The Equation of Motion of an Inverted
Pendulum
	
  
A.K.A “The Balancing Act”
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Anand Sekar
IB Session Number: 000944 – 0297
Kelly Haupt P.6
December 7th
, 2015
	
  
	
  
1. INTRODUCTION
BACKGROUND RESEARCH
I remember walking through the doors of the old Albertsons store in Canyon Park. Every single
time I walked through, I would look back and laugh. The automatic doors would swing out, stabilize by
swinging side to side, then violently smash themselves together despite their efforts. The sole reason for
this was poor control mechanics; the mathematical algorithms by which the door’s motors operated on
were imperfect in terms of stability. This scenario, combined with my passion for robotics and
mathematics, led me to discover the inverted pendulum.
For fifty years, the inverted pendulum has been the benchmark for control theory and robotics.
Control theory is an interdisciplinary field of engineering and mathematics that has applications in the
behavior of dynamical systems, modified by inputs and feedback. A pendulum is simply a weight
hanging on a string or a light rod, which follows the basic rules of oscillatory motion. Examples of
pendulums are found in playground swings, grandfather clocks, and more. It is an example of a robust
system. Robustness can be defined as the ability of a system to resist change without adapting its initial
stable configuration. In other words, the system of a robust pendulum can take multiple inputs and return
to its equilibrium without difficulty.
On the other hand, an inverted pendulum is a weight balanced on top of a light rod; it’s the same
system, turned upside-down. An inverted pendulum is the embodiment of an unstable, not robust
system. When given even the smallest inputs, or disturbances, the inverted pendulum isn’t able to return
to its equilibrium state. It’s the definition of a balancing act.
An inverted pendulum, attached to a moving cart, is the standard of inverted-pendulum robots.
The cart only moves in one axis, as does the inverted pendulum. The angle of the inverted pendulum is
measured using a rotary encoder, and the position of the cart is measured using rotary encoders within
motors on the wheels. These data, the angle of the pendulum and the position of the cart, along with
time, are all that’s needed to control and stabilize the inverted pendulum by moving the cart using the
motors.
These are the dynamic equations of the inverted pendulum, in a state-space model. State-space
equations model a system by using a set of differential equations. This equation is written using
Newton’s notation. The variable 𝑥 represents the position of the cart, and 𝜑 represents the angle of the
pendulum with respect to the normal. Each dot above a variable represents differentiation with respect to
time. 𝑥 is
!"
!"
which is velocity, and 𝑥 is
!!!
!!!
, which is acceleration. The same principle applies to 𝜑
(Messner).
The control algorithm is the mathematical process, based off the above equations, used to
stabilize the robot. I used a PID (Proportional – Integral – Derivative) controller, which follows a closed
loop, or feedback, control system. This involves a cyclical process, in which two variables, the desired
effect and the current state, are inputted into a PID controller, processed with disturbances, outputs a
value to be executed by the system, and the process repeats.
In the case of the inverted pendulum robot, the “setpoint,” or desired value, is keeping the inverted
pendulum upright, or parallel to the normal/ vertical. The measured process variables are the current
angle of the pendulum with respect to the normal and the x-position of the cart (using a rotary encoder
sensor), in addition to the first-order and second-order derivatives of those values with respect to other
values. The PID controller, in layman’s terms, takes “the difference” of the two values, using higher
calculus, and outputs a correction. In this case, the correction is an adjustment in the cart using the
motors.
RESEARCH QUESTION
What is the equation of motion of an inverted pendulum?
HYPOTHESIS
When given disturbance forces, the inverted pendulum should tip over. If the control algorithms
previously listed are properly executed, either through a simulation or in a physical robot, the cart should
balance the inverted pendulum, even if there is excess weight at the end or more friction in the joints.
2. METHODOLOGY
OVERVIEW
This experiment involves creating a two-dimensional, digital simulation of an inverted pendulum
mounted to a motorized cart. Each simulation begins with the cart and inverted pendulum in a stable
position, with the inverted pendulum upright, or 180 degrees to the vertical. The first simulation is open-
loop, i.e. the motors don’t give any feedback and the cart and pendulum are completely free to move;
there is a disturbance force of 100N applied for .01 seconds, and properties such as force on the cart,
position of the cart, and angle of the inverted pendulum are recorded for 10 seconds. The second
simulation is closed-loop model, i.e. the motors give feedback and the cart resists the disturbance forces,
keeping the inverted pendulum from falling over. Since the feedback is based off the equation of motion
of an inverted pendulum, if the second simulation succeeds in balancing the inverted pendulum, the
equation will have proven to work.
MATERIALS
• Simulink®: “a block diagram environment for multidomain simulation and Model-Based
Design. It supports simulation, automatic code generation, and continuous test and verification of
embedded systems.” (“Simulink Overview”).
• A modern computer
STEPS
1. Create a linearized model by following this Simulink Modeling tutorial:
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SimulinkM
odeling
2. Simulate the model without any external forces. Simultaneously record the disturbance force on
the cart (N), position of cart (m), and angle of the inverted pendulum (radians).
3. Simulate the model, for ten seconds, with an external disturbance force of 1000N applied for .01
seconds. Simultaneously record the disturbance force on the cart (N), position of cart (m), and
angle of the inverted pendulum (radians).
4. Connect a controller to the cart. This controller should only be able to apply forces to the cart the
same way the external forces do.
5. Simulate the model with the controller, for ten seconds, with two disturbance forces similar to
the first one. The first push is towards the right (positive) and the second push is to the left
(negative). Simultaneously record the disturbance force on the cart (N), position of cart (m), and
angle of the inverted pendulum (radians) on one graph. On another graph, simultaneously record
net force on the cart (N), the disturbance force applied (N), and the force applied by the
controller on the cart.
LABELED DIAGRAM
• M – mass of the cart (0.5 kg)
• m – mass of the pendulum (0.2 kg)
• b – coefficient of friction for cart (0.1 N/m/sec)
• l – length to pendulum center of mass (0.3 m)
• I – mass moment of inertia of the pendulum (0.006 kg ×𝑚!
)
• F – force applied to the cart
• x – cart position coordinate
• 𝜃 – pendulum angle from vertical (down)
Free-body Diagram:
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SimulinkModeling
It is necessary to include the interaction forces N and P between the cart and the pendulum,
which requires modeling the x- and y- components of the translation of the pendulum’s center of mass
and its rotational dynamics (Messner). We can express 𝑥!   𝑎𝑛𝑑  𝑦! as exact functions of 𝜃, and their
derivatives.
The x-component equations follow as such:
𝑥!   = 𝑥 + 𝑙𝑠𝑖𝑛𝜃
𝑥!   = 𝑥 + 𝑙(𝜃𝑐𝑜𝑠𝜃)
𝑥! = 𝑥 + ( 𝑙𝜃 𝜃 −𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝜃 𝑙𝜃 )
𝑥!   = 𝑥 − 𝑙𝜃! 𝑠𝑖𝑛𝜃 + 𝑙𝜃𝑐𝑜𝑠𝜃
The y-component equations follow as such:
𝑦! =  −𝑙𝑐𝑜𝑠𝜃
𝑦! = 𝑙𝜃𝑠𝑖𝑛𝜃
𝑦! = 𝑙𝜃! cosθ +  𝑙𝜃𝑠𝑖𝑛𝜃
Disturbance/
applied force
Interaction force
components
between the cart
and the pendulumReaction force
You can substitute the equations into Newton’s second law:
𝐹 = 𝑚𝑎
𝑁 = 𝑚(𝑥!   = 𝑥 − 𝑙𝜃! 𝑠𝑖𝑛𝜃 + 𝑙𝜃𝑐𝑜𝑠𝜃)
𝑃 = 𝑚 𝑙𝜃! cosθ +  𝑙𝜃𝑠𝑖𝑛𝜃 + 𝐹!
Now, these equations can be represented within Simulink, along with other similar yet more complex
equations.
SAFETY CONSIDERATIONS
This experiment solely relies on computer simulation, which has almost no safety, ethical, or
environmental issues. If I were to build a hardware model using robotic servos, encoders,
potentiometers, and aluminum parts, there would only be safety issues related to electricity. To be safe,
my brother and I have built an electrical engineering lab in the loft. Attached to this lab is a wrist strap
connected to the ground to prevent static discharge to electronics.
3. RESULTS AND ANALYSIS
INVERTED PENDULUM – OPEN LOOP MODEL
This graph represents a simulation of the inverted pendulum without any controller attached. The
simulation runs for ten seconds, and one set of data is plotted. In the simulation, the inverted pendulum
begins upright, in equilibrium. Then, a disturbance force of 1000N is applied for .01 second, as if
someone shoved the box.
RAW DATA
Time	
  (sec)	
   Net	
  Force	
  (N)	
   Position	
  (m)	
   Angle	
  (radians)	
  
0	
   0	
   0	
   3.141593	
  
1	
   0	
   -­‐9.4E-­‐18	
   3.141593	
  
2	
   1000	
   -­‐3.6E-­‐17	
   3.141593	
  
2.956	
   0	
   1.301533	
   3.464519	
  
3.956	
   0	
   2.510836	
   4.42302	
  
4.956	
   0	
   3.387802	
   6.806573	
  
5.956	
   0	
   4.255956	
   8.664989	
  
6.956	
   0	
   5.062617	
   9.267003	
  
7.956	
   0	
   5.739088	
   9.508919	
  
8.956	
   0	
   6.337424	
   9.913141	
  
10	
   0	
   6.881552	
   11.33249	
  
PROCESSED DATA
ANALYSIS
For the first two seconds of the simulation, there are no external forces applied to the inverted
pendulum, the cart is at position zero, and the angle of the pendulum is at pi relative to the vertical. At
two seconds, a force of 1000N is applied for .01 seconds. That is the only external force applied for the
duration of the simulation. Because of this, the cart moves in the positive direction, which is right. The
pendulum swings counter-clockwise, completing one rotation (at 2pi radians) and a half, stabilizing at
the bottom (at 4pi radians).
INVERTED PENDULUM AND CONTROLLER – CLOSED LOOP MODELS
This graph represents a simulation of the inverted pendulum that runs with a controller attached.
The simulation runs for ten seconds, and two sets of data are plotted. In the simulation, two disturbance
forces similar to the first example are applied; the first one pushes to the right, then the second one
Force of 1000N
applied for 0.01s
(to the right)
The inverted pendulum is
upright & balanced at 𝜋
radians to the vertical The pendulum is down at
any multiple of 2𝜋.
pushes to the left. The first plot displays the net force on the cart, along with the pendulum and position
of the cart. The second plot displays the net force on the cart, along with the disturbance force on the
cart, and the force applied by the controller on the cart.
RAW DATA
time	
  (sec)	
   Net	
  force	
  (N)	
   Position	
  (m)	
   Angle	
  (radians)	
   Disturbance	
  
Force	
  (N)	
  
Controller	
  Force	
  
(N)	
  
0	
   0	
   0	
   3.141593	
   0	
   0	
  
1	
   0	
   -­‐9.4E-­‐18	
   3.141593	
   0	
   0	
  
2	
   1000	
   -­‐3.6E-­‐17	
   3.141593	
   1000	
   0	
  
2.12733	
   -­‐4.65726	
   0.12642	
   3.165594	
   0	
   -­‐4.65726	
  
2.415882	
   -­‐0.47342	
   0.086116	
   3.161022	
   0	
   -­‐0.47342	
  
2.450591	
   -­‐0.16707	
   0.068955	
   3.158399	
   0	
   -­‐0.16707	
  
3.013218	
   0.242765	
   -­‐0.10012	
   3.138497	
   0	
   0.242765	
  
4.002644	
   0.003032	
   -­‐0.18758	
   3.141727	
   0	
   0.003032	
  
5.031011	
   0.016211	
   -­‐0.29701	
   3.141595	
   0	
   0.016211	
  
5.976569	
   -­‐0.00014	
   -­‐0.39694	
   3.141591	
   0	
   -­‐0.00014	
  
6	
   -­‐1000.01	
   -­‐0.39942	
   3.14159	
   -­‐1000	
   -­‐0.00864	
  
6.050767	
   5.658859	
   -­‐0.47021	
   3.129235	
   0	
   5.658859	
  
6.469864	
   -­‐0.02106	
   -­‐0.50836	
   3.126247	
   0	
   -­‐0.02106	
  
6.999636	
   -­‐0.31604	
   -­‐0.40617	
   3.14473	
   0	
   -­‐0.31604	
  
8.022436	
   -­‐0.05768	
   -­‐0.4233	
   3.141472	
   0	
   -­‐0.05768	
  
10	
   -­‐0.01279	
   -­‐0.42247	
   3.141593	
   0	
   -­‐0.01279	
  
PROCESSED DATA: GRAPH 1
ANALYSIS
Again, for the first two seconds of the simulation, there are no external forces applied to the
inverted pendulum, the cart is at position zero, and the angle of the pendulum is at pi relative to the
vertical. At two seconds, a force of 1000N is applied for .01 seconds. The initial force causes the cart to
move to the right, but the controller quickly counter-acts the force by rapidly jerking to the left then
gradually moving to the left to keep the pendulum stable. Meanwhile, the inverted pendulum slightly
tilts left then right, but keeps upright.
In addition, at six seconds, there is another force of -1000N applied for .01 seconds (to the left).
The cart moves to the left, and the controller reacts by quickly moving to the right and keeping still. The
inverted pendulum slightly tilts right then left, but keeps upright.
Force of 1000N
applied for 0.01s
(to the right)
Force of -1000N
applied for 0.01s
(to the left)
The controller reacts
by moving the cart
back-and-forth rapidly
The small scale shows how little the inverted
pendulum is affected, demonstrating the accuracy
of the controller based off the equation of motion
PROCESSED DATA: GRAPH 2
ANALYSIS
The same closed-loop scenario occurs as in the previous graph; this graph simply displays the
forces involved. The disturbance force is the same as in the previous graphs. The controller forces occur
immediately after or slightly during the time the disturbance forces are applied, and they counteract the
force with an initial kickback and a relatively gradual stabilization from the kickback. At two seconds,
the controller rapidly moves left, then right, and keeps a small, consistent force. At six seconds, the
The net force includes the
controller and disturbance
forces combined
The controller force
opposes the direction of
the disturbance forces
controller quickly moves right, then left, and continues to make minute forces to keep the inverted
pendulum stable.
UNCERTAINTIES
Although this experiment took place in a simulator, there are uncertainties in the linearized
model itself. The simulator is complex, and therefore, isn’t perfect. However, the miniscule inaccuracies
in this experiment are negligible; this is presented in the accuracy of the data in the tables.
4. CONCLUSION AND EVALUATION
CONCLUSION
Ultimately, the control algorithm functioned properly by stabilizing the inverted pendulum after
multiple impacts. The behavior of the cart depended on the algorithm, and the behavior of the algorithm
depended on the state-space model, which was the equation of motion of inverted pendulum. Therefore,
since the eventual functionality was successful, the underlying principles must be true; the equation of
motion of an inverted pendulum is justified.
COMPARISON TO CONTEXT
The state-space model used in this experiment has been accepted for over 50 years. The
procedures from this experiment are derived from control tutorials taught by University of Michigan,
Carnegie Mellon University, and University of Detroit Mercy in conjunction. Because this experiment
was conducted as a simulation, the difference between my results and that of another similar experiment
are little to none.
STRENGTHS AND WEAKNESSES
A definite strength of my experiment is that it was simulated using one of the most popular
applications today: Matlab. It is a justified means of analyzing the validity of control algorithms. On the
other hand, I am not able to visualize the cart unless I had an API for animations. Also, since it was
simulated, I did not encounter inconsistencies in measurement that would have occurred if I had built a
real pendulum balancer. Encoders, both linear and rotational, have their own inconsistencies that may
impact the algorithm. Surprisingly, factors such as mass of the pendulum, mass of the cart, friction
between the pendulum and the cart, and friction between the cart and the rail/ ground do not invalidate
the experiment. The algorithm, since it only takes the angle of the pendulum as an input, is able to adapt
to such changing conditions. Thus, the only weaknesses in building a real pendulum balancer lie in the
inaccuracies of the sensors.
IMPROVEMENTS
I am currently implementing a real pendulum balancer (see Appendix B) to visualize this concept
in action. Moreover, I could implement different, more adaptive control algorithms, each with their own
way of kicking-back and stabilizing, to understand the multifarious forms of such algorithms.
5. WORKS CITED
Works Cited	
  
Messner, Bill, Prof., and Dawn Tilbury, Prof. "Inverted Pendulum: System Modeling." Control
Tutorials for Matlab & Simulink. Matlab, n.d. Web. 7 Dec. 2015.
<http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SystemM
odeling>.	
  
Peacock, Finn. An Idiot's Guide to the PID Algorithm. N.p.: n.p., 2008. Print.	
  
"PID Theory Explained." National Instruments. National Instruments, 29 Mar. 2011. Web. 7 Dec. 2015.
<http://www.ni.com/white-paper/3782/en/#top>.	
  
Sekar, Arul Selvan. Personal interview. 21 Aug. 1988.	
  
"Simulink Overview." MathWorks. MathWorks, n.d. Web. 7 Dec. 2015.
<http://www.mathworks.com/products/simulink/>.	
  
"What Are State-Space Models?" MathWorks. MathWorks, 2015. Web. 7 Dec. 2015.
<http://www.mathworks.com/help/ident/ug/what-are-state-space-models.html>.	
  
6. APPENDICES
APPENDIX A – FULL DATA TABLES
OPEN LOOP MODEL
Time	
  (sec)	
   Net	
  Force	
  (N)	
   Position	
  (m)	
   Angle	
  (radians)	
  
0.000	
   0	
   0	
   3.141593	
  
0.200	
   0	
   -­‐3.9E-­‐19	
   3.141593	
  
0.400	
   0	
   -­‐1.5E-­‐18	
   3.141593	
  
0.600	
   0	
   -­‐3.5E-­‐18	
   3.141593	
  
0.800	
   0	
   -­‐6.1E-­‐18	
   3.141593	
  
1.000	
   0	
   -­‐9.4E-­‐18	
   3.141593	
  
1.200	
   0	
   -­‐1.3E-­‐17	
   3.141593	
  
1.400	
   0	
   -­‐1.8E-­‐17	
   3.141593	
  
1.600	
   0	
   -­‐2.3E-­‐17	
   3.141593	
  
1.800	
   0	
   -­‐2.9E-­‐17	
   3.141593	
  
2.000	
   1000	
   -­‐3.6E-­‐17	
   3.141593	
  
2.001	
   0	
   0.000726	
   3.14173	
  
2.006	
   0	
   0.007983	
   3.143099	
  
2.031	
   0	
   0.04419	
   3.149933	
  
2.156	
   0	
   0.223291	
   3.184039	
  
2.356	
   0	
   0.503421	
   3.240368	
  
2.556	
   0	
   0.77613	
   3.302631	
  
2.756	
   0	
   1.041981	
   3.375536	
  
2.956	
   0	
   1.301533	
   3.464519	
  
3.156	
   0	
   1.555301	
   3.57605	
  
3.356	
   0	
   1.803648	
   3.717916	
  
3.556	
   0	
   2.046547	
   3.899345	
  
3.756	
   0	
   2.283103	
   4.130795	
  
3.956	
   0	
   2.510836	
   4.42302	
  
4.156	
   0	
   2.72505	
   4.784974	
  
4.356	
   0	
   2.91949	
   5.220054	
  
4.556	
   0	
   3.090112	
   5.720577	
  
4.756	
   0	
   3.241407	
   6.262384	
  
4.956	
   0	
   3.387802	
   6.806573	
  
5.156	
   0	
   3.543877	
   7.313372	
  
5.356	
   0	
   3.714118	
   7.756768	
  
5.556	
   0	
   3.893938	
   8.127338	
  
5.756	
   0	
   4.076313	
   8.4273	
  
5.956	
   0	
   4.255956	
   8.664989	
  
6.156	
   0	
   4.430075	
   8.850938	
  
6.356	
   0	
   4.597668	
   8.995583	
  
6.556	
   0	
   4.758689	
   9.108189	
  
6.756	
   0	
   4.913505	
   9.196537	
  
6.956	
   0	
   5.062617	
   9.267003	
  
7.156	
   0	
   5.206531	
   9.324808	
  
7.356	
   0	
   5.345717	
   9.374295	
  
7.556	
   0	
   5.480608	
   9.419213	
  
7.756	
   0	
   5.611604	
   9.462978	
  
7.956	
   0	
   5.739088	
   9.508919	
  
8.156	
   0	
   5.863441	
   9.56052	
  
8.356	
   0	
   5.985053	
   9.621673	
  
8.556	
   0	
   6.104331	
   9.696943	
  
8.756	
   0	
   6.221675	
   9.791848	
  
8.956	
   0	
   6.337424	
   9.913141	
  
9.156	
   0	
   6.451697	
   10.06902	
  
9.356	
   0	
   6.564062	
   10.26914	
  
9.556	
   0	
   6.672953	
   10.52412	
  
9.756	
   0	
   6.774903	
   10.84417	
  
9.956	
   0	
   6.864242	
   11.23637	
  
10	
   0	
   6.881552	
   11.33249	
  
CLOSED LOOP MODEL
time	
  (sec)	
   Net	
  force	
  (N)	
   Position	
  (m)	
   Angle	
  (radians)	
   Disturbance	
  
Force	
  (N)	
  
Controller	
  Force	
  
(N)	
  
0	
   0	
   0	
   3.141593	
   0	
   0	
  
0.2	
   0	
   -­‐3.9E-­‐19	
   3.141593	
   0	
   0	
  
0.4	
   0	
   -­‐1.5E-­‐18	
   3.141593	
   0	
   0	
  
0.6	
   0	
   -­‐3.5E-­‐18	
   3.141593	
   0	
   0	
  
0.8	
   0	
   -­‐6.1E-­‐18	
   3.141593	
   0	
   0	
  
1	
   0	
   -­‐9.4E-­‐18	
   3.141593	
   0	
   0	
  
1.2	
   0	
   -­‐1.3E-­‐17	
   3.141593	
   0	
   0	
  
1.4	
   0	
   -­‐1.8E-­‐17	
   3.141593	
   0	
   0	
  
1.6	
   0	
   -­‐2.3E-­‐17	
   3.141593	
   0	
   0	
  
1.8	
   0	
   -­‐2.9E-­‐17	
   3.141593	
   0	
   0	
  
2	
   1000	
   -­‐3.6E-­‐17	
   3.141593	
   1000	
   0	
  
2.001000	
   -­‐0.27874	
   0.000726	
   3.14173	
   0	
   -­‐0.27874	
  
2.003374	
   -­‐1.44442	
   0.00417	
   3.142379	
   0	
   -­‐1.44442	
  
2.007779	
   -­‐3.01463	
   0.010518	
   3.143577	
   0	
   -­‐3.01463	
  
2.014174	
   -­‐4.37555	
   0.019571	
   3.145286	
   0	
   -­‐4.37555	
  
2.022669	
   -­‐5.24443	
   0.031179	
   3.147476	
   0	
   -­‐5.24443	
  
2.033631	
   -­‐5.63616	
   0.045326	
   3.150148	
   0	
   -­‐5.63616	
  
2.047759	
   -­‐5.68874	
   0.062079	
   3.153314	
   0	
   -­‐5.68874	
  
2.066296	
   -­‐5.52751	
   0.081523	
   3.156997	
   0	
   -­‐5.52751	
  
2.091493	
   -­‐5.19893	
   0.103479	
   3.161175	
   0	
   -­‐5.19893	
  
2.12733	
   -­‐4.65726	
   0.12642	
   3.165594	
   0	
   -­‐4.65726	
  
2.176086	
   -­‐3.83725	
   0.143759	
   3.169083	
   0	
   -­‐3.83725	
  
2.207408	
   -­‐3.32731	
   0.147646	
   3.170019	
   0	
   -­‐3.32731	
  
2.238731	
   -­‐2.81962	
   0.146772	
   3.170108	
   0	
   -­‐2.81962	
  
2.277092	
   -­‐2.21216	
   0.140313	
   3.169272	
   0	
   -­‐2.21216	
  
2.319422	
   -­‐1.57282	
   0.12778	
   3.167416	
   0	
   -­‐1.57282	
  
2.356675	
   -­‐1.07255	
   0.1133	
   3.165203	
   0	
   -­‐1.07255	
  
2.386845	
   -­‐0.75597	
   0.099916	
   3.163143	
   0	
   -­‐0.75597	
  
2.415882	
   -­‐0.47342	
   0.086116	
   3.161022	
   0	
   -­‐0.47342	
  
2.450591	
   -­‐0.16707	
   0.068955	
   3.158399	
   0	
   -­‐0.16707	
  
2.492228	
   0.146588	
   0.048116	
   3.155255	
   0	
   0.146588	
  
2.533096	
   0.405866	
   0.028078	
   3.15229	
   0	
   0.405866	
  
2.566229	
   0.524563	
   0.012505	
   3.150037	
   0	
   0.524563	
  
2.594662	
   0.582981	
   -­‐0.0002	
   3.148243	
   0	
   0.582981	
  
2.625863	
   0.642311	
   -­‐0.0133	
   3.146443	
   0	
   0.642311	
  
2.664572	
   0.692539	
   -­‐0.02823	
   3.144473	
   0	
   0.692539	
  
2.707376	
   0.731789	
   -­‐0.04292	
   3.142646	
   0	
   0.731789	
  
2.744599	
   0.731328	
   -­‐0.05413	
   3.141355	
   0	
   0.731328	
  
2.774385	
   0.666937	
   -­‐0.0621	
   3.140512	
   0	
   0.666937	
  
2.803134	
   0.614412	
   -­‐0.06897	
   3.139851	
   0	
   0.614412	
  
2.837934	
   0.560239	
   -­‐0.07627	
   3.139237	
   0	
   0.560239	
  
2.879991	
   0.502172	
   -­‐0.08377	
   3.13874	
   0	
   0.502172	
  
2.921081	
   0.464141	
   -­‐0.08986	
   3.138478	
   0	
   0.464141	
  
2.953999	
   0.383526	
   -­‐0.09401	
   3.138401	
   0	
   0.383526	
  
2.982114	
   0.303382	
   -­‐0.0971	
   3.138413	
   0	
   0.303382	
  
3.013218	
   0.242765	
   -­‐0.10012	
   3.138497	
   0	
   0.242765	
  
3.052142	
   0.185077	
   -­‐0.10343	
   3.138685	
   0	
   0.185077	
  
3.095266	
   0.153444	
   -­‐0.10662	
   3.138972	
   0	
   0.153444	
  
3.124815	
   0.089101	
   -­‐0.10862	
   3.139198	
   0	
   0.089101	
  
3.154364	
   0.045492	
   -­‐0.11052	
   3.13944	
   0	
   0.045492	
  
3.191609	
   0.012089	
   -­‐0.11283	
   3.139755	
   0	
   0.012089	
  
3.235125	
   0.003659	
   -­‐0.11551	
   3.140122	
   0	
   0.003659	
  
3.26573	
   -­‐0.03348	
   -­‐0.11743	
   3.14037	
   0	
   -­‐0.03348	
  
3.296335	
   -­‐0.05648	
   -­‐0.11941	
   3.140604	
   0	
   -­‐0.05648	
  
3.333712	
   -­‐0.066	
   -­‐0.12193	
   3.140869	
   0	
   -­‐0.066	
  
3.376045	
   -­‐0.05167	
   -­‐0.12495	
   3.141135	
   0	
   -­‐0.05167	
  
3.414348	
   -­‐0.03121	
   -­‐0.12786	
   3.141341	
   0	
   -­‐0.03121	
  
3.445213	
   -­‐0.0616	
   -­‐0.13034	
   3.141482	
   0	
   -­‐0.0616	
  
3.473945	
   -­‐0.07838	
   -­‐0.13274	
   3.141595	
   0	
   -­‐0.07838	
  
3.507649	
   -­‐0.07693	
   -­‐0.13568	
   3.141704	
   0	
   -­‐0.07693	
  
3.548618	
   -­‐0.05936	
   -­‐0.13941	
   3.141807	
   0	
   -­‐0.05936	
  
3.590189	
   -­‐0.01685	
   -­‐0.14337	
   3.141881	
   0	
   -­‐0.01685	
  
3.624379	
   -­‐0.01789	
   -­‐0.14674	
   3.141919	
   0	
   -­‐0.01789	
  
3.653034	
   -­‐0.04265	
   -­‐0.14964	
   3.141938	
   0	
   -­‐0.04265	
  
3.683454	
   -­‐0.0447	
   -­‐0.15278	
   3.141947	
   0	
   -­‐0.0447	
  
3.721122	
   -­‐0.03343	
   -­‐0.15674	
   3.141946	
   0	
   -­‐0.03343	
  
3.763956	
   8.44E-­‐05	
   -­‐0.16132	
   3.141931	
   0	
   8.44E-­‐05	
  
3.794462	
   -­‐0.01415	
   -­‐0.16463	
   3.141912	
   0	
   -­‐0.01415	
  
3.824967	
   -­‐0.01797	
   -­‐0.16796	
   3.141889	
   0	
   -­‐0.01797	
  
3.862203	
   -­‐0.0095	
   -­‐0.17206	
   3.141857	
   0	
   -­‐0.0095	
  
3.904527	
   0.018337	
   -­‐0.17672	
   3.141819	
   0	
   0.018337	
  
3.94298	
   0.047046	
   -­‐0.18097	
   3.141783	
   0	
   0.047046	
  
3.97395	
   0.019829	
   -­‐0.1844	
   3.141753	
   0	
   0.019829	
  
4.002644	
   0.003032	
   -­‐0.18758	
   3.141727	
   0	
   0.003032	
  
4.036205	
   0.002597	
   -­‐0.19128	
   3.141698	
   0	
   0.002597	
  
4.077071	
   0.015207	
   -­‐0.19577	
   3.141667	
   0	
   0.015207	
  
4.118736	
   0.050928	
   -­‐0.20032	
   3.141639	
   0	
   0.050928	
  
4.153082	
   0.044672	
   -­‐0.20406	
   3.141619	
   0	
   0.044672	
  
4.181776	
   0.013557	
   -­‐0.20718	
   3.141603	
   0	
   0.013557	
  
4.212089	
   0.004659	
   -­‐0.21046	
   3.14159	
   0	
   0.004659	
  
4.249605	
   0.007566	
   -­‐0.2145	
   3.141577	
   0	
   0.007566	
  
4.292432	
   0.031564	
   -­‐0.21909	
   3.141566	
   0	
   0.031564	
  
4.323047	
   0.012022	
   -­‐0.22236	
   3.14156	
   0	
   0.012022	
  
4.353663	
   0.002729	
   -­‐0.22563	
   3.141555	
   0	
   0.002729	
  
4.390899	
   0.005015	
   -­‐0.22958	
   3.141552	
   0	
   0.005015	
  
4.433086	
   0.026369	
   -­‐0.23405	
   3.141552	
   0	
   0.026369	
  
4.471437	
   0.049314	
   -­‐0.23809	
   3.141553	
   0	
   0.049314	
  
4.50245	
   0.01973	
   -­‐0.24137	
   3.141554	
   0	
   0.01973	
  
4.531258	
   0.000873	
   -­‐0.24441	
   3.141555	
   0	
   0.000873	
  
4.564891	
   -­‐0.00183	
   -­‐0.24795	
   3.141558	
   0	
   -­‐0.00183	
  
4.605704	
   0.0087	
   -­‐0.25224	
   3.141562	
   0	
   0.0087	
  
4.647235	
   0.042242	
   -­‐0.2566	
   3.141568	
   0	
   0.042242	
  
4.68154	
   0.035052	
   -­‐0.26021	
   3.141571	
   0	
   0.035052	
  
4.710305	
   0.004409	
   -­‐0.26324	
   3.141573	
   0	
   0.004409	
  
4.740719	
   -­‐0.00435	
   -­‐0.26644	
   3.141576	
   0	
   -­‐0.00435	
  
4.77827	
   -­‐0.00111	
   -­‐0.27039	
   3.14158	
   0	
   -­‐0.00111	
  
4.821002	
   0.02337	
   -­‐0.27488	
   3.141584	
   0	
   0.02337	
  
4.851621	
   0.004362	
   -­‐0.2781	
   3.141586	
   0	
   0.004362	
  
4.88224	
   -­‐0.0043	
   -­‐0.28133	
   3.141588	
   0	
   -­‐0.0043	
  
4.919457	
   -­‐0.00118	
   -­‐0.28525	
   3.14159	
   0	
   -­‐0.00118	
  
4.961621	
   0.021072	
   -­‐0.28969	
   3.141593	
   0	
   0.021072	
  
4.999978	
   0.044897	
   -­‐0.29373	
   3.141595	
   0	
   0.044897	
  
5.031011	
   0.016211	
   -­‐0.29701	
   3.141595	
   0	
   0.016211	
  
5.059832	
   -­‐0.00201	
   -­‐0.30006	
   3.141595	
   0	
   -­‐0.00201	
  
5.093456	
   -­‐0.00404	
   -­‐0.30361	
   3.141595	
   0	
   -­‐0.00404	
  
5.134247	
   0.007192	
   -­‐0.30791	
   3.141596	
   0	
   0.007192	
  
5.17577	
   0.041258	
   -­‐0.31229	
   3.141597	
   0	
   0.041258	
  
5.21009	
   0.034673	
   -­‐0.31592	
   3.141597	
   0	
   0.034673	
  
5.238872	
   0.004416	
   -­‐0.31897	
   3.141596	
   0	
   0.004416	
  
5.269287	
   -­‐0.00407	
   -­‐0.32218	
   3.141595	
   0	
   -­‐0.00407	
  
5.306822	
   -­‐0.00057	
   -­‐0.32615	
   3.141595	
   0	
   -­‐0.00057	
  
5.349538	
   0.024058	
   -­‐0.33066	
   3.141595	
   0	
   0.024058	
  
5.380174	
   0.005259	
   -­‐0.33391	
   3.141594	
   0	
   0.005259	
  
5.410809	
   -­‐0.00331	
   -­‐0.33715	
   3.141593	
   0	
   -­‐0.00331	
  
5.448022	
   -­‐0.00015	
   -­‐0.34108	
   3.141593	
   0	
   -­‐0.00015	
  
5.490163	
   0.022043	
   -­‐0.34553	
   3.141593	
   0	
   0.022043	
  
5.528506	
   0.045677	
   -­‐0.34958	
   3.141594	
   0	
   0.045677	
  
5.559549	
   0.017083	
   -­‐0.35287	
   3.141593	
   0	
   0.017083	
  
5.588388	
   -­‐0.00114	
   -­‐0.35592	
   3.141592	
   0	
   -­‐0.00114	
  
5.622021	
   -­‐0.00324	
   -­‐0.35947	
   3.141591	
   0	
   -­‐0.00324	
  
5.662801	
   0.007883	
   -­‐0.36378	
   3.141592	
   0	
   0.007883	
  
5.704303	
   0.041708	
   -­‐0.36816	
   3.141592	
   0	
   0.041708	
  
5.73862	
   0.035018	
   -­‐0.37179	
   3.141592	
   0	
   0.035018	
  
5.767415	
   0.004802	
   -­‐0.37484	
   3.141591	
   0	
   0.004802	
  
5.797844	
   -­‐0.00374	
   -­‐0.37806	
   3.141591	
   0	
   -­‐0.00374	
  
5.835382	
   -­‐0.00031	
   -­‐0.38202	
   3.141591	
   0	
   -­‐0.00031	
  
5.878082	
   0.024201	
   -­‐0.38653	
   3.141591	
   0	
   0.024201	
  
5.90872	
   0.005361	
   -­‐0.38977	
   3.141591	
   0	
   0.005361	
  
5.939359	
   -­‐0.00326	
   -­‐0.39301	
   3.141591	
   0	
   -­‐0.00326	
  
5.976569	
   -­‐0.00014	
   -­‐0.39694	
   3.141591	
   0	
   -­‐0.00014	
  
6	
   -­‐1000.01	
   -­‐0.39942	
   3.14159	
   -­‐1000	
   -­‐0.00864	
  
6.001	
   0.269925	
   -­‐0.40025	
   3.141453	
   0	
   0.269925	
  
6.006	
   2.449772	
   -­‐0.40801	
   3.140088	
   0	
   2.449772	
  
6.019289	
   4.969051	
   -­‐0.42808	
   3.136566	
   0	
   4.969051	
  
6.033104	
   5.613006	
   -­‐0.44758	
   3.133159	
   0	
   5.613006	
  
6.050767	
   5.658859	
   -­‐0.47021	
   3.129235	
   0	
   5.658859	
  
6.073106	
   5.433015	
   -­‐0.4951	
   3.124965	
   0	
   5.433015	
  
6.10307	
   5.01853	
   -­‐0.52222	
   3.120393	
   0	
   5.01853	
  
6.143832	
   4.374648	
   -­‐0.54858	
   3.116104	
   0	
   4.374648	
  
6.190121	
   3.558037	
   -­‐0.56565	
   3.113566	
   0	
   3.558037	
  
6.217672	
   3.143418	
   -­‐0.57026	
   3.113049	
   0	
   3.143418	
  
6.245224	
   2.706834	
   -­‐0.57139	
   3.113149	
   0	
   2.706834	
  
6.282635	
   2.122992	
   -­‐0.56823	
   3.114105	
   0	
   2.122992	
  
6.328654	
   1.438029	
   -­‐0.55858	
   3.116273	
   0	
   1.438029	
  
6.358431	
   1.081189	
   -­‐0.54983	
   3.118096	
   0	
   1.081189	
  
6.388208	
   0.748117	
   -­‐0.53971	
   3.120138	
   0	
   0.748117	
  
6.426055	
   0.366202	
   -­‐0.52557	
   3.122925	
   0	
   0.366202	
  
6.469864	
   -­‐0.02106	
   -­‐0.50836	
   3.126247	
   0	
   -­‐0.02106	
  
6.499957	
   -­‐0.19814	
   -­‐0.49651	
   3.128502	
   0	
   -­‐0.19814	
  
6.530049	
   -­‐0.35127	
   -­‐0.48495	
   3.13068	
   0	
   -­‐0.35127	
  
6.567472	
   -­‐0.50859	
   -­‐0.4713	
   3.133228	
   0	
   -­‐0.50859	
  
6.610487	
   -­‐0.65206	
   -­‐0.45695	
   3.135876	
   0	
   -­‐0.65206	
  
6.641112	
   -­‐0.68431	
   -­‐0.44778	
   3.137552	
   0	
   -­‐0.68431	
  
6.671736	
   -­‐0.70276	
   -­‐0.43956	
   3.139043	
   0	
   -­‐0.70276	
  
6.709012	
   -­‐0.71133	
   -­‐0.43087	
   3.140601	
   0	
   -­‐0.71133	
  
6.751227	
   -­‐0.71047	
   -­‐0.42279	
   3.142031	
   0	
   -­‐0.71047	
  
6.789554	
   -­‐0.69233	
   -­‐0.41701	
   3.143037	
   0	
   -­‐0.69233	
  
6.820527	
   -­‐0.61882	
   -­‐0.41335	
   3.143663	
   0	
   -­‐0.61882	
  
6.849324	
   -­‐0.55347	
   -­‐0.4107	
   3.144106	
   0	
   -­‐0.55347	
  
6.882985	
   -­‐0.49166	
   -­‐0.40844	
   3.14447	
   0	
   -­‐0.49166	
  
6.923841	
   -­‐0.42716	
   -­‐0.40677	
   3.144717	
   0	
   -­‐0.42716	
  
6.965371	
   -­‐0.38445	
   -­‐0.4061	
   3.144785	
   0	
   -­‐0.38445	
  
6.999636	
   -­‐0.31604	
   -­‐0.40617	
   3.14473	
   0	
   -­‐0.31604	
  
7.028373	
   -­‐0.23695	
   -­‐0.40659	
   3.144623	
   0	
   -­‐0.23695	
  
7.058799	
   -­‐0.18033	
   -­‐0.40732	
   3.144459	
   0	
   -­‐0.18033	
  
7.09639	
   -­‐0.12993	
   -­‐0.40854	
   3.144204	
   0	
   -­‐0.12993	
  
7.139146	
   -­‐0.10163	
   -­‐0.41021	
   3.143869	
   0	
   -­‐0.10163	
  
7.169729	
   -­‐0.05001	
   -­‐0.41151	
   3.143614	
   0	
   -­‐0.05001	
  
7.200312	
   -­‐0.01349	
   -­‐0.41285	
   3.143354	
   0	
   -­‐0.01349	
  
7.237532	
   0.01125	
   -­‐0.41449	
   3.143042	
   0	
   0.01125	
  
7.279746	
   0.012942	
   -­‐0.41628	
   3.142704	
   0	
   0.012942	
  
7.318134	
   0.004351	
   -­‐0.41781	
   3.14242	
   0	
   0.004351	
  
7.349149	
   0.041999	
   -­‐0.41893	
   3.142213	
   0	
   0.041999	
  
7.37793	
   0.065615	
   -­‐0.41988	
   3.142039	
   0	
   0.065615	
  
7.411534	
   0.070856	
   -­‐0.42088	
   3.141858	
   0	
   0.070856	
  
7.452346	
   0.059886	
   -­‐0.42191	
   3.141672	
   0	
   0.059886	
  
7.493914	
   0.022579	
   -­‐0.42277	
   3.14152	
   0	
   0.022579	
  
7.528244	
   0.024795	
   -­‐0.42333	
   3.141422	
   0	
   0.024795	
  
7.556999	
   0.050723	
   -­‐0.42369	
   3.141359	
   0	
   0.050723	
  
7.587381	
   0.053748	
   -­‐0.424	
   3.141308	
   0	
   0.053748	
  
7.624909	
   0.042841	
   -­‐0.42427	
   3.141265	
   0	
   0.042841	
  
7.667659	
   0.009348	
   -­‐0.42444	
   3.141239	
   0	
   0.009348	
  
7.69829	
   0.021857	
   -­‐0.42449	
   3.141235	
   0	
   0.021857	
  
7.72892	
   0.024305	
   -­‐0.42448	
   3.141239	
   0	
   0.024305	
  
7.76614	
   0.014091	
   -­‐0.42442	
   3.141254	
   0	
   0.014091	
  
7.808294	
   -­‐0.01542	
   -­‐0.4243	
   3.141281	
   0	
   -­‐0.01542	
  
7.846638	
   -­‐0.04494	
   -­‐0.42415	
   3.141311	
   0	
   -­‐0.04494	
  
7.877673	
   -­‐0.02042	
   -­‐0.424	
   3.14134	
   0	
   -­‐0.02042	
  
7.906504	
   -­‐0.00557	
   -­‐0.42386	
   3.141367	
   0	
   -­‐0.00557	
  
7.940138	
   -­‐0.00685	
   -­‐0.42369	
   3.141399	
   0	
   -­‐0.00685	
  
7.980926	
   -­‐0.02128	
   -­‐0.42349	
   3.141437	
   0	
   -­‐0.02128	
  
8.022436	
   -­‐0.05768	
   -­‐0.4233	
   3.141472	
   0	
   -­‐0.05768	
  
8.056748	
   -­‐0.05243	
   -­‐0.42314	
   3.141501	
   0	
   -­‐0.05243	
  
8.085535	
   -­‐0.02305	
   -­‐0.42302	
   3.141523	
   0	
   -­‐0.02305	
  
8.115961	
   -­‐0.01512	
   -­‐0.4229	
   3.141544	
   0	
   -­‐0.01512	
  
8.153503	
   -­‐0.01891	
   -­‐0.42278	
   3.141566	
   0	
   -­‐0.01891	
  
8.196212	
   -­‐0.04341	
   -­‐0.42266	
   3.141586	
   0	
   -­‐0.04341	
  
8.226845	
   -­‐0.02428	
   -­‐0.42259	
   3.141599	
   0	
   -­‐0.02428	
  
8.257477	
   -­‐0.01525	
   -­‐0.42253	
   3.141609	
   0	
   -­‐0.01525	
  
8.294689	
   -­‐0.01771	
   -­‐0.42247	
   3.141619	
   0	
   -­‐0.01771	
  
8.336832	
   -­‐0.03898	
   -­‐0.42243	
   3.141625	
   0	
   -­‐0.03898	
  
8.375178	
   -­‐0.06174	
   -­‐0.4224	
   3.141629	
   0	
   -­‐0.06174	
  
8.406222	
   -­‐0.0324	
   -­‐0.42238	
   3.141631	
   0	
   -­‐0.0324	
  
8.435059	
   -­‐0.0135	
   -­‐0.42237	
   3.141632	
   0	
   -­‐0.0135	
  
8.468689	
   -­‐0.01063	
   -­‐0.42237	
   3.141632	
   0	
   -­‐0.01063	
  
8.509468	
   -­‐0.0209	
   -­‐0.42238	
   3.141629	
   0	
   -­‐0.0209	
  
8.550974	
   -­‐0.05395	
   -­‐0.42239	
   3.141625	
   0	
   -­‐0.05395	
  
8.585293	
   -­‐0.0467	
   -­‐0.42241	
   3.141622	
   0	
   -­‐0.0467	
  
8.614086	
   -­‐0.01605	
   -­‐0.42241	
   3.14162	
   0	
   -­‐0.01605	
  
8.644514	
   -­‐0.00711	
   -­‐0.42243	
   3.141617	
   0	
   -­‐0.00711	
  
8.682049	
   -­‐0.01014	
   -­‐0.42244	
   3.141613	
   0	
   -­‐0.01014	
  
8.72475	
   -­‐0.03429	
   -­‐0.42247	
   3.141608	
   0	
   -­‐0.03429	
  
8.75539	
   -­‐0.01526	
   -­‐0.42248	
   3.141606	
   0	
   -­‐0.01526	
  
8.78603	
   -­‐0.0065	
   -­‐0.42249	
   3.141603	
   0	
   -­‐0.0065	
  
8.82324	
   -­‐0.00949	
   -­‐0.42251	
   3.1416	
   0	
   -­‐0.00949	
  
8.865373	
   -­‐0.03154	
   -­‐0.42252	
   3.141596	
   0	
   -­‐0.03154	
  
8.903713	
   -­‐0.05509	
   -­‐0.42254	
   3.141593	
   0	
   -­‐0.05509	
  
8.934761	
   -­‐0.02655	
   -­‐0.42254	
   3.141592	
   0	
   -­‐0.02655	
  
8.963606	
   -­‐0.00837	
   -­‐0.42254	
   3.141592	
   0	
   -­‐0.00837	
  
8.99724	
   -­‐0.00631	
   -­‐0.42255	
   3.14159	
   0	
   -­‐0.00631	
  
9.038014	
   -­‐0.01752	
   -­‐0.42255	
   3.141589	
   0	
   -­‐0.01752	
  
9.079511	
   -­‐0.0514	
   -­‐0.42256	
   3.141587	
   0	
   -­‐0.0514	
  
9.113828	
   -­‐0.04481	
   -­‐0.42256	
   3.141587	
   0	
   -­‐0.04481	
  
9.142628	
   -­‐0.01472	
   -­‐0.42255	
   3.141588	
   0	
   -­‐0.01472	
  
9.173061	
   -­‐0.00627	
   -­‐0.42255	
   3.141588	
   0	
   -­‐0.00627	
  
9.210597	
   -­‐0.0098	
   -­‐0.42255	
   3.141588	
   0	
   -­‐0.0098	
  
9.253292	
   -­‐0.0344	
   -­‐0.42255	
   3.141587	
   0	
   -­‐0.0344	
  
9.283933	
   -­‐0.01565	
   -­‐0.42254	
   3.141588	
   0	
   -­‐0.01565	
  
9.314574	
   -­‐0.0071	
   -­‐0.42254	
   3.141589	
   0	
   -­‐0.0071	
  
9.351783	
   -­‐0.01029	
   -­‐0.42253	
   3.141589	
   0	
   -­‐0.01029	
  
9.393912	
   -­‐0.03246	
   -­‐0.42253	
   3.141589	
   0	
   -­‐0.03246	
  
9.432252	
   -­‐0.05606	
   -­‐0.42253	
   3.141589	
   0	
   -­‐0.05606	
  
9.463302	
   -­‐0.02757	
   -­‐0.42252	
   3.14159	
   0	
   -­‐0.02757	
  
9.492149	
   -­‐0.00938	
   -­‐0.42251	
   3.141591	
   0	
   -­‐0.00938	
  
9.525783	
   -­‐0.00729	
   -­‐0.42251	
   3.141591	
   0	
   -­‐0.00729	
  
9.566555	
   -­‐0.01842	
   -­‐0.42251	
   3.141591	
   0	
   -­‐0.01842	
  
9.60805	
   -­‐0.05219	
   -­‐0.42251	
   3.141591	
   0	
   -­‐0.05219	
  
9.642368	
   -­‐0.04553	
   -­‐0.4225	
   3.141591	
   0	
   -­‐0.04553	
  
9.67117	
   -­‐0.01537	
   -­‐0.42249	
   3.141592	
   0	
   -­‐0.01537	
  
9.701604	
   -­‐0.00684	
   -­‐0.42249	
   3.141593	
   0	
   -­‐0.00684	
  
9.73914	
   -­‐0.01027	
   -­‐0.42249	
   3.141593	
   0	
   -­‐0.01027	
  
9.781832	
   -­‐0.03475	
   -­‐0.42249	
   3.141592	
   0	
   -­‐0.03475	
  
9.812474	
   -­‐0.01594	
   -­‐0.42248	
   3.141593	
   0	
   -­‐0.01594	
  
9.843116	
   -­‐0.00732	
   -­‐0.42248	
   3.141593	
   0	
   -­‐0.00732	
  
9.880325	
   -­‐0.01044	
   -­‐0.42247	
   3.141593	
   0	
   -­‐0.01044	
  
9.922452	
   -­‐0.03253	
   -­‐0.42248	
   3.141592	
   0	
   -­‐0.03253	
  
9.960791	
   -­‐0.05607	
   -­‐0.42248	
   3.141591	
   0	
   -­‐0.05607	
  
9.991842	
   -­‐0.02755	
   -­‐0.42247	
   3.141592	
   0	
   -­‐0.02755	
  
10	
   -­‐0.01279	
   -­‐0.42247	
   3.141593	
   0	
   -­‐0.01279	
  
APPENDIX B – PHYSICAL INVERTED PENDULUM ROBOT
The development of this robot is going relatively quickly. My goal is to finish it within one month. The
picture above is of the prototype. The robot is very well designed, with a low center of gravity. With the
right materials and measurements, it should have low friction and low error. The entire chassis,
pendulum mounts, and several other parts are completely laser cut, so human error in construction is
little to none. Once I’m finished, I hope to aggregate the documentation into a research report and post
the designs and instructions online.

More Related Content

PPTX
Gravitational wave
PPTX
Navigation & Flow
PPT
Des2017 quantum computing_final
PPTX
Gravitational waves
PDF
Internet of Things (IoT)
PDF
Silicon Photonics 2021
DOCX
Optical computing hardcopy
PPTX
Quantum Computing
Gravitational wave
Navigation & Flow
Des2017 quantum computing_final
Gravitational waves
Internet of Things (IoT)
Silicon Photonics 2021
Optical computing hardcopy
Quantum Computing

Similar to IB Physics IA (20)

PDF
Robust control theory based performance investigation of an inverted pendulum...
DOCX
Ballingham_Severance_Lab4
DOCX
final project
PDF
Navigation of Mobile Inverted Pendulum via Wireless control using LQR Technique
PPTX
Attitude Control of Satellite Test Setup Using Reaction Wheels
PDF
Troubleshooting and Enhancement of Inverted Pendulum System Controlled by DSP...
PDF
Electromagnetic Levitation (control project)
DOCX
r5.pdfr6.pdfInertiaOverall.docxDynamics of.docx
PDF
Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...
PDF
FINAL PROJ REP
PDF
Using real interpolation method for adaptive identification of nonlinear inve...
PDF
Iaetsd modelling and controller design of cart inverted pendulum system using...
PDF
Controller design of inverted pendulum using pole placement and lqr
PDF
Controller design of inverted pendulum using pole placement and lqr
PPTX
Unit 6_ Rotational Kinetic Energy & Momentum.pptx
PDF
Research on the synchronous vibration of the non-integral mechanism under the...
PDF
Mini Projet Repport.pdf
DOCX
PPTX
Dynamic force analysis slider crank mechanism
PDF
Iaetsd design of a robust fuzzy logic controller for a single-link flexible m...
Robust control theory based performance investigation of an inverted pendulum...
Ballingham_Severance_Lab4
final project
Navigation of Mobile Inverted Pendulum via Wireless control using LQR Technique
Attitude Control of Satellite Test Setup Using Reaction Wheels
Troubleshooting and Enhancement of Inverted Pendulum System Controlled by DSP...
Electromagnetic Levitation (control project)
r5.pdfr6.pdfInertiaOverall.docxDynamics of.docx
Design and Simulation of Different Controllers for Stabilizing Inverted Pendu...
FINAL PROJ REP
Using real interpolation method for adaptive identification of nonlinear inve...
Iaetsd modelling and controller design of cart inverted pendulum system using...
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqr
Unit 6_ Rotational Kinetic Energy & Momentum.pptx
Research on the synchronous vibration of the non-integral mechanism under the...
Mini Projet Repport.pdf
Dynamic force analysis slider crank mechanism
Iaetsd design of a robust fuzzy logic controller for a single-link flexible m...
Ad

More from Anand Sekar (12)

PDF
Deep Tricorder
PDF
Wi-Fi Direct P2P Messenger-Browser App
PDF
Crit E Evaluation
PDF
Crit C Development
PDF
Crit B Design
PDF
Crit A Planning
PDF
WAS Drawings
PDF
English 111 Reading Response
PDF
English 111 FInal Paper
PDF
Trickfire Robotics NASA RMC 2017 Systems Engineering Paper
PDF
Swiss Army Desk
PDF
Senior Thesis
Deep Tricorder
Wi-Fi Direct P2P Messenger-Browser App
Crit E Evaluation
Crit C Development
Crit B Design
Crit A Planning
WAS Drawings
English 111 Reading Response
English 111 FInal Paper
Trickfire Robotics NASA RMC 2017 Systems Engineering Paper
Swiss Army Desk
Senior Thesis
Ad

Recently uploaded (20)

PPTX
Feature types and data preprocessing steps
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PPTX
Management Information system : MIS-e-Business Systems.pptx
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PDF
20250617 - IR - Global Guide for HR - 51 pages.pdf
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
Java Basics-Introduction and program control
PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
PPTX
Building constraction Conveyance of water.pptx
PDF
Abrasive, erosive and cavitation wear.pdf
PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PPTX
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
PPTX
Principal presentation for NAAC (1).pptx
PPTX
Software Engineering and software moduleing
PDF
First part_B-Image Processing - 1 of 2).pdf
PPT
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Feature types and data preprocessing steps
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Management Information system : MIS-e-Business Systems.pptx
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
20250617 - IR - Global Guide for HR - 51 pages.pdf
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
Java Basics-Introduction and program control
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
Building constraction Conveyance of water.pptx
Abrasive, erosive and cavitation wear.pdf
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
distributed database system" (DDBS) is often used to refer to both the distri...
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
Principal presentation for NAAC (1).pptx
Software Engineering and software moduleing
First part_B-Image Processing - 1 of 2).pdf
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
August 2025 - Top 10 Read Articles in Network Security & Its Applications

IB Physics IA

  • 1. The Equation of Motion of an Inverted Pendulum   A.K.A “The Balancing Act”                     Anand Sekar IB Session Number: 000944 – 0297 Kelly Haupt P.6 December 7th , 2015    
  • 2. 1. INTRODUCTION BACKGROUND RESEARCH I remember walking through the doors of the old Albertsons store in Canyon Park. Every single time I walked through, I would look back and laugh. The automatic doors would swing out, stabilize by swinging side to side, then violently smash themselves together despite their efforts. The sole reason for this was poor control mechanics; the mathematical algorithms by which the door’s motors operated on were imperfect in terms of stability. This scenario, combined with my passion for robotics and mathematics, led me to discover the inverted pendulum. For fifty years, the inverted pendulum has been the benchmark for control theory and robotics. Control theory is an interdisciplinary field of engineering and mathematics that has applications in the behavior of dynamical systems, modified by inputs and feedback. A pendulum is simply a weight hanging on a string or a light rod, which follows the basic rules of oscillatory motion. Examples of pendulums are found in playground swings, grandfather clocks, and more. It is an example of a robust system. Robustness can be defined as the ability of a system to resist change without adapting its initial stable configuration. In other words, the system of a robust pendulum can take multiple inputs and return to its equilibrium without difficulty. On the other hand, an inverted pendulum is a weight balanced on top of a light rod; it’s the same system, turned upside-down. An inverted pendulum is the embodiment of an unstable, not robust system. When given even the smallest inputs, or disturbances, the inverted pendulum isn’t able to return to its equilibrium state. It’s the definition of a balancing act. An inverted pendulum, attached to a moving cart, is the standard of inverted-pendulum robots. The cart only moves in one axis, as does the inverted pendulum. The angle of the inverted pendulum is measured using a rotary encoder, and the position of the cart is measured using rotary encoders within motors on the wheels. These data, the angle of the pendulum and the position of the cart, along with
  • 3. time, are all that’s needed to control and stabilize the inverted pendulum by moving the cart using the motors. These are the dynamic equations of the inverted pendulum, in a state-space model. State-space equations model a system by using a set of differential equations. This equation is written using Newton’s notation. The variable 𝑥 represents the position of the cart, and 𝜑 represents the angle of the pendulum with respect to the normal. Each dot above a variable represents differentiation with respect to time. 𝑥 is !" !" which is velocity, and 𝑥 is !!! !!! , which is acceleration. The same principle applies to 𝜑 (Messner). The control algorithm is the mathematical process, based off the above equations, used to stabilize the robot. I used a PID (Proportional – Integral – Derivative) controller, which follows a closed loop, or feedback, control system. This involves a cyclical process, in which two variables, the desired effect and the current state, are inputted into a PID controller, processed with disturbances, outputs a value to be executed by the system, and the process repeats.
  • 4. In the case of the inverted pendulum robot, the “setpoint,” or desired value, is keeping the inverted pendulum upright, or parallel to the normal/ vertical. The measured process variables are the current angle of the pendulum with respect to the normal and the x-position of the cart (using a rotary encoder sensor), in addition to the first-order and second-order derivatives of those values with respect to other values. The PID controller, in layman’s terms, takes “the difference” of the two values, using higher calculus, and outputs a correction. In this case, the correction is an adjustment in the cart using the motors. RESEARCH QUESTION What is the equation of motion of an inverted pendulum? HYPOTHESIS When given disturbance forces, the inverted pendulum should tip over. If the control algorithms previously listed are properly executed, either through a simulation or in a physical robot, the cart should balance the inverted pendulum, even if there is excess weight at the end or more friction in the joints. 2. METHODOLOGY OVERVIEW This experiment involves creating a two-dimensional, digital simulation of an inverted pendulum mounted to a motorized cart. Each simulation begins with the cart and inverted pendulum in a stable position, with the inverted pendulum upright, or 180 degrees to the vertical. The first simulation is open- loop, i.e. the motors don’t give any feedback and the cart and pendulum are completely free to move; there is a disturbance force of 100N applied for .01 seconds, and properties such as force on the cart,
  • 5. position of the cart, and angle of the inverted pendulum are recorded for 10 seconds. The second simulation is closed-loop model, i.e. the motors give feedback and the cart resists the disturbance forces, keeping the inverted pendulum from falling over. Since the feedback is based off the equation of motion of an inverted pendulum, if the second simulation succeeds in balancing the inverted pendulum, the equation will have proven to work. MATERIALS • Simulink®: “a block diagram environment for multidomain simulation and Model-Based Design. It supports simulation, automatic code generation, and continuous test and verification of embedded systems.” (“Simulink Overview”). • A modern computer STEPS 1. Create a linearized model by following this Simulink Modeling tutorial: http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SimulinkM odeling 2. Simulate the model without any external forces. Simultaneously record the disturbance force on the cart (N), position of cart (m), and angle of the inverted pendulum (radians). 3. Simulate the model, for ten seconds, with an external disturbance force of 1000N applied for .01 seconds. Simultaneously record the disturbance force on the cart (N), position of cart (m), and angle of the inverted pendulum (radians). 4. Connect a controller to the cart. This controller should only be able to apply forces to the cart the same way the external forces do. 5. Simulate the model with the controller, for ten seconds, with two disturbance forces similar to the first one. The first push is towards the right (positive) and the second push is to the left (negative). Simultaneously record the disturbance force on the cart (N), position of cart (m), and angle of the inverted pendulum (radians) on one graph. On another graph, simultaneously record net force on the cart (N), the disturbance force applied (N), and the force applied by the controller on the cart. LABELED DIAGRAM • M – mass of the cart (0.5 kg) • m – mass of the pendulum (0.2 kg) • b – coefficient of friction for cart (0.1 N/m/sec) • l – length to pendulum center of mass (0.3 m) • I – mass moment of inertia of the pendulum (0.006 kg ×𝑚! )
  • 6. • F – force applied to the cart • x – cart position coordinate • 𝜃 – pendulum angle from vertical (down) Free-body Diagram: http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SimulinkModeling It is necessary to include the interaction forces N and P between the cart and the pendulum, which requires modeling the x- and y- components of the translation of the pendulum’s center of mass and its rotational dynamics (Messner). We can express 𝑥!   𝑎𝑛𝑑  𝑦! as exact functions of 𝜃, and their derivatives. The x-component equations follow as such: 𝑥!   = 𝑥 + 𝑙𝑠𝑖𝑛𝜃 𝑥!   = 𝑥 + 𝑙(𝜃𝑐𝑜𝑠𝜃) 𝑥! = 𝑥 + ( 𝑙𝜃 𝜃 −𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝜃 𝑙𝜃 ) 𝑥!   = 𝑥 − 𝑙𝜃! 𝑠𝑖𝑛𝜃 + 𝑙𝜃𝑐𝑜𝑠𝜃 The y-component equations follow as such: 𝑦! =  −𝑙𝑐𝑜𝑠𝜃 𝑦! = 𝑙𝜃𝑠𝑖𝑛𝜃 𝑦! = 𝑙𝜃! cosθ +  𝑙𝜃𝑠𝑖𝑛𝜃 Disturbance/ applied force Interaction force components between the cart and the pendulumReaction force
  • 7. You can substitute the equations into Newton’s second law: 𝐹 = 𝑚𝑎 𝑁 = 𝑚(𝑥!   = 𝑥 − 𝑙𝜃! 𝑠𝑖𝑛𝜃 + 𝑙𝜃𝑐𝑜𝑠𝜃) 𝑃 = 𝑚 𝑙𝜃! cosθ +  𝑙𝜃𝑠𝑖𝑛𝜃 + 𝐹! Now, these equations can be represented within Simulink, along with other similar yet more complex equations. SAFETY CONSIDERATIONS This experiment solely relies on computer simulation, which has almost no safety, ethical, or environmental issues. If I were to build a hardware model using robotic servos, encoders, potentiometers, and aluminum parts, there would only be safety issues related to electricity. To be safe, my brother and I have built an electrical engineering lab in the loft. Attached to this lab is a wrist strap connected to the ground to prevent static discharge to electronics. 3. RESULTS AND ANALYSIS INVERTED PENDULUM – OPEN LOOP MODEL This graph represents a simulation of the inverted pendulum without any controller attached. The simulation runs for ten seconds, and one set of data is plotted. In the simulation, the inverted pendulum begins upright, in equilibrium. Then, a disturbance force of 1000N is applied for .01 second, as if someone shoved the box. RAW DATA Time  (sec)   Net  Force  (N)   Position  (m)   Angle  (radians)   0   0   0   3.141593  
  • 8. 1   0   -­‐9.4E-­‐18   3.141593   2   1000   -­‐3.6E-­‐17   3.141593   2.956   0   1.301533   3.464519   3.956   0   2.510836   4.42302   4.956   0   3.387802   6.806573   5.956   0   4.255956   8.664989   6.956   0   5.062617   9.267003   7.956   0   5.739088   9.508919   8.956   0   6.337424   9.913141   10   0   6.881552   11.33249  
  • 9. PROCESSED DATA ANALYSIS For the first two seconds of the simulation, there are no external forces applied to the inverted pendulum, the cart is at position zero, and the angle of the pendulum is at pi relative to the vertical. At two seconds, a force of 1000N is applied for .01 seconds. That is the only external force applied for the duration of the simulation. Because of this, the cart moves in the positive direction, which is right. The pendulum swings counter-clockwise, completing one rotation (at 2pi radians) and a half, stabilizing at the bottom (at 4pi radians). INVERTED PENDULUM AND CONTROLLER – CLOSED LOOP MODELS This graph represents a simulation of the inverted pendulum that runs with a controller attached. The simulation runs for ten seconds, and two sets of data are plotted. In the simulation, two disturbance forces similar to the first example are applied; the first one pushes to the right, then the second one Force of 1000N applied for 0.01s (to the right) The inverted pendulum is upright & balanced at 𝜋 radians to the vertical The pendulum is down at any multiple of 2𝜋.
  • 10. pushes to the left. The first plot displays the net force on the cart, along with the pendulum and position of the cart. The second plot displays the net force on the cart, along with the disturbance force on the cart, and the force applied by the controller on the cart. RAW DATA time  (sec)   Net  force  (N)   Position  (m)   Angle  (radians)   Disturbance   Force  (N)   Controller  Force   (N)   0   0   0   3.141593   0   0   1   0   -­‐9.4E-­‐18   3.141593   0   0   2   1000   -­‐3.6E-­‐17   3.141593   1000   0   2.12733   -­‐4.65726   0.12642   3.165594   0   -­‐4.65726   2.415882   -­‐0.47342   0.086116   3.161022   0   -­‐0.47342   2.450591   -­‐0.16707   0.068955   3.158399   0   -­‐0.16707   3.013218   0.242765   -­‐0.10012   3.138497   0   0.242765   4.002644   0.003032   -­‐0.18758   3.141727   0   0.003032   5.031011   0.016211   -­‐0.29701   3.141595   0   0.016211   5.976569   -­‐0.00014   -­‐0.39694   3.141591   0   -­‐0.00014   6   -­‐1000.01   -­‐0.39942   3.14159   -­‐1000   -­‐0.00864   6.050767   5.658859   -­‐0.47021   3.129235   0   5.658859   6.469864   -­‐0.02106   -­‐0.50836   3.126247   0   -­‐0.02106   6.999636   -­‐0.31604   -­‐0.40617   3.14473   0   -­‐0.31604   8.022436   -­‐0.05768   -­‐0.4233   3.141472   0   -­‐0.05768   10   -­‐0.01279   -­‐0.42247   3.141593   0   -­‐0.01279  
  • 11. PROCESSED DATA: GRAPH 1 ANALYSIS Again, for the first two seconds of the simulation, there are no external forces applied to the inverted pendulum, the cart is at position zero, and the angle of the pendulum is at pi relative to the vertical. At two seconds, a force of 1000N is applied for .01 seconds. The initial force causes the cart to move to the right, but the controller quickly counter-acts the force by rapidly jerking to the left then gradually moving to the left to keep the pendulum stable. Meanwhile, the inverted pendulum slightly tilts left then right, but keeps upright. In addition, at six seconds, there is another force of -1000N applied for .01 seconds (to the left). The cart moves to the left, and the controller reacts by quickly moving to the right and keeping still. The inverted pendulum slightly tilts right then left, but keeps upright. Force of 1000N applied for 0.01s (to the right) Force of -1000N applied for 0.01s (to the left) The controller reacts by moving the cart back-and-forth rapidly The small scale shows how little the inverted pendulum is affected, demonstrating the accuracy of the controller based off the equation of motion
  • 12. PROCESSED DATA: GRAPH 2 ANALYSIS The same closed-loop scenario occurs as in the previous graph; this graph simply displays the forces involved. The disturbance force is the same as in the previous graphs. The controller forces occur immediately after or slightly during the time the disturbance forces are applied, and they counteract the force with an initial kickback and a relatively gradual stabilization from the kickback. At two seconds, the controller rapidly moves left, then right, and keeps a small, consistent force. At six seconds, the The net force includes the controller and disturbance forces combined The controller force opposes the direction of the disturbance forces
  • 13. controller quickly moves right, then left, and continues to make minute forces to keep the inverted pendulum stable. UNCERTAINTIES Although this experiment took place in a simulator, there are uncertainties in the linearized model itself. The simulator is complex, and therefore, isn’t perfect. However, the miniscule inaccuracies in this experiment are negligible; this is presented in the accuracy of the data in the tables. 4. CONCLUSION AND EVALUATION CONCLUSION Ultimately, the control algorithm functioned properly by stabilizing the inverted pendulum after multiple impacts. The behavior of the cart depended on the algorithm, and the behavior of the algorithm depended on the state-space model, which was the equation of motion of inverted pendulum. Therefore, since the eventual functionality was successful, the underlying principles must be true; the equation of motion of an inverted pendulum is justified. COMPARISON TO CONTEXT The state-space model used in this experiment has been accepted for over 50 years. The procedures from this experiment are derived from control tutorials taught by University of Michigan, Carnegie Mellon University, and University of Detroit Mercy in conjunction. Because this experiment was conducted as a simulation, the difference between my results and that of another similar experiment are little to none. STRENGTHS AND WEAKNESSES A definite strength of my experiment is that it was simulated using one of the most popular applications today: Matlab. It is a justified means of analyzing the validity of control algorithms. On the other hand, I am not able to visualize the cart unless I had an API for animations. Also, since it was simulated, I did not encounter inconsistencies in measurement that would have occurred if I had built a real pendulum balancer. Encoders, both linear and rotational, have their own inconsistencies that may impact the algorithm. Surprisingly, factors such as mass of the pendulum, mass of the cart, friction between the pendulum and the cart, and friction between the cart and the rail/ ground do not invalidate the experiment. The algorithm, since it only takes the angle of the pendulum as an input, is able to adapt to such changing conditions. Thus, the only weaknesses in building a real pendulum balancer lie in the inaccuracies of the sensors. IMPROVEMENTS I am currently implementing a real pendulum balancer (see Appendix B) to visualize this concept in action. Moreover, I could implement different, more adaptive control algorithms, each with their own way of kicking-back and stabilizing, to understand the multifarious forms of such algorithms.
  • 14. 5. WORKS CITED Works Cited   Messner, Bill, Prof., and Dawn Tilbury, Prof. "Inverted Pendulum: System Modeling." Control Tutorials for Matlab & Simulink. Matlab, n.d. Web. 7 Dec. 2015. <http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SystemM odeling>.   Peacock, Finn. An Idiot's Guide to the PID Algorithm. N.p.: n.p., 2008. Print.   "PID Theory Explained." National Instruments. National Instruments, 29 Mar. 2011. Web. 7 Dec. 2015. <http://www.ni.com/white-paper/3782/en/#top>.   Sekar, Arul Selvan. Personal interview. 21 Aug. 1988.   "Simulink Overview." MathWorks. MathWorks, n.d. Web. 7 Dec. 2015. <http://www.mathworks.com/products/simulink/>.   "What Are State-Space Models?" MathWorks. MathWorks, 2015. Web. 7 Dec. 2015. <http://www.mathworks.com/help/ident/ug/what-are-state-space-models.html>.   6. APPENDICES APPENDIX A – FULL DATA TABLES OPEN LOOP MODEL Time  (sec)   Net  Force  (N)   Position  (m)   Angle  (radians)   0.000   0   0   3.141593   0.200   0   -­‐3.9E-­‐19   3.141593   0.400   0   -­‐1.5E-­‐18   3.141593   0.600   0   -­‐3.5E-­‐18   3.141593   0.800   0   -­‐6.1E-­‐18   3.141593   1.000   0   -­‐9.4E-­‐18   3.141593   1.200   0   -­‐1.3E-­‐17   3.141593  
  • 15. 1.400   0   -­‐1.8E-­‐17   3.141593   1.600   0   -­‐2.3E-­‐17   3.141593   1.800   0   -­‐2.9E-­‐17   3.141593   2.000   1000   -­‐3.6E-­‐17   3.141593   2.001   0   0.000726   3.14173   2.006   0   0.007983   3.143099   2.031   0   0.04419   3.149933   2.156   0   0.223291   3.184039   2.356   0   0.503421   3.240368   2.556   0   0.77613   3.302631   2.756   0   1.041981   3.375536   2.956   0   1.301533   3.464519   3.156   0   1.555301   3.57605   3.356   0   1.803648   3.717916   3.556   0   2.046547   3.899345   3.756   0   2.283103   4.130795   3.956   0   2.510836   4.42302   4.156   0   2.72505   4.784974   4.356   0   2.91949   5.220054   4.556   0   3.090112   5.720577   4.756   0   3.241407   6.262384   4.956   0   3.387802   6.806573   5.156   0   3.543877   7.313372   5.356   0   3.714118   7.756768   5.556   0   3.893938   8.127338   5.756   0   4.076313   8.4273   5.956   0   4.255956   8.664989   6.156   0   4.430075   8.850938   6.356   0   4.597668   8.995583   6.556   0   4.758689   9.108189   6.756   0   4.913505   9.196537   6.956   0   5.062617   9.267003   7.156   0   5.206531   9.324808   7.356   0   5.345717   9.374295   7.556   0   5.480608   9.419213   7.756   0   5.611604   9.462978   7.956   0   5.739088   9.508919   8.156   0   5.863441   9.56052   8.356   0   5.985053   9.621673   8.556   0   6.104331   9.696943   8.756   0   6.221675   9.791848   8.956   0   6.337424   9.913141   9.156   0   6.451697   10.06902  
  • 16. 9.356   0   6.564062   10.26914   9.556   0   6.672953   10.52412   9.756   0   6.774903   10.84417   9.956   0   6.864242   11.23637   10   0   6.881552   11.33249   CLOSED LOOP MODEL time  (sec)   Net  force  (N)   Position  (m)   Angle  (radians)   Disturbance   Force  (N)   Controller  Force   (N)   0   0   0   3.141593   0   0   0.2   0   -­‐3.9E-­‐19   3.141593   0   0   0.4   0   -­‐1.5E-­‐18   3.141593   0   0   0.6   0   -­‐3.5E-­‐18   3.141593   0   0   0.8   0   -­‐6.1E-­‐18   3.141593   0   0   1   0   -­‐9.4E-­‐18   3.141593   0   0   1.2   0   -­‐1.3E-­‐17   3.141593   0   0   1.4   0   -­‐1.8E-­‐17   3.141593   0   0   1.6   0   -­‐2.3E-­‐17   3.141593   0   0   1.8   0   -­‐2.9E-­‐17   3.141593   0   0   2   1000   -­‐3.6E-­‐17   3.141593   1000   0   2.001000   -­‐0.27874   0.000726   3.14173   0   -­‐0.27874   2.003374   -­‐1.44442   0.00417   3.142379   0   -­‐1.44442   2.007779   -­‐3.01463   0.010518   3.143577   0   -­‐3.01463   2.014174   -­‐4.37555   0.019571   3.145286   0   -­‐4.37555   2.022669   -­‐5.24443   0.031179   3.147476   0   -­‐5.24443   2.033631   -­‐5.63616   0.045326   3.150148   0   -­‐5.63616   2.047759   -­‐5.68874   0.062079   3.153314   0   -­‐5.68874   2.066296   -­‐5.52751   0.081523   3.156997   0   -­‐5.52751   2.091493   -­‐5.19893   0.103479   3.161175   0   -­‐5.19893   2.12733   -­‐4.65726   0.12642   3.165594   0   -­‐4.65726   2.176086   -­‐3.83725   0.143759   3.169083   0   -­‐3.83725   2.207408   -­‐3.32731   0.147646   3.170019   0   -­‐3.32731   2.238731   -­‐2.81962   0.146772   3.170108   0   -­‐2.81962   2.277092   -­‐2.21216   0.140313   3.169272   0   -­‐2.21216   2.319422   -­‐1.57282   0.12778   3.167416   0   -­‐1.57282   2.356675   -­‐1.07255   0.1133   3.165203   0   -­‐1.07255   2.386845   -­‐0.75597   0.099916   3.163143   0   -­‐0.75597   2.415882   -­‐0.47342   0.086116   3.161022   0   -­‐0.47342   2.450591   -­‐0.16707   0.068955   3.158399   0   -­‐0.16707   2.492228   0.146588   0.048116   3.155255   0   0.146588   2.533096   0.405866   0.028078   3.15229   0   0.405866   2.566229   0.524563   0.012505   3.150037   0   0.524563   2.594662   0.582981   -­‐0.0002   3.148243   0   0.582981  
  • 17. 2.625863   0.642311   -­‐0.0133   3.146443   0   0.642311   2.664572   0.692539   -­‐0.02823   3.144473   0   0.692539   2.707376   0.731789   -­‐0.04292   3.142646   0   0.731789   2.744599   0.731328   -­‐0.05413   3.141355   0   0.731328   2.774385   0.666937   -­‐0.0621   3.140512   0   0.666937   2.803134   0.614412   -­‐0.06897   3.139851   0   0.614412   2.837934   0.560239   -­‐0.07627   3.139237   0   0.560239   2.879991   0.502172   -­‐0.08377   3.13874   0   0.502172   2.921081   0.464141   -­‐0.08986   3.138478   0   0.464141   2.953999   0.383526   -­‐0.09401   3.138401   0   0.383526   2.982114   0.303382   -­‐0.0971   3.138413   0   0.303382   3.013218   0.242765   -­‐0.10012   3.138497   0   0.242765   3.052142   0.185077   -­‐0.10343   3.138685   0   0.185077   3.095266   0.153444   -­‐0.10662   3.138972   0   0.153444   3.124815   0.089101   -­‐0.10862   3.139198   0   0.089101   3.154364   0.045492   -­‐0.11052   3.13944   0   0.045492   3.191609   0.012089   -­‐0.11283   3.139755   0   0.012089   3.235125   0.003659   -­‐0.11551   3.140122   0   0.003659   3.26573   -­‐0.03348   -­‐0.11743   3.14037   0   -­‐0.03348   3.296335   -­‐0.05648   -­‐0.11941   3.140604   0   -­‐0.05648   3.333712   -­‐0.066   -­‐0.12193   3.140869   0   -­‐0.066   3.376045   -­‐0.05167   -­‐0.12495   3.141135   0   -­‐0.05167   3.414348   -­‐0.03121   -­‐0.12786   3.141341   0   -­‐0.03121   3.445213   -­‐0.0616   -­‐0.13034   3.141482   0   -­‐0.0616   3.473945   -­‐0.07838   -­‐0.13274   3.141595   0   -­‐0.07838   3.507649   -­‐0.07693   -­‐0.13568   3.141704   0   -­‐0.07693   3.548618   -­‐0.05936   -­‐0.13941   3.141807   0   -­‐0.05936   3.590189   -­‐0.01685   -­‐0.14337   3.141881   0   -­‐0.01685   3.624379   -­‐0.01789   -­‐0.14674   3.141919   0   -­‐0.01789   3.653034   -­‐0.04265   -­‐0.14964   3.141938   0   -­‐0.04265   3.683454   -­‐0.0447   -­‐0.15278   3.141947   0   -­‐0.0447   3.721122   -­‐0.03343   -­‐0.15674   3.141946   0   -­‐0.03343   3.763956   8.44E-­‐05   -­‐0.16132   3.141931   0   8.44E-­‐05   3.794462   -­‐0.01415   -­‐0.16463   3.141912   0   -­‐0.01415   3.824967   -­‐0.01797   -­‐0.16796   3.141889   0   -­‐0.01797   3.862203   -­‐0.0095   -­‐0.17206   3.141857   0   -­‐0.0095   3.904527   0.018337   -­‐0.17672   3.141819   0   0.018337   3.94298   0.047046   -­‐0.18097   3.141783   0   0.047046   3.97395   0.019829   -­‐0.1844   3.141753   0   0.019829   4.002644   0.003032   -­‐0.18758   3.141727   0   0.003032   4.036205   0.002597   -­‐0.19128   3.141698   0   0.002597   4.077071   0.015207   -­‐0.19577   3.141667   0   0.015207   4.118736   0.050928   -­‐0.20032   3.141639   0   0.050928  
  • 18. 4.153082   0.044672   -­‐0.20406   3.141619   0   0.044672   4.181776   0.013557   -­‐0.20718   3.141603   0   0.013557   4.212089   0.004659   -­‐0.21046   3.14159   0   0.004659   4.249605   0.007566   -­‐0.2145   3.141577   0   0.007566   4.292432   0.031564   -­‐0.21909   3.141566   0   0.031564   4.323047   0.012022   -­‐0.22236   3.14156   0   0.012022   4.353663   0.002729   -­‐0.22563   3.141555   0   0.002729   4.390899   0.005015   -­‐0.22958   3.141552   0   0.005015   4.433086   0.026369   -­‐0.23405   3.141552   0   0.026369   4.471437   0.049314   -­‐0.23809   3.141553   0   0.049314   4.50245   0.01973   -­‐0.24137   3.141554   0   0.01973   4.531258   0.000873   -­‐0.24441   3.141555   0   0.000873   4.564891   -­‐0.00183   -­‐0.24795   3.141558   0   -­‐0.00183   4.605704   0.0087   -­‐0.25224   3.141562   0   0.0087   4.647235   0.042242   -­‐0.2566   3.141568   0   0.042242   4.68154   0.035052   -­‐0.26021   3.141571   0   0.035052   4.710305   0.004409   -­‐0.26324   3.141573   0   0.004409   4.740719   -­‐0.00435   -­‐0.26644   3.141576   0   -­‐0.00435   4.77827   -­‐0.00111   -­‐0.27039   3.14158   0   -­‐0.00111   4.821002   0.02337   -­‐0.27488   3.141584   0   0.02337   4.851621   0.004362   -­‐0.2781   3.141586   0   0.004362   4.88224   -­‐0.0043   -­‐0.28133   3.141588   0   -­‐0.0043   4.919457   -­‐0.00118   -­‐0.28525   3.14159   0   -­‐0.00118   4.961621   0.021072   -­‐0.28969   3.141593   0   0.021072   4.999978   0.044897   -­‐0.29373   3.141595   0   0.044897   5.031011   0.016211   -­‐0.29701   3.141595   0   0.016211   5.059832   -­‐0.00201   -­‐0.30006   3.141595   0   -­‐0.00201   5.093456   -­‐0.00404   -­‐0.30361   3.141595   0   -­‐0.00404   5.134247   0.007192   -­‐0.30791   3.141596   0   0.007192   5.17577   0.041258   -­‐0.31229   3.141597   0   0.041258   5.21009   0.034673   -­‐0.31592   3.141597   0   0.034673   5.238872   0.004416   -­‐0.31897   3.141596   0   0.004416   5.269287   -­‐0.00407   -­‐0.32218   3.141595   0   -­‐0.00407   5.306822   -­‐0.00057   -­‐0.32615   3.141595   0   -­‐0.00057   5.349538   0.024058   -­‐0.33066   3.141595   0   0.024058   5.380174   0.005259   -­‐0.33391   3.141594   0   0.005259   5.410809   -­‐0.00331   -­‐0.33715   3.141593   0   -­‐0.00331   5.448022   -­‐0.00015   -­‐0.34108   3.141593   0   -­‐0.00015   5.490163   0.022043   -­‐0.34553   3.141593   0   0.022043   5.528506   0.045677   -­‐0.34958   3.141594   0   0.045677   5.559549   0.017083   -­‐0.35287   3.141593   0   0.017083   5.588388   -­‐0.00114   -­‐0.35592   3.141592   0   -­‐0.00114   5.622021   -­‐0.00324   -­‐0.35947   3.141591   0   -­‐0.00324  
  • 19. 5.662801   0.007883   -­‐0.36378   3.141592   0   0.007883   5.704303   0.041708   -­‐0.36816   3.141592   0   0.041708   5.73862   0.035018   -­‐0.37179   3.141592   0   0.035018   5.767415   0.004802   -­‐0.37484   3.141591   0   0.004802   5.797844   -­‐0.00374   -­‐0.37806   3.141591   0   -­‐0.00374   5.835382   -­‐0.00031   -­‐0.38202   3.141591   0   -­‐0.00031   5.878082   0.024201   -­‐0.38653   3.141591   0   0.024201   5.90872   0.005361   -­‐0.38977   3.141591   0   0.005361   5.939359   -­‐0.00326   -­‐0.39301   3.141591   0   -­‐0.00326   5.976569   -­‐0.00014   -­‐0.39694   3.141591   0   -­‐0.00014   6   -­‐1000.01   -­‐0.39942   3.14159   -­‐1000   -­‐0.00864   6.001   0.269925   -­‐0.40025   3.141453   0   0.269925   6.006   2.449772   -­‐0.40801   3.140088   0   2.449772   6.019289   4.969051   -­‐0.42808   3.136566   0   4.969051   6.033104   5.613006   -­‐0.44758   3.133159   0   5.613006   6.050767   5.658859   -­‐0.47021   3.129235   0   5.658859   6.073106   5.433015   -­‐0.4951   3.124965   0   5.433015   6.10307   5.01853   -­‐0.52222   3.120393   0   5.01853   6.143832   4.374648   -­‐0.54858   3.116104   0   4.374648   6.190121   3.558037   -­‐0.56565   3.113566   0   3.558037   6.217672   3.143418   -­‐0.57026   3.113049   0   3.143418   6.245224   2.706834   -­‐0.57139   3.113149   0   2.706834   6.282635   2.122992   -­‐0.56823   3.114105   0   2.122992   6.328654   1.438029   -­‐0.55858   3.116273   0   1.438029   6.358431   1.081189   -­‐0.54983   3.118096   0   1.081189   6.388208   0.748117   -­‐0.53971   3.120138   0   0.748117   6.426055   0.366202   -­‐0.52557   3.122925   0   0.366202   6.469864   -­‐0.02106   -­‐0.50836   3.126247   0   -­‐0.02106   6.499957   -­‐0.19814   -­‐0.49651   3.128502   0   -­‐0.19814   6.530049   -­‐0.35127   -­‐0.48495   3.13068   0   -­‐0.35127   6.567472   -­‐0.50859   -­‐0.4713   3.133228   0   -­‐0.50859   6.610487   -­‐0.65206   -­‐0.45695   3.135876   0   -­‐0.65206   6.641112   -­‐0.68431   -­‐0.44778   3.137552   0   -­‐0.68431   6.671736   -­‐0.70276   -­‐0.43956   3.139043   0   -­‐0.70276   6.709012   -­‐0.71133   -­‐0.43087   3.140601   0   -­‐0.71133   6.751227   -­‐0.71047   -­‐0.42279   3.142031   0   -­‐0.71047   6.789554   -­‐0.69233   -­‐0.41701   3.143037   0   -­‐0.69233   6.820527   -­‐0.61882   -­‐0.41335   3.143663   0   -­‐0.61882   6.849324   -­‐0.55347   -­‐0.4107   3.144106   0   -­‐0.55347   6.882985   -­‐0.49166   -­‐0.40844   3.14447   0   -­‐0.49166   6.923841   -­‐0.42716   -­‐0.40677   3.144717   0   -­‐0.42716   6.965371   -­‐0.38445   -­‐0.4061   3.144785   0   -­‐0.38445   6.999636   -­‐0.31604   -­‐0.40617   3.14473   0   -­‐0.31604  
  • 20. 7.028373   -­‐0.23695   -­‐0.40659   3.144623   0   -­‐0.23695   7.058799   -­‐0.18033   -­‐0.40732   3.144459   0   -­‐0.18033   7.09639   -­‐0.12993   -­‐0.40854   3.144204   0   -­‐0.12993   7.139146   -­‐0.10163   -­‐0.41021   3.143869   0   -­‐0.10163   7.169729   -­‐0.05001   -­‐0.41151   3.143614   0   -­‐0.05001   7.200312   -­‐0.01349   -­‐0.41285   3.143354   0   -­‐0.01349   7.237532   0.01125   -­‐0.41449   3.143042   0   0.01125   7.279746   0.012942   -­‐0.41628   3.142704   0   0.012942   7.318134   0.004351   -­‐0.41781   3.14242   0   0.004351   7.349149   0.041999   -­‐0.41893   3.142213   0   0.041999   7.37793   0.065615   -­‐0.41988   3.142039   0   0.065615   7.411534   0.070856   -­‐0.42088   3.141858   0   0.070856   7.452346   0.059886   -­‐0.42191   3.141672   0   0.059886   7.493914   0.022579   -­‐0.42277   3.14152   0   0.022579   7.528244   0.024795   -­‐0.42333   3.141422   0   0.024795   7.556999   0.050723   -­‐0.42369   3.141359   0   0.050723   7.587381   0.053748   -­‐0.424   3.141308   0   0.053748   7.624909   0.042841   -­‐0.42427   3.141265   0   0.042841   7.667659   0.009348   -­‐0.42444   3.141239   0   0.009348   7.69829   0.021857   -­‐0.42449   3.141235   0   0.021857   7.72892   0.024305   -­‐0.42448   3.141239   0   0.024305   7.76614   0.014091   -­‐0.42442   3.141254   0   0.014091   7.808294   -­‐0.01542   -­‐0.4243   3.141281   0   -­‐0.01542   7.846638   -­‐0.04494   -­‐0.42415   3.141311   0   -­‐0.04494   7.877673   -­‐0.02042   -­‐0.424   3.14134   0   -­‐0.02042   7.906504   -­‐0.00557   -­‐0.42386   3.141367   0   -­‐0.00557   7.940138   -­‐0.00685   -­‐0.42369   3.141399   0   -­‐0.00685   7.980926   -­‐0.02128   -­‐0.42349   3.141437   0   -­‐0.02128   8.022436   -­‐0.05768   -­‐0.4233   3.141472   0   -­‐0.05768   8.056748   -­‐0.05243   -­‐0.42314   3.141501   0   -­‐0.05243   8.085535   -­‐0.02305   -­‐0.42302   3.141523   0   -­‐0.02305   8.115961   -­‐0.01512   -­‐0.4229   3.141544   0   -­‐0.01512   8.153503   -­‐0.01891   -­‐0.42278   3.141566   0   -­‐0.01891   8.196212   -­‐0.04341   -­‐0.42266   3.141586   0   -­‐0.04341   8.226845   -­‐0.02428   -­‐0.42259   3.141599   0   -­‐0.02428   8.257477   -­‐0.01525   -­‐0.42253   3.141609   0   -­‐0.01525   8.294689   -­‐0.01771   -­‐0.42247   3.141619   0   -­‐0.01771   8.336832   -­‐0.03898   -­‐0.42243   3.141625   0   -­‐0.03898   8.375178   -­‐0.06174   -­‐0.4224   3.141629   0   -­‐0.06174   8.406222   -­‐0.0324   -­‐0.42238   3.141631   0   -­‐0.0324   8.435059   -­‐0.0135   -­‐0.42237   3.141632   0   -­‐0.0135   8.468689   -­‐0.01063   -­‐0.42237   3.141632   0   -­‐0.01063   8.509468   -­‐0.0209   -­‐0.42238   3.141629   0   -­‐0.0209  
  • 21. 8.550974   -­‐0.05395   -­‐0.42239   3.141625   0   -­‐0.05395   8.585293   -­‐0.0467   -­‐0.42241   3.141622   0   -­‐0.0467   8.614086   -­‐0.01605   -­‐0.42241   3.14162   0   -­‐0.01605   8.644514   -­‐0.00711   -­‐0.42243   3.141617   0   -­‐0.00711   8.682049   -­‐0.01014   -­‐0.42244   3.141613   0   -­‐0.01014   8.72475   -­‐0.03429   -­‐0.42247   3.141608   0   -­‐0.03429   8.75539   -­‐0.01526   -­‐0.42248   3.141606   0   -­‐0.01526   8.78603   -­‐0.0065   -­‐0.42249   3.141603   0   -­‐0.0065   8.82324   -­‐0.00949   -­‐0.42251   3.1416   0   -­‐0.00949   8.865373   -­‐0.03154   -­‐0.42252   3.141596   0   -­‐0.03154   8.903713   -­‐0.05509   -­‐0.42254   3.141593   0   -­‐0.05509   8.934761   -­‐0.02655   -­‐0.42254   3.141592   0   -­‐0.02655   8.963606   -­‐0.00837   -­‐0.42254   3.141592   0   -­‐0.00837   8.99724   -­‐0.00631   -­‐0.42255   3.14159   0   -­‐0.00631   9.038014   -­‐0.01752   -­‐0.42255   3.141589   0   -­‐0.01752   9.079511   -­‐0.0514   -­‐0.42256   3.141587   0   -­‐0.0514   9.113828   -­‐0.04481   -­‐0.42256   3.141587   0   -­‐0.04481   9.142628   -­‐0.01472   -­‐0.42255   3.141588   0   -­‐0.01472   9.173061   -­‐0.00627   -­‐0.42255   3.141588   0   -­‐0.00627   9.210597   -­‐0.0098   -­‐0.42255   3.141588   0   -­‐0.0098   9.253292   -­‐0.0344   -­‐0.42255   3.141587   0   -­‐0.0344   9.283933   -­‐0.01565   -­‐0.42254   3.141588   0   -­‐0.01565   9.314574   -­‐0.0071   -­‐0.42254   3.141589   0   -­‐0.0071   9.351783   -­‐0.01029   -­‐0.42253   3.141589   0   -­‐0.01029   9.393912   -­‐0.03246   -­‐0.42253   3.141589   0   -­‐0.03246   9.432252   -­‐0.05606   -­‐0.42253   3.141589   0   -­‐0.05606   9.463302   -­‐0.02757   -­‐0.42252   3.14159   0   -­‐0.02757   9.492149   -­‐0.00938   -­‐0.42251   3.141591   0   -­‐0.00938   9.525783   -­‐0.00729   -­‐0.42251   3.141591   0   -­‐0.00729   9.566555   -­‐0.01842   -­‐0.42251   3.141591   0   -­‐0.01842   9.60805   -­‐0.05219   -­‐0.42251   3.141591   0   -­‐0.05219   9.642368   -­‐0.04553   -­‐0.4225   3.141591   0   -­‐0.04553   9.67117   -­‐0.01537   -­‐0.42249   3.141592   0   -­‐0.01537   9.701604   -­‐0.00684   -­‐0.42249   3.141593   0   -­‐0.00684   9.73914   -­‐0.01027   -­‐0.42249   3.141593   0   -­‐0.01027   9.781832   -­‐0.03475   -­‐0.42249   3.141592   0   -­‐0.03475   9.812474   -­‐0.01594   -­‐0.42248   3.141593   0   -­‐0.01594   9.843116   -­‐0.00732   -­‐0.42248   3.141593   0   -­‐0.00732   9.880325   -­‐0.01044   -­‐0.42247   3.141593   0   -­‐0.01044   9.922452   -­‐0.03253   -­‐0.42248   3.141592   0   -­‐0.03253   9.960791   -­‐0.05607   -­‐0.42248   3.141591   0   -­‐0.05607   9.991842   -­‐0.02755   -­‐0.42247   3.141592   0   -­‐0.02755   10   -­‐0.01279   -­‐0.42247   3.141593   0   -­‐0.01279  
  • 22. APPENDIX B – PHYSICAL INVERTED PENDULUM ROBOT The development of this robot is going relatively quickly. My goal is to finish it within one month. The picture above is of the prototype. The robot is very well designed, with a low center of gravity. With the right materials and measurements, it should have low friction and low error. The entire chassis, pendulum mounts, and several other parts are completely laser cut, so human error in construction is little to none. Once I’m finished, I hope to aggregate the documentation into a research report and post the designs and instructions online.