SlideShare a Scribd company logo
Graph partitioning and eigen polynomials of
Laplacian matrices of Roach-type graphs
Yoshihiro Mizoguchi
Institute of Mathematics for Industry,
Kyushu University  
ym@imi.kyushu-u.ac.jp
Algebraic Graph Theory,
Spectral Graph Theory and Related Topics
5th Jan. 2013 at Nagoya University
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 1 / 32
Table of contents
...1 Introduction
...2 Chebyshev polynomials
...3 Tridiagonal matrices
...4 Laplacian Matrix
...5 Mcut, Lcut and spectral clustering
...6 Conclusion
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 2 / 32
Biogeography-Based Optimization (1)
Let Ps be the probability that the habitat contains exactly S species. We
can arrange ˙Ps equations into the single matrix equation


˙P0
˙P1
˙P2
...
˙Pn−1
˙Pn


=


−(λ0 + µ0) µ1 0 · · · 0
λ0 −(λ1 + µ1) µ2
...
...
...
...
...
...
...
...
... λn−2 −(λn−1 + µn−1) µn
0 . . . 0 λn−1 −(λn + µn)




P0
P1
P2
...
Pn−1
Pn


where λs and µs are the immigration and emigration rates when there are
S species in the habitat.
Generally λ0 > λ1 > · · · > λn and µ0 < µ1 < · · · < µn hold and we
assume λs = n−s
n and µs = s
n in this talk.
[Sim08] D.Simon, Biogeography-Based Optimization,
IEEE Trans. on evolutionary computation, 2008.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 3 / 32
Biogeography-Based Optimization (2)
.
Theorem
..
......
The (n + 1) eigenvalues of the biogeography matrix
A =


−1 1/n 0 · · · 0
n/n −1 2/n
...
...
...
...
...
...
...
...
... 2/n −1 n/n
0 . . . 0 1/n −1


are {0, −2/n, −4/n, . . . , −2}.
[IS11] B.Igelnik, D. Simon, The eigenvalues of a tridiagonal matrix in
biogeography, Appl. Mathematics and Computation, 2011.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 4 / 32
Heat equation (Crank-Nicolson method) (1)
ut = uxx x ∈ [0, 1] and t > 0
with initial and Dirichlet boundary condition given by:
u(x, 0) = f(x), u(0, t) = g(t) and u(1, t) = h(t)
The finite difference discretization can be expressed as:
Aun+1
= Bun
+ c
where
A =


1 + α −r/2 0
−r/2 1 + r −r/2
...
...
...
−r/2 1 + r −r/2
0 −r/2 1 + α


Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 5 / 32
Heat equation (Crank-Nicolson method) (2)
and
B =


1 − β r/2 0
r/2 1 − r r/2
...
...
...
r/2 1 − r r/2
0 r/2 1 − β


.
We note un = (un
1
, un
2
, . . . , un
m)T. The parapmeters α and β are given by:
α = β = 3r/2 for the implicit boundary conditions;
α = r and β = 2r for the explicit boundary conditions
The iteration matrix M(r) = A−1B controls the stability of the numerical
method to compute Aun+1 = Bun + c.
[CM10] J.A. Cuminato, S. McKee, A note on the eigenvalues of a special
class of matrices, J. of Computational and Applied Mathematics, 2010.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 6 / 32
Tridiagonal Matrix (1)
An =


−α + b c 0 0 · · · 0 0
a b c 0 · · · 0 0
0 a b c · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · b c
0 0 0 0 · · · a −β + b


n×n
.
Theorem
..
......
Suppose α = β =
√
ac 0. Then the eigenvalues λk of An are given by
λk = b + 2
√
ac cos
kπ
n
and the corresponding eigenvectors u(k) = (u(k)
j
)
are given by u(k)
j
= ρj−1
sin
k(2j − 1)π
2n
for k = 1, 2, · · · , n − 1 and
u(n)
j
= (−ρ)j−1 where ρ =
√
a/c.
[Yue05] W-C. Yueh, Eigenvalues of several tridiagonal matrices, Applied
Mathematics E-Notes, 2005.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 7 / 32
Tridiagonal Matrix (2)
Consider the n × n matrix C = (min{ai − b, aj − b})i,j=1,...,n.
.
Proposition
..
......
For a > 0 and a b, the tridiagonal matrix of order n
Tn =


1 + a
a−b
−1
−1 2 −1
...
...
...
−1 2 −1
−1 1


is the inverse of (1/a)C.
[dF07] C.M. da Fonseca, On the eigenvalues of some tridiagonal matrices,
J. of Computational and Applied Mathematics, 2007.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 8 / 32
Chebyshev polynomials
For n ∈ N and x ∈ R, we define functions Tn(x) and Un(x) as follows.
T0(x) = 1, T1(x) = x,
U0(x) = 1, U1(x) = 2x,
Tn+1(x) = 2xTn(x) − Tn−1(x), and
Un+1(x) = 2xUn(x) − Un−1(x).
We note cos nθ = Tn(cos θ), and sin(n + 1)θ = Un(cos θ) sin θ for θ ∈ R.
.
Proposition
..
......
Let x = cos θ. Then
Tn(x) = 0 ⇔ x = cos(
(2k + 1)π
2n
) (k = 0, · · · , n − 1).
Un(x) = 0 ⇔ x = cos(
kπ
n + 1
) (k = 1, · · · , n).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 9 / 32
Tridiagonal matrix An(a, b)
We define a n × n matrix An(a, b) as follows:
An(a, b) =


a b 0 · · · · · · · · · 0
b a b 0
...
0 b a b 0
...
...
...
...
...
...
...
...
... 0 b a b 0
... 0 b a b
0 · · · · · · · · · 0 b a


.
We put |A0(a, 1)| = 1, then |An(a, 1)| = a|An−1(a, 1)| − |An−2(a, 1)|,
|A1(a, 1)| = a and An(a, b) = bn
· An (a/b, 1).
.
Proposition
..
......
|An(a, b)| = bn
·
sin(n + 1)θ
sin θ
where cos θ =
a
2b
.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 10 / 32
Tridiagonal matrix Bn and Cn (1)
Let n ≥ 3.
Bn(a0, b0, a, b) =


a0 b0 0 · · · 0
b0
0 An−1(a, b)
...
0


Cn(a, b, a0, b0) =


0
An−1(a, b)
...
0
b0
0 · · · 0 b0 a0


We note that
|Bn(a0, b0, a, b)| = a0|An−1(a, b)| − b2
0
|An−2(a, b)|, and
||Cn(a, b, a0, b0)|| = |a0|An−1(a, b)| − b2
0
|An−2(a, b)||.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 11 / 32
Tridiagonal matrix Bn and Cn (2)
We define functions
gn(β) = 2 sin((n + 1)β) + sin nβ − sin((n − 1)β), and
hn(β) = 2 sin((n + 1)β) − sin nβ − sin((n − 1)β)
before introducing the next Lemma.
.
Proposition
..
......
Let n ≥ 3.
Bn(λ − 1,
1
√
2
, λ − 1,
1
2
) =
1
2n−1
cos nα, (λ = 1 + cos α),
Cn(η −
2
3
,
1
3
, η −
1
2
,
1
√
6
) =
1
2 · 3n · sin β
gn(β), (η =
2
3
(1 + cos β)),
Cn(µ −
4
3
,
1
3
, µ −
3
2
,
1
√
6
) =
1
2 · 3n · sin β
hn(β), (µ =
2
3
(2 + cos β)).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 12 / 32
Tridiagonal matrix Qn(a0, b0, a, b)
Let n ≥ 4. We define n × n matrix Qn(a0, b0, a, b) as follows:
Qn(a0, b0, a, b) =


a0 b0 0 · · · 0
b0
...
0 An−2(a, b) 0
... b0
0 · · · 0 b0 a0


We note that
|Qn(a0, b0, a, b)| = a0|Cn−1(a, b, a0, b0)| − b2
0
|Cn−2(a, b, a0, b0)|.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 13 / 32
Laplacian matrix of a graph
.
Definition (Weighted normalized Laplacian)
..
......
The weighted normalized Laplacian L(G) = (ℓij) is defined as
ℓij =



1 −
wj j
dj
if i = j,
−
wi j
√
didj
if vi and vj are adjacent and i j,
0 otherwise.
The adjacency matrix A(P5) and the normalized Laplacian matrix L(P5) of
a path graph P5.
A(P5) =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0


L(P5) =


1 − 1
√
2
0 0 0
− 1
√
2
1 −1
2
0 0
0 −1
2
1 −1
2
0
0 0 −1
2
1 − 1
√
2
0 0 0 − 1
√
2
1


Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 14 / 32
Characteristic polynomial of L(Pn)
.
Proposition
..
......
Let n ≥ 4.
|λIn − L(Pn)| = −
(
1
2
)n−2
(sin α sin((n − 1)α))
where λ = 1 + cos α. That is λ = 1 − cos(
kπ
n − 1
) (k = 0, . . . , n − 1).
We note
L(Pn) = Qn

1, −
1
√
2
, 1, −
1
2

 , and
λIn − L(Pn) = Qn

λ − 1,
1
√
2
, λ − 1,
1
2

 .
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 15 / 32
Characteristic polynomial of L(Pn,k) (1)
Let n ≥ 3 and k ≥ 3. Then
L(Pn,k) =


Bn(1, − 1
√
2
, 1, −1
2
) Xn,k
Xt
n,k
Ck(2
3
, −1
3
, 1
2
, − 1
√
6
)


where Xn,k is the n × k matrix defined by
Xn,k =


0 · · · · · · 0
...
...
0 0
...
− 1
√
6
0 · · · 0


.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 16 / 32
Characteristic polynomial of L(Pn,k) (2)
.
Proposition
..
......
Let
pn,k(λ) =
1
2n3k sin β
(gk(β) cos(nα)) − gk−1(β) cos((n − 1)α)).
Then
λIn+k − L(Pn,k) = pn,k(λ),
where λ = 1 + cos α and λ =
2
3
(1 + cos β).
λIn+k − L(Pn,k) =
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) Xn,k
Xt
n,k
Ck(λ − 2
3
, 1
3
, λ − 1
2
, 1
√
6
)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 17 / 32
Characteristic polynomial of L(Rn,k) (1)
1 2 3 4 5 6
7 8 9 10 11 12
Let n ≥ 3 and k ≥ 3. Then L(Rn,k) =


Bn(1, − 1
√
2
, 1, −1
2
) Xn,k O O
Xt
n,k
Ck(1, −1
3
, 1, − 1
√
6
) O Ck(−1
3
, 0, −1
2
, 0)
O O Bn(1, − 1
√
2
, 1, −1
2
) Xn,k
O Ck(−1
3
, 0, −1
2
, 0) Xt
n,k
Ck(1, −1
3
, 1, − 1
√
6
)


.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 18 / 32
Characteristic polynomial of L(Rn,k) (2)
.
Proposition
..
......
Let n ≥ 3, k ≥ 3 and
pn,k(λ) =
1
2n3k sin β
(gk(β) cos(nα)) − gk−1(β) cos((n − 1)α)), and
qn,k(λ) =
1
2n3k sin γ
(hk(γ) cos(nα) − hk−1(γ) cos((n − 1)α)). Then
|λIn+k − L(Rn,k)| = pn,k(λ) · qn,k(λ).
where λ = 1 + cos α =
2
3
(1 + cos β) =
2
3
(2 + cos γ).
λIn+k − L(Rn,k) =
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) Xn,k
Xt
n,k
Ck(λ − 2
3
, 1
3
, λ − 1
2
, 1
√
6
)
×
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) Xn,k
Xt
n,k
Ck(λ − 4
3
, 1
3
, λ − 3
2
, 1
√
6
)
= pn,k(λ) × qn,k(λ).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 19 / 32
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) (Calculation)
Let λ = 1 + cos α. Then we have
Bn(λ − 1,
1
√
2
, λ − 1,
1
2
) = (λ − 1) An−1(λ − 1,
1
2
) −
1
2
An−2(λ − 1,
1
2
)
= (λ − 1)
(
1
2
)n−1
sin nα
sin α
−
1
2
(
1
2
)n−2
sin(n − 1)α
sin α
=
(
1
2
)n−1
·
1
sin α
((λ − 1) sin nα − sin(n − 1)α)
=
(
1
2
)n−1
·
1
sin α
(cos α sin nα − sin(nα − α))
=
(
1
2
)n−1
·
1
sin α
(cos nα sin α)
=
(
1
2
)n−1
cos nα.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 20 / 32
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) (Mathematica)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 21 / 32
Cn(η − 2
3
, 1
3
, η − 1
2
, 1
√
6
) (Calculation)
Let η =
2
3
(1 + cos β) and gn(β) = 2 sin(n + 1)β + sin nβ − sin(n − 1)β. Then we have
Cn(η −
2
3
,
1
3
, η −
1
2
,
1
√
6
) =
(
η −
1
2
)
An−1
(
η −
2
3
,
1
3
)
−
1
6
An−2
(
η −
2
3
,
1
3
)
=
(
1
3
)n−1 ((
η −
1
2
)
sin nβ
sin β
−
1
2
sin(n − 1)β
sin β
)
=
(
1
3
)n−1 ((
1
6
+
2
3
cos β
)
sin nβ
sin β
−
1
2
sin(n − 1)β
sin β
)
=
(
1
3
)n−1
1
6 sin β
(sin nβ + 4 cos β sin nβ − 3 sin(nβ − β))
=
(
1
3
)n−1
1
6 sin β
(2 sin(n + 1)β + sin nβ − sin(n − 1)β)
=
(
1
3
)n
1
2 sin β
gn(β).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 22 / 32
Cn(η − 2
3
, 1
3
, η − 1
2
, 1
√
6
) (Mathematica)
Some manual computations for gn(θ) (× sin).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 23 / 32
pn,k(λ) (Mathematica)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 24 / 32
qn,k(λ) (Mathematica)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 25 / 32
Minimum Normalized Cut Mcut(G)
.
Definition (Normalized cut)
..
......
Let G = (V, E) be a connected graph. Let A, B ⊂ V, A ∅, B ∅ and
A ∩ B = ∅. Then the normalized cut Ncut(A, B) of G is defined by
Ncut(A, B) = cut(A, B)
(
1
vol(A)
+
1
vol(B)
)
.
.
Definition (Mcut(G))
..
......
Let G = (V, E) be a connected graph. The Mcut(G) is defined by
Mcut(G) = min{Mcut j(G) | j = 1, 2, . . . }.
Where,
Mcut j(G) = min{Ncut(A, V  A) | cut(A, V  A) = j, A ⊂ V}.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 26 / 32
Mcut(R6,3)
G0 (even) G1 (odd)
1 2 3 4 5 6
7 8 9 10 11 12
1 2 3 4 5 6
7 8 9 10 11 12
Ncut(A0, B0) = 2 × (
1
16
+
1
10
) =
13
40
= 0.325
Ncut(A1, B1) = 3 × (
1
13
+
1
13
) =
6
13
≈ 0.462
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 27 / 32
Spectral Clustering
.
Definition (Lcut(G))
..
......
Let G = (V, E) be a connected graph, λ2 the second smallest eigenvalue
of L(G), U2 = ((U2)i) (1 ≤ i ≤ |V|) a second eigenvector of L(G) with λ2.
We assume that λ2 is simple. Then Lcut(G) is defined as
Lcut(G) = Ncut(V+
(U2) ∪ V0
(U2), V−
(U2)).
1
2
3
4
5
6
7
1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22
Lcut(G) = Mcut(G) Lcut(R4,7) = Mcut(R4,7)
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
Mcut(R6,4) Lcut(R6,4)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 28 / 32
Roach Graph Observation
.
Proposition
..
......
Let Rn,k be a roach-type graph. If Lcut(Rn,k) = Mcut(Rn,k) then a second
eigen vector of L(Rn,k) is an even vector.
.
Proposition
..
......
Let R2k,k be a roach-type graph, P2k,k a weighted path and P4k a path
graph.
1. λ2(L(P4k)) = 1 − π
4k−1
.
2. λ2(L(R2k,k)) < λ2(L(P4k)).
3. λ2(L(P4k)) < λ2(L(P2k,k)).
4. A second eigenvector of L(R2k,k) is an odd vector.
5. Mcut(R2k,k) < Lcut(R2k,k).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 29 / 32
Conclusion
We give followings in this talks:
Tridiagonal matrices, Laplacian of graphs and spectral clustering
method.
Concrete formulae of characteristic polynomials of tridiagonal
matrices.
Mathematica computations for characteristic polynomials.
Concrete formulae of eigen-polynomials of (P2k,k) and L(R2k,k).
Proof of Lcut does not always give an optimal cut.
We are not able to decide the simpleness of the second eigenvalue for
Pn,k and Rn,k.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 30 / 32
Reference I
A. Behn, K. R. Driessel, and I. R. Hentzel.
The eigen-problem for some special near-toeplitz centro-skew
tridiagonal matrices.
arXiv:1101.5788v1 [math.SP], Jan 2011.
H-W. Chang, S-E. Liu, and R. Burridge.
Exact eigensystems for some matrices arising from discretizations.
Linear Algebra and its Applications, 430:999–1006, 2009.
J. A. Cuminato and S. McKee.
A note on the eigenvalues of a special class of matrices.
Journal of Computational and Applied Mathematics, 234:2724–2731,
2010.
C. M. da Fonseca.
On the eigenvalues of some tridiagonal matrices.
Journal of Computational and Applied Mathematics, 200:283–286,
2007.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 31 / 32
Reference II
B. Igelnik and D. Simon.
The eigenvalues of a tridiagonal matrix in biogeography.
Applied Mathematics and Computation, 218:195–201, 2011.
S. Kouachi.
Eigenvalues and eigenvectors of tridiagonal matrices.
Electronic Journal of Linear Algebra, 15:115–133, 2006.
D. Simon.
Biogeography-based optimization.
IEEE Transactions on Evolutionary Computation, 12(6):702–713,
2008.
W. Yueh.
Eigenvalues of several tridiagonal matrices.
Applied Mathematics E-Notes, 5:66–74, 2005.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 32 / 32

More Related Content

PDF
数式処理ソフトMathematicaで数学の問題を解く
PDF
Homebrewによるソフトウェアの実装(1)
PDF
Homebrewによるソフトウェアの実装 (3)
PDF
DockerでCoq インストール
PDF
圏論のモナドとHaskellのモナド
PPTX
圏論とHaskellは仲良し
PDF
Coq関係計算ライブラリの開発と写像の性質の証明
PDF
The history of TeX and its recent advances
数式処理ソフトMathematicaで数学の問題を解く
Homebrewによるソフトウェアの実装(1)
Homebrewによるソフトウェアの実装 (3)
DockerでCoq インストール
圏論のモナドとHaskellのモナド
圏論とHaskellは仲良し
Coq関係計算ライブラリの開発と写像の性質の証明
The history of TeX and its recent advances

What's hot (20)

PDF
tcolorboxによる装飾表現(TeXユーザの集い2015)
PDF
SAT/SMTソルバの仕組み
PDF
Homebrewによるソフトウェアの実装 (2)
PDF
Overleafを使った文書作成
PDF
形式言語理論への 測度論的アプローチ
PDF
DockerでAlmaLinux(web, php, pukiwiki)環境構築
PDF
コンピュータービジョンのためのグレブナー基底入門1
PDF
数学プログラムを Haskell で書くべき 6 の理由
PPTX
心理学におけるオープンサイエンス入門(OSF&PsyArXiv編)
PDF
定理証明支援系Coqについて
PDF
素数の分解法則(フロベニウスやばい) #math_cafe
PDF
組合せ最適化入門:線形計画から整数計画まで
PDF
リクルート式 自然言語処理技術の適応事例紹介
PDF
Hadoopのシステム設計・運用のポイント
PDF
WASM(WebAssembly)入門 ペアリング演算やってみた
PPTX
全部Excelだけで実現しようとして後悔するデータ分析 2nd Edition
PPTX
Mixed Precision Training
PDF
Rの高速化
PDF
はじめてのKrylov部分空間法
PDF
計算機を用いて数学の問題を解くということ
tcolorboxによる装飾表現(TeXユーザの集い2015)
SAT/SMTソルバの仕組み
Homebrewによるソフトウェアの実装 (2)
Overleafを使った文書作成
形式言語理論への 測度論的アプローチ
DockerでAlmaLinux(web, php, pukiwiki)環境構築
コンピュータービジョンのためのグレブナー基底入門1
数学プログラムを Haskell で書くべき 6 の理由
心理学におけるオープンサイエンス入門(OSF&PsyArXiv編)
定理証明支援系Coqについて
素数の分解法則(フロベニウスやばい) #math_cafe
組合せ最適化入門:線形計画から整数計画まで
リクルート式 自然言語処理技術の適応事例紹介
Hadoopのシステム設計・運用のポイント
WASM(WebAssembly)入門 ペアリング演算やってみた
全部Excelだけで実現しようとして後悔するデータ分析 2nd Edition
Mixed Precision Training
Rの高速化
はじめてのKrylov部分空間法
計算機を用いて数学の問題を解くということ
Ad

Similar to Graph partitioning and characteristic polynomials of Laplacian matrics of Roach-type graphs (20)

PDF
dhirota_hone_corrected
PDF
hone_durham
PDF
Scattering theory analogues of several classical estimates in Fourier analysis
PDF
H function and a problem related to a string
PDF
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
PDF
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
PDF
1- Matrices and their Applications.pdf
PDF
Kittel c. introduction to solid state physics 8 th edition - solution manual
PDF
Adaptive Restore algorithm & importance Monte Carlo
PDF
Classification of Uq(sl2)-module algebra structures on the quantum plane
PDF
ON COMPUTATIONS OF THPD MATRICES
PDF
ON COMPUTATIONS OF THPD MATRICES
PDF
ON COMPUTATIONS OF THPD MATRICES
PDF
ON COMPUTATIONS OF THPD MATRICES
PDF
Hermite integrators and 2-parameter subgroup of Riordan group
PDF
A note on variational inference for the univariate Gaussian
PDF
MODULE 1_Calculus_part 1_Presentation.pdf
PDF
Linear_system, Linear_system, Linear_system.pdf
PDF
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
dhirota_hone_corrected
hone_durham
Scattering theory analogues of several classical estimates in Fourier analysis
H function and a problem related to a string
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
1- Matrices and their Applications.pdf
Kittel c. introduction to solid state physics 8 th edition - solution manual
Adaptive Restore algorithm & importance Monte Carlo
Classification of Uq(sl2)-module algebra structures on the quantum plane
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
Hermite integrators and 2-parameter subgroup of Riordan group
A note on variational inference for the univariate Gaussian
MODULE 1_Calculus_part 1_Presentation.pdf
Linear_system, Linear_system, Linear_system.pdf
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Ad

More from Yoshihiro Mizoguchi (17)

PDF
Amazon AWSの使い方
PDF
ShareLaTeXの使い方
PDF
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional O...
PDF
Theory of Relational Calculus and its Formalization
PDF
Verification of a brick wang tiling algorithm
PDF
A Coq Library for the Theory of Relational Calculus
PDF
Algebras for programming languages
PDF
Coqチュートリアル
PDF
Mac bookでwebサーバーを起動する方法
PDF
有限オートマトンとスティッカー系に関するCoqによる形式証明について
PDF
計算可能実数とは
PDF
複素数・四元数と図形の回転
PDF
グラフデータ構造と5色定理
PDF
行列計算を利用したデータ解析技術
PDF
Theory of Relations (2)
PDF
Generalization of Compositons of Cellular Automata on Groups
PDF
Theory of Relations (1)
Amazon AWSの使い方
ShareLaTeXの使い方
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional O...
Theory of Relational Calculus and its Formalization
Verification of a brick wang tiling algorithm
A Coq Library for the Theory of Relational Calculus
Algebras for programming languages
Coqチュートリアル
Mac bookでwebサーバーを起動する方法
有限オートマトンとスティッカー系に関するCoqによる形式証明について
計算可能実数とは
複素数・四元数と図形の回転
グラフデータ構造と5色定理
行列計算を利用したデータ解析技術
Theory of Relations (2)
Generalization of Compositons of Cellular Automata on Groups
Theory of Relations (1)

Recently uploaded (20)

PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Institutional Correction lecture only . . .
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Cell Structure & Organelles in detailed.
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Sports Quiz easy sports quiz sports quiz
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Pharma ospi slides which help in ospi learning
PPTX
master seminar digital applications in india
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Cell Types and Its function , kingdom of life
Anesthesia in Laparoscopic Surgery in India
human mycosis Human fungal infections are called human mycosis..pptx
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPH.pptx obstetrics and gynecology in nursing
Final Presentation General Medicine 03-08-2024.pptx
Microbial disease of the cardiovascular and lymphatic systems
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Institutional Correction lecture only . . .
Microbial diseases, their pathogenesis and prophylaxis
Cell Structure & Organelles in detailed.
Module 4: Burden of Disease Tutorial Slides S2 2025
O7-L3 Supply Chain Operations - ICLT Program
TR - Agricultural Crops Production NC III.pdf
Sports Quiz easy sports quiz sports quiz
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
01-Introduction-to-Information-Management.pdf
Pharma ospi slides which help in ospi learning
master seminar digital applications in india
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Cell Types and Its function , kingdom of life

Graph partitioning and characteristic polynomials of Laplacian matrics of Roach-type graphs

  • 1. Graph partitioning and eigen polynomials of Laplacian matrices of Roach-type graphs Yoshihiro Mizoguchi Institute of Mathematics for Industry, Kyushu University   ym@imi.kyushu-u.ac.jp Algebraic Graph Theory, Spectral Graph Theory and Related Topics 5th Jan. 2013 at Nagoya University Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 1 / 32
  • 2. Table of contents ...1 Introduction ...2 Chebyshev polynomials ...3 Tridiagonal matrices ...4 Laplacian Matrix ...5 Mcut, Lcut and spectral clustering ...6 Conclusion Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 2 / 32
  • 3. Biogeography-Based Optimization (1) Let Ps be the probability that the habitat contains exactly S species. We can arrange ˙Ps equations into the single matrix equation   ˙P0 ˙P1 ˙P2 ... ˙Pn−1 ˙Pn   =   −(λ0 + µ0) µ1 0 · · · 0 λ0 −(λ1 + µ1) µ2 ... ... ... ... ... ... ... ... ... λn−2 −(λn−1 + µn−1) µn 0 . . . 0 λn−1 −(λn + µn)     P0 P1 P2 ... Pn−1 Pn   where λs and µs are the immigration and emigration rates when there are S species in the habitat. Generally λ0 > λ1 > · · · > λn and µ0 < µ1 < · · · < µn hold and we assume λs = n−s n and µs = s n in this talk. [Sim08] D.Simon, Biogeography-Based Optimization, IEEE Trans. on evolutionary computation, 2008. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 3 / 32
  • 4. Biogeography-Based Optimization (2) . Theorem .. ...... The (n + 1) eigenvalues of the biogeography matrix A =   −1 1/n 0 · · · 0 n/n −1 2/n ... ... ... ... ... ... ... ... ... 2/n −1 n/n 0 . . . 0 1/n −1   are {0, −2/n, −4/n, . . . , −2}. [IS11] B.Igelnik, D. Simon, The eigenvalues of a tridiagonal matrix in biogeography, Appl. Mathematics and Computation, 2011. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 4 / 32
  • 5. Heat equation (Crank-Nicolson method) (1) ut = uxx x ∈ [0, 1] and t > 0 with initial and Dirichlet boundary condition given by: u(x, 0) = f(x), u(0, t) = g(t) and u(1, t) = h(t) The finite difference discretization can be expressed as: Aun+1 = Bun + c where A =   1 + α −r/2 0 −r/2 1 + r −r/2 ... ... ... −r/2 1 + r −r/2 0 −r/2 1 + α   Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 5 / 32
  • 6. Heat equation (Crank-Nicolson method) (2) and B =   1 − β r/2 0 r/2 1 − r r/2 ... ... ... r/2 1 − r r/2 0 r/2 1 − β   . We note un = (un 1 , un 2 , . . . , un m)T. The parapmeters α and β are given by: α = β = 3r/2 for the implicit boundary conditions; α = r and β = 2r for the explicit boundary conditions The iteration matrix M(r) = A−1B controls the stability of the numerical method to compute Aun+1 = Bun + c. [CM10] J.A. Cuminato, S. McKee, A note on the eigenvalues of a special class of matrices, J. of Computational and Applied Mathematics, 2010. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 6 / 32
  • 7. Tridiagonal Matrix (1) An =   −α + b c 0 0 · · · 0 0 a b c 0 · · · 0 0 0 a b c · · · 0 0 · · · · · · · · · · · · · · · · · · · · · 0 0 0 0 · · · b c 0 0 0 0 · · · a −β + b   n×n . Theorem .. ...... Suppose α = β = √ ac 0. Then the eigenvalues λk of An are given by λk = b + 2 √ ac cos kπ n and the corresponding eigenvectors u(k) = (u(k) j ) are given by u(k) j = ρj−1 sin k(2j − 1)π 2n for k = 1, 2, · · · , n − 1 and u(n) j = (−ρ)j−1 where ρ = √ a/c. [Yue05] W-C. Yueh, Eigenvalues of several tridiagonal matrices, Applied Mathematics E-Notes, 2005. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 7 / 32
  • 8. Tridiagonal Matrix (2) Consider the n × n matrix C = (min{ai − b, aj − b})i,j=1,...,n. . Proposition .. ...... For a > 0 and a b, the tridiagonal matrix of order n Tn =   1 + a a−b −1 −1 2 −1 ... ... ... −1 2 −1 −1 1   is the inverse of (1/a)C. [dF07] C.M. da Fonseca, On the eigenvalues of some tridiagonal matrices, J. of Computational and Applied Mathematics, 2007. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 8 / 32
  • 9. Chebyshev polynomials For n ∈ N and x ∈ R, we define functions Tn(x) and Un(x) as follows. T0(x) = 1, T1(x) = x, U0(x) = 1, U1(x) = 2x, Tn+1(x) = 2xTn(x) − Tn−1(x), and Un+1(x) = 2xUn(x) − Un−1(x). We note cos nθ = Tn(cos θ), and sin(n + 1)θ = Un(cos θ) sin θ for θ ∈ R. . Proposition .. ...... Let x = cos θ. Then Tn(x) = 0 ⇔ x = cos( (2k + 1)π 2n ) (k = 0, · · · , n − 1). Un(x) = 0 ⇔ x = cos( kπ n + 1 ) (k = 1, · · · , n). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 9 / 32
  • 10. Tridiagonal matrix An(a, b) We define a n × n matrix An(a, b) as follows: An(a, b) =   a b 0 · · · · · · · · · 0 b a b 0 ... 0 b a b 0 ... ... ... ... ... ... ... ... ... 0 b a b 0 ... 0 b a b 0 · · · · · · · · · 0 b a   . We put |A0(a, 1)| = 1, then |An(a, 1)| = a|An−1(a, 1)| − |An−2(a, 1)|, |A1(a, 1)| = a and An(a, b) = bn · An (a/b, 1). . Proposition .. ...... |An(a, b)| = bn · sin(n + 1)θ sin θ where cos θ = a 2b . Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 10 / 32
  • 11. Tridiagonal matrix Bn and Cn (1) Let n ≥ 3. Bn(a0, b0, a, b) =   a0 b0 0 · · · 0 b0 0 An−1(a, b) ... 0   Cn(a, b, a0, b0) =   0 An−1(a, b) ... 0 b0 0 · · · 0 b0 a0   We note that |Bn(a0, b0, a, b)| = a0|An−1(a, b)| − b2 0 |An−2(a, b)|, and ||Cn(a, b, a0, b0)|| = |a0|An−1(a, b)| − b2 0 |An−2(a, b)||. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 11 / 32
  • 12. Tridiagonal matrix Bn and Cn (2) We define functions gn(β) = 2 sin((n + 1)β) + sin nβ − sin((n − 1)β), and hn(β) = 2 sin((n + 1)β) − sin nβ − sin((n − 1)β) before introducing the next Lemma. . Proposition .. ...... Let n ≥ 3. Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) = 1 2n−1 cos nα, (λ = 1 + cos α), Cn(η − 2 3 , 1 3 , η − 1 2 , 1 √ 6 ) = 1 2 · 3n · sin β gn(β), (η = 2 3 (1 + cos β)), Cn(µ − 4 3 , 1 3 , µ − 3 2 , 1 √ 6 ) = 1 2 · 3n · sin β hn(β), (µ = 2 3 (2 + cos β)). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 12 / 32
  • 13. Tridiagonal matrix Qn(a0, b0, a, b) Let n ≥ 4. We define n × n matrix Qn(a0, b0, a, b) as follows: Qn(a0, b0, a, b) =   a0 b0 0 · · · 0 b0 ... 0 An−2(a, b) 0 ... b0 0 · · · 0 b0 a0   We note that |Qn(a0, b0, a, b)| = a0|Cn−1(a, b, a0, b0)| − b2 0 |Cn−2(a, b, a0, b0)|. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 13 / 32
  • 14. Laplacian matrix of a graph . Definition (Weighted normalized Laplacian) .. ...... The weighted normalized Laplacian L(G) = (ℓij) is defined as ℓij =    1 − wj j dj if i = j, − wi j √ didj if vi and vj are adjacent and i j, 0 otherwise. The adjacency matrix A(P5) and the normalized Laplacian matrix L(P5) of a path graph P5. A(P5) =   0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0   L(P5) =   1 − 1 √ 2 0 0 0 − 1 √ 2 1 −1 2 0 0 0 −1 2 1 −1 2 0 0 0 −1 2 1 − 1 √ 2 0 0 0 − 1 √ 2 1   Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 14 / 32
  • 15. Characteristic polynomial of L(Pn) . Proposition .. ...... Let n ≥ 4. |λIn − L(Pn)| = − ( 1 2 )n−2 (sin α sin((n − 1)α)) where λ = 1 + cos α. That is λ = 1 − cos( kπ n − 1 ) (k = 0, . . . , n − 1). We note L(Pn) = Qn  1, − 1 √ 2 , 1, − 1 2   , and λIn − L(Pn) = Qn  λ − 1, 1 √ 2 , λ − 1, 1 2   . Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 15 / 32
  • 16. Characteristic polynomial of L(Pn,k) (1) Let n ≥ 3 and k ≥ 3. Then L(Pn,k) =   Bn(1, − 1 √ 2 , 1, −1 2 ) Xn,k Xt n,k Ck(2 3 , −1 3 , 1 2 , − 1 √ 6 )   where Xn,k is the n × k matrix defined by Xn,k =   0 · · · · · · 0 ... ... 0 0 ... − 1 √ 6 0 · · · 0   . Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 16 / 32
  • 17. Characteristic polynomial of L(Pn,k) (2) . Proposition .. ...... Let pn,k(λ) = 1 2n3k sin β (gk(β) cos(nα)) − gk−1(β) cos((n − 1)α)). Then λIn+k − L(Pn,k) = pn,k(λ), where λ = 1 + cos α and λ = 2 3 (1 + cos β). λIn+k − L(Pn,k) = Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) Xn,k Xt n,k Ck(λ − 2 3 , 1 3 , λ − 1 2 , 1 √ 6 ) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 17 / 32
  • 18. Characteristic polynomial of L(Rn,k) (1) 1 2 3 4 5 6 7 8 9 10 11 12 Let n ≥ 3 and k ≥ 3. Then L(Rn,k) =   Bn(1, − 1 √ 2 , 1, −1 2 ) Xn,k O O Xt n,k Ck(1, −1 3 , 1, − 1 √ 6 ) O Ck(−1 3 , 0, −1 2 , 0) O O Bn(1, − 1 √ 2 , 1, −1 2 ) Xn,k O Ck(−1 3 , 0, −1 2 , 0) Xt n,k Ck(1, −1 3 , 1, − 1 √ 6 )   . Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 18 / 32
  • 19. Characteristic polynomial of L(Rn,k) (2) . Proposition .. ...... Let n ≥ 3, k ≥ 3 and pn,k(λ) = 1 2n3k sin β (gk(β) cos(nα)) − gk−1(β) cos((n − 1)α)), and qn,k(λ) = 1 2n3k sin γ (hk(γ) cos(nα) − hk−1(γ) cos((n − 1)α)). Then |λIn+k − L(Rn,k)| = pn,k(λ) · qn,k(λ). where λ = 1 + cos α = 2 3 (1 + cos β) = 2 3 (2 + cos γ). λIn+k − L(Rn,k) = Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) Xn,k Xt n,k Ck(λ − 2 3 , 1 3 , λ − 1 2 , 1 √ 6 ) × Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) Xn,k Xt n,k Ck(λ − 4 3 , 1 3 , λ − 3 2 , 1 √ 6 ) = pn,k(λ) × qn,k(λ). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 19 / 32
  • 20. Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) (Calculation) Let λ = 1 + cos α. Then we have Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) = (λ − 1) An−1(λ − 1, 1 2 ) − 1 2 An−2(λ − 1, 1 2 ) = (λ − 1) ( 1 2 )n−1 sin nα sin α − 1 2 ( 1 2 )n−2 sin(n − 1)α sin α = ( 1 2 )n−1 · 1 sin α ((λ − 1) sin nα − sin(n − 1)α) = ( 1 2 )n−1 · 1 sin α (cos α sin nα − sin(nα − α)) = ( 1 2 )n−1 · 1 sin α (cos nα sin α) = ( 1 2 )n−1 cos nα. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 20 / 32
  • 21. Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) (Mathematica) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 21 / 32
  • 22. Cn(η − 2 3 , 1 3 , η − 1 2 , 1 √ 6 ) (Calculation) Let η = 2 3 (1 + cos β) and gn(β) = 2 sin(n + 1)β + sin nβ − sin(n − 1)β. Then we have Cn(η − 2 3 , 1 3 , η − 1 2 , 1 √ 6 ) = ( η − 1 2 ) An−1 ( η − 2 3 , 1 3 ) − 1 6 An−2 ( η − 2 3 , 1 3 ) = ( 1 3 )n−1 (( η − 1 2 ) sin nβ sin β − 1 2 sin(n − 1)β sin β ) = ( 1 3 )n−1 (( 1 6 + 2 3 cos β ) sin nβ sin β − 1 2 sin(n − 1)β sin β ) = ( 1 3 )n−1 1 6 sin β (sin nβ + 4 cos β sin nβ − 3 sin(nβ − β)) = ( 1 3 )n−1 1 6 sin β (2 sin(n + 1)β + sin nβ − sin(n − 1)β) = ( 1 3 )n 1 2 sin β gn(β). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 22 / 32
  • 23. Cn(η − 2 3 , 1 3 , η − 1 2 , 1 √ 6 ) (Mathematica) Some manual computations for gn(θ) (× sin). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 23 / 32
  • 24. pn,k(λ) (Mathematica) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 24 / 32
  • 25. qn,k(λ) (Mathematica) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 25 / 32
  • 26. Minimum Normalized Cut Mcut(G) . Definition (Normalized cut) .. ...... Let G = (V, E) be a connected graph. Let A, B ⊂ V, A ∅, B ∅ and A ∩ B = ∅. Then the normalized cut Ncut(A, B) of G is defined by Ncut(A, B) = cut(A, B) ( 1 vol(A) + 1 vol(B) ) . . Definition (Mcut(G)) .. ...... Let G = (V, E) be a connected graph. The Mcut(G) is defined by Mcut(G) = min{Mcut j(G) | j = 1, 2, . . . }. Where, Mcut j(G) = min{Ncut(A, V A) | cut(A, V A) = j, A ⊂ V}. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 26 / 32
  • 27. Mcut(R6,3) G0 (even) G1 (odd) 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 Ncut(A0, B0) = 2 × ( 1 16 + 1 10 ) = 13 40 = 0.325 Ncut(A1, B1) = 3 × ( 1 13 + 1 13 ) = 6 13 ≈ 0.462 Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 27 / 32
  • 28. Spectral Clustering . Definition (Lcut(G)) .. ...... Let G = (V, E) be a connected graph, λ2 the second smallest eigenvalue of L(G), U2 = ((U2)i) (1 ≤ i ≤ |V|) a second eigenvector of L(G) with λ2. We assume that λ2 is simple. Then Lcut(G) is defined as Lcut(G) = Ncut(V+ (U2) ∪ V0 (U2), V− (U2)). 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Lcut(G) = Mcut(G) Lcut(R4,7) = Mcut(R4,7) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mcut(R6,4) Lcut(R6,4) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 28 / 32
  • 29. Roach Graph Observation . Proposition .. ...... Let Rn,k be a roach-type graph. If Lcut(Rn,k) = Mcut(Rn,k) then a second eigen vector of L(Rn,k) is an even vector. . Proposition .. ...... Let R2k,k be a roach-type graph, P2k,k a weighted path and P4k a path graph. 1. λ2(L(P4k)) = 1 − π 4k−1 . 2. λ2(L(R2k,k)) < λ2(L(P4k)). 3. λ2(L(P4k)) < λ2(L(P2k,k)). 4. A second eigenvector of L(R2k,k) is an odd vector. 5. Mcut(R2k,k) < Lcut(R2k,k). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 29 / 32
  • 30. Conclusion We give followings in this talks: Tridiagonal matrices, Laplacian of graphs and spectral clustering method. Concrete formulae of characteristic polynomials of tridiagonal matrices. Mathematica computations for characteristic polynomials. Concrete formulae of eigen-polynomials of (P2k,k) and L(R2k,k). Proof of Lcut does not always give an optimal cut. We are not able to decide the simpleness of the second eigenvalue for Pn,k and Rn,k. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 30 / 32
  • 31. Reference I A. Behn, K. R. Driessel, and I. R. Hentzel. The eigen-problem for some special near-toeplitz centro-skew tridiagonal matrices. arXiv:1101.5788v1 [math.SP], Jan 2011. H-W. Chang, S-E. Liu, and R. Burridge. Exact eigensystems for some matrices arising from discretizations. Linear Algebra and its Applications, 430:999–1006, 2009. J. A. Cuminato and S. McKee. A note on the eigenvalues of a special class of matrices. Journal of Computational and Applied Mathematics, 234:2724–2731, 2010. C. M. da Fonseca. On the eigenvalues of some tridiagonal matrices. Journal of Computational and Applied Mathematics, 200:283–286, 2007. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 31 / 32
  • 32. Reference II B. Igelnik and D. Simon. The eigenvalues of a tridiagonal matrix in biogeography. Applied Mathematics and Computation, 218:195–201, 2011. S. Kouachi. Eigenvalues and eigenvectors of tridiagonal matrices. Electronic Journal of Linear Algebra, 15:115–133, 2006. D. Simon. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6):702–713, 2008. W. Yueh. Eigenvalues of several tridiagonal matrices. Applied Mathematics E-Notes, 5:66–74, 2005. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 32 / 32