.
As pointed out earlier in this subsection, in certain environmental phe-
nomena the variability is so considerable that no underlying regularity seems
to be present. This property, especially pronounced in hydrology and in par-
The Phenomenology of Complex Systems 15
ticular in the regime of river discharges, entails that the average and other
quantifiers featured in traditional statistics are irrelevant. An ingenious way
to handle such records, suggested some time ago by Harold Hurst, is to
monitor the way the distance R between the largest and smallest value in a
certain time window τ -usually referred to as the range- varies with τ. Ac-
tually, to deal with a dimensionless quantity one usually reduces R by the
standard deviation C around the mean measured over the same interval. A
most surprising result is that in a wide spectrum of environmental records
R/C varies with τ as a power law of the form τH
, where the Hurst expo-
nent H turns out to be close to 0.70. To put this in perspective, for records
generated by statistically independent processes with finite standard devia-
tion, H is bound to be 1/2 and for records where the variability is organized
around a characteristic time scale there would simply not be a power law at
all. Environmental dynamics provides therefore yet another example of the
coexistence of phenomena possessing a characteristic scale and of scale free
ones.
An interesting way to differentiate between these processes is to see how
the law is changing upon a transformation of the variable (here the window
τ). For an exponential law, switching from τ to λτ (which can be interpreted
as a change of scale in measuring τ) maintains the exponential form but
changes the exponent multiplying τ, which provides the characteristic scale
of the process, by a factor of λ. But in a power law the same transformation
keeps the exponent H invariant, producing merely a multiplicative factor.
We express this by qualifying this law as scale invariant. The distinction
breaks down for nonlinear transformations, for which a power law can become
exponential and vice versa.
As we see later deterministic chaos can be associated with variabilities
of either of the two kinds, depending on the mechanisms presiding in its
generation.
1.4.3 Collective problem solving: food recruitment in
ants
In the preceding examples the elements constituting the system of interest
were the traditional ones considered in physical sciences: molecules, volume
elements in a fluid or in a chemical reagent, and so forth. In this subsection
we are interested in situations where the actors involved are living organisms.
We will see that despite this radical change, the principal manifestations of
complexity will be surprisingly close to those identified earlier. Our discussion
will focus on social insects, in particular, the process of food searching in ants.
16 Foundations of Complex Systems
Ants, like bees, termites and other social insects represent an enormous
ecological success in biological evolution. They are known to be able to
accomplish successfully number of collective activities such as nest construc-
tion, recruitment, defense etc. Until recently the view prevailed that in such
highly non-trivial tasks individual insects behave as small, reliable automa-
tons executing a well established genetic program. Today this picture is
fading and replaced by one in which adaptability of individual behavior, col-
lective interactions and environmental stimuli play an important role. These
elements are at the origin of a two-scale process. One at the level of the in-
dividual, characterized by a pronounced probabilistic behavior, and another
at the level of the society as a whole, where for many species despite the in-
efficiency and unpredictability of the individuals, coherent patterns develop
at the scale of the entire colony.
Fig. 1.7. Schematic representation of recruitment: (a) discovery of the food
source by an individual; (b) return to the nest with pheromone laying; (c) the
pheromone trail stimulates additional individuals to visit the source, which
contribute to its reinforcement by further pheromone laying.
Let us see how these two elements conspire in the process of food search-
ing by ants. Consider first the case where a single food source (for instance
a saccharose solution) is placed close to the nest, as in Fig. 1.7 (here and in
the sequel laboratory experiments emulating naturally occurring situations
while allowing at the same time for detailed quantitative analyses are instru-
The Phenomenology of Complex Systems 17
mental). A “scout” discovers the source in the course of a random walk.
After feeding on the source it returns to the nest and deposits along the way
a chemical signal known as trail pheromone, whose quantity is correlated to
the sugar concentration in the source. Subsequently a process of recruitment
begins in which two types of phenomena come into play:
- a first mechanism in which the scout-recruiter and/or the trail stimulate
individuals that were till then inactive to go out of the nest;
- and a second one where the trail guides the individuals so recruited to
the food source, entailing that as recruited individuals will sooner or later
become recruiters in their turn the process will be gradually amplified and a
substantial traffic will be established along the trail.
Consider now the more realistic situation where the colony disposes of
several food sources. A minimal configuration allowing one to study how it
then copes with the problem of choice to which it is confronted is depicted in
Fig. 1.8a: two equivalent paths leading from the nest to two simultaneously
present identical food sources. In a sufficiently numerous colony after a short
period of equal exploitation a bifurcation, in the precise sense of Fig. 1.1,
is then observed marking a preferential exploitation of one of the sources
relative to the other, to its exhaustion (Fig. 1.8b). Thereafter the second
source is fully colonized and its exploitation is intensified. When the colony
is offered two sources with different sugar concentrations and the richest
source is discovered before or at the same time as the poorer one, it is most
heavily exploited. But when it is discovered after the poorer one, it is only
weakly exploited. This establishes the primordial importance of the long-
range cooperativity induced by the presence of the trail.
It is tempting to conjecture that far from being a curiosity the above
phenomenon, which shares with the Rayleigh-Bénard instability the prop-
erty of spontaneous emergence of an a priori highly unexpected behavioral
pattern, is prototypical of a large class of systems, including socio-economic
phenomena in human populations (see also Sec. 1.4.4 below). The key point
lies in the realization that nature offers a bottom-up mechanism of organi-
zation that has no recourse to a central or hierarchical command process
as in traditional modes of organization. This mechanism leads to collective
decisions and to problem solving on the basis of (a) the local information
available to each “agent”; and (b) its implementation on global level without
the intervention of an information-clearing center. It opens the way to a
host of applications in the organization of distributed systems of interacting
agents as seen, for example, in communication networks, computer networks
and networks of mobile robots or static sensory devices. Such analogy-driven
considerations can stimulate new ideas in a completely different context by
serving as archetypes. They are important elements in the process of model
18 Foundations of Complex Systems
Fig. 1.8. (a) A typical experimental set up for the study of the process of
choice between two options. (b) Time evolution of the number of individuals
(here ants of the species Lasius niger) exploiting two equivalent (here 1 molar
saccharose rich) food sources offered simultaneously, in an experimental set
up of the type depicted in Fig. 1.8(a).
The Phenomenology of Complex Systems 19
building -an essential part of the research in complex systems- in situations
in which the evolution laws of the variables involved may not be known to
any comparable degree of detail as in physical systems.
1.4.4 Human systems
We now turn to a class of complexity related problems in which the actors
involved are human beings. Here the new element that comes into play is
the presence of such concepts as strategy, imitation, anticipation, risk assess-
ment, information, history, quite remote at first sight from the traditional
vocabulary of physical science. The expectation would be that thanks to the
rationality underlying these elements, the variability and unpredictability
should be considerably reduced. The data at our disposal show that this is
far from being the case. Human systems provide, in fact, one of the most au-
thentic prototypes of complexity. They also constitute a source of inspiration
for raising number of new issues, stimulating in turn fundamental research
in the area of complex systems.
A first class of instances pertains to cooperativity (imitation) driven socio-
cultural phenomena. They usually lead to bifurcations very similar to those
considered in the previous subsection in which the variability inherent in
the dynamics of the individuals is eventually controlled to yield an emergent
pattern arising through a sharp transition in the form of a bifurcation. The
propagation of rumors or of opinions is the most classical example in this
area, but in recent years some further unexpected possibilities have been
suggested, such as the genesis of a phonological system in a human society.
Ordinarily, the inherent capacity of humans to emit and recognize sounds and
to attribute them to objects is advanced as the most plausible mechanism
of this process. On the other hand, consider a population of N individuals
capable to emit M sounds to designate a given object. When two individuals
pronouncing sounds i and j meet, each one of them can convince, with cer-
tain probabilities, the other that his sound is more appropriate to designate
the object. This switches on a cooperativity in the process of competition
between the options available very similar to that between the two trails in
Fig. 1.8a, leading to the choice of one of them by the overwhelming part
of the population (being understood that N is large enough). This scenario
opens interesting perspectives, which need to be implemented by linguistic
analyses and real-time experiments.
Competition between different options is also expected to underlie the
origin of a variety of spatial patterns and organizational modes observed in
human systems. An example is provided by the formation and the evolution
of urban structures, as certain areas specialize in specific economic activities
20 Foundations of Complex Systems
and as residential differentiation produces neighborhoods differing in their
living conditions and access to jobs and services. In many cases this occurs
as a spontaneous process of endogenous origin. In addition to this evolu-
tionary scenario central planning may be present as well and provide a bias
in the individual decision making. It is, however, most unlikely that under
present conditions it will supersede the bottom-up mechanism operating in
complex systems: the chance of a modern Deinokrates or a modern Constan-
tine the Great designing from scratch an Alexandria or a Constantinople-like
structure are nowadays practically nil.
It is, perhaps, in the domain of economic and financial activities that the
specificity of the human system finds its most characteristic expression. In
addition to steps involving self-organization and emergence through bifur-
cation one witnesses here the entrance in force of the second fingerprint of
complexity, namely, the intertwining of order and disorder. This raises in
turn the problem of prediction in a most acute manner. The economics of
the stock market provides a striking example. On October 19, 1987 the Dow
Jones index of New York stock exchange dropped by 22.6%. This drop, the
highest registered ever in a single day, was preceded by three other substantial
ones on October 14, 15, 16. Impressive as they are, such violent phenomena
are far from being unique: financial history is full of stock market crises such
as the famous October 1929 one in which on two successive days the values
were depreciated cumulatively by 23.1%.
The first reaction that comes to mind when witnessing these events is
that of irrationality yet, much like in our discussion of subsection 1.4.2, the
evidence supports on the contrary the idea of perfectly rational attitudes be-
ing at work. Ideally, in a market a price should be established by estimating
the capacity of a company to make benefits which depends in turn on readily
available objective data such as its technological potential, its developmental
strategy, its current economic health and the quality of its staff. In reality,
observing the market one realizes that for a given investor these objective
criteria are in many instances superseded by observing the evolution of the
index in the past and, especially, by watching closely the attitude of the
other investors at the very moment of action. This may lead to strong co-
operative effects in which a price results in from an attitude adopted at a
certain time, and is subsequently affecting (e.g. reinforcing) this very atti-
tude (which was perhaps initially randomly generated). As a matter of fact
this largely endogenous mechanism seems to be operating not only during
major crises but also under “normal” conditions, as illustrated by Fig. 1.9
in which the “real” (full line) versus the “objective” (dashed line) value of a
certain product in the New York stock exchange is depicted for a period of
about 50 years. It may result in paradoxical effects such as the increase of
The Phenomenology of Complex Systems 21
1930 1940 1950 1960 1970 1980
0
500
1000
1500
2000
year
ind
p
Fig. 1.9. Dow Jones industrial average p and a posteriori estimated rational
price p∗
of the New York stock market during the period 1928 to 1979. Raw
data have been detrended by dividing by the systematic growth factor.
a certain value merely because the investors anticipate at a certain moment
that this is indeed going to happen, though it has not happened yet! In this
logic the product that is supposed to guarantee this high value might even
be inferior to others, less well quoted ones. That such a priori unexpected
events actually occur with appreciable probability is reminiscent of the com-
ments made in subsections 1.4.1 and 1.4.3 in connection with the emergence
of Rayleigh-Bénard cells and pheromone trails. It suggests that key mani-
festations of economic activities are the result of constraints acting on the
system and activating intrinsic nonlinearities, as a result of which the con-
cept of economic equilibrium often becomes irrelevant. Of equal importance
is also the variability of the individual agents, reflected by the presence of
different goals and strategies amongst them (cf. also Sec. 3.7).
It is important to realize that the speculative character of the process
underlying Fig. 1.9 coexists with regular trends reflected by the generally
admitted existence of economic cycles. While the latter are manifested on
a rather long time scale, the behavior on a wide range covering short to
intermediate scales seems rather to share the features of a scale free process.
Again the situation looks similar in this respect to that encountered in the
previous subsections. An analysis of the range of variability normalized by
22 Foundations of Complex Systems
its standard deviation confirms this, with Hurst exponents H close to 0.5
for products most easily subject to speculation, and higher for products that
are less negotiable. As mentioned in connection with subsection 1.4.2 this
implies that the corresponding processes are, respectively, uncorrelated and
subjected to long range correlations.
An alternative view of financial fluctuations is provided by the construc-
tion of their histograms from the available data. Let Pt be the present price
of a given stock. The stock price return rt is defined as the change of the
logarithm of the stock price in a given time interval ∆t, rt = lnPt − lnPt−∆t.
The probability that a return is (in absolute value) larger than x is found
empirically to be a power law of the form
P(|rt|  x) ≈ x−γt
(1.1)
with γt ≈ 3. This law which belongs to the family of probability distributions
known as Pareto distributions holds for about 80 stocks with ∆t ranging from
one minute to one month, for different time periods and for different sizes
of stocks. It may thus be qualified as “universal” in this precise sense. The
scale invariant (in ∆t and in size) behavior that it predicts in the above
range suggests that large deviations can occur with appreciable probability,
much more appreciable from what would be predicted by an exponential or
a Gaussian distribution. As a matter of fact such dramatic events as the
1929 and 1987 market crashes conform to this law. Surprisingly, Pareto’s
law seems also to describe the distribution of incomes of individuals in a
country, with an exponent that is now close to 1.5.
In an at first sight quite different context, power laws concomitant to self-
similarity and scale free behavior are also present whenever one attempts to
rank objects according to a certain criterion and counts how the frequency
of their occurrence depends on the rank. For instance, if the cities of a given
country are ranked by the integers 1, 2, 3,... according to the decreasing
order of population size, then according to an empirical discovery by George
Zipf the fraction of people living in the nth city varies roughly as
P(n) ≈ n−1
(1.2)
Zipf has found a similar law for the frequency of appearance of words in the
English prose, where P(n) represents now the relative frequency of the nth
most frequent word (“the”, “of”, “and” and “to” being the four successively
more used words in a ranking that extends to 10 000 or so).
Eq. (1.2) is parameter free, and on these grounds one might be tempted to
infer that it applies universally to all populations and to all languages. Benoı̂t
Mandelbrot has shown that this is not the case and proposed a two-parameter
The Phenomenology of Complex Systems 23
extension of Zipf’s law accounting for the differences between subjects and
languages, in the form
P(n) ≈ (n + n0)−B
(1.3)
where n0 plays the role of a cutoff.
1.5 Summing up
The fundamental laws of nature governing the structure of the building blocks
of matter and their interactions are deterministic: a system whose state
is initially fully specified will follow a unique course. Yet throughout this
chapter we have been stressing multiplicity as the principal manifestation of
complexity; and have found it natural -and necessary- to switch continuously
on many occasions between the deterministic description of phenomena and
a probabilistic view.
Far from reflecting the danger of being caught in a contradiction already
at the very start of this book this opposition actually signals what is going to
become the leitmotiv of the chapters to come, namely, that when the funda-
mental laws of nature are implemented on complex systems the deterministic
and the probabilistic dimensions become two facets of the same reality: be-
cause of the limited predictability of complex systems in the sense of the
traditional description of phenomena one is forced to adopt an alternative
view, and the probabilistic description offers precisely the possibility to sort
out regularities of a new kind; but on the other side, far from being applied
in a heuristic manner in which observations are forced to fit certain a priori
laws imported from traditional statistics, the probabilistic description one
is dealing with here is intrinsic in the sense that it is generated by the un-
derlying dynamics. Depending on the scale of the phenomenon, a complex
system may have to develop mechanisms for controlling randomness in order
to sustain a global behavioral pattern thereby behaving deterministically or,
on the contrary, to thrive on randomness in order to acquire transiently the
variability and flexibility needed for its evolution between two such configu-
rations.
Similarly to the determinism versus randomness, the structure versus
dynamics dualism is also fading as our understanding of complex systems is
improving. Complex systems shape in many respects the geometry of the
space in which they are embedded, through the dynamical processes that
they generate. This intertwining can occur on the laboratory time scale as
in the Rayleigh-Bénard cells and the pheromone trails (1.4.1, 1.4.3); or on
24 Foundations of Complex Systems
the much longer scale of geological or biological evolution, as in e.g. the
composition of the earth’s atmosphere or the structure of biomolecules.
Complexity is the conjunction of several properties and, because of this,
no single formal definition doing justice to its multiple facets and manifesta-
tions can be proposed at this stage. In the subsequent chapters a multilevel
approach capable of accounting for these diverse, yet tightly intertwined el-
ements will be developed. The question of complexity definition(s) will be
taken up again in the end of Chapter 4.
Chapter 2
Deterministic view
2.1 Dynamical systems, phase space,
stability
Complexity finds its natural expression in the language of the theory of dy-
namical systems. Our starting point is to observe that the knowledge of
the instantaneous state of a system is tantamount to the determination of
a certain set of variables as a function of time: x1(t), ..., xn(t). The time
dependence of these variables will depend on the structure of the evolution
laws and, as stressed in Sec. 1.2, on the set of control parameters λ1, ..., λm
through which the system communicates with the environment. We qualify
this dependence as deterministic if it is of the form
xt = Ft
(x0, λ) (2.1)
Here xt is the state at time t ; x0 is the initial state, and Ft
is a smooth
function such that for each given x0 there exists only one xt. For compactness
we represented the state as a vector whose components are x1(t), ..., xn(t). Ft
is likewise a vector whose components F1(x1(0), ...xn(0); t, λ), ..., Fn(x1(0), ...
xn(0); t, λ) describe the time variation of the individual x0
s.
In many situations of interest the time t is a continuous (independent)
variable. There exists then, an operator f determining the rate of change of
xt in time :
Rate of change of xt in time = function of the xt and λ
or, more quantitatively
∂x
∂t
= f(x, λ) (2.2)
As stressed in Secs 1.2 and 1.3 in a complex system f depends on x in a
25
26 Foundations of Complex Systems
nonlinear fashion, a feature that reflects, in particular, the presence of coop-
erativity between its constituent elements.
An important class of complex systems are those in which the variables
xt depend only on time. This is not a trivial statement since in principle the
properties of a system are expected to depend on space as well, in which case
the xt’s define an infinite set (actually a continuum) of variables constituted
by their instantaneous values at each space point. Discounting this possibility
for the time being (cf. Sec. 2.2.2 for a full discussion), a very useful geometric
representation of the relations (2.1)-(2.2) is provided then by their embedding
onto the phase space. The phase space, which we denote by Γ, is an abstract
space spanned by coordinates which are the variables x1, ..., xn themselves.
An instantaneous state corresponds in this representation to a point Pt and
a time evolution between the initial state and that at time t to a curve γ, the
phase trajectory (Fig. 2.1). In a deterministic system (eq. (2.1)) the phase
trajectories emanating from different points will never intersect for any finite
time t, and will possess at any of their points a unique, well-defined tangent.
Fig. 2.1. Phase space trajectory γ of a dynamical system embedded in a
three-dimensional phase space Γ spanned by the variables x1, x2 and x3.
The set of the evolutionary processes governed by a given law f will be
provided by the set of the allowed phase trajectories, to which we refer as
phase portrait. There are two qualitatively different topologies describing
Deterministic View 27
these processes which define the two basic classes of dynamical systems en-
countered in theory and in practice, the conservative and the dissipative
systems.
In the discussion above it was understood that the control parameters λ
are time independent and that the system is not subjected to time-dependent
external forcings. Such autonomous dynamical systems constitute the core
of nonlinear dynamics. They serve as a reference for identifying the different
types of complex behaviors and for developing the appropriate methodologies.
Accordingly, in this chapter we will focus entirely on this class of systems.
Non-autonomous systems, subjected to random perturbations of intrinsic or
environmental origin will be considered in Chapters 3, 4 and onwards. The
case of time-dependent control parameters will be briefly discussed in Sec.
6.4.3.
2.1.1 Conservative systems
Consider a continuum of initial states, enclosed within a certain phase space
region ∆Γ0. As the evolution is switched on, each of these states will be
the point from which will emanate a phase trajectory. We collect the points
reached on these trajectories at time t and focus on the region ∆Γt that they
constitute. We define a conservative system by the property that ∆Γt will
keep the same volume as ∆Γ0 in the course of the evolution, |∆Γt| = |∆Γ0|
although it may end up having a quite different shape and location in Γ
compared to ∆Γ0. It can be shown that this property entails that the phase
trajectories are located on phase space regions which constitute a continuum,
the particular region enclosing a given trajectory being specified uniquely by
the initial conditions imposed on x1, ..., xn. We refer to these regions as
invariant sets.
A simple example of conservative dynamical system is the frictionless
pendulum. The corresponding phase space is two-dimensional and is spanned
by the particle’s position and instantaneous velocity. Each trajectory with
the exception of the equilibrium state on the downward vertical is an ellipse,
and there is a continuum of such ellipses depending on the total energy
(a combination of position and velocity variables) initially conferred to the
system.
2.1.2 Dissipative systems
Dissipative systems are defined by the property that the dynamics leads to
eventual contraction of the volume of an initial phase space region. As a
result the invariant sets containing the trajectories once the transients have
28 Foundations of Complex Systems
died out are now isolated objects in the phase space and their dimension is
strictly less than the dimension n of the full phase space. The most important
invariant sets for the applications are the attractors, to which tend all the
trajectories emanating from a region around the attractor time going on
(Fig. 2.2). The set of the trajectories converging to a given attractor is its
attraction basin. Attraction basins are separated by non-attracting invariant
sets which may have a quite intricate topology.
Fig. 2.2. Attraction basins in a 3-dimensional phase space separated by an
unstable fixed point possessing a 2-dimensional stable manifold and a one-
dimensional unstable one.
The simplest example of dissipative system is a one-variable system, for
which the attractors are necessarily isolated points. Once on such a point the
system will no longer evolve. Point attractors, also referred as fixed points,
are therefore models of steady-state solutions of the evolution equations.
A very important property providing a further characterization of the so-
lutions of eqs (2.1)-(2.2) and of the geometry of the phase space portrait is
stability, to which we referred already in qualitative terms in Sec. 1.3. Let
γs be a “reference” phase trajectory describing a particular long-time behav-
ior of the system at hand. This trajectory lies necessarily on an invariant
set like an attractor, or may itself constitute the attractor if it reduces to
e.g. a fixed point. Under the influence of the perturbations to which all real
world systems are inevitably subjected (see discussion in Secs 1.2 and 1.3)
the trajectory that will in fact be realized will be a displaced one, γ whose
instantaneous displacement from γs we denote by δxt (Fig. 2.3). The ques-
tion is, then, whether the system will be able to control the perturbations or,
Deterministic View 29
Fig. 2.3. Evolution of two states on the reference trajectory γs and on a per-
turbed one γ separated initially by a perturbation δx0, leading to a separation
δxt at time t.
on the contrary, it will be removed from γs as a result of their action. These
questions can be formulated more precisely by comparing the initial distance
|δx0| between γ and γs (where the bars indicate the length (measure) of the
vector δx0) and the instantaneous one |δxt| in the limit of long times. The
following situations may then arise:
(i) For each prescribed “level of tolerance”,  for the magnitude of |δxt|,
it is impossible to find an initial vicinity of γs in which |δx0| is less than a
certain δ, such that |δxt| remains less than  for all times. The reference
trajectory γs will then be qualified as unstable.
(ii) Such a vicinity can be found, in which case γs will be qualified as
stable.
(iii) γs is stable and, in addition, the system damps eventually the per-
turbations thereby returning to the reference state. γs will then be qualified
as asymptotically stable.
Typically, these different forms of stability are not manifested uniformly
in phase space: there are certain directions around the initial state x0 on
the reference trajectory along which there will be expansion, others along
which there will be contraction, still other ones along which distances neither
explode nor damp but simply remain in a vicinity of their initial values. This
classification becomes more transparent in the limit where |δx0| is taken to be
small. There is a powerful theorem asserting that instability or asymptotic
30 Foundations of Complex Systems
Fig. 2.4. Decomposition of an initial perturbation along the stable and un-
stable manifolds us and uunst of the reference trajectory γs.
stability in this limit of linear stability analysis guarantee that the same
properties hold true in the general case as well.
Figure 2.4 depicts a schematic representation of the situation. A generic
small perturbation δx0 possesses non-vanishing projections on directions us
and uunst along which there are, respectively, stabilizing and non-stabilizing
trends. One of the us’s lies necessarily along the local tangent of γs on x0, the
other us and uunst’s being transversal to γs. The hypersurface they define is
referred as the tangent space of γs, and is the union of the stable and unstable
manifolds associated to γs.
Analytically, upon expanding Ft
in (2.1) around x0 and neglecting terms
beyond the linear ones in |δx0| one has
δxt =
∂Ft
(x0, λ)
∂x0
· δx0
= M(t, x0) · δx0 (2.3)
Here M has the structure of an n×n matrix and is referred as the fundamental
matrix. An analysis of this equation shows that in the limit of long times
|δxt| increases exponentially along the uunst’s, and decreases exponentially or
follows a power law in t along the us’s. To express the privileged status of this
exponential dependence it is natural to consider the logarithm of |δxt|/|δx0|
divided by the time t,
σ(x0) =
1
t
ln
|δxt|
|δx0|
(2.4)
in the double limit where |δx0| tends to zero and t tends to infinity. A more
detailed description consists in considering perturbations along the uj’s and
evaluating the quantities σj(x0) corresponding to them. We refer to these
Another Random Scribd Document
with Unrelated Content
Rubinen überzogen, und schön genug sind, um uns über die
Flucht des Sommers zu trösten.
Ich will euch nun erzählen, wie König Frost zuerst auf den
Gedanken an eine solche Arbeit kam, denn es ist eine
sonderbare Geschichte. Ihr müßt wissen, daß dieser König
wie alle andern Könige große Schätze von Gold und
Edelsteinen in seinem Palaste hatte; da er aber ein
gutmütiger alter Mann ist, hält er seine Reichtümer nicht für
immer verschlossen, sondern sucht mit ihrer Hilfe Gutes zu
tun und andere glücklich zu machen. Er hat zwei Nachbarn,
die noch weiter nördlich wohnen; der eine ist König Winter,
ein rauher, unfreundlicher alter Fürst, der so hart und
grausam ist, daß er sich freut, wenn er den Armen wehe tun
und sie zum Weinen bringen kann. Der andere Nachbar aber
ist Santa Claus, ein stattlicher, gutherziger, lustiger alter
Mann, der gern Gutes tut und den Armen sowie den artigen
Kindern zu Weihnachten Geschenke bringt.
Nun, eines Tages dachte König Frost darüber nach, was er
wohl mit seinem Schatze gutes stiften könne, und entschloß
sich einen Teil seinem freundlichen Nachbar Santa Claus zum
Einkauf von Lebensmitteln und Kleidern für die Armen zu
schicken, damit diese nicht so viel zu leiden hätten, wenn
König Winter sich ihren Häusern näherte. So rief er seine
lustigen kleinen Elfen zusammen, zeigte ihnen eine Anzahl
von Gefäßen und Vasen voller Gold und Edelsteine und befahl
ihnen, diese sorgsam nach dem Palaste Santa Claus’ zu
tragen und sie ihm mit Empfehlungen von König Frost zu
übergeben. Er wird schon wissen, wie er den Schatz am
besten verwenden soll, setzte Jack Frost hinzu; dann befahl
er den Elfen, sich unterwegs nicht aufzuhalten, sondern sein
Gebot rasch auszuführen.
Die Elfen versprachen Gehorsam und machten sich bald
auf den Weg, indem sie die großen gläsernen Gefäße und
Vasen nachschleppten, so gut sie konnten, und ab und zu ein
wenig über die schwere Arbeit brummten; denn es waren
faule Elfen, die lieber spielten als arbeiteten. Schließlich
gelangten sie in einen großen Wald, und da sie ganz ermüdet
waren, beschlossen sie, ein wenig zu rasten und sich nach
Nüssen umzusehen, bevor sie ihre Wanderung fortsetzten.
Damit aber der Schatz nicht gestohlen werden sollte,
versteckten sie die Gefäße unter das dichte Laub der Bäume,
indem sie die einen hoch oben in der Nähe der Wipfel, andere
an verschiedenen Stellen der Bäume unterbrachten, bis sie
glaubten, niemand könne sie mehr finden.
Dann begannen sie, umherzustreifen nach Nüssen zu
suchen und auf die Bäume zu klettern, um die Früchte
herunterzuschütteln, und arbeiteten zu ihrem eigenen
Vergnügen viel angestrengter, als sie es je auf das Geheiß
ihres Herrn getan hatten; denn es ist eine sonderbare
Tatsache, daß Elfen und Kinder sich niemals über Mühe und
Arbeit beschweren, wenn sie dabei ihre eigene Belustigung im
Auge haben, während sie oft brummen, wenn von ihnen eine
Arbeit zum besten anderer verlangt wird.
Die Frostelfen waren bei ihrem Nüssesammeln so
geschäftig und ausgelassen, daß sie bald ihren Auftrag und
den Befehl des Königs, sich zu beeilen, vergaßen; als es aber
bei ihrem Spiele Mittag wurde, sahen sie endlich den Grund
ein, weshalb ihnen Eile anbefohlen worden war; denn,
obgleich sie ihrer Meinung nach den Schatz sehr sorgfältig
versteckt hatten, so hatten sie ihn doch nicht vor der Gewalt
der Frau Sonne geschützt, die eine Feindin Jack Frosts war
und sich freute, wenn sie ihm einen Schabernack spielen und
Schaden zufügen konnte.
Ihre strahlenden Augen entdeckten bald die Gefäße mit
dem Schatze auf den Bäumen, und da die faulen Elfen sie bis
zur Mittagsstunde, wenn Frau Sonne am stärksten ist, hier
gelassen hatten, so begann das zarte Glas zu schmelzen und
zu zerbrechen, und in kurzer Zeit waren alle Gefäße und
Vasen gesprungen oder entzwei gegangen, und ebenso
schmolzen die in ihnen enthaltenen kostbaren Schätze und
rannen in Strömen von Gold und Purpur langsam über die
Bäume und Sträucher des Waldes.
Eine Zeitlang bemerkten die Frostelfen dieses sonderbare
Ereignis nicht, denn sie hatten sich in das Gras gelagert, so
weit von den Wipfeln der Bäume entfernt, daß es lange
dauerte, ehe der wunderbare Schatzregen sie erreichte;
endlich aber sagte der eine von ihnen: Horch, ich glaube, es
regnet; ich höre die niederfallenden Tropfen. Die anderen
lachten und erklärten ihm, es regne selten, wenn die Sonne
scheine; als sie aber genauer aufpaßten, hörten sie deutlich,
wie im ganzen Walde die Tropfen von den Bäumen
herabfielen und von einem Blatt zum anderen glitten, bis sie
auf die Brombeersträucher, neben denen die Elfen saßen,
herabklatschten. Jetzt entdeckten sie zu ihrem großen
Verdruß, daß die Regentropfen geschmolzene Rubinen waren,
die auf den Blättern erstarrten und sie augenblicklich mit
leuchtendem Rot überzogen. Als sie sich dann die Bäume
ringsum genauer ansahen, bemerkten sie, daß der gesamte
Schatz wegschmolz und daß sich ein großer Teil davon bereits
über die Blätter der Eichen und Ahornbäume ergossen hatte,
die in ihrem prächtigen Gewande von Gold und Bronze,
Purpur und Smaragd weithin leuchteten. Es gewährte einen
sehr schönen Anblick; aber die faulen Elfen waren über das
Unglück, das ihr Ungehorsam verschuldet hatte, zu sehr,
erschricken, als daß sie die Schönheit des Waldes hätten
bewundern können, und im Nu suchten sie sich in dem
Gebüsch zu verstecken, damit König Frost sie nicht finden
und strafen könne.
Ihre Befürchtungen waren wohlbegründet, denn ihre
lange Abwesenheit hatte den König beunruhigt, und er hatte
sich aufgemacht, um nach seinen lässigen Dienern zu sehen,
und eben, als sie sich alle versteckt hatten, kam er langsam
einhergeschritten und sah sich überall nach den Elfen um.
Natürlich bemerkte er bald das Glänzen des Laubes und
entdeckte auch deren Ursache, als er die zerbrochenen
Gefäße und Vasen erblickte, aus denen der geschmolzene
Schatz noch immer heruntertropfte. Und als er zu den
Nußbäumen kam und die von den faulen Elfen
zurückgelassenen Schalen und die Spuren ihres Umhertollens
bemerkte, wußte er sofort, was sie angestellt hatten und daß
sie ihm ungehorsam gewesen waren, indem sie bei ihrer
Wanderung durch den Wald gespielt und die Zeit versäumt
hatten.
König Frost runzelte die Stirn und machte zuerst ein sehr
böses Gesicht, und seine Elfen zitterten vor Furcht und
duckten sich noch tiefer in ihre Verstecke. In diesem
Augenblick aber kamen zwei kleine Kinder daher gehüpft, und
obgleich sie den König Frost und die Elfen nicht sehen
konnten, bemerkten sie doch die prächtige Färbung des
Laubes, lachten vor Entzücken und begannen große Sträuße
für ihre Mutter zu pflücken. Die Blätter sind so schön wie
Blumen, sagten sie, nannten die gelben »Butternäpfchen«
und die roten »Rosen« und waren sehr fröhlich, als sie
singend durch den Wald weiter zogen.
Ihre Freude besänftigte König Frosts Zorn; auch er begann
die bemalten Bäume zu bewundern und sagte schließlich zu
sich selber: Meine Schätze sind nicht verloren, wenn sie kleine
Kinder glücklich machen. Ich will meinen faulen,
gedankenlosen Elfen nicht zürnen, denn sie haben mich eine
neue Art, Gutes zu tun, gelehrt. Als die Frostelfen diese Worte
hörten, krochen sie einer nach dem anderen aus ihren
Verstecken hervor, knieten vor ihrem Herrn nieder, gestanden
ihre Schuld ein und baten ihn um Verzeihung. Er war zwar
noch eine Weile ungehalten und schalt sie tüchtig aus; bald
aber wurde er milder und erklärte, er wolle ihnen diesmal
noch verzeihen; ihre einzige Strafe solle darin bestehen, daß
sie noch mehr Schätze in den Wald tragen und in den
Bäumen verstecken sollten, bis das gesamte Laub mit Hilfe
der Frau Sonne mit Gold- und Purpurfarben bedeckt sei.
Die Elfen dankten ihm für seine Verzeihung und
versprachen, recht angestrengt zu arbeiten, um seine Huld
wiederzugewinnen, und der gutherzige König nahm sie alle
auf seine Arme und trug sie sicher heim in seinen Palast. Von
dieser Zeit an, glaube ich, ist es ein Teil von Jack Frosts
Aufgaben, die Bäume mit den glühenden Farben, die wir im
Herbste erblicken, zu bemalen, und wenn sie nicht mit Gold
und Edelsteinen bedeckt sind, so weiß ich nicht, auf welche
Weise er sie so glänzend macht; wißt ihr es vielleicht?
Der Frostkönig.
Von Helen A. Keller
König Frost wohnt in einem schönen Palast fern im
Norden, in dem Lande des ewigem Schnees. Der Palast, der
über alle Beschreibung prächtig ist, war schon vor
Jahrhunderten, unter der Regierung des Königs Gletscher,
erbaut. In geringer Entfernung von dem Palaste könnten wir
ihn leicht für ein Gebirge halten, dessen Gipfel sich zum
Himmel erheben, um den letzten Kuß des scheidenden Tages
zu empfangen. Wenn wir aber näher kommen, so werden wir
bald unseren Irrtum bemerken. Was wir für Bergesspitzen
hielten, sind in Wahrheit Tausende von weithin glänzenden
Türmen. Nichts kann schöner sein als die Architektur dieses
Eispalastes. Die Wände sind merkwürdigerweise aus massiven
Eisblöcken erbaut, die in klippenartige Türme auslaufen. Das
Portal des Palastes liegt am Ende eines überwölbten Ganges
und wird Tag und Nacht durch zwölf grimmig aussehende
Eisbären bewacht.
Doch, Kinder, ihr müßt dem König Frost bei der ersten
Gelegenheit, die sich euch biet einen Besuch abstatten und
euch diesen wundervollen Palast selber ansehen. Der alte
König wird euch freundlich willkommen heißen, denn er liebt
die Kinder, und es ist sein Hauptvergnügen, ihnen Freude zu
bereiten.
Ihr müßt wissen, daß König Frost wie alle anderen Könige
große Schätze von Gold und Edelsteinen besitzt: da er aber
ein freigebiger alter Fürst ist so so er bestrebt, einen richtigen
Gebrauch von seinen Reichtümern zu machen. So verrichtet
er, wohin ihn auch sein Weg führt, viele wunderbare Dinge; er
schlägt Brücken über jeden Strom, so durchsichtig wie Glas
und doch oft so fest wie Eisen; er schüttelt die Waldbäume,
bis die reifen Nüsse lachenden Kindern in den Schoß fallen; er
schläfert mit einer Berührung seiner Hand ein, und damit wir
uns nicht nach den strahlenden Blumengesichtern sehnen,
bemalt er das Laub mit Gold-, Purpur- und Smaragdfarben,
und wenn er mit seiner Arbeit fertig ist, so sind die Bäume so
schön, daß wir uns über die Flucht des Sommers trösten. Ich
will euch erzählen, wie König Frost auf den Gedanken
verfallen ist, das Laub zu bemalen, denn es ist eine
sonderbare Geschichte.
Eines Tages dachte König Frost, während er sein großes
Vermögen einer Durchsicht unterzog und überlegte, was er
damit wohl Gutes stiften könne, mit einem Male an seinen
freundlichen alten Nachbar Santa Claus. Ich will meine
Schätze an Santa Claus senden, sagte der König zu sich
selber. Er ist der richtige Mann dazu, sie gut zu verwenden,
denn er weiß, wo die Armen und Unglücklichen wohnen, und
sein gütiges altes Herz steckt immer voller Pläne, sie zu
unterstützen. So rief er denn die lustigen kleinen Elfen seines
Hofstaates zusammen, zeigte ihnen die Gefäße und, Vasen,
die seine Schätze enthielten, und befahl ihnen, sie so rasch
wie möglich nach Santa Claus’ Palaste zu tragen. Die Elfen
versprachen Gehorsam und waren im Nu auf und davon,
indem sie die schweren Gefäße und Vasen hinter sich
herschleppten, so gut sie konnten, und ab und zu ein wenig
über die schwere Arbeit brummten; denn es waren faule
Elfen, die lieber spielten als arbeiteten. Nach einiger Zeit
kamen sie in einen großen Wald, und da sie müde und
hungrig waren, beschlossen sie ein wenig zu rasten und sich
nach Nüssen umzusehen, ehe sie ihre Wanderung weiter
fortsetzten. Da sie aber glaubten, ihr Schatz könne ihnen
inzwischen gestohlen werden, so verbargen sie die Gefäße in
dem dichten grünen Laub der verschiedenen Bäume und
waren sicher, daß niemand sie finden könne. Dann begannen
sie lustig umherzustreifen, um sich Nüsse zu suchen, auf die
Bäume zu klettern, neugierig in die leeren Vogelnester zu
schauen und hinter den Bäumen Verstecken zu spielen. Diese
unartigen Elfen waren nun bei ihrem Herumtollen so
geschäftig und so lustig, daß sie ihren Auftrag und ihres Herrn
Befehl, sich zu beeilen, ganz vergaßen, aber bald entdeckten
sie zu ihrem Verdruß, warum ihnen Eile anbefohlen worden
war, denn obgleich sie ihrer Meinung nach den Schatz
sorgfältig versteckt hatten, so hatten die strahlenden Augen
der Königin Sonne doch die Gefäße zwischen dem Laube
erspäht, und da sie und König Frost sich über die beste Art,
der Welt Gutes zu tun, nie einigen konnten, so war sie froh,
eine gute Gelegenheit zu haben, ihrem ein wenig rauhen
Nebenbuhler einen Streich zu spielen. Königin Sonne lachte
still vor sich hin, als die zarten Gefäße zu schmelzen und zu
zerbrechen begannen. Schließlich waren alle Gefäße und
Vasen gesprungen oder entzweigegangen, und ebenso
schmolzen die in ihnen enthaltenen Edelsteine und rannen in
kleinen Strömen über die Bäume und Sträuche des Waldes.
Noch bemerkten die faulen Elfen nicht, was sich ereignete,
denn sie hatten sich in das Gras gelagert, und es dauerte
lange, ehe der wunderbare Schatzregen sie erreichte;
schließlich aber hörten sie deutlich, wie die Tropfen gleich
einem Regen im ganzen Walde herabfielen und von einem
Blatt zum anderen glitten, bis sie auf die kleinen Sträucher,
neben denen die Elfen saßen, herabklatschten. Jetzt
entdeckten sie zu ihrem Erstaunen, daß die Regentropfen
geschmolzene Rubine waren, die auf den Blättern erstarrten
und sie augenblicklich mit Purpur und Gold überzogen. Dann
sahen sie, als sie sich genauer umblickten, daß ein großer Teil
des Schatzes bereits geschmolzen war, denn die Eichen- und
Ahornbäume waren in prächtige Gewänder von Gold-, Purpur-
und Smaragdfarbe gehüllt. Es gewährte einen sehr schönen
Anblick; aber die ungehorsamen Elfen waren zu sehr
erschrocken, als daß sie die Schönheit der Bäume hätten
wahrnehmen können. Sie fürchteten, König Frost könne
kommen und sie strafen. So versteckten sie sich denn
zwischen den Sträuchern und warteten schweigend auf das,
was sich ereignen würde. Ihre Befürchtungen waren
wohlbegründet, denn ihre lange Abwesenheit hatte den König
beunruhigt, er bestieg den Nordwind und ritt aus, um seine
säumigen Boten zu suchen. Natürlich war er noch nicht weit
gekommen, als er das Glänzen des Laubes bemerkte, und er
erriet rasch die Ursache davon, als er die zerbrochenen
Gefäße bemerkte, aus denen der Schatz noch immer herunter
tropfte. Zuerst war König Frost sehr zornig, und die Elfen
zitterten und duckten sich noch tiefer in ihre Verstecke, und
ich weiß nicht, was geschehen, wäre, wenn nicht gerade in
diesem Augenblick eine Schar von Knaben und Mädchen den
Wald betreten hätte. Als die Kinder die Bäume alle in den
herrlichen Farben schimmern sahen, klatschten sie in die
Hände, stießen ein Freudengeschrei aus und begannen sofort
große Sträuße zu pflücken, um sie mit nach Hause zu
nehmen. Die Blätter sind so hübsch wie die Blumen! riefen sie
in ihrem Entzücken. Ihre Freude verscheuchte den Zorn aus
König Frosts Herzen und glättete seine gerunzelten
Augenbrauen, und auch er begann die bemalten Bäume zu
bewundern. Er sagte zu sich selber: Meine Schätze sind nicht
verloren, wenn sie kleine Kinder glücklich machen. Meine
faulen Elfen und meine grimmige Feindin haben mich eine
neue Art, Gutes zu tun, gelehrt.
Als die Elfen dies hörten, wurde es ihnen bedeutend
leichter ums Herz, und sie kamen aus ihren Verstecken
hervor, gestanden ihre Schuld ein und baten ihren Herrn um
Verzeihung.
Seit dieser Zeit hat es König Frost stets großes Vergnügen
gemacht, die Blätter mit den glühenden Farben, die wir im
Herbste erblicken, zu bemalen, und wenn sie nicht mit Gold
und Edelsteinen bedeckt sind, so kann ich mir nicht denken,
was sie so glänzend macht; könnt ihr es euch vielleicht
denken?
Wenn das Märchen von den »Frostelfen«, bemerkt Fräulein
Sullivan zu den beiden Erzählungen, Helen im Sommer 1888
vorgelesen wurde, so konnte sie damals noch nicht viel davon
verstanden haben, denn sie hatte erst seit dem März 1887 Unterricht
gehabt.
Ist es möglich, daß die Sprache des Märchens in ihrem Geiste
schlummernd gelegen hat, bis meine Schilderung von der Schönheit
der Herbstlandschaft sie ihr im Jahre 1891 wieder lebendig vor ihr
geistiges Auge brachte?
Noch eine andere Tatsache ist in diesem Zusammenhange von
großer Bedeutung. Das Märchen »Die Rosenelfen« war in demselben
Bande erschienen wie »Die Frostelfen« und somit Helen
wahrscheinlich um dieselbe Zeit wie dieses vorgelesen worden.
Nun spricht Helen in ihrem Briefe vom Februar 1890 (s. oben S.
328), von diesem Märchen Fräulein Canbys als v o n e i n e m
Tr a u m e , d e n s i e v o r s e h r l a n g e r Z e i t a l s g a n z
k l e i n e s K i n d g e h a b t h a b e. Sicherlich werden anderthalb
Jahre einem kleinen Mädchen wie Helen als »sehr lange Zeit«
erscheinen; wir haben daher Veranlassung zu der Annahme, daß die
Märchen ihr spätestens im Sommer 1888 vorgelesen worden sein
müssen.
Helen Keller erwähnt (S. 68) einen freundlichen Brief, den ihr
Fräulein Canby geschrieben habe. Auch mit Fräulein Sullivan trat die
genannte Dame in Briefwechsel. So schrieb sie ihr z. B. am 9. März
1892 unter anderem: „Was für einen wunderbar regen Geist und was
für ein treues Gedächtnis muß dieses begabte Kind besitzen! Hätte
sich Helen eines kurzen Märchens erinnert und es
niedergeschrieben, kurz nachdem sie es gehört hatte, so würde dies
schon ein Wunder gewesen sein; aber das Märchen ein einzigesmal
vor drei Jahren gehört zu haben und noch dazu auf eine Weise, daß
weder ihre Eltern noch ihre Lehrerin darauf zurückkommen und die
Erinnerung daran auffrischen konnten, und dann imstande gewesen
zu sein, es so lebendig wiederzugeben und sogar noch einige
selbständige Striche hinzuzufügen, die in völligem Einklang mit dem
übrigen stehen und das Original in der Tat verbessern — das ist
etwas, was sehr wenige Mädchen reiferen Alters, die im Besitze aller
Vorteile des Sehens, Hörens und selbst großer schriftstellerischer
Begabung sind, so gut geleistet hätten, wenn sie überhaupt dazu
imstande gewesen wären. Unter diesen Umständen sehe ich nicht
ein, wie irgendjemand so lieblos sein kann, dies ein Plagiat zu
nennen; es ist eine wunderbare Leistung des Gedächtnisses und
steht einzig in seiner Art da. Ich habe viele Kinder gekannt, habe
mein ganzes Leben in ihrer Mitte zugebracht und kenne keinen
größeren Genuß, als mich mit ihnen zu unterhalten, sie zu erheitern
und ihre Geistes- und Charakterzüge ruhig zu beobachten; aber ich
entsinne mich keines Mädchens von Helens Alter, das den gleichen
Wissensdurst gehabt und über dieselbe Fülle literarischer und
allgemeiner Bildung sowie über dieselbe schriftstellerische Begabung
verfügt hätte wie Helen. Sie ist in der Tat ein Wunderkind. Vielen
Dank für Helens Tagebuch! Es läßt mich klarer als zuvor die große
Enttäuschung erkennen, die das liebe Kind zu erdulden gehabt hat.
Bitte, sagen Sie ihr, wie sehr ich sie in mein Herz geschlossen habe
und daß sie sich keine Gedanken mehr darüber machen soll.
Niemand darf sagen, sie habe unrecht getan, und eines Tages wird
sie eine große schöne Erzählung oder ein Gedicht schreiben, das
vielen Menschen Freude machen wird. Sagen Sie ihr, ein paar bittere
Tropfen seien in jedermanns Lebenskelch enthalten, und es bleibe
uns nichts anderes übrig, als die bitteren geduldig, und die süßen
dankbar hinzunehmen.“
Der Zwischenfall hatte, wie aus Helens eigener Darstellung
hervorgeht, auf sie und auf Fräulein Sullivan eine geradezu
vernichtende Wirkung. Letztere fürchtete, der Neigung zur
Nachahmung, die in Wirklichkeit Fräulein Keller zur Schriftstellerin
gemacht hat, allzugroßen Spielraum gelassen zu haben. Aber jetzt,
da sie auf der Universität zusammen mit ihrem Zögling in die
Geheimnisse des geistigen Schaffens eingedrungen ist, weiß sie, daß
der Stil jedes Schriftstellers und in der Tat jedes Menschen, mag er
gebildet oder ungebildet sein, eine Erinnerung ist, die sich aus allem,
was er gelesen und gehört hat, zusammensetzt. Der Quellen seines
Wortschatzes ist er sich größtenteils so wenig bewußt wie des
Augenblickes, in dem er die Nahrung zu sich nahm, die einen Teil
seines Daumennagels bilden sollte. Bei der Mehrzahl von uns
kreuzen und vermischen sich die Zuflüsse aus den verschiedensten
Quellen. Ein Kind, dem nur wenige Quellen zur Verfügung stehen,
kann das, was es aus jeder einzelnen zieht, getrennt halten. In
dieser Lage war Helen Keller, die den Wortlaut einer Geschichte, die
sie zu der Zeit, als sie ihr vorgelesen wurde, noch nicht ganz
verstand, fast unverändert und ohne Vermischung mit anderen
Vorstellungen in ihrem Geiste bewahrte. Die Bedeutung dieses
Umstandes kann nicht hoch genug bewertet werden. Er liefert den
Beweis dafür, daß der Geist des Kindes Worte in sich aufspeichert,
die es gehört hat, und daß diese hier gleichsam auf der Lauer liegen,
stets bereit, hervorzutreten, wenn der äußere Anreiz dazu eintritt.
Der Grund, weswegen wir diesen Prozeß bei normalen Kindern nicht
wahrnehmen, liegt darin, daß wir sie selten als Ganzes beobachten,
und daß sie ihre geistige Nahrung aus so vielen Quellen beziehen,
daß die Erinnerungsbilder verworren sind und sich gegenseitig
aufheben. Das Märchen vom »Frostkönig« trat jedoch nicht
unverändert aus Helens Geist hervor, sondern war durch die Eigenart
des Kindes umgeformt worden und hatte sich in Worte gekleidet, die
aus anderen Quellen stammten. Der Stil von Helens Fassung ist
sogar in manchen Beziehungen besser als der von Fräulein Canbys
Erzählung. Sie weist die naive Phantasie eines echten Volksmärchens
auf, während Fräulein Canbys Erzählung ersichtlich für Kinder von
einer älteren Person geschrieben ist, die die Art und Weise eines
Feenmärchens annimmt und didaktische Wendungen nicht immer
vermeidet. Helens Märchen ist in demselben Sinne ein Original, wie
die dichterische Bearbeitung einer alten Sage ein solches ist.
Aller Sprachgebrauch beruht auf Nachahmung, und jemandes Stil
ist ein Ausfluß aller Stilarten, die ihm vorgekommen sind.
Der einzige Weg, ein gutes Englisch schreiben zu lernen, ist der,
es zu lesen und zu hören. Daher kommt es, daß man jedes Kind ein
korrektes Englisch lehren kann, wenn man es kein anderes lesen
oder hören läßt. Bei einem Kinde ist die Scheidung des Besseren von
dem Schlechteren nicht bewußt; es ist der Sklave seiner sprachlichen
Erfahrung.
Der gewöhnliche Mensch wird sich nie von der irrigen Auffassung
losmachen können, daß die Worte dem Gedanken gehorchen, daß
man zuerst denkt und das Gedachte dann in Worte kleidet. Es muß
allerdings zuerst die Absicht, der Wunsch vorhanden sein, etwas
auszusprechen, aber der Gedanke nimmt meistenteils erst dann
feste Form an, wenn er in Worte gekleidet ist; auf jeden Fall wird der
Gedanke dadurch, daß er in Worten ausgedrückt wird, ein
selbständiges Gebilde. Worte rufen oft Gedankengänge hervor, und
wer das Wort beherrscht, wird Bedeutenderes sagen, als er sonst
vermöchte. Als Helen Keller den »Frostkönig« schrieb, sagte sie
mehr, als sie selbst glaubte.
Wer einen Satz aus Wörtern bildet, spricht nicht seine Weisheit
aus, sondern die Weisheit des Volkes, dessen Leben in den Worten
enthalten ist, selbst wenn sie vorher noch nie in dieser bestimmten
Weise zusammengesetzt worden sind. Wer Geschichten schreiben
kann, denkt an zu schreibende Geschichten. Das Medium der
Sprache ruft den Gedanken hervor, den es begleitet, und je
bedeutender das Medium ist, desto tiefer sind die Gedanken.
Gebildet ist der, dessen Ausdrucksweise gebildet ist. Der Träger
des Denkens ist die Sprache, und im Gebrauch der Sprache muß das
taube Kind so gut wie jedes andere unterrichtet werden. Gebt ihm
die Sprache, und es erhält mit ihr das Material, aus dem die Sprache
gebildet ist, das Denken und die Erfahrungen seines Volkes. Die
Sprache muß eine von einem Volke gebrauchte sein, nicht ein
Kunstprodukt. Volapük ist ein Unsinn. Das taube Kind, das nur die
Gebärdensprache kennt, bleibt bei allen Völkern ein Fremdling; seine
Gedanken sind nicht die eines Engländers, eines Deutschen oder
eines Franzosen. Das Vaterunser in der Zeichensprache ist nicht das
Vaterunser im Englischen.
De Quincey sagt in seiner Abhandlung über den Stil, das beste
Englisch finde sich in den Briefen der gebildeten vornehmen
Engländerinnen, weil diese nur einige gute Bücher gelesen haben
und nicht durch den Zeitungsstil, den Jargon der Straße, des Marktes
und der öffentlichen Versammlungen verdorben worden sind.
Genau diese selben äußeren Umstände kommen für Helen Kellers
Englisch in Betracht. In den ersten Jahren ihrer Erziehung bekam sie
nur gute Sachen zum Lesen; einiges darunter war allerdings trivial
und zeichnete sich auch nicht besonders durch seinen Stil aus, aber
nichts war nach Form oder Inhalt geradezu schlecht. Diese
glücklichen Verhältnisse haben ihr ganzes bisheriges Leben lang
angedauert. Sie hat sich an Werken der Phantasie genährt und aus
diesen den Stil großer Schriftsteller in ihr starkes, zähes Gedächtnis
aufgenommen. Als sie zwölf Jahre alt war, wurde sie gefragt, was für
ein Buch sie auf eine lange Eisenbahnfahrt mitnehmen wolle. »Das
verlorene Paradies«, war ihre Antwort, und sie las das Werk im
Zuge.
In den Tagen, als Helen den ersten Entwurf ihrer
Lebensgeschichte für den »Youth’s Companion« verfaßte,[34] schrieb
ihr Dr. Holmes: „Ich bin entzückt über den Stil Ihrer Briefe. Es ist
nichts Affektiertes in ihnen enthalten, und da sie Ihnen unmittelbar
von Herzen kommen, so gehen sie auch mir unmittelbar zu Herzen.“
In den Jahren des Uebergangs vom Kinde zur Jungfrau verlor
Helens Stil seine frühere Schlichtheit und wurde steif und, wie sie
sich selbst ausdrückte, gedrechselt. Damals wurde Fräulein Sullivan
oft von der Furcht befallen, daß die Fortschritte ihrer Schülerin mit
dem Ende der Kindheit aufhören würden. Zuweilen schien es
Fräulein Keller an Geschmeidigkeit zu gebrechen; ihr Gedankengang
bewegte sich in herkömmlichen Redewendungen, und sie schien
nicht die Kraft zu haben, diese zu ändern oder in neue Bahnen zu
lenken, und erst als sie die Kunst des Ausdrucks zum Gegenstand
eines bewußten Studiums gemacht hat, hat sie aufgehört, das Opfer
der Phrase zu sein. Charles T. Copeland, der lange Jahre hindurch
Professor der englischen Sprache und Literatur an der Harvard- und
der Radcliffe-Universität gewesen ist, erklärte einst: „In einigen ihrer
Arbeiten hat sie gezeigt, daß sie besser schreiben kann, als irgend
ein Schüler oder eine Schülerin, die ich je gehabt habe. Sie besitzt
ein ausgezeichnetes »Ohr« für den Fluß der Perioden.“ —
In allem, was Fräulein Keller geschrieben hat, zeigt sich, wie bei
den meisten großen englischen Schriftstellern, unverkennbar der
Einfluß des Stils der Bibel. In ihrer Selbstbiographie finden sich viele
Zitate aus der Bibel, entweder als gesonderte Einfügungen in den
Text oder in diesen hineinverwoben, während das Ganze ein
durchaus selbständiges Gepräge trägt. Ihr Wortschatz umfaßt alle
Ausdrücke, die andere gebrauchen, und die Erklärung dieser
Erscheinung und zugleich das Vernunftmäßige, das darin liegt, muß
jedermann einleuchten. Es liegt kein Grund vor, warum sie alle
Wörter, die einen Gehörs- oder Gesichtseindruck bezeichnen, aus
ihrem Wörterbuche streichen sollte. Solange sie die Wörter richtig
gebraucht, sollte man ihr das Recht einräumen, sie nach freiem
Ermessen zu verwenden und dürfte von ihr nicht verlangen, daß sie
sich auf einen Wortschatz beschränke, der ihrem Mangel an Seh-
und Hörvermögen entspreche. In Bezug auf die Form sowohl wie
den Inhalt ihres Buches müssen wir der Künstlerin zugestehen, was
wir der Autobiographin versagen. Dazu kommt, daß für
»wahrnehmen« von den Blinden die Ausdrücke »blicken« und
»sehen« und von den Tauben »hören« gebraucht werden; es sind
allgemein verständliche und gebräuchlichere Wörter. Nur ein
Wortklauber könnte daran denken, den Blinden auf den Terminus
»wahrnehmen« festnageln zu wollen, wenn »sehen« und »blicken«
um so viel natürlicher sind und außerdem allgemein sowohl die
Bedeutung des geistigen wie des sinnlichen Erkennens haben. Wenn
Fräulein Keller eine Statue befühlt, so sagt sie in ihrer natürlichen
Ausdrucksweise, während ihre Finger über den Marmor gleiten: Sie
sieht aus wie ein Kopf der Flora. —
Andererseits ist es richtig, daß sie in ihren Schilderungen das
künstlerisch Beste dann leistet, wenn sie sich streng an ihre eigenen
sinnlichen Wahrnehmungen hält, und genau dasselbe gilt von allen
Künstlern.
Infolge des Unterrichts in der letzten Zeit hat sie gelernt, ein gut
Teil ihrer herkömmlichen Ausdrucksweise über Bord zu werfen und
über Erfahrungen ihres Lebens zu schreiben, die sie selbst
gewonnen hat. Sie hat mehr und mehr begonnen, den Stil
aufzugeben, den sie aus Büchern entlehnte und den sie zu
gebrauchen suchte, weil sie wie andere Menschen zu schreiben
wünschte; sie hat gelernt, daß sie das Beste gibt, wenn sie »fühlt«,
wie die Lilien hin- und herschwanken, sich die Rosen in die Hand
drücken läßt und von der Hitze spricht, die für sie Licht bedeutet.
Fräulein Kellers Selbstbiographie umfaßt nahezu alles, was sie zu
veröffentlichen beabsichtigte.[35] Es existieren jedoch noch einige
kleinere Aufsätze, die weder so formlos wie ihre Briefe noch so
sorgfältig abgefaßt sind wie ihre Lebensgeschichte. Einer von diesen
enthält Mitteilungen über ihr Traumleben, die bei einer Blinden von
doppeltem Interesse sind; wir lassen ihn daher noch in
Uebersetzung folgen.
* *
*
„O, die Streiche, die die Nixe von Traumland uns während des
Schlafes spielen! Ich glaube, es sind die Spaßmacher des
himmlischen Hofhalts. Oft nehmen sie die Gestalt von
Aufsatzthemen an, um mich zu verspotten, sie stolzieren auf der
Bühne des Schlafes wie die törichten Jungfrauen einher, nur daß sie
anstatt der leeren Lampen saubere Kollegienhefte in ihren Händen
halten. Ein andermal examinieren sie mich kreuz und quer in allen
Fächern, die ich je studiert habe, und stellen Fragen an mich, die so
leicht zu beantworten sind, wie die folgende: Wie hieß die erste
Maus, über die sich Hippopotamos, der Satrap von Cambridge unter
Astyages, dem Großvater Kyros’ des Großen, ärgerte? Ich wache vor
Entsetzen auf, während mir noch die Worte in den Ohren klingen:
Eine Antwort oder das Leben!
Solchergestalt sind die verzerrten Phantasien, die durch die Seele
eines Mädchens ziehen, das die Universität besucht und, wie ich es
tue, in einer Atmosphäre von Ideen und Begriffen lebt, die halb
Gedanken, halb Gefühle sind, die sich gegenseitig drängen und
jagen, bis man beinahe verrückt wird. Ich habe selten Träume, die
nicht im Zusammenhange mit dem stehen, was ich wirklich denke
und fühle; aber eines Nachts schien sich meine ganze Natur
verwandelt zu haben, und ich stand als mächtiger, furchtbarer Mann
vor den Augen der Welt da. Selbstverständlich liebe ich den Frieden
und hasse den Krieg nebst allem, was zum Kriege gehört; in der
blutbefleckten Laufbahn Napoleons erblicke ich nichts
Bewundernswertes, abgesehen von seinem Ende.
Nichtsdestoweniger war in jener Nacht der Geist jenes mitleidslosen
Menschenschlächters in mich gefahren! Ich werde es nie vergessen,
wie die Kampfeswut in meinen Adern tobte — es schien, als wolle
das stürmische Schlagen meines Herzens mir den Atem nehmen. Ich
ritt einen feurigen Renner — ich kann noch jetzt das ungeduldige
Emporwerfen seines Kopfes und den Schauer fühlen, der beim
ersten Kanonendonner durch seinen Körper rann.
Von dem Gipfel des Hügels aus, auf dem ich stand, sah ich meine
Truppen über eine sonnenbeschienene Ebene anstürmen wie zornige
Wellen, und als sie sich bewegten, erblickte ich das Grün der Felder,
das aussah wie die kühlen Täler zwischen den Wogen. Trompeten
erklangen mitten in den unaufhörlichen Trommelwirbel und den
Massenschritt der heranmarschierenden Bataillone hinein. Ich
spornte mein schnaubendes Roß, schwang mein Schwert in die Höhe
und rief: Ich komme! Blickt auf mich, Krieger — Europa! Ich stürzte
mich in die heranbrausenden Wogen wie ein starker Schwimmer in
die Brandung taucht und stieß — ach, es ist die Wahrheit! — gegen
den Bettpfosten.
Jetzt schlafe ich selten, ohne zu träumen; bevor aber Fräulein
Sullivan zu mir kam, waren meine Träume selten und mit Ausnahme
derer von rein physischer Natur, gedankenarm und
zusammenhanglos. In meinen Träumen fiel stets etwas plötzlich und
schwer herab, und mitunter schien mich meine Wärterin für mein
unfreundliches Benehmen, das ich im Laufe des Tages gegen sie
gezeigt hatte, zu züchtigen und mir meine Fußtritte und mein
Kneifen mit Wucherzinsen heimzuzahlen. Ich fuhr aus meinem
Schlafe empor unter verzweifelten Anstrengungen, meiner Peinigerin
zu entgehen. Ich aß sehr gern Bananen und eines Nachts träumte
mir, ich fände eine lange Schnur mit diesen Früchten in dem
Speisezimmer, in der Nähe des Buffets, alle geschält und von
köstlicher Reife, und alles, was ich zu tun hatte, war, daß ich mich
unter die Schnur stellte und aß, soviel ich konnte.
Nachdem Fräulein Sullivan zu mir gekommen war, träumte ich
umso öfter, je mehr ich lernte; aber mit dem Erwachen meines
Geistes stellten sich oft schreckhafte Phantasien und unbestimmte
Furchtanwandlungen ein, die meinen Schlaf lange Zeit zu einem sehr
unruhigen machten. Ich fürchtete mich vor der Dunkelheit und liebte
das Kaminfeuer. Sein warmer Hauch kam mir wie die Liebkosung
einer Menschenhand vor, ich glaubte wirklich, es sei ein beseeltes
Wesen, imstande, mich zu lieben und zu beschützen. An einem
kalten Winterabend war ich allein in meinem Zimmer. Fräulein
Sullivan hatte das Licht gelöscht und war fortgegangen, in der
Meinung, ich schliefe schon. Mit einem Male fühlte ich mein Bett
erzittern, und es war mir, als spränge ein Wolf auf mich zu und
heulte mich an. Es war nur ein Traum, aber ich hielt ihn für
Wirklichkeit und geriet in das größte Entsetzen. Ich wagte nicht zu
schreien, aber ich wagte auch nicht im Bett zu bleiben. Vielleicht war
der Traum eine verworrene Erinnerung an das Märchen vom
Rotkäppchen, das ich vor kurzem gehört hatte. Jedenfalls schlüpfte
ich aus dem Bett und kauerte mich dicht neben dem Feuer nieder,
das noch nicht ausgebrannt war. Sobald ich seine Wärme fühlte, war
ich beruhigt, und ich saß lange Zeit da und sah es in leuchtenden
Wogen höher und immer höher steigen. Schließlich übermannte
mich der Schlaf, und als Fräulein Sullivan zurückkehrte, fand sie mich
in eine Decke gehüllt am Herde liegen.
Oft, wenn ich träume, ziehen Gedanken durch meinen Sinn wie
vermummte Schatten, schweigend und in weiter Ferne, und
verschwinden dann. Vielleicht sind es die Geister von Gedanken, die
einst den Geist eines Vorfahren von mir bevölkerten. Zu anderen
Zeiten fallen die Dinge, die ich gelernt habe, und die, in denen ich
unterrichtet worden bin, von mir ab, wie die Eidechse ihre Haut
abstreift, und ich erblicke dann meine Seele so, wie Gott sie sieht. Es
gibt auch schöne, seltene Augenblicke, in denen ich im Traumland
sehe und höre. Wie, wenn in meinen wachen Stunden ein Ton durch
die schweigenden Hallen des Gehörs erklänge? Wie, wenn ein Strahl
des Lichtes durch die dunklen Gemächer meiner Seele blitzte? Was
würde sich dann ereignen? frage ich mich immer und immer wieder.
Würde die allzustraff gespannte Saite des Lebens springen? Würde
das Herz, überwältigt von freudigem Schreck, infolge des
Uebermaßes von Glück aufhören zu schlagen?
[29] Vergl. S. 62 ff.
[30] Gemeint ist der Beitrag Fräulein Sullivans zu dem von
dem genannten Bureau herausgegebenen »Souvenir Helen
Keller« (vergl. S. 205).
[31] Fräulein Sullivan führt in ihrem Aufsatze folgendes an: Im
Laufe des Winters (1891/92) ging ich mit Helen einmal während
eines leichten Schneegestöbers in den Hof und ließ sie die
herunterfallenden Flocken befühlen. Sie schien sich darüber sehr
zu freuen. Als wir wieder hineingingen, äußerte sie folgende
Worte: Out of the cloud-folds of his garments Winter shakes the
snow. Ich fragte sie, wo sie dies gelesen habe, sie erwiderte, sie
könne sich nicht erinnern, es gelesen zu haben, und schien sich
auch nicht zu entsinnen, daß ihr die Worte von irgend jemand
mitgeteilt worden seien. Da ich selbst diese Worte nie gehört
hatte, fragte ich mehrere meiner Bekannten, ob sie sich ihrer
erinnern könnten; doch schien dies bei niemand von ihnen der
Fall zu sein. Die Lehrer des Instituts versicherten, daß diese Stelle
sich in keinem in Hochdruck hergestellten Buche der Bibliothek
befinde; aber eine Dame, Fräulein Marret, unterzog sich der
Aufgabe, mit gewöhnlichen Typen gedruckte Gedichtsammlungen
durchzusehen, ihre Mühe wurde auch belohnt, sie fand in einem
der kleinen Gedachte Longfellows mit dem Titel: »Snow-flakes«
folgende Verse:
Out of the bosom of the air,
Out of the cloud-folds of her garments shaken,
Over the woodlands brown and bare,
Over the harvest-fields forsaken,
Silent, and soft, and slow,
Descends the snow.
Es scheint, daß irgendjemand Helen diese Verse des Dichters
einmal mitgeteilt hat und daß sie ihr im Gedächtnis haften
geblieben sind bis sie sich heute früh bei dem Schneetreiben ihrer
wieder erinnerte.
[32] S. 157 ff.
[33] Vergl. S. 337.
[34] Siehe S. 73 ff.
[35] Im Jahre 1905 erschien ein größerer Essay von ihr,
»Optimism«.
*** END OF THE PROJECT GUTENBERG EBOOK DIE GESCHICHTE
MEINES LEBENS ***
Updated editions will replace the previous one—the old editions
will be renamed.
Creating the works from print editions not protected by U.S.
copyright law means that no one owns a United States
copyright in these works, so the Foundation (and you!) can copy
and distribute it in the United States without permission and
without paying copyright royalties. Special rules, set forth in the
General Terms of Use part of this license, apply to copying and
distributing Project Gutenberg™ electronic works to protect the
PROJECT GUTENBERG™ concept and trademark. Project
Gutenberg is a registered trademark, and may not be used if
you charge for an eBook, except by following the terms of the
trademark license, including paying royalties for use of the
Project Gutenberg trademark. If you do not charge anything for
copies of this eBook, complying with the trademark license is
very easy. You may use this eBook for nearly any purpose such
as creation of derivative works, reports, performances and
research. Project Gutenberg eBooks may be modified and
printed and given away—you may do practically ANYTHING in
the United States with eBooks not protected by U.S. copyright
law. Redistribution is subject to the trademark license, especially
commercial redistribution.
START: FULL LICENSE
THE FULL PROJECT GUTENBERG LICENSE
PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK
To protect the Project Gutenberg™ mission of promoting the
free distribution of electronic works, by using or distributing this
work (or any other work associated in any way with the phrase
“Project Gutenberg”), you agree to comply with all the terms of
the Full Project Gutenberg™ License available with this file or
online at www.gutenberg.org/license.
Section 1. General Terms of Use and
Redistributing Project Gutenberg™
electronic works
1.A. By reading or using any part of this Project Gutenberg™
electronic work, you indicate that you have read, understand,
agree to and accept all the terms of this license and intellectual
property (trademark/copyright) agreement. If you do not agree
to abide by all the terms of this agreement, you must cease
using and return or destroy all copies of Project Gutenberg™
electronic works in your possession. If you paid a fee for
obtaining a copy of or access to a Project Gutenberg™
electronic work and you do not agree to be bound by the terms
of this agreement, you may obtain a refund from the person or
entity to whom you paid the fee as set forth in paragraph 1.E.8.
1.B. “Project Gutenberg” is a registered trademark. It may only
be used on or associated in any way with an electronic work by
people who agree to be bound by the terms of this agreement.
There are a few things that you can do with most Project
Gutenberg™ electronic works even without complying with the
full terms of this agreement. See paragraph 1.C below. There
are a lot of things you can do with Project Gutenberg™
electronic works if you follow the terms of this agreement and
help preserve free future access to Project Gutenberg™
electronic works. See paragraph 1.E below.
1.C. The Project Gutenberg Literary Archive Foundation (“the
Foundation” or PGLAF), owns a compilation copyright in the
collection of Project Gutenberg™ electronic works. Nearly all the
individual works in the collection are in the public domain in the
United States. If an individual work is unprotected by copyright
law in the United States and you are located in the United
States, we do not claim a right to prevent you from copying,
distributing, performing, displaying or creating derivative works
based on the work as long as all references to Project
Gutenberg are removed. Of course, we hope that you will
support the Project Gutenberg™ mission of promoting free
access to electronic works by freely sharing Project Gutenberg™
works in compliance with the terms of this agreement for
keeping the Project Gutenberg™ name associated with the
work. You can easily comply with the terms of this agreement
by keeping this work in the same format with its attached full
Project Gutenberg™ License when you share it without charge
with others.
1.D. The copyright laws of the place where you are located also
govern what you can do with this work. Copyright laws in most
countries are in a constant state of change. If you are outside
the United States, check the laws of your country in addition to
the terms of this agreement before downloading, copying,
displaying, performing, distributing or creating derivative works
based on this work or any other Project Gutenberg™ work. The
Foundation makes no representations concerning the copyright
status of any work in any country other than the United States.
1.E. Unless you have removed all references to Project
Gutenberg:
1.E.1. The following sentence, with active links to, or other
immediate access to, the full Project Gutenberg™ License must
appear prominently whenever any copy of a Project
Gutenberg™ work (any work on which the phrase “Project
Gutenberg” appears, or with which the phrase “Project
Gutenberg” is associated) is accessed, displayed, performed,
viewed, copied or distributed:
This eBook is for the use of anyone anywhere in the United
States and most other parts of the world at no cost and
with almost no restrictions whatsoever. You may copy it,
give it away or re-use it under the terms of the Project
Gutenberg License included with this eBook or online at
www.gutenberg.org. If you are not located in the United
States, you will have to check the laws of the country
where you are located before using this eBook.
1.E.2. If an individual Project Gutenberg™ electronic work is
derived from texts not protected by U.S. copyright law (does not
contain a notice indicating that it is posted with permission of
the copyright holder), the work can be copied and distributed to
anyone in the United States without paying any fees or charges.
If you are redistributing or providing access to a work with the
phrase “Project Gutenberg” associated with or appearing on the
work, you must comply either with the requirements of
paragraphs 1.E.1 through 1.E.7 or obtain permission for the use
of the work and the Project Gutenberg™ trademark as set forth
in paragraphs 1.E.8 or 1.E.9.
1.E.3. If an individual Project Gutenberg™ electronic work is
posted with the permission of the copyright holder, your use and
distribution must comply with both paragraphs 1.E.1 through
1.E.7 and any additional terms imposed by the copyright holder.
Additional terms will be linked to the Project Gutenberg™
License for all works posted with the permission of the copyright
holder found at the beginning of this work.
1.E.4. Do not unlink or detach or remove the full Project
Gutenberg™ License terms from this work, or any files
Welcome to Our Bookstore - The Ultimate Destination for Book Lovers
Are you passionate about books and eager to explore new worlds of
knowledge? At our website, we offer a vast collection of books that
cater to every interest and age group. From classic literature to
specialized publications, self-help books, and children’s stories, we
have it all! Each book is a gateway to new adventures, helping you
expand your knowledge and nourish your soul
Experience Convenient and Enjoyable Book Shopping Our website is more
than just an online bookstore—it’s a bridge connecting readers to the
timeless values of culture and wisdom. With a sleek and user-friendly
interface and a smart search system, you can find your favorite books
quickly and easily. Enjoy special promotions, fast home delivery, and
a seamless shopping experience that saves you time and enhances your
love for reading.
Let us accompany you on the journey of exploring knowledge and
personal growth!
ebookgate.com

More Related Content

PDF
Foundations of complex systems Nonlinear dynamic statistical physics informat...
PDF
Foundations of complex systems Nonlinear dynamic statistical physics informat...
PDF
Foundations of complex systems Nonlinear dynamic statistical physics informat...
PDF
Foundations of complex systems emergence information and predicition 2nd Edit...
PDF
Foundations of complex systems emergence information and predicition 2nd Edit...
PDF
Fundamental Characteristics of a Complex System
PDF
Complex Systems Terry R J Bossomaier Editor David G Green Editor
PDF
Introduction to the Theory of Complex Systems Stefan Thurner
Foundations of complex systems Nonlinear dynamic statistical physics informat...
Foundations of complex systems Nonlinear dynamic statistical physics informat...
Foundations of complex systems Nonlinear dynamic statistical physics informat...
Foundations of complex systems emergence information and predicition 2nd Edit...
Foundations of complex systems emergence information and predicition 2nd Edit...
Fundamental Characteristics of a Complex System
Complex Systems Terry R J Bossomaier Editor David G Green Editor
Introduction to the Theory of Complex Systems Stefan Thurner

Similar to Foundations of complex systems Nonlinear dynamic statistical physics information and prediction Gregoire Nicolis (20)

PDF
More Than The Sum Of The Parts Complexity In Physics And Beyond Helmut Satz
PDF
What Is A Complex System James Ladyman K Wiesner
PDF
What Is A Complex System James Ladyman K Wiesner
PDF
Introduction to the Theory of Complex Systems Stefan Thurner
PDF
More Than the Sum of the Parts : Complexity in Physics and Beyond Helmut Satz
PDF
Introduction To The Theory Of Complex Systems Stefan Thurner
PDF
Introduction to the Theory of Complex Systems Stefan Thurner
PDF
Introduction to the Theory of Complex Systems Stefan Thurner
PDF
Multichaos Fractal And Multifractional Artificial Intelligence Of Different C...
PDF
Introduction: Vocabulary of Complex Systems Sciences
PDF
Dodig-Crnkovic-Information and Computation
PDF
Hypernetworks In The Science Of Complex Systems Jeffrey Johnson
PDF
Untangling complex systems - Al Complexity Literacy Meeting le slides del lib...
PDF
Complexity in Tsunamis Volcanoes and their Hazards 2nd edition Robert I. Til...
PDF
Complexity Número especial da Nature Physics Insight sobre complexidade
PDF
Introduction to Complex Systems
PDF
Toward a theory of chaos
PDF
Chaos Theory In Politics 1st Edition Santo Banerjee Efika Ule Eretin
PDF
International Conference on Theory and Application in Nonlinear Dynamics ICAN...
PDF
Complexity And Evolution Of Dissipative Systems An Analytical Approach Sergey...
More Than The Sum Of The Parts Complexity In Physics And Beyond Helmut Satz
What Is A Complex System James Ladyman K Wiesner
What Is A Complex System James Ladyman K Wiesner
Introduction to the Theory of Complex Systems Stefan Thurner
More Than the Sum of the Parts : Complexity in Physics and Beyond Helmut Satz
Introduction To The Theory Of Complex Systems Stefan Thurner
Introduction to the Theory of Complex Systems Stefan Thurner
Introduction to the Theory of Complex Systems Stefan Thurner
Multichaos Fractal And Multifractional Artificial Intelligence Of Different C...
Introduction: Vocabulary of Complex Systems Sciences
Dodig-Crnkovic-Information and Computation
Hypernetworks In The Science Of Complex Systems Jeffrey Johnson
Untangling complex systems - Al Complexity Literacy Meeting le slides del lib...
Complexity in Tsunamis Volcanoes and their Hazards 2nd edition Robert I. Til...
Complexity Número especial da Nature Physics Insight sobre complexidade
Introduction to Complex Systems
Toward a theory of chaos
Chaos Theory In Politics 1st Edition Santo Banerjee Efika Ule Eretin
International Conference on Theory and Application in Nonlinear Dynamics ICAN...
Complexity And Evolution Of Dissipative Systems An Analytical Approach Sergey...
Ad

Recently uploaded (20)

PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
master seminar digital applications in india
PDF
Basic Mud Logging Guide for educational purpose
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Business Ethics Teaching Materials for college
PDF
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Week 4 Term 3 Study Techniques revisited.pptx
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
PPH.pptx obstetrics and gynecology in nursing
Pharmacology of Heart Failure /Pharmacotherapy of CHF
master seminar digital applications in india
Basic Mud Logging Guide for educational purpose
TR - Agricultural Crops Production NC III.pdf
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
Module 4: Burden of Disease Tutorial Slides S2 2025
Business Ethics Teaching Materials for college
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
Final Presentation General Medicine 03-08-2024.pptx
Week 4 Term 3 Study Techniques revisited.pptx
Supply Chain Operations Speaking Notes -ICLT Program
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
2.FourierTransform-ShortQuestionswithAnswers.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
O7-L3 Supply Chain Operations - ICLT Program
VCE English Exam - Section C Student Revision Booklet
human mycosis Human fungal infections are called human mycosis..pptx
PPH.pptx obstetrics and gynecology in nursing
Ad

Foundations of complex systems Nonlinear dynamic statistical physics information and prediction Gregoire Nicolis

  • 1. Foundations of complex systems Nonlinear dynamic statistical physics information and prediction Gregoire Nicolis pdf download https://ebookgate.com/product/foundations-of-complex-systems- nonlinear-dynamic-statistical-physics-information-and-prediction- gregoire-nicolis/ Get Instant Ebook Downloads – Browse at https://ebookgate.com
  • 2. Instant digital products (PDF, ePub, MOBI) available Download now and explore formats that suit you... Foundations of complex systems emergence information and predicition 2nd Edition G Nicolis https://ebookgate.com/product/foundations-of-complex-systems- emergence-information-and-predicition-2nd-edition-g-nicolis/ ebookgate.com Foundations of Physics Tom Hsu https://ebookgate.com/product/foundations-of-physics-tom-hsu/ ebookgate.com Nonlinear Dynamic Modeling of Physiological Systems IEEE Press Series on Biomedical Engineering 1st Edition Professor Vasilis Z. Marmarelis https://ebookgate.com/product/nonlinear-dynamic-modeling-of- physiological-systems-ieee-press-series-on-biomedical-engineering-1st- edition-professor-vasilis-z-marmarelis/ ebookgate.com Nonlinear Dynamics From Lasers to Butterflies Selected Lectures from the 15th Canberra Int l Physics Summer School World Scientific Lecture Notes in Complex Systems Akhmediev https://ebookgate.com/product/nonlinear-dynamics-from-lasers-to- butterflies-selected-lectures-from-the-15th-canberra-int-l-physics- summer-school-world-scientific-lecture-notes-in-complex-systems- akhmediev/ ebookgate.com
  • 3. Fundamentals of Statistical and Thermal Physics Frederick Reif https://ebookgate.com/product/fundamentals-of-statistical-and-thermal- physics-frederick-reif/ ebookgate.com Methods of statistical physics First Edition Tomoyasu Tanaka https://ebookgate.com/product/methods-of-statistical-physics-first- edition-tomoyasu-tanaka/ ebookgate.com Advances in Chemical Physics Advancing Theory for Kinetics and Dynamics of Complex Many Dimensional Systems Clusters and Proteins Volume 145 Tamiki Komatsuzaki https://ebookgate.com/product/advances-in-chemical-physics-advancing- theory-for-kinetics-and-dynamics-of-complex-many-dimensional-systems- clusters-and-proteins-volume-145-tamiki-komatsuzaki/ ebookgate.com Case Studies in System of Systems Enterprise Systems and Complex Systems Engineering 1st Edition Alex Gorod https://ebookgate.com/product/case-studies-in-system-of-systems- enterprise-systems-and-complex-systems-engineering-1st-edition-alex- gorod/ ebookgate.com Supervision and Safety of Complex Systems 1st Edition Nada Matta https://ebookgate.com/product/supervision-and-safety-of-complex- systems-1st-edition-nada-matta/ ebookgate.com
  • 6. FOUNDATIONS OF COMPLEX SYSTEMS Nonlinear Dynamics, StatisticalPhysics, Information and Prediction
  • 7. This page intentionally left blank This page intentionally left blank
  • 8. FOUNDATIONS OF COMPLEX SYSTEMS Nonlinear Dynamics, StatisticalPhysics, Information and Prediction Gregoire Nicolis University o f Brussels,Belgium Catherine Nicolis Royal MeteorologicalInstitute o f Belgium, Belgium vpWorld Scientific NEW JERSEY - LONDON * SINGAPORE * BElJlNG SHANGHAI * HONG KONG * TAIPEI * CHENNAI
  • 9. British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-270-043-8 ISBN-10 981-270-043-9 All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd. Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Printed in Singapore. FOUNDATIONS OF COMPLEX SYSTEMS Nonlinear Dynamics, Statistical Physics, Information and Prediction
  • 10. To Helen, Stamatis and little Katy v
  • 11. This page intentionally left blank This page intentionally left blank
  • 12. Preface Complexity became a major scientific field in its own right as recently as 15 years ago, and since then it has modified considerably the scientific land- scape through thousands of high-impact publications as well as through the creation of specialized journals, Institutes, learned societies and University chairs devoted specifically to it. It constitutes today a paradigm for ap- proaching a large body of phenomena of concern at the crossroads of physical, engineering, environmental, life and human sciences from a unifying point of view. Nonlinear science and statistical physics had been addressing for some time phenomena of this kind: self-organization in nonequilibrium systems, glassy materials, pattern formation, deterministic chaos are landmarks, wit- nessing the success they have achieved in explaining how unexpected struc- tures and events can be generated from the laws of nature in systems involv- ing interacting subunits when appropriate conditions are satisfied - an issue closely related to the problematics of complexity. And yet, on the one side, for quite some time these attempts were progressing in rather disconnected ways following their own momentum and success; and on the other side, they were remaining confined to a large extent within a community of strong background in physical and mathematical science, and did not incorporate to a sufficient degree insights from the practitioner confronted with naturally occurring systems where issues eliciting the idea of complexity show up in a most pressing way. Last but not least, there was a lack of insight and of illustrative power of just what are the minimal ingredients for observing the sort of behaviors that would qualify as “complex”. A first breakthrough that contributed significantly to the birth of com- plexity research occurred in the late 1980’s - early 1990’s. It arose from the cross-fertilization of ideas and tools from nonlinear science, statistical physics and numerical simulation, the latter being a direct offspring of the increasing availability of computers. By bringing chaos and irreversibility together it showed that deterministic and probabilistic views, causality and chance, sta- bility and evolution were different facets of a same reality when addressing vii
  • 13. viii Preface certain classes of systems. It also provided insights on the relative roles of the number of elements involved in the process and the nature of the underlying dynamics. Paul Anderson’s well-known aphorism, “more is different”, that contributed to the awareness of the scientific community on the relevance of complexity, is here complemented in a most interesting way. The second breakthrough presiding in the birth of complexity coincides with the increasing input of fields outside the strict realm of physical science. The intrusion of concepts that were till then not part of the vocabulary of fun- damental science forced a reassessment of ideas and practices. Predictability, in connection with the increasing concern about the evolution of the atmo- sphere, climate and financial activities; algorithms, information, symbols, networks, optimization in connection with life sciences, theoretical informat- ics, computer science, engineering and management; adaptive behavior and cognitive processes in connection with brain research, ethology and social sciences are some characteristic examples. Finally, time going on, it became clear that generic aspects of the complex behaviors observed across a wide spectrum of fields could be captured by minimal models governed by simple local rules. Some of them gave rise in their computer implementation to attractive visualizations and deep insights, from Monte Carlo simulations to cellular automata and multi-agent systems. These developments provided the tools and paved the way to an under- standing, both qualitative and quantitative, of the complex systems encoun- tered in nature, technology and everyday experience. In parallel, natural complexity acted as a source of inspiration generating progress at the funda- mental level. Spontaneously, in a very short time interval complexity became in this way a natural reference point for all sorts of communities and prob- lems. Inevitably, in parallel with the substantial progress achieved ambiguous statements and claims were also formulated related in one way or the other to the diversity of backgrounds of the actors involved and their perceptions as to the relative roles of hard facts, mechanisms, analogies and metaphors. As a result complexity research is today both one of the most active and fastest growing fields of science and a forum for the exchange of sometimes conflicting ideas and views cutting across scientific disciplines. In this book the foundations of complex systems are outlined. The vision conveyed is that of complexity as a part of fundamental science, in which the insights provided by its cross-fertilization with other disciplines are in- corporated. What is more, we argue that by virtue of this unique blending complexity ranks among the most relevant parts of fundamental science as it addresses phenomena that unfold on our own scale, phenomena in the course of which the object and the observer are co-evolving. A unifying presentation of the concepts and tools needed to analyze, to model and to predict com-
  • 14. Preface ix plex systems is laid down and links between key concepts such as emergence, irreversibility, evolution, randomness and information are established in the light of the complexity paradigm. Furthermore, the interdisciplinary dimen- sion of complexity research is brought out through representative examples. Throughout the presentation emphasis is placed on the need for a multi- level approach to complex systems integrating deterministic and probabilis- tic views, structure and dynamics, microscopic, mesoscopic and macroscopic level descriptions. The book is addressed primarily to graduate level students and to re- searchers in physics, mathematics and computer science, engineering, envi- ronmental and life sciences, economics and sociology. It can constitute the material of a graduate-level course and we also hope that, outside the aca- demic community, professionals interested in interdisciplinary issues will find some interest in its reading. The choice of material, the style and the cov- erage of the items reflect our concern to do justice to the multiple facets of complexity. There can be no “soft” approach to complexity: observing, monitoring, analyzing, modeling, predicting and controlling complex systems can only be achieved through the time-honored approach provided by “hard” science. The novelty brought by complex systems is that in this endeavor the goals are reassessed and the ways to achieve them are reinvented in a most unexpected way as compared to classical approaches. Chapter 1 provides an overview of the principal manifestations of com- plexity. Unifying concepts such as instability, sensitivity, bifurcation, emer- gence, self-organization, chaos, predictability, evolution and selection are sorted out in view of later developments and the need for a bottom-up ap- proach to complexity is emphasized. In Chapter 2 the basis of a deterministic approach to the principal behaviors characteristic of the phenomenology of complex systems at different levels of description is provided, using the for- malism of nonlinear dynamical systems. The fundamental mechanism under- lying emergence is identified. At the same time the limitations of a universal description of complex systems within the framework of a deterministic ap- proach are revealed and the “open future” character of their evolution is highlighted. Some prototypical ways to model complexity in physical science and beyond are also discussed, with emphasis on the role of the coupling between constituting elements. In Chapter 3 an analysis incorporating the probabilistic dimension of complex systems is carried out. It leads to some novel ways to characterize complex systems, allows one to recover universal trends in their evolution and brings out the limitations of the determinis- tic description. These developments provide the background for different ways to simulate complex systems and for understanding the relative roles of dynamics and structure in their behavior. The probabilistic approach to
  • 15. x Preface complexity is further amplified in Chapter 4 by the incorporation of the con- cepts of symbolic dynamics and information. A set of entropy-like quantities is introduced and their connection with their thermodynamic counterparts is discussed. The selection rules presiding the formation of complex structures are also studied in terms of these quantities and the nature of the underlying dynamics. The stage is thus set for the analysis of the algorithmic aspects of complex systems and for the comparison between algorithmic complexity as defined in theoretical computer science and natural complexity. Building on the background provided by Chapters 1 to 4, Chapter 5 ad- dresses “operational” aspects of complexity, such as monitoring and data analysis approaches targeted specifically to complex systems. Special em- phasis is placed on the mechanisms underlying the propagation of prediction errors and the existence of a limited predictability horizon. The chapter ends with a discussion of recurrence and extreme events, two prediction-oriented topics of increasing concern. Finally, in Chapter 6 complexity is shown “in action” on a number of selected topics. The choices made in this selection out of the enormous number of possibilities reflect our general vision of complex- ity as part of fundamental science but also, inevitably, our personal interests and biases. We hope that this coverage illustrates adequately the relevance and range of applicability of the ideas and tools outlined in the book. The chapter ends with a section devoted to the epistemological aspects of com- plex systems. Having no particular background in epistemology we realize that this is a risky enterprise, but we feel that it cannot be dispensed with in a book devoted to complexity. The presentation of the topics of this final section is that of the practitioner of physical science, and contains only few elements of specialized jargon in a topic that could by itself give rise to an entire monograph. In preparing this book we have benefitted from discussions with, com- ments and help in the preparation of figures by Y. Almirantis, V. Basios, A. Garcia Cantu, P. Gaspard, M. Malek Mansour, J. S. Nicolis, S. C. Nicolis, A. Provata, R. Thomas and S. Vannitsem. S. Wellens assumed the hard task of typing the first two versions of the manuscript. Our research in the subject areas covered in this book is sponsored by The University of Brussels, the Royal Meteorological Institute of Belgium, the Science Policy Office of the Belgian Federal Government, the European Space Agency and the European Commission. Their interest and support are gratefully acknowledged. G. Nicolis, C. Nicolis Brussels, February 2007
  • 16. Contents Preface vii 1 The phenomenology of complex systems 1 1.1 Complexity, a new paradigm . . . . . . . . . . . . . . . . . . . 1 1.2 Signatures of complexity . . . . . . . . . . . . . . . . . . . . . 3 1.3 Onset of complexity . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Four case studies . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.1 Rayleigh-Bénard convection . . . . . . . . . . . . . . . 8 1.4.2 Atmospheric and climatic variability . . . . . . . . . . 11 1.4.3 Collective problem solving: food recruitment in ants . . 15 1.4.4 Human systems . . . . . . . . . . . . . . . . . . . . . . 19 1.5 Summing up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 Deterministic view 25 2.1 Dynamical systems, phase space, stability . . . . . . . . . . . 25 2.1.1 Conservative systems . . . . . . . . . . . . . . . . . . . 27 2.1.2 Dissipative systems . . . . . . . . . . . . . . . . . . . . 27 2.2 Levels of description . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.1 The microscopic level . . . . . . . . . . . . . . . . . . . 34 2.2.2 The macroscopic level . . . . . . . . . . . . . . . . . . 36 2.2.3 Thermodynamic formulation . . . . . . . . . . . . . . . 38 2.3 Bifurcations, normal forms, emergence . . . . . . . . . . . . . 41 2.4 Universality, structural stability . . . . . . . . . . . . . . . . . 46 2.5 Deterministic chaos . . . . . . . . . . . . . . . . . . . . . . . . 49 2.6 Aspects of coupling-induced complexity . . . . . . . . . . . . . 53 2.7 Modeling complexity beyond physical science . . . . . . . . . . 59 3 The probabilistic dimension of complex systems 64 3.1 Need for a probabilistic approach . . . . . . . . . . . . . . . . 64 3.2 Probability distributions and their evolution laws . . . . . . . 65 3.3 The retrieval of universality . . . . . . . . . . . . . . . . . . . 72 xi
  • 17. xii Contents 3.4 The transition to complexity in probability space . . . . . . . 77 3.5 The limits of validity of the macroscopic description . . . . . . 82 3.5.1 Closing the moment equations in the mesoscopic description . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.5.2 Transitions between states . . . . . . . . . . . . . . . . 84 3.5.3 Average values versus fluctuations in deterministic chaos . . . . . . . . . . . . . . . . . . . . 88 3.6 Simulating complex systems . . . . . . . . . . . . . . . . . . . 90 3.6.1 Monte Carlo simulation . . . . . . . . . . . . . . . . . 91 3.6.2 Microscopic simulations . . . . . . . . . . . . . . . . . 92 3.6.3 Cellular automata . . . . . . . . . . . . . . . . . . . . . 94 3.6.4 Agents, players and games . . . . . . . . . . . . . . . . 95 3.7 Disorder-generated complexity . . . . . . . . . . . . . . . . . . 96 4 Information, entropy and selection 101 4.1 Complexity and information . . . . . . . . . . . . . . . . . . . 101 4.2 The information entropy of a history . . . . . . . . . . . . . . 104 4.3 Scaling rules and selection . . . . . . . . . . . . . . . . . . . . 106 4.4 Time-dependent properties of information. Information entropy and thermodynamic entropy . . . . . . . 115 4.5 Dynamical and statistical properties of time histories. Large deviations, fluctuation theorems . . . . . . . . . . . . . 117 4.6 Further information measures. Dimensions and Lyapunov exponents revisited . . . . . . . . . . . . . . . . . . . . . . . . 120 4.7 Physical complexity, algorithmic complexity, and computation . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.8 Summing up: towards a thermodynamics of complex systems . . . . . . . . . . . . . . . . . . . . . . . . . 128 5 Communicating with a complex system: monitoring, analysis and prediction 131 5.1 Nature of the problem . . . . . . . . . . . . . . . . . . . . . . 131 5.2 Classical approaches and their limitations . . . . . . . . . . . . 131 5.2.1 Exploratory data analysis . . . . . . . . . . . . . . . . 132 5.2.2 Time series analysis and statistical forecasting . . . . . 135 5.2.3 Sampling in time and in space . . . . . . . . . . . . . . 138 5.3 Nonlinear data analysis . . . . . . . . . . . . . . . . . . . . . . 139 5.3.1 Dynamical reconstruction . . . . . . . . . . . . . . . . 139 5.3.2 Symbolic dynamics from time series . . . . . . . . . . . 143 5.3.3 Nonlinear prediction . . . . . . . . . . . . . . . . . . . 148 5.4 The monitoring of complex fields . . . . . . . . . . . . . . . . 151
  • 18. Contents xiii 5.4.1 Optimizing an observational network . . . . . . . . . . 153 5.4.2 Data assimilation . . . . . . . . . . . . . . . . . . . . . 157 5.5 The predictability horizon and the limits of modeling . . . . . 159 5.5.1 The dynamics of growth of initial errors . . . . . . . . 160 5.5.2 The dynamics of model errors . . . . . . . . . . . . . . 164 5.5.3 Can prediction errors be controlled? . . . . . . . . . . . 170 5.6 Recurrence as a predictor . . . . . . . . . . . . . . . . . . . . 171 5.6.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . 172 5.6.2 Recurrence time statistics and dynamical complexity . . . . . . . . . . . . . . . . . . . . . . . . . 176 5.7 Extreme events . . . . . . . . . . . . . . . . . . . . . . . . . . 180 5.7.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . 180 5.7.2 Statistical theory of extremes . . . . . . . . . . . . . . 182 5.7.3 Signatures of a deterministic dynamics in extreme events . . . . . . . . . . . . . . . . . . . . . . 185 5.7.4 Statistical and dynamical aspects of the Hurst phenomenon . . . . . . . . . . . . . . . . . . . . . . . . 191 6 Selected topics 195 6.1 The arrow of time . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.1.1 The Maxwell-Boltzmann revolution, kinetic theory, Boltzmann’s equation . . . . . . . . . . . . . . . . . . . 196 6.1.2 First resolution of the paradoxes: Markov processes, master equation . . . . . . . . . . . . . . . . . . . . . . 200 6.1.3 Generalized kinetic theories . . . . . . . . . . . . . . . 202 6.1.4 Microscopic chaos and nonequilibrium statistical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 204 6.2 Thriving on fluctuations: the challenge of being small . . . . . 208 6.2.1 Fluctuation dynamics in nonequilibrium steady states revisited . . . . . . . . . . . . . . . . . . . . . . 210 6.2.2 The peculiar energetics of irreversible paths joining equilibrium states . . . . . . . . . . . . . . . . . 211 6.2.3 Transport in a fluctuating environment far from equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 214 6.3 Atmospheric dynamics . . . . . . . . . . . . . . . . . . . . . . 217 6.3.1 Low order models . . . . . . . . . . . . . . . . . . . . . 218 6.3.2 More detailed models . . . . . . . . . . . . . . . . . . . 222 6.3.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . 223 6.3.4 Modeling and predicting with probabilities . . . . . . . 224 6.4 Climate dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 226 6.4.1 Low order climate models . . . . . . . . . . . . . . . . 227
  • 19. xiv Contents 6.4.2 Predictability of meteorological versus climatic fields . 230 6.4.3 Climatic change . . . . . . . . . . . . . . . . . . . . . . 233 6.5 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 6.5.1 Geometric and statistical properties of networks . . . . 236 6.5.2 Dynamical origin of networks . . . . . . . . . . . . . . 239 6.5.3 Dynamics on networks . . . . . . . . . . . . . . . . . . 244 6.6 Perspectives on biological complexity . . . . . . . . . . . . . . 247 6.6.1 Nonlinear dynamics and self-organization at the biochemical, cellular and organismic level . . . . . . . . 249 6.6.2 Biological superstructures . . . . . . . . . . . . . . . . 251 6.6.3 Biological networks . . . . . . . . . . . . . . . . . . . . 253 6.6.4 Complexity and the genome organization . . . . . . . . 260 6.6.5 Molecular evolution . . . . . . . . . . . . . . . . . . . . 263 6.7 Equilibrium versus nonequilibrium in complexity and self-organization . . . . . . . . . . . . . . . . . . . . . . . . . . 267 6.7.1 Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . 268 6.7.2 Stabilization of nanoscale patterns . . . . . . . . . . . 272 6.7.3 Supramolecular chemistry . . . . . . . . . . . . . . . . 274 6.8 Epistemological insights from complex systems . . . . . . . . . 276 6.8.1 Complexity, causality and chance . . . . . . . . . . . . 277 6.8.2 Complexity and historicity . . . . . . . . . . . . . . . . 279 6.8.3 Complexity and reductionism . . . . . . . . . . . . . . 283 6.8.4 Facts, analogies and metaphors . . . . . . . . . . . . . 285 Color plates 287 Suggestions for further reading 291 Index 321
  • 20. ´ ˜ ´ ´ ´ ` ´ ´ ´ The whole is more than the sum of its parts Aristotle Metaphysica 1045a Chapter 1 The phenomenology of complex systems 1.1 Complexity, a new paradigm Complexity is part of our ordinary vocabulary. It has been used in everyday life and in quite different contexts for a long time and suddenly, as recently as 15 years ago it became a major field of interdisciplinary research that has since then modified considerably the scientific landscape. What is in the general idea of complexity that was missing in our collective knowledge -one might even say, in our collective consciousness- which, once recognized, conferred to it its present prominent status? What makes us designate certain systems as “complex” distinguishing them from others that we would not hesitate to call “simple”, and to what extent could such a distinction be the starting point of a new approach to a large body of phenomena at the crossroads of physical, engineering, environmental, life and human sciences? For the public and for the vast majority of scientists themselves science is usually viewed as an algorithm for predicting, with a theoretically unlimited precision, the future course of natural objects on the basis of their present state. Isaac Newton, founder of modern physics, showed more than three centuries ago how with the help of a few theoretical concepts like the law of universal gravitation, whose statement can be condensed in a few lines, one can generate data sets as long as desired allowing one to interpret the essence of the motion of celestial bodies and predict accurately, among others, an eclipse of the sun or of the moon thousands of years in advance. The impact of this historical achievement was such that, since then, scientific thinking has been dominated by the Newtonian paradigm whereby the world is re- ducible to a few fundamental elements animated by a regular, reproducible 1
  • 21. 2 Foundations of Complex Systems and hence predictable behavior: a world that could in this sense be qualified as fundamentally simple. During the three-century reign of the Newtonian paradigm science reached a unique status thanks mainly to its successes in the exploration of the very small and the very large: the atomic, nuclear and subnuclear constitution of matter on the one side; and cosmology on the other. On the other hand man’s intuition and everyday experience are essentially concerned with the intermediate range of phenomena involving objects constituted by a large number of interacting subunits and unfolding on his own, macroscopic, space and time scales. Here one cannot avoid the feeling that in addition to regular and reproducible phenomena there exist other that are, manifestly, much less so. It is perfectly possible as we just recalled to predict an eclipse of the sun or of the moon thousands of years in advance but we are incapable of pre- dicting the weather over the region we are concerned more than a few days in advance or the electrical activity in the cortex of a subject a few minutes after he started performing a mental task, to say nothing about next day’s Dow Jones index or the state of the planet earth 50 years from now. Yet the movement of the atmosphere and the oceans that governs the weather and the climate, the biochemical reactions and the transport phenomena that govern the functioning of the human body and underlie, after all, human behavior itself, obey to the same dispassionate laws of nature as planetary motion. It is a measure of the fascination that the Newtonian paradigm exerted on scientific thought that despite such indisputable facts, which elicit to the observer the idea of “complexity”, the conviction prevailed until recently that the irregularity and unpredictability of the vast majority of phenomena on our scale are not authentic: they are to be regarded as temporary drawbacks reflecting incomplete information on the system at hand, in connection with the presence of a large number of variables and parameters that the observer is in the practical impossibility to manage and that mask some fundamental underlying regularities. If evidence on complexity were limited to the intricate, large scale systems of the kind mentioned above one would have no way to refute such an asser- tion and fundamental science would thus have nothing to say on complexity. But over the years evidence has accumulated that quite ordinary systems that one would tend to qualify as “simple”, obeying to laws known to their least detail, in the laboratory, under strictly controlled conditions, generate unexpected behaviors similar to the phenomenology of complexity as we en- counter it in nature and in everyday experience: Complexity is not a mere metaphor or a nice way to put certain intriguing things, it is a phenomenon that is deeply rooted into the laws of nature, where systems involving large
  • 22. The Phenomenology of Complex Systems 3 numbers of interacting subunits are ubiquitous. This realization opens the way to a systematic search of the physical and mathematical laws governing complex systems. The enterprise was crowned with success thanks to a multilevel approach that led to the de- velopment of highly original methodologies and to the unexpected cross- fertilizations and blendings of ideas and tools from nonlinear science, sta- tistical mechanics and thermodynamics, probability theory and numerical simulation. Thanks to the progress accomplished complexity is emerging as the new, post-Newtonian paradigm for a fresh look at problems of current concern. On the one side one is now in the position to gain new understand- ing, both qualitative and quantitative, of the complex systems encountered in nature and in everyday experience based on advanced modeling, analysis and monitoring strategies. Conversely, by raising issues and by introducing concepts beyond the traditional realm of physical science, natural complexity acts as a source of inspiration for further progress at the fundamental level. It is this sort of interplay that confers to research in complexity its unique, highly interdisciplinary character. The objective of this chapter is to compile some representative facts il- lustrating the phenomenology associated with complex systems. The subse- quent chapters will be devoted to the concepts and methods underlying the paradigm shift brought by complexity and to showing their applicability on selected case studies. 1.2 Signatures of complexity The basic thesis of this book is that a system perceived as complex induces a characteristic phenomenology the principal signature of which is multiplicity. Contrary to elementary physical phenomena like the free fall of an object under the effect of gravity where a well-defined, single action follows an initial cause at any time, several outcomes appear to be possible. As a result the system is endowed with the capacity to choose between them, and hence to explore and to adapt or, more generally, to evolve. This process can be manifested in the form of two different expressions. • The emergence, within a system composed of many units, of global traits encompassing the system as a whole that can in no way be reduced to the properties of the constituent parts and can on these grounds be qualified as “unexpected”. By its non-reductionist charac- ter emergence has to do with the creation and maintenance of hierar- chical structures in which the disorder and randomness that inevitably
  • 23. 4 Foundations of Complex Systems exist at the local level are controlled, resulting in states of order and long range coherence. We refer to this process as self-organization. A classical example of this behavior is provided by the communication and control networks in living matter, from the subcellular to the or- ganismic level. • The intertwining, within the same phenomenon, of large scale regu- larities and of elements of “surprise” in the form of seemingly erratic evolutionary events. Through this coexistence of order and disorder the observer is bound to conclude that the process gets at times out of control, and this in turn raises the question of the very possibility of its long-term prediction. Classical examples are provided by the all-familiar difficulty to issue satisfactory weather forecasts beyond a horizon of a few days as well as by the even more dramatic extreme geological or environmental phenomena such as earthquakes or floods. If the effects generated by some underlying causes were related to these causes by a simple proportionality -more technically, by linear relationships- there would be no place for multiplicity. Nonlinearity is thus a necessary con- dition for complexity, and in this respect nonlinear science provides a natural setting for a systematic description of the above properties and for sorting out generic evolutionary scenarios. As we see later nonlinearity is ubiquitous in nature on all levels of observation. In macroscopic scale phenomena it is intimately related to the presence of feedbacks, whereby the occurrence of a process affects (positively or negatively) the way it (or some other coexisting process) will further develop in time. Feedbacks are responsible for the onset of cooperativity, as illustrated in the examples of Sec. 1.4. In the context of our study a most important question to address con- cerns the transitions between states, since the question of complexity would simply not arise in a system that remains trapped in a single state for ever. To understand how such transitions can happen one introduces the concept of control parameter, describing the different ways a system is coupled to its environment and affected by it. A simple example is provided by a ther- mostated cell containing chemically active species where, depending on the environmental temperature, the chemical reactions will occur at different rates. Another interesting class of control parameters are those associated to a constraint keeping the system away of a state of equilibrium of some sort. The most clearcut situation is that of the state of thermodynamic equilib- rium which, in the absence of phase transitions, is known to be unique and lack any form of dynamical activity on a large scale. One may then choose this state as a reference, switch on constraints driving the system out of equi- librium for instance in the form of temperature or concentration differences
  • 24. The Phenomenology of Complex Systems 5 across the interface between the system and the external world, and see to what extent the new states generated as a response to the constraint could exhibit qualitatively new properties that are part of the phenomenology of complexity. These questions, which are at the heart of complexity theory, are discussed in the next section. 1.3 Onset of complexity The principal conclusion of the studies of the response of a system to changes of a control parameter is that the onset of complexity is not a smooth process. Quite to the contrary, it is manifested by a cascade of transition phenomena of an explosive nature to which is associated the universal model of bifurcation and the related concepts of instability and chaos. These catastrophic events are not foreseen in the fundamental laws of physics in which the dependence on the parameters is perfectly smooth. To use a colloquial term, one might say that they come as a “surprise”. Figure 1.1 provides a qualitative representation of the foregoing. It de- picts a typical evolution scenario in which, for each given value of a control parameter λ, one records a certain characteristic property of the system as provided, for instance, by the value of one of the variables X (temperature, chemical concentration, population density, etc.) at a given point. For values of λ less than a certain limit λc only one state can be realized. This state possesses in addition to uniqueness the property of stability, in the sense that the system is capable of damping or at least of keeping under control the in- fluence of the external perturbations inflicted by the environment or of the internal fluctuations generated continuously by the locally prevailing disor- der, two actions to which a natural system is inevitably subjected. Clearly, complexity has no place and no meaning under these conditions. The situation changes radically beyond the critical value λc. One sees that if continued, the unique state of the above picture would become unstable: under the influence of external perturbations or of internal fluctuations the system responds now as an amplifier, leaves the initial “reference” state and is driven to one or as a rule to several new behaviors that merge to the previous state for λ = λc but are differentiated from it for λ larger than λc. This is the phenomenon of bifurcation: a phenomenon that becomes possible thanks to the nonlinearity of the underlying evolution laws allowing for the existence of multiple solutions (see Chapter 2 for quantitative details). To understand its necessarily catastrophic character as anticipated earlier in this section it is important to account for the following two important elements. (a) An experimental measurement -the process through which we com-
  • 25. 6 Foundations of Complex Systems X λc λ (a) (b1) (a' ) (b2) Fig. 1.1. A bifurcation diagram, describing the way a variable X characteriz- ing the state of a system is affected by the variations of a control parameter λ. Bifurcation takes place at a critical value λc beyond which the original unique state (a) loses its stability, giving rise to two new branches of solutions (b1) and (b2). municate with a system- is necessarily subjected to finite precision. The observation of a system for a given value of control parameter entails that instead of the isolated point of the λ axis in Fig. 1.1 one deals in reality with an “uncertainty ball” extending around this axis. The system of interest lies somewhere inside this ball but we are unable to specify its exact position, since for the observer all of its points represent one and the same state. (b) Around and beyond the criticality λc we witness a selection between the states available that will determine the particular state to which the sys- tem will be directed (the two full lines surrounding the intermediate dotted one -the unstable branch in Fig. 1.1- provide an example). Under the con- ditions of Fig. 1.1 there is no element allowing the observer to determine beforehand this state. Chance and fluctuations will be the ones to decide. The system makes a series of attempts and eventually a particular fluctu- ation takes over. By stabilizing this choice it becomes a historical object, since its subsequent evolution will be conditioned by this critical choice. For the observer, this pronounced sensitivity to the parameters will signal its in- ability to predict the system’s evolution beyond λc since systems within the uncertainty ball, to him identical in any respect, are differentiated and end up in states whose distance is much larger than the limits of resolution of the experimental measurement.
  • 26. The Phenomenology of Complex Systems 7 0.25 0.5 0.75 0 5 10 15 20 25 x n Fig. 1.2. Illustration of the phenomenon of sensitivity to the initial conditions in a model system giving rise to deterministic chaos. Full and dashed lines denote the trajectories (the set of successive values of the state variable X) emanating from two initial conditions separated by a small difference = 10−3 . We now have the basis of a mechanism of generation of complexity. In reality this mechanism is the first step of a cascade of successive bifurca- tions through which the multiplicity of behaviors may increase dramatically, culminating in many cases in a state in which the system properties change in time (and frequently in space as well) in a seemingly erratic fashion, not any longer because of external disturbances or random fluctuations as be- fore but, rather, as a result of deterministic laws of purely intrinsic origin. The full line of Fig. 1.2 depicts a time series -a succession of values of a relevant variable in time- corresponding to this state of deterministic chaos. Its comparison with the dotted line reveals what is undoubtedly the most spectacular property of deterministic chaos, the sensitivity to the initial con- ditions: two systems whose initial states are separated by a small distance, smaller than the precision of even the most advanced method of experimen- tal measurement, systems that will therefore be regarded by the observer as indistinguishable (see also point (a) above) will subsequently diverge in such a way that the distance between their instantaneous states (averaged over many possible initial states, see Chapters 2 and 3) will increase exponentially. As soon as this distance will exceed the experimental resolution the systems will cease to be indistinguishable for the observer. As a result, it will be impossible to predict their future evolution beyond this temporal horizon.
  • 27. 8 Foundations of Complex Systems We here have a second imperative reason forcing us to raise the question of predictability of the phenomena underlying the behavior of complex systems. All elements at our disposal from the research in nonlinear science and chaos theory lead to the conclusion that one cannot anticipate the full list of the number or the type of the evolutionary scenarios that may lead a system to complex behavior. In addition to their limited predictability complex systems are therefore confronting us with the fact that we seem to be stuck with a mode of description of a limited universality. How to reconcile this with the requirement that the very mission of science is to provide a universal description of phenomena and to predict their course? The beauty of complex systems lies to a great extent in that despite the above limitations this mission can be fulfilled, but that its realization necessitates a radical reconsideration of the concepts of universality and prediction. We defer a fuller discussion of this important issue to Chapters 2 and 3. 1.4 Four case studies 1.4.1 Rayleigh-Bénard convection Consider a shallow layer of a fluid limited by two horizontal plates brought to identical temperatures. As prescribed by the second law of thermodynamics, left to itself the fluid will tend rapidly to a state where all its parts along the horizontal are macroscopically identical and where there is neither bulk motion nor internal differentiation of temperatures: T = T1 = T2, T2 and T1 being respectively the temperatures of the lower and upper plate. This is the state we referred to in Sec. 1.2 as the state of thermodynamic equilibrium. Imagine now that the fluid is heated from below. By communicating to it in this way energy in the form of heat one removes it from the state of equilibrium, since the system is now submitted to a constraint ∆T = T2 − T1 0, playing in this context the role of the control parameter introduced in Sec. 1.2. As long at ∆T remains small the flux of energy traversing the system will merely switch on a process of heat conduction, in which temperature varies essentially linearly between the hot (lower) zone and the cold (upper) one. This state is maintained thanks to a certain amount of energy that remains trapped within the system -one speaks of dissipation- but one can in no way speak here of complexity and emergence, since the state is unique and the differentiation observed is dictated entirely by the way the constraint has been applied: the behavior is as “simple” as the one in the state of equilibrium. If one removes now the system progressively from equilibrium, by increas-
  • 28. The Phenomenology of Complex Systems 9 Fig. 1.3. Rayleigh-Bénard convection cells appearing in a liquid maintained between a horizontal lower hot plate and an upper cold one, below a critical value of the temperature difference ∆T (see Color Plates). ing ∆T, one suddenly observes, for a critical value ∆Tc, the onset of bulk motion in the layer. This motion is far from sharing the randomness of the motion of the individual molecules: the fluid becomes structured and displays a succession of cells along a direction transversal to that of the constraint, as seen in Fig. 1.3. This is the regime of thermal, or Rayleigh-Bénard convec- tion. Now one is entitled to speak of complexity and emergence, since the spatial differentiation along a direction free from any constraint is the result of processes of internal origin specific to the system, maintained by the flow of energy communicated by the external world and hence by the dissipation. We have thus witnessed a particular manifestation of emergence, in the form of the birth of a dissipative structure. In a way, one is brought from a static, geometric view of space, to one where space is modeled by the dynamical processes switched on within the system. One can show that the state of rest is stable below the threshold ∆Tc but loses its stability above it while still remaining a solution -in the mathematical sense of the term- of the evolution laws of the fluid. As for the state of thermal convection, it simply does not exist below ∆Tc and inherits above it the stability of the state of rest. For ∆T = ∆Tc there is degeneracy in the sense that the two states merge. We here have a concrete illustration of the generic phenomenon of bifurcation introduced in Sec. 1.3, see Fig. 1.1. Similar phenomena are observed in a wide range of laboratory scale systems, from fluid mechanics to chemical kinetics, optics, electronics or materials science. In each case one encoun-
  • 29. 10 Foundations of Complex Systems ters essentially the same phenomenology. The fact that this is taking place under perfectly well controlled conditions allows one to sort out common fea- tures and set up a quantitative theory, as we see in detail in the subsequent chapters. A remarkable property of the state of thermal convection is to possess a characteristic space scale -the horizontal extent of a cell (Fig. 1.3) related, in turn, to the depth of the layer. The appearance of such a scale reflects the fact that the states generated by the bifurcation display broken symmetries. The laws of fluid dynamics describing a fluid heated from below and con- tained between two plates that extend indefinitely in the horizontal direction remain invariant -or more plainly look identical- for all observers displaced to one another along this direction (translational invariance). This invari- ance property is shared by the state realized by the fluid below the threshold ∆Tc but breaks down above it, since a state composed of a succession of Bénard cells displays an intrinsic differentiation between its different parts that makes it less symmetrical than the laws that generated it. A differentia- tion of this sort may become in many cases one of the prerequisites for further complexification, in the sense that processes that would be impossible in an undifferentiated medium may be switched on. In actual fact this is exactly what is happening in the Rayleigh-Bénard and related problems. In addition to the first bifurcation described above, as the constraint increases beyond ∆Tc the system undergoes a whole series of successive transitions. Several scenarios have been discovered. If the horizontal extent of the cell is much larger than the depth the successive transition thresholds are squeezed in a small vicinity of ∆Tc. The convection cells are first maintained globally but are subsequently becoming fuzzy and eventually a regime of turbulence sets in, characterized by an erratic-looking variability of the fluid properties in space (and indeed in time as well). In this regime of extreme spatio-temporal chaos the motion is ordered only on a local level. The regime dominated by a characteristic space scale has now been succeeded by a scale-free state in which there is a whole spectrum of coexisting spatial modes, each associated to a different space scale. Similar phenomena arise in the time domain, where the first bifurcation may lead in certain types of systems to a strictly periodic clock-like state which may subsequently lose its coherence and evolve to a regime of deterministic chaos in which the initial periodicity is now part of a continuous spectrum of coexisting time scales. As we see throughout this book states possessing a characteristic scale and scale-free states are described, respectively, by exponential laws and by power laws. There is no reason to restrict the phenomenology of complexity to the class of scale free states as certain authors suggest since, for one thing, coherence in living matter is often reflected by the total or partial synchro-
  • 30. The Phenomenology of Complex Systems 11 nization of the activities of the individual cells to a dominant temporal or spatial mode. In concluding this subsection it is appropriate to stress that configurations of matter as unexpected a priori as the Bénard cells, involving a number of molecules (each in disordered motion !) of the order of the Avogadro number N ≈ 1023 are born spontaneously, inevitably, at a modest energetic and informational cost, provided that certain conditions related to the nature of the system and the way it is embedded to its environment are fulfilled. Stated differently the overall organization is not ensured by a centralized planification and control but, rather, by the “actors” (here the individual fluid parcels) present. We refer to this process as the bottom-up mechanism. 1.4.2 Atmospheric and climatic variability Our natural environment plays a central role in this book, not only on the grounds of its importance in man’s everyday activities but also because it qualifies in any respect as what one intuitively means by complex system and forces upon the observer the need to cope with the problem of prediction. Contrary to the laboratory scale systems considered in the previous subsec- tion we have no way to realize at will the successive transitions underlying its evolution to complexity. The best one can expect is that a monitoring in the perspective of the complex systems approach followed by appropriate analysis and modeling techniques, will allow one to constitute the salient features of the environment viewed as a dynamical system and to arrive at a quantitative characterization of the principal quantities of interest. To an observer caught in the middle of a hurricane, a flood or a long drought the atmosphere appears as an irrational medium. Yet the atmo- spheric and climatic variables are far from being distributed randomly. Our environment is structured in both space and time, as witnessed by the strati- fication of the atmospheric layers, the existence of global circulation patterns such as the planetary waves, and the periodicities arising from the daily or the annual cycle. But in spite of this global order one observes a pronounced superimposed variability, reflected by marked deviations from perfect or even approximate regularity. An example of such a variability is provided by the daily evolution of air temperature at a particular location (Fig. 1.4). One observes small scale irregular fluctuations that are never reproduced in an identical fashion, superimposed on the large scale regular seasonal cycle of solar radiation. A second illustration of variability pertains to the much larger scale of global climate. All elements at our disposal show indeed that the earth’s climate has undergone spectacular changes in the past, like the succession of glacial-
  • 31. 12 Foundations of Complex Systems -10 0 10 20 30 1998 2000 2002 2004 Temperature Year Fig. 1.4. Mean daily temperature at Uccle (Brussels) between January 1st, 1998 and December 31, 2006. Time (103 yrs B.P.) Ice volume 0 200 400 600 800 1000 Fig. 1.5. Evolution of the global ice volume on earth during the last million years as inferred from oxygen isotope data.
  • 32. The Phenomenology of Complex Systems 13 interglacial periods. Figure 1.5 represents the variation of the volume of continental ice over the last million years as inferred from the evolution of the composition of marine sediments in oxygen 16 and 18 isotopes. Again, one is struck by the intermittent character of the evolution, as witnessed by a marked aperiodic component masking to a great extent an average time scale of 100 000 years that is sometimes qualified as the Quaternary glaciation “cycle”. An unexpected corollary is that the earth’s climate can switch between quite different modes over a short time in the geological scale, of the order of a few thousand years. Rainfall departures (× 10 mm) 3 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 1910 1930 1950 1970 Year Fig. 1.6. Yearly rainfall departures from the long time average value at Kaédi (Mauritania) between 1904 and 1987. Figure 1.6 depicts another example of climatic variability and regime switching, on a scale that is intermediate between those in Figs 1.4 and 1.5. It has to do with the time variation of the precipitation in western Sahel, and signals the onset of a regime of drought in this region, a phenomenon known to occur in several other areas of the globe. Again, one is struck by the irregular character of the process. The new element as compared to Figs 1.4 and 1.5 is that in the language of statistics the signal is no longer stationary: rather than succeeding each other without exhibiting a systematic trend, the states are here undergoing an abrupt transition between a regime of a quasi- normal and a weak rainfall that one can locate using traditional statistical analysis around the mid-1960’s. It is likely that observations over a much longer time scale will reestablish the stationarity of the process, in the sense that the state of drought will sooner or later be succeeded by a quasi-normal state which will subsequently switch again to a state of drought, and so forth.
  • 33. 14 Foundations of Complex Systems A fundamental consequence of the aperiodicity of the atmospheric and climate dynamics is the well-known difficulty to make reliable predictions. Contrary to simple periodic or multiperiodic phenomena for which a long term prediction is possible, predictions in meteorology are limited in time. The most plausible (and currently admitted) explanation is based on the re- alization that a small uncertainty in the initial conditions used in a prediction scheme (usually referred as “error”) seems to be amplified in the course of the evolution. Such uncertainties are inherent in the process of experimen- tal measurement, as pointed out already in Sec. 1.3. A great deal of effort is devoted in atmospheric sciences in the development of data assimilation techniques aiming to reduce them as much as possible (cf. also Sec. 5.4), but it is part of the laws of nature that they will never be fully eliminated. This brings us to the picture drawn in connection with Fig. 1.2, suggesting that the atmosphere displays sensitivity to the initial conditions because it is in a state of deterministic chaos. This conjecture seems to be compatible both with the analysis of the data available and with the modeling of atmospheric dynamics. This aspect is discussed more amply in Chapters 5 and 6, but one may already notice at this stage that much like experiment, modeling is also limited in practice by a finite resolution (of the order of several kilo- meters) and the concomitant omission of “subgrid” processes like e.g. local turbulence. Furthermore, many of the parameters are not known to a great precision. In addition to initial errors prediction must thus cope with model errors, reflecting the fact that a model is only an approximate representa- tion of nature. This raises the problem of sensitivity to the parameters and brings us to the picture drawn in connection with Fig. 1.1. If the dynamics were simple like in the part of Fig. 1.1 left to λc neither of these errors would matter. But this is manifestly not the case. Initial and model errors can thus be regarded as probes revealing the fundamental instability and complexity underlying the atmosphere. In all the preceding examples it was understood that the characteristic parameters of the atmosphere remained fixed. Over the last years there has been growing interest in the response of the weather and climate to changing parameter values - for instance, as a result of anthropogenic effects. In the representation of Fig. 1.1, the question would then be, whether the underlying dynamical system would undergo transitions to new regimes and if so, what would be the nature of the most plausible transition scenarios. This raises a whole new series of problems, some of which will be taken up in the sequel. As pointed out earlier in this subsection, in certain environmental phe- nomena the variability is so considerable that no underlying regularity seems to be present. This property, especially pronounced in hydrology and in par-
  • 34. The Phenomenology of Complex Systems 15 ticular in the regime of river discharges, entails that the average and other quantifiers featured in traditional statistics are irrelevant. An ingenious way to handle such records, suggested some time ago by Harold Hurst, is to monitor the way the distance R between the largest and smallest value in a certain time window τ -usually referred to as the range- varies with τ. Ac- tually, to deal with a dimensionless quantity one usually reduces R by the standard deviation C around the mean measured over the same interval. A most surprising result is that in a wide spectrum of environmental records R/C varies with τ as a power law of the form τH , where the Hurst expo- nent H turns out to be close to 0.70. To put this in perspective, for records generated by statistically independent processes with finite standard devia- tion, H is bound to be 1/2 and for records where the variability is organized around a characteristic time scale there would simply not be a power law at all. Environmental dynamics provides therefore yet another example of the coexistence of phenomena possessing a characteristic scale and of scale free ones. An interesting way to differentiate between these processes is to see how the law is changing upon a transformation of the variable (here the window τ). For an exponential law, switching from τ to λτ (which can be interpreted as a change of scale in measuring τ) maintains the exponential form but changes the exponent multiplying τ, which provides the characteristic scale of the process, by a factor of λ. But in a power law the same transformation keeps the exponent H invariant, producing merely a multiplicative factor. We express this by qualifying this law as scale invariant. The distinction breaks down for nonlinear transformations, for which a power law can become exponential and vice versa. As we see later deterministic chaos can be associated with variabilities of either of the two kinds, depending on the mechanisms presiding in its generation. 1.4.3 Collective problem solving: food recruitment in ants In the preceding examples the elements constituting the system of interest were the traditional ones considered in physical sciences: molecules, volume elements in a fluid or in a chemical reagent, and so forth. In this subsection we are interested in situations where the actors involved are living organisms. We will see that despite this radical change, the principal manifestations of complexity will be surprisingly close to those identified earlier. Our discussion will focus on social insects, in particular, the process of food searching in ants.
  • 35. 16 Foundations of Complex Systems Ants, like bees, termites and other social insects represent an enormous ecological success in biological evolution. They are known to be able to accomplish successfully number of collective activities such as nest construc- tion, recruitment, defense etc. Until recently the view prevailed that in such highly non-trivial tasks individual insects behave as small, reliable automa- tons executing a well established genetic program. Today this picture is fading and replaced by one in which adaptability of individual behavior, col- lective interactions and environmental stimuli play an important role. These elements are at the origin of a two-scale process. One at the level of the in- dividual, characterized by a pronounced probabilistic behavior, and another at the level of the society as a whole, where for many species despite the in- efficiency and unpredictability of the individuals, coherent patterns develop at the scale of the entire colony. Fig. 1.7. Schematic representation of recruitment: (a) discovery of the food source by an individual; (b) return to the nest with pheromone laying; (c) the pheromone trail stimulates additional individuals to visit the source, which contribute to its reinforcement by further pheromone laying. Let us see how these two elements conspire in the process of food search- ing by ants. Consider first the case where a single food source (for instance a saccharose solution) is placed close to the nest, as in Fig. 1.7 (here and in the sequel laboratory experiments emulating naturally occurring situations while allowing at the same time for detailed quantitative analyses are instru-
  • 36. The Phenomenology of Complex Systems 17 mental). A “scout” discovers the source in the course of a random walk. After feeding on the source it returns to the nest and deposits along the way a chemical signal known as trail pheromone, whose quantity is correlated to the sugar concentration in the source. Subsequently a process of recruitment begins in which two types of phenomena come into play: - a first mechanism in which the scout-recruiter and/or the trail stimulate individuals that were till then inactive to go out of the nest; - and a second one where the trail guides the individuals so recruited to the food source, entailing that as recruited individuals will sooner or later become recruiters in their turn the process will be gradually amplified and a substantial traffic will be established along the trail. Consider now the more realistic situation where the colony disposes of several food sources. A minimal configuration allowing one to study how it then copes with the problem of choice to which it is confronted is depicted in Fig. 1.8a: two equivalent paths leading from the nest to two simultaneously present identical food sources. In a sufficiently numerous colony after a short period of equal exploitation a bifurcation, in the precise sense of Fig. 1.1, is then observed marking a preferential exploitation of one of the sources relative to the other, to its exhaustion (Fig. 1.8b). Thereafter the second source is fully colonized and its exploitation is intensified. When the colony is offered two sources with different sugar concentrations and the richest source is discovered before or at the same time as the poorer one, it is most heavily exploited. But when it is discovered after the poorer one, it is only weakly exploited. This establishes the primordial importance of the long- range cooperativity induced by the presence of the trail. It is tempting to conjecture that far from being a curiosity the above phenomenon, which shares with the Rayleigh-Bénard instability the prop- erty of spontaneous emergence of an a priori highly unexpected behavioral pattern, is prototypical of a large class of systems, including socio-economic phenomena in human populations (see also Sec. 1.4.4 below). The key point lies in the realization that nature offers a bottom-up mechanism of organi- zation that has no recourse to a central or hierarchical command process as in traditional modes of organization. This mechanism leads to collective decisions and to problem solving on the basis of (a) the local information available to each “agent”; and (b) its implementation on global level without the intervention of an information-clearing center. It opens the way to a host of applications in the organization of distributed systems of interacting agents as seen, for example, in communication networks, computer networks and networks of mobile robots or static sensory devices. Such analogy-driven considerations can stimulate new ideas in a completely different context by serving as archetypes. They are important elements in the process of model
  • 37. 18 Foundations of Complex Systems Fig. 1.8. (a) A typical experimental set up for the study of the process of choice between two options. (b) Time evolution of the number of individuals (here ants of the species Lasius niger) exploiting two equivalent (here 1 molar saccharose rich) food sources offered simultaneously, in an experimental set up of the type depicted in Fig. 1.8(a).
  • 38. The Phenomenology of Complex Systems 19 building -an essential part of the research in complex systems- in situations in which the evolution laws of the variables involved may not be known to any comparable degree of detail as in physical systems. 1.4.4 Human systems We now turn to a class of complexity related problems in which the actors involved are human beings. Here the new element that comes into play is the presence of such concepts as strategy, imitation, anticipation, risk assess- ment, information, history, quite remote at first sight from the traditional vocabulary of physical science. The expectation would be that thanks to the rationality underlying these elements, the variability and unpredictability should be considerably reduced. The data at our disposal show that this is far from being the case. Human systems provide, in fact, one of the most au- thentic prototypes of complexity. They also constitute a source of inspiration for raising number of new issues, stimulating in turn fundamental research in the area of complex systems. A first class of instances pertains to cooperativity (imitation) driven socio- cultural phenomena. They usually lead to bifurcations very similar to those considered in the previous subsection in which the variability inherent in the dynamics of the individuals is eventually controlled to yield an emergent pattern arising through a sharp transition in the form of a bifurcation. The propagation of rumors or of opinions is the most classical example in this area, but in recent years some further unexpected possibilities have been suggested, such as the genesis of a phonological system in a human society. Ordinarily, the inherent capacity of humans to emit and recognize sounds and to attribute them to objects is advanced as the most plausible mechanism of this process. On the other hand, consider a population of N individuals capable to emit M sounds to designate a given object. When two individuals pronouncing sounds i and j meet, each one of them can convince, with cer- tain probabilities, the other that his sound is more appropriate to designate the object. This switches on a cooperativity in the process of competition between the options available very similar to that between the two trails in Fig. 1.8a, leading to the choice of one of them by the overwhelming part of the population (being understood that N is large enough). This scenario opens interesting perspectives, which need to be implemented by linguistic analyses and real-time experiments. Competition between different options is also expected to underlie the origin of a variety of spatial patterns and organizational modes observed in human systems. An example is provided by the formation and the evolution of urban structures, as certain areas specialize in specific economic activities
  • 39. 20 Foundations of Complex Systems and as residential differentiation produces neighborhoods differing in their living conditions and access to jobs and services. In many cases this occurs as a spontaneous process of endogenous origin. In addition to this evolu- tionary scenario central planning may be present as well and provide a bias in the individual decision making. It is, however, most unlikely that under present conditions it will supersede the bottom-up mechanism operating in complex systems: the chance of a modern Deinokrates or a modern Constan- tine the Great designing from scratch an Alexandria or a Constantinople-like structure are nowadays practically nil. It is, perhaps, in the domain of economic and financial activities that the specificity of the human system finds its most characteristic expression. In addition to steps involving self-organization and emergence through bifur- cation one witnesses here the entrance in force of the second fingerprint of complexity, namely, the intertwining of order and disorder. This raises in turn the problem of prediction in a most acute manner. The economics of the stock market provides a striking example. On October 19, 1987 the Dow Jones index of New York stock exchange dropped by 22.6%. This drop, the highest registered ever in a single day, was preceded by three other substantial ones on October 14, 15, 16. Impressive as they are, such violent phenomena are far from being unique: financial history is full of stock market crises such as the famous October 1929 one in which on two successive days the values were depreciated cumulatively by 23.1%. The first reaction that comes to mind when witnessing these events is that of irrationality yet, much like in our discussion of subsection 1.4.2, the evidence supports on the contrary the idea of perfectly rational attitudes be- ing at work. Ideally, in a market a price should be established by estimating the capacity of a company to make benefits which depends in turn on readily available objective data such as its technological potential, its developmental strategy, its current economic health and the quality of its staff. In reality, observing the market one realizes that for a given investor these objective criteria are in many instances superseded by observing the evolution of the index in the past and, especially, by watching closely the attitude of the other investors at the very moment of action. This may lead to strong co- operative effects in which a price results in from an attitude adopted at a certain time, and is subsequently affecting (e.g. reinforcing) this very atti- tude (which was perhaps initially randomly generated). As a matter of fact this largely endogenous mechanism seems to be operating not only during major crises but also under “normal” conditions, as illustrated by Fig. 1.9 in which the “real” (full line) versus the “objective” (dashed line) value of a certain product in the New York stock exchange is depicted for a period of about 50 years. It may result in paradoxical effects such as the increase of
  • 40. The Phenomenology of Complex Systems 21 1930 1940 1950 1960 1970 1980 0 500 1000 1500 2000 year ind p Fig. 1.9. Dow Jones industrial average p and a posteriori estimated rational price p∗ of the New York stock market during the period 1928 to 1979. Raw data have been detrended by dividing by the systematic growth factor. a certain value merely because the investors anticipate at a certain moment that this is indeed going to happen, though it has not happened yet! In this logic the product that is supposed to guarantee this high value might even be inferior to others, less well quoted ones. That such a priori unexpected events actually occur with appreciable probability is reminiscent of the com- ments made in subsections 1.4.1 and 1.4.3 in connection with the emergence of Rayleigh-Bénard cells and pheromone trails. It suggests that key mani- festations of economic activities are the result of constraints acting on the system and activating intrinsic nonlinearities, as a result of which the con- cept of economic equilibrium often becomes irrelevant. Of equal importance is also the variability of the individual agents, reflected by the presence of different goals and strategies amongst them (cf. also Sec. 3.7). It is important to realize that the speculative character of the process underlying Fig. 1.9 coexists with regular trends reflected by the generally admitted existence of economic cycles. While the latter are manifested on a rather long time scale, the behavior on a wide range covering short to intermediate scales seems rather to share the features of a scale free process. Again the situation looks similar in this respect to that encountered in the previous subsections. An analysis of the range of variability normalized by
  • 41. 22 Foundations of Complex Systems its standard deviation confirms this, with Hurst exponents H close to 0.5 for products most easily subject to speculation, and higher for products that are less negotiable. As mentioned in connection with subsection 1.4.2 this implies that the corresponding processes are, respectively, uncorrelated and subjected to long range correlations. An alternative view of financial fluctuations is provided by the construc- tion of their histograms from the available data. Let Pt be the present price of a given stock. The stock price return rt is defined as the change of the logarithm of the stock price in a given time interval ∆t, rt = lnPt − lnPt−∆t. The probability that a return is (in absolute value) larger than x is found empirically to be a power law of the form P(|rt| x) ≈ x−γt (1.1) with γt ≈ 3. This law which belongs to the family of probability distributions known as Pareto distributions holds for about 80 stocks with ∆t ranging from one minute to one month, for different time periods and for different sizes of stocks. It may thus be qualified as “universal” in this precise sense. The scale invariant (in ∆t and in size) behavior that it predicts in the above range suggests that large deviations can occur with appreciable probability, much more appreciable from what would be predicted by an exponential or a Gaussian distribution. As a matter of fact such dramatic events as the 1929 and 1987 market crashes conform to this law. Surprisingly, Pareto’s law seems also to describe the distribution of incomes of individuals in a country, with an exponent that is now close to 1.5. In an at first sight quite different context, power laws concomitant to self- similarity and scale free behavior are also present whenever one attempts to rank objects according to a certain criterion and counts how the frequency of their occurrence depends on the rank. For instance, if the cities of a given country are ranked by the integers 1, 2, 3,... according to the decreasing order of population size, then according to an empirical discovery by George Zipf the fraction of people living in the nth city varies roughly as P(n) ≈ n−1 (1.2) Zipf has found a similar law for the frequency of appearance of words in the English prose, where P(n) represents now the relative frequency of the nth most frequent word (“the”, “of”, “and” and “to” being the four successively more used words in a ranking that extends to 10 000 or so). Eq. (1.2) is parameter free, and on these grounds one might be tempted to infer that it applies universally to all populations and to all languages. Benoı̂t Mandelbrot has shown that this is not the case and proposed a two-parameter
  • 42. The Phenomenology of Complex Systems 23 extension of Zipf’s law accounting for the differences between subjects and languages, in the form P(n) ≈ (n + n0)−B (1.3) where n0 plays the role of a cutoff. 1.5 Summing up The fundamental laws of nature governing the structure of the building blocks of matter and their interactions are deterministic: a system whose state is initially fully specified will follow a unique course. Yet throughout this chapter we have been stressing multiplicity as the principal manifestation of complexity; and have found it natural -and necessary- to switch continuously on many occasions between the deterministic description of phenomena and a probabilistic view. Far from reflecting the danger of being caught in a contradiction already at the very start of this book this opposition actually signals what is going to become the leitmotiv of the chapters to come, namely, that when the funda- mental laws of nature are implemented on complex systems the deterministic and the probabilistic dimensions become two facets of the same reality: be- cause of the limited predictability of complex systems in the sense of the traditional description of phenomena one is forced to adopt an alternative view, and the probabilistic description offers precisely the possibility to sort out regularities of a new kind; but on the other side, far from being applied in a heuristic manner in which observations are forced to fit certain a priori laws imported from traditional statistics, the probabilistic description one is dealing with here is intrinsic in the sense that it is generated by the un- derlying dynamics. Depending on the scale of the phenomenon, a complex system may have to develop mechanisms for controlling randomness in order to sustain a global behavioral pattern thereby behaving deterministically or, on the contrary, to thrive on randomness in order to acquire transiently the variability and flexibility needed for its evolution between two such configu- rations. Similarly to the determinism versus randomness, the structure versus dynamics dualism is also fading as our understanding of complex systems is improving. Complex systems shape in many respects the geometry of the space in which they are embedded, through the dynamical processes that they generate. This intertwining can occur on the laboratory time scale as in the Rayleigh-Bénard cells and the pheromone trails (1.4.1, 1.4.3); or on
  • 43. 24 Foundations of Complex Systems the much longer scale of geological or biological evolution, as in e.g. the composition of the earth’s atmosphere or the structure of biomolecules. Complexity is the conjunction of several properties and, because of this, no single formal definition doing justice to its multiple facets and manifesta- tions can be proposed at this stage. In the subsequent chapters a multilevel approach capable of accounting for these diverse, yet tightly intertwined el- ements will be developed. The question of complexity definition(s) will be taken up again in the end of Chapter 4.
  • 44. Chapter 2 Deterministic view 2.1 Dynamical systems, phase space, stability Complexity finds its natural expression in the language of the theory of dy- namical systems. Our starting point is to observe that the knowledge of the instantaneous state of a system is tantamount to the determination of a certain set of variables as a function of time: x1(t), ..., xn(t). The time dependence of these variables will depend on the structure of the evolution laws and, as stressed in Sec. 1.2, on the set of control parameters λ1, ..., λm through which the system communicates with the environment. We qualify this dependence as deterministic if it is of the form xt = Ft (x0, λ) (2.1) Here xt is the state at time t ; x0 is the initial state, and Ft is a smooth function such that for each given x0 there exists only one xt. For compactness we represented the state as a vector whose components are x1(t), ..., xn(t). Ft is likewise a vector whose components F1(x1(0), ...xn(0); t, λ), ..., Fn(x1(0), ... xn(0); t, λ) describe the time variation of the individual x0 s. In many situations of interest the time t is a continuous (independent) variable. There exists then, an operator f determining the rate of change of xt in time : Rate of change of xt in time = function of the xt and λ or, more quantitatively ∂x ∂t = f(x, λ) (2.2) As stressed in Secs 1.2 and 1.3 in a complex system f depends on x in a 25
  • 45. 26 Foundations of Complex Systems nonlinear fashion, a feature that reflects, in particular, the presence of coop- erativity between its constituent elements. An important class of complex systems are those in which the variables xt depend only on time. This is not a trivial statement since in principle the properties of a system are expected to depend on space as well, in which case the xt’s define an infinite set (actually a continuum) of variables constituted by their instantaneous values at each space point. Discounting this possibility for the time being (cf. Sec. 2.2.2 for a full discussion), a very useful geometric representation of the relations (2.1)-(2.2) is provided then by their embedding onto the phase space. The phase space, which we denote by Γ, is an abstract space spanned by coordinates which are the variables x1, ..., xn themselves. An instantaneous state corresponds in this representation to a point Pt and a time evolution between the initial state and that at time t to a curve γ, the phase trajectory (Fig. 2.1). In a deterministic system (eq. (2.1)) the phase trajectories emanating from different points will never intersect for any finite time t, and will possess at any of their points a unique, well-defined tangent. Fig. 2.1. Phase space trajectory γ of a dynamical system embedded in a three-dimensional phase space Γ spanned by the variables x1, x2 and x3. The set of the evolutionary processes governed by a given law f will be provided by the set of the allowed phase trajectories, to which we refer as phase portrait. There are two qualitatively different topologies describing
  • 46. Deterministic View 27 these processes which define the two basic classes of dynamical systems en- countered in theory and in practice, the conservative and the dissipative systems. In the discussion above it was understood that the control parameters λ are time independent and that the system is not subjected to time-dependent external forcings. Such autonomous dynamical systems constitute the core of nonlinear dynamics. They serve as a reference for identifying the different types of complex behaviors and for developing the appropriate methodologies. Accordingly, in this chapter we will focus entirely on this class of systems. Non-autonomous systems, subjected to random perturbations of intrinsic or environmental origin will be considered in Chapters 3, 4 and onwards. The case of time-dependent control parameters will be briefly discussed in Sec. 6.4.3. 2.1.1 Conservative systems Consider a continuum of initial states, enclosed within a certain phase space region ∆Γ0. As the evolution is switched on, each of these states will be the point from which will emanate a phase trajectory. We collect the points reached on these trajectories at time t and focus on the region ∆Γt that they constitute. We define a conservative system by the property that ∆Γt will keep the same volume as ∆Γ0 in the course of the evolution, |∆Γt| = |∆Γ0| although it may end up having a quite different shape and location in Γ compared to ∆Γ0. It can be shown that this property entails that the phase trajectories are located on phase space regions which constitute a continuum, the particular region enclosing a given trajectory being specified uniquely by the initial conditions imposed on x1, ..., xn. We refer to these regions as invariant sets. A simple example of conservative dynamical system is the frictionless pendulum. The corresponding phase space is two-dimensional and is spanned by the particle’s position and instantaneous velocity. Each trajectory with the exception of the equilibrium state on the downward vertical is an ellipse, and there is a continuum of such ellipses depending on the total energy (a combination of position and velocity variables) initially conferred to the system. 2.1.2 Dissipative systems Dissipative systems are defined by the property that the dynamics leads to eventual contraction of the volume of an initial phase space region. As a result the invariant sets containing the trajectories once the transients have
  • 47. 28 Foundations of Complex Systems died out are now isolated objects in the phase space and their dimension is strictly less than the dimension n of the full phase space. The most important invariant sets for the applications are the attractors, to which tend all the trajectories emanating from a region around the attractor time going on (Fig. 2.2). The set of the trajectories converging to a given attractor is its attraction basin. Attraction basins are separated by non-attracting invariant sets which may have a quite intricate topology. Fig. 2.2. Attraction basins in a 3-dimensional phase space separated by an unstable fixed point possessing a 2-dimensional stable manifold and a one- dimensional unstable one. The simplest example of dissipative system is a one-variable system, for which the attractors are necessarily isolated points. Once on such a point the system will no longer evolve. Point attractors, also referred as fixed points, are therefore models of steady-state solutions of the evolution equations. A very important property providing a further characterization of the so- lutions of eqs (2.1)-(2.2) and of the geometry of the phase space portrait is stability, to which we referred already in qualitative terms in Sec. 1.3. Let γs be a “reference” phase trajectory describing a particular long-time behav- ior of the system at hand. This trajectory lies necessarily on an invariant set like an attractor, or may itself constitute the attractor if it reduces to e.g. a fixed point. Under the influence of the perturbations to which all real world systems are inevitably subjected (see discussion in Secs 1.2 and 1.3) the trajectory that will in fact be realized will be a displaced one, γ whose instantaneous displacement from γs we denote by δxt (Fig. 2.3). The ques- tion is, then, whether the system will be able to control the perturbations or,
  • 48. Deterministic View 29 Fig. 2.3. Evolution of two states on the reference trajectory γs and on a per- turbed one γ separated initially by a perturbation δx0, leading to a separation δxt at time t. on the contrary, it will be removed from γs as a result of their action. These questions can be formulated more precisely by comparing the initial distance |δx0| between γ and γs (where the bars indicate the length (measure) of the vector δx0) and the instantaneous one |δxt| in the limit of long times. The following situations may then arise: (i) For each prescribed “level of tolerance”, for the magnitude of |δxt|, it is impossible to find an initial vicinity of γs in which |δx0| is less than a certain δ, such that |δxt| remains less than for all times. The reference trajectory γs will then be qualified as unstable. (ii) Such a vicinity can be found, in which case γs will be qualified as stable. (iii) γs is stable and, in addition, the system damps eventually the per- turbations thereby returning to the reference state. γs will then be qualified as asymptotically stable. Typically, these different forms of stability are not manifested uniformly in phase space: there are certain directions around the initial state x0 on the reference trajectory along which there will be expansion, others along which there will be contraction, still other ones along which distances neither explode nor damp but simply remain in a vicinity of their initial values. This classification becomes more transparent in the limit where |δx0| is taken to be small. There is a powerful theorem asserting that instability or asymptotic
  • 49. 30 Foundations of Complex Systems Fig. 2.4. Decomposition of an initial perturbation along the stable and un- stable manifolds us and uunst of the reference trajectory γs. stability in this limit of linear stability analysis guarantee that the same properties hold true in the general case as well. Figure 2.4 depicts a schematic representation of the situation. A generic small perturbation δx0 possesses non-vanishing projections on directions us and uunst along which there are, respectively, stabilizing and non-stabilizing trends. One of the us’s lies necessarily along the local tangent of γs on x0, the other us and uunst’s being transversal to γs. The hypersurface they define is referred as the tangent space of γs, and is the union of the stable and unstable manifolds associated to γs. Analytically, upon expanding Ft in (2.1) around x0 and neglecting terms beyond the linear ones in |δx0| one has δxt = ∂Ft (x0, λ) ∂x0 · δx0 = M(t, x0) · δx0 (2.3) Here M has the structure of an n×n matrix and is referred as the fundamental matrix. An analysis of this equation shows that in the limit of long times |δxt| increases exponentially along the uunst’s, and decreases exponentially or follows a power law in t along the us’s. To express the privileged status of this exponential dependence it is natural to consider the logarithm of |δxt|/|δx0| divided by the time t, σ(x0) = 1 t ln |δxt| |δx0| (2.4) in the double limit where |δx0| tends to zero and t tends to infinity. A more detailed description consists in considering perturbations along the uj’s and evaluating the quantities σj(x0) corresponding to them. We refer to these
  • 50. Another Random Scribd Document with Unrelated Content
  • 51. Rubinen überzogen, und schön genug sind, um uns über die Flucht des Sommers zu trösten. Ich will euch nun erzählen, wie König Frost zuerst auf den Gedanken an eine solche Arbeit kam, denn es ist eine sonderbare Geschichte. Ihr müßt wissen, daß dieser König wie alle andern Könige große Schätze von Gold und Edelsteinen in seinem Palaste hatte; da er aber ein gutmütiger alter Mann ist, hält er seine Reichtümer nicht für immer verschlossen, sondern sucht mit ihrer Hilfe Gutes zu tun und andere glücklich zu machen. Er hat zwei Nachbarn, die noch weiter nördlich wohnen; der eine ist König Winter, ein rauher, unfreundlicher alter Fürst, der so hart und grausam ist, daß er sich freut, wenn er den Armen wehe tun und sie zum Weinen bringen kann. Der andere Nachbar aber ist Santa Claus, ein stattlicher, gutherziger, lustiger alter Mann, der gern Gutes tut und den Armen sowie den artigen Kindern zu Weihnachten Geschenke bringt. Nun, eines Tages dachte König Frost darüber nach, was er wohl mit seinem Schatze gutes stiften könne, und entschloß sich einen Teil seinem freundlichen Nachbar Santa Claus zum Einkauf von Lebensmitteln und Kleidern für die Armen zu schicken, damit diese nicht so viel zu leiden hätten, wenn König Winter sich ihren Häusern näherte. So rief er seine lustigen kleinen Elfen zusammen, zeigte ihnen eine Anzahl von Gefäßen und Vasen voller Gold und Edelsteine und befahl ihnen, diese sorgsam nach dem Palaste Santa Claus’ zu tragen und sie ihm mit Empfehlungen von König Frost zu übergeben. Er wird schon wissen, wie er den Schatz am besten verwenden soll, setzte Jack Frost hinzu; dann befahl er den Elfen, sich unterwegs nicht aufzuhalten, sondern sein Gebot rasch auszuführen. Die Elfen versprachen Gehorsam und machten sich bald auf den Weg, indem sie die großen gläsernen Gefäße und Vasen nachschleppten, so gut sie konnten, und ab und zu ein
  • 52. wenig über die schwere Arbeit brummten; denn es waren faule Elfen, die lieber spielten als arbeiteten. Schließlich gelangten sie in einen großen Wald, und da sie ganz ermüdet waren, beschlossen sie, ein wenig zu rasten und sich nach Nüssen umzusehen, bevor sie ihre Wanderung fortsetzten. Damit aber der Schatz nicht gestohlen werden sollte, versteckten sie die Gefäße unter das dichte Laub der Bäume, indem sie die einen hoch oben in der Nähe der Wipfel, andere an verschiedenen Stellen der Bäume unterbrachten, bis sie glaubten, niemand könne sie mehr finden. Dann begannen sie, umherzustreifen nach Nüssen zu suchen und auf die Bäume zu klettern, um die Früchte herunterzuschütteln, und arbeiteten zu ihrem eigenen Vergnügen viel angestrengter, als sie es je auf das Geheiß ihres Herrn getan hatten; denn es ist eine sonderbare Tatsache, daß Elfen und Kinder sich niemals über Mühe und Arbeit beschweren, wenn sie dabei ihre eigene Belustigung im Auge haben, während sie oft brummen, wenn von ihnen eine Arbeit zum besten anderer verlangt wird. Die Frostelfen waren bei ihrem Nüssesammeln so geschäftig und ausgelassen, daß sie bald ihren Auftrag und den Befehl des Königs, sich zu beeilen, vergaßen; als es aber bei ihrem Spiele Mittag wurde, sahen sie endlich den Grund ein, weshalb ihnen Eile anbefohlen worden war; denn, obgleich sie ihrer Meinung nach den Schatz sehr sorgfältig versteckt hatten, so hatten sie ihn doch nicht vor der Gewalt der Frau Sonne geschützt, die eine Feindin Jack Frosts war und sich freute, wenn sie ihm einen Schabernack spielen und Schaden zufügen konnte. Ihre strahlenden Augen entdeckten bald die Gefäße mit dem Schatze auf den Bäumen, und da die faulen Elfen sie bis zur Mittagsstunde, wenn Frau Sonne am stärksten ist, hier gelassen hatten, so begann das zarte Glas zu schmelzen und zu zerbrechen, und in kurzer Zeit waren alle Gefäße und
  • 53. Vasen gesprungen oder entzwei gegangen, und ebenso schmolzen die in ihnen enthaltenen kostbaren Schätze und rannen in Strömen von Gold und Purpur langsam über die Bäume und Sträucher des Waldes. Eine Zeitlang bemerkten die Frostelfen dieses sonderbare Ereignis nicht, denn sie hatten sich in das Gras gelagert, so weit von den Wipfeln der Bäume entfernt, daß es lange dauerte, ehe der wunderbare Schatzregen sie erreichte; endlich aber sagte der eine von ihnen: Horch, ich glaube, es regnet; ich höre die niederfallenden Tropfen. Die anderen lachten und erklärten ihm, es regne selten, wenn die Sonne scheine; als sie aber genauer aufpaßten, hörten sie deutlich, wie im ganzen Walde die Tropfen von den Bäumen herabfielen und von einem Blatt zum anderen glitten, bis sie auf die Brombeersträucher, neben denen die Elfen saßen, herabklatschten. Jetzt entdeckten sie zu ihrem großen Verdruß, daß die Regentropfen geschmolzene Rubinen waren, die auf den Blättern erstarrten und sie augenblicklich mit leuchtendem Rot überzogen. Als sie sich dann die Bäume ringsum genauer ansahen, bemerkten sie, daß der gesamte Schatz wegschmolz und daß sich ein großer Teil davon bereits über die Blätter der Eichen und Ahornbäume ergossen hatte, die in ihrem prächtigen Gewande von Gold und Bronze, Purpur und Smaragd weithin leuchteten. Es gewährte einen sehr schönen Anblick; aber die faulen Elfen waren über das Unglück, das ihr Ungehorsam verschuldet hatte, zu sehr, erschricken, als daß sie die Schönheit des Waldes hätten bewundern können, und im Nu suchten sie sich in dem Gebüsch zu verstecken, damit König Frost sie nicht finden und strafen könne. Ihre Befürchtungen waren wohlbegründet, denn ihre lange Abwesenheit hatte den König beunruhigt, und er hatte sich aufgemacht, um nach seinen lässigen Dienern zu sehen, und eben, als sie sich alle versteckt hatten, kam er langsam einhergeschritten und sah sich überall nach den Elfen um.
  • 54. Natürlich bemerkte er bald das Glänzen des Laubes und entdeckte auch deren Ursache, als er die zerbrochenen Gefäße und Vasen erblickte, aus denen der geschmolzene Schatz noch immer heruntertropfte. Und als er zu den Nußbäumen kam und die von den faulen Elfen zurückgelassenen Schalen und die Spuren ihres Umhertollens bemerkte, wußte er sofort, was sie angestellt hatten und daß sie ihm ungehorsam gewesen waren, indem sie bei ihrer Wanderung durch den Wald gespielt und die Zeit versäumt hatten. König Frost runzelte die Stirn und machte zuerst ein sehr böses Gesicht, und seine Elfen zitterten vor Furcht und duckten sich noch tiefer in ihre Verstecke. In diesem Augenblick aber kamen zwei kleine Kinder daher gehüpft, und obgleich sie den König Frost und die Elfen nicht sehen konnten, bemerkten sie doch die prächtige Färbung des Laubes, lachten vor Entzücken und begannen große Sträuße für ihre Mutter zu pflücken. Die Blätter sind so schön wie Blumen, sagten sie, nannten die gelben »Butternäpfchen« und die roten »Rosen« und waren sehr fröhlich, als sie singend durch den Wald weiter zogen. Ihre Freude besänftigte König Frosts Zorn; auch er begann die bemalten Bäume zu bewundern und sagte schließlich zu sich selber: Meine Schätze sind nicht verloren, wenn sie kleine Kinder glücklich machen. Ich will meinen faulen, gedankenlosen Elfen nicht zürnen, denn sie haben mich eine neue Art, Gutes zu tun, gelehrt. Als die Frostelfen diese Worte hörten, krochen sie einer nach dem anderen aus ihren Verstecken hervor, knieten vor ihrem Herrn nieder, gestanden ihre Schuld ein und baten ihn um Verzeihung. Er war zwar noch eine Weile ungehalten und schalt sie tüchtig aus; bald aber wurde er milder und erklärte, er wolle ihnen diesmal noch verzeihen; ihre einzige Strafe solle darin bestehen, daß sie noch mehr Schätze in den Wald tragen und in den
  • 55. Bäumen verstecken sollten, bis das gesamte Laub mit Hilfe der Frau Sonne mit Gold- und Purpurfarben bedeckt sei. Die Elfen dankten ihm für seine Verzeihung und versprachen, recht angestrengt zu arbeiten, um seine Huld wiederzugewinnen, und der gutherzige König nahm sie alle auf seine Arme und trug sie sicher heim in seinen Palast. Von dieser Zeit an, glaube ich, ist es ein Teil von Jack Frosts Aufgaben, die Bäume mit den glühenden Farben, die wir im Herbste erblicken, zu bemalen, und wenn sie nicht mit Gold und Edelsteinen bedeckt sind, so weiß ich nicht, auf welche Weise er sie so glänzend macht; wißt ihr es vielleicht? Der Frostkönig. Von Helen A. Keller König Frost wohnt in einem schönen Palast fern im Norden, in dem Lande des ewigem Schnees. Der Palast, der über alle Beschreibung prächtig ist, war schon vor Jahrhunderten, unter der Regierung des Königs Gletscher, erbaut. In geringer Entfernung von dem Palaste könnten wir ihn leicht für ein Gebirge halten, dessen Gipfel sich zum Himmel erheben, um den letzten Kuß des scheidenden Tages zu empfangen. Wenn wir aber näher kommen, so werden wir bald unseren Irrtum bemerken. Was wir für Bergesspitzen hielten, sind in Wahrheit Tausende von weithin glänzenden Türmen. Nichts kann schöner sein als die Architektur dieses Eispalastes. Die Wände sind merkwürdigerweise aus massiven Eisblöcken erbaut, die in klippenartige Türme auslaufen. Das Portal des Palastes liegt am Ende eines überwölbten Ganges und wird Tag und Nacht durch zwölf grimmig aussehende Eisbären bewacht. Doch, Kinder, ihr müßt dem König Frost bei der ersten Gelegenheit, die sich euch biet einen Besuch abstatten und
  • 56. euch diesen wundervollen Palast selber ansehen. Der alte König wird euch freundlich willkommen heißen, denn er liebt die Kinder, und es ist sein Hauptvergnügen, ihnen Freude zu bereiten. Ihr müßt wissen, daß König Frost wie alle anderen Könige große Schätze von Gold und Edelsteinen besitzt: da er aber ein freigebiger alter Fürst ist so so er bestrebt, einen richtigen Gebrauch von seinen Reichtümern zu machen. So verrichtet er, wohin ihn auch sein Weg führt, viele wunderbare Dinge; er schlägt Brücken über jeden Strom, so durchsichtig wie Glas und doch oft so fest wie Eisen; er schüttelt die Waldbäume, bis die reifen Nüsse lachenden Kindern in den Schoß fallen; er schläfert mit einer Berührung seiner Hand ein, und damit wir uns nicht nach den strahlenden Blumengesichtern sehnen, bemalt er das Laub mit Gold-, Purpur- und Smaragdfarben, und wenn er mit seiner Arbeit fertig ist, so sind die Bäume so schön, daß wir uns über die Flucht des Sommers trösten. Ich will euch erzählen, wie König Frost auf den Gedanken verfallen ist, das Laub zu bemalen, denn es ist eine sonderbare Geschichte. Eines Tages dachte König Frost, während er sein großes Vermögen einer Durchsicht unterzog und überlegte, was er damit wohl Gutes stiften könne, mit einem Male an seinen freundlichen alten Nachbar Santa Claus. Ich will meine Schätze an Santa Claus senden, sagte der König zu sich selber. Er ist der richtige Mann dazu, sie gut zu verwenden, denn er weiß, wo die Armen und Unglücklichen wohnen, und sein gütiges altes Herz steckt immer voller Pläne, sie zu unterstützen. So rief er denn die lustigen kleinen Elfen seines Hofstaates zusammen, zeigte ihnen die Gefäße und, Vasen, die seine Schätze enthielten, und befahl ihnen, sie so rasch wie möglich nach Santa Claus’ Palaste zu tragen. Die Elfen versprachen Gehorsam und waren im Nu auf und davon, indem sie die schweren Gefäße und Vasen hinter sich herschleppten, so gut sie konnten, und ab und zu ein wenig
  • 57. über die schwere Arbeit brummten; denn es waren faule Elfen, die lieber spielten als arbeiteten. Nach einiger Zeit kamen sie in einen großen Wald, und da sie müde und hungrig waren, beschlossen sie ein wenig zu rasten und sich nach Nüssen umzusehen, ehe sie ihre Wanderung weiter fortsetzten. Da sie aber glaubten, ihr Schatz könne ihnen inzwischen gestohlen werden, so verbargen sie die Gefäße in dem dichten grünen Laub der verschiedenen Bäume und waren sicher, daß niemand sie finden könne. Dann begannen sie lustig umherzustreifen, um sich Nüsse zu suchen, auf die Bäume zu klettern, neugierig in die leeren Vogelnester zu schauen und hinter den Bäumen Verstecken zu spielen. Diese unartigen Elfen waren nun bei ihrem Herumtollen so geschäftig und so lustig, daß sie ihren Auftrag und ihres Herrn Befehl, sich zu beeilen, ganz vergaßen, aber bald entdeckten sie zu ihrem Verdruß, warum ihnen Eile anbefohlen worden war, denn obgleich sie ihrer Meinung nach den Schatz sorgfältig versteckt hatten, so hatten die strahlenden Augen der Königin Sonne doch die Gefäße zwischen dem Laube erspäht, und da sie und König Frost sich über die beste Art, der Welt Gutes zu tun, nie einigen konnten, so war sie froh, eine gute Gelegenheit zu haben, ihrem ein wenig rauhen Nebenbuhler einen Streich zu spielen. Königin Sonne lachte still vor sich hin, als die zarten Gefäße zu schmelzen und zu zerbrechen begannen. Schließlich waren alle Gefäße und Vasen gesprungen oder entzweigegangen, und ebenso schmolzen die in ihnen enthaltenen Edelsteine und rannen in kleinen Strömen über die Bäume und Sträuche des Waldes. Noch bemerkten die faulen Elfen nicht, was sich ereignete, denn sie hatten sich in das Gras gelagert, und es dauerte lange, ehe der wunderbare Schatzregen sie erreichte; schließlich aber hörten sie deutlich, wie die Tropfen gleich einem Regen im ganzen Walde herabfielen und von einem Blatt zum anderen glitten, bis sie auf die kleinen Sträucher, neben denen die Elfen saßen, herabklatschten. Jetzt
  • 58. entdeckten sie zu ihrem Erstaunen, daß die Regentropfen geschmolzene Rubine waren, die auf den Blättern erstarrten und sie augenblicklich mit Purpur und Gold überzogen. Dann sahen sie, als sie sich genauer umblickten, daß ein großer Teil des Schatzes bereits geschmolzen war, denn die Eichen- und Ahornbäume waren in prächtige Gewänder von Gold-, Purpur- und Smaragdfarbe gehüllt. Es gewährte einen sehr schönen Anblick; aber die ungehorsamen Elfen waren zu sehr erschrocken, als daß sie die Schönheit der Bäume hätten wahrnehmen können. Sie fürchteten, König Frost könne kommen und sie strafen. So versteckten sie sich denn zwischen den Sträuchern und warteten schweigend auf das, was sich ereignen würde. Ihre Befürchtungen waren wohlbegründet, denn ihre lange Abwesenheit hatte den König beunruhigt, er bestieg den Nordwind und ritt aus, um seine säumigen Boten zu suchen. Natürlich war er noch nicht weit gekommen, als er das Glänzen des Laubes bemerkte, und er erriet rasch die Ursache davon, als er die zerbrochenen Gefäße bemerkte, aus denen der Schatz noch immer herunter tropfte. Zuerst war König Frost sehr zornig, und die Elfen zitterten und duckten sich noch tiefer in ihre Verstecke, und ich weiß nicht, was geschehen, wäre, wenn nicht gerade in diesem Augenblick eine Schar von Knaben und Mädchen den Wald betreten hätte. Als die Kinder die Bäume alle in den herrlichen Farben schimmern sahen, klatschten sie in die Hände, stießen ein Freudengeschrei aus und begannen sofort große Sträuße zu pflücken, um sie mit nach Hause zu nehmen. Die Blätter sind so hübsch wie die Blumen! riefen sie in ihrem Entzücken. Ihre Freude verscheuchte den Zorn aus König Frosts Herzen und glättete seine gerunzelten Augenbrauen, und auch er begann die bemalten Bäume zu bewundern. Er sagte zu sich selber: Meine Schätze sind nicht verloren, wenn sie kleine Kinder glücklich machen. Meine faulen Elfen und meine grimmige Feindin haben mich eine neue Art, Gutes zu tun, gelehrt.
  • 59. Als die Elfen dies hörten, wurde es ihnen bedeutend leichter ums Herz, und sie kamen aus ihren Verstecken hervor, gestanden ihre Schuld ein und baten ihren Herrn um Verzeihung. Seit dieser Zeit hat es König Frost stets großes Vergnügen gemacht, die Blätter mit den glühenden Farben, die wir im Herbste erblicken, zu bemalen, und wenn sie nicht mit Gold und Edelsteinen bedeckt sind, so kann ich mir nicht denken, was sie so glänzend macht; könnt ihr es euch vielleicht denken? Wenn das Märchen von den »Frostelfen«, bemerkt Fräulein Sullivan zu den beiden Erzählungen, Helen im Sommer 1888 vorgelesen wurde, so konnte sie damals noch nicht viel davon verstanden haben, denn sie hatte erst seit dem März 1887 Unterricht gehabt. Ist es möglich, daß die Sprache des Märchens in ihrem Geiste schlummernd gelegen hat, bis meine Schilderung von der Schönheit der Herbstlandschaft sie ihr im Jahre 1891 wieder lebendig vor ihr geistiges Auge brachte? Noch eine andere Tatsache ist in diesem Zusammenhange von großer Bedeutung. Das Märchen »Die Rosenelfen« war in demselben Bande erschienen wie »Die Frostelfen« und somit Helen wahrscheinlich um dieselbe Zeit wie dieses vorgelesen worden. Nun spricht Helen in ihrem Briefe vom Februar 1890 (s. oben S. 328), von diesem Märchen Fräulein Canbys als v o n e i n e m Tr a u m e , d e n s i e v o r s e h r l a n g e r Z e i t a l s g a n z k l e i n e s K i n d g e h a b t h a b e. Sicherlich werden anderthalb Jahre einem kleinen Mädchen wie Helen als »sehr lange Zeit« erscheinen; wir haben daher Veranlassung zu der Annahme, daß die Märchen ihr spätestens im Sommer 1888 vorgelesen worden sein müssen.
  • 60. Helen Keller erwähnt (S. 68) einen freundlichen Brief, den ihr Fräulein Canby geschrieben habe. Auch mit Fräulein Sullivan trat die genannte Dame in Briefwechsel. So schrieb sie ihr z. B. am 9. März 1892 unter anderem: „Was für einen wunderbar regen Geist und was für ein treues Gedächtnis muß dieses begabte Kind besitzen! Hätte sich Helen eines kurzen Märchens erinnert und es niedergeschrieben, kurz nachdem sie es gehört hatte, so würde dies schon ein Wunder gewesen sein; aber das Märchen ein einzigesmal vor drei Jahren gehört zu haben und noch dazu auf eine Weise, daß weder ihre Eltern noch ihre Lehrerin darauf zurückkommen und die Erinnerung daran auffrischen konnten, und dann imstande gewesen zu sein, es so lebendig wiederzugeben und sogar noch einige selbständige Striche hinzuzufügen, die in völligem Einklang mit dem übrigen stehen und das Original in der Tat verbessern — das ist etwas, was sehr wenige Mädchen reiferen Alters, die im Besitze aller Vorteile des Sehens, Hörens und selbst großer schriftstellerischer Begabung sind, so gut geleistet hätten, wenn sie überhaupt dazu imstande gewesen wären. Unter diesen Umständen sehe ich nicht ein, wie irgendjemand so lieblos sein kann, dies ein Plagiat zu nennen; es ist eine wunderbare Leistung des Gedächtnisses und steht einzig in seiner Art da. Ich habe viele Kinder gekannt, habe mein ganzes Leben in ihrer Mitte zugebracht und kenne keinen größeren Genuß, als mich mit ihnen zu unterhalten, sie zu erheitern und ihre Geistes- und Charakterzüge ruhig zu beobachten; aber ich entsinne mich keines Mädchens von Helens Alter, das den gleichen Wissensdurst gehabt und über dieselbe Fülle literarischer und allgemeiner Bildung sowie über dieselbe schriftstellerische Begabung verfügt hätte wie Helen. Sie ist in der Tat ein Wunderkind. Vielen Dank für Helens Tagebuch! Es läßt mich klarer als zuvor die große Enttäuschung erkennen, die das liebe Kind zu erdulden gehabt hat. Bitte, sagen Sie ihr, wie sehr ich sie in mein Herz geschlossen habe und daß sie sich keine Gedanken mehr darüber machen soll. Niemand darf sagen, sie habe unrecht getan, und eines Tages wird sie eine große schöne Erzählung oder ein Gedicht schreiben, das vielen Menschen Freude machen wird. Sagen Sie ihr, ein paar bittere Tropfen seien in jedermanns Lebenskelch enthalten, und es bleibe
  • 61. uns nichts anderes übrig, als die bitteren geduldig, und die süßen dankbar hinzunehmen.“ Der Zwischenfall hatte, wie aus Helens eigener Darstellung hervorgeht, auf sie und auf Fräulein Sullivan eine geradezu vernichtende Wirkung. Letztere fürchtete, der Neigung zur Nachahmung, die in Wirklichkeit Fräulein Keller zur Schriftstellerin gemacht hat, allzugroßen Spielraum gelassen zu haben. Aber jetzt, da sie auf der Universität zusammen mit ihrem Zögling in die Geheimnisse des geistigen Schaffens eingedrungen ist, weiß sie, daß der Stil jedes Schriftstellers und in der Tat jedes Menschen, mag er gebildet oder ungebildet sein, eine Erinnerung ist, die sich aus allem, was er gelesen und gehört hat, zusammensetzt. Der Quellen seines Wortschatzes ist er sich größtenteils so wenig bewußt wie des Augenblickes, in dem er die Nahrung zu sich nahm, die einen Teil seines Daumennagels bilden sollte. Bei der Mehrzahl von uns kreuzen und vermischen sich die Zuflüsse aus den verschiedensten Quellen. Ein Kind, dem nur wenige Quellen zur Verfügung stehen, kann das, was es aus jeder einzelnen zieht, getrennt halten. In dieser Lage war Helen Keller, die den Wortlaut einer Geschichte, die sie zu der Zeit, als sie ihr vorgelesen wurde, noch nicht ganz verstand, fast unverändert und ohne Vermischung mit anderen Vorstellungen in ihrem Geiste bewahrte. Die Bedeutung dieses Umstandes kann nicht hoch genug bewertet werden. Er liefert den Beweis dafür, daß der Geist des Kindes Worte in sich aufspeichert, die es gehört hat, und daß diese hier gleichsam auf der Lauer liegen, stets bereit, hervorzutreten, wenn der äußere Anreiz dazu eintritt. Der Grund, weswegen wir diesen Prozeß bei normalen Kindern nicht wahrnehmen, liegt darin, daß wir sie selten als Ganzes beobachten, und daß sie ihre geistige Nahrung aus so vielen Quellen beziehen, daß die Erinnerungsbilder verworren sind und sich gegenseitig aufheben. Das Märchen vom »Frostkönig« trat jedoch nicht unverändert aus Helens Geist hervor, sondern war durch die Eigenart des Kindes umgeformt worden und hatte sich in Worte gekleidet, die aus anderen Quellen stammten. Der Stil von Helens Fassung ist
  • 62. sogar in manchen Beziehungen besser als der von Fräulein Canbys Erzählung. Sie weist die naive Phantasie eines echten Volksmärchens auf, während Fräulein Canbys Erzählung ersichtlich für Kinder von einer älteren Person geschrieben ist, die die Art und Weise eines Feenmärchens annimmt und didaktische Wendungen nicht immer vermeidet. Helens Märchen ist in demselben Sinne ein Original, wie die dichterische Bearbeitung einer alten Sage ein solches ist. Aller Sprachgebrauch beruht auf Nachahmung, und jemandes Stil ist ein Ausfluß aller Stilarten, die ihm vorgekommen sind. Der einzige Weg, ein gutes Englisch schreiben zu lernen, ist der, es zu lesen und zu hören. Daher kommt es, daß man jedes Kind ein korrektes Englisch lehren kann, wenn man es kein anderes lesen oder hören läßt. Bei einem Kinde ist die Scheidung des Besseren von dem Schlechteren nicht bewußt; es ist der Sklave seiner sprachlichen Erfahrung. Der gewöhnliche Mensch wird sich nie von der irrigen Auffassung losmachen können, daß die Worte dem Gedanken gehorchen, daß man zuerst denkt und das Gedachte dann in Worte kleidet. Es muß allerdings zuerst die Absicht, der Wunsch vorhanden sein, etwas auszusprechen, aber der Gedanke nimmt meistenteils erst dann feste Form an, wenn er in Worte gekleidet ist; auf jeden Fall wird der Gedanke dadurch, daß er in Worten ausgedrückt wird, ein selbständiges Gebilde. Worte rufen oft Gedankengänge hervor, und wer das Wort beherrscht, wird Bedeutenderes sagen, als er sonst vermöchte. Als Helen Keller den »Frostkönig« schrieb, sagte sie mehr, als sie selbst glaubte. Wer einen Satz aus Wörtern bildet, spricht nicht seine Weisheit aus, sondern die Weisheit des Volkes, dessen Leben in den Worten enthalten ist, selbst wenn sie vorher noch nie in dieser bestimmten Weise zusammengesetzt worden sind. Wer Geschichten schreiben kann, denkt an zu schreibende Geschichten. Das Medium der Sprache ruft den Gedanken hervor, den es begleitet, und je bedeutender das Medium ist, desto tiefer sind die Gedanken.
  • 63. Gebildet ist der, dessen Ausdrucksweise gebildet ist. Der Träger des Denkens ist die Sprache, und im Gebrauch der Sprache muß das taube Kind so gut wie jedes andere unterrichtet werden. Gebt ihm die Sprache, und es erhält mit ihr das Material, aus dem die Sprache gebildet ist, das Denken und die Erfahrungen seines Volkes. Die Sprache muß eine von einem Volke gebrauchte sein, nicht ein Kunstprodukt. Volapük ist ein Unsinn. Das taube Kind, das nur die Gebärdensprache kennt, bleibt bei allen Völkern ein Fremdling; seine Gedanken sind nicht die eines Engländers, eines Deutschen oder eines Franzosen. Das Vaterunser in der Zeichensprache ist nicht das Vaterunser im Englischen. De Quincey sagt in seiner Abhandlung über den Stil, das beste Englisch finde sich in den Briefen der gebildeten vornehmen Engländerinnen, weil diese nur einige gute Bücher gelesen haben und nicht durch den Zeitungsstil, den Jargon der Straße, des Marktes und der öffentlichen Versammlungen verdorben worden sind. Genau diese selben äußeren Umstände kommen für Helen Kellers Englisch in Betracht. In den ersten Jahren ihrer Erziehung bekam sie nur gute Sachen zum Lesen; einiges darunter war allerdings trivial und zeichnete sich auch nicht besonders durch seinen Stil aus, aber nichts war nach Form oder Inhalt geradezu schlecht. Diese glücklichen Verhältnisse haben ihr ganzes bisheriges Leben lang angedauert. Sie hat sich an Werken der Phantasie genährt und aus diesen den Stil großer Schriftsteller in ihr starkes, zähes Gedächtnis aufgenommen. Als sie zwölf Jahre alt war, wurde sie gefragt, was für ein Buch sie auf eine lange Eisenbahnfahrt mitnehmen wolle. »Das verlorene Paradies«, war ihre Antwort, und sie las das Werk im Zuge. In den Tagen, als Helen den ersten Entwurf ihrer Lebensgeschichte für den »Youth’s Companion« verfaßte,[34] schrieb ihr Dr. Holmes: „Ich bin entzückt über den Stil Ihrer Briefe. Es ist nichts Affektiertes in ihnen enthalten, und da sie Ihnen unmittelbar von Herzen kommen, so gehen sie auch mir unmittelbar zu Herzen.“
  • 64. In den Jahren des Uebergangs vom Kinde zur Jungfrau verlor Helens Stil seine frühere Schlichtheit und wurde steif und, wie sie sich selbst ausdrückte, gedrechselt. Damals wurde Fräulein Sullivan oft von der Furcht befallen, daß die Fortschritte ihrer Schülerin mit dem Ende der Kindheit aufhören würden. Zuweilen schien es Fräulein Keller an Geschmeidigkeit zu gebrechen; ihr Gedankengang bewegte sich in herkömmlichen Redewendungen, und sie schien nicht die Kraft zu haben, diese zu ändern oder in neue Bahnen zu lenken, und erst als sie die Kunst des Ausdrucks zum Gegenstand eines bewußten Studiums gemacht hat, hat sie aufgehört, das Opfer der Phrase zu sein. Charles T. Copeland, der lange Jahre hindurch Professor der englischen Sprache und Literatur an der Harvard- und der Radcliffe-Universität gewesen ist, erklärte einst: „In einigen ihrer Arbeiten hat sie gezeigt, daß sie besser schreiben kann, als irgend ein Schüler oder eine Schülerin, die ich je gehabt habe. Sie besitzt ein ausgezeichnetes »Ohr« für den Fluß der Perioden.“ — In allem, was Fräulein Keller geschrieben hat, zeigt sich, wie bei den meisten großen englischen Schriftstellern, unverkennbar der Einfluß des Stils der Bibel. In ihrer Selbstbiographie finden sich viele Zitate aus der Bibel, entweder als gesonderte Einfügungen in den Text oder in diesen hineinverwoben, während das Ganze ein durchaus selbständiges Gepräge trägt. Ihr Wortschatz umfaßt alle Ausdrücke, die andere gebrauchen, und die Erklärung dieser Erscheinung und zugleich das Vernunftmäßige, das darin liegt, muß jedermann einleuchten. Es liegt kein Grund vor, warum sie alle Wörter, die einen Gehörs- oder Gesichtseindruck bezeichnen, aus ihrem Wörterbuche streichen sollte. Solange sie die Wörter richtig gebraucht, sollte man ihr das Recht einräumen, sie nach freiem Ermessen zu verwenden und dürfte von ihr nicht verlangen, daß sie sich auf einen Wortschatz beschränke, der ihrem Mangel an Seh- und Hörvermögen entspreche. In Bezug auf die Form sowohl wie den Inhalt ihres Buches müssen wir der Künstlerin zugestehen, was wir der Autobiographin versagen. Dazu kommt, daß für »wahrnehmen« von den Blinden die Ausdrücke »blicken« und »sehen« und von den Tauben »hören« gebraucht werden; es sind
  • 65. allgemein verständliche und gebräuchlichere Wörter. Nur ein Wortklauber könnte daran denken, den Blinden auf den Terminus »wahrnehmen« festnageln zu wollen, wenn »sehen« und »blicken« um so viel natürlicher sind und außerdem allgemein sowohl die Bedeutung des geistigen wie des sinnlichen Erkennens haben. Wenn Fräulein Keller eine Statue befühlt, so sagt sie in ihrer natürlichen Ausdrucksweise, während ihre Finger über den Marmor gleiten: Sie sieht aus wie ein Kopf der Flora. — Andererseits ist es richtig, daß sie in ihren Schilderungen das künstlerisch Beste dann leistet, wenn sie sich streng an ihre eigenen sinnlichen Wahrnehmungen hält, und genau dasselbe gilt von allen Künstlern. Infolge des Unterrichts in der letzten Zeit hat sie gelernt, ein gut Teil ihrer herkömmlichen Ausdrucksweise über Bord zu werfen und über Erfahrungen ihres Lebens zu schreiben, die sie selbst gewonnen hat. Sie hat mehr und mehr begonnen, den Stil aufzugeben, den sie aus Büchern entlehnte und den sie zu gebrauchen suchte, weil sie wie andere Menschen zu schreiben wünschte; sie hat gelernt, daß sie das Beste gibt, wenn sie »fühlt«, wie die Lilien hin- und herschwanken, sich die Rosen in die Hand drücken läßt und von der Hitze spricht, die für sie Licht bedeutet. Fräulein Kellers Selbstbiographie umfaßt nahezu alles, was sie zu veröffentlichen beabsichtigte.[35] Es existieren jedoch noch einige kleinere Aufsätze, die weder so formlos wie ihre Briefe noch so sorgfältig abgefaßt sind wie ihre Lebensgeschichte. Einer von diesen enthält Mitteilungen über ihr Traumleben, die bei einer Blinden von doppeltem Interesse sind; wir lassen ihn daher noch in Uebersetzung folgen. * * * „O, die Streiche, die die Nixe von Traumland uns während des Schlafes spielen! Ich glaube, es sind die Spaßmacher des himmlischen Hofhalts. Oft nehmen sie die Gestalt von
  • 66. Aufsatzthemen an, um mich zu verspotten, sie stolzieren auf der Bühne des Schlafes wie die törichten Jungfrauen einher, nur daß sie anstatt der leeren Lampen saubere Kollegienhefte in ihren Händen halten. Ein andermal examinieren sie mich kreuz und quer in allen Fächern, die ich je studiert habe, und stellen Fragen an mich, die so leicht zu beantworten sind, wie die folgende: Wie hieß die erste Maus, über die sich Hippopotamos, der Satrap von Cambridge unter Astyages, dem Großvater Kyros’ des Großen, ärgerte? Ich wache vor Entsetzen auf, während mir noch die Worte in den Ohren klingen: Eine Antwort oder das Leben! Solchergestalt sind die verzerrten Phantasien, die durch die Seele eines Mädchens ziehen, das die Universität besucht und, wie ich es tue, in einer Atmosphäre von Ideen und Begriffen lebt, die halb Gedanken, halb Gefühle sind, die sich gegenseitig drängen und jagen, bis man beinahe verrückt wird. Ich habe selten Träume, die nicht im Zusammenhange mit dem stehen, was ich wirklich denke und fühle; aber eines Nachts schien sich meine ganze Natur verwandelt zu haben, und ich stand als mächtiger, furchtbarer Mann vor den Augen der Welt da. Selbstverständlich liebe ich den Frieden und hasse den Krieg nebst allem, was zum Kriege gehört; in der blutbefleckten Laufbahn Napoleons erblicke ich nichts Bewundernswertes, abgesehen von seinem Ende. Nichtsdestoweniger war in jener Nacht der Geist jenes mitleidslosen Menschenschlächters in mich gefahren! Ich werde es nie vergessen, wie die Kampfeswut in meinen Adern tobte — es schien, als wolle das stürmische Schlagen meines Herzens mir den Atem nehmen. Ich ritt einen feurigen Renner — ich kann noch jetzt das ungeduldige Emporwerfen seines Kopfes und den Schauer fühlen, der beim ersten Kanonendonner durch seinen Körper rann. Von dem Gipfel des Hügels aus, auf dem ich stand, sah ich meine Truppen über eine sonnenbeschienene Ebene anstürmen wie zornige Wellen, und als sie sich bewegten, erblickte ich das Grün der Felder, das aussah wie die kühlen Täler zwischen den Wogen. Trompeten erklangen mitten in den unaufhörlichen Trommelwirbel und den Massenschritt der heranmarschierenden Bataillone hinein. Ich
  • 67. spornte mein schnaubendes Roß, schwang mein Schwert in die Höhe und rief: Ich komme! Blickt auf mich, Krieger — Europa! Ich stürzte mich in die heranbrausenden Wogen wie ein starker Schwimmer in die Brandung taucht und stieß — ach, es ist die Wahrheit! — gegen den Bettpfosten. Jetzt schlafe ich selten, ohne zu träumen; bevor aber Fräulein Sullivan zu mir kam, waren meine Träume selten und mit Ausnahme derer von rein physischer Natur, gedankenarm und zusammenhanglos. In meinen Träumen fiel stets etwas plötzlich und schwer herab, und mitunter schien mich meine Wärterin für mein unfreundliches Benehmen, das ich im Laufe des Tages gegen sie gezeigt hatte, zu züchtigen und mir meine Fußtritte und mein Kneifen mit Wucherzinsen heimzuzahlen. Ich fuhr aus meinem Schlafe empor unter verzweifelten Anstrengungen, meiner Peinigerin zu entgehen. Ich aß sehr gern Bananen und eines Nachts träumte mir, ich fände eine lange Schnur mit diesen Früchten in dem Speisezimmer, in der Nähe des Buffets, alle geschält und von köstlicher Reife, und alles, was ich zu tun hatte, war, daß ich mich unter die Schnur stellte und aß, soviel ich konnte. Nachdem Fräulein Sullivan zu mir gekommen war, träumte ich umso öfter, je mehr ich lernte; aber mit dem Erwachen meines Geistes stellten sich oft schreckhafte Phantasien und unbestimmte Furchtanwandlungen ein, die meinen Schlaf lange Zeit zu einem sehr unruhigen machten. Ich fürchtete mich vor der Dunkelheit und liebte das Kaminfeuer. Sein warmer Hauch kam mir wie die Liebkosung einer Menschenhand vor, ich glaubte wirklich, es sei ein beseeltes Wesen, imstande, mich zu lieben und zu beschützen. An einem kalten Winterabend war ich allein in meinem Zimmer. Fräulein Sullivan hatte das Licht gelöscht und war fortgegangen, in der Meinung, ich schliefe schon. Mit einem Male fühlte ich mein Bett erzittern, und es war mir, als spränge ein Wolf auf mich zu und heulte mich an. Es war nur ein Traum, aber ich hielt ihn für Wirklichkeit und geriet in das größte Entsetzen. Ich wagte nicht zu schreien, aber ich wagte auch nicht im Bett zu bleiben. Vielleicht war der Traum eine verworrene Erinnerung an das Märchen vom
  • 68. Rotkäppchen, das ich vor kurzem gehört hatte. Jedenfalls schlüpfte ich aus dem Bett und kauerte mich dicht neben dem Feuer nieder, das noch nicht ausgebrannt war. Sobald ich seine Wärme fühlte, war ich beruhigt, und ich saß lange Zeit da und sah es in leuchtenden Wogen höher und immer höher steigen. Schließlich übermannte mich der Schlaf, und als Fräulein Sullivan zurückkehrte, fand sie mich in eine Decke gehüllt am Herde liegen. Oft, wenn ich träume, ziehen Gedanken durch meinen Sinn wie vermummte Schatten, schweigend und in weiter Ferne, und verschwinden dann. Vielleicht sind es die Geister von Gedanken, die einst den Geist eines Vorfahren von mir bevölkerten. Zu anderen Zeiten fallen die Dinge, die ich gelernt habe, und die, in denen ich unterrichtet worden bin, von mir ab, wie die Eidechse ihre Haut abstreift, und ich erblicke dann meine Seele so, wie Gott sie sieht. Es gibt auch schöne, seltene Augenblicke, in denen ich im Traumland sehe und höre. Wie, wenn in meinen wachen Stunden ein Ton durch die schweigenden Hallen des Gehörs erklänge? Wie, wenn ein Strahl des Lichtes durch die dunklen Gemächer meiner Seele blitzte? Was würde sich dann ereignen? frage ich mich immer und immer wieder. Würde die allzustraff gespannte Saite des Lebens springen? Würde das Herz, überwältigt von freudigem Schreck, infolge des Uebermaßes von Glück aufhören zu schlagen? [29] Vergl. S. 62 ff. [30] Gemeint ist der Beitrag Fräulein Sullivans zu dem von dem genannten Bureau herausgegebenen »Souvenir Helen Keller« (vergl. S. 205). [31] Fräulein Sullivan führt in ihrem Aufsatze folgendes an: Im Laufe des Winters (1891/92) ging ich mit Helen einmal während eines leichten Schneegestöbers in den Hof und ließ sie die herunterfallenden Flocken befühlen. Sie schien sich darüber sehr zu freuen. Als wir wieder hineingingen, äußerte sie folgende Worte: Out of the cloud-folds of his garments Winter shakes the snow. Ich fragte sie, wo sie dies gelesen habe, sie erwiderte, sie könne sich nicht erinnern, es gelesen zu haben, und schien sich auch nicht zu entsinnen, daß ihr die Worte von irgend jemand
  • 69. mitgeteilt worden seien. Da ich selbst diese Worte nie gehört hatte, fragte ich mehrere meiner Bekannten, ob sie sich ihrer erinnern könnten; doch schien dies bei niemand von ihnen der Fall zu sein. Die Lehrer des Instituts versicherten, daß diese Stelle sich in keinem in Hochdruck hergestellten Buche der Bibliothek befinde; aber eine Dame, Fräulein Marret, unterzog sich der Aufgabe, mit gewöhnlichen Typen gedruckte Gedichtsammlungen durchzusehen, ihre Mühe wurde auch belohnt, sie fand in einem der kleinen Gedachte Longfellows mit dem Titel: »Snow-flakes« folgende Verse: Out of the bosom of the air, Out of the cloud-folds of her garments shaken, Over the woodlands brown and bare, Over the harvest-fields forsaken, Silent, and soft, and slow, Descends the snow. Es scheint, daß irgendjemand Helen diese Verse des Dichters einmal mitgeteilt hat und daß sie ihr im Gedächtnis haften geblieben sind bis sie sich heute früh bei dem Schneetreiben ihrer wieder erinnerte. [32] S. 157 ff. [33] Vergl. S. 337. [34] Siehe S. 73 ff. [35] Im Jahre 1905 erschien ein größerer Essay von ihr, »Optimism«.
  • 70. *** END OF THE PROJECT GUTENBERG EBOOK DIE GESCHICHTE MEINES LEBENS *** Updated editions will replace the previous one—the old editions will be renamed. Creating the works from print editions not protected by U.S. copyright law means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg™ electronic works to protect the PROJECT GUTENBERG™ concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for an eBook, except by following the terms of the trademark license, including paying royalties for use of the Project Gutenberg trademark. If you do not charge anything for copies of this eBook, complying with the trademark license is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. Project Gutenberg eBooks may be modified and printed and given away—you may do practically ANYTHING in the United States with eBooks not protected by U.S. copyright law. Redistribution is subject to the trademark license, especially commercial redistribution. START: FULL LICENSE
  • 71. THE FULL PROJECT GUTENBERG LICENSE
  • 72. PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK To protect the Project Gutenberg™ mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase “Project Gutenberg”), you agree to comply with all the terms of the Full Project Gutenberg™ License available with this file or online at www.gutenberg.org/license. Section 1. General Terms of Use and Redistributing Project Gutenberg™ electronic works 1.A. By reading or using any part of this Project Gutenberg™ electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg™ electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg™ electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8. 1.B. “Project Gutenberg” is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg™ electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg™ electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg™ electronic works. See paragraph 1.E below.
  • 73. 1.C. The Project Gutenberg Literary Archive Foundation (“the Foundation” or PGLAF), owns a compilation copyright in the collection of Project Gutenberg™ electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is unprotected by copyright law in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg™ mission of promoting free access to electronic works by freely sharing Project Gutenberg™ works in compliance with the terms of this agreement for keeping the Project Gutenberg™ name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg™ License when you share it without charge with others. 1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg™ work. The Foundation makes no representations concerning the copyright status of any work in any country other than the United States. 1.E. Unless you have removed all references to Project Gutenberg: 1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg™ License must appear prominently whenever any copy of a Project Gutenberg™ work (any work on which the phrase “Project
  • 74. Gutenberg” appears, or with which the phrase “Project Gutenberg” is associated) is accessed, displayed, performed, viewed, copied or distributed: This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook. 1.E.2. If an individual Project Gutenberg™ electronic work is derived from texts not protected by U.S. copyright law (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase “Project Gutenberg” associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg™ trademark as set forth in paragraphs 1.E.8 or 1.E.9. 1.E.3. If an individual Project Gutenberg™ electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg™ License for all works posted with the permission of the copyright holder found at the beginning of this work. 1.E.4. Do not unlink or detach or remove the full Project Gutenberg™ License terms from this work, or any files
  • 75. Welcome to Our Bookstore - The Ultimate Destination for Book Lovers Are you passionate about books and eager to explore new worlds of knowledge? At our website, we offer a vast collection of books that cater to every interest and age group. From classic literature to specialized publications, self-help books, and children’s stories, we have it all! Each book is a gateway to new adventures, helping you expand your knowledge and nourish your soul Experience Convenient and Enjoyable Book Shopping Our website is more than just an online bookstore—it’s a bridge connecting readers to the timeless values of culture and wisdom. With a sleek and user-friendly interface and a smart search system, you can find your favorite books quickly and easily. Enjoy special promotions, fast home delivery, and a seamless shopping experience that saves you time and enhances your love for reading. Let us accompany you on the journey of exploring knowledge and personal growth! ebookgate.com