SlideShare a Scribd company logo
Introduction to the Theory of Complex Systems
Stefan Thurner download
https://textbookfull.com/product/introduction-to-the-theory-of-
complex-systems-stefan-thurner/
Download full version ebook from https://textbookfull.com
We believe these products will be a great fit for you. Click
the link to download now, or visit textbookfull.com
to discover even more!
Introduction to Complex Theory of Differential
Equations Savin
https://textbookfull.com/product/introduction-to-complex-theory-
of-differential-equations-savin/
An Introduction to Complex Systems Making Sense of a
Changing World Tranquillo
https://textbookfull.com/product/an-introduction-to-complex-
systems-making-sense-of-a-changing-world-tranquillo/
An Introduction to Complex Systems Society Ecology and
Nonlinear Dynamics 1st Edition Paul Fieguth (Auth.)
https://textbookfull.com/product/an-introduction-to-complex-
systems-society-ecology-and-nonlinear-dynamics-1st-edition-paul-
fieguth-auth/
Optimization of Complex Systems: Theory, Models,
Algorithms and Applications Hoai An Le Thi
https://textbookfull.com/product/optimization-of-complex-systems-
theory-models-algorithms-and-applications-hoai-an-le-thi/
Narratology: Introduction to the Theory of Narrative
Mieke Bal
https://textbookfull.com/product/narratology-introduction-to-the-
theory-of-narrative-mieke-bal/
An Introduction to the Theory of Piezoelectricity
Jiashi Yang
https://textbookfull.com/product/an-introduction-to-the-theory-
of-piezoelectricity-jiashi-yang/
Individual Differences in Language Learning: A Complex
Systems Theory Perspective Carol Griffiths
https://textbookfull.com/product/individual-differences-in-
language-learning-a-complex-systems-theory-perspective-carol-
griffiths/
Introduction to Complex Analysis 1st Edition Michael E.
Taylor
https://textbookfull.com/product/introduction-to-complex-
analysis-1st-edition-michael-e-taylor/
An Introduction to the Language of Category Theory
Steven Roman
https://textbookfull.com/product/an-introduction-to-the-language-
of-category-theory-steven-roman/
Introduction to the Theory of Complex Systems Stefan Thurner
Introduction to the Theory
of Complex Systems
Stefan Thurner, Rudolf Hanel, and Peter Klimek
Medical University of Vienna, Austria
1
3
Great Clarendon Street, Oxford, OX2 6DP,
United Kingdom
Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries
© Stefan Thurner, Rudolf Hanel, and Peter Klimek 2018
The moral rights of the authors have been asserted
First Edition published in 2018
Impression: 1
All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above
You must not circulate this work in any other form
and you must impose this same condition on any acquirer
Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America
British Library Cataloguing in Publication Data
Data available
Library of Congress Control Number: 2018947065
Data available
ISBN 978–0–19–882193–9
DOI: 10.1093/oso/9780198821939.001.0001
Printed and bound by
CPI Group (UK) Ltd, Croydon, CR0 4YY
Links to third party websites are provided by Oxford in good faith and
for information only. Oxford disclaims any responsibility for the materials
contained in any third party website referenced in this work.
Preface
This book is for people who are interested in the science of complex adaptive systems
and wish to have more than just a casual understanding of it. As with all the sciences,
understanding of complex adaptive systems is reached solely in a quantitative, predictive,
and ultimately experimentally testable manner. Complex adaptive systems are dynamical
systems that are able to change their structure, their interactions, and, consequently,
their dynamics as they evolve in time. This is not a book about complicated systems,
even though most complex systems are complicated. Indeed, over the last 300 years,
scientists have usually dealt with complicated systems that are neither complex nor
adaptive.
The theory of complex systems is the theory of generalized time-varying interactions
between elements that are characterized by states. Interactions typically take place on
networks that connect those elements. The interactions involved may cause the states
of the elements themselves to alter over time. The essence of a complex system is that
the interaction networks may change and rearrange as a consequence of changes in
the states of the elements. Thus, complex systems are systems whose states change
as a result of interactions and whose interactions change concurrently as a result of
states. Due to this chicken–egg-type problem, complex systems show an extremely
rich spectrum of behaviour: they are adaptive and co-evolutionary; they show path-
dependence, emergence, power laws; they have rich phase diagrams; they produce
and destroy diversity; they are inherently prone to collapse; they are resilient, and so
on. The theory of complex systems tries to understand these properties based on its
building blocks and on the interactions between those building blocks that take place
on networks. It combines mathematical and physical principles with concepts borrowed
from biology and the social sciences; it uses new computational techniques and, with
the advent of comprehensive large-scale data sets, is becoming experimentally testable.
The goal of the theory of complex systems is to understand the dynamical systemic
outcomes of interconnected systems, and its ultimate goal is to eventually control and
design systemic properties of systems such as the economy, the financial system, social
processes, cities, the climate, and ecology. The theory of complex systems builds partly
on previous attempts to understand systems that interact in non-trivial ways, such as
game theory, cybernetics, or systems theory. However, in its current state, the science
of complex systems goes well beyond these earlier developments, in so many ways,
in fact, that it can be regarded as an independent scientific branch, which—due to its
quantitative, predictive, and testable nature—is a natural science.
Even though it is fair to say that the theory of complex systems is not yet complete,
in recent years, it has become quite clear just what the theory is going to look like.
Its elements and structure are emerging. The current state of the theory of complex
vi Preface
systems is comparable perhaps to the state of quantum mechanics in the 1920s, before
the famous Copenhagen meetings and Werner Heisenberg’s book. At that time, quantum
mechanics was a collection of experimental and theoretical bits and pieces, which
had not yet been seen within a fully comprehensive framework. Nevertheless, it was
clear that, one day soon, such a framework would exist. The present situation can
be compared to an archaeological project, where a mosaic floor has been discovered
and is being excavated. While the mosaic is only partly visible and the full picture is
still missing, several facts are becoming clear: the mosaic exists; it shows identifiable
elements (for instance, people and animals engaged in recognizable activities); there
are large patches missing or still invisible, but experts can already tell that the mosaic
represents a scene from,say,Homer’s Odyssey.Similarly,for dynamical complex adaptive
systems, it is clear that a theory exists that, eventually, can be fully developed. There
are those who say that complex systems will never be understood or that, by their very
nature, they are incomprehensible. This book will demonstrate that such statements are
incorrect. The elements of a theory of complex systems are becoming clear: dynamical
multilayer networks, scaling, statistical mechanics of algorithmic dynamics, evolution
and co-evolution, and information theory. The essence of this book is to focus on these
components, clarify their meaning in the context of complex systems, and enable the
reader with a mathematical skill set to apply them to concrete problems in the world of
complex systems.
The book is written in mathematical language because this is the only way to
express facts in a quantitative and predictive manner and to make statements that are
unambiguous. We aim for consistency. The book should be comprehensible so that no-
one with an understanding of basic calculus, linear algebra, and statistics need refer
to other works. The book is particularly designed for graduate students in physics or
mathematics. We try to avoid ambiguous statements while, at the same time, being as
general as possible. The hope is that this work will serve as a textbook and as a starting
point for journeys into new and unexplored territory.
Many complex systems are often sensitive to details in their internal setup, to initial
and to boundary conditions. Concepts that proved to be extremely robust and effective in
non-complex systems, such as the central limit theorem, classical statistical mechanics, or
information theory, lose their predictive power when confronted with complex systems.
Extreme care is thus needed in any attempt to apply these otherwise distinguished
concepts to complex systems: doing so could end in confusion and nonsensical results.
In several concrete examples, we will demonstrate the importance of understanding what
these methods mean in the context of complex systems and whether they can or cannot
be applied. We will discuss how some of these classical concepts can be generalized to
become useful for understanding complex systems.
The book is also a statement about our belief that the exact sciences may be entering
a phase of transition from a traditional analytical description of nature, as used with
tremendous success since Galileo and Newton, towards an algorithmic description.
Whereas the analytical description of nature is, conceptually, based largely on differential
equations and analytical equations of motion, the algorithmic view takes into account
evolutionary and co-evolutionary aspects of dynamics. It provides a framework for
Preface vii
systems that can endogenously change their internal interaction networks, rules of
functioning, dynamics, and even environment, as they evolve in time. Algorithmic
dynamics, which is characteristic of complex dynamical systems, may be a key to the
quantitative and predictive understanding of many natural and man-made systems. In
contrast to physical systems, which typically evolve analytically, algorithmic dynamics
describe certainly how living, social, environmental, and economic systems unfold.
This algorithmic view is not new but has been advocated by authors like Joseph A.
Schumpeter, Stuart Kauffman, and Brian Arthur. However, it has not, to date, been
picked up by mainstream science, and it has never been presented in the context of the
theory of complex systems.
This book is based on a two-semester course, that has been held at the Medical
University of Vienna since 2011. We are grateful to our students and to Kathryn Platzer
and Anita Wanjek for helping us with the manuscript.
ST Vienna January 2018
Introduction to the Theory of Complex Systems Stefan Thurner
Contents
1 Introduction to Complex Systems 1
1.1 Physics, biology, or social science? 1
1.2 Components from physics 1
1.2.1 The nature of the fundamental forces 2
1.2.2 What does predictive mean? 3
1.2.3 Statistical mechanics—predictability on stochastic grounds 5
1.2.4 The evolution of the concept of predictability in physics 5
1.2.5 Physics is analytic, complex systems are algorithmic 6
1.2.6 What are complex systems from a physics point of view? 7
1.2.7 A note on chemistry—the science of equilibria 9
1.3 Components from the life sciences 10
1.3.1 Chemistry of small systems 10
1.3.2 Biological interactions happen on
networks—almost exclusively 12
1.3.3 Evolution 13
1.3.4 Adaptive and robust—the concept of the edge of chaos 16
1.3.5 Components taken from the life sciences 19
1.4 Components from the social sciences 19
1.4.1 Social systems continuously restructuring networks 20
1.5 What are Complex Systems? 21
1.5.1 What is co-evolution? 24
1.5.2 The role of the computer 25
1.6 The structure of the book 26
1.6.1 What has complexity science contributed to the history of science? 27
2 Probability and Random Processes 29
2.1 Overview 29
2.1.1 Basic concepts and notions 31
2.1.2 Probability and information 36
2.2 Probability 39
2.2.1 Basic probability measures and the Kolmogorov axioms 39
2.2.2 Histograms and relative frequencies 41
2.2.3 Mean, variance and higher moments 41
2.2.4 More than one random variable 44
2.2.5 A note on Bayesian reasoning 47
2.2.6 Bayesian and frequentist thinking 52
x Contents
2.3 The law of large numbers—adding random numbers 53
2.3.1 The central limit theorem 55
2.3.2 Generalized limit theorems and α-stable processes 59
2.4 Fat-tailed distribution functions 65
2.4.1 Distribution functions that show power law tails 66
2.4.2 Other distribution functions 69
2.5 Stochastic processes 75
2.5.1 Simple stochastic processes 76
2.5.2 History- or path-dependent processes 84
2.5.3 Reinforcement processes 85
2.5.4 Driven dissipative systems 86
2.6 Summary 89
2.7 Problems 90
3 Scaling 93
3.1 Overview 93
3.1.1 Definition of scaling 95
3.2 Examples of scaling laws in statistical systems 96
3.2.1 A note on notation for distribution functions 98
3.3 Origins of scaling 100
3.3.1 Criticality 101
3.3.2 Self-organized criticality 105
3.3.3 Multiplicative processes 106
3.3.4 Preferential processes 108
3.3.5 Sample space reducing processes 110
3.3.6 Other mechanisms 119
3.4 Power laws and how to measure them 120
3.4.1 Maximum likelihood estimator for power law exponents λ < −1 120
3.4.2 Maximum likelihood estimator for power laws for all exponents 122
3.5 Scaling in space—symmetry of non-symmetric objects, fractals 124
3.5.1 Self-similarity and scale-invariance 125
3.5.2 Scaling in space: fractals 125
3.5.3 Scaling in time—fractal time series 129
3.6 Example—understanding allometric scaling in biology 131
3.6.1 Understanding the 3/4 power law 133
3.6.2 Consequences and extensions 136
3.7 Summary 137
3.8 Problems 139
4 Networks 141
4.1 Overview 141
4.1.1 Historical origin of network science 143
4.1.2 From random matrix theory to random networks 143
4.1.3 Small worlds and power laws 144
4.1.4 Networks in the big data era 145
Contents xi
4.2 Network basics 145
4.2.1 Networks or graphs? 146
4.2.2 Nodes and links 146
4.2.3 Adjacency matrix of undirected networks 146
4.3 Measures on networks 151
4.3.1 Degree of a node 151
4.3.2 Walking on networks 153
4.3.3 Connectedness and components 154
4.3.4 From distances on networks to centrality 155
4.3.5 Clustering coefficient 156
4.4 Random networks 159
4.4.1 Three sources of randomness 160
4.4.2 Erdős–Rényi networks 161
4.4.3 Phase transitions in Erdős–Rényi networks 163
4.4.4 Eigenvalue spectra of random networks 165
4.5 Beyond Erdős–Rényi—complex networks 167
4.5.1 Generalized Erdős–Rényi networks 168
4.5.2 Network superposition model 170
4.5.3 Small worlds 171
4.5.4 Hubs 173
4.6 Communities 178
4.6.1 Graph partitioning and minimum cuts 179
4.6.2 Hierarchical clustering 180
4.6.3 Divisive clustering in the Girvan–Newman algorithm 181
4.6.4 Modularity optimization 182
4.7 Functional networks—correlation network analysis 184
4.7.1 Construction of correlation networks 186
4.7.2 Filtering the correlation network 190
4.8 Dynamics on and of networks 194
4.8.1 Diffusion on networks 195
4.8.2 Laplacian diffusion on networks 196
4.8.3 Eigenvector centrality 199
4.8.4 Katz prestige 200
4.8.5 PageRank 200
4.8.6 Contagion dynamics and epidemic spreading 201
4.8.7 Co-evolving spreading models—adaptive networks 205
4.8.8 Simple models for social dynamics 206
4.9 Generalized networks 208
4.9.1 Hypergraphs 209
4.9.2 Power graphs 209
4.9.3 Multiplex networks 210
4.9.4 Multilayer networks 211
4.10 Example—systemic risk in financial networks 212
4.10.1 Quantification of systemic risk 213
4.10.2 Management of systemic risk 218
xii Contents
4.11 Summary 219
4.12 Problems 222
5 Evolutionary Processes 224
5.1 Overview 224
5.1.1 Science of evolution 225
5.1.2 Evolution as an algorithmic three-step process 227
5.1.3 What can be expected from a science of evolution? 230
5.2 Evidence for complex dynamics in
evolutionary processes 232
5.2.1 Criticality, punctuated equilibria, and the abundance of
fat-tailed statistics 232
5.2.2 Evidence for combinatorial co-evolution 234
5.3 From simple evolution models to a general
evolution algorithm 236
5.3.1 Traditional approaches to evolution—the
replicator equation 237
5.3.2 Limits to the traditional approach 241
5.3.3 Towards a general evolution algorithm 242
5.3.4 General evolution algorithm 244
5.4 What is fitness? 246
5.4.1 Fitness landscapes? 247
5.4.2 Simple fitness landscape models 247
5.4.3 Evolutionary dynamics on fitness landscapes 249
5.4.4 Co-evolving fitness landscapes—The Bak–Sneppen model 261
5.4.5 The adjacent possible in fitness landscape models 263
5.5 Linear evolution models 264
5.5.1 Emergence of auto-catalytic sets—the
Jain–Krishna model 265
5.5.2 Sequentially linear models and the edge of chaos 271
5.5.3 Systemic risk in evolutionary
systems—modelling collapse 277
5.6 Non-linear evolution models—combinatorial evolution 281
5.6.1 Schumpeter got it right 282
5.6.2 Generic creative phase transition 282
5.6.3 Arthur–Polak model of technological evolution 286
5.6.4 The open-ended co-evolving combinatorial critical
model—CCC model 288
5.6.5 CCC model in relation to other evolutionary models 298
5.7 Examples—evolutionary models for economic predictions 299
5.7.1 Estimation of fitness of countries from economic data 300
5.7.2 Predicting product diversity from data 304
Contents xiii
5.8 Summary 308
5.9 Problems 311
6 Statistical Mechanics and Information Theory for Complex Systems 313
6.1 Overview 313
6.1.1 The three faces of entropy 314
6.2 Classical notions of entropy for simple systems 318
6.2.1 Entropy and physics 321
6.2.2 Entropy and information 328
6.2.3 Entropy and statistical inference 343
6.2.4 Limits of the classical entropy concept 348
6.3 Entropy for complex systems 349
6.3.1 Complex systems violate ergodicity 350
6.3.2 Shannon–Khinchin axioms for complex systems 352
6.3.3 Entropy for complex systems 352
6.3.4 Special cases 356
6.3.5 Classification of complex systems based on their entropy 358
6.3.6 Distribution functions from the complex systems entropy 361
6.3.7 Consequences for entropy when giving up ergodicity 363
6.3.8 Systems that violate more than the composition axiom 365
6.4 Entropy and phasespace for physical complex systems 365
6.4.1 Requirement of extensivity 365
6.4.2 Phasespace volume and entropy 366
6.4.3 Some examples 369
6.4.4 What does non-exponential phasespace growth imply? 373
6.5 Maximum entropy principle for complex systems 374
6.5.1 Path-dependent processes and multivariate distributions 374
6.5.2 When does a maximum entropy principle exist for
path-dependent processes? 375
6.5.3 Example—maximum entropy principle for path-dependent
random walks 380
6.6 The three faces of entropy revisited 382
6.6.1 The three entropies of the Pólya process 383
6.6.2 The three entropies of sample space reducing processes 387
6.7 Summary 393
6.8 Problems 395
7 The Future of the Science of Complex Systems? 397
8 Special Functions and Approximations 399
8.1 Special functions 399
8.1.1 Heaviside step function 399
8.1.2 Dirac delta function 399
xiv Contents
8.1.3 Kronecker delta 400
8.1.4 The Lambert-W function 400
8.1.5 Gamma function 401
8.1.6 Incomplete Gamma function 402
8.1.7 Deformed factorial 402
8.1.8 Deformed multinomial 402
8.1.9 Generalized logarithm 402
8.1.10 Pearson correlation coefficient 403
8.1.11 Chi-squared distribution 403
8.2 Approximations 404
8.2.1 Stirling’s formula 404
8.2.2 Expressing the exponential function as a power 404
8.3 Problems 405
References 407
Index 425
1
Introduction to Complex Systems
1.1 Physics, biology, or social science?
The science of complex systems is not an offspring of physics, biology, or the social
sciences, but a unique mix of all three. Before we discuss what the science of complex
systems is or is not, we focus on the sciences from which it has emerged. By recalling
what physics, biology, and the social sciences are, we will develop an intuitive feel for
complex systems and how this science differs from other disciplines. This chapter thus
aims to show that the science of complex systems combines physics, biology, and the
social sciences in a unique blend that is a new discipline in its own right. The chapter
will also clarify the structure of the book.
1.2 Components from physics
Physics makes quantitative statements about natural phenomena. Quantitative state-
ments can be formulated less ambiguously than qualitative descriptions, which are
based on words. Statements can be expressed in the form of predictions in the sense
that the trajectory of a particle or the outcome of a process can be anticipated. If
an experiment can be designed to test this prediction unambiguously, we say that the
statement is experimentally testable. Quantitative statements are validated or falsified
using quantitative measurements and experiments.
Physics is the experimental, quantitative, and predictive science of matter and its
interactions.
Pictorially, physics progresses by putting specific questions to nature in the form of
experiments; surprisingly, if the questions are well posed, they result in concrete answers
that are robust and repeatable for an arbitrary number of times by anyone who can
do the same experiment. This method of generating knowledge about nature, by using
experiments to ask questions of it, is unique in the history of humankind and is called the
scientific method. The scientific method has been at the core of all technological progress
since the time of the Enlightenment.
Introduction to the Theory of Complex Systems. Stefan Thurner, Rudolf Hanel, and Peter Klimek,
Oxford University Press (2018). © Stefan Thurner, Rudolf Hanel, and Peter Klimek.
DOI: 10.1093/oso/9780198821939.001.0001
2 Introduction to Complex Systems
Physics deals with matter at various scales and levels of granularity, ranging from
macroscopic matter like galaxies, stars, planets, stones, and projectiles, to the scale of
molecules, atoms, hadrons, quarks, and gauge bosons. There are four fundamental forces
at the core of all interactions between all forms of matter: gravity, electromagnetism and
two types of nuclear force: the weak and the strong. According to quantum field theory,
all interactions in the physical world are mediated by the exchange of gauge bosons. The
graviton, the boson for gravity, has not yet been confirmed experimentally.
1.2.1 The nature of the fundamental forces
The four fundamental forces are very different in nature and strength. They are
characterized by a number of properties that are crucial for understanding how and why
it was possible to develop physics without computers. These properties are set out here.
Usually, the four fundamental forces are homogeneous and isotropic in space (and
time). Forces that are homogeneous act in the same way everywhere in space; forces
that are isotropic are the same, regardless of the direction in which they act. These two
properties drastically simplify the mathematical treatment of interactions in physics. In
particular, forces can be written as derivatives of potentials, two-body problems can
effectively be treated as one-body problems, and the so-called mean field approach
can be used for many-body systems. The mean field approach is the assumption that
a particle reacts to the single field generated by the many particles around it. Often,
such systems can be fully understood and solved even without computers. There are
important exceptions, however; one being that the strong force acts as if interactions were
limited to a ‘string’, where flux-tubes are formed between interacting quarks, similar to
type II superconductivity.
The physical forces differ greatly in strength. Compared to the strong force, the
electromagnetic force is about a thousand times weaker, the weak force is about 1016
times weaker, and the gravitational force is only 10−41 of the strength of the strong force
[405]. When any physical phenomenon is being dealt with, usually only a single force
has to be considered. All the others are small enough to be safely neglected. Effectively,
the superposition of four forces does not matter; for any phenomenon, only one force
Characteristic
Matter Interaction types length scale
macroscopic matter gravity, electromagnetism all ranges
molecules electromagnetism all ranges
atoms electromagnetism, weak force ∼ 10−18 m
hadrons and leptons electromagnetism, weak and strong force 10−18 − 10−15 m
quarks and gauge bosons electromagnetism, weak and strong force 10−18 − 10−15 m
Components from physics 3
is relevant. We will see that this is drastically different in complex systems, where a
multitude of different interaction types of similar strength often have to be taken into
account simultaneously.
Typically, physics does not specify which particles interact with each other, as
they interact in identical ways. The interaction strength depends only on the relevant
interaction type, the form of the potential, and the relative distance between particles.
In complex systems, interactions are often specific. Not all elements, only certain pairs or
groups of elements, interact with each other. Networks are used to keep track of which
elements interact with others in a complex system.
1.2.2 What does predictive mean?
Physics is an experimental and a predictive science. Let us assume that you perform an
experiment repeatedly; for example, you drop a stone and record its trajectory over time.
The predictive or theoretical task is to predict this trajectory based on an understanding
of the phenomenon. Since Newton’s time, understanding a phenomenon in physics
has often meant being able to describe it with differential equations. A phenomenon
is understood dynamically if its essence can be captured in a differential equation.
Typically, the following three-step process is then followed:
1. Find the differential equations to encode your understanding of a dynamical
system.In the example of our stone-dropping experiment,we would perhaps apply
Newton’s equation,
m
d2x
dt2
= F(x),
where t is time, x(t) is the trajectory, m is mass of the stone, and F is force on the
stone. In our case, we would hope to identify the force with gravity, meaning that
F = gm.
2. Once the equation is specified, try to solve it. The equation can be solved
using elementary calculus, and we get, x(t) = x0 + v0t + 1
2 gt2. To make a testable
prediction we have to fix the boundary or initial conditions; in our case we have
to specify what the initial position x0 and initial velocity v0 are in our experiment.
Once this is done, we have a prediction for the trajectory of the stone, x(t).
3. Compare the result with your experiments. Does the stone really follow this
predicted path x(t)? If it does, you might claim that you have understood
something on a quantitative, predictive, and experimental basis. If the stone
(repeatedly) follows another trajectory, you have to try harder to find a better
prediction.
Fixing initial or boundary conditions means simply taking the system out of its
context, separating it from the rest of the universe. There are no factors, other than
the boundary conditions, that influence the motion of the system from the outside. That
4 Introduction to Complex Systems
such a separation of systems from their context is indeed possible is one reason why
physics has been so successful, even before computing devices became available. For
many complex systems, it is impossible to separate the dynamics from the context in
a clear way. This means that many outside influences that are not under experimental
control will simultaneously determine their dynamics.
In principle, the same thinking used to describe physical phenomena holds for
arbitrarily complicated systems. Assume that a vector X(t) represents the state of a
system at a given time (e.g. all positions and momenta of its elements), we then get a
set of equations of motion in the form,
d2X(t)
dt2
= G(X(t)),
where G is a high-dimensional function. Predictive means that, in principle, these
equations can be solved. Pierre-Simon Laplace was following this principle when he
introduced a hypothetical daemon familiar with the Newtonian equations of motion and
all the initial conditions of all the elements of a large system (the universe) and thus able to
solve all equations. This daemon could then predict everything. The problem, however,
is that such a daemon is hard to find. In fact, these equations can be difficult, even
impossible,to solve.Already for three bodies that exert a gravitational force on each other,
the famous three-body problem (e.g. Sun, Earth, Moon), there is no general analytical
solution provided by algebraic and transcendental functions. This was first demonstrated
by Henri Poincaré and paved the way for what is today called chaos theory. In fact,
the strict Newton–Laplace program of a predictable world in terms of unambiguously
computable trajectories is completely useless for most systems composed of many
particles. Are these large systems not then predictable? What about systems with an
extremely large number of elements, such as gases, which contain of the order of O(1023)
molecules?
Imagine that we perform the following experiment over and over again: we heat and
cool water. We gain the insight that if we cool water to 0oC and below, it will freeze,
that if we heat it to 100oC it will start to boil and, under standard conditions, ultimately
evaporate. These phase transitions will happen with certainty. In that sense, they are
predictable. We cannot predict from the equations of motion which molecule will be the
first to leave the liquid. Given appropriate instrumentation, we can perhaps measure the
velocity of a few single gas molecules at a point in time, but certainly not all 1023. What
can be measured is the probability distribution that a gas molecule is observed with a
specific velocity v,
p(v) ∼ v2
exp

−
mv2
2kT

,
where T is temperature, and k is Boltzmann’s constant. Given this probability distribu-
tion, it is possible to derive a number of properties of gases that perfectly describe their
macroscopic behaviour and make them predictable on a macroscopic (or systemic) level.
Components from physics 5
For non-interacting particles,these predictions can be extremely precise.The predictions
immediately start to degenerate as soon as there are strong interactions between the
particles or if the number of particles is not large enough. Note that the term prediction
now has a much weaker meaning than in the Newton–Laplace program. The meaning
has shifted from being a description based on the exact knowledge of each component
of a system to one based on a probabilistic knowledge of the system. Even though one
can still make extremely precise predictions about multiparticle systems in a probabilistic
framework, the concept of determinism is now diluted. The framework for predictions
on a macroscopic level about systems composed of many particles on a probabilistic
basis is called statistical mechanics.
1.2.3 Statistical mechanics—predictability
on stochastic grounds
The aim of statistical mechanics is to understand the macroscopic properties of a system
on the basis of a statistical description of its microscopic components. The idea behind
it is to link the microscopic world of components with the macroscopic properties of the
aggregate system. An essential concept that makes this link possible is Boltzmann–Gibbs
entropy.
A system is often prepared in a macrostate, which means that aggregate properties
like the temperature or pressure of a gas are known. There are typically many pos-
sible microstates that are associated with that macrostate. A microstate is a possible
microscopic configuration of a system. For example, a particular microstate is one for
which all positions and velocities of gas molecules in a container are known. There are
usually many microstates that can lead to one and the same macrostate; for example, the
temperature and pressure in the container. In statistical mechanics, the main task is to
compute the probabilities for the many microstates that lead to that single macrostate. In
physics, the macroscopic description is often relatively simple. Macroscopic properties
are often strongly determined by the phase in which the system is. Physical systems often
have very few phases—typically solid, gaseous, or liquid.
Within the Newton–Laplace framework, traditional physics works with extreme
precision for very few particles or for extremely many non-interacting particles, where
the statistical mechanics of Boltzmann–Gibbs applies. In other words, the class of
systems that can be understood with traditional physics is not that big. Most systems are
composed of many strongly interacting particles. Often, the interactions are of multiple
types, are non-linear, and vary over time. Very often, such systems are complex systems.
1.2.4 The evolution of the concept of predictability in physics
The concept of prediction and predictability has changed in significant ways over the
past three centuries. Prediction in the eighteenth century was quite different from the
concept of prediction in the twenty-first. The concept of determinism has undergone at
least three transitions [300].
6 Introduction to Complex Systems
In the classical mechanics of the eighteenth and nineteenth centuries, prediction meant
the exact prediction of trajectories. Equations of motion would make exact statements
about the future evolution of simple dynamical systems. The extension to more than
two bodies has been causing problems since the very beginning of Newtonian physics;
see, for example, the famous conflict between Isaac Newton and John Flamsteed on the
predictability of the orbit of the Moon. By about 1900, when interest in understanding
many-body systems arose, the problem became apparent. The theory of Ludwig Boltz-
mann, referred to nowadays as statistical mechanics, was effectively based on the then
speculative existence of atoms and molecules, and it drastically changed the classical
concept of predictability.
In statistical mechanics, based on the assumption that atoms and molecules follow
Newtonian trajectories, the law of large numbers allows stochastic predictions to be
made about the macroscopic behaviour of gases. Statistical mechanics is a theory of
the macroscopic or collective behaviour of non-interacting particles. The concepts of
predictability and determinism were subject to further change in the 1920s with the
emergence of quantum mechanics and non-linear dynamics.
In quantum mechanics, the concept of determinism disappears altogether due to
the fundamental simultaneous unpredictability of the position and momentum of the
(sub-)atomic components of a system. However, quantum mechanics still allows us to
make extremely high-quality predictions on a collective basis. Collective phenomena
remain predictable to a large extent on a macro- or systemic level.
In non-linear systems, it became clear that even in systems for which the equations of
motion can be solved in principle, the sensitivity to initial conditions can be so enormous
that the concept of predictability must,for all practical purposes,be abandoned.A further
crisis in terms of predictability arose in the 1990s, when interest in more general forms
of interactions began to appear.
In complex systems, the situation is even more difficult than in quantum mechanics,
where there is uncertainty about the components, but not about its interactions. For
many complex systems, not only can components be unpredictable, but the interactions
between components can also become specific, time-dependent, non-linear, and unpre-
dictable. However, there is still hope that probabilistic predictions about the dynamics
and the collective properties of complex systems are possible. Progress in the science of
complex systems will, however, be impossible without a detailed understanding of the
dynamics of how elements specifically interact with each other. This is, of course, only
possible with massive computational effort and comprehensive data.
1.2.5 Physics is analytic, complex systems are algorithmic
Physics largely follows an analytical paradigm. Knowledge of phenomena is expressed
in analytical equations that allow us to make predictions. This is possible because
interactions are homogeneous, isotropic, and of a single type. Interactions in physics
typically do not change over time. They are usually given and fixed. The task is to work
out specific solutions regarding the evolution of the system for a given set of initial and
boundary conditions.
Components from physics 7
This is radically different for complex systems, where interactions themselves can
change over time as a consequence of the dynamics of the system. In that sense, complex
systems change their internal interaction structure as they evolve. Systems that change
their internal structure dynamically can be viewed as machines that change their internal
structure as they operate. However, a description of the operation of a machine using
analytical equations would not be efficient. Indeed, to describe a steam engine by seeking
the corresponding equations of motion for all its parts would be highly inefficient.
Machines are best described as algorithms—a list of rules regarding how the dynamics of
the system updates its states and future interactions, which then lead to new constraints
on the dynamics at the next time step. First, pressure builds up here, then a valve opens
there, vapour pushes this piston, then this valve closes and opens another one, driving
the piston back, and so on.
Algorithmic descriptions describe not only the evolution of the states of the com-
ponents of a system, but also the evolution of its internal states (interactions) that will
determine the next update of the states at the next time step. Many complex systems work
in this way: states of components and the interactions between them are simultaneously
updated, which can lead to the tremendous mathematical difficulties that make complex
systems so hard to understand. These difficulties in their various forms will be addressed
time and again in this book. Whenever it is possible to ignore the changes in the
interactions in a dynamical system, analytic descriptions become meaningful.
Physics is generally analytic, complex systems are algorithmic. Quantitative pre-
dictions that can be tested experimentally can be made within the analytic or the
algorithmic paradigm.
1.2.6 What are complex systems from a physics point of view?
From a physics point of view, one could try to characterize complex systems by the
following extensions to physics.
• Complex systems are composed of many elements, components, or particles.
These elements are typically described by their state, such as velocity, position,
age, spin, colour, wealth, mass, shape, and so on. Elements may have stochastic
components.
• Elements are not limited to physical forms of matter; anything that can interact
and be described by states can be seen as generalized matter.
• Interactions between elements may be specific. Who interacts with whom, when,
in what form, and how strong is described by interaction networks.
• Interactions are not limited to the four fundamental forces, but can be of a more
complicated type. Generalized interactions are not limited to the exchange of
gauge bosons, but can be mediated through exchange of messages, objects, gifts,
information, even bullets, and so on.
continued
8 Introduction to Complex Systems
• Complex systems may involve superpositions of interactions of similar strengths.
• Complex systems are often chaotic in the sense that they depend strongly on the
initial conditions and details of the system. Update equations that algorithmically
describe the dynamics are often non-linear.
• Complex systems are often driven systems. Some obey conservation laws, some
do not.
• Complex systems can exhibit a rich phase structure and have a huge variety of
macrostates that often cannot be inferred from the properties of the elements. This
is sometimes referred to as emergence. Simple forms of emergence are, of course,
already present in physics. The spectrum of the hydrogen atom or the liquid phase
of water are emergent properties of the involved particles and their interactions.
With these extensions, we can derive a physics-based definition for what the theory
of complex systems is.
The theory of complex systems is the quantitative, predictive and experimentally
testable science of generalized matter interacting through generalized interactions.
Generalized interactions are described by the interaction type and who interacts with
whom at what time and at what strength. If there are more than two interacting elements
involved, interactions can be conveniently described by time-dependent networks,
Mα
ij (t),
where i and j label the elements in the system, and α denotes the interaction type.
Mα
ij (t) are matrix elements of a structure with three indices. The value Mα
ij (t) indicates
the strength of the interaction of type α between element i and j at time t. Mα
ij (t)=0
means no interaction of that type. Interactions in complex systems remain based on the
concept of exchange; however, they are not limited to the exchange of gauge bosons. In
complex systems, interactions can happen through communication, where messages are
exchanged, through trade where goods and services are exchanged, through friendships,
where bottles of wine are exchanged, and through hostility, where insults and bullets are
exchanged.
Because of more specific and time-varying interactions and the increased variety of
types of interaction, the variety of macroscopic states and systemic properties increases
drastically in complex systems. This diversity increase of macrostates and phenomena
emerges from the properties both of the system’s components and its interactions.
The phenomenon of collective properties arising that are, a priori, unexpected from
the elements alone is sometimes called emergence. This is mainly a consequence of the
presence of generalized interactions. Systems with time-varying generalized interactions
can exhibit an extremely rich phase structure and may be adaptive. Phases may co-exist
in particular complex systems.The plurality of macrostates in a system leads to new types
Components from physics 9
of questions that can be addressed, such as: what is the number of macrostates? What are
their co-occurrence rates? What are the typical sequences of occurrence? What are the
life-times of macrostates? What are the probabilities of transition between macrostates?
As yet, there are no general answers to these questions, and they remain a challenge for
the theory of complex systems. For many complex systems, the framework of physics is
incomplete. Some of the missing concepts are those of non-equilibrium, evolution, and
co-evolution. These concepts will be illustrated in the sections that follow.
1.2.7 A note on chemistry—the science of equilibria
In chemistry, interactions between atoms and molecules are specific in the sense that
not every molecule binds to (interacts with) any other molecule. So why is chemistry
usually not considered to be a candidate for a theory of complex systems? To a large
extent, chemistry is based on the law of mass action. Many particles interact in ways that
lead to equilibrium states. For example, consider two substances A and B that undergo
a reaction to form substances S and T,
αA + βB ⇋ σS + τT,
where α,β,σ,τ are the stoichiometric constants, and k+ and k− are the forward and
backward reaction rates, respectively. The forward reaction happens at a rate that is
proportional to k+{A}α{B}β, the backward reaction is proportional to k−{S}σ {T}τ . The
brackets indicate the active (reacting) masses of the substances. Equilibrium is attained
if the ratio of the reaction rates equals a constant K,
K =
k+
k−
=
{S}σ {T}τ
{A}α{B}β
.
Note that the solution to this equation gives the stationary concentrations of the
various substances. Technically, these equations are fixed point equations. In contrast to
chemical reactions and statistical mechanics, many complex systems are characterized
by being out-of-equilibrium. Complex systems are often so-called driven systems, where
the system is (exogenously) driven away from its equilibrium states. If there is no
equilibrium, there is no way of using fixed-point-type equations to solve the problems.
The mathematical difficulties in dealing with out-of-equilibrium or non-equilibrium
systems are tremendous and generally beyond analytical reach. One way that offers
a handle on understanding driven out-of-equilibrium systems is the concept of self-
organized criticality, which allows essential elements of the statistics of complex systems
to be understood; in particular, the omnipresence of power laws.
Many complex systems are driven systems and are out-of-equilibrium.
10 Introduction to Complex Systems
By comparing the nature of complex systems and basic equilibrium chemistry, we
learn that the mere presence of specific interactions does not automatically lead us
to complex systems. However, cyclical catalytic chemical reactions [22, 113, 205], are
classic prototypes of complex systems.
1.3 Components from the life sciences
We now present several key features of complex systems that have been adopted from
biology. In particular, we discuss the concepts of evolution, adaptation, self-organization,
and, again, networks.
The life sciences describe the experimental science of living matter. What is living
matter? A reasonable minimal answer has been attempted by the following three
statements [223]:
• Living matter must be self-replicating.
• It must run through at least one Carnot cycle.
• It must be localized.
Life without self-replication is not sustainable. It is, of course, conceivable that non-
self-replicating organisms can be created that live for a time and then vanish and have to
be recreated. However, this is not how we experience life on the planet, which is basically
a single, continuous, living germ line that originated about 3.5 billion years ago, and has
existed ever since. A Carnot cycle is a thermodynamic cyclical process that converts
thermal energy into work, or vice versa. Starting from an initial state, after the cycle is
completed, the system returns to the same initial state. The notion that living matter must
perform at least one Carnot cycle is motivated by the fact that all living organisms use
energy gradients (usually thermal) to perform work of some kind. For example, this work
could be used for moving or copying DNA molecules. This view also pays tribute to the
fact that all living objects are out-of-equilibrium and constantly driven by energy gradi-
ents. If, after performing work, a system were not able to reach its previous states, it would
be hard to call it a living system. Both self-replication and Carnot cycles require some
sort of localization. On this planet, this localization typically happens at the level of cells.
Living matter uses energy and performs work on short timescales without signifi-
cantly transforming itself. It is constantly driven by energy gradients and is out-of-
equilibrium. Self-replication and Carnot cycles require localization.
1.3.1 Chemistry of small systems
Living matter, as we know it on this planet, is a self-sustained sequence of genetic activity
over time. By genetic activity we mean that genes (locations on the DNA) can be turned
Components from the life sciences 11
Figure 1.1 Schematic view of genetic activity and what a link Mki means in a genetic regulatory
network. (a) Gene i activates gene k if something like the following process takes place: the activity of
gene i means that a specific sub-sequence of the deoxyribonucleic acid (DNA) (gene) is copied into a
complementary structure, an mRNA molecule. This mRNA molecule from gene i, might get ‘translated’
(copied again) into a protein of type i.This protein can bind with other proteins to form a cluster of proteins,
a ‘complex’. Such complexes can bind to other regions of the DNA, say, the region that is associated with
gene k,and thereby cause the activation of gene k.(b) Gene i causes gene j to become active,which activates
genes m and n. (c) The process, where the activity of gene i triggers the activity of other genes, can be
represented as a directed genetic regulatory network. Complexes can also deactivate genes. If gene j is
active, a complex might deactivate it.
‘on’ and ‘off’. If a gene is on, it triggers the production of molecular material, such as
ribonucleic acid (RNA) that can later be translated into proteins. A gene is typically
turned on by a cluster of proteins that bind to each other to form a so-called ‘complex’.
If such a cluster binds to a specific location on the DNA, this could cause a copying
process to be activated at this position; the gene is then active or ‘on’; see Figure 1.1.
Genetic activity is based on chemical reactions that take place locally, usually within
cells or their nuclei. However, these chemical reactions are special in the sense that only
a few molecules are involved [341]. In traditional chemistry, reactions usually involve
billions of atoms or molecules. What happens within a cell is chemistry with a few
molecules. This immediately leads to a number of problems:
• It can no longer be assumed that molecules meet by chance to react.
• With only a few molecules present that might never meet to react, the concept of
equilibrium becomes useless.
• Without equilibrium, there is no law of mass action.
12 Introduction to Complex Systems
If there is no law of mass action, how can chemistry be done? Classical equilibrium
chemistry is inadequate for dealing with molecular mechanisms in living matter. In
cells, molecules are often actively transported from the site of production (typically, the
nucleus, for organisms that have one) to where they are needed in the cell. This means
that diffusion of molecules no longer follows the classical diffusion equation. Instead,
molecular transport is often describable by an anomalous diffusion equation of the form,
d
dt
p(x,t) = D
d2+ν
dx2+ν
p(x,t)µ
,
where p(x,t) is the probability of finding a molecule at position x at time t, D is the
diffusion constant, and µ and ν are exponents that make the diffusion equation non-
linear.
Chemical binding often depends on the three-dimensional structure of the molecules
involved. This structure can depend on the ‘state’ of the molecules. For example, a
molecule can be in a normal or a phosphorylated state.Phosphorylation happens through
the addition of a phosphoryl group (PO2−
3 ) to a molecule, which may change its entire
structure. This means that for a particular state of a molecule it binds to others, but
does not bind if it is in the other state. A further complication in the chemistry of a
few particles arises with the reaction rates. By definition, the term reaction rate only
makes sense for sufficiently large systems. The speed of reactions depends crucially on
the statistical mechanics of the underlying small system and fluctuation theorems may
now become important [122].
1.3.2 Biological interactions happen on
networks—almost exclusively
Genetic regulation governs the temporal sequence of the abundance of proteins, nucleic
material, and metabolites within any living organism. To a large extent, genetic regulation
can be viewed as a discrete interaction: a gene is active or inactive; a protein binds to
another or it does not; a molecule is phosphorylated or not. Discrete interactions are
well-described by networks. In the context of the life sciences, three well-known networks
are the metabolic network, the protein–protein binding network, and the Boolean gene-
regulatory network. The metabolic network1 is the set of linked chemical reactions
occurring within a cell that determine the cell’s physiological and biochemical properties.
The metabolic network is often represented in networks of chemical reactions, where
nodes represent substances and directed links (arrows) correspond to reactions or
catalytic influences. The protein–protein networks represent empirical findings about
protein–protein interactions (binding) in network representations [102]. Nodes are
proteins, and links specify the interaction type between them. Different interaction types
include stable, transient, and homo- or hetero-oligomer interactions.
1 For an example of what metabolic networks look like, see http://biochemical-pathways.com/#/map/1
Components from the life sciences 13
1.3.3 What is evolution?
‘Nothing in biology makes sense except in the light of evolution’. Theodosius
Dobzhansky
Evolution is a natural phenomenon. It is a process that increases and destroys diversity,
and it looks like both a ‘creative’ and a ‘destructive’ process. Evolution appears in bio-
logical, technological, economical, financial, historical, and other contexts. In that sense,
evolutionary dynamics is universal. Evolutionary systems follow characteristic dynamical
and statistical patterns, regardless of the context. These patterns are surprisingly robust
and, as a natural phenomenon, they deserve a quantitative and predictive scientific
explanation.
What is evolution? Genetic material and the process of replication involve several
stochastic components that may lead to variations in the offspring. Replication and
variation are two of the three main ingredients of evolutionary processes. What evolution
means in a biological context is captured by the classic Darwinian narrative. Consider
a population of some kind that is able to produce offspring. This offspring has some
random variations (e.g. mutations). Individuals with the optimal variations with respect
to a given environment have a selection advantage (i.e. higher fitness). Fitness manifests
itself by higher reproductive success. Individuals with optimal variations will have more
offspring and will thus pass their particular variations on to a new generation. In this
way ‘optimal’ variations are selected over time. This is certainly a convincing description
of what is going on; however, in this form it may not be useful for predictive science.
How can we predict the fitness of individuals in future generations, given that life in
future environments will look very different from what it is today? Except over very
short time periods, this is a truly challenging task that is far from understood. There is a
good prospect, however, of the statistics of evolutionary systems being understood. The
Darwinian scenario fails to explain essential features about evolutionary systems, such as
the existence of boom and crash phases, where the diversity of systems radically changes
within short periods of time. An example is the massive diversification (explosion) of
species and genera about 500 million years ago in the Cambrian era. It will almost cer-
tainly never be possible to predict what species will live on Earth even 500 years from now,
but it may be perfectly possible to understand the statistics of evolutionary events and the
factors that determine the statistics. In particular, statistical statements about expected
diversity, diversification rates, robustness, resilience, and adaptability are coming within
reach. In Chapter 5 we will discuss approaches to formulating evolutionary dynamics in
ways that make them accessible both combinatorially and statistically.
The concept of evolution is not limited to biology. In the economy, the equivalent of
biological evolution is innovation, where new goods and services are constantly being
produced by combination of existing goods and services. Some new goods will be
selected in markets, while the majority of novelties will not be viable and will vanish.
The industrial revolution can be seen as one result of evolutionary dynamics, leading,
as it did, to an ongoing explosion of diversification of goods, services, and innovations.
14 Introduction to Complex Systems
Another example of evolutionary dynamics outside biology is the sequence of invention
and discovery of chemical compounds. The history of humankind itself is an example of
evolutionary dynamics. Evolutionary dynamics can take place simultaneously at various
scales. In biological settings, it works at the level of molecules, cells, organisms, and
populations; in economic settings, it can work at product, firm, corporation, and country
level. A famous application of evolutionary dynamics in computer science are so-
called genetic algorithms [194]. These algorithms mimic natural selection by iteratively
producing copies of computer code with slight variations. Those copies that perform
best for a given problem (usually an optimization task) are iteratively selected and are
passed onto the next ‘generation’ of codes.
1.3.3.1 Evolution is not physics
To illustrate that evolution is not a process that can be described with traditional physics,
we define an evolutionary process as a three-step process:
1. A new thing comes into existence within a given environment.
2. The new thing has the chance to interact with its environment. The result of this
interaction is that it gets ‘selected’ (survives) or is destroyed.
3. If the new thing gets selected in the environment, it becomes part of this environ-
ment (boundary) and thus transforms the old environment into a new one. New
and arriving things in the future will experience the new environment.In that sense,
evolution is an algorithmic process that co-evolves its boundaries.
If we try to interpret this three-step process in terms of physics, we immediately
see that even if we were able to write down the dynamics of the system in the form
of equations of motion, we would not be able to fix the system’s boundary conditions.
Obviously, the environment plays the role of the boundary conditions within which the
interactions happen. The boundary conditions evolve as a consequence of the dynamics
of the system and change at every instant. The dynamics of the boundary conditions
is dynamically coupled with the equations of motion. Consequently, as the boundary
conditions cannot be fixed, this set of equations cannot, in general, be solved and the
Newtonian method breaks down. A system of dynamical equations that are coupled
dynamically to their boundary conditions is a mathematical monster. That is why an
algorithmic process like evolution is hard to solve using analytical approaches.2
The second problem associated with evolutionary dynamics, from a physics point of
view,is that the phasespace is not well-defined.As new elements may arrive at any point in
time, it is impossible to prestate what the phasespace of such systems will be. Obviously,
this poses problems in terms of producing statistics with these systems. The situation
could be compared to trying to produce statistics by rolling a dice, whose number of
faces changes from one throw to the next.
2 Such systems can be treated analytically whenever the characteristic timescales of the processes involved
are different. In our example, this would be the case if the dynamics of the interactions of the ‘new thing’ with
the environment happens on a fast timescale, while changes in the environment happen slowly.
Components from the life sciences 15
Evolutionary dynamics is radically different from physics for two main reasons:
• In evolutionary systems, boundary conditions cannot be fixed.
• In evolutionary systems, the phasespace is not well defined—it changes over time.
New elements may emerge that change the environment and therefore also the
dynamics for all the existing elements of the system.
Evolutionary aspects are essential for many complex systems and cannot be ignored.
A great challenge in the theory of complex systems is to develop a consistent framework
that is nevertheless able to deal with evolutionary processes in quantitative and predictive
terms. We will see how a number of recently developed mathematical methods can
be used to address and deal with these two fundamental problems. In particular, in
Chapter 5, we will discuss combinatorial evolution models. These models are a good
example of how algorithmic approaches lead to quantitative and testable predictions.
1.3.3.2 The concept of the adjacent possible
A helpful steppingstone in addressing the problem of dynamically changing phasespaces
is the concept of the adjacent possible, proposed by Stuart Kauffman [223]. The adjacent
possible is the set of all possible states of the world that could potentially exist in the
next time step, given the present state of the world. It drastically reduces the size of
phasespace from all possible states to a set of possibilities that are conditional on the
present. Obviously, not everything can be produced within the next time step. There are
many states that are impossible to imagine, as the components required to make them
do not yet exist. In other words, the adjacent possible is the subset of all possible worlds
that are reachable within the next time step and depends strongly on the present state of
the world. In this view, evolution is a process that continuously ‘fills’ its adjacent possible.
The concrete realization of the adjacent possible at one time step determines the adjacent
possible at the next time step.
Thus, in the context of biological evolution or technological innovation, the adjacent
possible is a huge set, in which the present state of the world determines the potential
realization of a vast number of possibilities in the next time step. Typically, the future
states are not known. In contrast, in physics, a given state often determines the next state
with high precision.This means that the adjacent possible is a very small set.For example,
the adjacent possible of a falling stone is given by the next position (point) on its parabolic
trajectory. In comparison, the adjacent possible of an ecosystem consists of all organisms
that can be born within the next time step, with all possible mutations and variations that
can possibly happen—a large set of possibilities indeed. The concept of the adjacent
possible introduces path-dependence in the stochastic dynamics of phasespace. We will
discuss the statistics of path-dependent evolutionary processes in Chapters 5 and 6.
1.3.3.3 Summary evolutionary processes
Evolutionary processes are relevant to the treatment of complex systems for the following
reasons.
16 Introduction to Complex Systems
• For evolutionary systems, boundary conditions cannot usually be fixed. This
means that it is impossible to take the system apart and separate it from its
context without massively altering and perhaps even destroying it. The concept
of reductionism is inadequate for describing evolutionary processes.
• Evolutionary complex systems change their boundary conditions as they unfold
in time. They co-evolve with their boundary conditions. Frequently, situations are
difficult or impossible to solve analytically.
• For complex systems,the adjacent possible is a large set of possibilities.For physics,
it is typically a very small set.
• The adjacent possible itself evolves.
• In many physical systems, the realization of the adjacent possible does not
influence the next adjacent possible; in evolutionary systems, it does.
1.3.4 Adaptive and robust—the concept of the edge of chaos
Many complex systems are robust and adaptive at the same time. The ability to adapt
to changing environments and to be robust against changing environments seem to be
mutually exclusive. However, most living systems are clearly adaptive and robust at the
same time. As an explanation for how these seemingly contradictory features could co-
exist, the following view of the edge of chaos was proposed [246]. Every dynamical system
has a maximal Lyapunov exponent, which measures how fast two initially infinitesimally
close trajectories diverge over time. The exponential rate of divergence is the Lyapunov
exponent, λ,
|δX(t)| ∼ eλt
|δX(0)|,
where |δX(t)| is the distance between the trajectories at time t and |δX(0)| is the initial
separation. If λ is positive, the system is called chaotic or strongly mixing. If λ is negative,
the system approaches an attractor, meaning that two initially infinitesimally separated
trajectories converge. This attractor can be a trivial point (fixed point), a line (limit
cycle), or a fractal object. An interesting case arises when the exponent λ is exactly zero.
The system is then called quasi-periodic or at the ‘edge of chaos’. There are many low-
dimensional examples where systems exhibit all three possibilities—they can be chaotic,
periodic, or at the edge of chaos, depending on their control parameters. The simplest
of these is the logistic map.
The intuitive understanding of how a system can be adaptive and robust at the same
time if it operates at the edge of chaos,is given by the following.If λ is close to zero,it takes
only tiny changes in the system to move it from a stable and periodic mode (λ slightly
negative) to the chaotic phase (λ positive). In the periodic mode, the system is stable
and robust; it returns to the attractor when perturbed. When it transits into the chaotic
phase, say, through a strong perturbation in the environment, it will sample large regions
Discovering Diverse Content Through
Random Scribd Documents
Introduction to the Theory of Complex Systems Stefan Thurner
Introduction to the Theory of Complex Systems Stefan Thurner
Introduction to the Theory of Complex Systems Stefan Thurner
The Project Gutenberg eBook of Kansalaissota
Ranskassa
This ebook is for the use of anyone anywhere in the United States
and most other parts of the world at no cost and with almost no
restrictions whatsoever. You may copy it, give it away or re-use it
under the terms of the Project Gutenberg License included with this
ebook or online at www.gutenberg.org. If you are not located in the
United States, you will have to check the laws of the country where
you are located before using this eBook.
Title: Kansalaissota Ranskassa
Author: Karl Marx
Author of introduction, etc.: Friedrich Engels
Release date: August 21, 2017 [eBook #55401]
Language: Finnish
Credits: Produced by Jari Koivisto
*** START OF THE PROJECT GUTENBERG EBOOK KANSALAISSOTA
RANSKASSA ***
Produced by Jari Koivisto
KANSALAISSOTA RANSKASSA
Kirj.
Karl Marx
Johdannon kirjoittanut Friedrich Engels
Suomennos
Helsingissä, Työväen Sanomalehti O.-Y., 1918.
SISÄLTÖ:
1. Johdanto, kirj. Friedrich Engels. 2. Kansainvälisen työväenliiton
pääneuvoston ensimäinen selostus saksalais-ranskalaisesta sodasta,
kirj. Karl Marx. 3. Saman toinen selostus siitä, kirj. Karl Marx. 4.
Saman selostus kansalaissodasta Ranskassa, kirj. Karl Marx.
Johdanto.
Kehoitus julkaista uudelleen kansainvälisen pääneuvoston julistus
kansalaissodasta Ranskassa ja varustaa se johdannolla tuli minulle
odottamatta. Voin siitä syystä tässä ainoastaan lyhyesti kosketella
pääkohtia.
Minä asetan pääneuvoston kaksi lyhempää selostusta saksalais-
ranskalaisesta sodasta edellämainitun pitemmän teoksen edelle.
Ensiksikin siitä syystä, että Kansalaissodassa viitataan toiseen
niistä, jota taas ei voi täysin ymmärtää lukematta toista. Toiseksi,
koska nämä molemmat, niinikään Marxin kirjoittamat selostukset
yhtä suuressa määrässä kuin Kansalaissotakin ovat erinomaisia
näytteitä kirjoittajan ihmeteltävästä, ensi kerran Louis Bonaparten
18. Brumaire-kirjassa koetellusta kyvystä selvästi käsittää suurten
historiallisten tapausten luonne, merkitys ja välttämättömät
seuraukset, jo aikana, jolloin nämä tapaukset vielä välähtelevät
silmäimme edessä tai juuri ovat päättyneet. Ja lopuksi, koska me
vielä tänä päivänä Saksassa saamme kärsiä noiden tapauksien
aiheuttamista, Marxin ennustamista seurauksista.
Vai eikö ole tapahtunut se, mitä sanotaan ensimäisessä
tiedonannossa, että jos Saksan puolustussota Louis Bonapartea
vastaan turmeltuu valloitussodaksi Ranskan kansaa vastaan, kaikki
se paha, mikä Saksaa kohtasi niin kutsuttujen vapautussotien
jälkeen, jälleen tulee leimahtamaan esiin uusiutuneella ankaruudella?
Eikö meillä ole ollut kaksikymmentä vuotta lisää Bismarck-hallitusta,
kansanyllyttäjien vainoamisen sijasta poikkeuslaki ja sosialistivaino,
mukana sama poliisimielivalta, kirjaimellisesti sama pääkarvoja
nostattava laintulkinta?
Ja eikö ole kirjaimelleen käynyt toteen ennustus, että Elsass-
Lothringin anastus tulisi ajamaan Ranskan Venäjän syliin? ja että
tämän anastuksen jälkeen Saksasta joko tulee Venäjän julkinen renki
tai on sen lyhyen levon jälkeen pakko varustautua uuteen sotaan,
rotusotaan yhdistyneitä slaavilaisia ja romanilaisia rotuja vastaan?
Eikö ole ranskalaisten maakuntien anastus ajanut Ranskan Venäjän
syliin? Eikö ole Bismarck kokonaista kaksikymmentä vuotta turhaan
kilpaillut tsaarin suosiosta tekemällä palveluksia, jotka ovat vielä
alhaisempia kuin mitä pieni Preussi oli tottunut laskemaan pyhän
Venäjän jalkain juureen, ennenkuin siitä vielä oli tullut Europan
ensimäinen suurvalta? Ja eikö vielä joka ikinen päivä uhkaa
Damokleen miekkana päämme päällä sota, jonka ensimäisenä
päivänä kaikki sovitut ruhtinasliitot tulevat hajoamaan kuin akanat
tuuleen, sota, jonka päättymisestä vallitsee ehdoton tietämättömyys,
rotusota, joka pakottaa koko Europan alistumaan viidentoista tai
parinkymmenen miljoonan aseistetun miehen hävitettäväksi ja joka
jo nyt ainoastaan siitä syystä ei riehu, että kaikista sotilasvaltioista
vahvintakin pelottaa lopputuloksen täydellinen ennakolta laskemisen
mahdottomuus.
Sitä suurempi on velvollisuus vetää 1870 vuoden kansainvälisen
työväenpolitiikan kaukonäköisyyden puoleksi unohduksiin jääneet
loistavat todistukset esiin saksalaisen työväestön nähtäviksi. Se mitä
on sanottu näistä kahdesta pääneuvoston selostuksesta koskee myös
Kansalaissotaa Ranskassa. Toukokuun 28 p:nä sortuivat viimeiset
kommunitaistelijat Bellevillen rinteillä ylivoiman alle ja jo kaksi päivää
myöhemmin, 30:nä, luki Marx pääneuvostolle tämän teoksen, jossa
Pariisin kommunin historiallinen merkitys on esitetty lyhyin,
voimakkain, mutta niin terävin ja ennen kaikkea todellisin piirtein,
että vertaista ei ole löydettävissä koko asiata käsittelevästä
runsaasta kirjallisuudesta.
Ranskassa v:n 1789 jälkeen tapahtuneen taloudellisen ja
valtiollisen kehityksen vaikutuksesta oli Pariisi viitisenkymmentä
vuotta sitten tullut sellaiseen asemaan, että siellä ei saattanut
puhjeta minkäänlaista vallankumousta, jolla olisi ollut muu kuin
proletarinen luonne, niin että köyhälistö, ostettuaan voiton verellään,
esiintyi omin vaatimuksin. Nämä vaatimukset ovat olleet enemmän
tai vähemmän sekavia, vastaten Pariisin työläisten kehitysastetta
kulloinkin kysymyksessä olevana ajankohtana. Mutta lopuksikin
tarkoittivat ne aina luokkavastakohtien poistamista kapitalistien ja
työmiesten väliltä. Miten sen piti tapahtua, sitä ei tosiaankaan
tiedetty. Mutta vaatimus itsessään, niin epämääräinen kuin se olikin,
sisälsi vaaran vallitsevalle yhteiskuntajärjestykselle; työläiset, jotka
sen asettivat, olivat vielä aseissa; valtion ohjaksissa olevalle
porvaristolle oli siitä syystä työläisten riisuminen aseista ensimäinen
käsky. Sentähden jokaisen työläisten voittaman vallankumouksen
jälkeen syttyy uusi taistelu, joka päättyy työläisten häviöön.
Se tapahtui ensi kerran 1848. Parlamentarisen vastustuspuolueen
vapaamieliset porvarit toimeenpanivat juhlapäivällisiä ajaakseen läpi
vaaliuudistuksen, jonka piti taata niiden puolueelle valta. Ollen
taistelussa hallitusta vastaan pakotettuja yhä enemmän ja enemmän
vetoamaan kansaan, täytyi heidän antaa yläluokan ja
pikkuporvariston radikalisille ja tasavaltaisille kerroksille etusija.
Mutta näiden takana olivat vallankumoukselliset työläiset, ja nämä
olivat vuoden 1830 jälkeen saavuttaneet paljon suuremman
valtiollisen itsenäisyyden kuin porvarit ja tasavaltalaisetkaan
aavistivat. Hallituksen ja vastustuspuolueen välisen kiistan
kireimmällä hetkellä alkoivat työläiset katutaistelun. Louis Philipp
katosi, vaaliuudistus hänen mukanaan, niiden tilalle syntyi tasavalta,
vieläpä voitokkaiden työmiesten itsensä yhteiskunnalliseksi
kutsuma tasavalta. Mitä tällä yhteiskunnallisella tasavallalla oli
ymmärrettävä, siitä ei kukaan ollut selvillä, eivät työläiset itsekään.
Mutta heillä oli nyt aseita ja olivat yhtenä voimana valtiossa.
Sentähden, niin pian kuin peräsimessä istuvat porvaristasavaltalaiset
alkoivat tuntea saaneensa jotenkuten vankan pohjan jalkojensa alle,
oli heidän lähin päämääränsä riisua työläiset aseista. Tämä tapahtui
siten, että suoranaisten valeiden ja julkisen pilkan avulla sekä
koettamalla karkoittaa työttömät erääseen syrjäiseen maakuntaan,
pakotettiin työläiset nousemaan heinäkuun kapinaan 1848. Hallitus
oli pitänyt huolen musertavan ylivoiman saamisesta. Viisipäiväisen
sankarillisen taistelun jälkeen sortuivat työläiset. Ja nyt seurasi
turvattomien vankien joukossa verilöyly, jonka vertaista ei ole nähty
niiden kansalaissotien päivien jälkeen, jotka aloittivat Rooman
tasavallan häviön. Silloin porvaristo ensimäisen kerran näytti, mihin
mielettömiin julmuuksiin se voi kiihoittua kostossaan, niin pian kuin
köyhälistö itsenäisenä luokkana uskaltaa sitä vastaan esittää omia
vaatimuksiaan. Ja kuitenkin oli vuosi 1848 lastenleikkiä verrattuna
heidän raivoonsa vuonna 1871.
Rangaistus seurasi heti jälestä. Jollei köyhälistö kyennyt vielä
hallitsemaan Ranskaa, niin ei porvaristokaan pystynyt siihen enää. Ei
ainakaan silloin, kun sen enemmistö vielä oli yksinvaltaista
mieleltään ja jakaantuneena kolmeen dynastiseen (hallitsijasukua
kannattavaan) puolueeseen ja neljänteen tasavaltaiseen. Heidän
keskinäiset riitansa tekivät mahdolliseksi, että seikkailija Louis
Bonaparte saattoi ottaa haltuunsa kaikki valtapaikat — armeijan,
poliisin, hallintokoneiston — ja 2 p:nä joulukuuta hajoittaa
porvarillisten viimeisen lujan linnan, kansalliskokouksen. Toinen
keisarikunta alkoi, Ranska tuli valtiollisten seikkailijain ja
rahahuijarien joukkion nyljettäväksi, mutta samalla alkoi myös
teollinen kehitys, joka ei koskaan olisi ollut mahdollinen Louis
Philippin ahdasmielisen ja turhantarkan järjestelmän aikana, jolloin
kourallinen suurporvaristoa piti yksinään valtaa käsissään. Louis
Bonaparte otti kapitalisteilta valtiollisen vallan sillä tekosyyllä, että
suojelee porvaristoa työläisiä vastaan ja toiselta puolelta työläisiä
porvareita vastaan. Mutta siitä huolimatta suosi hänen valtansa
keinottelua ja teollista yritteliäisyyttä, lyhyesti sanoen, koko
porvariston nousua ja rikastumista ennen kuulumattomassa
määrässä. Tosin vielä paljon suuremmassa määrässä kehittyivät
lahjomiset ja joukkovarkaudet, jotka ryhmittyivät keisarillisen hovin
ympärille ja kiskoivat ansaituista rikkauksista vahvat prosenttinsa.
Mutta toinen keisarivalta oli ranskalaiselle kansallispöyhkeydelle
puhallettu yhteentoitotus, se oli 1814 menetettyjen ensimäisen
keisarikunnan, ainakin ensimäisen tasavallan rajojen takaisin
vaatimista. Ranskalainen keisarikunta oli vanhan yksinvallan rajojen
sisällä, vieläpä vuoden 1815 vielä enemmän leikeltyjen rajojen
puitteissa ajan pitkään mahdottomuus. Siitä johtui ajoittaisten sotien
ja rajanlaajennusten välttämättömyys. Mutta mikään rajanlaajennus
ei niin häikäissyt ranskalaisten kansallisylpeilijöiden mielikuvitusta
kuin saksalaisen vasemman Rheinin-rannan valloitus.
Neliöpeninkulma Rheinin rantaa merkitsi niille enemmän kuin
kymmenen Alpeilta tai jostakin muualta. Toiselle keisarikunnalle oli
vasemman Rheinin rannan takaisin vaatiminen, kokonaan kerrallaan
tai kappaleittain, ainoastaan hetkenkysymys. Tämä hetki tuli
preussiläis-itävaltalaisen sodan mukana 1866. Bismarckin ja oman
rikkiviisaan vitkastelupolitiikkansa pettämänä, mitä odoteltuun
aluekorvaukseen tuli, ei Bonapartella enää ollut muuta valittavana
kuin sota, joka puhkesi 1870 ja kiidätti hänet ensin Sedan'iin ja sieltä
Wilhelmshöheen.
Välttämätön seuraus oli 4 p:nä syyskuuta 1870 alkanut Pariisin
vallankumous. Keisarikunta lysähti kokoon kuin korttirakennus ja
uudelleen julistettiin tasavalta. Mutta vihollinen seisoi porttien
ulkopuolella. Keisarikunnan armeijat olivat joko toivottomasti
saarrettuina Metzissä tai vangittuina Saksassa. Tässä hädässä salli
kansa entisen lakiasäätävän laitoksen pariisilaisedustajien julistautua
kansallisen puolustuksen hallitukseksi. Tämän sallittiin tapahtua
sitä kernaammin, kun nyt kaikki asekuntoiset pariisilaiset olivat
puolustusta varten astuneet kansalliskaartiin ja olivat aseissa, joten
työläiset nyt muodostivat siinä suuren enemmistön. Mutta jo pian
puhkesi ilmi vastakohta melkein yksinomaan porvaristosta
kokoonpannun hallituksen ja aseistetun köyhälistön välillä. 31 p:nä
lokakuuta valtasivat työväenpataljoonat kaupungintalon
väkirynnäköllä ja ottivat osan hallituksen jäsenistä vangiksi. Kavallus,
hallituksen suoranainen valapattoisuus ja muutamien
porvaripataljoonien väliintulo vapauttivat heidät jälleen, ja jottei
sisällinen kansalaissota olisi päässyt syttymään vieraan sotavoiman
piirittämässä kaupungissa, annettiin entisen hallituksen jäädä
toimeensa.
Vihdoinkin, 28 p:nä tammikuuta 1871 antautui nälänhädän
näännyttämä kaupunki. Mutta sotahistoriassa siihen saakka
ennenkuulumattomalla kunnialla. Linnoitukset luovutettiin,
ympärysmuuri riisuttiin aseista, linjaväen ja liikkuvan kaartin aseet
annettiin pois, ne itse otettiin sotavangeiksi. Mutta kansalliskaarti piti
aseensa ja kanuunansa ja taipui ainoastaan aselepoon voittajien
kanssa. Eivätkä edes nämäkään uskaltaneet voittokulussa kulkea
Pariisiin. Vain pienen, päälle päätteeksi osittain julkisen puiston
muodostaman kolkan Pariisia uskalsivat ne miehittää ja senkin
ainoastaan pariksi päiväksi! Ja tuonkin ajan piirittivät noita miehiä,
jotka itse olivat 131 pitkää päivää pitäneet Pariisia piirityksessä,
Pariisin aseistetut työmiehet, jotka tarkasti vartioivat, ettei yksikään
preussiläinen päässyt astumaan vieraalle valloittajalle määrätyn
nurkan ahtaiden rajojen ulkopuolelle. Sellaista kunnioitusta herättivät
Pariisin työmiehet sotajoukossa, jonka edessä keisarikunnan kaikki
armeijat olivat laskeneet aseensa, ja preussiläisten junkkarien, jotka
olivat tulleet paikalle kostaakseen ihan vallankumouksen liedellä,
täytyi jäädä kunnioittavasti seisomaan ja tervehtiä juuri tuota
aseistettua vallankumousta!
Sodan aikana olivat Pariisin työläiset rajoittuneet vaatimaan
taistelun tarmokasta jatkamista. Mutta nyt, kun Pariisin
antautumisen jälkeen tehtiin rauha, täytyi Thiers'in, hallituksen
uuden päämiehen, havaita, että omistavien luokkien — suurten
maanomistajien ja kapitalistien — valtaa uhkasi alituinen vaara niin
kauan kuin Pariisin työläisillä oli aseet käsissään. Hänen ensimäinen
tehtävänsä oli yrittää riisua ne aseista. 18 p:nä maaliskuuta lähetti
hän linja-joukot ryöstämään kansalliskaartille kuuluvat, Pariisin
piirityksen aikana valmistettua ja julkisella listakeräyksellä maksettua
tykistöä. Yritys epäonnistui, Pariisi nousi yhtenä miehenä
vastarintaan ja sota Pariisin ja Versailles'issa majailevan Ranskan
hallituksen välillä oli julistettu. Maaliskuun 26 p:nä valittiin Pariisiin
kommuuni ja julistettiin 28 p:nä. Kansalliskaartin keskuskomitea,
joka siihen asti oli hoitanut hallitusta, luovutti valtansa sille,
sittenkun se sitä ennen vielä oli antanut määräyksen Pariisin
häpeällisen siveyspoliisin lakkauttamisesta. 30 p:nä lakkautti
kommuuni sotaväenoton ja seisovan armeijan ja julisti
kansalliskaartin, johon kaikkien asekuntoisten kansalaisten tuli
kuulua, ainoaksi aseelliseksi voimaksi. Se antoi anteeksi kaikki
asuntovuokrat vuoden 1870 lokakuusta huhtikuuhun saakka,
laskemalla jo maksetut vuokrasummat siitä alkavan vuokra-ajan
maksuiksi, ja lakkautti kaiken panttienmyynnin kaupungin
panttilainastoissa. Samana päivänä vahvistettiin kommuuniin valitut
ulkomaalaiset virkoihinsa, sillä kommuunin lippu on
maailmantasavallan lippu. — 1 p:nä huhtikuuta päätettiin, että
kommuunin palveluksessa olevan henkilön, siis myös kommuunin
jäsenten itsensä korkein palkka ei saanut nousta yli 6,000 frangin
(6,000 mk). Seuraavana päivänä määrättiin kirkko erotettavaksi
valtiosta ja kaikki kirkollisiin tarkoituksiin menevät valtionmaksut
lakkautettaviksi samoin kuin kaikki kirkolliset tilat muutettaviksi
kansallisomaisuudeksi. Sen johdosta käskettiin 8 p. huhtik. kouluista
julistettavaksi pannaan kaikki uskonnolliset vertauskuvat, kuvat,
uskonkappaleet, rukoukset, lyhyesti sanoen kaikki mikä kuuluu
kunkin yksityisen omantunnon piiriin ja toteutettiin vähitellen. — 5
p:nä annettiin sen vastapainoksi, että vanhan hallituksen joukot
päivittäin ampuivat vangittuja kommuunitaistelijoita, käsky pantiksi
otettujen henkilöiden vangitsemisesta, jota ei kuitenkaan pantu
täytäntöön. — 6 p:nä nouti kansalliskaartin 137:s pataljoona
giljotiinin, joka kansan äänekkäästi riemuitessa poltettiin julkisesti. —
12 p:nä päätti kommuuni syöstä alas 1809 v:n Napoleonin sodan
jälkeen Vendôme-torille pystytetyn, valloitetuista kanuunista valetun
voitonpatsaan kansallisylpeyttä ja kansojen toisiaan vastaan
kiihottamista muistuttavana. Se pantiin täytäntöön 16 p:nä
toukokuuta. — Samana päivänä päätettiin antaa laatia tilastollinen
selonteko tehtailijoiden seisauttamista tehtaista ja valmistaa
suunnitelmia näiden tehtaiden käyttämiseksi niissä työskennelleiden
työmiesten avulla; työläisten piti muodostaa osuustoiminnallisia
yhdistyksiä, jotka taas olivat liitettävät suuremmaksi liitoksi. — 20
p:nä lakkautettiin leipurien yötyö samaten kuin aina toisen
keisarikunnan päiviltä asti voimassa ollut, poliisin nimittämien
henkilöiden — ensiluokkaisten työriistäjien — monopoolina
(yksinoikeutena) harjoittama työnvälitys, joka annettiin Pariisin
kahdenkymmenen eri piirin (arrondissment) määrien (maire)
huoleksi. — 30 p:nä huhtikuuta määräsi kommuuni lakkautettavaksi
panttilainakonttorit, jotka olivat, kuten sanottiin, työläisten yksityistä
nylkemistä varten ja olivat ristiriidassa sen oikeuden kanssa, mikä
työläisillä oli työkaluihinsa ja luottoon. — 5 p:nä toukok. päätti se
hajoittaa Ludvig XVI:nnen mestauksen sovitukseksi rakennetun
rukous-kappelin.
Niin jyrkkänä ja puhtaana ilmeni maalisk. 18 p:n jälkeen
pariisilaisen liikkeen luokkaluonne, jonka taistelu maahan karannutta
vihollista vastaan oli tunkenut siihen asti syrjään. Kun kommuunissa
istui melkein yksinomaan työläisiä tai tunnettuja työväenedustajia,
niin oli myös sen päätöksillä ilmeisesti proletarinen luonne. Joko
määräsi se toimeenpantavaksi uudistuksia, jotka tasavaltalainen
porvaristo yksistään pelkuruudesta oli laiminlyönyt, mutta jotka
muodostivat välttämättömän perustuksen työväenluokan vapaalle
toiminnalle, kuten esim. sen lauseen toteuttaminen, että uskonto
suhteessaan valtioon on yksityinen asia; tai antoi se päätöksiä, jotka
olivat suorastaan työväenluokan eduksi tehtyjä ja jotka koskivat
osittain syvästi vanhaan yhteiskuntajärjestykseen. Mutta kaikkien
näiden toteuttaminen voitiin piiritetyssä kaupungissa korkeintaan
vasta panna alulle. Ja toukokuun alusta alkaen vaati taistelu
Versailles'n hallituksen yhä lukuisammiksi karttuvia joukkoja vastaan
kaikki voimat.
7 p:nä huhtikuuta olivat versaillesilaiset vallanneet itselleen
ylipääsyn Seinen yli Neuillyn luona Pariisin länsirintamalla; sitävastoin
löi kenraali Eudes 11 p. takaisin niiden verisen hyökkäyksen eteläistä
rintamaa vastaan. Pariisia pommitettiin yhteen menoon, ja sitä
tekivät samat ihmiset, jotka olivat leimanneet preussilaisten
pommituksen samaa kaupunkia vastaan pyhyyden loukkaukseksi.
Nämä samat ihmiset kerjäsivät nyt Preussin hallitukselta, että se
lähettäisi pikaisesti Sedan'ista ja Metzista vangitut ranskalaiset
sotamiehet valloittamaan Pariisin heille takaisin. Näiden joukkojen
vähittäinen saapuminen antoi toukokuun alusta versaillesilaisille
ratkaisevan ylivoiman. Tämä osoittautui jo siinä, että Thiers 23 p:nä
katkaisi keskustelut, jotka koskivat sellaista kommuunin tarjoamaa
vaihtoa, että Pariisin arkkipiispa ja koko joukko muita Pariisissa
panttivankeina pidettyjä pappeja olisi vaihdettu yksinään Blanqui'ta
vastaan, joka kahdesti oli valittu kommuuniin, mutta oli Clairvaux'ssa
vankina. Mutta vielä enemmän ilmeni se Thiers'in muuttuneessa
kielenkäytössä; oltuaan tähän asti pidättyväinen ja kaksikielinen,
muuttui hän äkkiä hävyttömäksi, röyhkeäksi, raa'aksi. Etelärintamalla
ottivat versaillesilaiset 3 p:nä toukokuuta Moulin Saquet'n
kenttävarustukset, 9 p:nä täydellisesti mäsäksi ammutun Issy'n
linnoituksen ja 14 p:nä Vanves'in linnan. Länsirintamalla hyökkäsivät
he vähitellen, lukuisia ympärysmuuriin saakka ulottuvia kyliä ja
rakennuksia valloitellen, ihan päävallin luokse asti. 11 p:nä onnistui
heidän kavalluksen ja sinne asetetun kansalliskaartin
huolimattomuuden tähden tunkeutua kaupunkiin. Preussiläiset, jotka
pitivät miehitettyinä pohjoisia ja itäisiä linnoituksia, sallivat
versaillesilaisten tunkeutua eteenpäin yli heiltä aselevossa kielletyn
alueen kaupungin pohjoisosassa ja senkautta ryhtyä hyökkäämään
sillä pitkällä rintamalla, jonka pariisilaiset luulivat olevan aselevolla
suojatun ja jota siitä syystä pitivät heikosti miehitettynä. Tämän
johdosta oli vastarinta Pariisin länsiosassa, varsinaisessa
loistokaupunginosassa, ainoastaan heikkoa; se muuttui sitä
ankarammaksi ja sitkeämmäksi, mitä lähemmäksi itäistä puolta,
varsinaista työväenkaupunginosaa, eteenpäin tunkeutuvat joukot
tulivat. Vasta kahdeksanpäiväisen taistelun jälkeen kukistuivat
viimeiset kommuunin puolustajat Bellevillen ja Menilmontant'in
kukkuloilla, ja nyt saavutti turvattomien miesten, naisten ja lasten
murhaaminen, joka yltyen oli raivonnut läpi koko viikon, huippunsa.
Takaaladattava ei enää tappanut kyllin nopeasti, sadottain voitettuja
ammuttiin kuularuiskuilla mäsäksi. Liittoutuneiden muuri Père
Lachaisen kirkkopihalla, jossa viimeinen joukkomurha
toimeenpantiin, seisoo vielä tänäpäivänä kaikessa mykkyydessään
paljon puhuvana todistuksena siitä raivosta, mihin hallitseva luokka
on valmis niin pian kuin köyhälistö uskaltaa nousta esiintymään
oikeuksiensa puolesta. Sitten seurasivat joukkovangitsemiset, kun
kaikkien teurastaminen osoittautui mahdottomaksi, vangittujen
riveistä mielivaltaisesti poimittujen teurasuhrien ampumiset, loppujen
kulettaminen suuriin leireihin, joissa he odottivat raahaamistaan
sotaoikeuksien tuomittaviksi. Preussiläisiä joukkoja, jotka piirittivät
Pariisin koillisosaa, oli kielletty laskemasta lävitsensä yhtään
pakolaista, mutta kuitenkin sulkivat upseerit usein silmänsä, kun
havaitsivat sotamiehen enemmän noudattavan ihmisyyden kuin
ylipäällikön käskyä; erityisesti ansaitsee saksilainen armeijakunta
tulla mainituksi siitä ihmisystävällisestä menettelystään, että se laski
läpi useita, joiden osallisuus kommuunitaisteluihin oli ilmeinen.
* * * * *
Jos tänään, kahdenkymmenen vuoden kuluttua, tarkastelemme
v:n 1871 Pariisin kommuunin toimintaa ja historiallista merkitystä,
niin tulemme havaitsemaan, että Kansalaissodassa annettuun
esitykseen on vielä tehtävä muutamia lisäyksiä.
Kommuunin jäsenet olivat jakaantuneina enemmistöön,
blanquisteihin, jotka myöskin olivat olleet vallalla kansalliskaartin
keskuskomiteassa, ja vähemmistöön, jonka etupäässä muodostivat
Proudhon'in sosialistista suuntaa kannattavat kansainvälisen
työväenpuolueen jäsenet. Blanquistit olivat silloin suurelta osaltaan
sosialisteja ainoastaan vallankumouksellisesta, proletarisesta
vaistosta; ainoastaan muutamat harvat olivat Vaillant'in kautta, joka
tunsi saksalaista tieteellistä sosialismia, päässeet suurempaan
periaatteelliseen selvyyteen. Niin on käsitettävissä, että
taloudellisessa suhteessa lyötiin laimin paljon sellaista, mitä
kommuunin meidän nykyisen katsantokantamme mukaan olisi
pitänyt tehdä. Tosin kaikkein vaikeimmin ymmärrettävissä on se
pyhä kunnioitus, jolla nöyrinä jäätiin seisomaan Ranskan pankin
porttien ulkopuolelle. Se oli myöskin raskas poliittinen virhe. Pankki
kommuunin käsissä — olisi ollut suuremman arvoinen kuin
kymmenentuhatta panttivankia. Se olisi vaikuttanut, että koko
Ranskan porvaristo olisi painostanut Versaillesin hallitusta tekemään
rauhan kommuunin kanssa. Mutta vielä ihmeteltävämpää on se suuri
määrä oikeata, mitä blanquisteista ja proudhonilaisista kokoonpantu
kommuuni siitä huolimatta teki. Luonnollisesti ovat ensi kädessä
proudhonilaiset vastuunalaisia kommuunin taloudellisista päätöksistä,
niiden sekä kiitettävistä että moitittavista puolista, ja blanquistit
vastuunalaisia sen poliittisista teoista ja tekemättä jättämisistä. Ja
kummassakin tapauksessa tahtoi historian iva — kuten tavallisesti,
kun tieteilijät pääsevät peräsimeen käsiksi —, että niin toiset kuin
toisetkin tekivät ihan päinvastoin kuin heidän koulukuntansa oppi
heille määräsi.
Proudhon, pikkutilallisten ja käsityöläismestarien sosialisti, vihasi
yhdyskunnaksi liittymistä positivisella vihalla. Hän sanoi sen tuovan
enemmän pahaa kuin hyvää, olevan luonnostaan hedelmätöntä, jopa
vahingollista, koska se kahlehtii työläisten vapautta; se oli hänen
mielestään pelkkä uskonkappale, hyödytön ja ehkäisevä, ristiriidassa
niin hyvin työläisten vapauden kuin työn säästämisen kanssa, ja sen
varjopuolet kasvavat nopeammin kuin sen edut; sitä vastoin olivat
kilpailu, työnjako, yksityisomaisuus taloudellisia voimia. Ainoastaan
poikkeustapauksissa, kuten Proudhon niitä nimittää, —
suurteollisuudessa ja suurissa liikeyrityksissä, esim. rautateillä — oli
työläisten yhteenliittyminen paikallaan. (Ktso Idée général de la
révolution, 3. étude.)
Jo 1871 oli suurteollisuus itse Pariisissa, taiteellisen käsityön
pääpaikassa, siinä määrin lakannut olemasta poikkeustapaus, että
kommuunin verrattomasti tärkein päätös määräsi suur- ja vieläpä
käsityöteollisuudelle järjestelyn, joka ei ainoastaan perustunut
työläisten yhteenliittymiseen, vaan jonka myös piti yhdistää nämä
liittymät yhdeksi suureksi liitoksi, lyhyesti sanottuna järjestelmän,
jonka, kuten Marx Kansalaissodassaan aivan oikein huomauttaa,
loppujen lopuksi täytyisi johtaa kommunismiin, siis aivan
vastakkaiseen suuntaan kuin Proudhon'in oppi. Ja siitä syystä olikin
kommuuni proudhonilaisen sosialistikoulun hauta. Tämä koulu onkin
nykyään hävinnyt ranskalaisista työväenpiireistä. Siellä on nyt niin
possibilistien kuin marxilaistenkin keskuudessa kieltämättömästi
vallalla marxilainen teoria. Ainoastaan radikalisten porvarien
joukossa on vielä proudhonilaisia.
Blanquisteille ei käynyt paremmin. Salaliittojen kouluissa
kasvaneina ja niissä käytettävän ankaran kurin koossapitäminä oli
niillä lähtökohtana mielipide, että suhteellisesti pieni määrä
päättäväisiä, hyvin järjestyneitä miehiä pystyy suotuisan hetken
tultua ei ainoastaan tarttumaan valtion ohjaksiin vaan myöskin
suurta ja häikäilemätöntä tarmoa käyttämällä pitämään ne
käsissään, siksi kunnes ovat onnistuneet tempaamaan kansanjoukot
vallankumouksen pyörteeseen ja keräämään ne pienen
johtajajoukon ympärille. Siihen kuului ennen kaikkea kaiken vallan
mitä ankarin, diktaattorimainen keskittäminen uuden
vallankumouksellisen hallituksen käsiin. Ja mitä teki kommuuni,
jonka enemmistönä olivat juuri nämä blanquistit? Kaikissa
julistuksissaan maaseudun ranskalaisille kehoitti se näitä kaikkien
kuntien vapaaseen liittoon Pariisin kanssa, kansalliseksi järjestöksi,
jonka kansakunta nyt ensi kerran itse loisi. Juuri tähänastisen
hallituksen keskitetyn sortovallan armeijoineen, valtiollisine
poliiseineen ja virkavaltoineen, jonka Napoleon oli 1798 luonut ja
jonka jokainen uusi hallitus oli siitä lähtien ottanut tervetulleena
aseena vastaan ja käyttänyt vastustajiaan vastaan, juuri tämän
vallan piti kaikkialla kaatua, niinkuin se jo oli Pariisissa kukistunut.
Kommuunin täytyi heti alussa tunnustaa, että työväenluokka,
kerran valtaan päässeenä, ei enää kauemmin voinut hoitaa taloutta
vanhan valtiokoneiston avulla; että tämän saman luokan, jottei se
menettäisi takaisin omaa, äsken valloittamaansa valtaa, täytyi
toiselta puolen hävittää koko vanha, siihen asti sitä itseään vastaan
käytetty sortokoneisto, toiselta puolelta turvata itsensä omia virka- ja
valtiopäivämiehiään vastaan julistamalla, että ne voitiin
poikkeuksettomasti ja milloin tahansa erottaa. Missä ilmeni
tähänastisen valtion luonteenomainen omaisuus? Yhteiskunta oli
alkuaan yhteisten etujensa huoltamista varten luonut yksinkertaisen
työnjaon kautta itselleen omia orgaaneja, elimiä. Mutta nämä
orgaanit, joiden huippuna on valtiovalta, olivat aikaa yhteisen, omien
erikoisetujensa palveluksessa, muuttuneet yhdyskunnan palvelijoista
sen herroiksi. Tämä on havaittavissa niin hyvin demokraattisissa
tasavalloissa kuin perinnöllisissä yksinvalloissakin. Missään eivät
valtiomiehet muodosta eristetympää ja mahtavampaa osaa
kansasta kuin juuri Pohjois-Amerikassa. Siellä hallitsevat kumpaakin
niistä kahdesta suuresta puolueesta, jotka vaihdellen ovat vallassa,
vuorostaan ihmiset, jotka harjoittavat politiikkaa hyödyksensä, jotka
keinottelevat itselleen paikkoja liittovaltion ja yksityisten valtioitten
lakiasäätävissä laitoksissa tai jotka elävät puolueensa
vaaliyllytyksestä ja puolueen voitettua vaaleissa saavat hyviä virkoja
palkaksensa. Tiedetään, miten amerikalaiset ovat 30 vuotta
koittaneet ravistaa tätä sietämättömäksi käynyttä iestä niskastaan,
mutta kaikesta huolimatta vajoavat yhä syvemmälle tähän
turmeluksen ja lahjomisien suohon. Juuri Amerikassa voimme
paraiten nähdä, miten tämä valtiovallan vieraantuminen
yhteiskunnasta, jonka yksinomaiseksi välikappaleeksi se alkuaan oli
tarkoitettu, tapahtuu. Siellä ei ole olemassa hallitsijasukua, ei
aatelistoa, ja seisovata sotaväkeä, lukuunottamatta sitä pientä
joukkoa, joka on intiaanien vartioimista varten, ei ole virkavaltaa
vakinaisine virkoineen ja eläkkeensaamisoikeuksineen. Ja kuitenkin
on siellä kaksi joukkuetta valtiollisia keinottelijoita, jotka vaihdellen
pitävät valtiovaltaa ja käyttävät mitä turmeltuneimpia keinoja
Welcome to our website – the ideal destination for book lovers and
knowledge seekers. With a mission to inspire endlessly, we offer a
vast collection of books, ranging from classic literary works to
specialized publications, self-development books, and children's
literature. Each book is a new journey of discovery, expanding
knowledge and enriching the soul of the reade
Our website is not just a platform for buying books, but a bridge
connecting readers to the timeless values of culture and wisdom. With
an elegant, user-friendly interface and an intelligent search system,
we are committed to providing a quick and convenient shopping
experience. Additionally, our special promotions and home delivery
services ensure that you save time and fully enjoy the joy of reading.
Let us accompany you on the journey of exploring knowledge and
personal growth!
textbookfull.com

More Related Content

PDF
Introduction to the Theory of Complex Systems Stefan Thurner
PDF
Introduction to the Theory of Complex Systems Stefan Thurner
PDF
Introduction to the Theory of Complex Systems Stefan Thurner
PDF
Introduction To The Theory Of Complex Systems Stefan Thurner
PDF
What Is A Complex System James Ladyman K Wiesner
PDF
What Is A Complex System James Ladyman K Wiesner
PDF
Fundamental Characteristics of a Complex System
PDF
Foundations of complex systems Nonlinear dynamic statistical physics informat...
Introduction to the Theory of Complex Systems Stefan Thurner
Introduction to the Theory of Complex Systems Stefan Thurner
Introduction to the Theory of Complex Systems Stefan Thurner
Introduction To The Theory Of Complex Systems Stefan Thurner
What Is A Complex System James Ladyman K Wiesner
What Is A Complex System James Ladyman K Wiesner
Fundamental Characteristics of a Complex System
Foundations of complex systems Nonlinear dynamic statistical physics informat...

Similar to Introduction to the Theory of Complex Systems Stefan Thurner (20)

PDF
Foundations of complex systems emergence information and predicition 2nd Edit...
PDF
Foundations of complex systems Nonlinear dynamic statistical physics informat...
PDF
Foundations of complex systems Nonlinear dynamic statistical physics informat...
PDF
Foundations of complex systems Nonlinear dynamic statistical physics informat...
PDF
Foundations of complex systems emergence information and predicition 2nd Edit...
PDF
International Conference on Theory and Application in Nonlinear Dynamics ICAN...
PDF
Advances In Grey Systems Research 1st Edition Zhigeng Fang Hengwu Wei
PDF
International Conference on Theory and Application in Nonlinear Dynamics ICAN...
PDF
From Circuit Theory to System Theory
PDF
Complex Systems Terry R J Bossomaier Editor David G Green Editor
PDF
Introduction: Vocabulary of Complex Systems Sciences
PDF
Multichaos Fractal And Multifractional Artificial Intelligence Of Different C...
PDF
Dynamics Of Complex Systems Studies In Nonlinearity Yaneer Baryam
PDF
Dynamical Processes on Complex Networks 1st Edition Alain Barrat
PDF
International Conference on Theory and Application in Nonlinear Dynamics ICAN...
PDF
Hypernetworks In The Science Of Complex Systems Jeffrey Johnson
PDF
Intelligent Complex Adaptive Systems 1st Edition Ang Yang
PDF
Chaos Theory In Politics 1st Edition Santo Banerjee Efika Ule Eretin
PDF
Introduction to Complex Systems
PDF
Complexity And Evolution Of Dissipative Systems An Analytical Approach Sergey...
Foundations of complex systems emergence information and predicition 2nd Edit...
Foundations of complex systems Nonlinear dynamic statistical physics informat...
Foundations of complex systems Nonlinear dynamic statistical physics informat...
Foundations of complex systems Nonlinear dynamic statistical physics informat...
Foundations of complex systems emergence information and predicition 2nd Edit...
International Conference on Theory and Application in Nonlinear Dynamics ICAN...
Advances In Grey Systems Research 1st Edition Zhigeng Fang Hengwu Wei
International Conference on Theory and Application in Nonlinear Dynamics ICAN...
From Circuit Theory to System Theory
Complex Systems Terry R J Bossomaier Editor David G Green Editor
Introduction: Vocabulary of Complex Systems Sciences
Multichaos Fractal And Multifractional Artificial Intelligence Of Different C...
Dynamics Of Complex Systems Studies In Nonlinearity Yaneer Baryam
Dynamical Processes on Complex Networks 1st Edition Alain Barrat
International Conference on Theory and Application in Nonlinear Dynamics ICAN...
Hypernetworks In The Science Of Complex Systems Jeffrey Johnson
Intelligent Complex Adaptive Systems 1st Edition Ang Yang
Chaos Theory In Politics 1st Edition Santo Banerjee Efika Ule Eretin
Introduction to Complex Systems
Complexity And Evolution Of Dissipative Systems An Analytical Approach Sergey...
Ad

Recently uploaded (20)

PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Pharma ospi slides which help in ospi learning
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Cell Types and Its function , kingdom of life
PPTX
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
PDF
Insiders guide to clinical Medicine.pdf
PPTX
Week 4 Term 3 Study Techniques revisited.pptx
PDF
VCE English Exam - Section C Student Revision Booklet
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Anesthesia in Laparoscopic Surgery in India
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPH.pptx obstetrics and gynecology in nursing
human mycosis Human fungal infections are called human mycosis..pptx
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
Complications of Minimal Access Surgery at WLH
Pharma ospi slides which help in ospi learning
O7-L3 Supply Chain Operations - ICLT Program
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Cell Types and Its function , kingdom of life
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
Insiders guide to clinical Medicine.pdf
Week 4 Term 3 Study Techniques revisited.pptx
VCE English Exam - Section C Student Revision Booklet
Ad

Introduction to the Theory of Complex Systems Stefan Thurner

  • 1. Introduction to the Theory of Complex Systems Stefan Thurner download https://textbookfull.com/product/introduction-to-the-theory-of- complex-systems-stefan-thurner/ Download full version ebook from https://textbookfull.com
  • 2. We believe these products will be a great fit for you. Click the link to download now, or visit textbookfull.com to discover even more! Introduction to Complex Theory of Differential Equations Savin https://textbookfull.com/product/introduction-to-complex-theory- of-differential-equations-savin/ An Introduction to Complex Systems Making Sense of a Changing World Tranquillo https://textbookfull.com/product/an-introduction-to-complex- systems-making-sense-of-a-changing-world-tranquillo/ An Introduction to Complex Systems Society Ecology and Nonlinear Dynamics 1st Edition Paul Fieguth (Auth.) https://textbookfull.com/product/an-introduction-to-complex- systems-society-ecology-and-nonlinear-dynamics-1st-edition-paul- fieguth-auth/ Optimization of Complex Systems: Theory, Models, Algorithms and Applications Hoai An Le Thi https://textbookfull.com/product/optimization-of-complex-systems- theory-models-algorithms-and-applications-hoai-an-le-thi/
  • 3. Narratology: Introduction to the Theory of Narrative Mieke Bal https://textbookfull.com/product/narratology-introduction-to-the- theory-of-narrative-mieke-bal/ An Introduction to the Theory of Piezoelectricity Jiashi Yang https://textbookfull.com/product/an-introduction-to-the-theory- of-piezoelectricity-jiashi-yang/ Individual Differences in Language Learning: A Complex Systems Theory Perspective Carol Griffiths https://textbookfull.com/product/individual-differences-in- language-learning-a-complex-systems-theory-perspective-carol- griffiths/ Introduction to Complex Analysis 1st Edition Michael E. Taylor https://textbookfull.com/product/introduction-to-complex- analysis-1st-edition-michael-e-taylor/ An Introduction to the Language of Category Theory Steven Roman https://textbookfull.com/product/an-introduction-to-the-language- of-category-theory-steven-roman/
  • 5. Introduction to the Theory of Complex Systems Stefan Thurner, Rudolf Hanel, and Peter Klimek Medical University of Vienna, Austria 1
  • 6. 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © Stefan Thurner, Rudolf Hanel, and Peter Klimek 2018 The moral rights of the authors have been asserted First Edition published in 2018 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2018947065 Data available ISBN 978–0–19–882193–9 DOI: 10.1093/oso/9780198821939.001.0001 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.
  • 7. Preface This book is for people who are interested in the science of complex adaptive systems and wish to have more than just a casual understanding of it. As with all the sciences, understanding of complex adaptive systems is reached solely in a quantitative, predictive, and ultimately experimentally testable manner. Complex adaptive systems are dynamical systems that are able to change their structure, their interactions, and, consequently, their dynamics as they evolve in time. This is not a book about complicated systems, even though most complex systems are complicated. Indeed, over the last 300 years, scientists have usually dealt with complicated systems that are neither complex nor adaptive. The theory of complex systems is the theory of generalized time-varying interactions between elements that are characterized by states. Interactions typically take place on networks that connect those elements. The interactions involved may cause the states of the elements themselves to alter over time. The essence of a complex system is that the interaction networks may change and rearrange as a consequence of changes in the states of the elements. Thus, complex systems are systems whose states change as a result of interactions and whose interactions change concurrently as a result of states. Due to this chicken–egg-type problem, complex systems show an extremely rich spectrum of behaviour: they are adaptive and co-evolutionary; they show path- dependence, emergence, power laws; they have rich phase diagrams; they produce and destroy diversity; they are inherently prone to collapse; they are resilient, and so on. The theory of complex systems tries to understand these properties based on its building blocks and on the interactions between those building blocks that take place on networks. It combines mathematical and physical principles with concepts borrowed from biology and the social sciences; it uses new computational techniques and, with the advent of comprehensive large-scale data sets, is becoming experimentally testable. The goal of the theory of complex systems is to understand the dynamical systemic outcomes of interconnected systems, and its ultimate goal is to eventually control and design systemic properties of systems such as the economy, the financial system, social processes, cities, the climate, and ecology. The theory of complex systems builds partly on previous attempts to understand systems that interact in non-trivial ways, such as game theory, cybernetics, or systems theory. However, in its current state, the science of complex systems goes well beyond these earlier developments, in so many ways, in fact, that it can be regarded as an independent scientific branch, which—due to its quantitative, predictive, and testable nature—is a natural science. Even though it is fair to say that the theory of complex systems is not yet complete, in recent years, it has become quite clear just what the theory is going to look like. Its elements and structure are emerging. The current state of the theory of complex
  • 8. vi Preface systems is comparable perhaps to the state of quantum mechanics in the 1920s, before the famous Copenhagen meetings and Werner Heisenberg’s book. At that time, quantum mechanics was a collection of experimental and theoretical bits and pieces, which had not yet been seen within a fully comprehensive framework. Nevertheless, it was clear that, one day soon, such a framework would exist. The present situation can be compared to an archaeological project, where a mosaic floor has been discovered and is being excavated. While the mosaic is only partly visible and the full picture is still missing, several facts are becoming clear: the mosaic exists; it shows identifiable elements (for instance, people and animals engaged in recognizable activities); there are large patches missing or still invisible, but experts can already tell that the mosaic represents a scene from,say,Homer’s Odyssey.Similarly,for dynamical complex adaptive systems, it is clear that a theory exists that, eventually, can be fully developed. There are those who say that complex systems will never be understood or that, by their very nature, they are incomprehensible. This book will demonstrate that such statements are incorrect. The elements of a theory of complex systems are becoming clear: dynamical multilayer networks, scaling, statistical mechanics of algorithmic dynamics, evolution and co-evolution, and information theory. The essence of this book is to focus on these components, clarify their meaning in the context of complex systems, and enable the reader with a mathematical skill set to apply them to concrete problems in the world of complex systems. The book is written in mathematical language because this is the only way to express facts in a quantitative and predictive manner and to make statements that are unambiguous. We aim for consistency. The book should be comprehensible so that no- one with an understanding of basic calculus, linear algebra, and statistics need refer to other works. The book is particularly designed for graduate students in physics or mathematics. We try to avoid ambiguous statements while, at the same time, being as general as possible. The hope is that this work will serve as a textbook and as a starting point for journeys into new and unexplored territory. Many complex systems are often sensitive to details in their internal setup, to initial and to boundary conditions. Concepts that proved to be extremely robust and effective in non-complex systems, such as the central limit theorem, classical statistical mechanics, or information theory, lose their predictive power when confronted with complex systems. Extreme care is thus needed in any attempt to apply these otherwise distinguished concepts to complex systems: doing so could end in confusion and nonsensical results. In several concrete examples, we will demonstrate the importance of understanding what these methods mean in the context of complex systems and whether they can or cannot be applied. We will discuss how some of these classical concepts can be generalized to become useful for understanding complex systems. The book is also a statement about our belief that the exact sciences may be entering a phase of transition from a traditional analytical description of nature, as used with tremendous success since Galileo and Newton, towards an algorithmic description. Whereas the analytical description of nature is, conceptually, based largely on differential equations and analytical equations of motion, the algorithmic view takes into account evolutionary and co-evolutionary aspects of dynamics. It provides a framework for
  • 9. Preface vii systems that can endogenously change their internal interaction networks, rules of functioning, dynamics, and even environment, as they evolve in time. Algorithmic dynamics, which is characteristic of complex dynamical systems, may be a key to the quantitative and predictive understanding of many natural and man-made systems. In contrast to physical systems, which typically evolve analytically, algorithmic dynamics describe certainly how living, social, environmental, and economic systems unfold. This algorithmic view is not new but has been advocated by authors like Joseph A. Schumpeter, Stuart Kauffman, and Brian Arthur. However, it has not, to date, been picked up by mainstream science, and it has never been presented in the context of the theory of complex systems. This book is based on a two-semester course, that has been held at the Medical University of Vienna since 2011. We are grateful to our students and to Kathryn Platzer and Anita Wanjek for helping us with the manuscript. ST Vienna January 2018
  • 11. Contents 1 Introduction to Complex Systems 1 1.1 Physics, biology, or social science? 1 1.2 Components from physics 1 1.2.1 The nature of the fundamental forces 2 1.2.2 What does predictive mean? 3 1.2.3 Statistical mechanics—predictability on stochastic grounds 5 1.2.4 The evolution of the concept of predictability in physics 5 1.2.5 Physics is analytic, complex systems are algorithmic 6 1.2.6 What are complex systems from a physics point of view? 7 1.2.7 A note on chemistry—the science of equilibria 9 1.3 Components from the life sciences 10 1.3.1 Chemistry of small systems 10 1.3.2 Biological interactions happen on networks—almost exclusively 12 1.3.3 Evolution 13 1.3.4 Adaptive and robust—the concept of the edge of chaos 16 1.3.5 Components taken from the life sciences 19 1.4 Components from the social sciences 19 1.4.1 Social systems continuously restructuring networks 20 1.5 What are Complex Systems? 21 1.5.1 What is co-evolution? 24 1.5.2 The role of the computer 25 1.6 The structure of the book 26 1.6.1 What has complexity science contributed to the history of science? 27 2 Probability and Random Processes 29 2.1 Overview 29 2.1.1 Basic concepts and notions 31 2.1.2 Probability and information 36 2.2 Probability 39 2.2.1 Basic probability measures and the Kolmogorov axioms 39 2.2.2 Histograms and relative frequencies 41 2.2.3 Mean, variance and higher moments 41 2.2.4 More than one random variable 44 2.2.5 A note on Bayesian reasoning 47 2.2.6 Bayesian and frequentist thinking 52
  • 12. x Contents 2.3 The law of large numbers—adding random numbers 53 2.3.1 The central limit theorem 55 2.3.2 Generalized limit theorems and α-stable processes 59 2.4 Fat-tailed distribution functions 65 2.4.1 Distribution functions that show power law tails 66 2.4.2 Other distribution functions 69 2.5 Stochastic processes 75 2.5.1 Simple stochastic processes 76 2.5.2 History- or path-dependent processes 84 2.5.3 Reinforcement processes 85 2.5.4 Driven dissipative systems 86 2.6 Summary 89 2.7 Problems 90 3 Scaling 93 3.1 Overview 93 3.1.1 Definition of scaling 95 3.2 Examples of scaling laws in statistical systems 96 3.2.1 A note on notation for distribution functions 98 3.3 Origins of scaling 100 3.3.1 Criticality 101 3.3.2 Self-organized criticality 105 3.3.3 Multiplicative processes 106 3.3.4 Preferential processes 108 3.3.5 Sample space reducing processes 110 3.3.6 Other mechanisms 119 3.4 Power laws and how to measure them 120 3.4.1 Maximum likelihood estimator for power law exponents λ < −1 120 3.4.2 Maximum likelihood estimator for power laws for all exponents 122 3.5 Scaling in space—symmetry of non-symmetric objects, fractals 124 3.5.1 Self-similarity and scale-invariance 125 3.5.2 Scaling in space: fractals 125 3.5.3 Scaling in time—fractal time series 129 3.6 Example—understanding allometric scaling in biology 131 3.6.1 Understanding the 3/4 power law 133 3.6.2 Consequences and extensions 136 3.7 Summary 137 3.8 Problems 139 4 Networks 141 4.1 Overview 141 4.1.1 Historical origin of network science 143 4.1.2 From random matrix theory to random networks 143 4.1.3 Small worlds and power laws 144 4.1.4 Networks in the big data era 145
  • 13. Contents xi 4.2 Network basics 145 4.2.1 Networks or graphs? 146 4.2.2 Nodes and links 146 4.2.3 Adjacency matrix of undirected networks 146 4.3 Measures on networks 151 4.3.1 Degree of a node 151 4.3.2 Walking on networks 153 4.3.3 Connectedness and components 154 4.3.4 From distances on networks to centrality 155 4.3.5 Clustering coefficient 156 4.4 Random networks 159 4.4.1 Three sources of randomness 160 4.4.2 Erdős–Rényi networks 161 4.4.3 Phase transitions in Erdős–Rényi networks 163 4.4.4 Eigenvalue spectra of random networks 165 4.5 Beyond Erdős–Rényi—complex networks 167 4.5.1 Generalized Erdős–Rényi networks 168 4.5.2 Network superposition model 170 4.5.3 Small worlds 171 4.5.4 Hubs 173 4.6 Communities 178 4.6.1 Graph partitioning and minimum cuts 179 4.6.2 Hierarchical clustering 180 4.6.3 Divisive clustering in the Girvan–Newman algorithm 181 4.6.4 Modularity optimization 182 4.7 Functional networks—correlation network analysis 184 4.7.1 Construction of correlation networks 186 4.7.2 Filtering the correlation network 190 4.8 Dynamics on and of networks 194 4.8.1 Diffusion on networks 195 4.8.2 Laplacian diffusion on networks 196 4.8.3 Eigenvector centrality 199 4.8.4 Katz prestige 200 4.8.5 PageRank 200 4.8.6 Contagion dynamics and epidemic spreading 201 4.8.7 Co-evolving spreading models—adaptive networks 205 4.8.8 Simple models for social dynamics 206 4.9 Generalized networks 208 4.9.1 Hypergraphs 209 4.9.2 Power graphs 209 4.9.3 Multiplex networks 210 4.9.4 Multilayer networks 211 4.10 Example—systemic risk in financial networks 212 4.10.1 Quantification of systemic risk 213 4.10.2 Management of systemic risk 218
  • 14. xii Contents 4.11 Summary 219 4.12 Problems 222 5 Evolutionary Processes 224 5.1 Overview 224 5.1.1 Science of evolution 225 5.1.2 Evolution as an algorithmic three-step process 227 5.1.3 What can be expected from a science of evolution? 230 5.2 Evidence for complex dynamics in evolutionary processes 232 5.2.1 Criticality, punctuated equilibria, and the abundance of fat-tailed statistics 232 5.2.2 Evidence for combinatorial co-evolution 234 5.3 From simple evolution models to a general evolution algorithm 236 5.3.1 Traditional approaches to evolution—the replicator equation 237 5.3.2 Limits to the traditional approach 241 5.3.3 Towards a general evolution algorithm 242 5.3.4 General evolution algorithm 244 5.4 What is fitness? 246 5.4.1 Fitness landscapes? 247 5.4.2 Simple fitness landscape models 247 5.4.3 Evolutionary dynamics on fitness landscapes 249 5.4.4 Co-evolving fitness landscapes—The Bak–Sneppen model 261 5.4.5 The adjacent possible in fitness landscape models 263 5.5 Linear evolution models 264 5.5.1 Emergence of auto-catalytic sets—the Jain–Krishna model 265 5.5.2 Sequentially linear models and the edge of chaos 271 5.5.3 Systemic risk in evolutionary systems—modelling collapse 277 5.6 Non-linear evolution models—combinatorial evolution 281 5.6.1 Schumpeter got it right 282 5.6.2 Generic creative phase transition 282 5.6.3 Arthur–Polak model of technological evolution 286 5.6.4 The open-ended co-evolving combinatorial critical model—CCC model 288 5.6.5 CCC model in relation to other evolutionary models 298 5.7 Examples—evolutionary models for economic predictions 299 5.7.1 Estimation of fitness of countries from economic data 300 5.7.2 Predicting product diversity from data 304
  • 15. Contents xiii 5.8 Summary 308 5.9 Problems 311 6 Statistical Mechanics and Information Theory for Complex Systems 313 6.1 Overview 313 6.1.1 The three faces of entropy 314 6.2 Classical notions of entropy for simple systems 318 6.2.1 Entropy and physics 321 6.2.2 Entropy and information 328 6.2.3 Entropy and statistical inference 343 6.2.4 Limits of the classical entropy concept 348 6.3 Entropy for complex systems 349 6.3.1 Complex systems violate ergodicity 350 6.3.2 Shannon–Khinchin axioms for complex systems 352 6.3.3 Entropy for complex systems 352 6.3.4 Special cases 356 6.3.5 Classification of complex systems based on their entropy 358 6.3.6 Distribution functions from the complex systems entropy 361 6.3.7 Consequences for entropy when giving up ergodicity 363 6.3.8 Systems that violate more than the composition axiom 365 6.4 Entropy and phasespace for physical complex systems 365 6.4.1 Requirement of extensivity 365 6.4.2 Phasespace volume and entropy 366 6.4.3 Some examples 369 6.4.4 What does non-exponential phasespace growth imply? 373 6.5 Maximum entropy principle for complex systems 374 6.5.1 Path-dependent processes and multivariate distributions 374 6.5.2 When does a maximum entropy principle exist for path-dependent processes? 375 6.5.3 Example—maximum entropy principle for path-dependent random walks 380 6.6 The three faces of entropy revisited 382 6.6.1 The three entropies of the Pólya process 383 6.6.2 The three entropies of sample space reducing processes 387 6.7 Summary 393 6.8 Problems 395 7 The Future of the Science of Complex Systems? 397 8 Special Functions and Approximations 399 8.1 Special functions 399 8.1.1 Heaviside step function 399 8.1.2 Dirac delta function 399
  • 16. xiv Contents 8.1.3 Kronecker delta 400 8.1.4 The Lambert-W function 400 8.1.5 Gamma function 401 8.1.6 Incomplete Gamma function 402 8.1.7 Deformed factorial 402 8.1.8 Deformed multinomial 402 8.1.9 Generalized logarithm 402 8.1.10 Pearson correlation coefficient 403 8.1.11 Chi-squared distribution 403 8.2 Approximations 404 8.2.1 Stirling’s formula 404 8.2.2 Expressing the exponential function as a power 404 8.3 Problems 405 References 407 Index 425
  • 17. 1 Introduction to Complex Systems 1.1 Physics, biology, or social science? The science of complex systems is not an offspring of physics, biology, or the social sciences, but a unique mix of all three. Before we discuss what the science of complex systems is or is not, we focus on the sciences from which it has emerged. By recalling what physics, biology, and the social sciences are, we will develop an intuitive feel for complex systems and how this science differs from other disciplines. This chapter thus aims to show that the science of complex systems combines physics, biology, and the social sciences in a unique blend that is a new discipline in its own right. The chapter will also clarify the structure of the book. 1.2 Components from physics Physics makes quantitative statements about natural phenomena. Quantitative state- ments can be formulated less ambiguously than qualitative descriptions, which are based on words. Statements can be expressed in the form of predictions in the sense that the trajectory of a particle or the outcome of a process can be anticipated. If an experiment can be designed to test this prediction unambiguously, we say that the statement is experimentally testable. Quantitative statements are validated or falsified using quantitative measurements and experiments. Physics is the experimental, quantitative, and predictive science of matter and its interactions. Pictorially, physics progresses by putting specific questions to nature in the form of experiments; surprisingly, if the questions are well posed, they result in concrete answers that are robust and repeatable for an arbitrary number of times by anyone who can do the same experiment. This method of generating knowledge about nature, by using experiments to ask questions of it, is unique in the history of humankind and is called the scientific method. The scientific method has been at the core of all technological progress since the time of the Enlightenment. Introduction to the Theory of Complex Systems. Stefan Thurner, Rudolf Hanel, and Peter Klimek, Oxford University Press (2018). © Stefan Thurner, Rudolf Hanel, and Peter Klimek. DOI: 10.1093/oso/9780198821939.001.0001
  • 18. 2 Introduction to Complex Systems Physics deals with matter at various scales and levels of granularity, ranging from macroscopic matter like galaxies, stars, planets, stones, and projectiles, to the scale of molecules, atoms, hadrons, quarks, and gauge bosons. There are four fundamental forces at the core of all interactions between all forms of matter: gravity, electromagnetism and two types of nuclear force: the weak and the strong. According to quantum field theory, all interactions in the physical world are mediated by the exchange of gauge bosons. The graviton, the boson for gravity, has not yet been confirmed experimentally. 1.2.1 The nature of the fundamental forces The four fundamental forces are very different in nature and strength. They are characterized by a number of properties that are crucial for understanding how and why it was possible to develop physics without computers. These properties are set out here. Usually, the four fundamental forces are homogeneous and isotropic in space (and time). Forces that are homogeneous act in the same way everywhere in space; forces that are isotropic are the same, regardless of the direction in which they act. These two properties drastically simplify the mathematical treatment of interactions in physics. In particular, forces can be written as derivatives of potentials, two-body problems can effectively be treated as one-body problems, and the so-called mean field approach can be used for many-body systems. The mean field approach is the assumption that a particle reacts to the single field generated by the many particles around it. Often, such systems can be fully understood and solved even without computers. There are important exceptions, however; one being that the strong force acts as if interactions were limited to a ‘string’, where flux-tubes are formed between interacting quarks, similar to type II superconductivity. The physical forces differ greatly in strength. Compared to the strong force, the electromagnetic force is about a thousand times weaker, the weak force is about 1016 times weaker, and the gravitational force is only 10−41 of the strength of the strong force [405]. When any physical phenomenon is being dealt with, usually only a single force has to be considered. All the others are small enough to be safely neglected. Effectively, the superposition of four forces does not matter; for any phenomenon, only one force Characteristic Matter Interaction types length scale macroscopic matter gravity, electromagnetism all ranges molecules electromagnetism all ranges atoms electromagnetism, weak force ∼ 10−18 m hadrons and leptons electromagnetism, weak and strong force 10−18 − 10−15 m quarks and gauge bosons electromagnetism, weak and strong force 10−18 − 10−15 m
  • 19. Components from physics 3 is relevant. We will see that this is drastically different in complex systems, where a multitude of different interaction types of similar strength often have to be taken into account simultaneously. Typically, physics does not specify which particles interact with each other, as they interact in identical ways. The interaction strength depends only on the relevant interaction type, the form of the potential, and the relative distance between particles. In complex systems, interactions are often specific. Not all elements, only certain pairs or groups of elements, interact with each other. Networks are used to keep track of which elements interact with others in a complex system. 1.2.2 What does predictive mean? Physics is an experimental and a predictive science. Let us assume that you perform an experiment repeatedly; for example, you drop a stone and record its trajectory over time. The predictive or theoretical task is to predict this trajectory based on an understanding of the phenomenon. Since Newton’s time, understanding a phenomenon in physics has often meant being able to describe it with differential equations. A phenomenon is understood dynamically if its essence can be captured in a differential equation. Typically, the following three-step process is then followed: 1. Find the differential equations to encode your understanding of a dynamical system.In the example of our stone-dropping experiment,we would perhaps apply Newton’s equation, m d2x dt2 = F(x), where t is time, x(t) is the trajectory, m is mass of the stone, and F is force on the stone. In our case, we would hope to identify the force with gravity, meaning that F = gm. 2. Once the equation is specified, try to solve it. The equation can be solved using elementary calculus, and we get, x(t) = x0 + v0t + 1 2 gt2. To make a testable prediction we have to fix the boundary or initial conditions; in our case we have to specify what the initial position x0 and initial velocity v0 are in our experiment. Once this is done, we have a prediction for the trajectory of the stone, x(t). 3. Compare the result with your experiments. Does the stone really follow this predicted path x(t)? If it does, you might claim that you have understood something on a quantitative, predictive, and experimental basis. If the stone (repeatedly) follows another trajectory, you have to try harder to find a better prediction. Fixing initial or boundary conditions means simply taking the system out of its context, separating it from the rest of the universe. There are no factors, other than the boundary conditions, that influence the motion of the system from the outside. That
  • 20. 4 Introduction to Complex Systems such a separation of systems from their context is indeed possible is one reason why physics has been so successful, even before computing devices became available. For many complex systems, it is impossible to separate the dynamics from the context in a clear way. This means that many outside influences that are not under experimental control will simultaneously determine their dynamics. In principle, the same thinking used to describe physical phenomena holds for arbitrarily complicated systems. Assume that a vector X(t) represents the state of a system at a given time (e.g. all positions and momenta of its elements), we then get a set of equations of motion in the form, d2X(t) dt2 = G(X(t)), where G is a high-dimensional function. Predictive means that, in principle, these equations can be solved. Pierre-Simon Laplace was following this principle when he introduced a hypothetical daemon familiar with the Newtonian equations of motion and all the initial conditions of all the elements of a large system (the universe) and thus able to solve all equations. This daemon could then predict everything. The problem, however, is that such a daemon is hard to find. In fact, these equations can be difficult, even impossible,to solve.Already for three bodies that exert a gravitational force on each other, the famous three-body problem (e.g. Sun, Earth, Moon), there is no general analytical solution provided by algebraic and transcendental functions. This was first demonstrated by Henri Poincaré and paved the way for what is today called chaos theory. In fact, the strict Newton–Laplace program of a predictable world in terms of unambiguously computable trajectories is completely useless for most systems composed of many particles. Are these large systems not then predictable? What about systems with an extremely large number of elements, such as gases, which contain of the order of O(1023) molecules? Imagine that we perform the following experiment over and over again: we heat and cool water. We gain the insight that if we cool water to 0oC and below, it will freeze, that if we heat it to 100oC it will start to boil and, under standard conditions, ultimately evaporate. These phase transitions will happen with certainty. In that sense, they are predictable. We cannot predict from the equations of motion which molecule will be the first to leave the liquid. Given appropriate instrumentation, we can perhaps measure the velocity of a few single gas molecules at a point in time, but certainly not all 1023. What can be measured is the probability distribution that a gas molecule is observed with a specific velocity v, p(v) ∼ v2 exp − mv2 2kT , where T is temperature, and k is Boltzmann’s constant. Given this probability distribu- tion, it is possible to derive a number of properties of gases that perfectly describe their macroscopic behaviour and make them predictable on a macroscopic (or systemic) level.
  • 21. Components from physics 5 For non-interacting particles,these predictions can be extremely precise.The predictions immediately start to degenerate as soon as there are strong interactions between the particles or if the number of particles is not large enough. Note that the term prediction now has a much weaker meaning than in the Newton–Laplace program. The meaning has shifted from being a description based on the exact knowledge of each component of a system to one based on a probabilistic knowledge of the system. Even though one can still make extremely precise predictions about multiparticle systems in a probabilistic framework, the concept of determinism is now diluted. The framework for predictions on a macroscopic level about systems composed of many particles on a probabilistic basis is called statistical mechanics. 1.2.3 Statistical mechanics—predictability on stochastic grounds The aim of statistical mechanics is to understand the macroscopic properties of a system on the basis of a statistical description of its microscopic components. The idea behind it is to link the microscopic world of components with the macroscopic properties of the aggregate system. An essential concept that makes this link possible is Boltzmann–Gibbs entropy. A system is often prepared in a macrostate, which means that aggregate properties like the temperature or pressure of a gas are known. There are typically many pos- sible microstates that are associated with that macrostate. A microstate is a possible microscopic configuration of a system. For example, a particular microstate is one for which all positions and velocities of gas molecules in a container are known. There are usually many microstates that can lead to one and the same macrostate; for example, the temperature and pressure in the container. In statistical mechanics, the main task is to compute the probabilities for the many microstates that lead to that single macrostate. In physics, the macroscopic description is often relatively simple. Macroscopic properties are often strongly determined by the phase in which the system is. Physical systems often have very few phases—typically solid, gaseous, or liquid. Within the Newton–Laplace framework, traditional physics works with extreme precision for very few particles or for extremely many non-interacting particles, where the statistical mechanics of Boltzmann–Gibbs applies. In other words, the class of systems that can be understood with traditional physics is not that big. Most systems are composed of many strongly interacting particles. Often, the interactions are of multiple types, are non-linear, and vary over time. Very often, such systems are complex systems. 1.2.4 The evolution of the concept of predictability in physics The concept of prediction and predictability has changed in significant ways over the past three centuries. Prediction in the eighteenth century was quite different from the concept of prediction in the twenty-first. The concept of determinism has undergone at least three transitions [300].
  • 22. 6 Introduction to Complex Systems In the classical mechanics of the eighteenth and nineteenth centuries, prediction meant the exact prediction of trajectories. Equations of motion would make exact statements about the future evolution of simple dynamical systems. The extension to more than two bodies has been causing problems since the very beginning of Newtonian physics; see, for example, the famous conflict between Isaac Newton and John Flamsteed on the predictability of the orbit of the Moon. By about 1900, when interest in understanding many-body systems arose, the problem became apparent. The theory of Ludwig Boltz- mann, referred to nowadays as statistical mechanics, was effectively based on the then speculative existence of atoms and molecules, and it drastically changed the classical concept of predictability. In statistical mechanics, based on the assumption that atoms and molecules follow Newtonian trajectories, the law of large numbers allows stochastic predictions to be made about the macroscopic behaviour of gases. Statistical mechanics is a theory of the macroscopic or collective behaviour of non-interacting particles. The concepts of predictability and determinism were subject to further change in the 1920s with the emergence of quantum mechanics and non-linear dynamics. In quantum mechanics, the concept of determinism disappears altogether due to the fundamental simultaneous unpredictability of the position and momentum of the (sub-)atomic components of a system. However, quantum mechanics still allows us to make extremely high-quality predictions on a collective basis. Collective phenomena remain predictable to a large extent on a macro- or systemic level. In non-linear systems, it became clear that even in systems for which the equations of motion can be solved in principle, the sensitivity to initial conditions can be so enormous that the concept of predictability must,for all practical purposes,be abandoned.A further crisis in terms of predictability arose in the 1990s, when interest in more general forms of interactions began to appear. In complex systems, the situation is even more difficult than in quantum mechanics, where there is uncertainty about the components, but not about its interactions. For many complex systems, not only can components be unpredictable, but the interactions between components can also become specific, time-dependent, non-linear, and unpre- dictable. However, there is still hope that probabilistic predictions about the dynamics and the collective properties of complex systems are possible. Progress in the science of complex systems will, however, be impossible without a detailed understanding of the dynamics of how elements specifically interact with each other. This is, of course, only possible with massive computational effort and comprehensive data. 1.2.5 Physics is analytic, complex systems are algorithmic Physics largely follows an analytical paradigm. Knowledge of phenomena is expressed in analytical equations that allow us to make predictions. This is possible because interactions are homogeneous, isotropic, and of a single type. Interactions in physics typically do not change over time. They are usually given and fixed. The task is to work out specific solutions regarding the evolution of the system for a given set of initial and boundary conditions.
  • 23. Components from physics 7 This is radically different for complex systems, where interactions themselves can change over time as a consequence of the dynamics of the system. In that sense, complex systems change their internal interaction structure as they evolve. Systems that change their internal structure dynamically can be viewed as machines that change their internal structure as they operate. However, a description of the operation of a machine using analytical equations would not be efficient. Indeed, to describe a steam engine by seeking the corresponding equations of motion for all its parts would be highly inefficient. Machines are best described as algorithms—a list of rules regarding how the dynamics of the system updates its states and future interactions, which then lead to new constraints on the dynamics at the next time step. First, pressure builds up here, then a valve opens there, vapour pushes this piston, then this valve closes and opens another one, driving the piston back, and so on. Algorithmic descriptions describe not only the evolution of the states of the com- ponents of a system, but also the evolution of its internal states (interactions) that will determine the next update of the states at the next time step. Many complex systems work in this way: states of components and the interactions between them are simultaneously updated, which can lead to the tremendous mathematical difficulties that make complex systems so hard to understand. These difficulties in their various forms will be addressed time and again in this book. Whenever it is possible to ignore the changes in the interactions in a dynamical system, analytic descriptions become meaningful. Physics is generally analytic, complex systems are algorithmic. Quantitative pre- dictions that can be tested experimentally can be made within the analytic or the algorithmic paradigm. 1.2.6 What are complex systems from a physics point of view? From a physics point of view, one could try to characterize complex systems by the following extensions to physics. • Complex systems are composed of many elements, components, or particles. These elements are typically described by their state, such as velocity, position, age, spin, colour, wealth, mass, shape, and so on. Elements may have stochastic components. • Elements are not limited to physical forms of matter; anything that can interact and be described by states can be seen as generalized matter. • Interactions between elements may be specific. Who interacts with whom, when, in what form, and how strong is described by interaction networks. • Interactions are not limited to the four fundamental forces, but can be of a more complicated type. Generalized interactions are not limited to the exchange of gauge bosons, but can be mediated through exchange of messages, objects, gifts, information, even bullets, and so on. continued
  • 24. 8 Introduction to Complex Systems • Complex systems may involve superpositions of interactions of similar strengths. • Complex systems are often chaotic in the sense that they depend strongly on the initial conditions and details of the system. Update equations that algorithmically describe the dynamics are often non-linear. • Complex systems are often driven systems. Some obey conservation laws, some do not. • Complex systems can exhibit a rich phase structure and have a huge variety of macrostates that often cannot be inferred from the properties of the elements. This is sometimes referred to as emergence. Simple forms of emergence are, of course, already present in physics. The spectrum of the hydrogen atom or the liquid phase of water are emergent properties of the involved particles and their interactions. With these extensions, we can derive a physics-based definition for what the theory of complex systems is. The theory of complex systems is the quantitative, predictive and experimentally testable science of generalized matter interacting through generalized interactions. Generalized interactions are described by the interaction type and who interacts with whom at what time and at what strength. If there are more than two interacting elements involved, interactions can be conveniently described by time-dependent networks, Mα ij (t), where i and j label the elements in the system, and α denotes the interaction type. Mα ij (t) are matrix elements of a structure with three indices. The value Mα ij (t) indicates the strength of the interaction of type α between element i and j at time t. Mα ij (t)=0 means no interaction of that type. Interactions in complex systems remain based on the concept of exchange; however, they are not limited to the exchange of gauge bosons. In complex systems, interactions can happen through communication, where messages are exchanged, through trade where goods and services are exchanged, through friendships, where bottles of wine are exchanged, and through hostility, where insults and bullets are exchanged. Because of more specific and time-varying interactions and the increased variety of types of interaction, the variety of macroscopic states and systemic properties increases drastically in complex systems. This diversity increase of macrostates and phenomena emerges from the properties both of the system’s components and its interactions. The phenomenon of collective properties arising that are, a priori, unexpected from the elements alone is sometimes called emergence. This is mainly a consequence of the presence of generalized interactions. Systems with time-varying generalized interactions can exhibit an extremely rich phase structure and may be adaptive. Phases may co-exist in particular complex systems.The plurality of macrostates in a system leads to new types
  • 25. Components from physics 9 of questions that can be addressed, such as: what is the number of macrostates? What are their co-occurrence rates? What are the typical sequences of occurrence? What are the life-times of macrostates? What are the probabilities of transition between macrostates? As yet, there are no general answers to these questions, and they remain a challenge for the theory of complex systems. For many complex systems, the framework of physics is incomplete. Some of the missing concepts are those of non-equilibrium, evolution, and co-evolution. These concepts will be illustrated in the sections that follow. 1.2.7 A note on chemistry—the science of equilibria In chemistry, interactions between atoms and molecules are specific in the sense that not every molecule binds to (interacts with) any other molecule. So why is chemistry usually not considered to be a candidate for a theory of complex systems? To a large extent, chemistry is based on the law of mass action. Many particles interact in ways that lead to equilibrium states. For example, consider two substances A and B that undergo a reaction to form substances S and T, αA + βB ⇋ σS + τT, where α,β,σ,τ are the stoichiometric constants, and k+ and k− are the forward and backward reaction rates, respectively. The forward reaction happens at a rate that is proportional to k+{A}α{B}β, the backward reaction is proportional to k−{S}σ {T}τ . The brackets indicate the active (reacting) masses of the substances. Equilibrium is attained if the ratio of the reaction rates equals a constant K, K = k+ k− = {S}σ {T}τ {A}α{B}β . Note that the solution to this equation gives the stationary concentrations of the various substances. Technically, these equations are fixed point equations. In contrast to chemical reactions and statistical mechanics, many complex systems are characterized by being out-of-equilibrium. Complex systems are often so-called driven systems, where the system is (exogenously) driven away from its equilibrium states. If there is no equilibrium, there is no way of using fixed-point-type equations to solve the problems. The mathematical difficulties in dealing with out-of-equilibrium or non-equilibrium systems are tremendous and generally beyond analytical reach. One way that offers a handle on understanding driven out-of-equilibrium systems is the concept of self- organized criticality, which allows essential elements of the statistics of complex systems to be understood; in particular, the omnipresence of power laws. Many complex systems are driven systems and are out-of-equilibrium.
  • 26. 10 Introduction to Complex Systems By comparing the nature of complex systems and basic equilibrium chemistry, we learn that the mere presence of specific interactions does not automatically lead us to complex systems. However, cyclical catalytic chemical reactions [22, 113, 205], are classic prototypes of complex systems. 1.3 Components from the life sciences We now present several key features of complex systems that have been adopted from biology. In particular, we discuss the concepts of evolution, adaptation, self-organization, and, again, networks. The life sciences describe the experimental science of living matter. What is living matter? A reasonable minimal answer has been attempted by the following three statements [223]: • Living matter must be self-replicating. • It must run through at least one Carnot cycle. • It must be localized. Life without self-replication is not sustainable. It is, of course, conceivable that non- self-replicating organisms can be created that live for a time and then vanish and have to be recreated. However, this is not how we experience life on the planet, which is basically a single, continuous, living germ line that originated about 3.5 billion years ago, and has existed ever since. A Carnot cycle is a thermodynamic cyclical process that converts thermal energy into work, or vice versa. Starting from an initial state, after the cycle is completed, the system returns to the same initial state. The notion that living matter must perform at least one Carnot cycle is motivated by the fact that all living organisms use energy gradients (usually thermal) to perform work of some kind. For example, this work could be used for moving or copying DNA molecules. This view also pays tribute to the fact that all living objects are out-of-equilibrium and constantly driven by energy gradi- ents. If, after performing work, a system were not able to reach its previous states, it would be hard to call it a living system. Both self-replication and Carnot cycles require some sort of localization. On this planet, this localization typically happens at the level of cells. Living matter uses energy and performs work on short timescales without signifi- cantly transforming itself. It is constantly driven by energy gradients and is out-of- equilibrium. Self-replication and Carnot cycles require localization. 1.3.1 Chemistry of small systems Living matter, as we know it on this planet, is a self-sustained sequence of genetic activity over time. By genetic activity we mean that genes (locations on the DNA) can be turned
  • 27. Components from the life sciences 11 Figure 1.1 Schematic view of genetic activity and what a link Mki means in a genetic regulatory network. (a) Gene i activates gene k if something like the following process takes place: the activity of gene i means that a specific sub-sequence of the deoxyribonucleic acid (DNA) (gene) is copied into a complementary structure, an mRNA molecule. This mRNA molecule from gene i, might get ‘translated’ (copied again) into a protein of type i.This protein can bind with other proteins to form a cluster of proteins, a ‘complex’. Such complexes can bind to other regions of the DNA, say, the region that is associated with gene k,and thereby cause the activation of gene k.(b) Gene i causes gene j to become active,which activates genes m and n. (c) The process, where the activity of gene i triggers the activity of other genes, can be represented as a directed genetic regulatory network. Complexes can also deactivate genes. If gene j is active, a complex might deactivate it. ‘on’ and ‘off’. If a gene is on, it triggers the production of molecular material, such as ribonucleic acid (RNA) that can later be translated into proteins. A gene is typically turned on by a cluster of proteins that bind to each other to form a so-called ‘complex’. If such a cluster binds to a specific location on the DNA, this could cause a copying process to be activated at this position; the gene is then active or ‘on’; see Figure 1.1. Genetic activity is based on chemical reactions that take place locally, usually within cells or their nuclei. However, these chemical reactions are special in the sense that only a few molecules are involved [341]. In traditional chemistry, reactions usually involve billions of atoms or molecules. What happens within a cell is chemistry with a few molecules. This immediately leads to a number of problems: • It can no longer be assumed that molecules meet by chance to react. • With only a few molecules present that might never meet to react, the concept of equilibrium becomes useless. • Without equilibrium, there is no law of mass action.
  • 28. 12 Introduction to Complex Systems If there is no law of mass action, how can chemistry be done? Classical equilibrium chemistry is inadequate for dealing with molecular mechanisms in living matter. In cells, molecules are often actively transported from the site of production (typically, the nucleus, for organisms that have one) to where they are needed in the cell. This means that diffusion of molecules no longer follows the classical diffusion equation. Instead, molecular transport is often describable by an anomalous diffusion equation of the form, d dt p(x,t) = D d2+ν dx2+ν p(x,t)µ , where p(x,t) is the probability of finding a molecule at position x at time t, D is the diffusion constant, and µ and ν are exponents that make the diffusion equation non- linear. Chemical binding often depends on the three-dimensional structure of the molecules involved. This structure can depend on the ‘state’ of the molecules. For example, a molecule can be in a normal or a phosphorylated state.Phosphorylation happens through the addition of a phosphoryl group (PO2− 3 ) to a molecule, which may change its entire structure. This means that for a particular state of a molecule it binds to others, but does not bind if it is in the other state. A further complication in the chemistry of a few particles arises with the reaction rates. By definition, the term reaction rate only makes sense for sufficiently large systems. The speed of reactions depends crucially on the statistical mechanics of the underlying small system and fluctuation theorems may now become important [122]. 1.3.2 Biological interactions happen on networks—almost exclusively Genetic regulation governs the temporal sequence of the abundance of proteins, nucleic material, and metabolites within any living organism. To a large extent, genetic regulation can be viewed as a discrete interaction: a gene is active or inactive; a protein binds to another or it does not; a molecule is phosphorylated or not. Discrete interactions are well-described by networks. In the context of the life sciences, three well-known networks are the metabolic network, the protein–protein binding network, and the Boolean gene- regulatory network. The metabolic network1 is the set of linked chemical reactions occurring within a cell that determine the cell’s physiological and biochemical properties. The metabolic network is often represented in networks of chemical reactions, where nodes represent substances and directed links (arrows) correspond to reactions or catalytic influences. The protein–protein networks represent empirical findings about protein–protein interactions (binding) in network representations [102]. Nodes are proteins, and links specify the interaction type between them. Different interaction types include stable, transient, and homo- or hetero-oligomer interactions. 1 For an example of what metabolic networks look like, see http://biochemical-pathways.com/#/map/1
  • 29. Components from the life sciences 13 1.3.3 What is evolution? ‘Nothing in biology makes sense except in the light of evolution’. Theodosius Dobzhansky Evolution is a natural phenomenon. It is a process that increases and destroys diversity, and it looks like both a ‘creative’ and a ‘destructive’ process. Evolution appears in bio- logical, technological, economical, financial, historical, and other contexts. In that sense, evolutionary dynamics is universal. Evolutionary systems follow characteristic dynamical and statistical patterns, regardless of the context. These patterns are surprisingly robust and, as a natural phenomenon, they deserve a quantitative and predictive scientific explanation. What is evolution? Genetic material and the process of replication involve several stochastic components that may lead to variations in the offspring. Replication and variation are two of the three main ingredients of evolutionary processes. What evolution means in a biological context is captured by the classic Darwinian narrative. Consider a population of some kind that is able to produce offspring. This offspring has some random variations (e.g. mutations). Individuals with the optimal variations with respect to a given environment have a selection advantage (i.e. higher fitness). Fitness manifests itself by higher reproductive success. Individuals with optimal variations will have more offspring and will thus pass their particular variations on to a new generation. In this way ‘optimal’ variations are selected over time. This is certainly a convincing description of what is going on; however, in this form it may not be useful for predictive science. How can we predict the fitness of individuals in future generations, given that life in future environments will look very different from what it is today? Except over very short time periods, this is a truly challenging task that is far from understood. There is a good prospect, however, of the statistics of evolutionary systems being understood. The Darwinian scenario fails to explain essential features about evolutionary systems, such as the existence of boom and crash phases, where the diversity of systems radically changes within short periods of time. An example is the massive diversification (explosion) of species and genera about 500 million years ago in the Cambrian era. It will almost cer- tainly never be possible to predict what species will live on Earth even 500 years from now, but it may be perfectly possible to understand the statistics of evolutionary events and the factors that determine the statistics. In particular, statistical statements about expected diversity, diversification rates, robustness, resilience, and adaptability are coming within reach. In Chapter 5 we will discuss approaches to formulating evolutionary dynamics in ways that make them accessible both combinatorially and statistically. The concept of evolution is not limited to biology. In the economy, the equivalent of biological evolution is innovation, where new goods and services are constantly being produced by combination of existing goods and services. Some new goods will be selected in markets, while the majority of novelties will not be viable and will vanish. The industrial revolution can be seen as one result of evolutionary dynamics, leading, as it did, to an ongoing explosion of diversification of goods, services, and innovations.
  • 30. 14 Introduction to Complex Systems Another example of evolutionary dynamics outside biology is the sequence of invention and discovery of chemical compounds. The history of humankind itself is an example of evolutionary dynamics. Evolutionary dynamics can take place simultaneously at various scales. In biological settings, it works at the level of molecules, cells, organisms, and populations; in economic settings, it can work at product, firm, corporation, and country level. A famous application of evolutionary dynamics in computer science are so- called genetic algorithms [194]. These algorithms mimic natural selection by iteratively producing copies of computer code with slight variations. Those copies that perform best for a given problem (usually an optimization task) are iteratively selected and are passed onto the next ‘generation’ of codes. 1.3.3.1 Evolution is not physics To illustrate that evolution is not a process that can be described with traditional physics, we define an evolutionary process as a three-step process: 1. A new thing comes into existence within a given environment. 2. The new thing has the chance to interact with its environment. The result of this interaction is that it gets ‘selected’ (survives) or is destroyed. 3. If the new thing gets selected in the environment, it becomes part of this environ- ment (boundary) and thus transforms the old environment into a new one. New and arriving things in the future will experience the new environment.In that sense, evolution is an algorithmic process that co-evolves its boundaries. If we try to interpret this three-step process in terms of physics, we immediately see that even if we were able to write down the dynamics of the system in the form of equations of motion, we would not be able to fix the system’s boundary conditions. Obviously, the environment plays the role of the boundary conditions within which the interactions happen. The boundary conditions evolve as a consequence of the dynamics of the system and change at every instant. The dynamics of the boundary conditions is dynamically coupled with the equations of motion. Consequently, as the boundary conditions cannot be fixed, this set of equations cannot, in general, be solved and the Newtonian method breaks down. A system of dynamical equations that are coupled dynamically to their boundary conditions is a mathematical monster. That is why an algorithmic process like evolution is hard to solve using analytical approaches.2 The second problem associated with evolutionary dynamics, from a physics point of view,is that the phasespace is not well-defined.As new elements may arrive at any point in time, it is impossible to prestate what the phasespace of such systems will be. Obviously, this poses problems in terms of producing statistics with these systems. The situation could be compared to trying to produce statistics by rolling a dice, whose number of faces changes from one throw to the next. 2 Such systems can be treated analytically whenever the characteristic timescales of the processes involved are different. In our example, this would be the case if the dynamics of the interactions of the ‘new thing’ with the environment happens on a fast timescale, while changes in the environment happen slowly.
  • 31. Components from the life sciences 15 Evolutionary dynamics is radically different from physics for two main reasons: • In evolutionary systems, boundary conditions cannot be fixed. • In evolutionary systems, the phasespace is not well defined—it changes over time. New elements may emerge that change the environment and therefore also the dynamics for all the existing elements of the system. Evolutionary aspects are essential for many complex systems and cannot be ignored. A great challenge in the theory of complex systems is to develop a consistent framework that is nevertheless able to deal with evolutionary processes in quantitative and predictive terms. We will see how a number of recently developed mathematical methods can be used to address and deal with these two fundamental problems. In particular, in Chapter 5, we will discuss combinatorial evolution models. These models are a good example of how algorithmic approaches lead to quantitative and testable predictions. 1.3.3.2 The concept of the adjacent possible A helpful steppingstone in addressing the problem of dynamically changing phasespaces is the concept of the adjacent possible, proposed by Stuart Kauffman [223]. The adjacent possible is the set of all possible states of the world that could potentially exist in the next time step, given the present state of the world. It drastically reduces the size of phasespace from all possible states to a set of possibilities that are conditional on the present. Obviously, not everything can be produced within the next time step. There are many states that are impossible to imagine, as the components required to make them do not yet exist. In other words, the adjacent possible is the subset of all possible worlds that are reachable within the next time step and depends strongly on the present state of the world. In this view, evolution is a process that continuously ‘fills’ its adjacent possible. The concrete realization of the adjacent possible at one time step determines the adjacent possible at the next time step. Thus, in the context of biological evolution or technological innovation, the adjacent possible is a huge set, in which the present state of the world determines the potential realization of a vast number of possibilities in the next time step. Typically, the future states are not known. In contrast, in physics, a given state often determines the next state with high precision.This means that the adjacent possible is a very small set.For example, the adjacent possible of a falling stone is given by the next position (point) on its parabolic trajectory. In comparison, the adjacent possible of an ecosystem consists of all organisms that can be born within the next time step, with all possible mutations and variations that can possibly happen—a large set of possibilities indeed. The concept of the adjacent possible introduces path-dependence in the stochastic dynamics of phasespace. We will discuss the statistics of path-dependent evolutionary processes in Chapters 5 and 6. 1.3.3.3 Summary evolutionary processes Evolutionary processes are relevant to the treatment of complex systems for the following reasons.
  • 32. 16 Introduction to Complex Systems • For evolutionary systems, boundary conditions cannot usually be fixed. This means that it is impossible to take the system apart and separate it from its context without massively altering and perhaps even destroying it. The concept of reductionism is inadequate for describing evolutionary processes. • Evolutionary complex systems change their boundary conditions as they unfold in time. They co-evolve with their boundary conditions. Frequently, situations are difficult or impossible to solve analytically. • For complex systems,the adjacent possible is a large set of possibilities.For physics, it is typically a very small set. • The adjacent possible itself evolves. • In many physical systems, the realization of the adjacent possible does not influence the next adjacent possible; in evolutionary systems, it does. 1.3.4 Adaptive and robust—the concept of the edge of chaos Many complex systems are robust and adaptive at the same time. The ability to adapt to changing environments and to be robust against changing environments seem to be mutually exclusive. However, most living systems are clearly adaptive and robust at the same time. As an explanation for how these seemingly contradictory features could co- exist, the following view of the edge of chaos was proposed [246]. Every dynamical system has a maximal Lyapunov exponent, which measures how fast two initially infinitesimally close trajectories diverge over time. The exponential rate of divergence is the Lyapunov exponent, λ, |δX(t)| ∼ eλt |δX(0)|, where |δX(t)| is the distance between the trajectories at time t and |δX(0)| is the initial separation. If λ is positive, the system is called chaotic or strongly mixing. If λ is negative, the system approaches an attractor, meaning that two initially infinitesimally separated trajectories converge. This attractor can be a trivial point (fixed point), a line (limit cycle), or a fractal object. An interesting case arises when the exponent λ is exactly zero. The system is then called quasi-periodic or at the ‘edge of chaos’. There are many low- dimensional examples where systems exhibit all three possibilities—they can be chaotic, periodic, or at the edge of chaos, depending on their control parameters. The simplest of these is the logistic map. The intuitive understanding of how a system can be adaptive and robust at the same time if it operates at the edge of chaos,is given by the following.If λ is close to zero,it takes only tiny changes in the system to move it from a stable and periodic mode (λ slightly negative) to the chaotic phase (λ positive). In the periodic mode, the system is stable and robust; it returns to the attractor when perturbed. When it transits into the chaotic phase, say, through a strong perturbation in the environment, it will sample large regions
  • 33. Discovering Diverse Content Through Random Scribd Documents
  • 37. The Project Gutenberg eBook of Kansalaissota Ranskassa
  • 38. This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook. Title: Kansalaissota Ranskassa Author: Karl Marx Author of introduction, etc.: Friedrich Engels Release date: August 21, 2017 [eBook #55401] Language: Finnish Credits: Produced by Jari Koivisto *** START OF THE PROJECT GUTENBERG EBOOK KANSALAISSOTA RANSKASSA ***
  • 39. Produced by Jari Koivisto KANSALAISSOTA RANSKASSA Kirj. Karl Marx Johdannon kirjoittanut Friedrich Engels Suomennos
  • 41. SISÄLTÖ: 1. Johdanto, kirj. Friedrich Engels. 2. Kansainvälisen työväenliiton pääneuvoston ensimäinen selostus saksalais-ranskalaisesta sodasta, kirj. Karl Marx. 3. Saman toinen selostus siitä, kirj. Karl Marx. 4. Saman selostus kansalaissodasta Ranskassa, kirj. Karl Marx. Johdanto. Kehoitus julkaista uudelleen kansainvälisen pääneuvoston julistus kansalaissodasta Ranskassa ja varustaa se johdannolla tuli minulle odottamatta. Voin siitä syystä tässä ainoastaan lyhyesti kosketella pääkohtia. Minä asetan pääneuvoston kaksi lyhempää selostusta saksalais- ranskalaisesta sodasta edellämainitun pitemmän teoksen edelle. Ensiksikin siitä syystä, että Kansalaissodassa viitataan toiseen niistä, jota taas ei voi täysin ymmärtää lukematta toista. Toiseksi, koska nämä molemmat, niinikään Marxin kirjoittamat selostukset yhtä suuressa määrässä kuin Kansalaissotakin ovat erinomaisia näytteitä kirjoittajan ihmeteltävästä, ensi kerran Louis Bonaparten
  • 42. 18. Brumaire-kirjassa koetellusta kyvystä selvästi käsittää suurten historiallisten tapausten luonne, merkitys ja välttämättömät seuraukset, jo aikana, jolloin nämä tapaukset vielä välähtelevät silmäimme edessä tai juuri ovat päättyneet. Ja lopuksi, koska me vielä tänä päivänä Saksassa saamme kärsiä noiden tapauksien aiheuttamista, Marxin ennustamista seurauksista. Vai eikö ole tapahtunut se, mitä sanotaan ensimäisessä tiedonannossa, että jos Saksan puolustussota Louis Bonapartea vastaan turmeltuu valloitussodaksi Ranskan kansaa vastaan, kaikki se paha, mikä Saksaa kohtasi niin kutsuttujen vapautussotien jälkeen, jälleen tulee leimahtamaan esiin uusiutuneella ankaruudella? Eikö meillä ole ollut kaksikymmentä vuotta lisää Bismarck-hallitusta, kansanyllyttäjien vainoamisen sijasta poikkeuslaki ja sosialistivaino, mukana sama poliisimielivalta, kirjaimellisesti sama pääkarvoja nostattava laintulkinta? Ja eikö ole kirjaimelleen käynyt toteen ennustus, että Elsass- Lothringin anastus tulisi ajamaan Ranskan Venäjän syliin? ja että tämän anastuksen jälkeen Saksasta joko tulee Venäjän julkinen renki tai on sen lyhyen levon jälkeen pakko varustautua uuteen sotaan, rotusotaan yhdistyneitä slaavilaisia ja romanilaisia rotuja vastaan? Eikö ole ranskalaisten maakuntien anastus ajanut Ranskan Venäjän syliin? Eikö ole Bismarck kokonaista kaksikymmentä vuotta turhaan kilpaillut tsaarin suosiosta tekemällä palveluksia, jotka ovat vielä alhaisempia kuin mitä pieni Preussi oli tottunut laskemaan pyhän Venäjän jalkain juureen, ennenkuin siitä vielä oli tullut Europan ensimäinen suurvalta? Ja eikö vielä joka ikinen päivä uhkaa Damokleen miekkana päämme päällä sota, jonka ensimäisenä päivänä kaikki sovitut ruhtinasliitot tulevat hajoamaan kuin akanat tuuleen, sota, jonka päättymisestä vallitsee ehdoton tietämättömyys,
  • 43. rotusota, joka pakottaa koko Europan alistumaan viidentoista tai parinkymmenen miljoonan aseistetun miehen hävitettäväksi ja joka jo nyt ainoastaan siitä syystä ei riehu, että kaikista sotilasvaltioista vahvintakin pelottaa lopputuloksen täydellinen ennakolta laskemisen mahdottomuus. Sitä suurempi on velvollisuus vetää 1870 vuoden kansainvälisen työväenpolitiikan kaukonäköisyyden puoleksi unohduksiin jääneet loistavat todistukset esiin saksalaisen työväestön nähtäviksi. Se mitä on sanottu näistä kahdesta pääneuvoston selostuksesta koskee myös Kansalaissotaa Ranskassa. Toukokuun 28 p:nä sortuivat viimeiset kommunitaistelijat Bellevillen rinteillä ylivoiman alle ja jo kaksi päivää myöhemmin, 30:nä, luki Marx pääneuvostolle tämän teoksen, jossa Pariisin kommunin historiallinen merkitys on esitetty lyhyin, voimakkain, mutta niin terävin ja ennen kaikkea todellisin piirtein, että vertaista ei ole löydettävissä koko asiata käsittelevästä runsaasta kirjallisuudesta. Ranskassa v:n 1789 jälkeen tapahtuneen taloudellisen ja valtiollisen kehityksen vaikutuksesta oli Pariisi viitisenkymmentä vuotta sitten tullut sellaiseen asemaan, että siellä ei saattanut puhjeta minkäänlaista vallankumousta, jolla olisi ollut muu kuin proletarinen luonne, niin että köyhälistö, ostettuaan voiton verellään, esiintyi omin vaatimuksin. Nämä vaatimukset ovat olleet enemmän tai vähemmän sekavia, vastaten Pariisin työläisten kehitysastetta kulloinkin kysymyksessä olevana ajankohtana. Mutta lopuksikin tarkoittivat ne aina luokkavastakohtien poistamista kapitalistien ja työmiesten väliltä. Miten sen piti tapahtua, sitä ei tosiaankaan tiedetty. Mutta vaatimus itsessään, niin epämääräinen kuin se olikin, sisälsi vaaran vallitsevalle yhteiskuntajärjestykselle; työläiset, jotka sen asettivat, olivat vielä aseissa; valtion ohjaksissa olevalle
  • 44. porvaristolle oli siitä syystä työläisten riisuminen aseista ensimäinen käsky. Sentähden jokaisen työläisten voittaman vallankumouksen jälkeen syttyy uusi taistelu, joka päättyy työläisten häviöön. Se tapahtui ensi kerran 1848. Parlamentarisen vastustuspuolueen vapaamieliset porvarit toimeenpanivat juhlapäivällisiä ajaakseen läpi vaaliuudistuksen, jonka piti taata niiden puolueelle valta. Ollen taistelussa hallitusta vastaan pakotettuja yhä enemmän ja enemmän vetoamaan kansaan, täytyi heidän antaa yläluokan ja pikkuporvariston radikalisille ja tasavaltaisille kerroksille etusija. Mutta näiden takana olivat vallankumoukselliset työläiset, ja nämä olivat vuoden 1830 jälkeen saavuttaneet paljon suuremman valtiollisen itsenäisyyden kuin porvarit ja tasavaltalaisetkaan aavistivat. Hallituksen ja vastustuspuolueen välisen kiistan kireimmällä hetkellä alkoivat työläiset katutaistelun. Louis Philipp katosi, vaaliuudistus hänen mukanaan, niiden tilalle syntyi tasavalta, vieläpä voitokkaiden työmiesten itsensä yhteiskunnalliseksi kutsuma tasavalta. Mitä tällä yhteiskunnallisella tasavallalla oli ymmärrettävä, siitä ei kukaan ollut selvillä, eivät työläiset itsekään. Mutta heillä oli nyt aseita ja olivat yhtenä voimana valtiossa. Sentähden, niin pian kuin peräsimessä istuvat porvaristasavaltalaiset alkoivat tuntea saaneensa jotenkuten vankan pohjan jalkojensa alle, oli heidän lähin päämääränsä riisua työläiset aseista. Tämä tapahtui siten, että suoranaisten valeiden ja julkisen pilkan avulla sekä koettamalla karkoittaa työttömät erääseen syrjäiseen maakuntaan, pakotettiin työläiset nousemaan heinäkuun kapinaan 1848. Hallitus oli pitänyt huolen musertavan ylivoiman saamisesta. Viisipäiväisen sankarillisen taistelun jälkeen sortuivat työläiset. Ja nyt seurasi turvattomien vankien joukossa verilöyly, jonka vertaista ei ole nähty niiden kansalaissotien päivien jälkeen, jotka aloittivat Rooman tasavallan häviön. Silloin porvaristo ensimäisen kerran näytti, mihin
  • 45. mielettömiin julmuuksiin se voi kiihoittua kostossaan, niin pian kuin köyhälistö itsenäisenä luokkana uskaltaa sitä vastaan esittää omia vaatimuksiaan. Ja kuitenkin oli vuosi 1848 lastenleikkiä verrattuna heidän raivoonsa vuonna 1871. Rangaistus seurasi heti jälestä. Jollei köyhälistö kyennyt vielä hallitsemaan Ranskaa, niin ei porvaristokaan pystynyt siihen enää. Ei ainakaan silloin, kun sen enemmistö vielä oli yksinvaltaista mieleltään ja jakaantuneena kolmeen dynastiseen (hallitsijasukua kannattavaan) puolueeseen ja neljänteen tasavaltaiseen. Heidän keskinäiset riitansa tekivät mahdolliseksi, että seikkailija Louis Bonaparte saattoi ottaa haltuunsa kaikki valtapaikat — armeijan, poliisin, hallintokoneiston — ja 2 p:nä joulukuuta hajoittaa porvarillisten viimeisen lujan linnan, kansalliskokouksen. Toinen keisarikunta alkoi, Ranska tuli valtiollisten seikkailijain ja rahahuijarien joukkion nyljettäväksi, mutta samalla alkoi myös teollinen kehitys, joka ei koskaan olisi ollut mahdollinen Louis Philippin ahdasmielisen ja turhantarkan järjestelmän aikana, jolloin kourallinen suurporvaristoa piti yksinään valtaa käsissään. Louis Bonaparte otti kapitalisteilta valtiollisen vallan sillä tekosyyllä, että suojelee porvaristoa työläisiä vastaan ja toiselta puolelta työläisiä porvareita vastaan. Mutta siitä huolimatta suosi hänen valtansa keinottelua ja teollista yritteliäisyyttä, lyhyesti sanoen, koko porvariston nousua ja rikastumista ennen kuulumattomassa määrässä. Tosin vielä paljon suuremmassa määrässä kehittyivät lahjomiset ja joukkovarkaudet, jotka ryhmittyivät keisarillisen hovin ympärille ja kiskoivat ansaituista rikkauksista vahvat prosenttinsa. Mutta toinen keisarivalta oli ranskalaiselle kansallispöyhkeydelle puhallettu yhteentoitotus, se oli 1814 menetettyjen ensimäisen keisarikunnan, ainakin ensimäisen tasavallan rajojen takaisin
  • 46. vaatimista. Ranskalainen keisarikunta oli vanhan yksinvallan rajojen sisällä, vieläpä vuoden 1815 vielä enemmän leikeltyjen rajojen puitteissa ajan pitkään mahdottomuus. Siitä johtui ajoittaisten sotien ja rajanlaajennusten välttämättömyys. Mutta mikään rajanlaajennus ei niin häikäissyt ranskalaisten kansallisylpeilijöiden mielikuvitusta kuin saksalaisen vasemman Rheinin-rannan valloitus. Neliöpeninkulma Rheinin rantaa merkitsi niille enemmän kuin kymmenen Alpeilta tai jostakin muualta. Toiselle keisarikunnalle oli vasemman Rheinin rannan takaisin vaatiminen, kokonaan kerrallaan tai kappaleittain, ainoastaan hetkenkysymys. Tämä hetki tuli preussiläis-itävaltalaisen sodan mukana 1866. Bismarckin ja oman rikkiviisaan vitkastelupolitiikkansa pettämänä, mitä odoteltuun aluekorvaukseen tuli, ei Bonapartella enää ollut muuta valittavana kuin sota, joka puhkesi 1870 ja kiidätti hänet ensin Sedan'iin ja sieltä Wilhelmshöheen. Välttämätön seuraus oli 4 p:nä syyskuuta 1870 alkanut Pariisin vallankumous. Keisarikunta lysähti kokoon kuin korttirakennus ja uudelleen julistettiin tasavalta. Mutta vihollinen seisoi porttien ulkopuolella. Keisarikunnan armeijat olivat joko toivottomasti saarrettuina Metzissä tai vangittuina Saksassa. Tässä hädässä salli kansa entisen lakiasäätävän laitoksen pariisilaisedustajien julistautua kansallisen puolustuksen hallitukseksi. Tämän sallittiin tapahtua sitä kernaammin, kun nyt kaikki asekuntoiset pariisilaiset olivat puolustusta varten astuneet kansalliskaartiin ja olivat aseissa, joten työläiset nyt muodostivat siinä suuren enemmistön. Mutta jo pian puhkesi ilmi vastakohta melkein yksinomaan porvaristosta kokoonpannun hallituksen ja aseistetun köyhälistön välillä. 31 p:nä lokakuuta valtasivat työväenpataljoonat kaupungintalon väkirynnäköllä ja ottivat osan hallituksen jäsenistä vangiksi. Kavallus, hallituksen suoranainen valapattoisuus ja muutamien
  • 47. porvaripataljoonien väliintulo vapauttivat heidät jälleen, ja jottei sisällinen kansalaissota olisi päässyt syttymään vieraan sotavoiman piirittämässä kaupungissa, annettiin entisen hallituksen jäädä toimeensa. Vihdoinkin, 28 p:nä tammikuuta 1871 antautui nälänhädän näännyttämä kaupunki. Mutta sotahistoriassa siihen saakka ennenkuulumattomalla kunnialla. Linnoitukset luovutettiin, ympärysmuuri riisuttiin aseista, linjaväen ja liikkuvan kaartin aseet annettiin pois, ne itse otettiin sotavangeiksi. Mutta kansalliskaarti piti aseensa ja kanuunansa ja taipui ainoastaan aselepoon voittajien kanssa. Eivätkä edes nämäkään uskaltaneet voittokulussa kulkea Pariisiin. Vain pienen, päälle päätteeksi osittain julkisen puiston muodostaman kolkan Pariisia uskalsivat ne miehittää ja senkin ainoastaan pariksi päiväksi! Ja tuonkin ajan piirittivät noita miehiä, jotka itse olivat 131 pitkää päivää pitäneet Pariisia piirityksessä, Pariisin aseistetut työmiehet, jotka tarkasti vartioivat, ettei yksikään preussiläinen päässyt astumaan vieraalle valloittajalle määrätyn nurkan ahtaiden rajojen ulkopuolelle. Sellaista kunnioitusta herättivät Pariisin työmiehet sotajoukossa, jonka edessä keisarikunnan kaikki armeijat olivat laskeneet aseensa, ja preussiläisten junkkarien, jotka olivat tulleet paikalle kostaakseen ihan vallankumouksen liedellä, täytyi jäädä kunnioittavasti seisomaan ja tervehtiä juuri tuota aseistettua vallankumousta! Sodan aikana olivat Pariisin työläiset rajoittuneet vaatimaan taistelun tarmokasta jatkamista. Mutta nyt, kun Pariisin antautumisen jälkeen tehtiin rauha, täytyi Thiers'in, hallituksen uuden päämiehen, havaita, että omistavien luokkien — suurten maanomistajien ja kapitalistien — valtaa uhkasi alituinen vaara niin kauan kuin Pariisin työläisillä oli aseet käsissään. Hänen ensimäinen
  • 48. tehtävänsä oli yrittää riisua ne aseista. 18 p:nä maaliskuuta lähetti hän linja-joukot ryöstämään kansalliskaartille kuuluvat, Pariisin piirityksen aikana valmistettua ja julkisella listakeräyksellä maksettua tykistöä. Yritys epäonnistui, Pariisi nousi yhtenä miehenä vastarintaan ja sota Pariisin ja Versailles'issa majailevan Ranskan hallituksen välillä oli julistettu. Maaliskuun 26 p:nä valittiin Pariisiin kommuuni ja julistettiin 28 p:nä. Kansalliskaartin keskuskomitea, joka siihen asti oli hoitanut hallitusta, luovutti valtansa sille, sittenkun se sitä ennen vielä oli antanut määräyksen Pariisin häpeällisen siveyspoliisin lakkauttamisesta. 30 p:nä lakkautti kommuuni sotaväenoton ja seisovan armeijan ja julisti kansalliskaartin, johon kaikkien asekuntoisten kansalaisten tuli kuulua, ainoaksi aseelliseksi voimaksi. Se antoi anteeksi kaikki asuntovuokrat vuoden 1870 lokakuusta huhtikuuhun saakka, laskemalla jo maksetut vuokrasummat siitä alkavan vuokra-ajan maksuiksi, ja lakkautti kaiken panttienmyynnin kaupungin panttilainastoissa. Samana päivänä vahvistettiin kommuuniin valitut ulkomaalaiset virkoihinsa, sillä kommuunin lippu on maailmantasavallan lippu. — 1 p:nä huhtikuuta päätettiin, että kommuunin palveluksessa olevan henkilön, siis myös kommuunin jäsenten itsensä korkein palkka ei saanut nousta yli 6,000 frangin (6,000 mk). Seuraavana päivänä määrättiin kirkko erotettavaksi valtiosta ja kaikki kirkollisiin tarkoituksiin menevät valtionmaksut lakkautettaviksi samoin kuin kaikki kirkolliset tilat muutettaviksi kansallisomaisuudeksi. Sen johdosta käskettiin 8 p. huhtik. kouluista julistettavaksi pannaan kaikki uskonnolliset vertauskuvat, kuvat, uskonkappaleet, rukoukset, lyhyesti sanoen kaikki mikä kuuluu kunkin yksityisen omantunnon piiriin ja toteutettiin vähitellen. — 5 p:nä annettiin sen vastapainoksi, että vanhan hallituksen joukot päivittäin ampuivat vangittuja kommuunitaistelijoita, käsky pantiksi
  • 49. otettujen henkilöiden vangitsemisesta, jota ei kuitenkaan pantu täytäntöön. — 6 p:nä nouti kansalliskaartin 137:s pataljoona giljotiinin, joka kansan äänekkäästi riemuitessa poltettiin julkisesti. — 12 p:nä päätti kommuuni syöstä alas 1809 v:n Napoleonin sodan jälkeen Vendôme-torille pystytetyn, valloitetuista kanuunista valetun voitonpatsaan kansallisylpeyttä ja kansojen toisiaan vastaan kiihottamista muistuttavana. Se pantiin täytäntöön 16 p:nä toukokuuta. — Samana päivänä päätettiin antaa laatia tilastollinen selonteko tehtailijoiden seisauttamista tehtaista ja valmistaa suunnitelmia näiden tehtaiden käyttämiseksi niissä työskennelleiden työmiesten avulla; työläisten piti muodostaa osuustoiminnallisia yhdistyksiä, jotka taas olivat liitettävät suuremmaksi liitoksi. — 20 p:nä lakkautettiin leipurien yötyö samaten kuin aina toisen keisarikunnan päiviltä asti voimassa ollut, poliisin nimittämien henkilöiden — ensiluokkaisten työriistäjien — monopoolina (yksinoikeutena) harjoittama työnvälitys, joka annettiin Pariisin kahdenkymmenen eri piirin (arrondissment) määrien (maire) huoleksi. — 30 p:nä huhtikuuta määräsi kommuuni lakkautettavaksi panttilainakonttorit, jotka olivat, kuten sanottiin, työläisten yksityistä nylkemistä varten ja olivat ristiriidassa sen oikeuden kanssa, mikä työläisillä oli työkaluihinsa ja luottoon. — 5 p:nä toukok. päätti se hajoittaa Ludvig XVI:nnen mestauksen sovitukseksi rakennetun rukous-kappelin. Niin jyrkkänä ja puhtaana ilmeni maalisk. 18 p:n jälkeen pariisilaisen liikkeen luokkaluonne, jonka taistelu maahan karannutta vihollista vastaan oli tunkenut siihen asti syrjään. Kun kommuunissa istui melkein yksinomaan työläisiä tai tunnettuja työväenedustajia, niin oli myös sen päätöksillä ilmeisesti proletarinen luonne. Joko määräsi se toimeenpantavaksi uudistuksia, jotka tasavaltalainen porvaristo yksistään pelkuruudesta oli laiminlyönyt, mutta jotka
  • 50. muodostivat välttämättömän perustuksen työväenluokan vapaalle toiminnalle, kuten esim. sen lauseen toteuttaminen, että uskonto suhteessaan valtioon on yksityinen asia; tai antoi se päätöksiä, jotka olivat suorastaan työväenluokan eduksi tehtyjä ja jotka koskivat osittain syvästi vanhaan yhteiskuntajärjestykseen. Mutta kaikkien näiden toteuttaminen voitiin piiritetyssä kaupungissa korkeintaan vasta panna alulle. Ja toukokuun alusta alkaen vaati taistelu Versailles'n hallituksen yhä lukuisammiksi karttuvia joukkoja vastaan kaikki voimat. 7 p:nä huhtikuuta olivat versaillesilaiset vallanneet itselleen ylipääsyn Seinen yli Neuillyn luona Pariisin länsirintamalla; sitävastoin löi kenraali Eudes 11 p. takaisin niiden verisen hyökkäyksen eteläistä rintamaa vastaan. Pariisia pommitettiin yhteen menoon, ja sitä tekivät samat ihmiset, jotka olivat leimanneet preussilaisten pommituksen samaa kaupunkia vastaan pyhyyden loukkaukseksi. Nämä samat ihmiset kerjäsivät nyt Preussin hallitukselta, että se lähettäisi pikaisesti Sedan'ista ja Metzista vangitut ranskalaiset sotamiehet valloittamaan Pariisin heille takaisin. Näiden joukkojen vähittäinen saapuminen antoi toukokuun alusta versaillesilaisille ratkaisevan ylivoiman. Tämä osoittautui jo siinä, että Thiers 23 p:nä katkaisi keskustelut, jotka koskivat sellaista kommuunin tarjoamaa vaihtoa, että Pariisin arkkipiispa ja koko joukko muita Pariisissa panttivankeina pidettyjä pappeja olisi vaihdettu yksinään Blanqui'ta vastaan, joka kahdesti oli valittu kommuuniin, mutta oli Clairvaux'ssa vankina. Mutta vielä enemmän ilmeni se Thiers'in muuttuneessa kielenkäytössä; oltuaan tähän asti pidättyväinen ja kaksikielinen, muuttui hän äkkiä hävyttömäksi, röyhkeäksi, raa'aksi. Etelärintamalla ottivat versaillesilaiset 3 p:nä toukokuuta Moulin Saquet'n kenttävarustukset, 9 p:nä täydellisesti mäsäksi ammutun Issy'n linnoituksen ja 14 p:nä Vanves'in linnan. Länsirintamalla hyökkäsivät
  • 51. he vähitellen, lukuisia ympärysmuuriin saakka ulottuvia kyliä ja rakennuksia valloitellen, ihan päävallin luokse asti. 11 p:nä onnistui heidän kavalluksen ja sinne asetetun kansalliskaartin huolimattomuuden tähden tunkeutua kaupunkiin. Preussiläiset, jotka pitivät miehitettyinä pohjoisia ja itäisiä linnoituksia, sallivat versaillesilaisten tunkeutua eteenpäin yli heiltä aselevossa kielletyn alueen kaupungin pohjoisosassa ja senkautta ryhtyä hyökkäämään sillä pitkällä rintamalla, jonka pariisilaiset luulivat olevan aselevolla suojatun ja jota siitä syystä pitivät heikosti miehitettynä. Tämän johdosta oli vastarinta Pariisin länsiosassa, varsinaisessa loistokaupunginosassa, ainoastaan heikkoa; se muuttui sitä ankarammaksi ja sitkeämmäksi, mitä lähemmäksi itäistä puolta, varsinaista työväenkaupunginosaa, eteenpäin tunkeutuvat joukot tulivat. Vasta kahdeksanpäiväisen taistelun jälkeen kukistuivat viimeiset kommuunin puolustajat Bellevillen ja Menilmontant'in kukkuloilla, ja nyt saavutti turvattomien miesten, naisten ja lasten murhaaminen, joka yltyen oli raivonnut läpi koko viikon, huippunsa. Takaaladattava ei enää tappanut kyllin nopeasti, sadottain voitettuja ammuttiin kuularuiskuilla mäsäksi. Liittoutuneiden muuri Père Lachaisen kirkkopihalla, jossa viimeinen joukkomurha toimeenpantiin, seisoo vielä tänäpäivänä kaikessa mykkyydessään paljon puhuvana todistuksena siitä raivosta, mihin hallitseva luokka on valmis niin pian kuin köyhälistö uskaltaa nousta esiintymään oikeuksiensa puolesta. Sitten seurasivat joukkovangitsemiset, kun kaikkien teurastaminen osoittautui mahdottomaksi, vangittujen riveistä mielivaltaisesti poimittujen teurasuhrien ampumiset, loppujen kulettaminen suuriin leireihin, joissa he odottivat raahaamistaan sotaoikeuksien tuomittaviksi. Preussiläisiä joukkoja, jotka piirittivät Pariisin koillisosaa, oli kielletty laskemasta lävitsensä yhtään pakolaista, mutta kuitenkin sulkivat upseerit usein silmänsä, kun
  • 52. havaitsivat sotamiehen enemmän noudattavan ihmisyyden kuin ylipäällikön käskyä; erityisesti ansaitsee saksilainen armeijakunta tulla mainituksi siitä ihmisystävällisestä menettelystään, että se laski läpi useita, joiden osallisuus kommuunitaisteluihin oli ilmeinen. * * * * * Jos tänään, kahdenkymmenen vuoden kuluttua, tarkastelemme v:n 1871 Pariisin kommuunin toimintaa ja historiallista merkitystä, niin tulemme havaitsemaan, että Kansalaissodassa annettuun esitykseen on vielä tehtävä muutamia lisäyksiä. Kommuunin jäsenet olivat jakaantuneina enemmistöön, blanquisteihin, jotka myöskin olivat olleet vallalla kansalliskaartin keskuskomiteassa, ja vähemmistöön, jonka etupäässä muodostivat Proudhon'in sosialistista suuntaa kannattavat kansainvälisen työväenpuolueen jäsenet. Blanquistit olivat silloin suurelta osaltaan sosialisteja ainoastaan vallankumouksellisesta, proletarisesta vaistosta; ainoastaan muutamat harvat olivat Vaillant'in kautta, joka tunsi saksalaista tieteellistä sosialismia, päässeet suurempaan periaatteelliseen selvyyteen. Niin on käsitettävissä, että taloudellisessa suhteessa lyötiin laimin paljon sellaista, mitä kommuunin meidän nykyisen katsantokantamme mukaan olisi pitänyt tehdä. Tosin kaikkein vaikeimmin ymmärrettävissä on se pyhä kunnioitus, jolla nöyrinä jäätiin seisomaan Ranskan pankin porttien ulkopuolelle. Se oli myöskin raskas poliittinen virhe. Pankki kommuunin käsissä — olisi ollut suuremman arvoinen kuin kymmenentuhatta panttivankia. Se olisi vaikuttanut, että koko Ranskan porvaristo olisi painostanut Versaillesin hallitusta tekemään rauhan kommuunin kanssa. Mutta vielä ihmeteltävämpää on se suuri määrä oikeata, mitä blanquisteista ja proudhonilaisista kokoonpantu
  • 53. kommuuni siitä huolimatta teki. Luonnollisesti ovat ensi kädessä proudhonilaiset vastuunalaisia kommuunin taloudellisista päätöksistä, niiden sekä kiitettävistä että moitittavista puolista, ja blanquistit vastuunalaisia sen poliittisista teoista ja tekemättä jättämisistä. Ja kummassakin tapauksessa tahtoi historian iva — kuten tavallisesti, kun tieteilijät pääsevät peräsimeen käsiksi —, että niin toiset kuin toisetkin tekivät ihan päinvastoin kuin heidän koulukuntansa oppi heille määräsi. Proudhon, pikkutilallisten ja käsityöläismestarien sosialisti, vihasi yhdyskunnaksi liittymistä positivisella vihalla. Hän sanoi sen tuovan enemmän pahaa kuin hyvää, olevan luonnostaan hedelmätöntä, jopa vahingollista, koska se kahlehtii työläisten vapautta; se oli hänen mielestään pelkkä uskonkappale, hyödytön ja ehkäisevä, ristiriidassa niin hyvin työläisten vapauden kuin työn säästämisen kanssa, ja sen varjopuolet kasvavat nopeammin kuin sen edut; sitä vastoin olivat kilpailu, työnjako, yksityisomaisuus taloudellisia voimia. Ainoastaan poikkeustapauksissa, kuten Proudhon niitä nimittää, — suurteollisuudessa ja suurissa liikeyrityksissä, esim. rautateillä — oli työläisten yhteenliittyminen paikallaan. (Ktso Idée général de la révolution, 3. étude.) Jo 1871 oli suurteollisuus itse Pariisissa, taiteellisen käsityön pääpaikassa, siinä määrin lakannut olemasta poikkeustapaus, että kommuunin verrattomasti tärkein päätös määräsi suur- ja vieläpä käsityöteollisuudelle järjestelyn, joka ei ainoastaan perustunut työläisten yhteenliittymiseen, vaan jonka myös piti yhdistää nämä liittymät yhdeksi suureksi liitoksi, lyhyesti sanottuna järjestelmän, jonka, kuten Marx Kansalaissodassaan aivan oikein huomauttaa, loppujen lopuksi täytyisi johtaa kommunismiin, siis aivan vastakkaiseen suuntaan kuin Proudhon'in oppi. Ja siitä syystä olikin
  • 54. kommuuni proudhonilaisen sosialistikoulun hauta. Tämä koulu onkin nykyään hävinnyt ranskalaisista työväenpiireistä. Siellä on nyt niin possibilistien kuin marxilaistenkin keskuudessa kieltämättömästi vallalla marxilainen teoria. Ainoastaan radikalisten porvarien joukossa on vielä proudhonilaisia. Blanquisteille ei käynyt paremmin. Salaliittojen kouluissa kasvaneina ja niissä käytettävän ankaran kurin koossapitäminä oli niillä lähtökohtana mielipide, että suhteellisesti pieni määrä päättäväisiä, hyvin järjestyneitä miehiä pystyy suotuisan hetken tultua ei ainoastaan tarttumaan valtion ohjaksiin vaan myöskin suurta ja häikäilemätöntä tarmoa käyttämällä pitämään ne käsissään, siksi kunnes ovat onnistuneet tempaamaan kansanjoukot vallankumouksen pyörteeseen ja keräämään ne pienen johtajajoukon ympärille. Siihen kuului ennen kaikkea kaiken vallan mitä ankarin, diktaattorimainen keskittäminen uuden vallankumouksellisen hallituksen käsiin. Ja mitä teki kommuuni, jonka enemmistönä olivat juuri nämä blanquistit? Kaikissa julistuksissaan maaseudun ranskalaisille kehoitti se näitä kaikkien kuntien vapaaseen liittoon Pariisin kanssa, kansalliseksi järjestöksi, jonka kansakunta nyt ensi kerran itse loisi. Juuri tähänastisen hallituksen keskitetyn sortovallan armeijoineen, valtiollisine poliiseineen ja virkavaltoineen, jonka Napoleon oli 1798 luonut ja jonka jokainen uusi hallitus oli siitä lähtien ottanut tervetulleena aseena vastaan ja käyttänyt vastustajiaan vastaan, juuri tämän vallan piti kaikkialla kaatua, niinkuin se jo oli Pariisissa kukistunut. Kommuunin täytyi heti alussa tunnustaa, että työväenluokka, kerran valtaan päässeenä, ei enää kauemmin voinut hoitaa taloutta vanhan valtiokoneiston avulla; että tämän saman luokan, jottei se menettäisi takaisin omaa, äsken valloittamaansa valtaa, täytyi
  • 55. toiselta puolen hävittää koko vanha, siihen asti sitä itseään vastaan käytetty sortokoneisto, toiselta puolelta turvata itsensä omia virka- ja valtiopäivämiehiään vastaan julistamalla, että ne voitiin poikkeuksettomasti ja milloin tahansa erottaa. Missä ilmeni tähänastisen valtion luonteenomainen omaisuus? Yhteiskunta oli alkuaan yhteisten etujensa huoltamista varten luonut yksinkertaisen työnjaon kautta itselleen omia orgaaneja, elimiä. Mutta nämä orgaanit, joiden huippuna on valtiovalta, olivat aikaa yhteisen, omien erikoisetujensa palveluksessa, muuttuneet yhdyskunnan palvelijoista sen herroiksi. Tämä on havaittavissa niin hyvin demokraattisissa tasavalloissa kuin perinnöllisissä yksinvalloissakin. Missään eivät valtiomiehet muodosta eristetympää ja mahtavampaa osaa kansasta kuin juuri Pohjois-Amerikassa. Siellä hallitsevat kumpaakin niistä kahdesta suuresta puolueesta, jotka vaihdellen ovat vallassa, vuorostaan ihmiset, jotka harjoittavat politiikkaa hyödyksensä, jotka keinottelevat itselleen paikkoja liittovaltion ja yksityisten valtioitten lakiasäätävissä laitoksissa tai jotka elävät puolueensa vaaliyllytyksestä ja puolueen voitettua vaaleissa saavat hyviä virkoja palkaksensa. Tiedetään, miten amerikalaiset ovat 30 vuotta koittaneet ravistaa tätä sietämättömäksi käynyttä iestä niskastaan, mutta kaikesta huolimatta vajoavat yhä syvemmälle tähän turmeluksen ja lahjomisien suohon. Juuri Amerikassa voimme paraiten nähdä, miten tämä valtiovallan vieraantuminen yhteiskunnasta, jonka yksinomaiseksi välikappaleeksi se alkuaan oli tarkoitettu, tapahtuu. Siellä ei ole olemassa hallitsijasukua, ei aatelistoa, ja seisovata sotaväkeä, lukuunottamatta sitä pientä joukkoa, joka on intiaanien vartioimista varten, ei ole virkavaltaa vakinaisine virkoineen ja eläkkeensaamisoikeuksineen. Ja kuitenkin on siellä kaksi joukkuetta valtiollisia keinottelijoita, jotka vaihdellen pitävät valtiovaltaa ja käyttävät mitä turmeltuneimpia keinoja
  • 56. Welcome to our website – the ideal destination for book lovers and knowledge seekers. With a mission to inspire endlessly, we offer a vast collection of books, ranging from classic literary works to specialized publications, self-development books, and children's literature. Each book is a new journey of discovery, expanding knowledge and enriching the soul of the reade Our website is not just a platform for buying books, but a bridge connecting readers to the timeless values of culture and wisdom. With an elegant, user-friendly interface and an intelligent search system, we are committed to providing a quick and convenient shopping experience. Additionally, our special promotions and home delivery services ensure that you save time and fully enjoy the joy of reading. Let us accompany you on the journey of exploring knowledge and personal growth! textbookfull.com