SlideShare a Scribd company logo
Identification of unknown parameters and prediction
with hierarchical matrices. Comparison with ML
methods.
Alexander Litvinenko1,
(joint work with V. Berikov2, M. Genton3, D. Keyes3, R.
Kriemann4, and Y. Sun3)
UNCECOMP 2021
1RWTH Aachen, Germany, 2Novosibirsk Staate University, 3KAUST, Saudi Arabia,
4MPI for Mathematics in the Sciences in Leipzig, Germany
4
*
Analysis of large datasets and prediction
Goal: analyse a large dataset
Need to use a dense cov. matrix C of size 2, 000, 000 × 2, 000, 000
3
2
4 2
9
2
4 2
17
2
2
4 2
7 3 2
18 17
10 10
2
5 2
8
2
4 2
10 3 3 2
32
14 10
18 10
36 28
3
6
2
4 2
14
2
4 2
5 2
4 2
14 18
14 18
2
4 2
8
2
5 3
19
2
4 2
6 3
6 3
65
32
19 21
18 18
29 29
61 61
2
5 3
7 3 2
5 2
18
3
6 3
6 3
17 17
12 12
3 2
7
2
4 2
2
12 3
2
4 2
32
17 12
12 12
29 29
2
5
3 2
7
2
4 2
12
2
5 3
10 10
19 12
3 3 2
10
2
5 2
5 2
4 2
119
65
32
10 15
10 19
27 27
54 54
118 118
2
5
3
4 2
15
2
5 3
11
3
6 3
15 17
10 10
2
4 2
8
2
4 2
10
3 2
3
21
14 10
7 7
33 27
2
4 3 3 2
7 3
8 7
14 7
2
3
8
2
4 2
7 3 2
10
2
5 2
59
21
8 18
8 12
21 29
59 54
3
6 3 2
5 2
12
2
5 3 2
18 12
11 11
3 2
7
3
5 2
11
2
5 3
25
9 9
16 11
30 29
3
3
9
3
4 2
6 3
9 16
9 16
3 2
4 2
7 3 2
16
3 2
7
2
4 2
121
119
59
25
18 16
10 10
25 34
59 59
119 118
80 119
2
4
2
4 2
9
2
4 2
10
3
4 2
19 10
15 10
2
5
3 2
7 3 2
15
3
4 2
5 2
31
15 15
16 15
32 34
3 2
4 2
4 2
15
2
4 3 2
5 2
15 16
15 16
2
5 3 2
12
3
6 3
20
3 2
7 3 2
6 3
58
27
18 18
9 9
31 31
66 67
2
5
3 2
6 3
9
2
4 2
12 9
18 9
3
6 3
12
3
4 2
9
2
4 2
27
12 16
12 19
27 31
3 2
3
6 3
16
2
5
2
4 2
6 3
16 20
8 8
2
4 2
7 3 2
7 3 2
8
2
3
115
58
30
15 8
15 8
28 28
57 57
119 119
2
5
2
4 2
2
15
2
4 2
6 3
9 9
15 15
3 3
9
2
5
3 2
7 3 2
27
9 16
9 11
30 28
3
5 2
5 2
11
2
5 2
16 11
13 11
3 3 2
7 3 2
13
2
5
2
4 2
48
25
5 5
17 13
23 23
58 57
2
5
2
4 2
5 2
6 3
5 8
5 15
2 3
8
3 2
2
6 3
25
8 15
8 9
25 23
2
5 3
6 3
7 3 2
9
2
4 2
15 9
23 9
3
3
6 3
15
2
4 2
5 2
10
2
5 2
90
122
115
48
32
15 15
15 17
33 33
48 60
115 119
81 234
56 89
3 2
7
2
4 2
15
3
4 2
7 3 2
15 17
6 6
2
5
2
5 3
11
2
5 3
6 3
30
11 6
19 6
30 30
3
5 2
11
3 2
7 3 2
5 2
11 13
11 17
2
4 2
5 2
13
3
5 2
6 3
65
30
13 17
13 17
30 30
61 60
2
4
3
6 3
5 2
21
2
4
2
4 2
12
3
6 3
20 20
14 14
2
4 2
8
2
4 2
3
14
2
5 2
4 2
32
17 14
15 14
29 29
2
4 2
8
2
4 2
15
2
5
2
5 2
10 10
17 15
2
5 2
10
3
6
2
4 2
5 2
125
75
32
10 18
10 19
32 29
69 61
125 134
2
5
3 2
6 3
18
3 2
6 3
8
2
4 2
17 17
18 19
2
4 2
8
2
4 2
17
3
6 3 2
6 3
39
17 19
17 18
25 25
3 2
7
2
4 2
11
2
4 3 2
18
3
6
3
6 3
10 10
15 15
3 2
3
10
2
4 3
5 2
65
30
10 15
10 12
35 25
69 69
2
4 2
9
2
4 2
12 2
2
5 2
18 12
14 12
2
5 2
10
2
4 3 2
14
3
6
2
4 2
30
15 14
16 14
30 35
2
4 2
6 3
15
3 2
4 2
5 2
15 15
15 16
2
4 2
5 2
2
15
3
6 3
8
2
4 2
3
227
111
61
31
15 21
15 16
24 24
50 50
116 116
81 224
3
6 3
9
2
4 2
16
2
5 2
6 2
19 16
5 5
2
5 3
8
2
4 2
5 2
23
16 5
7 5
27 24
3
6
2
5 2
7
2
3
10 7
16 7
3
4 2
10
3
6
3
5 2
54
23
10 17
10 11
23 25
61 50
2
2
7
2
5 3
11
2
5 2
13 11
12 11
3
2
5 2
12
2
4
2
4 2
29
13 12
13 12
27 25
2
5
2
5 2
15
2
5
3 2
7
2
4 2
15 18
9 9
2
5 2
5 2
3
9
2
4 2
111
54
33
18 9
12 9
22 22
54 59
110 110
3 2
7
2
4 2
6 3
12
2
5 3 2
9 9
13 12
2
4 2
9
3 2
6 3
33
9 13
9 13
22 22
3 2
6 3
9
2
4 2
15
2
4 2
6 3
12 12
10 10
2
2
6 3
10
2
4 2
49
23
7 7
12 10
26 22
55 59
3
7
3
2
4 2
4 2
7 8
7 16
3 2
8
3
6 3
6 3
23
8 15
8 11
23 26
3
2
7 3 2
11
2
4 2
3
12 11
15 11
3 2
5 2
12
2
4 2
6 3
8
2
4 2
We show how to:
1. reduce storage cost from 32TB to 16 GB
2. approximate Cholesky factorisation of C, its determinant,
inverse in 8 minutes on modern desktop computer.
3. make prediction
2
4
*
The structure of the talk
1. Motivation: improve statistical models, data analysis,
prediction
2. Identification of unknown parameters via maximizing Gaussian
log-likelihood (MLE)
3. Tools: Hierarchical matrices [Hackbusch 1999]
4. Matérn covariance function, joint Gaussian log-likelihood
5. Error analysis
6. Prediction at new locations
7. Comparison with machine learning methods
3
4
*
Identifying unknown parameters
Given:
Let s1, . . . , sn be locations.
Z = {Z(s1), . . . , Z(sn)}>, where Z(s) is a Gaussian random field
indexed by a spatial location s ∈ Rd , d ≥ 1.
Assumption: Z has mean zero and stationary parametric
covariance function, e.g. Matérn:
C(θ) =
2σ2
Γ(ν)
 r
2`
ν
Kν
r
`

+ τ2
I, θ = (σ2
, ν, `, τ2
).
To identify: unknown parameters θ := (σ2, ν, `, τ2).
4
4
*
Identifying unknown parameters
Statistical inference about θ is then based on the Gaussian
log-likelihood function:
L(C(θ)) = L(θ) = −
n
2
log(2π) −
1
2
log|C(θ)| −
1
2
Z
C(θ)−1
Z, (1)
where the covariance matrix C(θ) has entries
C(si − sj ; θ), i, j = 1, . . . , n.
The maximum likelihood estimator of θ is the value b
θ that
maximizes (1).
5
4
*
H-matrix approximations of C, L and C−1
43
13
28
14 34
10 5
9 15
44
13
29
13 35
14 7
5 14
50
14 62
15 6
6 15
60
15
31
17 44
13
14 6
7 14
3 13 6
5
16
12 8
7 15
3 15
34
11 31
16 59
13 6
7 12
58
15 51
16 7
6 16
31
15 39
12
36
14 40
15 6
6 17
32
14 40
10 7
7 10
41
16 35
5
13 8
6
9
10 7
7 9
3 10
1 5 6
6
6
8
8 7
8 8
3 9 7
7
9
8 6
7 7
3 9
1 6
47
12 51
15 7
7 15
38
17 34
17
34
15 32
13 7
7
10
9 7
6 9
3 10
56
14 46
14 7
8 12
64
15 57
9 6
6 8
16 8
7 14
3
9 5
5 9
9
7
15
16 6
5 14
2
9 6
6 8
54
16 30
10 5
7 8
32
15 33
14 5
8 16
34
14 35
9 6
7 9
34
15 31
17 6
7 15
60
15
34
14 28
15 6
7 13
29
13 35
16 54
2 1
1 2
14
12 6
9 12
2 12 6
9
8 6
6 8
16 9
6 13
3 16
1 1
1
2 1
1 2
1 6
1 1
1 6
1
1
2 1
1 3
7 6
6 9
15 6
7 14
2
9 6
6 8
8
5
8 5
7 9
14 6
8 15
2 14
1 1
1 1
3 1
1 2
56
16
31
12 32
12 6
10 14
55
16
35
14 43
15 8
7
9
5 8
4 9
3 10
41
16 28
15
30
16 38
14 7
6 17
36
11 38
8 8
6 9
40
17 36
13
13 7
7 15
3 14 8
6
12
16 6
6 13
2 16
60
17
29
14 35
11 6
6 17
54
15 67
14 6
6 16
36
14 39
18 59
14 6
7 17
52
14 58
6
9
9 8
6 8
3 10 7
8 17
1 5 5
7
6
15 7
9 13
1 5
61
13 59
13 6
6 13
37
16 38
15 58
13 5
4 16
31
13 33
18 59
12 6
7 12
74
15 63
15
15 7
7 17
3
9 6
6 9
7
7
9 6
6 8
15 7
7 14
1 14
51
15
42
13 37
13 7
6 14
59
16 54
14 8
6 16
36
14 37
19 57
14 7
6 10
52
13 65
43
13
28
13 34
10 5
9 15
44
13
29
13 35
14 7
5 14
50
14 62
14 6
6 14
60
15
31
16 44
13
14 8
7 14
3 13 5
5
17
11 7
7 15
2 15
34
11 31
16 59
13 6
7 12
58
15 51
16 7
6 16
31
15 39
12
36
14 40
15 5
6 17
32
14 40
10 7
7 10
41
17 35
5
13 8
6
9
10 7
7 9
3 10
1 5 5
6
5
9
8 7
8 8
3 9 7
7
10
8 5
7 7
4 9
1 5
47
12 51
15 7
7 15
38
16 34
16
34
15 32
13 8
7
12
8 6
6 9
3 10
56
14 46
14 8
8 12
64
15 57
11 6
6 8
15 9
7 14
3
10 5
5 9
7
7
16
16 7
5 15
2
9 6
6 9
54
15 30
10 5
7 8
32
14 33
13 5
8 16
34
14 35
9 6
7 9
34
15 31
17 5
7 15
60
15
34
13 28
14 5
7 13
29
13 35
15 54
1 1
1 2
14
12 6
9 11
2 12 5
9
9 5
6 8
16 10
6 13
3 16
1 2 1
1 2
1 6
1
1 6
1
1
2 1
1 2
8 5
6 9
15 8
7 14
3
9 6
6 8
8
5
9 5
7 9
14 7
8 15
2 14
1 1
1
2 1
1 1
56
15
31
12 32
12 6
10 13
55
16
35
14 43
15 8
7
10
5 9
4 9
3 10
41
16 28
9 4
8 7
30
16 38
14 7
6 17
36
11 38
8 8
6 9
40
17 36
13
13 6
7 15
3 14 8
6
13
16 6
6 13
1 16
60
16
29
14 35
11 8
6 17
54
15 67
13 5
6 16
36
14 39
17 59
14 6
7 17
52
14 58
6
10
9 8
6 8
3 10 7
8 16
1 4 5
7
5
15 6
9 13
1 5
61
13 59
12 6
6 13
37
16 38
15 58
13 5
4 16
31
12 33
18 59
12 5
7 12
74
14 63
14
15 8
7 18
2
10 6
6 8
5
7
11 6
6 8
15 6
7 14
2 14
51
15
42
13 37
12 8
6 14
59
15 54
13 8
6 15
36
13 37
19 57
15 6
6 10
52
13 65
H-matrix approximations of the exponential covariance matrix
(left), its hierarchical Cholesky factor L̃ (middle), and the zoomed
upper-left corner of the matrix (right), n = 4000, ` = 0.09,
ν = 0.5, σ2 = 1.
6
4
*
What will change after H-matrix approximation?
Approximate C by CH
1. How the eigenvalues of C and CH differ ?
2. How det(C) differs from det(CH) ?
3. How L differs from LH ? [Mario Bebendorf et al]
4. How C−1 differs from (CH)−1 ? [Mario Bebendorf et al]
5. How L̃(θ, k) differs from L(θ)?
6. What is optimal H-matrix rank?
7. How θH differs from θ?
For theory, estimates for the rank and accuracy see works of
Bebendorf, Grasedyck, Le Borne, Hackbusch,...
7
4
*
Details of the parameter identification
To maximize the log-likelihood function we use the Brent’s method
(combining bisection method, secant method and inverse quadratic
interpolation) or any other.
1. C(θ) ≈ e
C(θ, ε).
2. e
C(θ, k) = e
L(θ, k)e
L(θ, k)T
3. ZT e
C−1Z = ZT (e
Le
LT )−1Z = vT · v, where v is a solution of
e
L(θ, k)v(θ) := Z.
log det{e
C} = log det{e
Le
LT
} = log det{
n
Y
i=1
λ2
i } = 2
n
X
i=1
logλi ,
e
L(θ, k) = −
n
2
log(2π) −
n
X
i=1
log{e
Lii (θ, k)} −
1
2
(v(θ)T
· v(θ)). (2)
8
Dependence of log-likelihood ingredients on parameters, n = 4225.
k = 8 in the first row and k = 16 in the second.
9
4
*
Remark: stabilization with nugget
To avoid instability in computing Cholesky, we add: e
Cm = e
C + τ2I.
Let λi be eigenvalues of e
C, then eigenvalues of e
Cm will be λi + τ2,
log det(e
Cm) = log
Qn
i=1(λi + τ2) =
Pn
i=1 log(λi + τ2).
(left) Dependence of the negative log-likelihood on parameter `
with nuggets {0.01, 0.005, 0.001} for the Gaussian covariance.
(right) Zoom of the left figure near minimum; n = 2000 random
points from moisture example, rank k = 14, τ2 = 1, ν = 0.5.
10
4
*
Error analysis
Theorem (1)
Let e
C be an H-matrix approximation of matrix C ∈ Rn×n such that
ρ(e
C−1
C − I) ≤ ε  1.
Then
|log det C − log det e
C| ≤ −nlog(1 − ε), (3)
Proof: See [Ballani, Kressner 14] and [Ipsen 05].
Remark: factor n is pessimistic and is not really observed
numerically.
11
4
*
Error in the log-likelihood
Theorem (2)
Let e
C ≈ C ∈ Rn×n and Z be a vector, kZk ≤ c0 and kC−1k ≤ c1.
Let ρ(e
C−1C − I) ≤ ε  1. Then it holds
| e
L(θ) − L(θ)| =
1
2
(log|C| − log|e
C|) +
1
2
|ZT

C−1
− e
C−1

Z|
≤ −
1
2
· nlog(1 − ε) +
1
2
|ZT

C−1
C − e
C−1
C

C−1
Z|
≤ −
1
2
· nlog(1 − ε) +
1
2
c2
0 · c1 · ε.
12
4
*
H-matrix approximation
ε accuracy in each sub-block, n = 16641, ν = 0.5,
c.r.=compression ratio.
ε |log|C| − log|e
C|| |
log|C|−log|e
C|
log|e
C|
| kC − e
CkF
kC−e
Ck2
kCk2
kI − (e
Le
L
)−1
Ck2 c.r. in %
` = 0.0334
1e-1 3.2e-4 1.2e-4 7.0e-3 7.6e-3 2.9 9.16
1e-2 1.6e-6 6.0e-7 1.0e-3 6.7e-4 9.9e-2 9.4
1e-4 1.8e-9 7.0e-10 1.0e-5 7.3e-6 2.0e-3 10.2
1e-8 4.7e-13 1.8e-13 1.3e-9 6e-10 2.1e-7 12.7
` = 0.2337
1e-4 9.8e-5 1.5e-5 8.1e-5 1.4e-5 2.5e-1 9.5
1e-8 1.45e-9 2.3e-10 1.1e-8 1.5e-9 4e-5 11.3
log|C| = 2.63 for ` = 0.0334 and log|C| = 6.36 for ` = 0.2337.
13
4
*
Boxplots for unknown parameters
Moisture data example. Boxplots for the 100 estimates of (`, ν,
σ2), respectively, when n = 32K, 16K, 8K, 4K, 2K. H-matrix with
a fixed rank k = 11. Green horizontal lines denote 25% and 75%
quantiles for n = 32K.
14
4
*
How much memory is needed?
0 0.5 1 1.5 2 2.5
ℓ, ν = 0.325, σ2
= 0.98
5
5.5
6
6.5
size,
in
bytes
×10 6
1e-4
1e-6
0.2 0.4 0.6 0.8 1 1.2 1.4
ν, ℓ = 0.58, σ2
= 0.98
5.2
5.4
5.6
5.8
6
6.2
6.4
6.6
size,
in
bytes
×10 6
1e-4
1e-6
(left) Dependence of the matrix size on the covariance length `,
and (right) the smoothness ν for two different H-accuracies
ε = {10−4, 10−6}
15
4
*
Error convergence
0 10 20 30 40 50 60 70 80 90 100
−25
−20
−15
−10
−5
0
rank k
log(rel.
error)
Spectral norm, L=0.1, nu=1
Frob. norm, L=0.1
Spectral norm, L=0.2
Frob. norm, L=0.2
Spectral norm, L=0.5
Frob. norm, L=0.5
0 10 20 30 40 50 60 70 80 90 100
−16
−14
−12
−10
−8
−6
−4
−2
0
rank k
log(rel.
error)
Spectral norm, L=0.1, nu=0.5
Frob. norm, L=0.1
Spectral norm, L=0.2
Frob. norm, L=0.2
Spectral norm, L=0.5
Frob. norm, L=0.5
Convergence of the H-matrix approximation errors for covariance
lengths {0.1, 0.2, 0.5}; (left) ν = 1 and (right) ν = 0.5,
computational domain [0, 1]2.
16
4
*
How log-likelihood depends on n?
ν
0 0.1 0.2 0.3 0.4 0.5 0.6
−L
10 3
10 4
10 5
2000
4000
8000
16000
32000
Figure: Dependence of negative log-likelihood function on different
number of locations n = {2000, 4000, 8000, 16000, 32000} in log-scale.
17
4
*
Time and memory for parallel H-matrix approximation
Maximal # cores is 40, ν = 0.325, ` = 0.64, σ2 = 0.98
n C̃ L̃L̃
time size kB/dof time size kI − (L̃L̃
)−1
C̃k2
sec. MB sec. MB
32.000 3.3 162 5.1 2.4 172.7 2.4 · 10−3
128.000 13.3 776 6.1 13.9 881.2 1.1 · 10−2
512.000 52.8 3420 6.7 77.6 4150 3.5 · 10−2
2.000.000 229 14790 7.4 473 18970 1.4 · 10−1
Dell Station, 20 × 2 cores, 128 GB RAM, bought in 2013 for
10.000 USD.
18
4
*
Prediction
Let Z = (Z1, Z2) has mean zero and a stationary covariance, Z1 -
known, Z2 unknown.
C =

C11 C12
C21 C22,

We compute predicted values
Z2 = C21C−1
11 Z1
Z2 has the conditional distribution with the mean value C21C−1
11 Z1
and the covariance matrix C22 − C21C−1
11 C12.
19
4
*
2021 KAUST Competition
We participated in 2021 KAUST Competition on Spatial
Statistics for Large Datasets.
You can download the datasets and look the final results here
https://cemse.kaust.edu.sa/stsds/
2021-kaust-competition-spatial-statistics-large-datasets
20
4
*
Prediction
Prediction for two datasets. The yellow points at 900.000 locations
were used for training and the blue points were predicted at
100.000 new locations.
21
4
*
Machine learning methods to make prediction
k-nearest neighbours (kNN): For each point x find its k nearest
neighbors x1, . . . , xk, and set: ŷ(x) = 1
k
Pk
i=1 yi .
Random Forest (RF): a large number of decision (or regression)
trees are generated independently on random sub-samples of data.
The final decision for x is calculated over the ensemble of trees by
averaging the predicted outcomes.
Deep Neural Network (DNN): fully connected neural network
Input layer consists of two neurons (input feature dimensionality),
and output layer consists of one neuron (predicted feature
dimensionality).
22
4
*
Prediction by kNN
Prediction obtained by the kNN method. The yellow points at
900.000 locations were used for training and the blue points were
predicted at 100.000 new locations. One can see a very well
alignment of both.
23
4
*
Conclusion
I With H-matrices you can approximate Matérn covariance
matrices, Gaussian log-likelihoods, identify unknown
parameters and make predictions
I MLE estimate and predictions depend on H-matrix accuracy
I parameter identification problem has multiple solutions
I Investigated dependence of H-matrix approximation error on
the estimated parameters
I Each of ML methods needs fine-tuning stage to optimize its
hyperparameters or architecture.
24
4
*
Open questions and TODOs
I The Gaussian log-likelihood function has some drawbacks for
very large matrices
I How to skip/avoid redundant data?
I A good starting point for optimization is needed
I a “preconditioner” (a simple cov. matrix) is needed
I H-matrices become expensive for large number of parameters
to be identified
I error estimates are needed
4
*
Literature
All tests are reproducible
https://github.com/litvinen/large_random_fields.git
1. A. Litvinenko, R. Kriemann, M.G. Genton, Y. Sun, D.E. Keyes, HLIBCov:
Parallel hierarchical matrix approximation of large covariance matrices
and likelihoods with applications in parameter identification, MethodsX 7,
100600, 2020
2. A. Litvinenko, Y. Sun, M.G. Genton, D.E. Keyes, Likelihood
approximation with hierarchical matrices for large spatial datasets,
Computational Statistics  Data Analysis 137, 115-132, 2019
3. A. Litvinenko, R. Kriemann, V. Berikov, Identification of unknown
parameters and prediction with hierarchical matrices, look arXiv and
ResearchGate, March 2021
4. M. Espig, W. Hackbusch, A. Litvinenko, H.G. Matthies, E. Zander,
Iterative algorithms for the post-processing of high-dimensional data,
Journal of Computational Physics 410, 109396, 2020
26
4
*
Literature
5. A. Litvinenko, D. Keyes, V. Khoromskaia, B.N. Khoromskij, H.G.
Matthies, Tucker tensor analysis of Matérn functions in spatial statistics,
Computational Methods in Applied Mathematics 19 (1), 101-122, 2019
6. B. N. Khoromskij, A. Litvinenko, H.G. Matthies, Application of
hierarchical matrices for computing the Karhunen-Loéve expansion,
Computing 84 (1-2), 49-67, 31, 2009
7. W. Nowak, A. Litvinenko, Kriging and spatial design accelerated by
orders of magnitude: Combining low-rank covariance approximations with
FFT-techniques, Mathematical Geosciences 45 (4), 411-435, 2013
8. M. Espig, W. Hackbusch, A. Litvinenko, H.G. Matthies, E. Zander,
Efficient analysis of high dimensional data in tensor formats, Sparse Grids
and Applications, 31-56, Springer, Berlin, 2013
27
4
*
Acknowledgement
V. Berikov was supported by the state contract of the Sobolev
Institute of Mathematics (project no 0314-2019-0015), and by
RFBR grant 19-29-01175.
A. Litvinenko was supported by funding from the Alexander von
Humboldt Foundation.
28

More Related Content

PDF
Application of parallel hierarchical matrices for parameter inference and pre...
PDF
Overview of sparse and low-rank matrix / tensor techniques
PDF
Application of parallel hierarchical matrices and low-rank tensors in spatial...
PDF
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
PDF
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
PDF
Trial pahang 2014 spm add math k2 dan skema [scan]
PDF
Quantum mechanics 1st edition mc intyre solutions manual
PDF
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Application of parallel hierarchical matrices for parameter inference and pre...
Overview of sparse and low-rank matrix / tensor techniques
Application of parallel hierarchical matrices and low-rank tensors in spatial...
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
Trial pahang 2014 spm add math k2 dan skema [scan]
Quantum mechanics 1st edition mc intyre solutions manual
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual

What's hot (20)

PPT
1603 plane sections of real and complex tori
PDF
T.I.M.E. JEE Advanced 2013 Solution Paper1
PPT
Cpt 5 synthesis of linkages
DOCX
The sexagesimal foundation of mathematics
ZIP
AA Section 7-7/7-8
PDF
Potencias resueltas 1eso (1)
PPTX
Ejercicios resueltos
PPTX
Miguel angel 2
PDF
Techniques of integration
PPT
Puteri de matrici
PDF
31350052 introductory-mathematical-analysis-textbook-solution-manual
PDF
Complexos 2
PDF
合同数問題と保型形式
PDF
Juj pahang 2014 add math spm k1 set 2 skema
PPT
Math 6 (Please download first to activate the different animation settings)
PDF
Communication systems solution manual 5th edition
PPT
Geohydrology ii (3)
PDF
Nvo formulario
PDF
communication-systems-4th-edition-2002-carlson-solution-manual
1603 plane sections of real and complex tori
T.I.M.E. JEE Advanced 2013 Solution Paper1
Cpt 5 synthesis of linkages
The sexagesimal foundation of mathematics
AA Section 7-7/7-8
Potencias resueltas 1eso (1)
Ejercicios resueltos
Miguel angel 2
Techniques of integration
Puteri de matrici
31350052 introductory-mathematical-analysis-textbook-solution-manual
Complexos 2
合同数問題と保型形式
Juj pahang 2014 add math spm k1 set 2 skema
Math 6 (Please download first to activate the different animation settings)
Communication systems solution manual 5th edition
Geohydrology ii (3)
Nvo formulario
communication-systems-4th-edition-2002-carlson-solution-manual
Ad

Similar to Identification of unknown parameters and prediction with hierarchical matrices. Comparison with ML methods. (20)

PDF
Identification of unknown parameters and prediction of missing values. Compar...
PDF
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
PDF
Hierarchical matrix approximation of large covariance matrices
PDF
Talk litvinenko prior_cov
PDF
Data sparse approximation of the Karhunen-Loeve expansion
PPTX
MODULAR ARITHADSAFAFSFFAFAFAFAFASMETIC.pptx
PDF
Numerical Methods: curve fitting and interpolation
PDF
Nelson maple pdf
PDF
Litvinenko, Uncertainty Quantification - an Overview
PDF
Hierarchical matrix techniques for maximum likelihood covariance estimation
PDF
My presentation at University of Nottingham "Fast low-rank methods for solvin...
PPTX
Control charts
PDF
Likelihood approximation with parallel hierarchical matrices for large spatia...
PPT
Identification of the Mathematical Models of Complex Relaxation Processes in ...
PPTX
Cacaomplete Factoring Rules for grade 10 .pptx
PPT
Complete Factoring Rules.ppt
PPT
Complete Factoring Rules in Grade 8 Math.ppt
PDF
"SSumM: Sparse Summarization of Massive Graphs", KDD 2020
PPTX
numerical method hgg hghg hg12500223125.pptx
PDF
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
Identification of unknown parameters and prediction of missing values. Compar...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Hierarchical matrix approximation of large covariance matrices
Talk litvinenko prior_cov
Data sparse approximation of the Karhunen-Loeve expansion
MODULAR ARITHADSAFAFSFFAFAFAFAFASMETIC.pptx
Numerical Methods: curve fitting and interpolation
Nelson maple pdf
Litvinenko, Uncertainty Quantification - an Overview
Hierarchical matrix techniques for maximum likelihood covariance estimation
My presentation at University of Nottingham "Fast low-rank methods for solvin...
Control charts
Likelihood approximation with parallel hierarchical matrices for large spatia...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Cacaomplete Factoring Rules for grade 10 .pptx
Complete Factoring Rules.ppt
Complete Factoring Rules in Grade 8 Math.ppt
"SSumM: Sparse Summarization of Massive Graphs", KDD 2020
numerical method hgg hghg hg12500223125.pptx
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
Ad

More from Alexander Litvinenko (20)

PDF
Poster_density_driven_with_fracture_MLMC.pdf
PDF
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
PDF
litvinenko_Intrusion_Bari_2023.pdf
PDF
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
PDF
litvinenko_Gamm2023.pdf
PDF
Litvinenko_Poster_Henry_22May.pdf
PDF
Uncertain_Henry_problem-poster.pdf
PDF
Litvinenko_RWTH_UQ_Seminar_talk.pdf
PDF
Litv_Denmark_Weak_Supervised_Learning.pdf
PDF
Computing f-Divergences and Distances of High-Dimensional Probability Density...
PDF
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
PDF
Low rank tensor approximation of probability density and characteristic funct...
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Low-rank tensor approximation (Introduction)
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Propagation of Uncertainties in Density Driven Groundwater Flow
PDF
Simulation of propagation of uncertainties in density-driven groundwater flow
PDF
Approximation of large covariance matrices in statistics
PDF
Semi-Supervised Regression using Cluster Ensemble
Poster_density_driven_with_fracture_MLMC.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Intrusion_Bari_2023.pdf
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
litvinenko_Gamm2023.pdf
Litvinenko_Poster_Henry_22May.pdf
Uncertain_Henry_problem-poster.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Low rank tensor approximation of probability density and characteristic funct...
Computation of electromagnetic fields scattered from dielectric objects of un...
Low-rank tensor approximation (Introduction)
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
Propagation of Uncertainties in Density Driven Groundwater Flow
Simulation of propagation of uncertainties in density-driven groundwater flow
Approximation of large covariance matrices in statistics
Semi-Supervised Regression using Cluster Ensemble

Recently uploaded (20)

PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Business Ethics Teaching Materials for college
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
master seminar digital applications in india
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
01-Introduction-to-Information-Management.pdf
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
Insiders guide to clinical Medicine.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Cell Structure & Organelles in detailed.
TR - Agricultural Crops Production NC III.pdf
Business Ethics Teaching Materials for college
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
master seminar digital applications in india
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
102 student loan defaulters named and shamed – Is someone you know on the list?
FourierSeries-QuestionsWithAnswers(Part-A).pdf
RMMM.pdf make it easy to upload and study
Pharmacology of Heart Failure /Pharmacotherapy of CHF
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
O7-L3 Supply Chain Operations - ICLT Program
Abdominal Access Techniques with Prof. Dr. R K Mishra
01-Introduction-to-Information-Management.pdf
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
Insiders guide to clinical Medicine.pdf
PPH.pptx obstetrics and gynecology in nursing
2.FourierTransform-ShortQuestionswithAnswers.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
O5-L3 Freight Transport Ops (International) V1.pdf
Cell Structure & Organelles in detailed.

Identification of unknown parameters and prediction with hierarchical matrices. Comparison with ML methods.

  • 1. Identification of unknown parameters and prediction with hierarchical matrices. Comparison with ML methods. Alexander Litvinenko1, (joint work with V. Berikov2, M. Genton3, D. Keyes3, R. Kriemann4, and Y. Sun3) UNCECOMP 2021 1RWTH Aachen, Germany, 2Novosibirsk Staate University, 3KAUST, Saudi Arabia, 4MPI for Mathematics in the Sciences in Leipzig, Germany
  • 2. 4 * Analysis of large datasets and prediction Goal: analyse a large dataset Need to use a dense cov. matrix C of size 2, 000, 000 × 2, 000, 000 3 2 4 2 9 2 4 2 17 2 2 4 2 7 3 2 18 17 10 10 2 5 2 8 2 4 2 10 3 3 2 32 14 10 18 10 36 28 3 6 2 4 2 14 2 4 2 5 2 4 2 14 18 14 18 2 4 2 8 2 5 3 19 2 4 2 6 3 6 3 65 32 19 21 18 18 29 29 61 61 2 5 3 7 3 2 5 2 18 3 6 3 6 3 17 17 12 12 3 2 7 2 4 2 2 12 3 2 4 2 32 17 12 12 12 29 29 2 5 3 2 7 2 4 2 12 2 5 3 10 10 19 12 3 3 2 10 2 5 2 5 2 4 2 119 65 32 10 15 10 19 27 27 54 54 118 118 2 5 3 4 2 15 2 5 3 11 3 6 3 15 17 10 10 2 4 2 8 2 4 2 10 3 2 3 21 14 10 7 7 33 27 2 4 3 3 2 7 3 8 7 14 7 2 3 8 2 4 2 7 3 2 10 2 5 2 59 21 8 18 8 12 21 29 59 54 3 6 3 2 5 2 12 2 5 3 2 18 12 11 11 3 2 7 3 5 2 11 2 5 3 25 9 9 16 11 30 29 3 3 9 3 4 2 6 3 9 16 9 16 3 2 4 2 7 3 2 16 3 2 7 2 4 2 121 119 59 25 18 16 10 10 25 34 59 59 119 118 80 119 2 4 2 4 2 9 2 4 2 10 3 4 2 19 10 15 10 2 5 3 2 7 3 2 15 3 4 2 5 2 31 15 15 16 15 32 34 3 2 4 2 4 2 15 2 4 3 2 5 2 15 16 15 16 2 5 3 2 12 3 6 3 20 3 2 7 3 2 6 3 58 27 18 18 9 9 31 31 66 67 2 5 3 2 6 3 9 2 4 2 12 9 18 9 3 6 3 12 3 4 2 9 2 4 2 27 12 16 12 19 27 31 3 2 3 6 3 16 2 5 2 4 2 6 3 16 20 8 8 2 4 2 7 3 2 7 3 2 8 2 3 115 58 30 15 8 15 8 28 28 57 57 119 119 2 5 2 4 2 2 15 2 4 2 6 3 9 9 15 15 3 3 9 2 5 3 2 7 3 2 27 9 16 9 11 30 28 3 5 2 5 2 11 2 5 2 16 11 13 11 3 3 2 7 3 2 13 2 5 2 4 2 48 25 5 5 17 13 23 23 58 57 2 5 2 4 2 5 2 6 3 5 8 5 15 2 3 8 3 2 2 6 3 25 8 15 8 9 25 23 2 5 3 6 3 7 3 2 9 2 4 2 15 9 23 9 3 3 6 3 15 2 4 2 5 2 10 2 5 2 90 122 115 48 32 15 15 15 17 33 33 48 60 115 119 81 234 56 89 3 2 7 2 4 2 15 3 4 2 7 3 2 15 17 6 6 2 5 2 5 3 11 2 5 3 6 3 30 11 6 19 6 30 30 3 5 2 11 3 2 7 3 2 5 2 11 13 11 17 2 4 2 5 2 13 3 5 2 6 3 65 30 13 17 13 17 30 30 61 60 2 4 3 6 3 5 2 21 2 4 2 4 2 12 3 6 3 20 20 14 14 2 4 2 8 2 4 2 3 14 2 5 2 4 2 32 17 14 15 14 29 29 2 4 2 8 2 4 2 15 2 5 2 5 2 10 10 17 15 2 5 2 10 3 6 2 4 2 5 2 125 75 32 10 18 10 19 32 29 69 61 125 134 2 5 3 2 6 3 18 3 2 6 3 8 2 4 2 17 17 18 19 2 4 2 8 2 4 2 17 3 6 3 2 6 3 39 17 19 17 18 25 25 3 2 7 2 4 2 11 2 4 3 2 18 3 6 3 6 3 10 10 15 15 3 2 3 10 2 4 3 5 2 65 30 10 15 10 12 35 25 69 69 2 4 2 9 2 4 2 12 2 2 5 2 18 12 14 12 2 5 2 10 2 4 3 2 14 3 6 2 4 2 30 15 14 16 14 30 35 2 4 2 6 3 15 3 2 4 2 5 2 15 15 15 16 2 4 2 5 2 2 15 3 6 3 8 2 4 2 3 227 111 61 31 15 21 15 16 24 24 50 50 116 116 81 224 3 6 3 9 2 4 2 16 2 5 2 6 2 19 16 5 5 2 5 3 8 2 4 2 5 2 23 16 5 7 5 27 24 3 6 2 5 2 7 2 3 10 7 16 7 3 4 2 10 3 6 3 5 2 54 23 10 17 10 11 23 25 61 50 2 2 7 2 5 3 11 2 5 2 13 11 12 11 3 2 5 2 12 2 4 2 4 2 29 13 12 13 12 27 25 2 5 2 5 2 15 2 5 3 2 7 2 4 2 15 18 9 9 2 5 2 5 2 3 9 2 4 2 111 54 33 18 9 12 9 22 22 54 59 110 110 3 2 7 2 4 2 6 3 12 2 5 3 2 9 9 13 12 2 4 2 9 3 2 6 3 33 9 13 9 13 22 22 3 2 6 3 9 2 4 2 15 2 4 2 6 3 12 12 10 10 2 2 6 3 10 2 4 2 49 23 7 7 12 10 26 22 55 59 3 7 3 2 4 2 4 2 7 8 7 16 3 2 8 3 6 3 6 3 23 8 15 8 11 23 26 3 2 7 3 2 11 2 4 2 3 12 11 15 11 3 2 5 2 12 2 4 2 6 3 8 2 4 2 We show how to: 1. reduce storage cost from 32TB to 16 GB 2. approximate Cholesky factorisation of C, its determinant, inverse in 8 minutes on modern desktop computer. 3. make prediction 2
  • 3. 4 * The structure of the talk 1. Motivation: improve statistical models, data analysis, prediction 2. Identification of unknown parameters via maximizing Gaussian log-likelihood (MLE) 3. Tools: Hierarchical matrices [Hackbusch 1999] 4. Matérn covariance function, joint Gaussian log-likelihood 5. Error analysis 6. Prediction at new locations 7. Comparison with machine learning methods 3
  • 4. 4 * Identifying unknown parameters Given: Let s1, . . . , sn be locations. Z = {Z(s1), . . . , Z(sn)}>, where Z(s) is a Gaussian random field indexed by a spatial location s ∈ Rd , d ≥ 1. Assumption: Z has mean zero and stationary parametric covariance function, e.g. Matérn: C(θ) = 2σ2 Γ(ν) r 2` ν Kν r ` + τ2 I, θ = (σ2 , ν, `, τ2 ). To identify: unknown parameters θ := (σ2, ν, `, τ2). 4
  • 5. 4 * Identifying unknown parameters Statistical inference about θ is then based on the Gaussian log-likelihood function: L(C(θ)) = L(θ) = − n 2 log(2π) − 1 2 log|C(θ)| − 1 2 Z C(θ)−1 Z, (1) where the covariance matrix C(θ) has entries C(si − sj ; θ), i, j = 1, . . . , n. The maximum likelihood estimator of θ is the value b θ that maximizes (1). 5
  • 6. 4 * H-matrix approximations of C, L and C−1 43 13 28 14 34 10 5 9 15 44 13 29 13 35 14 7 5 14 50 14 62 15 6 6 15 60 15 31 17 44 13 14 6 7 14 3 13 6 5 16 12 8 7 15 3 15 34 11 31 16 59 13 6 7 12 58 15 51 16 7 6 16 31 15 39 12 36 14 40 15 6 6 17 32 14 40 10 7 7 10 41 16 35 5 13 8 6 9 10 7 7 9 3 10 1 5 6 6 6 8 8 7 8 8 3 9 7 7 9 8 6 7 7 3 9 1 6 47 12 51 15 7 7 15 38 17 34 17 34 15 32 13 7 7 10 9 7 6 9 3 10 56 14 46 14 7 8 12 64 15 57 9 6 6 8 16 8 7 14 3 9 5 5 9 9 7 15 16 6 5 14 2 9 6 6 8 54 16 30 10 5 7 8 32 15 33 14 5 8 16 34 14 35 9 6 7 9 34 15 31 17 6 7 15 60 15 34 14 28 15 6 7 13 29 13 35 16 54 2 1 1 2 14 12 6 9 12 2 12 6 9 8 6 6 8 16 9 6 13 3 16 1 1 1 2 1 1 2 1 6 1 1 1 6 1 1 2 1 1 3 7 6 6 9 15 6 7 14 2 9 6 6 8 8 5 8 5 7 9 14 6 8 15 2 14 1 1 1 1 3 1 1 2 56 16 31 12 32 12 6 10 14 55 16 35 14 43 15 8 7 9 5 8 4 9 3 10 41 16 28 15 30 16 38 14 7 6 17 36 11 38 8 8 6 9 40 17 36 13 13 7 7 15 3 14 8 6 12 16 6 6 13 2 16 60 17 29 14 35 11 6 6 17 54 15 67 14 6 6 16 36 14 39 18 59 14 6 7 17 52 14 58 6 9 9 8 6 8 3 10 7 8 17 1 5 5 7 6 15 7 9 13 1 5 61 13 59 13 6 6 13 37 16 38 15 58 13 5 4 16 31 13 33 18 59 12 6 7 12 74 15 63 15 15 7 7 17 3 9 6 6 9 7 7 9 6 6 8 15 7 7 14 1 14 51 15 42 13 37 13 7 6 14 59 16 54 14 8 6 16 36 14 37 19 57 14 7 6 10 52 13 65 43 13 28 13 34 10 5 9 15 44 13 29 13 35 14 7 5 14 50 14 62 14 6 6 14 60 15 31 16 44 13 14 8 7 14 3 13 5 5 17 11 7 7 15 2 15 34 11 31 16 59 13 6 7 12 58 15 51 16 7 6 16 31 15 39 12 36 14 40 15 5 6 17 32 14 40 10 7 7 10 41 17 35 5 13 8 6 9 10 7 7 9 3 10 1 5 5 6 5 9 8 7 8 8 3 9 7 7 10 8 5 7 7 4 9 1 5 47 12 51 15 7 7 15 38 16 34 16 34 15 32 13 8 7 12 8 6 6 9 3 10 56 14 46 14 8 8 12 64 15 57 11 6 6 8 15 9 7 14 3 10 5 5 9 7 7 16 16 7 5 15 2 9 6 6 9 54 15 30 10 5 7 8 32 14 33 13 5 8 16 34 14 35 9 6 7 9 34 15 31 17 5 7 15 60 15 34 13 28 14 5 7 13 29 13 35 15 54 1 1 1 2 14 12 6 9 11 2 12 5 9 9 5 6 8 16 10 6 13 3 16 1 2 1 1 2 1 6 1 1 6 1 1 2 1 1 2 8 5 6 9 15 8 7 14 3 9 6 6 8 8 5 9 5 7 9 14 7 8 15 2 14 1 1 1 2 1 1 1 56 15 31 12 32 12 6 10 13 55 16 35 14 43 15 8 7 10 5 9 4 9 3 10 41 16 28 9 4 8 7 30 16 38 14 7 6 17 36 11 38 8 8 6 9 40 17 36 13 13 6 7 15 3 14 8 6 13 16 6 6 13 1 16 60 16 29 14 35 11 8 6 17 54 15 67 13 5 6 16 36 14 39 17 59 14 6 7 17 52 14 58 6 10 9 8 6 8 3 10 7 8 16 1 4 5 7 5 15 6 9 13 1 5 61 13 59 12 6 6 13 37 16 38 15 58 13 5 4 16 31 12 33 18 59 12 5 7 12 74 14 63 14 15 8 7 18 2 10 6 6 8 5 7 11 6 6 8 15 6 7 14 2 14 51 15 42 13 37 12 8 6 14 59 15 54 13 8 6 15 36 13 37 19 57 15 6 6 10 52 13 65 H-matrix approximations of the exponential covariance matrix (left), its hierarchical Cholesky factor L̃ (middle), and the zoomed upper-left corner of the matrix (right), n = 4000, ` = 0.09, ν = 0.5, σ2 = 1. 6
  • 7. 4 * What will change after H-matrix approximation? Approximate C by CH 1. How the eigenvalues of C and CH differ ? 2. How det(C) differs from det(CH) ? 3. How L differs from LH ? [Mario Bebendorf et al] 4. How C−1 differs from (CH)−1 ? [Mario Bebendorf et al] 5. How L̃(θ, k) differs from L(θ)? 6. What is optimal H-matrix rank? 7. How θH differs from θ? For theory, estimates for the rank and accuracy see works of Bebendorf, Grasedyck, Le Borne, Hackbusch,... 7
  • 8. 4 * Details of the parameter identification To maximize the log-likelihood function we use the Brent’s method (combining bisection method, secant method and inverse quadratic interpolation) or any other. 1. C(θ) ≈ e C(θ, ε). 2. e C(θ, k) = e L(θ, k)e L(θ, k)T 3. ZT e C−1Z = ZT (e Le LT )−1Z = vT · v, where v is a solution of e L(θ, k)v(θ) := Z. log det{e C} = log det{e Le LT } = log det{ n Y i=1 λ2 i } = 2 n X i=1 logλi , e L(θ, k) = − n 2 log(2π) − n X i=1 log{e Lii (θ, k)} − 1 2 (v(θ)T · v(θ)). (2) 8
  • 9. Dependence of log-likelihood ingredients on parameters, n = 4225. k = 8 in the first row and k = 16 in the second. 9
  • 10. 4 * Remark: stabilization with nugget To avoid instability in computing Cholesky, we add: e Cm = e C + τ2I. Let λi be eigenvalues of e C, then eigenvalues of e Cm will be λi + τ2, log det(e Cm) = log Qn i=1(λi + τ2) = Pn i=1 log(λi + τ2). (left) Dependence of the negative log-likelihood on parameter ` with nuggets {0.01, 0.005, 0.001} for the Gaussian covariance. (right) Zoom of the left figure near minimum; n = 2000 random points from moisture example, rank k = 14, τ2 = 1, ν = 0.5. 10
  • 11. 4 * Error analysis Theorem (1) Let e C be an H-matrix approximation of matrix C ∈ Rn×n such that ρ(e C−1 C − I) ≤ ε 1. Then |log det C − log det e C| ≤ −nlog(1 − ε), (3) Proof: See [Ballani, Kressner 14] and [Ipsen 05]. Remark: factor n is pessimistic and is not really observed numerically. 11
  • 12. 4 * Error in the log-likelihood Theorem (2) Let e C ≈ C ∈ Rn×n and Z be a vector, kZk ≤ c0 and kC−1k ≤ c1. Let ρ(e C−1C − I) ≤ ε 1. Then it holds | e L(θ) − L(θ)| = 1 2 (log|C| − log|e C|) + 1 2 |ZT C−1 − e C−1 Z| ≤ − 1 2 · nlog(1 − ε) + 1 2 |ZT C−1 C − e C−1 C C−1 Z| ≤ − 1 2 · nlog(1 − ε) + 1 2 c2 0 · c1 · ε. 12
  • 13. 4 * H-matrix approximation ε accuracy in each sub-block, n = 16641, ν = 0.5, c.r.=compression ratio. ε |log|C| − log|e C|| | log|C|−log|e C| log|e C| | kC − e CkF kC−e Ck2 kCk2 kI − (e Le L )−1 Ck2 c.r. in % ` = 0.0334 1e-1 3.2e-4 1.2e-4 7.0e-3 7.6e-3 2.9 9.16 1e-2 1.6e-6 6.0e-7 1.0e-3 6.7e-4 9.9e-2 9.4 1e-4 1.8e-9 7.0e-10 1.0e-5 7.3e-6 2.0e-3 10.2 1e-8 4.7e-13 1.8e-13 1.3e-9 6e-10 2.1e-7 12.7 ` = 0.2337 1e-4 9.8e-5 1.5e-5 8.1e-5 1.4e-5 2.5e-1 9.5 1e-8 1.45e-9 2.3e-10 1.1e-8 1.5e-9 4e-5 11.3 log|C| = 2.63 for ` = 0.0334 and log|C| = 6.36 for ` = 0.2337. 13
  • 14. 4 * Boxplots for unknown parameters Moisture data example. Boxplots for the 100 estimates of (`, ν, σ2), respectively, when n = 32K, 16K, 8K, 4K, 2K. H-matrix with a fixed rank k = 11. Green horizontal lines denote 25% and 75% quantiles for n = 32K. 14
  • 15. 4 * How much memory is needed? 0 0.5 1 1.5 2 2.5 ℓ, ν = 0.325, σ2 = 0.98 5 5.5 6 6.5 size, in bytes ×10 6 1e-4 1e-6 0.2 0.4 0.6 0.8 1 1.2 1.4 ν, ℓ = 0.58, σ2 = 0.98 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 size, in bytes ×10 6 1e-4 1e-6 (left) Dependence of the matrix size on the covariance length `, and (right) the smoothness ν for two different H-accuracies ε = {10−4, 10−6} 15
  • 16. 4 * Error convergence 0 10 20 30 40 50 60 70 80 90 100 −25 −20 −15 −10 −5 0 rank k log(rel. error) Spectral norm, L=0.1, nu=1 Frob. norm, L=0.1 Spectral norm, L=0.2 Frob. norm, L=0.2 Spectral norm, L=0.5 Frob. norm, L=0.5 0 10 20 30 40 50 60 70 80 90 100 −16 −14 −12 −10 −8 −6 −4 −2 0 rank k log(rel. error) Spectral norm, L=0.1, nu=0.5 Frob. norm, L=0.1 Spectral norm, L=0.2 Frob. norm, L=0.2 Spectral norm, L=0.5 Frob. norm, L=0.5 Convergence of the H-matrix approximation errors for covariance lengths {0.1, 0.2, 0.5}; (left) ν = 1 and (right) ν = 0.5, computational domain [0, 1]2. 16
  • 17. 4 * How log-likelihood depends on n? ν 0 0.1 0.2 0.3 0.4 0.5 0.6 −L 10 3 10 4 10 5 2000 4000 8000 16000 32000 Figure: Dependence of negative log-likelihood function on different number of locations n = {2000, 4000, 8000, 16000, 32000} in log-scale. 17
  • 18. 4 * Time and memory for parallel H-matrix approximation Maximal # cores is 40, ν = 0.325, ` = 0.64, σ2 = 0.98 n C̃ L̃L̃ time size kB/dof time size kI − (L̃L̃ )−1 C̃k2 sec. MB sec. MB 32.000 3.3 162 5.1 2.4 172.7 2.4 · 10−3 128.000 13.3 776 6.1 13.9 881.2 1.1 · 10−2 512.000 52.8 3420 6.7 77.6 4150 3.5 · 10−2 2.000.000 229 14790 7.4 473 18970 1.4 · 10−1 Dell Station, 20 × 2 cores, 128 GB RAM, bought in 2013 for 10.000 USD. 18
  • 19. 4 * Prediction Let Z = (Z1, Z2) has mean zero and a stationary covariance, Z1 - known, Z2 unknown. C = C11 C12 C21 C22, We compute predicted values Z2 = C21C−1 11 Z1 Z2 has the conditional distribution with the mean value C21C−1 11 Z1 and the covariance matrix C22 − C21C−1 11 C12. 19
  • 20. 4 * 2021 KAUST Competition We participated in 2021 KAUST Competition on Spatial Statistics for Large Datasets. You can download the datasets and look the final results here https://cemse.kaust.edu.sa/stsds/ 2021-kaust-competition-spatial-statistics-large-datasets 20
  • 21. 4 * Prediction Prediction for two datasets. The yellow points at 900.000 locations were used for training and the blue points were predicted at 100.000 new locations. 21
  • 22. 4 * Machine learning methods to make prediction k-nearest neighbours (kNN): For each point x find its k nearest neighbors x1, . . . , xk, and set: ŷ(x) = 1 k Pk i=1 yi . Random Forest (RF): a large number of decision (or regression) trees are generated independently on random sub-samples of data. The final decision for x is calculated over the ensemble of trees by averaging the predicted outcomes. Deep Neural Network (DNN): fully connected neural network Input layer consists of two neurons (input feature dimensionality), and output layer consists of one neuron (predicted feature dimensionality). 22
  • 23. 4 * Prediction by kNN Prediction obtained by the kNN method. The yellow points at 900.000 locations were used for training and the blue points were predicted at 100.000 new locations. One can see a very well alignment of both. 23
  • 24. 4 * Conclusion I With H-matrices you can approximate Matérn covariance matrices, Gaussian log-likelihoods, identify unknown parameters and make predictions I MLE estimate and predictions depend on H-matrix accuracy I parameter identification problem has multiple solutions I Investigated dependence of H-matrix approximation error on the estimated parameters I Each of ML methods needs fine-tuning stage to optimize its hyperparameters or architecture. 24
  • 25. 4 * Open questions and TODOs I The Gaussian log-likelihood function has some drawbacks for very large matrices I How to skip/avoid redundant data? I A good starting point for optimization is needed I a “preconditioner” (a simple cov. matrix) is needed I H-matrices become expensive for large number of parameters to be identified I error estimates are needed
  • 26. 4 * Literature All tests are reproducible https://github.com/litvinen/large_random_fields.git 1. A. Litvinenko, R. Kriemann, M.G. Genton, Y. Sun, D.E. Keyes, HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification, MethodsX 7, 100600, 2020 2. A. Litvinenko, Y. Sun, M.G. Genton, D.E. Keyes, Likelihood approximation with hierarchical matrices for large spatial datasets, Computational Statistics Data Analysis 137, 115-132, 2019 3. A. Litvinenko, R. Kriemann, V. Berikov, Identification of unknown parameters and prediction with hierarchical matrices, look arXiv and ResearchGate, March 2021 4. M. Espig, W. Hackbusch, A. Litvinenko, H.G. Matthies, E. Zander, Iterative algorithms for the post-processing of high-dimensional data, Journal of Computational Physics 410, 109396, 2020 26
  • 27. 4 * Literature 5. A. Litvinenko, D. Keyes, V. Khoromskaia, B.N. Khoromskij, H.G. Matthies, Tucker tensor analysis of Matérn functions in spatial statistics, Computational Methods in Applied Mathematics 19 (1), 101-122, 2019 6. B. N. Khoromskij, A. Litvinenko, H.G. Matthies, Application of hierarchical matrices for computing the Karhunen-Loéve expansion, Computing 84 (1-2), 49-67, 31, 2009 7. W. Nowak, A. Litvinenko, Kriging and spatial design accelerated by orders of magnitude: Combining low-rank covariance approximations with FFT-techniques, Mathematical Geosciences 45 (4), 411-435, 2013 8. M. Espig, W. Hackbusch, A. Litvinenko, H.G. Matthies, E. Zander, Efficient analysis of high dimensional data in tensor formats, Sparse Grids and Applications, 31-56, Springer, Berlin, 2013 27
  • 28. 4 * Acknowledgement V. Berikov was supported by the state contract of the Sobolev Institute of Mathematics (project no 0314-2019-0015), and by RFBR grant 19-29-01175. A. Litvinenko was supported by funding from the Alexander von Humboldt Foundation. 28