SlideShare a Scribd company logo
Density driven flow in fractured porous media. Uncertainty quantification via MLMC.
Alexander Litvinenko1
, D. Logashenko2
, R. Tempone1,2
, G. Wittum2
1
RWTH Aachen, Germany, 2
KAUST, Saudi Arabia
litvinenko@uq.rwth-aachen.de
Abstract
Problem: Henry-like saltwater intrusion in fractured media (nonlinear, time-
dependent, two-phase flow)
Input uncertainty: fracture width, porosity, permeability, and recharge (mod-
elled by random fields)
Solution: the salt mass fraction (uncertain and time-dependent)
Method: Multi Level Monte Carlo (MLMC) method
Deterministic solver: parallel multigrid solver ug4
Questions:
1.How does fracture affect flow?
2.Where is the largest uncertainty?
3.What is the mean scenario and its
variations?
4.What are the extreme scenarios?
5.How do the uncertainties change over
time?
q̂in
c = 0
c = 1
p = −ρ1gy
0
−1 m
2 m
y
x
(2, −0.5)
(1, −0.7)
1 2 3
4 5 6
(left) Henry problem with a fracture.
(right) Mass fraction cm (red for cm = 1)
1. Henry-like problem settings
Denote: the whole domain D, porous medium M ⊂ D, fracture porosity ϕm and permeability Km, salt mass
fraction cm(t, x) and pressure pm(t, x). The flow in M satisfies conservation laws:
∂t(ϕmρm) + ∇ · (ρmqm) = 0
∂t(ϕmρmcm) + ∇ · (ρmcmqm − ρmDm∇cm) = 0

x ∈ M (1)
with the Darcy’s law for the velocity:
qm = −
Km
µm
(∇pm − ρmg), x ∈ M , (2)
where ρm = ρ(cm) and µm = µ(cm) indicate the density and the viscosity of the liquid phase, Dm(t, x) denotes the
molecular diffusion and mechanical dispersion tensor.
The fracture is assumed to be filled with a porous medium, too. The fracture is represented by a surface S ⊂ D,
M ∪ S = D, M ∩ S = ∅.
∂t(ϕfϵρf) + ∇S · (ϵρfqf) + Q
(1)
fn + Q
(2)
fn = 0
∂t(ϕfϵρfcf) + ∇S · (ϵρfcfqf − ϵρfDf∇S cf) + P
(1)
fn + P
(2)
fn = 0



x ∈ S , (3)
where ϵ is the fracture width. The Darcy velocity along the fracture is
qf = −
Kf
µf
(∇S pf − ρfg), x ∈ S . (4)
The terms Q
(k)
fn and P
(k)
fn , k ∈ {1, 2}, are the mass fluxes through the faces S (k) of the fracture:
Q
(k)
fn := ρ(c
(k)
m )q
(k)
fn
P
(k)
fn := ρ(c
(k)
m )c
(k)
upwindq
(k)
fn − ρ(c
(k)
m )D
(k)
fn
c
(k)
m − cf
ϵ/2







x ∈ S (k), (5)
The uncertain width of the fracture, the recharge, and the porosity are modeled as follows, ξ1, ξ2, ξ3 ∈ U[−1, 1],
ϵ(ξ1) = 0.01 · ((1 − 0.01) · ξ1 + (1 + 0.01))/2, (6)
q̂x(t, ξ3) = 3.3 · 10−6 · (1 + 0.1ξ3)(1 + 0.1 sin(πt/40)), (7)
ϕm(x, y, ξ2) = 0.35 · (1 + 0.02 · (ξ2 cos(πx/2) + ξ2 sin(2πy)). (8)
To compute: cm.
Comput. domain: D × [0, T]. We set ρ(c) = ρ0 + (ρ1 − ρ0)c, and D = ϕDI,
I.C.: c|t=0 = 0, B.C.: c|x=2 = 1, p|x=2 = −ρ1gy. c|x=0 = 0, ρq · ex|x=0 = q̂in.
Methods: Newton method, BiCGStab, preconditioned with the geometric multigrid method (V-cycle), ILUβ-
smoothers and Gaussian elimination.
Multi Level Monte Carlo (MLMC) method
Spatial and temporal grid hierarchies D0, D1, . . . , DL, and T0, T1, . . . , TL; n0 = 512, nℓ ≈ n0 · 4ℓ, τℓ+1 = 1
2τℓ, number
of time steps rℓ+1 = 2rℓ or rℓ = r02ℓ. Computation complexity is sℓ = O(nℓrℓ) = O(23ℓγn0 · r0)
MLMC approximates E [gL] ≈ E [g] using the following telescopic sum:
E [gL] ≈ m−1
0
m0
X
i=1
g
(0,i)
0 +
L
X
ℓ=1

m−1
ℓ
mℓ
X
i=1
(g
(ℓ,i)
ℓ − g
(ℓ,i)
ℓ−1)

 .
Minimize F(m0, . . . , mL) :=
PL
ℓ=0 mℓsℓ + µ2 Vℓ
mℓ
, obtain mℓ = ε−2
q
Vℓ
sℓ
PL
i=0
√
Visi.
2. Numerics
Figure 2: The mean value E [cm(t, x)] at t = {7τ, 19τ, 40τ, 94τ}. In all cases, E [cm] (t, x) ∈ [0, 1].
Figure 3: The variance V [cm(t, x)] at t = {7τ, 19τ, 40τ, 94τ}. Maximal values (dark red colour) of V [cm] are 1.9·10−3,
3.4 · 10−3, 2.9 · 10−3, 2.4 · 10−3 respectively. The dark blue colour corresponds to a zero value.
g 0
g 1
- g 0
g 2
- g 1
g 3
- g 2
g 4
- g 3
-6
-4
-2
0
g 0
g 1
- g 0
g 2
- g 1
g 3
- g 2
g 4
- g 3
-16
-14
-12
-10
-8
-6
-4
0 1 2 3 4
10
-3
10
-2
0 1 2 3 4
10
-8
10
-7
10
-6
10
-5
10
-4
Figure 4: (1-2)The weak and the strong convergences, QoI is g := cm(t15, x1), α = 1.07, ζ1 = −1.1, β = 1.97,
ζ2 = −8. (3-4) Decay comparison of (left) E [gℓ − gℓ−1] and E [gℓ] vs. ℓ; (right) V [gℓ − gℓ−1] and V [gℓ]. QoI
g = cm(t18, x1), x1 = (1.1, −0.8).
Level ℓ nℓ, ( nℓ
nℓ−1
) rℓ, ( rℓ
rℓ−1
) τℓ = 6016/rℓ
Computing times (sℓ), ( sℓ
sℓ−1
)
average min. max.
0 608 188 32 3 2.4 3.4
1 2368 (3.9) 376 (2) 16 22 (7.3) 15.5 27.8
2 9344 (3.9) 752 (2) 8 189 (8.6) 115 237
3 37120 (4) 1504 (2) 4 1831 (10) 882 2363
4 147968 (4) 3008 (2) 2 18580 (10) 7865 25418
Table 1: # ndofs nℓ, number of time steps rℓ, step size in time τℓ, average, minimal, and maxi-
mal comp. times.
Estimated the weak and strong convergence rates α and β, and constants C1 and C2 for different QoIs. QoI are so-
lution in a point xi and an integral Ii(t, ω) :=
R
x∈∆i
cm(t, x, ω)ρ(cm(t, x, ω))dx, ∆i := [xi−0.1, xi+0.1]×[yi−0.1, yi+0.1],
i = 1, . . . , 6.
QoI α c1 β C2
cm(x1, 15τ) -1.07 0.47 -1.97 4 · 10−3
I2(cm) -1.5 8.3 -2.6 0.4
ε m0 m1 m2 m3 m4
0.2 28 0 0 0 0
0.1 10 1 0 0 0
0.05 57 4 1 0 0
0.025 342 22 4 1 0
0.01 3278 205 35 6 1
0 10 20 30 40
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0 10 20 30 40
0
1
2
3
4
5
10 -4
0 10 20 30 40
-8
-6
-4
-2
0
10
-3
0 10 20 30 40
0
0.2
0.4
0.6
0.8
1
10 -6
Figure 5: (1) The coefficient of variance CVℓ := CV (gℓ), (2) the variance V [gℓ], (3) the mean E [gℓ − gℓ−1], (4) the
variance V [gℓ − gℓ−1]. The QoI is g = cm(t, x1). The small oscillations in the two lower pictures are due to the
dependence of the recharge q̂x on the time, cf. (7).
10 -2
10 -1
10
0
10 5
10
10
Complexity comparison of ML and MLMC vs. accuracy ε (horizontal axis) in log-log scale.
Acknowledgements: Alexander von Humboldt foundation and KAUST HPC.
1. D. Logashenko, A. Litvinenko, R. Tempone, E. Vasilyeva, G. Wittum, Uncertainty quantification in the Henry problem using the multilevel Monte Carlo method,
Journal of Computational Physics, Vol. 503, 2024, 112854, https://doi.org/10.1016/j.jcp.2024.112854
2. D. Logashenko, A. Litvinenko, R. Tempone, G. Wittum, Estimation of uncertainties in the density driven flow in fractured porous media using MLMC,
arXiv:2404.18003, 2024

More Related Content

PDF
Uncertain_Henry_problem-poster.pdf
PDF
litvinenko_Gamm2023.pdf
PDF
Litvinenko_Poster_Henry_22May.pdf
PDF
litvinenko_Intrusion_Bari_2023.pdf
PDF
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
PDF
Talk litvinenko gamm19
PDF
Uncertainty quantification of groundwater contamination
PDF
Propagation of Uncertainties in Density Driven Groundwater Flow
Uncertain_Henry_problem-poster.pdf
litvinenko_Gamm2023.pdf
Litvinenko_Poster_Henry_22May.pdf
litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
Talk litvinenko gamm19
Uncertainty quantification of groundwater contamination
Propagation of Uncertainties in Density Driven Groundwater Flow

Similar to Poster_density_driven_with_fracture_MLMC.pdf (20)

PDF
Talk Alexander Litvinenko on SIAM GS Conference in Houston
PDF
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
PDF
Application Of The Least-Squares Method For Solving Population Balance Proble...
PDF
Modeling the dynamics of molecular concentration during the diffusion procedure
PDF
International journal of engineering and mathematical modelling vol2 no3_2015_2
PPT
Identification of the Mathematical Models of Complex Relaxation Processes in ...
PDF
A multiphase lattice Boltzmann model with sharp interfaces
PDF
A Numerical Method For Solving The Problem U T - Delta F (U) 0
PDF
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
PDF
On Approach for Estimation of Maximal Continuance of Diffusion Nand Ion Type ...
PDF
Modeling and quantification of uncertainties in numerical aerodynamics
PDF
Solutions_Manual_to_accompany_Applied_Nu.pdf
PDF
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
PDF
11.[36 49]solution of a subclass of lane emden differential equation by varia...
PDF
The_variational_iteration_method_for_solving_linea.pdf
PDF
Master Thesis
PDF
Mathematics Colloquium, UCSC
PDF
quan2009.pdf
PDF
poster2
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Application Of The Least-Squares Method For Solving Population Balance Proble...
Modeling the dynamics of molecular concentration during the diffusion procedure
International journal of engineering and mathematical modelling vol2 no3_2015_2
Identification of the Mathematical Models of Complex Relaxation Processes in ...
A multiphase lattice Boltzmann model with sharp interfaces
A Numerical Method For Solving The Problem U T - Delta F (U) 0
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
On Approach for Estimation of Maximal Continuance of Diffusion Nand Ion Type ...
Modeling and quantification of uncertainties in numerical aerodynamics
Solutions_Manual_to_accompany_Applied_Nu.pdf
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
11.[36 49]solution of a subclass of lane emden differential equation by varia...
The_variational_iteration_method_for_solving_linea.pdf
Master Thesis
Mathematics Colloquium, UCSC
quan2009.pdf
poster2
Ad

More from Alexander Litvinenko (19)

PDF
Litvinenko_RWTH_UQ_Seminar_talk.pdf
PDF
Litv_Denmark_Weak_Supervised_Learning.pdf
PDF
Computing f-Divergences and Distances of High-Dimensional Probability Density...
PDF
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
PDF
Low rank tensor approximation of probability density and characteristic funct...
PDF
Identification of unknown parameters and prediction of missing values. Compar...
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Identification of unknown parameters and prediction with hierarchical matrice...
PDF
Low-rank tensor approximation (Introduction)
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Application of parallel hierarchical matrices for parameter inference and pre...
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Simulation of propagation of uncertainties in density-driven groundwater flow
PDF
Approximation of large covariance matrices in statistics
PDF
Semi-Supervised Regression using Cluster Ensemble
PDF
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
PDF
Overview of sparse and low-rank matrix / tensor techniques
PDF
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
PDF
Tucker tensor analysis of Matern functions in spatial statistics
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Low rank tensor approximation of probability density and characteristic funct...
Identification of unknown parameters and prediction of missing values. Compar...
Computation of electromagnetic fields scattered from dielectric objects of un...
Identification of unknown parameters and prediction with hierarchical matrice...
Low-rank tensor approximation (Introduction)
Computation of electromagnetic fields scattered from dielectric objects of un...
Application of parallel hierarchical matrices for parameter inference and pre...
Computation of electromagnetic fields scattered from dielectric objects of un...
Simulation of propagation of uncertainties in density-driven groundwater flow
Approximation of large covariance matrices in statistics
Semi-Supervised Regression using Cluster Ensemble
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Overview of sparse and low-rank matrix / tensor techniques
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Tucker tensor analysis of Matern functions in spatial statistics
Ad

Recently uploaded (20)

PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
Computing-Curriculum for Schools in Ghana
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PPTX
20th Century Theater, Methods, History.pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
My India Quiz Book_20210205121199924.pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
HVAC Specification 2024 according to central public works department
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Computing-Curriculum for Schools in Ghana
Paper A Mock Exam 9_ Attempt review.pdf.
Weekly quiz Compilation Jan -July 25.pdf
Hazard Identification & Risk Assessment .pdf
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
20th Century Theater, Methods, History.pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
LDMMIA Reiki Yoga Finals Review Spring Summer
My India Quiz Book_20210205121199924.pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
HVAC Specification 2024 according to central public works department
Unit 4 Computer Architecture Multicore Processor.pptx
History, Philosophy and sociology of education (1).pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx

Poster_density_driven_with_fracture_MLMC.pdf

  • 1. Density driven flow in fractured porous media. Uncertainty quantification via MLMC. Alexander Litvinenko1 , D. Logashenko2 , R. Tempone1,2 , G. Wittum2 1 RWTH Aachen, Germany, 2 KAUST, Saudi Arabia litvinenko@uq.rwth-aachen.de Abstract Problem: Henry-like saltwater intrusion in fractured media (nonlinear, time- dependent, two-phase flow) Input uncertainty: fracture width, porosity, permeability, and recharge (mod- elled by random fields) Solution: the salt mass fraction (uncertain and time-dependent) Method: Multi Level Monte Carlo (MLMC) method Deterministic solver: parallel multigrid solver ug4 Questions: 1.How does fracture affect flow? 2.Where is the largest uncertainty? 3.What is the mean scenario and its variations? 4.What are the extreme scenarios? 5.How do the uncertainties change over time? q̂in c = 0 c = 1 p = −ρ1gy 0 −1 m 2 m y x (2, −0.5) (1, −0.7) 1 2 3 4 5 6 (left) Henry problem with a fracture. (right) Mass fraction cm (red for cm = 1) 1. Henry-like problem settings Denote: the whole domain D, porous medium M ⊂ D, fracture porosity ϕm and permeability Km, salt mass fraction cm(t, x) and pressure pm(t, x). The flow in M satisfies conservation laws: ∂t(ϕmρm) + ∇ · (ρmqm) = 0 ∂t(ϕmρmcm) + ∇ · (ρmcmqm − ρmDm∇cm) = 0 x ∈ M (1) with the Darcy’s law for the velocity: qm = − Km µm (∇pm − ρmg), x ∈ M , (2) where ρm = ρ(cm) and µm = µ(cm) indicate the density and the viscosity of the liquid phase, Dm(t, x) denotes the molecular diffusion and mechanical dispersion tensor. The fracture is assumed to be filled with a porous medium, too. The fracture is represented by a surface S ⊂ D, M ∪ S = D, M ∩ S = ∅. ∂t(ϕfϵρf) + ∇S · (ϵρfqf) + Q (1) fn + Q (2) fn = 0 ∂t(ϕfϵρfcf) + ∇S · (ϵρfcfqf − ϵρfDf∇S cf) + P (1) fn + P (2) fn = 0    x ∈ S , (3) where ϵ is the fracture width. The Darcy velocity along the fracture is qf = − Kf µf (∇S pf − ρfg), x ∈ S . (4) The terms Q (k) fn and P (k) fn , k ∈ {1, 2}, are the mass fluxes through the faces S (k) of the fracture: Q (k) fn := ρ(c (k) m )q (k) fn P (k) fn := ρ(c (k) m )c (k) upwindq (k) fn − ρ(c (k) m )D (k) fn c (k) m − cf ϵ/2        x ∈ S (k), (5) The uncertain width of the fracture, the recharge, and the porosity are modeled as follows, ξ1, ξ2, ξ3 ∈ U[−1, 1], ϵ(ξ1) = 0.01 · ((1 − 0.01) · ξ1 + (1 + 0.01))/2, (6) q̂x(t, ξ3) = 3.3 · 10−6 · (1 + 0.1ξ3)(1 + 0.1 sin(πt/40)), (7) ϕm(x, y, ξ2) = 0.35 · (1 + 0.02 · (ξ2 cos(πx/2) + ξ2 sin(2πy)). (8) To compute: cm. Comput. domain: D × [0, T]. We set ρ(c) = ρ0 + (ρ1 − ρ0)c, and D = ϕDI, I.C.: c|t=0 = 0, B.C.: c|x=2 = 1, p|x=2 = −ρ1gy. c|x=0 = 0, ρq · ex|x=0 = q̂in. Methods: Newton method, BiCGStab, preconditioned with the geometric multigrid method (V-cycle), ILUβ- smoothers and Gaussian elimination. Multi Level Monte Carlo (MLMC) method Spatial and temporal grid hierarchies D0, D1, . . . , DL, and T0, T1, . . . , TL; n0 = 512, nℓ ≈ n0 · 4ℓ, τℓ+1 = 1 2τℓ, number of time steps rℓ+1 = 2rℓ or rℓ = r02ℓ. Computation complexity is sℓ = O(nℓrℓ) = O(23ℓγn0 · r0) MLMC approximates E [gL] ≈ E [g] using the following telescopic sum: E [gL] ≈ m−1 0 m0 X i=1 g (0,i) 0 + L X ℓ=1  m−1 ℓ mℓ X i=1 (g (ℓ,i) ℓ − g (ℓ,i) ℓ−1)   . Minimize F(m0, . . . , mL) := PL ℓ=0 mℓsℓ + µ2 Vℓ mℓ , obtain mℓ = ε−2 q Vℓ sℓ PL i=0 √ Visi. 2. Numerics Figure 2: The mean value E [cm(t, x)] at t = {7τ, 19τ, 40τ, 94τ}. In all cases, E [cm] (t, x) ∈ [0, 1]. Figure 3: The variance V [cm(t, x)] at t = {7τ, 19τ, 40τ, 94τ}. Maximal values (dark red colour) of V [cm] are 1.9·10−3, 3.4 · 10−3, 2.9 · 10−3, 2.4 · 10−3 respectively. The dark blue colour corresponds to a zero value. g 0 g 1 - g 0 g 2 - g 1 g 3 - g 2 g 4 - g 3 -6 -4 -2 0 g 0 g 1 - g 0 g 2 - g 1 g 3 - g 2 g 4 - g 3 -16 -14 -12 -10 -8 -6 -4 0 1 2 3 4 10 -3 10 -2 0 1 2 3 4 10 -8 10 -7 10 -6 10 -5 10 -4 Figure 4: (1-2)The weak and the strong convergences, QoI is g := cm(t15, x1), α = 1.07, ζ1 = −1.1, β = 1.97, ζ2 = −8. (3-4) Decay comparison of (left) E [gℓ − gℓ−1] and E [gℓ] vs. ℓ; (right) V [gℓ − gℓ−1] and V [gℓ]. QoI g = cm(t18, x1), x1 = (1.1, −0.8). Level ℓ nℓ, ( nℓ nℓ−1 ) rℓ, ( rℓ rℓ−1 ) τℓ = 6016/rℓ Computing times (sℓ), ( sℓ sℓ−1 ) average min. max. 0 608 188 32 3 2.4 3.4 1 2368 (3.9) 376 (2) 16 22 (7.3) 15.5 27.8 2 9344 (3.9) 752 (2) 8 189 (8.6) 115 237 3 37120 (4) 1504 (2) 4 1831 (10) 882 2363 4 147968 (4) 3008 (2) 2 18580 (10) 7865 25418 Table 1: # ndofs nℓ, number of time steps rℓ, step size in time τℓ, average, minimal, and maxi- mal comp. times. Estimated the weak and strong convergence rates α and β, and constants C1 and C2 for different QoIs. QoI are so- lution in a point xi and an integral Ii(t, ω) := R x∈∆i cm(t, x, ω)ρ(cm(t, x, ω))dx, ∆i := [xi−0.1, xi+0.1]×[yi−0.1, yi+0.1], i = 1, . . . , 6. QoI α c1 β C2 cm(x1, 15τ) -1.07 0.47 -1.97 4 · 10−3 I2(cm) -1.5 8.3 -2.6 0.4 ε m0 m1 m2 m3 m4 0.2 28 0 0 0 0 0.1 10 1 0 0 0 0.05 57 4 1 0 0 0.025 342 22 4 1 0 0.01 3278 205 35 6 1 0 10 20 30 40 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 10 20 30 40 0 1 2 3 4 5 10 -4 0 10 20 30 40 -8 -6 -4 -2 0 10 -3 0 10 20 30 40 0 0.2 0.4 0.6 0.8 1 10 -6 Figure 5: (1) The coefficient of variance CVℓ := CV (gℓ), (2) the variance V [gℓ], (3) the mean E [gℓ − gℓ−1], (4) the variance V [gℓ − gℓ−1]. The QoI is g = cm(t, x1). The small oscillations in the two lower pictures are due to the dependence of the recharge q̂x on the time, cf. (7). 10 -2 10 -1 10 0 10 5 10 10 Complexity comparison of ML and MLMC vs. accuracy ε (horizontal axis) in log-log scale. Acknowledgements: Alexander von Humboldt foundation and KAUST HPC. 1. D. Logashenko, A. Litvinenko, R. Tempone, E. Vasilyeva, G. Wittum, Uncertainty quantification in the Henry problem using the multilevel Monte Carlo method, Journal of Computational Physics, Vol. 503, 2024, 112854, https://doi.org/10.1016/j.jcp.2024.112854 2. D. Logashenko, A. Litvinenko, R. Tempone, G. Wittum, Estimation of uncertainties in the density driven flow in fractured porous media using MLMC, arXiv:2404.18003, 2024