SlideShare a Scribd company logo
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
DOI: 10.5121/antj.2024.10201 1
ON APPROACH FOR ESTIMATION OF MAXIMAL
CONTINUANCE OF DIFFUSION
AND ION TYPE OF DOPING
E.L. Pankratov
1
Nizhny Novgorod State University, 23 Gagarin avenue,
Nizhny Novgorod, 603950, Russia
2
Nizhny Novgorod State Agrotechnical University, 97 Gagarin avenue,
Nizhny Novgorod, 603950, Russia
ABSTRACT
In this paper an analytical approach for estimation of maximal continuance of manufacturing of integrated
circuit elements by dopant diffusion and ion implantation has been introduced. We analyzed influence of
parameters of considered technological processes on the value of it's maximal continuance.
KEYWORDS
Manufacturing of integrated circuit elements; dopant diffusion; ion implantation; maximal continuance of
technological processes; analytical approach for prognosis.
1. INTRODUCTION
One of the intensively solved problems for production of solid-state electronics devices is
increasing of the integration rate of elements of integrated circuit (p-n- junctions; field-effect and
bipolar transistors; ...), as well as increasing of their performance [1-8]. Different methods are
using for manufacture of elements of integrated circuits. Some of them are ion and diffusion
types of doping of required sections of electronic materials, epitaxial growth of multilayer
structures, fusion of materials [9-17]. Main aim of the present paper is estimation of maximal
continuance of ion and diffusion types of doping. The accompanying of the present paper is
development of analytical approach for analysis of the considered continuance.
2. METHOD OF SOLUTION
In this section we determine spatio-temporal distributions of concentrations of infused and
implanted dopants. To determine these distributions we calculate appropriate solutions of the
second Fick's law [1,3,18,19]
   







x
t
x
C
D
x
t
t
x
C
C





 ,
,
(1)
Boundary and initial conditions for the equations are for finite source of dopant
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
2
  0
,
0




x
x
t
x
C
,
  0
,



L
x
x
t
x
C
, C (x,0)=f (x); (2a)
for infinite source of dopant
C (0,t)=C0,
  0
,



L
x
x
t
x
C
, C (x>0,0)=0. (2b)
The function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; T is
the temperature of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion
coefficient could be changed with changing materials of heterostructure, with changing
temperature of materials (including annealing), with changing concentrations of dopant and
radiation defects. We approximate dependences of dopant diffusion coefficient on parameters by
the following relation with account results in Refs. [19-21]
   
 
   
  
















 2
*
2
2
*
1
,
,
1
,
,
1
,
V
t
x
V
V
t
x
V
T
x
P
t
x
C
T
x
D
D L
C 

 

. (3)
Here the function DL (x,T) describes the spatial (in heterostructure) and temperature (due to
Arrhenius law) dependences of diffusion coefficient of dopant. The function P (x,T) describes the
limit of solubility of dopant. Parameter  [1,3] describes average quantity of charged defects
interacted with atom of dopant [19]. The function V (x,t) describes the spatio-temporal
distribution of concentration of radiation vacancies with equilibrium distribution V*
. The
considered concentrational dependence of dopant diffusion coefficient has been described in
details in [19]. It should be noted, that using diffusion type of doping did not generation radiation
defects. In this situation 1= 2= 0. We determine spatio-temporal distributions of concentrations
of radiation defects by solving the following system of equations [20,21]
               
               





































t
x
V
t
x
I
T
x
k
t
x
V
T
x
k
x
t
x
V
T
x
D
x
t
t
x
V
t
x
V
t
x
I
T
x
k
t
x
I
T
x
k
x
t
x
I
T
x
D
x
t
t
x
I
V
I
V
V
V
V
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
2
,
,
2
,
(4)
Boundary and initial conditions for these equations are
  0
,
0




x
x
t
x

,
  0
,



L
x
x
t
x

,  (x,0)=f (x). (5)
Here  =I,V. The function I (x,t) describes the spatio-temporal distribution of concentration of
radiation interstitials with equilibrium distribution I*
; D(x,T) are the diffusion coefficients of
point radiation defects; terms V2
(x,t) and I2
(x,t) correspond to generation divacancies and
diinterstitials; kI,V(x,T) is the parameter of recombination of point radiation defects; kI,I(x,T) and
kV,V(x,T) are the parameters of generation of simplest complexes of point radiation defects.
Further we determine distributions in space and time of concentrations of divacancies V(x,t) and
diinterstitials I(x,t) by solving the following system of equations [20,21]
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
3
             
             














 









 




t
x
V
T
x
k
t
x
V
T
x
k
x
t
x
T
x
D
x
t
t
x
t
x
I
T
x
k
t
x
I
T
x
k
x
t
x
T
x
D
x
t
t
x
V
V
V
V
V
V
I
I
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
2
,
2
,












(6)
Boundary and initial conditions for these equations are
 
0
,
0





x
x
t
x

,
 
0
,




L
x
x
t
x

,  (x,0)=f (x). (7)
Here D(x,T) are the diffusion coefficients of the above complexes of radiation defects; kI(x,T)
and kV(x,T) are the parameters of decay of these complexes.
We calculate distributions of concentrations of point radiation defects in space and time by
recently elaborated approach [22]. The approach based on transformation of approximations of
diffusion coefficients in the following form: D(x,T)=D0[1+ g(x, T)], where D0 are the
average values of diffusion coefficients, 0<1, |g(x,T)|1. We also used analogous
transformation of approximations of parameters of recombination of point defects and parameters
of generation of their complexes: kI,V(x,T)=k0I,V [1+I,VgI,V(x,T)], kI,I(x,T)=k0I,I[1+I,I gI,I(x,T)] and
kV,V(x,T)=k0V,V[1+V,V gV,V(x,T)], where k01,2 are the their average values, 0I,V<1, 0I,I<1,
0V,V<1, | gI,V(x,T)|1, | gI,I(x, T)|1, |gV,V(x,T)|1. Let us introduce the following dimensionless
variables:     *
,
,
~
I
t
x
I
t
x
I  ,     *
,
,
~
V
t
x
V
t
x
V  , V
I
V
I D
D
k
L 0
0
,
0
2

 ,  = x/Lx,
V
I D
D
k
L 0
0
,
0
2


 
 , 2
0
0 L
t
D
D V
I

 . The introduction leads to transformation of Eqs. (4) and
conditions (5) to the following form
   
   
 
       
   
   
   
 
       
   



























































































,
~
,
1
,
~
,
~
,
1
,
~
,
1
,
~
,
~
,
1
,
~
,
~
,
1
,
~
,
1
,
~
2
,
,
,
,
0
0
0
2
,
,
,
,
0
0
0
V
T
g
V
I
T
g
V
T
g
D
D
D
V
I
T
g
V
I
T
g
I
T
g
D
D
D
I
V
V
V
V
V
V
I
V
I
V
V
V
I
V
I
I
I
I
I
V
I
V
I
I
I
V
I
I
(8)
  0
,
~
0









,
  0
,
~
1









,  
 
*
,
,
~





 
f
 . (9)
We determine solutions of Eqs. (8) with conditions (9) framework recently introduced approach
[22], i.e. as the power series
   
  







0 0 0
,
~
,
~
i j k
ijk
k
j
i







 
 . (10)
Substitution of the series (10) into Eqs.(8) and conditions (9) gives us possibility to obtain
equations for initial-order approximations of concentration of point defects  


 ,
~
000 and
corrections for them  


 ,
~
ijk , i 1, j 1, k 1. The equations are presented in the Appendix.
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
4
Solutions of the equations could be obtained by standard Fourier approach [23,24]. The solutions
are presented in the Appendix.
Now we calculate distributions of concentrations of simplest complexes of point radiation defects
in space and time. To determine the distributions we transform approximations of diffusion
coefficients in the following form: D(x,T)=D0[1+ g(x,T)], where D0 are the average
values of diffusion coefficients. In this situation the Eqs.(6) could be written as
   
           
   
           














 










 









t
x
V
T
x
k
t
x
V
T
x
k
x
t
x
T
x
g
x
D
t
t
x
t
x
I
T
x
k
t
x
I
T
x
k
x
t
x
T
x
g
x
D
t
t
x
V
V
V
V
V
V
V
V
I
I
I
I
I
I
I
I
,
,
,
,
,
,
1
,
,
,
,
,
,
,
1
,
2
,
0
2
,
0














Farther we determine solutions of above equations as the following power series
   
 





0
,
,
i
i
i
t
x
t
x 

  . (11)
Now we used the series (11) into Eqs.(6) and appropriate boundary and initial conditions. The
using gives the possibility to obtain equations for initial-order approximations of concentrations
of complexes of defects 0(x,t), corrections for them i(x,t) (for them i 1) and boundary and
initial conditions for them. We remove equations and conditions to the Appendix. Solutions of
the equations have been calculated by standard approaches [23,24] and presented in the
Appendix.
Now we calculate distribution of concentration of dopant in space and time by using the
approach, which was used for analysis of radiation defects. To use the approach we consider
following transformation of approximation of dopant diffusion coefficient: DL(x,T)=D0L[1+
LgL(x,T)], where D0L is the average value of dopant diffusion coefficient, 0L< 1, |gL(x,T)|1.
Farther we consider solution of Eq. (1) as the following series:
   
 





0 1
,
,
,
,
i j
ij
j
i
L t
x
C
t
z
y
x
C 
 .
Using the relation into Eq. (1) and conditions (2) leads to obtaining equations for the functions
Cij(x,t) (i 1, j 1), boundary and initial conditions for them. The equations are presented in the
Appendix. Solutions of the equations have been calculated by standard approaches (see, for
example, [23,24]). The solutions are presented in the Appendix. We analyzed distributions of
concentrations of dopant and radiation defects in space and time analytically by using the second-
order approximations on all parameters, which have been used in appropriate series. Usually the
second-order approximations are enough good approximations to make qualitative analysis and to
obtain quantitative results. All analytical results have been checked by numerical simulation.
Let us to use recently introduce criterion to estimate maximal value of continuance of
technological process [25]. In the framework of the criterion let us approximate changing of
considered concentrations in time by the following step-wise function (see Figs. 1-4)
 (x,t) = a0+a1[1(t)-1(t-)], (12)
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
5
where 1(t) is the single step-wise function [26]. Not yet known parameters a0, a1 and  could
have different values in different points of the considered material. Values of these parameters
were determined were determined by minimization of the following the mean-squared error
   
 
 

N
t
dt
t
x
t
x
C
U
0
2
,
,  , (14)
where tN is the observation time of transition process. Minimization of the mean- square error
(14) gives a possibility to obtain the following relations for calculation of the considered
parameters
  


 1
0
0
, a
t
a
t
d
t
x
C N
tN
, (15a)
   




1
0
0
, a
a
t
d
t
x
C , (15b)
C (x,)=a0+0.5a1. (15c)
The criterion is optimal. However the approach did not leads to obtaining analytical relations for
calculation of the considered maximal value of continuance of technological process. To obtain
analytical relations for the considered relations it is attracted an interest asymptotically optimal
criteria. To obtain transition to the criteria one shall consider the following limiting case tN.
In this case one can obtain the following relations: a0 = C(x,) and a1= C(x,0)-C(x,). Before
consideration of the following limiting transition one shall the transform relation (15a) to the
following form
 
  

  1
0
0
, a
t
d
a
t
x
C
N
t
.
Further obtaining of time of step-wise changing of approximation function (13) under condition
of the limiting case tN one can obtain the following criterion to estimate time scales, which
known as rectangle with equal square
 
   
 
   


 




,
0
,
,
,
0
x
C
x
C
t
d
x
C
t
x
C
x . (16)
Monotonous in time concentrations of dopant (see Figs. 1 and 2) could be approximated by the
following functions
C(x,t) =  [1-exp(-t/)], C(x,t) =  exp(-t/). (17)
Substitution of the above relations into the relation (16) at fixed value of observation time of the
diffusion process tN gives a possibility to obtain the following relation for the considered time
 =  [1-exp (-tN/)].
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
6
t
C(x,t)
C(x,)
tN
opt(x) (x)
a0(x)
a1(x)
2
3
C(x,0)
1
Fig. 1. Monotonic increasing of concentration of dopant (curve 1); optimal approximation of transition
process, which was obtained by minimization of mean-squared error (14) (curve 2); asymptotically optimal
approximation of transition process (curve 3)
t
C(x,t)
C(x,0)
a1(x)
a0(x)
tN
opt(x)(x)
1
2
3
C(x,)
Fig. 2. Monotonic decreasing of concentration of dopant (curve 1); optimal approximation of transition
process, which was obtained by minimization of mean-squared error (14) (curve 2); asymptotically optimal
approximation of transition process (curve 3)
Consideration limiting case tN leads to equality of single time scale of monotonous variation
in time of dopant concentration and time scale, which was determined by relation (16). It should
be noted, that relation (15c) at the limiting case tN  takes the form of another asymptotically
optimal criterion. In the framework the second asymptotically optimal criterion maximal value
maximal value of diffusion doping could be estimated as time of changed of the considered
concentration in two times, i.e.
C (x,)=[C(x,0) +C(x,)]/2. (18)
Fig. 3. Non-monotonic decreasing of concentration of dopant (curve 1); optimal approximation of
transition process, which was obtained by minimization of mean-squared error (14) (curve 2);
asymptotically optimal approximation of transition process (curve 3)
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
7
t
C(x,t)
C(x,)
a1(x)
a0(x)
tN
opt(x)
C(x,0)
1
2
Fig. 4. Non-monotonic increasing of concentration of dopant (curve 1); optimal approximation of transition
process, which was obtained by minimization of mean-squared error (14) (curve 2); asymptotically optimal
approximation of transition process (curve 3)
However the first asymptotically optimal criterion (15) is nonlinear. Nonlinear criterion leads to
obtaining smaller quantity of analytical relations for the considered maximal value of
technological processes in comparison with criterion (16). In this situation we will use criterion
(16) in future. However the criterion (16) has own disadvantage: the criterion could be used for
monotonous in time concentrations of dopant. For non-monotonous in time concentrations of
dopant the criterion (16) leads to underestimated values of the considered time. In this situation
the considered time could takes negative values. It is attracted an interest maximal value of the
considered time will be achieves, when initial distribution of concentration of infused dopant is
presents near one boundary of the considered structure (i.e. f (x)= (x)) and point of observation
of this concentration is presented on other boundary of the considered structure (i.e. x = L), which
should be doped. If the observation time on diffusion doping tN is large in comparison with
limiting time of technological process , than transitions processes are absent at times t >.
3. DISCUSSION
In this section we analyzed limiting continuance of technological process for different profiles of
diffusion coefficients without any variations in time (for example, annealing temperature is
constant). Wide using have different multilayer structures. In this situation we will consider
several normalized profiles of dopant diffusion coefficient g (x), which are presented on Fig. 5.
Analysis of limiting continuance of technological process shows, that in the case of infusion of
dopant from finite source maximal variation of the considered continuance could be find in
symmetrical structure with respect to it's middle (see Fig. 6). In the case of infusion of dopant
from infinite source maximal variation of the considered continuance could be find in
asymmetrical structure with respect to it's middle (see Fig. 7). Multilayer structures, which were
presented on Figs. 6a and 7a, correspond to maximal increasing of the considered limiting
continuance of technological processes (at fixed average value of dopant diffusion coefficient
D0). Multilayer structures, which were presented on Figs. 6b and 7b, correspond to maximal
decreasing of the considered limiting continuance of technological processes (at fixed average
value of dopant diffusion coefficient D0).
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
8
g0(x)
0
g1(x)
g2(x)
0
g3(x)
0
0 L
0
g4(x)
g5(x)
g6(x)
0
0
0
Fig. 5. Normalized profiles of dopant diffusion coefficients
We analyzed dependences of the considered limiting continuance on thicknesses of layers of
multilayer structures. Variation of thicknesses of layers of multilayer structures not gives a
possibility to find profiles of dopant diffusion coefficient, which correspond to larger influence
on the considered continuance, in comparison with profiles, which were presented on Figs. 6 and
7. Increasing of quantity of layers of the considered multilayer structures leads to decreasing of
influence of variation of dopant diffusion coefficient on the limiting continuance of technological
process. Figs. 8 show dependences of the considered continuance on the value of parameter  for
profiles of dopant diffusion coefficient, which were presented on Figs. 6 and 7. These figures
show, that the considered continuance could be decreased on several percents and increased on
several orders in comparison with continuance 0 for averaged value of dopant diffusion
coefficient D0. The continuance 0 for averaged value of dopant diffusion coefficient D0 is equal
to 0=L2
/6D0 for finite source of dopant and 0=L2
/2D0 for infinite source of dopant.
0 L/4 L/2 3L/4 L
2
1
0
-1
-2
Fig. 6a. Normalized profiles of dopant diffusion coefficient, which correspond to maximal increasing of
the limiting continuance of diffusion doping from finite source of dopant
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
9
0 L/4 L/2 3L/4 L
2
1
0
-1
-2
Fig. 6b. Normalized profiles of dopant diffusion coefficient, which correspond to maximal decreasing of
the limiting continuance of diffusion doping from finite source of dopant
0 L/4 L/2 3L/4 L
2
1
0
-1
-2
Fig. 7a. Normalized profiles of dopant diffusion coefficient, which correspond to maximal increasing of
the limiting continuance of diffusion doping from infinite source of dopant
0 L/4 L/2 3L/4 L
2
1
0
-1
-2
Fig. 7b. Normalized profiles of dopant diffusion coefficient, which correspond to maximal decreasing of
the limiting continuance of diffusion doping from infinite source of dopant
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
10
Fig. 8a. Dependences of limiting continuance of diffusion doping for finite source of dopant on value of
parameter . Curve 1 corresponds to profile of dopant diffusion coefficient with decreased limiting
continuance of technological process (see Fig. 6b). Curve 2 corresponds to profile of dopant diffusion
coefficient with increased limiting continuance of technological process (see Fig. 6a)
Fig. 8b. Dependences of limiting continuance of diffusion doping for infinite source of dopant on value of
parameter . Curve 1 corresponds to profile of dopant diffusion coefficient with decreased limiting
continuance of technological process (see Fig. 7b). Curve 2 corresponds to profile of dopant diffusion
coefficient with increased limiting continuance of technological process (see Fig. 7a)
x
D(x)
D1
D2
0 L
a1
fC(x)
D0
D3
a2
Fig. 9. Profile of dopant diffusion coefficient, which corresponds to maximal increasing of limiting
continuance of ion doping. Profile of dopant diffusion coefficient, which corresponds to maximal
decreasing of limiting continuance of ion doping, has the same difference with the above profile as for
profiles 6b и 6a
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
11
Now let us consider influence of temporal variations of dopant diffusion coefficient on value of
limiting continuance of technological process in homogenous material. The considered situation
could be consider, for example, for nonstationary annealing of dopant and/or radiation defects,
which are presents in homogenous material. In this case (as for multilayer structure) increasing of
the considered limiting continuance is essentially smaller, than decreasing one at fixed value of
averaged diffusion coefficient. The same conclusion could be obtained during analysis of joint
changing of dopant diffusion coefficient in space and time.
Analogous conclusions about influence of variations of dopant diffusion coefficient on limiting
continuance of technological process could be obtained for ion type of doping. At the same time
one can find changing of thicknesses of layers of multilayer structures (see Fig. 9). This changing
taking into account presents of maximal value of concentration of dopant in depth of the
multilayer structure, but not on it's external boundary as for diffusion doping. Also qualitatively
similar influence of spatial and temporal variations of dopant diffusion coefficients of radiation
defects and accounted other parameters (parameters of recombination of point radiation defects;
parameters of generation of complexes of point defects; parameters of decay of complexes of
radiation defects) on limiting value of continuance of annealing time.
4. CONCLUSIONS
In this paper we introduce an analytical approach to estimate limiting value of continuance of
technological process during doping (doping by diffusion; ion doping) of materials to
manufacture elements of integrated circuits. We analyzed influence of parameters on value of the
considered limiting continuance.
REFERENCES
[1] Lachin, V.I., Savelov, N.S. (2001) "Electronics", Rostov on Donu: Phoenix.
[2] Alexenko, A.G., Shagurin, I.I. (1990), "Microcircuitry", Moscow: Radio and communication.
[3] Avaev, N.A., Naumov, Yu.E., Frolkin, V.T. (1991), Basis of microelectronics, Moscow: Radio and
communication.
[4] Wang, Z., Duan, Q., Roh, J. (2014), Analog. Integrated circuits and signal processing, Vol. 81, pp.
495-501.
[5] Fathi, D., Forouzandeh, B., Masoumi, N. (2009), Nano, Vol. 4, № 4, pp. 233-238.
[6] Chachuli, S.A., Fasyar, P.N.A., Soin, N., Karim, N.M., Yusop, N., 2014, Materials science in
semiconductor processing, Vol. 24, pp. 9-14.
[7] Ageev, A.O., Belyaev, A.E., Boltovets, N.S., Ivanov, V.N., Konakova, R.V., Kudrik, Ya.Ya.,
Litvin, P.M. Milenin, V.V., Sachenko, A.V. (2009), Semiconductors, Vol. 43, № 7, pp. 897-903.
[8] Li, Z., Waldron, J., Detchprohm, T., Wetzel, C., Karlicek, R.F., Chow, Jr.T.P. (2013), Applied
physics letters, Vol. 102, № 19, pp. 192107-192109.
[9] Tsai, J.-H., Chiu, Sh.-Y., Lour, W.-Sh., Guo, D.-F. (2009), Semiconductiors, Vol. 43, № 7, pp. 971-
974.
[10] Alexandrov, O.V., Zakhar'in, A.O., Sobolev, N.A., Shek, E.I., Makoviychuk, M.M., Parshin, E.O.
1998, Semiconductors, Vol. 32, № 9, pp. 1029-1032.
[11] Kumar, M.J., Singh, T.V. 2008, International journal of nanoscience, Vol. 7, № 2-3, pp. 81-84.
[12] Sinsermsuksakul, P., Hartman, K., Kim, S.B., Heo, J., Sun, L., Park, H.H., Chakraborty, R.,
Buonassisi, T., Gordon, R.G., 2013, Applied physics letters, Vol. 102, № 5, pp. 053901-053905.
[13] Reynolds, J.G., Reynolds, C.L., Mohanta, Jr.A., Muth, J.F., Rowe, J.E., Everitt, H.O., Aspnes, D.E.,
2013, Applied physics letters, Vol. 102, № 15, pp. 152114-152118.
[14] Ong, K.K., Pey, K.L., Lee, P.S., Wee, A.T.S., Wang, X.C., Chong, Y.F., 2006, Applied physics
letters, Vol. 89, № 17, pp. 172111-172114.
[15] Wang, H.T., Tan, L.S., Chor, E.F., 2006, Journal of applied physics, Vol. 98, № 9, pp. 094901-
094905.
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
12
[16] Shishiyanu, S.T., Shishiyanu, T.S., Railyan, S.K., 2002, Semiconductors, Vol. 36, № 5,, pp. 611-
617.
[17] Bykov, Yu.V., Yeremeev, A.G., Zharova, N.A., Plotnikov, I.V., Rybakov, K.I., Drozdov, M.N.,
Drozdov, Yu.N., Skupov, V.D., 2003, Radiophysics and Quantum Electronics, Vol. 43, № 3, pp.
836-843.
[18] Kozlivsky, V.V., 2003, "Modification of semiconductors by proton beams", Sant-Peterburg:
Science.
[19] Gotra, Z.Yu., 1991, "Technology of microelectronic devices", Moscow: Radio and communication.
[20] Vinetskiy, V.L., Kholodar', G.A., 1979, "Radiative physics of semiconductors", Kiev: Naukova
Dumka.
[21] Fahey, P.M., Griffin, P.B., Plummer, J.D., 1989, Reviews in modern physics, Vol. 61, № 2, pp. 289-
388.
[22] Pankratov, E.L., 2007, Russian microelectronics, Vol. 36, № 1, pp. 33-39.
[23] Tikhonov, A.N., Samarskii, A.A., 1972, "The mathematical physics equations", Moscow: Science.
[24] Carslaw, H.S., Jaeger, J.C., 1964, "Conduction of heat in solids", London, Oxford University Press.
[25] Pankratov, E.L., Bulaeva, E.A., 2013, Reviews in theoretical science, Vol. 1, № 3, pp. 305-316.
[26] Korn, G., Korn, T., 1968, "Mathematical Handbook for scientists and engineers. Definitions,
theorems and formulas for reference and review" (Second edition), New York: McGraw-Hill Book
Company.
APPENDIX
Equations for functions  

,
~
ijk
I andи  

,
~
ijk
V , i0, j0, k0 and conditions for them could be
written as
   
2
000
2
0
0
000 ,
~
,
~










 I
D
D
I
V
I
,
   
2
000
2
0
0
000 ,
~
,
~










 V
D
D
V
I
V
;
       
       































































,
~
,
,
~
,
~
,
~
,
,
~
,
~
100
0
0
2
00
2
0
0
00
100
0
0
2
00
2
0
0
00
i
V
I
V
i
I
V
i
i
I
V
I
i
V
I
i
V
T
g
D
D
V
D
D
V
I
T
g
D
D
I
D
D
I
, i 1;
     
     
     
     













































,
~
,
~
,
1
,
~
,
~
,
~
,
~
,
1
,
~
,
~
000
000
,
,
2
010
2
0
0
010
000
000
,
,
2
010
2
0
0
010
V
I
T
g
V
D
D
V
V
I
T
g
I
D
D
I
V
I
V
I
I
V
V
I
V
I
V
I
;
   
 
         
 
   
 
         
 





























































,
~
,
~
,
~
,
~
,
1
,
~
,
~
,
~
,
~
,
~
,
~
,
1
,
~
,
~
010
000
000
010
,
,
2
020
2
0
0
020
010
000
000
010
,
,
2
020
2
0
0
020
V
I
V
I
T
g
V
D
D
V
V
I
V
I
T
g
I
D
D
I
V
I
V
I
V
I
V
I
V
I
V
I
;
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
13
     
   
     
   









































,
~
,
1
,
~
,
~
,
~
,
1
,
~
,
~
2
000
,
,
2
001
2
0
0
001
2
000
,
,
2
001
2
0
0
001
V
T
g
V
D
D
V
I
T
g
I
D
D
I
V
V
I
I
I
V
I
I
I
I
V
I
;
       
 
         
 
       
 
         
 




























































































,
~
,
~
,
~
,
~
,
1
,
~
,
~
,
~
,
~
,
~
,
~
,
~
,
1
,
~
,
,
~
,
~
100
100
100
0100
,
,
010
0
0
2
110
2
0
0
110
100
000
000
100
,
,
010
0
0
2
110
2
0
0
110
V
I
V
I
T
g
V
T
g
D
D
V
D
D
V
V
I
V
I
T
g
I
T
g
D
D
I
D
D
I
V
V
V
V
V
I
V
I
V
I
I
I
I
I
V
I
V
I
;
     
     
     
     













































,
~
,
~
,
1
,
~
,
~
,
~
,
~
,
1
,
~
,
~
000
001
,
,
2
002
2
0
0
002
000
001
,
,
2
002
2
0
0
002
V
V
T
g
V
D
D
V
I
I
T
g
I
D
D
I
V
V
V
V
I
V
I
I
I
I
V
I
;
   
 
 
 
     
   
 
 
 
     























































































,
~
,
~
,
1
,
~
,
,
~
,
~
,
~
,
~
,
1
,
~
,
,
~
,
~
100
000
001
0
0
2
101
2
0
0
101
000
100
001
0
0
2
101
2
0
0
101
V
I
T
g
V
T
g
D
D
V
D
D
V
V
I
T
g
I
T
g
D
D
I
D
D
I
V
V
V
I
V
I
V
I
I
I
V
I
V
I
;
   
 
     
 
     
   
 
     
 
     



































































,
~
,
~
,
1
,
~
,
~
,
1
,
~
,
~
,
~
,
~
,
1
,
~
,
~
,
1
,
~
,
~
001
000
,
,
010
000
,
,
2
011
2
0
0
011
000
001
,
,
010
000
,
,
2
011
2
0
0
011
V
I
t
g
V
V
T
g
V
D
D
V
V
I
T
g
I
I
T
g
I
D
D
I
V
I
V
I
V
V
V
V
I
V
V
I
V
I
I
I
I
I
V
I
;
 
0
,
~
0




x
ijk




,
 
0
,
~
1




x
ijk




(i 0, j 0, k 0);  
 
*
000 0
,
~



 
f
 ,
  0
0
,
~ 

ijk (i 1, j 1, k 1).
Solutions of the above equations with appropriate boundary and initial conditions could be
written as
     




1
0
000
2
,
~
n
n
n e
c
F
L
L
F




 


,
where    


1
0
*
cos
1
u
d
u
f
u
n
F n
n 
 

,    
I
V
nI D
D
n
e 0
0
2
2
exp 

 
 , cn() = cos ( n ),
   
V
I
nV D
D
n
e 0
0
2
2
exp 

 
 ;
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
14
             
             







  





  











1 0
1
0
100
0
0
00
1 0
1
0
100
0
0
00
,
~
,
2
,
~
,
~
,
2
,
~
n
i
V
n
nI
nV
n
I
V
i
n
i
I
n
nI
nI
n
V
I
i
d
u
d
u
u
V
T
u
g
u
s
e
e
c
n
D
D
V
d
u
d
u
u
I
T
u
g
u
s
e
e
c
n
D
D
I


















, i 1,
where sn() = sin ( n );
                 
     




1 0
1
0
1
0
1
0
010 2
,
,
,
~
n
n
n
n
n
n
n
n
n w
c
v
c
u
c
e
e
c
c
c


 









 
      


 d
u
d
v
d
w
d
w
v
u
V
w
v
u
I
T
w
v
u
g V
I
V
I ,
,
,
~
,
,
,
~
,
,
,
1 000
000
,
,

 ;
           
 
   




1 0
1
0
,
,
0
0
020 ,
1
2
,
~
n
V
I
V
I
n
n
n
n
V
I
T
u
g
u
c
e
e
c
D
D 

 






       
  



 d
u
d
u
V
u
I
u
V
u
I ,
~
,
~
,
~
,
~
010
000
000
010 
 ;
           
   
   




1 0
1
0
2
000
,
,
001 ,
~
,
1
2
,
~
n
n
n
n
n d
u
d
u
T
u
g
u
c
e
e
c






 








 ;
           
     
   




1 0
1
0
000
001
,
,
002 ,
~
,
~
,
1
2
,
~
n
n
n
n
n d
u
d
u
u
T
u
g
u
c
e
e
c






 










 ;
             
     
         
 
   
             
     
         
 
   



















   




  







   




  





















































nV
n
n
V
I
V
I
n
nV
n
i
V
n
nV
nV
n
I
V
n
nI
n
V
I
V
I
n
nI
n
i
I
n
nI
nI
n
V
I
e
c
d
u
d
u
V
u
I
u
V
u
I
T
u
g
u
c
e
d
u
d
u
u
V
T
u
g
u
s
e
e
c
n
D
D
V
c
e
d
u
d
u
V
u
I
u
V
u
I
T
u
g
u
c
e
d
u
d
u
u
I
T
u
g
u
s
e
e
c
n
D
D
I
10
1
0
000
100
100
000
,
,
1 0
1
0
100
0
0
110
10
1
0
100
000
000
100
,
,
1 0
1
0
100
0
0
110
,
~
,
~
,
~
,
~
,
1
2
,
~
,
2
,
~
,
~
,
~
,
~
,
~
,
1
2
,
~
,
2
,
~
;
             
         
     
             
         
     













   



  





   



  













1 0
1
0
100
000
,
,
1 0
1
0
001
0
0
101
1 0
1
0
000
100
,
,
1 0
1
0
001
0
0
101
,
~
,
~
,
1
2
,
~
,
2
,
~
,
~
,
~
,
1
2
,
~
,
2
,
~
n
V
I
V
I
n
nV
nV
n
n
V
n
nV
nV
n
I
V
n
V
I
V
I
n
nI
nI
n
n
I
n
nI
nI
n
V
I
d
u
d
u
V
u
I
T
u
g
u
c
e
e
c
d
u
d
u
u
V
T
u
g
u
s
e
e
c
n
D
D
V
d
u
d
u
V
u
I
T
u
g
u
c
e
e
c
d
u
d
u
u
I
T
u
g
u
s
e
e
c
n
D
D
I


































;
           
     

 
     
           
     

 
     











   






   


































d
u
d
u
V
u
I
T
u
g
u
V
u
V
T
u
g
u
c
e
e
c
V
d
u
d
u
V
u
I
T
u
g
u
I
u
I
T
u
g
u
c
e
e
c
I
V
I
V
I
n
V
V
V
V
n
nV
nV
n
V
I
V
I
n
I
I
I
I
n
nI
nI
n
,
~
,
~
,
1
,
~
,
~
,
1
2
,
~
,
~
,
~
,
1
,
~
,
~
,
1
2
,
~
001
000
,
,
1 0
1
0
010
000
,
,
011
000
001
,
,
1 0
1
0
010
000
,
,
011
Equations for functions i(x,t), i 0, boundary and initial conditions takes the form
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
15
           
           



















t
x
V
T
x
k
t
x
V
T
x
k
x
t
x
D
t
t
x
t
x
I
T
x
k
t
x
I
T
x
k
x
t
x
D
t
t
x
V
V
V
V
V
V
I
I
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
2
,
2
0
2
0
0
2
,
2
0
2
0
0








;
   
 
 
   
 
 












 









 












x
t
x
T
x
g
x
D
x
t
x
D
t
t
x
x
t
x
T
x
g
x
D
x
t
x
D
t
t
x
i
V
V
V
i
V
V
i
V
i
I
I
I
i
I
I
i
I
















,
,
,
,
,
,
,
,
1
0
2
2
0
1
0
2
2
0
, i1;
 
0
,
0





x
i
x
t
x

,
 
0
,




L
x
i
x
t
x

, i0; 0(x,0)=f (x), i(x,0)=0, i1.
Solutions of the above equations could be written as
         














1
1
0
0
2
2
,
n
n
n
n
n
n
n t
e
x
c
n
L
t
e
x
c
F
L
L
F
t
x 




           
 
  

 
t L
I
I
I
n
n d
u
d
u
I
T
u
k
u
I
T
u
k
u
c
e
0 0
2
, ,
,
,
, 




,
where    
2
0
2
2
exp L
t
D
n
t
en 

 
 
 ,    

 

x
L
n
n u
d
u
f
u
c
F
0


;
           
 
  











1 0 0
1
2
,
,
2
,
,
,
n
t L i
I
n
n
n
n
i d
u
d
u
u
T
u
g
u
s
e
t
e
x
c
n
L
t
z
y
x 




 



 , i1.
Equations for initial-order approximation of concentration of dopant C00(x,t) and corrections for
them Cij(x,t) (i 1, j 1), boundary and initial conditions for the above equations could be written
as
   
2
00
2
0
00 ,
,
x
t
x
C
D
t
t
x
C
L





;
       















 
x
t
x
C
T
x
g
x
D
x
t
x
C
D
t
t
x
C i
L
L
i
L
i ,
,
,
, 10
0
2
0
2
0
0
, i 1;
     
 
 
















x
t
x
C
T
x
P
t
x
C
x
D
x
t
x
C
D
t
t
x
C
L
L
,
,
,
,
, 00
00
0
2
01
2
0
01


;
   
 
 
 
 
















 
x
t
x
C
T
x
P
t
x
C
t
x
C
x
D
x
t
x
C
D
t
t
x
C
L
L
,
,
,
,
,
, 00
1
00
01
0
2
02
2
0
02


 
 
 











x
t
x
C
T
x
P
t
x
C
x
D L
,
,
, 01
00
0 

;
       
 
  















 
x
t
x
C
T
x
P
t
x
C
t
x
C
x
D
x
t
x
C
D
t
t
x
C
L
L
,
,
,
,
,
, 00
1
00
01
0
2
02
2
0
02


 
 
 











x
t
x
C
T
x
P
t
x
C
x
D L
,
,
, 01
00
0 

;
   
 
 
 
 
















 
x
t
x
C
T
x
P
t
x
C
t
x
C
x
D
x
t
x
C
D
t
t
x
C
L
L
,
,
,
,
,
, 00
1
00
10
0
2
11
2
0
11


Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
16
 
 
     






















x
t
x
C
T
x
g
x
D
x
t
x
C
T
x
P
t
x
C
x
D L
L
L
,
,
,
,
, 01
0
10
00
0 

;
for finite source of dopant
 
0
,
0


x
ij
x
t
x
C


,
 
0
,

L
x
ij
x
t
x
C


, i 0, j 0; C00(x,0) = fC (x), Cij(x,0) = 0, i 1, j 1.
for infinite source of dopant
C00(0,t)=C0,
 
0
,

L
x
ij
x
t
x
C


, Cij(x>0,t)=0, C00(0,0) = C0, Cij(x >0,0)=0, i 0, j 0.
Solutions of the above equations with account boundary and initial conditions by standard
Fourier approach takes the form
for finite source of dopant
     




1
0
00
2
,
n
nC
n
nC
C
t
e
x
c
F
L
L
F
t
x
C ,
where    
2
0
2
2
exp L
t
D
n
t
e C
nC 

 ,    


L
C
n
nC u
d
u
f
u
c
F
0
;
             
  








1 0 0
10
2
0
,
,
2
,
,
,
n
t L
i
L
n
nC
nC
n
nC
i d
u
d
u
u
C
T
u
g
u
s
e
t
e
x
c
F
n
L
t
z
y
x
C 



, i 1;
           
 
 
  






1 0 0
00
00
2
01
,
,
,
2
,
n
t L
n
nC
nC
n
nC d
u
d
u
u
C
T
u
P
u
C
u
s
e
t
e
x
c
F
n
L
t
x
C 






;
             
 
  
  








1 0 0
00
1
00
01
2
02
,
,
,
,
2
,
n
t L
n
nC
nC
n
nC d
u
d
u
u
C
T
u
P
u
C
u
C
u
s
e
t
e
x
c
F
n
L
t
x
C 







           
 
  
  







1 0 0
00
1
00
01
2
,
,
,
,
2
n
t L
n
nC
nC
n
nC d
u
d
u
u
C
T
u
P
u
C
u
C
u
s
e
t
e
x
c
F
n
L








         
 
 
  





1 0 0
01
00
2
,
,
,
2
n
t L
n
nC
nC
n
nC d
u
d
u
u
C
T
u
P
u
C
u
s
e
t
e
x
c
F
n
L







;
              
  






1 0 0
01
2
11
,
,
2
,
n
t L
L
n
nC
nC
n
nC d
u
d
u
u
C
T
u
g
u
s
e
t
e
x
c
F
n
L
t
x
C 



         
 
  
  





1 0 0
10
00
2
,
,
,
2
n
t L
n
nC
nC
n
nC d
u
d
u
u
C
T
u
P
u
C
u
s
e
t
e
x
c
F
n
L







           
 
 
  







1 0 0
00
1
00
10
2
,
,
,
,
2
n
t L
n
nC
nC
n
nC d
u
d
u
u
C
T
u
P
u
C
u
C
u
s
e
t
e
x
c
F
n
L








.
for infinite source of dopant
     






 




 






0
5
.
0
0
00
5
.
0
sin
5
.
0
1
2
1
,
n
n t
e
L
x
n
n
C
t
x
C


,
           
  






 









0 00
5
.
0
5
.
0
5
.
0
3
0
0
10
5
.
0
sin
5
.
0
2
,
n m
t
m
n
n u
e
u
e
t
e
L
x
n
n
L
C
D
t
x
C


   
  u
d
u
H
u
H m
n
m
n 

 
 1 ,
           
  

 




 











0 10
5
.
0
2
0
5
.
0
6
0
3
2
0
20 5
.
0
5
.
0
sin
5
.
0
2
,
n m
t
k
k
k u
e
n
t
e
L
x
k
k
L
C
D
t
x
C


     
         
 
 


 








u
m
n
m
n
m
n
k
n
k
n
n u
d
d
H
H
e
e
u
H
u
H
u
e
0
1
5
.
0
5
.
0
1
5
.
0 



 ,
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
17
where      
 




 

L
n y
d
L
y
n
t
y
t
H
0
5
.
0
sin
,

 ,
  2
1
01 , 

 


t
x
C ,
where      
   

  









 










0 0 0
5
,
0
5
.
0
2
3
0
1
5
.
0
1
5
.
0
sin
5
.
0
2
n k m
n
km
n
kk
mm
nn
t
e
t
e
k
t
e
L
x
n
n
C 


      












 2
2
1
5
.
0
1
1
k
n
m
k
n
mm
, ekm(t)=(t) ek+0.5(t) em+0.5(t),
     





 
  










 


 










0 0 0 0
0
5
.
0
3
5
0
2
5
.
0
1
5
.
0
1
5
.
0
1
5
.
0
1
5
.
0
sin
5
.
0
3
,
0
n k l j
i
n
j
i
l
k
t
e
L
x
n
n
C 



         





















 2
2
2
2
2
1
5
.
0
1
5
.
0
1
1
j
i
l
k
n
j
i
l
k
n
j
i
l
k
nn
       














 2
2
2
2
1
5
.
0
1
1
5
.
0
1
j
i
l
k
n
j
i
l
k
n
           























 2
2
2
2
2
2
5
.
0
1
2
5
.
0
1
1
5
.
0
1
l
k
j
i
n
l
k
j
i
n
l
k
j
i
n
   
          

















2
2
2
2
2
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0 j
i
l
k
n
t
e
t
e n
klij
,  = 3,
  4
3
2
02 , 

 


t
x
C ,
where
   
   
   
   
  
 

















 









0 1 0 1
2
2
2
2
3
5
0
3
1
5
.
0
1
5
.
0
5
.
0
5
.
0
sin
4
n k l m k
n
l
k
n
k
n
k
n
l
l
L
x
n
C 


     
         
    
 
  























0 0
2
2
2
2
2
2
2
2
2
2
5
.
0
1
5
.
0
1
5
.
0
5
.
0
5
.
0
1
5
.
0
5
.
0
i j i
l
j
i
l
j
j
i
l
i
l
i
l
k
n
     
       
   
      





















 


2
2
2
5
.
0
2
2
2
2
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0 l
k
n
t
e
t
e
j
i
k
n
t
e
t
e
i
t
e n
kl
n
klj
n
,
       
   





   













 



 






0 0 0
2
2
2
5
.
0
4
7
0
4
5
.
0
1
5
.
0
5
.
0
5
.
0
sin
5
.
0
3
2
,
1
,
0
n i j
n
j
i
n
i
j
t
e
L
x
n
n
C 




       
   





























0 0 0 0
2
2
1
2
1
2
2
1 2 5
.
0
1
5
.
0
1
5
.
0
1
5
.
0
1
1
5
.
0
1
k l m m m
m
l
k
j
m
l
k
j
i
n
       













 2
2
1
2
2
2
1
2
5
.
0
1
1
5
.
0
1
m
m
l
k
j
m
m
l
k
j
       













 2
2
1
2
2
2
1
2
1
5
.
0
1
5
.
0
1
m
m
l
k
j
m
m
l
k
j
       













 2
2
1
2
2
2
1
2
5
.
0
1
1
5
.
0
1
m
m
l
k
j
m
m
l
k
j
   
   
     






















 2
2
2
2
2
2
1
2
5
.
0
5
.
0
5
.
0
5
.
0
1
2
5
.
0
1
j
i
n
t
e
t
e
m
m
m
l
k
j
n
ij
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
18
   
             



















 2
2
2
1
2
2
2
2
2
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
2
1
m
m
l
k
j
i
n
t
e
t
e n
m
iklm
 
 
   
  

















 








0 0 0
2
5
4
3
2
2
1
2
1
3
1
7
0
1 2 3 1
5
.
0
1
5
.
0
1
5
.
0
sin
5
.
0
4
n n n n
n
n
n
n
n
L
x
n
n
C 

       














 2
5
4
3
2
2
1
2
5
4
3
2
2
1 1
5
.
0
1
1
5
.
0
1
n
n
n
n
n
n
n
n
n
n
       













 2
5
4
3
2
2
1
2
5
4
3
2
2
1 5
.
0
1
1
5
.
0
1
n
n
n
n
n
n
n
n
n
n
         

 





















0 0
2
2
2
5
3
2
5
4
3
2
2
1 5
.
0
5
.
0
5
.
0
1
5
.
0
1
2
5
.
0
1
k m m
k
n
n
n
n
n
n
n
       
   
   



























 2
5
2
1
2
5
2
2
5
2
5
.
0
5
.
0
1
5
.
0
1
5
.
0
1
5
.
0
1 1
5
n
n
t
e
t
e
k
n
m
k
n
m
k
n
n
   
            















 2
2
2
4
2
3
2
2
2
1 5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
1
4
3
2
m
k
n
n
n
n
t
e
t
e n
km
n
n
n
.
C11(x,t)=5+26+27-28+29+10+411,
where         
  







 









0 0 0
3
5
.
0
3
0
0
5
5
.
0
1
5
.
0
5
.
0
sin
5
.
0
2
l n k
l
k
n
t
e
L
x
l
l
L
C
D 



             

 




















0
2
2
2
2
2
2
2
1
5
.
0
1
5
.
0
1
5
.
0
5
.
0
5
.
0
1
m k
n
m
k
n
m
n
k
n
       
     
 
 



 






t
n
l
n
l
n
m
k
l u
d
u
H
u
H
u
e
u
e
u
e
u
e
0
1
5
.
0
5
.
0
5
.
0
5
.
0 ,
     
       
 
  


















 









0 0 0
2
2
2
2
5
.
0
2
5
0
2
0
6
1
5
.
0
1
5
.
0
1
5
.
0
sin
5
.
0
n k l
n
k
n
l
k
n
l
t
e
L
x
n
n
L
C
D 


                 
 
  

 













0 0
1
5
.
0
5
.
0
0
5
.
0
5
.
0
5
.
0
3
2
5
.
0
5
.
0
m
u
m
l
m
l
m
l
t
l
k
n u
d
d
H
H
e
e
u
e
u
e
u
e
k
l 



 ,
             
 
  

 




 












00
1
5
.
0
5
.
0
0
5
.
0
3
0
0
7
5
.
0
sin
5
.
0
m
t
n
m
n
m
m
n
n
n u
d
u
H
u
H
u
e
u
e
L
x
n
t
e
n
L
C
D 


,
           

    







 













0 0 0 0
5
.
0
5
.
0
5
.
0
3
0
0
8
5
.
0
1
5
.
0
sin
5
.
0
n m k
t
m
k
n
km
n
n u
H
u
e
u
e
k
t
e
L
x
n
n
L
C
D 



       u
d
u
H
u
H
u
H m
k
n
m
k
n
m
k
n 5
.
1
5
.
0
5
.
0 







 

 ,
           






     








 


 











0 0 0 00
5
.
0
3
0
0
9
5
.
0
1
5
.
0
1
5
.
0
sin
5
.
0
1
,
0
n k l m
t
m
n
l
k
klm
m
n u
I
u
e
u
e
l
k
L
x
n
t
e
n
L
C
D 




+Ik-l+n-m(u)+Ik-l-n-m-1(u)+Ik-l+n+m+1(u)-Ik-l-n-m-1(u)-Ik+l+n-m+1(u)-Im-k-l+n-(u)-Im+k+l+n+2(u)] d u,  >2,
     
 
 
 
L
n
y
d
L
y
n
t
y
t
I
0
1
5
.
0
cos
, 
 ,
Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024
19
           
 





    








 


 









0 0 0 0
1
2
5
.
0
3
3
0
0
10
5
.
0
1
5
.
0
5
.
0
sin
5
.
0
2
3
,
0
i n
t
k
n
i
n
i
i
k
u
I
u
I
n
L
x
i
t
e
i
L
C
D 



       
 






















0 0
2
2
1
2
2
2
1
2
1
1 2 5
.
0
1
5
.
0
1
5
.
0
1
m m m
m
l
k
n
m
m
l
k
n
m
       














 2
2
1
2
2
2
1
2
1
5
.
0
1
1
5
.
0
1
m
m
l
k
n
m
m
l
k
n
       














 2
2
1
2
2
2
1
2
1
5
.
0
1
1
5
.
0
1
m
m
l
k
n
m
m
l
k
n
       






















0
2
2
2
1
2
2
2
1
2
5
.
0
1
5
.
0
1
2
5
.
0
1
5
.
0
1
l l
m
m
m
l
k
n
m
m
l
k
n
       
         
u
d
m
m
l
k
n
u
e
u
e
u
e
u
e n
i
m
klm
i
2
2
2
1
2
2
2
5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
2
1












 ,  =3,
       





     









 


 










0 0 0 0 0
5
.
0
3
5
3
0
2
0
01
5
.
0
5
.
0
1
5
.
0
1
5
.
0
1
5
.
0
sin
5
.
0
3
,
0
i j k l n
i n
l
k
j
L
x
i
t
e
i
L
C
D 



           






















 2
2
2
2
2
2
1
5
.
0
1
5
.
0
1
5
.
0
1
n
l
k
j
i
n
l
k
j
i
n
l
k
j
i
       





















 2
2
2
2
1
1
1
1
5
.
0
1
n
l
k
j
ii
n
l
k
j
ii
n
l
k
j
i
           
 
   










00 0
1
5
,
0
ln
5
.
0
m
t u
m
n
m
n
m
n
jk
i u
d
d
I
I
e
e
u
e
u
e 



 ,  =3,
       





     
 








 


 











0 0 0 0 0 0
5
.
0
5
.
0
3
2
0
2
0
11
5
.
0
1
5
.
0
1
5
.
0
1
5
.
0
sin
5
.
0
3
,
0
n k l m i
t
n
n u
e
m
l
k
L
x
n
t
e
n
L
C
D 



   
        




 























 u
H
u
H
u
H
u
H
u
H
u
e m
l
i
n
k
m
l
i
n
k
m
l
i
n
k
m
l
i
n
k
m
l
i
n
k
klmi 5
.
0
5
.
0
5
.
0
5
.
0
5
.
0
         




 























 u
H
u
H
u
H
u
H
u
H m
l
i
n
k
m
l
i
n
k
m
l
i
n
k
m
l
i
n
k
m
l
i
n
k 5
.
0
5
.
1
5
.
1
5
.
0
5
.
1
         




 























 u
H
u
H
u
H
u
H
u
H m
l
i
n
k
m
l
i
n
k
m
l
i
n
k
m
l
i
n
k
m
l
i
n
k 5
.
1
5
.
0
5
.
0
5
.
1
5
.
0
  u
d
u
H m
l
i
n
k 5
.
2





 .

More Related Content

PDF
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
PDF
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
PDF
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
PDF
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
PDF
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
PDF
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
PDF
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
PDF
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...

Similar to On Approach for Estimation of Maximal Continuance of Diffusion Nand Ion Type of Doping (20)

PDF
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
PDF
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
PDF
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
PDF
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
PDF
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
PDF
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
PDF
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
PDF
On Increasing of Integration Rate of Elements of an Operational Transresistan...
PDF
On Increasing of Integration Rate of Elements of an Operational Transresistan...
PDF
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
PDF
02_AJMS_196_19_RA.pdf
PDF
02_AJMS_196_19_RA.pdf
PDF
Decreasing of quantity of radiation de fects in
PDF
01_AJMS_195_19_RA.pdf
PDF
01_AJMS_195_19_RA.pdf
PDF
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
PDF
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
PDF
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
PDF
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
PDF
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
On Increasing of Integration Rate of Elements of an Operational Transresistan...
On Increasing of Integration Rate of Elements of an Operational Transresistan...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
Decreasing of quantity of radiation de fects in
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
Ad

Recently uploaded (20)

PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PDF
Design Guidelines and solutions for Plastics parts
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
737-MAX_SRG.pdf student reference guides
PPTX
Safety Seminar civil to be ensured for safe working.
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PPT
Occupational Health and Safety Management System
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PPTX
Module 8- Technological and Communication Skills.pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
Design Guidelines and solutions for Plastics parts
Exploratory_Data_Analysis_Fundamentals.pdf
Information Storage and Retrieval Techniques Unit III
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Abrasive, erosive and cavitation wear.pdf
737-MAX_SRG.pdf student reference guides
Safety Seminar civil to be ensured for safe working.
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
Occupational Health and Safety Management System
III.4.1.2_The_Space_Environment.p pdffdf
Management Information system : MIS-e-Business Systems.pptx
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Categorization of Factors Affecting Classification Algorithms Selection
Module 8- Technological and Communication Skills.pptx
R24 SURVEYING LAB MANUAL for civil enggi
Ad

On Approach for Estimation of Maximal Continuance of Diffusion Nand Ion Type of Doping

  • 1. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 DOI: 10.5121/antj.2024.10201 1 ON APPROACH FOR ESTIMATION OF MAXIMAL CONTINUANCE OF DIFFUSION AND ION TYPE OF DOPING E.L. Pankratov 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State Agrotechnical University, 97 Gagarin avenue, Nizhny Novgorod, 603950, Russia ABSTRACT In this paper an analytical approach for estimation of maximal continuance of manufacturing of integrated circuit elements by dopant diffusion and ion implantation has been introduced. We analyzed influence of parameters of considered technological processes on the value of it's maximal continuance. KEYWORDS Manufacturing of integrated circuit elements; dopant diffusion; ion implantation; maximal continuance of technological processes; analytical approach for prognosis. 1. INTRODUCTION One of the intensively solved problems for production of solid-state electronics devices is increasing of the integration rate of elements of integrated circuit (p-n- junctions; field-effect and bipolar transistors; ...), as well as increasing of their performance [1-8]. Different methods are using for manufacture of elements of integrated circuits. Some of them are ion and diffusion types of doping of required sections of electronic materials, epitaxial growth of multilayer structures, fusion of materials [9-17]. Main aim of the present paper is estimation of maximal continuance of ion and diffusion types of doping. The accompanying of the present paper is development of analytical approach for analysis of the considered continuance. 2. METHOD OF SOLUTION In this section we determine spatio-temporal distributions of concentrations of infused and implanted dopants. To determine these distributions we calculate appropriate solutions of the second Fick's law [1,3,18,19]            x t x C D x t t x C C       , , (1) Boundary and initial conditions for the equations are for finite source of dopant
  • 2. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 2   0 , 0     x x t x C ,   0 ,    L x x t x C , C (x,0)=f (x); (2a) for infinite source of dopant C (0,t)=C0,   0 ,    L x x t x C , C (x>0,0)=0. (2b) The function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; T is the temperature of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion coefficient could be changed with changing materials of heterostructure, with changing temperature of materials (including annealing), with changing concentrations of dopant and radiation defects. We approximate dependences of dopant diffusion coefficient on parameters by the following relation with account results in Refs. [19-21]                               2 * 2 2 * 1 , , 1 , , 1 , V t x V V t x V T x P t x C T x D D L C      . (3) Here the function DL (x,T) describes the spatial (in heterostructure) and temperature (due to Arrhenius law) dependences of diffusion coefficient of dopant. The function P (x,T) describes the limit of solubility of dopant. Parameter  [1,3] describes average quantity of charged defects interacted with atom of dopant [19]. The function V (x,t) describes the spatio-temporal distribution of concentration of radiation vacancies with equilibrium distribution V* . The considered concentrational dependence of dopant diffusion coefficient has been described in details in [19]. It should be noted, that using diffusion type of doping did not generation radiation defects. In this situation 1= 2= 0. We determine spatio-temporal distributions of concentrations of radiation defects by solving the following system of equations [20,21]                                                                      t x V t x I T x k t x V T x k x t x V T x D x t t x V t x V t x I T x k t x I T x k x t x I T x D x t t x I V I V V V V I I I I , , , , , , , , , , , , , , , , , 2 , , 2 , (4) Boundary and initial conditions for these equations are   0 , 0     x x t x  ,   0 ,    L x x t x  ,  (x,0)=f (x). (5) Here  =I,V. The function I (x,t) describes the spatio-temporal distribution of concentration of radiation interstitials with equilibrium distribution I* ; D(x,T) are the diffusion coefficients of point radiation defects; terms V2 (x,t) and I2 (x,t) correspond to generation divacancies and diinterstitials; kI,V(x,T) is the parameter of recombination of point radiation defects; kI,I(x,T) and kV,V(x,T) are the parameters of generation of simplest complexes of point radiation defects. Further we determine distributions in space and time of concentrations of divacancies V(x,t) and diinterstitials I(x,t) by solving the following system of equations [20,21]
  • 3. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 3                                                            t x V T x k t x V T x k x t x T x D x t t x t x I T x k t x I T x k x t x T x D x t t x V V V V V V I I I I I I , , , , , , , , , , , , , , 2 , 2 ,             (6) Boundary and initial conditions for these equations are   0 , 0      x x t x  ,   0 ,     L x x t x  ,  (x,0)=f (x). (7) Here D(x,T) are the diffusion coefficients of the above complexes of radiation defects; kI(x,T) and kV(x,T) are the parameters of decay of these complexes. We calculate distributions of concentrations of point radiation defects in space and time by recently elaborated approach [22]. The approach based on transformation of approximations of diffusion coefficients in the following form: D(x,T)=D0[1+ g(x, T)], where D0 are the average values of diffusion coefficients, 0<1, |g(x,T)|1. We also used analogous transformation of approximations of parameters of recombination of point defects and parameters of generation of their complexes: kI,V(x,T)=k0I,V [1+I,VgI,V(x,T)], kI,I(x,T)=k0I,I[1+I,I gI,I(x,T)] and kV,V(x,T)=k0V,V[1+V,V gV,V(x,T)], where k01,2 are the their average values, 0I,V<1, 0I,I<1, 0V,V<1, | gI,V(x,T)|1, | gI,I(x, T)|1, |gV,V(x,T)|1. Let us introduce the following dimensionless variables:     * , , ~ I t x I t x I  ,     * , , ~ V t x V t x V  , V I V I D D k L 0 0 , 0 2   ,  = x/Lx, V I D D k L 0 0 , 0 2      , 2 0 0 L t D D V I   . The introduction leads to transformation of Eqs. (4) and conditions (5) to the following form                                                                                                                                        , ~ , 1 , ~ , ~ , 1 , ~ , 1 , ~ , ~ , 1 , ~ , ~ , 1 , ~ , 1 , ~ 2 , , , , 0 0 0 2 , , , , 0 0 0 V T g V I T g V T g D D D V I T g V I T g I T g D D D I V V V V V V I V I V V V I V I I I I I V I V I I I V I I (8)   0 , ~ 0          ,   0 , ~ 1          ,     * , , ~        f  . (9) We determine solutions of Eqs. (8) with conditions (9) framework recently introduced approach [22], i.e. as the power series               0 0 0 , ~ , ~ i j k ijk k j i           . (10) Substitution of the series (10) into Eqs.(8) and conditions (9) gives us possibility to obtain equations for initial-order approximations of concentration of point defects      , ~ 000 and corrections for them      , ~ ijk , i 1, j 1, k 1. The equations are presented in the Appendix.
  • 4. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 4 Solutions of the equations could be obtained by standard Fourier approach [23,24]. The solutions are presented in the Appendix. Now we calculate distributions of concentrations of simplest complexes of point radiation defects in space and time. To determine the distributions we transform approximations of diffusion coefficients in the following form: D(x,T)=D0[1+ g(x,T)], where D0 are the average values of diffusion coefficients. In this situation the Eqs.(6) could be written as                                                                      t x V T x k t x V T x k x t x T x g x D t t x t x I T x k t x I T x k x t x T x g x D t t x V V V V V V V V I I I I I I I I , , , , , , 1 , , , , , , , 1 , 2 , 0 2 , 0               Farther we determine solutions of above equations as the following power series            0 , , i i i t x t x     . (11) Now we used the series (11) into Eqs.(6) and appropriate boundary and initial conditions. The using gives the possibility to obtain equations for initial-order approximations of concentrations of complexes of defects 0(x,t), corrections for them i(x,t) (for them i 1) and boundary and initial conditions for them. We remove equations and conditions to the Appendix. Solutions of the equations have been calculated by standard approaches [23,24] and presented in the Appendix. Now we calculate distribution of concentration of dopant in space and time by using the approach, which was used for analysis of radiation defects. To use the approach we consider following transformation of approximation of dopant diffusion coefficient: DL(x,T)=D0L[1+ LgL(x,T)], where D0L is the average value of dopant diffusion coefficient, 0L< 1, |gL(x,T)|1. Farther we consider solution of Eq. (1) as the following series:            0 1 , , , , i j ij j i L t x C t z y x C   . Using the relation into Eq. (1) and conditions (2) leads to obtaining equations for the functions Cij(x,t) (i 1, j 1), boundary and initial conditions for them. The equations are presented in the Appendix. Solutions of the equations have been calculated by standard approaches (see, for example, [23,24]). The solutions are presented in the Appendix. We analyzed distributions of concentrations of dopant and radiation defects in space and time analytically by using the second- order approximations on all parameters, which have been used in appropriate series. Usually the second-order approximations are enough good approximations to make qualitative analysis and to obtain quantitative results. All analytical results have been checked by numerical simulation. Let us to use recently introduce criterion to estimate maximal value of continuance of technological process [25]. In the framework of the criterion let us approximate changing of considered concentrations in time by the following step-wise function (see Figs. 1-4)  (x,t) = a0+a1[1(t)-1(t-)], (12)
  • 5. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 5 where 1(t) is the single step-wise function [26]. Not yet known parameters a0, a1 and  could have different values in different points of the considered material. Values of these parameters were determined were determined by minimization of the following the mean-squared error          N t dt t x t x C U 0 2 , ,  , (14) where tN is the observation time of transition process. Minimization of the mean- square error (14) gives a possibility to obtain the following relations for calculation of the considered parameters       1 0 0 , a t a t d t x C N tN , (15a)         1 0 0 , a a t d t x C , (15b) C (x,)=a0+0.5a1. (15c) The criterion is optimal. However the approach did not leads to obtaining analytical relations for calculation of the considered maximal value of continuance of technological process. To obtain analytical relations for the considered relations it is attracted an interest asymptotically optimal criteria. To obtain transition to the criteria one shall consider the following limiting case tN. In this case one can obtain the following relations: a0 = C(x,) and a1= C(x,0)-C(x,). Before consideration of the following limiting transition one shall the transform relation (15a) to the following form         1 0 0 , a t d a t x C N t . Further obtaining of time of step-wise changing of approximation function (13) under condition of the limiting case tN one can obtain the following criterion to estimate time scales, which known as rectangle with equal square                     , 0 , , , 0 x C x C t d x C t x C x . (16) Monotonous in time concentrations of dopant (see Figs. 1 and 2) could be approximated by the following functions C(x,t) =  [1-exp(-t/)], C(x,t) =  exp(-t/). (17) Substitution of the above relations into the relation (16) at fixed value of observation time of the diffusion process tN gives a possibility to obtain the following relation for the considered time  =  [1-exp (-tN/)].
  • 6. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 6 t C(x,t) C(x,) tN opt(x) (x) a0(x) a1(x) 2 3 C(x,0) 1 Fig. 1. Monotonic increasing of concentration of dopant (curve 1); optimal approximation of transition process, which was obtained by minimization of mean-squared error (14) (curve 2); asymptotically optimal approximation of transition process (curve 3) t C(x,t) C(x,0) a1(x) a0(x) tN opt(x)(x) 1 2 3 C(x,) Fig. 2. Monotonic decreasing of concentration of dopant (curve 1); optimal approximation of transition process, which was obtained by minimization of mean-squared error (14) (curve 2); asymptotically optimal approximation of transition process (curve 3) Consideration limiting case tN leads to equality of single time scale of monotonous variation in time of dopant concentration and time scale, which was determined by relation (16). It should be noted, that relation (15c) at the limiting case tN  takes the form of another asymptotically optimal criterion. In the framework the second asymptotically optimal criterion maximal value maximal value of diffusion doping could be estimated as time of changed of the considered concentration in two times, i.e. C (x,)=[C(x,0) +C(x,)]/2. (18) Fig. 3. Non-monotonic decreasing of concentration of dopant (curve 1); optimal approximation of transition process, which was obtained by minimization of mean-squared error (14) (curve 2); asymptotically optimal approximation of transition process (curve 3)
  • 7. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 7 t C(x,t) C(x,) a1(x) a0(x) tN opt(x) C(x,0) 1 2 Fig. 4. Non-monotonic increasing of concentration of dopant (curve 1); optimal approximation of transition process, which was obtained by minimization of mean-squared error (14) (curve 2); asymptotically optimal approximation of transition process (curve 3) However the first asymptotically optimal criterion (15) is nonlinear. Nonlinear criterion leads to obtaining smaller quantity of analytical relations for the considered maximal value of technological processes in comparison with criterion (16). In this situation we will use criterion (16) in future. However the criterion (16) has own disadvantage: the criterion could be used for monotonous in time concentrations of dopant. For non-monotonous in time concentrations of dopant the criterion (16) leads to underestimated values of the considered time. In this situation the considered time could takes negative values. It is attracted an interest maximal value of the considered time will be achieves, when initial distribution of concentration of infused dopant is presents near one boundary of the considered structure (i.e. f (x)= (x)) and point of observation of this concentration is presented on other boundary of the considered structure (i.e. x = L), which should be doped. If the observation time on diffusion doping tN is large in comparison with limiting time of technological process , than transitions processes are absent at times t >. 3. DISCUSSION In this section we analyzed limiting continuance of technological process for different profiles of diffusion coefficients without any variations in time (for example, annealing temperature is constant). Wide using have different multilayer structures. In this situation we will consider several normalized profiles of dopant diffusion coefficient g (x), which are presented on Fig. 5. Analysis of limiting continuance of technological process shows, that in the case of infusion of dopant from finite source maximal variation of the considered continuance could be find in symmetrical structure with respect to it's middle (see Fig. 6). In the case of infusion of dopant from infinite source maximal variation of the considered continuance could be find in asymmetrical structure with respect to it's middle (see Fig. 7). Multilayer structures, which were presented on Figs. 6a and 7a, correspond to maximal increasing of the considered limiting continuance of technological processes (at fixed average value of dopant diffusion coefficient D0). Multilayer structures, which were presented on Figs. 6b and 7b, correspond to maximal decreasing of the considered limiting continuance of technological processes (at fixed average value of dopant diffusion coefficient D0).
  • 8. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 8 g0(x) 0 g1(x) g2(x) 0 g3(x) 0 0 L 0 g4(x) g5(x) g6(x) 0 0 0 Fig. 5. Normalized profiles of dopant diffusion coefficients We analyzed dependences of the considered limiting continuance on thicknesses of layers of multilayer structures. Variation of thicknesses of layers of multilayer structures not gives a possibility to find profiles of dopant diffusion coefficient, which correspond to larger influence on the considered continuance, in comparison with profiles, which were presented on Figs. 6 and 7. Increasing of quantity of layers of the considered multilayer structures leads to decreasing of influence of variation of dopant diffusion coefficient on the limiting continuance of technological process. Figs. 8 show dependences of the considered continuance on the value of parameter  for profiles of dopant diffusion coefficient, which were presented on Figs. 6 and 7. These figures show, that the considered continuance could be decreased on several percents and increased on several orders in comparison with continuance 0 for averaged value of dopant diffusion coefficient D0. The continuance 0 for averaged value of dopant diffusion coefficient D0 is equal to 0=L2 /6D0 for finite source of dopant and 0=L2 /2D0 for infinite source of dopant. 0 L/4 L/2 3L/4 L 2 1 0 -1 -2 Fig. 6a. Normalized profiles of dopant diffusion coefficient, which correspond to maximal increasing of the limiting continuance of diffusion doping from finite source of dopant
  • 9. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 9 0 L/4 L/2 3L/4 L 2 1 0 -1 -2 Fig. 6b. Normalized profiles of dopant diffusion coefficient, which correspond to maximal decreasing of the limiting continuance of diffusion doping from finite source of dopant 0 L/4 L/2 3L/4 L 2 1 0 -1 -2 Fig. 7a. Normalized profiles of dopant diffusion coefficient, which correspond to maximal increasing of the limiting continuance of diffusion doping from infinite source of dopant 0 L/4 L/2 3L/4 L 2 1 0 -1 -2 Fig. 7b. Normalized profiles of dopant diffusion coefficient, which correspond to maximal decreasing of the limiting continuance of diffusion doping from infinite source of dopant
  • 10. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 10 Fig. 8a. Dependences of limiting continuance of diffusion doping for finite source of dopant on value of parameter . Curve 1 corresponds to profile of dopant diffusion coefficient with decreased limiting continuance of technological process (see Fig. 6b). Curve 2 corresponds to profile of dopant diffusion coefficient with increased limiting continuance of technological process (see Fig. 6a) Fig. 8b. Dependences of limiting continuance of diffusion doping for infinite source of dopant on value of parameter . Curve 1 corresponds to profile of dopant diffusion coefficient with decreased limiting continuance of technological process (see Fig. 7b). Curve 2 corresponds to profile of dopant diffusion coefficient with increased limiting continuance of technological process (see Fig. 7a) x D(x) D1 D2 0 L a1 fC(x) D0 D3 a2 Fig. 9. Profile of dopant diffusion coefficient, which corresponds to maximal increasing of limiting continuance of ion doping. Profile of dopant diffusion coefficient, which corresponds to maximal decreasing of limiting continuance of ion doping, has the same difference with the above profile as for profiles 6b и 6a
  • 11. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 11 Now let us consider influence of temporal variations of dopant diffusion coefficient on value of limiting continuance of technological process in homogenous material. The considered situation could be consider, for example, for nonstationary annealing of dopant and/or radiation defects, which are presents in homogenous material. In this case (as for multilayer structure) increasing of the considered limiting continuance is essentially smaller, than decreasing one at fixed value of averaged diffusion coefficient. The same conclusion could be obtained during analysis of joint changing of dopant diffusion coefficient in space and time. Analogous conclusions about influence of variations of dopant diffusion coefficient on limiting continuance of technological process could be obtained for ion type of doping. At the same time one can find changing of thicknesses of layers of multilayer structures (see Fig. 9). This changing taking into account presents of maximal value of concentration of dopant in depth of the multilayer structure, but not on it's external boundary as for diffusion doping. Also qualitatively similar influence of spatial and temporal variations of dopant diffusion coefficients of radiation defects and accounted other parameters (parameters of recombination of point radiation defects; parameters of generation of complexes of point defects; parameters of decay of complexes of radiation defects) on limiting value of continuance of annealing time. 4. CONCLUSIONS In this paper we introduce an analytical approach to estimate limiting value of continuance of technological process during doping (doping by diffusion; ion doping) of materials to manufacture elements of integrated circuits. We analyzed influence of parameters on value of the considered limiting continuance. REFERENCES [1] Lachin, V.I., Savelov, N.S. (2001) "Electronics", Rostov on Donu: Phoenix. [2] Alexenko, A.G., Shagurin, I.I. (1990), "Microcircuitry", Moscow: Radio and communication. [3] Avaev, N.A., Naumov, Yu.E., Frolkin, V.T. (1991), Basis of microelectronics, Moscow: Radio and communication. [4] Wang, Z., Duan, Q., Roh, J. (2014), Analog. Integrated circuits and signal processing, Vol. 81, pp. 495-501. [5] Fathi, D., Forouzandeh, B., Masoumi, N. (2009), Nano, Vol. 4, № 4, pp. 233-238. [6] Chachuli, S.A., Fasyar, P.N.A., Soin, N., Karim, N.M., Yusop, N., 2014, Materials science in semiconductor processing, Vol. 24, pp. 9-14. [7] Ageev, A.O., Belyaev, A.E., Boltovets, N.S., Ivanov, V.N., Konakova, R.V., Kudrik, Ya.Ya., Litvin, P.M. Milenin, V.V., Sachenko, A.V. (2009), Semiconductors, Vol. 43, № 7, pp. 897-903. [8] Li, Z., Waldron, J., Detchprohm, T., Wetzel, C., Karlicek, R.F., Chow, Jr.T.P. (2013), Applied physics letters, Vol. 102, № 19, pp. 192107-192109. [9] Tsai, J.-H., Chiu, Sh.-Y., Lour, W.-Sh., Guo, D.-F. (2009), Semiconductiors, Vol. 43, № 7, pp. 971- 974. [10] Alexandrov, O.V., Zakhar'in, A.O., Sobolev, N.A., Shek, E.I., Makoviychuk, M.M., Parshin, E.O. 1998, Semiconductors, Vol. 32, № 9, pp. 1029-1032. [11] Kumar, M.J., Singh, T.V. 2008, International journal of nanoscience, Vol. 7, № 2-3, pp. 81-84. [12] Sinsermsuksakul, P., Hartman, K., Kim, S.B., Heo, J., Sun, L., Park, H.H., Chakraborty, R., Buonassisi, T., Gordon, R.G., 2013, Applied physics letters, Vol. 102, № 5, pp. 053901-053905. [13] Reynolds, J.G., Reynolds, C.L., Mohanta, Jr.A., Muth, J.F., Rowe, J.E., Everitt, H.O., Aspnes, D.E., 2013, Applied physics letters, Vol. 102, № 15, pp. 152114-152118. [14] Ong, K.K., Pey, K.L., Lee, P.S., Wee, A.T.S., Wang, X.C., Chong, Y.F., 2006, Applied physics letters, Vol. 89, № 17, pp. 172111-172114. [15] Wang, H.T., Tan, L.S., Chor, E.F., 2006, Journal of applied physics, Vol. 98, № 9, pp. 094901- 094905.
  • 12. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 12 [16] Shishiyanu, S.T., Shishiyanu, T.S., Railyan, S.K., 2002, Semiconductors, Vol. 36, № 5,, pp. 611- 617. [17] Bykov, Yu.V., Yeremeev, A.G., Zharova, N.A., Plotnikov, I.V., Rybakov, K.I., Drozdov, M.N., Drozdov, Yu.N., Skupov, V.D., 2003, Radiophysics and Quantum Electronics, Vol. 43, № 3, pp. 836-843. [18] Kozlivsky, V.V., 2003, "Modification of semiconductors by proton beams", Sant-Peterburg: Science. [19] Gotra, Z.Yu., 1991, "Technology of microelectronic devices", Moscow: Radio and communication. [20] Vinetskiy, V.L., Kholodar', G.A., 1979, "Radiative physics of semiconductors", Kiev: Naukova Dumka. [21] Fahey, P.M., Griffin, P.B., Plummer, J.D., 1989, Reviews in modern physics, Vol. 61, № 2, pp. 289- 388. [22] Pankratov, E.L., 2007, Russian microelectronics, Vol. 36, № 1, pp. 33-39. [23] Tikhonov, A.N., Samarskii, A.A., 1972, "The mathematical physics equations", Moscow: Science. [24] Carslaw, H.S., Jaeger, J.C., 1964, "Conduction of heat in solids", London, Oxford University Press. [25] Pankratov, E.L., Bulaeva, E.A., 2013, Reviews in theoretical science, Vol. 1, № 3, pp. 305-316. [26] Korn, G., Korn, T., 1968, "Mathematical Handbook for scientists and engineers. Definitions, theorems and formulas for reference and review" (Second edition), New York: McGraw-Hill Book Company. APPENDIX Equations for functions    , ~ ijk I andи    , ~ ijk V , i0, j0, k0 and conditions for them could be written as     2 000 2 0 0 000 , ~ , ~            I D D I V I ,     2 000 2 0 0 000 , ~ , ~            V D D V I V ;                                                                                , ~ , , ~ , ~ , ~ , , ~ , ~ 100 0 0 2 00 2 0 0 00 100 0 0 2 00 2 0 0 00 i V I V i I V i i I V I i V I i V T g D D V D D V I T g D D I D D I , i 1;                                                                      , ~ , ~ , 1 , ~ , ~ , ~ , ~ , 1 , ~ , ~ 000 000 , , 2 010 2 0 0 010 000 000 , , 2 010 2 0 0 010 V I T g V D D V V I T g I D D I V I V I I V V I V I V I ;                                                                                                  , ~ , ~ , ~ , ~ , 1 , ~ , ~ , ~ , ~ , ~ , ~ , 1 , ~ , ~ 010 000 000 010 , , 2 020 2 0 0 020 010 000 000 010 , , 2 020 2 0 0 020 V I V I T g V D D V V I V I T g I D D I V I V I V I V I V I V I ;
  • 13. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 13                                                              , ~ , 1 , ~ , ~ , ~ , 1 , ~ , ~ 2 000 , , 2 001 2 0 0 001 2 000 , , 2 001 2 0 0 001 V T g V D D V I T g I D D I V V I I I V I I I I V I ;                                                                                                                                         , ~ , ~ , ~ , ~ , 1 , ~ , ~ , ~ , ~ , ~ , ~ , ~ , 1 , ~ , , ~ , ~ 100 100 100 0100 , , 010 0 0 2 110 2 0 0 110 100 000 000 100 , , 010 0 0 2 110 2 0 0 110 V I V I T g V T g D D V D D V V I V I T g I T g D D I D D I V V V V V I V I V I I I I I V I V I ;                                                                      , ~ , ~ , 1 , ~ , ~ , ~ , ~ , 1 , ~ , ~ 000 001 , , 2 002 2 0 0 002 000 001 , , 2 002 2 0 0 002 V V T g V D D V I I T g I D D I V V V V I V I I I I V I ;                                                                                                                        , ~ , ~ , 1 , ~ , , ~ , ~ , ~ , ~ , 1 , ~ , , ~ , ~ 100 000 001 0 0 2 101 2 0 0 101 000 100 001 0 0 2 101 2 0 0 101 V I T g V T g D D V D D V V I T g I T g D D I D D I V V V I V I V I I I V I V I ;                                                                                                            , ~ , ~ , 1 , ~ , ~ , 1 , ~ , ~ , ~ , ~ , 1 , ~ , ~ , 1 , ~ , ~ 001 000 , , 010 000 , , 2 011 2 0 0 011 000 001 , , 010 000 , , 2 011 2 0 0 011 V I t g V V T g V D D V V I T g I I T g I D D I V I V I V V V V I V V I V I I I I I V I ;   0 , ~ 0     x ijk     ,   0 , ~ 1     x ijk     (i 0, j 0, k 0);     * 000 0 , ~      f  ,   0 0 , ~   ijk (i 1, j 1, k 1). Solutions of the above equations with appropriate boundary and initial conditions could be written as           1 0 000 2 , ~ n n n e c F L L F         , where       1 0 * cos 1 u d u f u n F n n     ,     I V nI D D n e 0 0 2 2 exp      , cn() = cos ( n ),     V I nV D D n e 0 0 2 2 exp      ;
  • 14. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 14                                                          1 0 1 0 100 0 0 00 1 0 1 0 100 0 0 00 , ~ , 2 , ~ , ~ , 2 , ~ n i V n nI nV n I V i n i I n nI nI n V I i d u d u u V T u g u s e e c n D D V d u d u u I T u g u s e e c n D D I                   , i 1, where sn() = sin ( n );                             1 0 1 0 1 0 1 0 010 2 , , , ~ n n n n n n n n n w c v c u c e e c c c                          d u d v d w d w v u V w v u I T w v u g V I V I , , , ~ , , , ~ , , , 1 000 000 , ,   ;                       1 0 1 0 , , 0 0 020 , 1 2 , ~ n V I V I n n n n V I T u g u c e e c D D                          d u d u V u I u V u I , ~ , ~ , ~ , ~ 010 000 000 010   ;                         1 0 1 0 2 000 , , 001 , ~ , 1 2 , ~ n n n n n d u d u T u g u c e e c                  ;                           1 0 1 0 000 001 , , 002 , ~ , ~ , 1 2 , ~ n n n n n d u d u u T u g u c e e c                    ;                                                                                                                                                                              nV n n V I V I n nV n i V n nV nV n I V n nI n V I V I n nI n i I n nI nI n V I e c d u d u V u I u V u I T u g u c e d u d u u V T u g u s e e c n D D V c e d u d u V u I u V u I T u g u c e d u d u u I T u g u s e e c n D D I 10 1 0 000 100 100 000 , , 1 0 1 0 100 0 0 110 10 1 0 100 000 000 100 , , 1 0 1 0 100 0 0 110 , ~ , ~ , ~ , ~ , 1 2 , ~ , 2 , ~ , ~ , ~ , ~ , ~ , 1 2 , ~ , 2 , ~ ;                                                                                                                1 0 1 0 100 000 , , 1 0 1 0 001 0 0 101 1 0 1 0 000 100 , , 1 0 1 0 001 0 0 101 , ~ , ~ , 1 2 , ~ , 2 , ~ , ~ , ~ , 1 2 , ~ , 2 , ~ n V I V I n nV nV n n V n nV nV n I V n V I V I n nI nI n n I n nI nI n V I d u d u V u I T u g u c e e c d u d u u V T u g u s e e c n D D V d u d u V u I T u g u c e e c d u d u u I T u g u s e e c n D D I                                   ;                                                                                                                  d u d u V u I T u g u V u V T u g u c e e c V d u d u V u I T u g u I u I T u g u c e e c I V I V I n V V V V n nV nV n V I V I n I I I I n nI nI n , ~ , ~ , 1 , ~ , ~ , 1 2 , ~ , ~ , ~ , 1 , ~ , ~ , 1 2 , ~ 001 000 , , 1 0 1 0 010 000 , , 011 000 001 , , 1 0 1 0 010 000 , , 011 Equations for functions i(x,t), i 0, boundary and initial conditions takes the form
  • 15. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 15                                            t x V T x k t x V T x k x t x D t t x t x I T x k t x I T x k x t x D t t x V V V V V V I I I I I I , , , , , , , , , , , , 2 , 2 0 2 0 0 2 , 2 0 2 0 0         ;                                                      x t x T x g x D x t x D t t x x t x T x g x D x t x D t t x i V V V i V V i V i I I I i I I i I                 , , , , , , , , 1 0 2 2 0 1 0 2 2 0 , i1;   0 , 0      x i x t x  ,   0 ,     L x i x t x  , i0; 0(x,0)=f (x), i(x,0)=0, i1. Solutions of the above equations could be written as                         1 1 0 0 2 2 , n n n n n n n t e x c n L t e x c F L L F t x                          t L I I I n n d u d u I T u k u I T u k u c e 0 0 2 , , , , ,      , where     2 0 2 2 exp L t D n t en        ,         x L n n u d u f u c F 0   ;                             1 0 0 1 2 , , 2 , , , n t L i I n n n n i d u d u u T u g u s e t e x c n L t z y x            , i1. Equations for initial-order approximation of concentration of dopant C00(x,t) and corrections for them Cij(x,t) (i 1, j 1), boundary and initial conditions for the above equations could be written as     2 00 2 0 00 , , x t x C D t t x C L      ;                          x t x C T x g x D x t x C D t t x C i L L i L i , , , , 10 0 2 0 2 0 0 , i 1;                           x t x C T x P t x C x D x t x C D t t x C L L , , , , , 00 00 0 2 01 2 0 01   ;                               x t x C T x P t x C t x C x D x t x C D t t x C L L , , , , , , 00 1 00 01 0 2 02 2 0 02                    x t x C T x P t x C x D L , , , 01 00 0   ;                               x t x C T x P t x C t x C x D x t x C D t t x C L L , , , , , , 00 1 00 01 0 2 02 2 0 02                    x t x C T x P t x C x D L , , , 01 00 0   ;                               x t x C T x P t x C t x C x D x t x C D t t x C L L , , , , , , 00 1 00 10 0 2 11 2 0 11  
  • 16. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 16                                 x t x C T x g x D x t x C T x P t x C x D L L L , , , , , 01 0 10 00 0   ; for finite source of dopant   0 , 0   x ij x t x C   ,   0 ,  L x ij x t x C   , i 0, j 0; C00(x,0) = fC (x), Cij(x,0) = 0, i 1, j 1. for infinite source of dopant C00(0,t)=C0,   0 ,  L x ij x t x C   , Cij(x>0,t)=0, C00(0,0) = C0, Cij(x >0,0)=0, i 0, j 0. Solutions of the above equations with account boundary and initial conditions by standard Fourier approach takes the form for finite source of dopant           1 0 00 2 , n nC n nC C t e x c F L L F t x C , where     2 0 2 2 exp L t D n t e C nC    ,       L C n nC u d u f u c F 0 ;                          1 0 0 10 2 0 , , 2 , , , n t L i L n nC nC n nC i d u d u u C T u g u s e t e x c F n L t z y x C     , i 1;                          1 0 0 00 00 2 01 , , , 2 , n t L n nC nC n nC d u d u u C T u P u C u s e t e x c F n L t x C        ;                               1 0 0 00 1 00 01 2 02 , , , , 2 , n t L n nC nC n nC d u d u u C T u P u C u C u s e t e x c F n L t x C                                    1 0 0 00 1 00 01 2 , , , , 2 n t L n nC nC n nC d u d u u C T u P u C u C u s e t e x c F n L                               1 0 0 01 00 2 , , , 2 n t L n nC nC n nC d u d u u C T u P u C u s e t e x c F n L        ;                         1 0 0 01 2 11 , , 2 , n t L L n nC nC n nC d u d u u C T u g u s e t e x c F n L t x C                            1 0 0 10 00 2 , , , 2 n t L n nC nC n nC d u d u u C T u P u C u s e t e x c F n L                                  1 0 0 00 1 00 10 2 , , , , 2 n t L n nC nC n nC d u d u u C T u P u C u C u s e t e x c F n L         . for infinite source of dopant                           0 5 . 0 0 00 5 . 0 sin 5 . 0 1 2 1 , n n t e L x n n C t x C   ,                                 0 00 5 . 0 5 . 0 5 . 0 3 0 0 10 5 . 0 sin 5 . 0 2 , n m t m n n u e u e t e L x n n L C D t x C         u d u H u H m n m n      1 ,                                    0 10 5 . 0 2 0 5 . 0 6 0 3 2 0 20 5 . 0 5 . 0 sin 5 . 0 2 , n m t k k k u e n t e L x k k L C D t x C                                   u m n m n m n k n k n n u d d H H e e u H u H u e 0 1 5 . 0 5 . 0 1 5 . 0      ,
  • 17. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 17 where                L n y d L y n t y t H 0 5 . 0 sin ,   ,   2 1 01 ,       t x C , where                                    0 0 0 5 , 0 5 . 0 2 3 0 1 5 . 0 1 5 . 0 sin 5 . 0 2 n k m n km n kk mm nn t e t e k t e L x n n C                        2 2 1 5 . 0 1 1 k n m k n mm , ekm(t)=(t) ek+0.5(t) em+0.5(t),                                           0 0 0 0 0 5 . 0 3 5 0 2 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 sin 5 . 0 3 , 0 n k l j i n j i l k t e L x n n C                                     2 2 2 2 2 1 5 . 0 1 5 . 0 1 1 j i l k n j i l k n j i l k nn                        2 2 2 2 1 5 . 0 1 1 5 . 0 1 j i l k n j i l k n                                     2 2 2 2 2 2 5 . 0 1 2 5 . 0 1 1 5 . 0 1 l k j i n l k j i n l k j i n                                 2 2 2 2 2 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 j i l k n t e t e n klij ,  = 3,   4 3 2 02 ,       t x C , where                                                  0 1 0 1 2 2 2 2 3 5 0 3 1 5 . 0 1 5 . 0 5 . 0 5 . 0 sin 4 n k l m k n l k n k n k n l l L x n C                                                     0 0 2 2 2 2 2 2 2 2 2 2 5 . 0 1 5 . 0 1 5 . 0 5 . 0 5 . 0 1 5 . 0 5 . 0 i j i l j i l j j i l i l i l k n                                                   2 2 2 5 . 0 2 2 2 2 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 l k n t e t e j i k n t e t e i t e n kl n klj n ,                                                0 0 0 2 2 2 5 . 0 4 7 0 4 5 . 0 1 5 . 0 5 . 0 5 . 0 sin 5 . 0 3 2 , 1 , 0 n i j n j i n i j t e L x n n C                                               0 0 0 0 2 2 1 2 1 2 2 1 2 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 1 5 . 0 1 k l m m m m l k j m l k j i n                       2 2 1 2 2 2 1 2 5 . 0 1 1 5 . 0 1 m m l k j m m l k j                       2 2 1 2 2 2 1 2 1 5 . 0 1 5 . 0 1 m m l k j m m l k j                       2 2 1 2 2 2 1 2 5 . 0 1 1 5 . 0 1 m m l k j m m l k j                                      2 2 2 2 2 2 1 2 5 . 0 5 . 0 5 . 0 5 . 0 1 2 5 . 0 1 j i n t e t e m m m l k j n ij
  • 18. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 18                                       2 2 2 1 2 2 2 2 2 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 2 1 m m l k j i n t e t e n m iklm                                       0 0 0 2 5 4 3 2 2 1 2 1 3 1 7 0 1 2 3 1 5 . 0 1 5 . 0 1 5 . 0 sin 5 . 0 4 n n n n n n n n n L x n n C                          2 5 4 3 2 2 1 2 5 4 3 2 2 1 1 5 . 0 1 1 5 . 0 1 n n n n n n n n n n                       2 5 4 3 2 2 1 2 5 4 3 2 2 1 5 . 0 1 1 5 . 0 1 n n n n n n n n n n                                   0 0 2 2 2 5 3 2 5 4 3 2 2 1 5 . 0 5 . 0 5 . 0 1 5 . 0 1 2 5 . 0 1 k m m k n n n n n n n                                             2 5 2 1 2 5 2 2 5 2 5 . 0 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 1 5 n n t e t e k n m k n m k n n                                  2 2 2 4 2 3 2 2 2 1 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 1 4 3 2 m k n n n n t e t e n km n n n . C11(x,t)=5+26+27-28+29+10+411, where                               0 0 0 3 5 . 0 3 0 0 5 5 . 0 1 5 . 0 5 . 0 sin 5 . 0 2 l n k l k n t e L x l l L C D                                          0 2 2 2 2 2 2 2 1 5 . 0 1 5 . 0 1 5 . 0 5 . 0 5 . 0 1 m k n m k n m n k n                              t n l n l n m k l u d u H u H u e u e u e u e 0 1 5 . 0 5 . 0 5 . 0 5 . 0 ,                                                 0 0 0 2 2 2 2 5 . 0 2 5 0 2 0 6 1 5 . 0 1 5 . 0 1 5 . 0 sin 5 . 0 n k l n k n l k n l t e L x n n L C D                                           0 0 1 5 . 0 5 . 0 0 5 . 0 5 . 0 5 . 0 3 2 5 . 0 5 . 0 m u m l m l m l t l k n u d d H H e e u e u e u e k l      ,                                         00 1 5 . 0 5 . 0 0 5 . 0 3 0 0 7 5 . 0 sin 5 . 0 m t n m n m m n n n u d u H u H u e u e L x n t e n L C D    ,                                         0 0 0 0 5 . 0 5 . 0 5 . 0 3 0 0 8 5 . 0 1 5 . 0 sin 5 . 0 n m k t m k n km n n u H u e u e k t e L x n n L C D            u d u H u H u H m k n m k n m k n 5 . 1 5 . 0 5 . 0             ,                                                  0 0 0 00 5 . 0 3 0 0 9 5 . 0 1 5 . 0 1 5 . 0 sin 5 . 0 1 , 0 n k l m t m n l k klm m n u I u e u e l k L x n t e n L C D      +Ik-l+n-m(u)+Ik-l-n-m-1(u)+Ik-l+n+m+1(u)-Ik-l-n-m-1(u)-Ik+l+n-m+1(u)-Im-k-l+n-(u)-Im+k+l+n+2(u)] d u,  >2,             L n y d L y n t y t I 0 1 5 . 0 cos ,   ,
  • 19. Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 10, No.1/2, June 2024 19                                                0 0 0 0 1 2 5 . 0 3 3 0 0 10 5 . 0 1 5 . 0 5 . 0 sin 5 . 0 2 3 , 0 i n t k n i n i i k u I u I n L x i t e i L C D                                     0 0 2 2 1 2 2 2 1 2 1 1 2 5 . 0 1 5 . 0 1 5 . 0 1 m m m m l k n m m l k n m                        2 2 1 2 2 2 1 2 1 5 . 0 1 1 5 . 0 1 m m l k n m m l k n                        2 2 1 2 2 2 1 2 1 5 . 0 1 1 5 . 0 1 m m l k n m m l k n                               0 2 2 2 1 2 2 2 1 2 5 . 0 1 5 . 0 1 2 5 . 0 1 5 . 0 1 l l m m m l k n m m l k n                   u d m m l k n u e u e u e u e n i m klm i 2 2 2 1 2 2 2 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0 2 1              ,  =3,                                             0 0 0 0 0 5 . 0 3 5 3 0 2 0 01 5 . 0 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 sin 5 . 0 3 , 0 i j k l n i n l k j L x i t e i L C D                                        2 2 2 2 2 2 1 5 . 0 1 5 . 0 1 5 . 0 1 n l k j i n l k j i n l k j i                               2 2 2 2 1 1 1 1 5 . 0 1 n l k j ii n l k j ii n l k j i                             00 0 1 5 , 0 ln 5 . 0 m t u m n m n m n jk i u d d I I e e u e u e      ,  =3,                                               0 0 0 0 0 0 5 . 0 5 . 0 3 2 0 2 0 11 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 sin 5 . 0 3 , 0 n k l m i t n n u e m l k L x n t e n L C D                                                u H u H u H u H u H u e m l i n k m l i n k m l i n k m l i n k m l i n k klmi 5 . 0 5 . 0 5 . 0 5 . 0 5 . 0                                         u H u H u H u H u H m l i n k m l i n k m l i n k m l i n k m l i n k 5 . 0 5 . 1 5 . 1 5 . 0 5 . 1                                         u H u H u H u H u H m l i n k m l i n k m l i n k m l i n k m l i n k 5 . 1 5 . 0 5 . 0 5 . 1 5 . 0   u d u H m l i n k 5 . 2       .