SlideShare a Scribd company logo
David De Roure
 @dder
Intersection, Scale, and Social Machines:
The Humanities in the Digital World
DIRECTOR, UNIVERSITY OF OXFORD E-RESEARCH CENTRE
Data-intensive research
Human-intensive research
Music
Scholarly Communication
The Big Picture(s)

Challenging Assumptions
ChristineBorgman
13,785,659	
 Β total	
 Β volumes	
 Β 
6,871,154	
 Β book	
 Β 6tles	
 Β 
364,473	
 Β serial	
 Β 6tles	
 Β 
4,824,980,650	
 Β pages	
 Β 
618	
 Β terabytes	
 Β 
163	
 Β miles	
 Β 
11,201	
 Β tons	
 Β 
5,372,477	
 Β public	
 Β domain	
 Β volumes	
 Β 
10,000,000,000,000,000 bytes archived!
New Forms of Data
β–Άβ€―Internet data, derived from social
media and other online interactions
(including data gathered by
connected people and devices, eg
mobile devices, wearable
technology, Internet of Things)
β–Άβ€―Tracking data, monitoring the
movement of people and objects
(including GPS/geolocation data,
traffic and other transport sensor
data, CCTV images etc)
β–Άβ€―Satellite and aerial imagery (eg
Google Earth, Landsat, infrared,
radar mapping etc) http://www.oecd.org/sti/sci-tech/new-data-for-
understanding-the-human-condition.htm
The	
 Β Big	
 Β Picture	
 Β 
More people
Moremachines
Big Data
Big Compute
Conventional
Computation
β€œBig Social”
Social Networks
e-infrastructure
Online R&D
(Science 2.0)
Digital
Scholarship
@dder
theODI.org
Data Detect Store AnalyticsFilter Analysts
@dder
There is no such thing as the Internet of Things
There is no such thing as a closed system
Humans are creative and subversive
The Rise of the Bots A Swarm of Drones
Accidents happen (in the lab, bin)
Holding machines to account Software vulnerability
Where are the throttle points?
@dder
F i r s t
Edwards, P. N., et al. (2013) Knowledge Infrastructures: Intellectual Frameworks and
Research Challenges. Ann Arbor: Deep Blue. http://hdl.handle.net/2027.42/97552
Social Machines

Empowered Citizens
Social	
 Β Machines	
  Defini6on	
 Β TBL	
 Β 
Pip Willcox
https://twitter.com/CR_UK/status/446223117841494016/
Some people's smartphones
had autocorrected the word
"BEAT" to instead read
"BEAR".
"Thank you for choosing an
adorable polar bear," the
reply from the WWF said.
"We will call you today to set
up your adoption."
http://www.bbc.com/news/technology-26723457
Humanities in the Digital World
SOCIAM: The Theory and Practice of Social Machines is funded by the UK Engineering and Physical Sciences Research Council
(EPSRC) under grant number EPJ017728/1 and comprises the Universities of Southampton, Oxford and Edinburgh. See sociam.org
β€œYet	
 Β Wikipedia	
 Β and	
 Β its	
 Β stated	
 Β ambi6on	
 Β to	
 Β β€œcompile	
 Β the	
 Β sum	
 Β of	
 Β all	
 Β 
human	
 Β knowledge”	
 Β are	
 Β in	
 Β trouble.	
 Β The	
 Β volunteer	
 Β workforce	
 Β that	
 Β 
built	
 Β the	
 Β project’s	
  flagship,	
 Β the	
 Β English-­‐language	
 Β Wikipediaβ€”and	
 Β 
must	
 Β defend	
 Β it	
 Β against	
 Β vandalism,	
 Β hoaxes,	
 Β and	
 Β manipula6onβ€”
has	
 Β shrunk	
 Β by	
 Β more	
 Β than	
 Β a	
 Β third	
 Β since	
 Β 2007	
 Β and	
 Β is	
 Β s6ll	
 Β shrinking…	
 Β 	
 Β 
The	
 Β main	
 Β source	
 Β of	
 Β those	
 Β problems	
 Β is	
 Β not	
 Β mysterious.	
 Β The	
 Β loose	
 Β 
collec6ve	
 Β running	
 Β the	
 Β site	
 Β today,	
 Β es6mated	
 Β to	
 Β be	
 Β 90	
 Β percent	
 Β 
male,	
 Β operates	
 Β a	
 Β crushing	
 Β bureaucracy	
 Β with	
 Β an	
 Β oYen	
 Β abrasive	
 Β 
atmosphere	
 Β that	
 Β deters	
 Β newcomers	
 Β who	
 Β might	
 Β increase	
 Β 
par6cipa6on	
 Β in	
 Β Wikipedia	
 Β and	
 Β broaden	
 Β its	
 Β coverage…”	
 Β 
	
 Β http://www.technologyreview.com/featuredstory/520446/the-decline-of-wikipedia/
Humanities in the Digital World
β€œPanoptes has been designed so
that it’s easier for us to update
and maintain, and to allow
more powerful tools for project
builders. It’s also open source
from the start, and if you find
bugs or have suggestions about
the new site you can note them
on Github (or, if you’re so
inclined, contribute to the
codebase yourself).”
"	
 Β 
http://blog.zooniverse.org/2015/06/29/a-whole-new-zooniverse/
http://monsterspedia.wikia.com/wiki/File:Argus-Panoptes.jpg
Panoptes
Musical Social Machines

Social Machines of Scholarship
INT. VERSE VERSE VERSE VERSEBRIDGEBRIDGE OUT.
Γͺοƒͺ
The	
 Β Problem	
 Β 
signal
understanding
Ichiro Fujinaga
salami.music.mcgill.ca
Jordan B. L. Smith, J. Ashley Burgoyne, Ichiro Fujinaga, David De Roure, and J.
Stephen Downie. 2011. Design and creation of a large-scale database of structural
annotations. In Proceedings of the International Society for Music Information
Retrieval Conference, Miami, FL, 555–60
Sequence alignment
http://en.wikipedia.org/wiki/Sequence_alignment#/media/File:Histone_Alignment.png
Dan Edelstein, Robert Morrissey, and Glenn Roe, To Quote or not to Quote: Citation Strategies in the EncyclopΓ©die.
Journal of the History of Ideas , Volume 74, Number 2, April 2013 . pp. 213-236. 10.1353/jhi.2013.0012
Glenn Roe
Digital	
 Β Music	
 Β 
Collec6ons	
 Β 
Grad-­‐sourced	
 Β 
ground	
 Β truth	
 Β 
Community	
 Β 
SoYware	
 Β 
Linked	
 Β Data	
 Β 
Repositories	
 Β 
Supercomputer	
 Β 
23,000 hours of
recorded music
Music Information
Retrieval Community
SALAMI
Ashley Burgoyne
www.music-ir.org/mirex
Music Information Retrieval Evaluation eXchange
Audio Onset Detection
Audio Beat Tracking
Audio Key Detection
Audio Downbeat Detection
Real-time Audio to Score Alignment(a.k.a
Score Following)
Audio Cover Song Identification
Discovery of Repeated Themes & Sections
Audio Melody Extraction
Query by Singing/Humming
Audio Chord Estimation
Singing Voice Separation
Audio Fingerprinting
Music/Speech Classification/Detection
Audio Offset Detection
Downie, J. Stephen, Andreas F. Ehmann, Mert Bay and M. Cameron Jones. (2010).
The Music Information Retrieval Evaluation eXchange: Some Observations and
Insights. Advances in Music Information Retrieval Vol. 274, pp. 93-115
Stephen	
 Β Downie	
 Β 
http://chordify.net/
Digital	
 Β Material	
 Β 
Pip Willcox
Kevin Page
David Weigl
Interfaces, for
computer and
human
!
Humanities in the Digital World
Sonifying	
 Β the	
 Β Variants	
 Β 
β€’β€― From	
 Β Play	
 Β to	
  Sonifica6on	
 Β 
β€’β€― Using	
 Β First	
 Β Folio	
 Β and	
 Β Quartos	
 Β data	
 Β 
β€’β€― Parsing	
 Β the	
 Β TEI	
 Β XML,	
 Β conver6ng	
 Β it	
 Β with	
 Β rule	
 Β set	
 Β into	
 Β numbers,	
 Β 
sonifying	
 Β the	
 Β data	
 Β to	
 Β produce	
 Β sounds	
 Β 
34
Sonification	
 Β 
Iain Emsley
Studying Social Machines

Scholarship of Social Machines
Ecosystem
Perspective
β€’β€― We see a community of
living, hybrid organisms,
rather than a set of
machines which happen to
have humans amongst
their components
β€’β€― Their successes and
failures inform the design
and construction of their
offspring and successors
time
Social Machine instances
 @dder
Observer of
one social
machine
Observers using third
party observatory
Observer of
multiple social
machines
Human
participants in
Social
Machine
Human participants in
multiple Social Machines
Observer of Social
Machine infrastructure
1	
 Β 
4	
 Β 
2	
 Β 
3	
 Β 
5	
 Β 
6	
 Β 
SM
SM
SM
Social Machine
Observing Social
Machines
7	
 Β 
@dder
De Roure, D.,
Hooper, C., Page,
K., Tarte, S., and
Willcox, P. 2015.
Observing Social
Machines Part 2:
How to Observe?
ACM Web Science
The Web
Observatory
Tiropanis, T., Hall, W., Shadbolt, N., De Roure, D.,
Contractor, N. and Hendler, J. 2013. The Web Science
Observatory, IEEE Intelligent Systems 28(2) pp 100–104.
ThanassisTiropanis
Simpson, R., Page, K.R. and
De Roure, D. 2014.
Zooniverse: observing the
world's largest citizen science
platform. In Proceedings of
the companion publication of
the 23rd international
conference on World Wide
Web, 1049-1054.
Kevin Page
STORYTELLING AS A STETHOSCOPE
FOR SOCIAL MACHINES
1.β€― Sociality through storytelling potential
and realization
2.β€― Sustainability through reactivity and
interactivity
3.β€― Emergence through collaborative
authorship and mixed authority
Zooniverse	
 Β is	
 Β a	
 Β highly	
 Β 
storified	
 Β Social	
 Β Machine	
 Β 
Facebook	
 Β doesn’t	
 Β allow	
 Β 
for	
 Β improvisa6on	
 Β 
Wikipedia	
 Β assigns	
 Β 
authority	
 Β rights	
 Β rigidly	
 Β 
http://ora.ox.ac.uk/objects/ora:8033
Tarte, S.M., De Roure, D. and Willcox, P. 2014. Working out the Plot: the Role of
Stories in Social Machines. SOCM2014: The Theory and Practice of Social
Machines, Seoul, Korea, International World Wide Web Conferences pp. 909–914
Pip Willcox
Tarte, S. Willcox, P., Glaser, H. and De Roure, D. 2015. Archetypal Narratives in Social
Machines: Approaching Sociality through Prosopography. ACM Web Science 2015.
SégolèneTarte
Scholarly Communication

Preface
Humanities in the Digital World
Elizabeth Williamson
Richard O’Bierne
A computationally-enabled
sense-making network of
expertise, data, software,
models and narratives
Big Data, in a
Big Data Centre
Pip Willcox and Kevin Page
Β 	
 Β 
consume	

	
 Β 	
 Β 
produce	

	
 Β 	
 Β 
compose	
 Β 
perform	
 Β 
capture	

	
 Β 	
 Β 
distribute	

	
 Β 	
 Β 
	
 Β 	
 Β 
	
 Β 	
 Β 
	
 Β 	
 Β 
Mark	
 Β Sandler	
 Β 
Curate	
 Β 	
 Β 	
 Β 	
 Β 	
 Β 	
 Β Preserve	
 Β 
!
Notifications and automatic re-runs
Machines are users too
Autonomic
Curation
Self-repair
New research?
The	
 Β R	
 Β Dimensions	
 Β 
Research	
 Β Objects	
 Β facilitate	
 Β research	
 Β that	
 Β is	
 Β 
reproducible,	
 Β repeatable,	
 Β replicable,	
 Β reusable,	
 Β 
referenceable,	
 Β retrievable,	
 Β reviewable,	
 Β 
replayable,	
 Β re-­‐interpretable,	
 Β reprocessable,	
 Β 
recomposable,	
 Β reconstructable,	
 Β repurposable,	
 Β 
reliable,	
 Β respecful,	
 Β reputable,	
 Β revealable,	
 Β 
recoverable,	
 Β restorable,	
 Β reparable,	
 Β refreshable?”	
 Β 
@dder 14 April 2014
sci	
 Β method	
 Β 
access	
 Β 
understand	
 Β 
new	
 Β use	
 Β 
social	
 Β 
cura6on	
 Β 
Research	
 Β 
Object	
 Β 
Principles	
 Β 
De Roure, D. 2014. The future
of scholarly communications.
Insights: the UKSG journal,
27, (3), 233-238.
DOI 10.1629/2048-7754.171
https://www.gartner.com/technology/research/digital-marketing/transit-map.jsp
Intersection, Scale, and
Social Machines:
The Humanities in the
Digital World
First	
 Β Folio	
 Β Social	
 Β Machines	
 Β 
Metadata
Story of the
First Folio
Social
Machines Annotation
David De Roure and Pip Willcox
β€˜β€œConiunction, with the participation of Society”: Citizens, Scale, and
Scholarly Social Machines’
Beyond the PDF: Born-Digital Humanities, Boston, 27–28 April 2015
Pip Willcox
PipWillcox
david.deroure@oerc.ox.ac.uk @dder
Thanks to Tim Crawford, Mark d’Inverno, Stephen Downie,
Iain Emsley, Ichiro Fujinaga, Chris Lintott, Grant Miller,
Terhi Nurmikko-Fuller, Kevin Page, Carolin Rindfleisch,
Glenn Roe, Mark Sandler, Ségolène Tarte, David Weigl, and
Pip Willcox.
http://www.slideshare.net/davidderoure/humanities-in-the-digital-world
Supported by SOCIAM: The Theory and Practice of Social Machines, funded by the UK Engineering and Physical
Sciences Research Council (EPSRC) under grant number EP/J017728/1; Fusing Semantic and Audio Technologies for
Intelligent Music Production and Consumption (FAST) funded by EPSRC under grant number EP/L019981/1; and
Transforming Musicology, funded by the UK Arts and Humanities Research Council under the Digital Transformations
programme. Thanks also to the Andrew W. Mellon Foundation.
www.oerc.ox.ac.uk	

david.deroure@oerc.ox.ac.uk	

@dder

More Related Content

PDF
Scholarship in the Digital World
PDF
New Forms of Data for e-Research
PDF
Big Data and Social Sciences
PDF
Intersection Scale and Social Machines 2016
PDF
Big Data Challenges for the Social Sciences
PDF
Digital Scholarship: Intersection, Automation, and Scholarly Social Machines
PPTX
Social Machines Paradigm
PDF
Ethics of Automation
Scholarship in the Digital World
New Forms of Data for e-Research
Big Data and Social Sciences
Intersection Scale and Social Machines 2016
Big Data Challenges for the Social Sciences
Digital Scholarship: Intersection, Automation, and Scholarly Social Machines
Social Machines Paradigm
Ethics of Automation

What's hot (20)

PPTX
Executable Music Documents
PDF
Emerging Forms of Data and Analytics
PDF
New Data `New Computation
PPTX
Taking IT for Granted
PPTX
Social Machines of Science and Scholarship
PPTX
Future of Scholarly Communications
PPTX
Big Data and Social Machines
PDF
Emerging Scholarly Practice and Scholarly Primitives: a Case Study in Music a...
PDF
Short and Long of Data Driven Innovation
PDF
Taking IT for Granted - David De Roure
PPTX
Big Data meets Big Social: Social Machines and the Semantic Web
PPTX
e-Research and the Demise of the Scholarly Article
PPTX
Social Machines - A Disruptive Technology?
PPTX
Digital Humanities by Ingrid Thomson
PPTX
Dh presentation 2019
PDF
Eva florence 2014
PPTX
Digital humanities-and-archaeology
PPTX
ESIP Commons: Publish, Cite and Find Non-Traditional Content - Ignite Style
PDF
Rogers digitalmethods 4nov2010
PPT
Jankowski, Vks E Research Slidecast, 26 June2008
Executable Music Documents
Emerging Forms of Data and Analytics
New Data `New Computation
Taking IT for Granted
Social Machines of Science and Scholarship
Future of Scholarly Communications
Big Data and Social Machines
Emerging Scholarly Practice and Scholarly Primitives: a Case Study in Music a...
Short and Long of Data Driven Innovation
Taking IT for Granted - David De Roure
Big Data meets Big Social: Social Machines and the Semantic Web
e-Research and the Demise of the Scholarly Article
Social Machines - A Disruptive Technology?
Digital Humanities by Ingrid Thomson
Dh presentation 2019
Eva florence 2014
Digital humanities-and-archaeology
ESIP Commons: Publish, Cite and Find Non-Traditional Content - Ignite Style
Rogers digitalmethods 4nov2010
Jankowski, Vks E Research Slidecast, 26 June2008
Ad

Viewers also liked (11)

PPTX
Blogging 101
PPT
Blogging for Business
PPTX
Blogging 101: Basics of Blogging By Mica Rodriguez
PPTX
18 Blogging Essentials For Newbies In The Blogosphere!
PPTX
Political meetings mapper, British Library Labs symposium, 2 November 2015
PPT
Blogging 101 / Intro to WordPress
PDF
Business Blogging Fall 2016
PPT
Blogging 101 (updated)
PDF
Blogging 101 for Brands
PPT
Blogging Assignment
PPTX
Blogging
Blogging 101
Blogging for Business
Blogging 101: Basics of Blogging By Mica Rodriguez
18 Blogging Essentials For Newbies In The Blogosphere!
Political meetings mapper, British Library Labs symposium, 2 November 2015
Blogging 101 / Intro to WordPress
Business Blogging Fall 2016
Blogging 101 (updated)
Blogging 101 for Brands
Blogging Assignment
Blogging
Ad

Similar to Humanities in the Digital World (20)

PDF
New and Emerging Forms of Data
PPTX
10 Jahre Web Science
PPT
Open Grid Forum workshop on Social Networks, Semantic Grids and Web
PPTX
Scholarly Social Machines
PPTX
Social Machines of Scholarly Collaboration
PPTX
Intersection Scale and Social Machines
PPTX
Forethoughts (or Four Provocations) on Linked Data and Digital Scholarship
PDF
Digital Media Humantechnology Connection Stacey Oneal Irwin
PPT
Digital Trails Dave King 1 5 10 Part 1 D3
PPTX
Big Data for the Social Sciences - David De Roure - Jisc Digital Festival 2014
Β 
PPTX
The wider environment of open scholarship – Jisc and CNI conference 10 July ...
Β 
PPTX
Computing for Human Experience [v3, Aug-Oct 2010]
PDF
Scholarly Social Machines Essay
PPTX
Machines are people too
PDF
Digital Scholarship Intersection Scale Social Machines
PDF
Social Machines Democratization
PPTX
Scholarly Social Machines
PDF
DIVE+ @PATCH2015 Workshop @IUI2015
PPTX
Artificial Intelligence for Goods: Cases and Tools
PPTX
Web Observatories and e-Research
New and Emerging Forms of Data
10 Jahre Web Science
Open Grid Forum workshop on Social Networks, Semantic Grids and Web
Scholarly Social Machines
Social Machines of Scholarly Collaboration
Intersection Scale and Social Machines
Forethoughts (or Four Provocations) on Linked Data and Digital Scholarship
Digital Media Humantechnology Connection Stacey Oneal Irwin
Digital Trails Dave King 1 5 10 Part 1 D3
Big Data for the Social Sciences - David De Roure - Jisc Digital Festival 2014
Β 
The wider environment of open scholarship – Jisc and CNI conference 10 July ...
Β 
Computing for Human Experience [v3, Aug-Oct 2010]
Scholarly Social Machines Essay
Machines are people too
Digital Scholarship Intersection Scale Social Machines
Social Machines Democratization
Scholarly Social Machines
DIVE+ @PATCH2015 Workshop @IUI2015
Artificial Intelligence for Goods: Cases and Tools
Web Observatories and e-Research

More from David De Roure (11)

PDF
Digital Scholarship Intersection
PDF
The Long and the Short of it: a history of Social Machines
PDF
Humanities in the Digital Age
PPTX
citizens scale scholarly social machines
PPTX
Music Objects to Social Machines
PPTX
Post-Digital Society
PPTX
Working out the plot: the role of Stories in Social Machines
PPTX
Social Science Landscape for Web Observatories
PPTX
Big Data for the Social Sciences
PPTX
Social Machines IIIT
PPTX
DR2013 Data Science Panel Introduction
Digital Scholarship Intersection
The Long and the Short of it: a history of Social Machines
Humanities in the Digital Age
citizens scale scholarly social machines
Music Objects to Social Machines
Post-Digital Society
Working out the plot: the role of Stories in Social Machines
Social Science Landscape for Web Observatories
Big Data for the Social Sciences
Social Machines IIIT
DR2013 Data Science Panel Introduction

Recently uploaded (20)

PPTX
522797556-Unit-2-Temperature-measurement-1-1.pptx
PPTX
SAP Ariba Sourcing PPT for learning material
PPT
Design_with_Watersergyerge45hrbgre4top (1).ppt
PPTX
CHE NAA, , b,mn,mblblblbljb jb jlb ,j , ,C PPT.pptx
PDF
Testing WebRTC applications at scale.pdf
PPTX
innovation process that make everything different.pptx
PPTX
presentation_pfe-universite-molay-seltan.pptx
PDF
WebRTC in SignalWire - troubleshooting media negotiation
PPTX
Introuction about WHO-FIC in ICD-10.pptx
PDF
πŸ’° π”πŠπ“πˆ πŠπ„πŒπ„ππ€ππ†π€π πŠπˆππ„π‘πŸ’πƒ π‡π€π‘πˆ 𝐈𝐍𝐈 πŸπŸŽπŸπŸ“ πŸ’°
Β 
PPTX
Slides PPTX World Game (s) Eco Economic Epochs.pptx
PDF
Cloud-Scale Log Monitoring _ Datadog.pdf
PPTX
Internet___Basics___Styled_ presentation
PDF
Automated vs Manual WooCommerce to Shopify Migration_ Pros & Cons.pdf
PDF
Slides PDF The World Game (s) Eco Economic Epochs.pdf
PPTX
Module 1 - Cyber Law and Ethics 101.pptx
PDF
The Internet -By the Numbers, Sri Lanka Edition
Β 
PPTX
QR Codes Qr codecodecodecodecocodedecodecode
PDF
RPKI Status Update, presented by Makito Lay at IDNOG 10
Β 
PDF
Tenda Login Guide: Access Your Router in 5 Easy Steps
522797556-Unit-2-Temperature-measurement-1-1.pptx
SAP Ariba Sourcing PPT for learning material
Design_with_Watersergyerge45hrbgre4top (1).ppt
CHE NAA, , b,mn,mblblblbljb jb jlb ,j , ,C PPT.pptx
Testing WebRTC applications at scale.pdf
innovation process that make everything different.pptx
presentation_pfe-universite-molay-seltan.pptx
WebRTC in SignalWire - troubleshooting media negotiation
Introuction about WHO-FIC in ICD-10.pptx
πŸ’° π”πŠπ“πˆ πŠπ„πŒπ„ππ€ππ†π€π πŠπˆππ„π‘πŸ’πƒ π‡π€π‘πˆ 𝐈𝐍𝐈 πŸπŸŽπŸπŸ“ πŸ’°
Β 
Slides PPTX World Game (s) Eco Economic Epochs.pptx
Cloud-Scale Log Monitoring _ Datadog.pdf
Internet___Basics___Styled_ presentation
Automated vs Manual WooCommerce to Shopify Migration_ Pros & Cons.pdf
Slides PDF The World Game (s) Eco Economic Epochs.pdf
Module 1 - Cyber Law and Ethics 101.pptx
The Internet -By the Numbers, Sri Lanka Edition
Β 
QR Codes Qr codecodecodecodecocodedecodecode
RPKI Status Update, presented by Makito Lay at IDNOG 10
Β 
Tenda Login Guide: Access Your Router in 5 Easy Steps

Humanities in the Digital World

  • 1. David De Roure @dder Intersection, Scale, and Social Machines: The Humanities in the Digital World DIRECTOR, UNIVERSITY OF OXFORD E-RESEARCH CENTRE
  • 5. 13,785,659 Β total Β volumes Β  6,871,154 Β book Β 6tles Β  364,473 Β serial Β 6tles Β  4,824,980,650 Β pages Β  618 Β terabytes Β  163 Β miles Β  11,201 Β tons Β  5,372,477 Β public Β domain Β volumes Β  10,000,000,000,000,000 bytes archived!
  • 6. New Forms of Data β–Άβ€―Internet data, derived from social media and other online interactions (including data gathered by connected people and devices, eg mobile devices, wearable technology, Internet of Things) β–Άβ€―Tracking data, monitoring the movement of people and objects (including GPS/geolocation data, traffic and other transport sensor data, CCTV images etc) β–Άβ€―Satellite and aerial imagery (eg Google Earth, Landsat, infrared, radar mapping etc) http://www.oecd.org/sti/sci-tech/new-data-for- understanding-the-human-condition.htm
  • 7. The Β Big Β Picture Β  More people Moremachines Big Data Big Compute Conventional Computation β€œBig Social” Social Networks e-infrastructure Online R&D (Science 2.0) Digital Scholarship @dder
  • 9. Data Detect Store AnalyticsFilter Analysts @dder
  • 10. There is no such thing as the Internet of Things There is no such thing as a closed system Humans are creative and subversive The Rise of the Bots A Swarm of Drones Accidents happen (in the lab, bin) Holding machines to account Software vulnerability Where are the throttle points? @dder
  • 11. F i r s t
  • 12. Edwards, P. N., et al. (2013) Knowledge Infrastructures: Intellectual Frameworks and Research Challenges. Ann Arbor: Deep Blue. http://hdl.handle.net/2027.42/97552
  • 14. Social Β Machines Β Defini6on Β TBL Β  Pip Willcox
  • 15. https://twitter.com/CR_UK/status/446223117841494016/ Some people's smartphones had autocorrected the word "BEAT" to instead read "BEAR". "Thank you for choosing an adorable polar bear," the reply from the WWF said. "We will call you today to set up your adoption." http://www.bbc.com/news/technology-26723457
  • 17. SOCIAM: The Theory and Practice of Social Machines is funded by the UK Engineering and Physical Sciences Research Council (EPSRC) under grant number EPJ017728/1 and comprises the Universities of Southampton, Oxford and Edinburgh. See sociam.org
  • 18. β€œYet Β Wikipedia Β and Β its Β stated Β ambi6on Β to Β β€œcompile Β the Β sum Β of Β all Β  human Β knowledge” Β are Β in Β trouble. Β The Β volunteer Β workforce Β that Β  built Β the Β project’s  flagship, Β the Β English-­‐language Β Wikipediaβ€”and Β  must Β defend Β it Β against Β vandalism, Β hoaxes, Β and Β manipula6onβ€” has Β shrunk Β by Β more Β than Β a Β third Β since Β 2007 Β and Β is Β s6ll Β shrinking… Β  Β  The Β main Β source Β of Β those Β problems Β is Β not Β mysterious. Β The Β loose Β  collec6ve Β running Β the Β site Β today, Β es6mated Β to Β be Β 90 Β percent Β  male, Β operates Β a Β crushing Β bureaucracy Β with Β an Β oYen Β abrasive Β  atmosphere Β that Β deters Β newcomers Β who Β might Β increase Β  par6cipa6on Β in Β Wikipedia Β and Β broaden Β its Β coverage…” Β  Β http://www.technologyreview.com/featuredstory/520446/the-decline-of-wikipedia/
  • 20. β€œPanoptes has been designed so that it’s easier for us to update and maintain, and to allow more powerful tools for project builders. It’s also open source from the start, and if you find bugs or have suggestions about the new site you can note them on Github (or, if you’re so inclined, contribute to the codebase yourself).” " Β  http://blog.zooniverse.org/2015/06/29/a-whole-new-zooniverse/ http://monsterspedia.wikia.com/wiki/File:Argus-Panoptes.jpg Panoptes
  • 21. Musical Social Machines Social Machines of Scholarship
  • 22. INT. VERSE VERSE VERSE VERSEBRIDGEBRIDGE OUT. Γͺοƒͺ The Β Problem Β  signal understanding Ichiro Fujinaga
  • 23. salami.music.mcgill.ca Jordan B. L. Smith, J. Ashley Burgoyne, Ichiro Fujinaga, David De Roure, and J. Stephen Downie. 2011. Design and creation of a large-scale database of structural annotations. In Proceedings of the International Society for Music Information Retrieval Conference, Miami, FL, 555–60
  • 25. Dan Edelstein, Robert Morrissey, and Glenn Roe, To Quote or not to Quote: Citation Strategies in the EncyclopΓ©die. Journal of the History of Ideas , Volume 74, Number 2, April 2013 . pp. 213-236. 10.1353/jhi.2013.0012 Glenn Roe
  • 26. Digital Β Music Β  Collec6ons Β  Grad-­‐sourced Β  ground Β truth Β  Community Β  SoYware Β  Linked Β Data Β  Repositories Β  Supercomputer Β  23,000 hours of recorded music Music Information Retrieval Community SALAMI
  • 28. www.music-ir.org/mirex Music Information Retrieval Evaluation eXchange Audio Onset Detection Audio Beat Tracking Audio Key Detection Audio Downbeat Detection Real-time Audio to Score Alignment(a.k.a Score Following) Audio Cover Song Identification Discovery of Repeated Themes & Sections Audio Melody Extraction Query by Singing/Humming Audio Chord Estimation Singing Voice Separation Audio Fingerprinting Music/Speech Classification/Detection Audio Offset Detection Downie, J. Stephen, Andreas F. Ehmann, Mert Bay and M. Cameron Jones. (2010). The Music Information Retrieval Evaluation eXchange: Some Observations and Insights. Advances in Music Information Retrieval Vol. 274, pp. 93-115
  • 32. Kevin Page David Weigl Interfaces, for computer and human !
  • 34. Sonifying Β the Β Variants Β  β€’β€― From Β Play Β to Β Sonifica6on Β  β€’β€― Using Β First Β Folio Β and Β Quartos Β data Β  β€’β€― Parsing Β the Β TEI Β XML, Β conver6ng Β it Β with Β rule Β set Β into Β numbers, Β  sonifying Β the Β data Β to Β produce Β sounds Β  34 Sonification Β  Iain Emsley
  • 36. Ecosystem Perspective β€’β€― We see a community of living, hybrid organisms, rather than a set of machines which happen to have humans amongst their components β€’β€― Their successes and failures inform the design and construction of their offspring and successors
  • 38. Observer of one social machine Observers using third party observatory Observer of multiple social machines Human participants in Social Machine Human participants in multiple Social Machines Observer of Social Machine infrastructure 1 Β  4 Β  2 Β  3 Β  5 Β  6 Β  SM SM SM Social Machine Observing Social Machines 7 Β  @dder De Roure, D., Hooper, C., Page, K., Tarte, S., and Willcox, P. 2015. Observing Social Machines Part 2: How to Observe? ACM Web Science
  • 39. The Web Observatory Tiropanis, T., Hall, W., Shadbolt, N., De Roure, D., Contractor, N. and Hendler, J. 2013. The Web Science Observatory, IEEE Intelligent Systems 28(2) pp 100–104. ThanassisTiropanis
  • 40. Simpson, R., Page, K.R. and De Roure, D. 2014. Zooniverse: observing the world's largest citizen science platform. In Proceedings of the companion publication of the 23rd international conference on World Wide Web, 1049-1054. Kevin Page
  • 41. STORYTELLING AS A STETHOSCOPE FOR SOCIAL MACHINES 1.β€― Sociality through storytelling potential and realization 2.β€― Sustainability through reactivity and interactivity 3.β€― Emergence through collaborative authorship and mixed authority Zooniverse Β is Β a Β highly Β  storified Β Social Β Machine Β  Facebook Β doesn’t Β allow Β  for Β improvisa6on Β  Wikipedia Β assigns Β  authority Β rights Β rigidly Β  http://ora.ox.ac.uk/objects/ora:8033 Tarte, S.M., De Roure, D. and Willcox, P. 2014. Working out the Plot: the Role of Stories in Social Machines. SOCM2014: The Theory and Practice of Social Machines, Seoul, Korea, International World Wide Web Conferences pp. 909–914
  • 43. Tarte, S. Willcox, P., Glaser, H. and De Roure, D. 2015. Archetypal Narratives in Social Machines: Approaching Sociality through Prosopography. ACM Web Science 2015. SΓ©golΓ¨neTarte
  • 48. A computationally-enabled sense-making network of expertise, data, software, models and narratives Big Data, in a Big Data Centre
  • 49. Pip Willcox and Kevin Page
  • 50. Β  Β  consume Β  Β  produce Β  Β  compose Β  perform Β  capture Β  Β  distribute Β  Β  Β  Β  Β  Β  Β  Β  Mark Β Sandler Β  Curate Β  Β  Β  Β  Β  Β Preserve Β  !
  • 51. Notifications and automatic re-runs Machines are users too Autonomic Curation Self-repair New research?
  • 52. The Β R Β Dimensions Β  Research Β Objects Β facilitate Β research Β that Β is Β  reproducible, Β repeatable, Β replicable, Β reusable, Β  referenceable, Β retrievable, Β reviewable, Β  replayable, Β re-­‐interpretable, Β reprocessable, Β  recomposable, Β reconstructable, Β repurposable, Β  reliable, Β respecful, Β reputable, Β revealable, Β  recoverable, Β restorable, Β reparable, Β refreshable?” Β  @dder 14 April 2014 sci Β method Β  access Β  understand Β  new Β use Β  social Β  cura6on Β  Research Β  Object Β  Principles Β  De Roure, D. 2014. The future of scholarly communications. Insights: the UKSG journal, 27, (3), 233-238. DOI 10.1629/2048-7754.171
  • 54. Intersection, Scale, and Social Machines: The Humanities in the Digital World
  • 55. First Β Folio Β Social Β Machines Β  Metadata Story of the First Folio Social Machines Annotation David De Roure and Pip Willcox β€˜β€œConiunction, with the participation of Society”: Citizens, Scale, and Scholarly Social Machines’ Beyond the PDF: Born-Digital Humanities, Boston, 27–28 April 2015 Pip Willcox
  • 57. david.deroure@oerc.ox.ac.uk @dder Thanks to Tim Crawford, Mark d’Inverno, Stephen Downie, Iain Emsley, Ichiro Fujinaga, Chris Lintott, Grant Miller, Terhi Nurmikko-Fuller, Kevin Page, Carolin Rindfleisch, Glenn Roe, Mark Sandler, SΓ©golΓ¨ne Tarte, David Weigl, and Pip Willcox. http://www.slideshare.net/davidderoure/humanities-in-the-digital-world Supported by SOCIAM: The Theory and Practice of Social Machines, funded by the UK Engineering and Physical Sciences Research Council (EPSRC) under grant number EP/J017728/1; Fusing Semantic and Audio Technologies for Intelligent Music Production and Consumption (FAST) funded by EPSRC under grant number EP/L019981/1; and Transforming Musicology, funded by the UK Arts and Humanities Research Council under the Digital Transformations programme. Thanks also to the Andrew W. Mellon Foundation.

Editor's Notes

  • #35: ----- Meeting Notes (25/10/15 20:38) ----- Pipeline to transform the XML into numbers according to a simple set of rules. These numbers are then transformed into sound in the black box. Mention the Hinman collator here and stereoscopy. Used the First Folio Hamlet and the Quartos variants as the test data. One stream Two steams to create an audio version of a steroscopic illusion.