This document proposes a method for weakly supervised regression on uncertain datasets. It combines graph Laplacian regularization and cluster ensemble methodology. The method solves an auxiliary minimization problem to determine the optimal solution for predicting uncertain parameters. It is tested on artificial data to predict target values using a mixture of normal distributions with labeled, inaccurately labeled, and unlabeled samples. The method is shown to outperform a simplified version by reducing mean Wasserstein distance between predicted and true values.
Related topics: