SlideShare a Scribd company logo
Information visualization lecture 2

perception and principles
Katrien Verbert
Department of Computer Science
Faculty of Science
Vrije Universiteit Brussel
katrien.verbert@vub.ac.be
27/02/14

pag. 1
perception
how our brain perceives and interprets visuals

27/02/14

pag. 2
Information visualization: perception and principles
Information visualization: perception and principles
Moving Illusions

h"p://www.youtube.com/watch?v=Iw8idyw_N6Q	
  
Watch	
  00:00	
  –	
  07:23	
  
	
  
27/02/14

pag. 5
pre-attentive processing
How do we make things pop-out?

27/02/14

pag. 6
Where is Waldo?

27/02/14

pag. 7
How many 3’s?

1281768756138976546984506985604982826762
9809858458224509856458945098450980943585
9091030209905959595772564675050678904567
8845789809821677654876364908560912949686

27/02/14

pag. 8
How many 3’s?

1281768756138976546984506985604982826762
9809858458224509856458945098450980943585
9091030209905959595772564675050678904567
8845789809821677654876364908560912949686

27/02/14

pag. 9
Pre-attentive vs. attentive
Differences in speed of perception
Pre-attentive

≤500 ms
≤10 ms
parallel processing

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

Attentive

task
individual object

>500 ms
>10 ms
sequential processing

27/02/14

pag. 10
Pre-attentive processing

“An understanding of what is processed pre-attentively is
probably the most important contribution that visual science can
make to data visualization” (Ware, 2004, p. 19)

27/02/14

pag. 11
Different shapes can often pop out

Shape
27/02/14

pag. 12
A single lack of enclosure can quickly be
identified pre-attentively

Enclosure
27/02/14

pag. 13
Pre-attentive processing:
‘things that pop out’

Orientation

The	
  ‘odd	
  one	
  out’	
  can	
  quickly	
  be	
  
idenJfied,	
  by	
  pre-­‐a"enJve	
  processing	
  	
  
27/02/14

pag. 14
A different colour can be
pre-attentively identified

Colour
27/02/14

pag. 15
Did you notice the red square?

27/02/14

pag. 16
With conjunction encoding the red square
is not pre-attentively identified

27/02/14

pag. 17
But multiple pop-outs are possible
Usage
load

Forced
termination
rate

Number
of users

Direction
of growth

Predominant
frequency

New call
blockage
rate

Call
signal
strength

RepresentaJon	
  of	
  a"ributes	
  associated	
  with	
  a	
  mobile	
  telephone	
  network	
  cell	
  [Irani	
  and	
  
pag. 18
27/02/14
Eskicioglu,	
  2003]	
  
Multiple pop-outs

RepresentaJon	
  of	
  a"ributes	
  
associated	
  with	
  a	
  network	
  of	
  
mobile	
  telephone	
  cells,	
  
averaged	
  over	
  one	
  hour	
  

27/02/14

pag. 19
27/02/14

pag. 20
Pre-attentive features

27/02/14

pag. 21
Where is Waldo?

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 22
Where is Waldo?

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 23
encoding methods

27/02/14

pag. 24
Magnitude estimation
How much bigger is the lower bar?

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 25
Magnitude estimation
How much bigger is the lower bar?

X	
  4	
  

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 26
Magnitude estimation
How much bigger is the right circle?

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 27
Magnitude estimation
How much bigger is the right circle?

X	
  5	
  

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 28
Magnitude estimation
How much bigger is the right circle?

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 29
Magnitude estimation
How much bigger is the right circle?

X	
  9	
  

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 30
Apparent magnitude curves

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

h"p://makingmaps.net/2007/08/28/
perceptual-­‐scaling-­‐of-­‐map-­‐symbols/	
  
27/02/14
	
  

pag. 31
Which one is more accurate?

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 32
Perceptual or apparent scaling
Compensating magnitude to match perception

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 33
Accuracy of judgement of encoded
quantitative data
Position

Most accurate

Length

Angle
Slope
Area
Volume
Colour
Density

Least accurate
Cleveland	
  and	
  McGill	
  (1984)	
  	
  
27/02/14

pag. 34
Association
The marks can
be perceived as
SIMILAR

Size

Value

Texture

Colour

Orientation

Shape

Selection

Order

The marks are
perceived as
DIFFERENT,
forming families

The marks are
perceived as
ORDERED

Quantity
The marks are
perceived as
PROPORTIONAL
to each other

Choice	
  of	
  encoding	
  
	
  
•  Bertin’s guidance
•  suitability of various
encoding methods
•  to support common
tasks

	
  
Example application that uses
different encoding methods

User query
Osteoporosis
Prevention
Research
First	
  the	
  user	
  specifies	
  three	
  topics	
  of	
  interest	
  
27/02/14

pag. 36
TileBar: which encoding methods
are used for which purposes?
‘Recent	
  advances	
  in	
  the	
  world	
  of	
  drugs’	
  

	
  
	
  

Fortunately, scientific knowledge about this desease has grown, and there is reason for hope.
Research is revealing that prevention may be achieved through estrogen replacement therapy
for older women and through adequate calcium intake and regular weight-bearing exercise

	
  

	
  

for people of all ages. New approaches to diagnosis and treatment are also under active
investigation. For this work to continue and for use to take advantage of the knowledge we
have already gained, public awareness of osteoporosis and of the importance of further
scientific research is essential.

	
  

	
  

	
  

(top)	
  The	
  TileBar	
  representaJon	
  of	
  the	
  relevance	
  of	
  paragraphs	
  to	
  the	
  topic	
  words:	
  
pag. 37
27/02/14
(bo"om)	
  a	
  selected	
  paragraph	
  with	
  topic	
  words	
  highlighted	
  
Quantitative, ordinal and
categorical data

Quantitative
Position
Length
Angle
Slope
Area
Volume
Density
Shape
Treble

Ordinal

Categorical

Position
Density
Colour saturation
Colour hue
Texture
Connection
Containment
Length
Angle
Slope
Area
Volume

Position
Colour hue
Texture
Connection
Containment
Density
Colour saturation
Shape
Length
Angle
Slope
Area
Volume

Bass

Guidance	
  for	
  the	
  encoding	
  of	
  quanJtaJve,	
  ordinal	
  and	
  categorical	
  data	
  (Mackinlay	
  1986)	
  
pag. 38
27/02/14
	
  
Gestalt grouping

27/02/14

pag. 39
h"p://www.youtube.com/watch?v=ZWucNQawpWY	
  

27/02/14

pag. 40
Principles:
figure and ground

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 41
Principles:
proximity

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 42
Principles:
proximity

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 43
Principles:
similarity

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 44
Principles:
connectedness

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 45
Principles:
continuity

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 46
Principles:
continuity

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 47
Principles:
continuity

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 48
Principles:
closure

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 49
Principles:
closure

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 50
Principles:
closure

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 51
Principles:
closure

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 52
Principles:
smallness

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 53
Principles:
smallness

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 54
Principles:
surroundedness

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 55
Principles:
surroundness

Slide	
  adapted	
  from	
  Michael	
  Porath	
  	
  	
  

27/02/14

pag. 56
Guideline
Use a combination of closure, common region and layout to
ensure that data entities are represented by graphical patterns
that will be perceived as figure, not ground.

27/02/14

pag. 57
Application

h"p://www.youtube.com/watch?v=LlzuJqZ797U	
  (watch	
  3:39-­‐5:09)	
  
	
  
27/02/14

pag. 58
Color

27/02/14

pag. 59
Find the cherries

“Color	
  helps	
  us	
  break	
  camouflage”	
  
[Ware,	
  2013]	
  
Slide	
  adapted	
  from	
  S.	
  Hsiao	
  

27/02/14

pag. 60
Snow white may be color blind?

Slide	
  adapted	
  from	
  S.	
  Hsiao	
  

27/02/14

pag. 61
Ready to eat

Slide	
  adapted	
  from	
  S.	
  Hsiao	
  

27/02/14

pag. 62
How we see color

h"p://www.youtube.com/watch?v=l8_fZPHasdo	
  
	
  
27/02/14

pag. 63
Our eyes

27/02/14

pag. 64
Trichromacy Theory: 3 color cones
sensitivity functions

Slide	
  adapted	
  from	
  S.	
  Hsiao	
  

27/02/14

pag. 65
10%CAUCASIAN MALE IS
COLOR BLIND!

Slide	
  adapted	
  from	
  S.	
  Hsiao	
  

27/02/14

pag. 66
Color Tests

•  The individual with normal color vision will see a 5 revealed in
the dot pattern.
•  An individual with Red/Green (the most common) color
blindness will see a 2 revealed in the dots.

http://www.visibone.com/colorblind/

Information Visualization Course, Katy Börner, Indiana University

27/02/14

pag. 67
Color blindness

27/02/14

pag. 68
We often take color for granted
•  How do blind people learn colours?
•  How do colourblind people drive?

Slide	
  adapted	
  from	
  S.	
  Hsiao	
  

27/02/14

pag. 69
Color blindness: consequences

27/02/14

pag. 70
Colors have meaning!

27/02/14

pag. 71
27/02/14

pag. 72
How to use colors

•  hue: categorical

•  saturation: ordinal and quantitative

•  luminance: ordinal and quantitative

27/02/14

pag. 73
Sequential color schemes

27/02/14

pag. 74
Diverging color schemes

27/02/14

pag. 75
Qualitative color schemes

27/02/14

pag. 76
ColorBrewer2.org

27/02/14

pag. 77
Adobe Kuler: Focus on aesthetics

Good	
  Color	
  Scales	
  
	
  
h"p://kuler.adobe.com	
  
pag. 78
27/02/14
	
  
Good or bad use of colors?

27/02/14

pag. 79
h"p://eagereyes.org/basics/rainbow-­‐color-­‐map	
  
	
  

27/02/14

pag. 80
Interaction of color

27/02/14

pag. 81
Interaction of color

27/02/14

pag. 82
Relative differences

27/02/14

pag. 83
Interaction of color

27/02/14

pag. 84
Simultaneous contrast

27/02/14

pag. 85
Simultaneous contrast

27/02/14

pag. 86
Simultaneous contrast

27/02/14

pag. 87
Simultaneous contrast

27/02/14

pag. 88
Simultaneous brightness contrast

[Ware,	
  1988]	
  
27/02/14

pag. 89
The Chevreul illusion

27/02/14

pag. 90
Simultaneous contrast and errors in
reading maps

Gravity	
  map	
  of	
  the	
  North	
  AtlanJc	
  Ocean.	
  Large	
  errors	
  occur	
  when	
  gray-­‐scale	
  maps	
  are	
  read	
  
using	
  a	
  key	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  20%	
  error	
  of	
  the	
  enJre	
  scale	
  [Ware,	
  1988]	
  
	
  
27/02/14

pag. 91
Guideline

Avoid using gray scales as a method for representing more than
a few (two to four) numerical values [Ware, 2013]

27/02/14

pag. 92
All colors are equal
…but they are not perceived as the same

27/02/14

pag. 93
All colors are equal
…but they are not perceived as the same

Luminance Value

Perceived lightness

27/02/14

pag. 94
Luminance values

Src:	
  h>p://www.workwithcolor.com/color-­‐luminance-­‐2233.htm	
  

27/02/14

pag. 95
Color decisions need to consider
luminance / contrast

Slide	
  adapted	
  from	
  S.	
  Hsiao	
  

27/02/14

pag. 96
Test a composition for contrast
h"p://www.workwithcolor.com/to-­‐black-­‐and-­‐white-­‐picture-­‐converter-­‐01.htm	
  
	
  

27/02/14

pag. 97
HSL color picker

h"p://www.workwithcolor.com/hsl-­‐color-­‐picker-­‐01.htm	
  
	
  
27/02/14

pag. 98
Haloing effect
•  Enhancing the edges
•  Luminance contrast as a
highlighting method

[Ware,	
  2013]	
  
Slide	
  adapted	
  from	
  S.	
  Hsiao	
  

27/02/14

pag. 99
Saturation

Slide	
  adapted	
  from	
  S.	
  Hsiao	
  

27/02/14

pag. 100
Highlighting: make small subset clearly
distinct from the rest

same principles apply to the highlighting of text or other features

Slide	
  adapted	
  from	
  S.	
  Hsiao	
  

27/02/14

pag. 101
Guidelines

•  Use more saturated colors for small symbols, thin lines, or
small areas.
•  Use less saturated colors for large areas.

27/02/14

pag. 102
Cross-cultural naming

More than 100 languages showed that primary color terms are
consistent across cultures (Berlin & Kay, 1969)

Slide	
  adapted	
  from	
  S.	
  Hsiao	
  

27/02/14

pag. 103
Ware’s Recommended Colors for Labeling

Red, Green, Yellow, Blue, Black, White, Pink, Cyan, Gray, Orange, Brown, Purple.
The entire set corresponds to the eleven color names found
to be the most common in a cross-cultural study, plus cyan (Berlin and Kay)

Slide	
  adapted	
  from	
  Terrance	
  Brooke	
  

27/02/14

pag. 104
Guideline

Use easy-to-remember and consistent color codes in color pallets
Red, green, blue and yellow are hard-wired into the brain as
primaries. If it is necessary to remember a color coding, these
colors are the first that should be considered.

27/02/14

pag. 105
Chromostereopsis

Slide	
  adapted	
  from	
  S.	
  Hsiao	
  

27/02/14

pag. 106
How we used to think it works

Old	
  model:	
  Light	
  of	
  different	
  wavelengths	
  is	
  focused	
  differently	
  by	
  the	
  eye.	
  

Src:	
  h>p://luminanze.com/wriMngs/chromostereopsis_in_ux_design.html	
  

27/02/14

pag. 107
What we know

	
  

Current	
  model:	
  Light	
  of	
  different	
  wavelengths	
  is	
  refracted	
  differently	
  by	
  the	
  eye.	
  

Src:	
  h>p://luminanze.com/wriMngs/chromostereopsis_in_ux_design.html	
  

27/02/14

pag. 108
chromostereopsis
If we use in the same image two far pure colors the eye is not
able to focus both of them

27/02/14

pag. 109
Easy to read?

27/02/14

pag. 110
Easy to read?

27/02/14

pag. 111
How to use chromostereopsis

27/02/14

pag. 112
How to use chromostereopsis

27/02/14

pag. 113
Good or bad?

27/02/14

pag. 114
Good or bad?

27/02/14

pag. 115
Solution: use colors that are less saturated

27/02/14

pag. 116
Guidelines
•  Beware of interactions between some colors (e.g. red/blue)
•  Use can be good: for highlighting, creating 3D effect, etc.
•  Resolve if unintended by:
–  using	
  colors	
  that	
  are	
  less	
  saturated	
  	
  
–  surrounding	
  the	
  contrasMng	
  colors	
  with	
  a	
  background	
  that	
  moderates	
  the	
  
effect	
  of	
  their	
  different	
  wavelengths	
  
–  separa.ng	
  the	
  contrasMng	
  colors.	
  	
  

h>p://desdag.blogspot.be/2012/05/chromostereopsis-­‐design-­‐fails-­‐due-­‐to.html	
  

27/02/14

pag. 117
We are drawn by colors!

27/02/14

pag. 118
Do different colors affect mood?
h"p://www.factmonster.com/spot/colors1.html	
  
	
  

27/02/14

pag. 119
Moodjam.com

27/02/14

pag. 120
some examples

27/02/14

pag. 121
Good or bad us of colors?

27/02/14

pag. 122
Good or bad use of colors?

27/02/14

pag. 123
Good or bad?

27/02/14

pag. 124
Good or bad?

27/02/14

pag. 125
27/02/14

pag. 126
Good or bad use of colors?

27/02/14

pag. 127
27/02/14

pag. 128
27/02/14

pag. 129
Some take away messages
• 
• 
• 
• 
• 
• 

• 
• 

Color is excellent for labeling and categorization.
(However, only small number of colors can be used effectively)
To show detail in visualization, always have considerable luminance
contrast between background and foreground.
Simultaneous contrast with background colors can dramatically alter
color appearance, making color look like another.
Beware of interaction between colors (e.g. red/blue).
Small color coded objects should be given high saturation.
Red, green, blue and yellow are hard-wired into the brain as
primaries. If it is necessary to remember a color coding, these colors
are the first that should be considered.
Remember that colors have meanings: use appropriate color palettes
for qualitative, quantitative and ordinal data.
Respect the color blind.

27/02/14

pag. 130
Readings

Required
•  Harrower, M., & Brewer, C. A. (2003). ColorBrewer. org: an online
tool for selecting colour schemes for maps. Cartographic Journal,
The, 40(1), 27-37. Available at:
http://www.albany.edu/faculty/fboscoe/papers/harrower2003.pdf
Optional
•  Ware, C. (2013). Information visualization: Perception for design.
Chapter 3: Lightness, Brightness, Contrast, and Constancy.
Available at:
http://www.diliaranasirova.com/assets/PSYC579/pdfs/01.1Ware.pdf

	
  
27/02/14

pag. 131
Optical Illusions

•  Joy of Visual Perception by Pete Kaiser

132
Information Visualization Course, Katy Börner, Indiana University

27/02/14

pag. 132
Questions?

27/02/14

pag. 133
References
•  Pourang Irani and Rasit Eskicioglu. (2003). A Space-filling
Visualization Technique for Cellular Network Data. In
International Conference on Knowledge Management
(IKNOW-03), 115-120
http://hci.cs.umanitoba.ca/assets/publication_files/2003Irani-IKNOW-CellularViz.pdf
•  Ware, C. (2013). Information visualization: Perception for
design. Chapter 3-5
•  Mackinlay, J. (1986). Automating the design of graphical
presentations of relational information. ACM Transactions on
Graphics (TOG), 5(2), 110-141.

27/02/14

pag. 134
evaluation experiment

27/02/14

pag. 135
learning dashboards:
visualizing emotion, time spent
and distractions

27/02/14

pag. 136
Learning analytics dashboards

Govaerts,	
  S.,	
  Verbert,	
  K.,	
  Duval,	
  E.,	
  Abelardo,	
  P.	
  (2012).	
  The	
  student	
  acJvity	
  meter	
  for	
  awareness	
  and	
  
self-­‐reflecJon.	
  In	
  :	
  CHI	
  EA	
  '12	
  

27/02/14

pag. 137
h"p://bit.ly/I7hve	
  

Santos JL, Verbert K, Govaerts S, Duval E (2013) Addressing learner issues with StepUp!: an Evaluation. In
138
27/02/14 pag. 138
Proceedings of LAK 13
GLASS: visualization of emotions

27/02/14

pag. 139
Data collection
•  https://docs.google.com/forms/d/
1gHwVWHZLzWdSz1F37jA1Gungrl56bT215M6FYW3YqGY/
viewform
Or
•  bit.ly/N6JTyD

Anonymous! Choose your own ID.
•  Report data once a week: preferably on Thursdays.

27/02/14

pag. 140
Dashboard
•  Dashboard that visualizes your data and enables comparison
with data from other students will be made available.
•  Login with the same ID as the one you use for data collection.
•  Will be made available one of the following weeks.

27/02/14

pag. 141
participation much appreciated!

27/02/14

pag. 142

More Related Content

PPTX
Biostatistics
PPT
Sensation & Perception
PPT
Chapter 2 (perception of others)
PPTX
Gestalt principles of form perception
PPT
Post purchasebehavior-SIDDANNA M BALAPGOL
PPTX
Principles of visual perception
PPT
The state of the halo effect (stations)
PPTX
Postpurchaseconsumerbehaviour 100318121357-phpapp02
Biostatistics
Sensation & Perception
Chapter 2 (perception of others)
Gestalt principles of form perception
Post purchasebehavior-SIDDANNA M BALAPGOL
Principles of visual perception
The state of the halo effect (stations)
Postpurchaseconsumerbehaviour 100318121357-phpapp02

Viewers also liked (17)

PPT
“Attitude of Irish SMEs towards e-HRM: An examination to find out if e- HRM ...
PPTX
Perception and its process
PPTX
Usage And Attitude Survey
PPTX
Presentation1 alliteration
PPT
Attitude- Organisational Behaviour
PDF
Usage and Attitude Survey
PDF
Ashoka Future Forum - Workshop - Using Data for Impact #02
PPT
The Halo Effect, Penny
PDF
External Locus of Control EBs (JNC2014)
PPT
Chapter 6 Consumer Perception
PPTX
Fundamentals of Accessibility in New Media: Gestalt Principles of Perception
PPTX
Calibrating Your Locus of Control
PPT
Classical and Operant Conditioning
PPTX
Attribution Theory ppt
PPS
Hull's Theory of Learning
PPTX
Transactional Analysis
“Attitude of Irish SMEs towards e-HRM: An examination to find out if e- HRM ...
Perception and its process
Usage And Attitude Survey
Presentation1 alliteration
Attitude- Organisational Behaviour
Usage and Attitude Survey
Ashoka Future Forum - Workshop - Using Data for Impact #02
The Halo Effect, Penny
External Locus of Control EBs (JNC2014)
Chapter 6 Consumer Perception
Fundamentals of Accessibility in New Media: Gestalt Principles of Perception
Calibrating Your Locus of Control
Classical and Operant Conditioning
Attribution Theory ppt
Hull's Theory of Learning
Transactional Analysis
Ad

Similar to Information visualization: perception and principles (20)

PDF
Information Visualisation: perception and principles
PDF
Intro to data visualization
PDF
Introduction to Information Visualization (Part 1)
PPT
Practical Considerations for Displaying Quantitative Data
PPTX
Making sense of data visually: A modern look at datavisualization
PDF
Visualisation - introduction, guidelines, principles and design
PDF
Making an Impact With Data Visualization
PDF
Statgraphs
PDF
Introduction to Data Visualization
PDF
Multimedia les - intro tot informatie visualisatie
PPTX
Data is beautiful​, please don't ruin it
PPT
Let the Data Talk (ALA LLAMA MAES keynote 2012)
PDF
Dataviz 101: Data is beautiful, please don't ruin it by Anne-Marie Tousch, Se...
PDF
Visualizing and Communicating High-dimensional Data
PPT
chi03-tutorial.ppt
PDF
Targeting Your Audience: Data Visualization to Communicate Data Insights
PDF
Ui design-day2b
PDF
Bring your own idea - Visual learning analytics
ODP
Stop Making Pie Charts!
PDF
How we perceive information
Information Visualisation: perception and principles
Intro to data visualization
Introduction to Information Visualization (Part 1)
Practical Considerations for Displaying Quantitative Data
Making sense of data visually: A modern look at datavisualization
Visualisation - introduction, guidelines, principles and design
Making an Impact With Data Visualization
Statgraphs
Introduction to Data Visualization
Multimedia les - intro tot informatie visualisatie
Data is beautiful​, please don't ruin it
Let the Data Talk (ALA LLAMA MAES keynote 2012)
Dataviz 101: Data is beautiful, please don't ruin it by Anne-Marie Tousch, Se...
Visualizing and Communicating High-dimensional Data
chi03-tutorial.ppt
Targeting Your Audience: Data Visualization to Communicate Data Insights
Ui design-day2b
Bring your own idea - Visual learning analytics
Stop Making Pie Charts!
How we perceive information
Ad

More from Katrien Verbert (20)

PDF
Explainability methods
PDF
Human-centered AI: how can we support end-users to interact with AI?
PPTX
Human-centered AI: how can we support end-users to interact with AI?
PDF
Human-centered AI: how can we support lay users to understand AI?
PDF
Explaining job recommendations: a human-centred perspective
POTX
Explaining recommendations: design implications and lessons learned
PDF
Designing Learning Analytics Dashboards: Lessons Learned
PDF
Human-centered AI: towards the next generation of interactive and adaptive ex...
PPTX
Explainable AI for non-expert users
PPTX
Towards the next generation of interactive and adaptive explanation methods
PDF
Personalized food recommendations: combining recommendation, visualization an...
PDF
Explaining and Exploring Job Recommendations: a User-driven Approach for Inte...
PDF
Learning analytics for feedback at scale
PDF
Interactive recommender systems and dashboards for learning
PPTX
Interactive recommender systems: opening up the “black box”
PDF
Interactive Recommender Systems
PDF
Web Information Systems Lecture 2: HTML
PDF
Web Information Systems Lecture 1: Introduction
PDF
Information Visualisation: Introduction
PDF
Interactive Recommender Systems
Explainability methods
Human-centered AI: how can we support end-users to interact with AI?
Human-centered AI: how can we support end-users to interact with AI?
Human-centered AI: how can we support lay users to understand AI?
Explaining job recommendations: a human-centred perspective
Explaining recommendations: design implications and lessons learned
Designing Learning Analytics Dashboards: Lessons Learned
Human-centered AI: towards the next generation of interactive and adaptive ex...
Explainable AI for non-expert users
Towards the next generation of interactive and adaptive explanation methods
Personalized food recommendations: combining recommendation, visualization an...
Explaining and Exploring Job Recommendations: a User-driven Approach for Inte...
Learning analytics for feedback at scale
Interactive recommender systems and dashboards for learning
Interactive recommender systems: opening up the “black box”
Interactive Recommender Systems
Web Information Systems Lecture 2: HTML
Web Information Systems Lecture 1: Introduction
Information Visualisation: Introduction
Interactive Recommender Systems

Recently uploaded (20)

PPTX
GDM (1) (1).pptx small presentation for students
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Classroom Observation Tools for Teachers
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Institutional Correction lecture only . . .
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Cell Types and Its function , kingdom of life
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Cell Structure & Organelles in detailed.
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
01-Introduction-to-Information-Management.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
GDM (1) (1).pptx small presentation for students
Microbial diseases, their pathogenesis and prophylaxis
Classroom Observation Tools for Teachers
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Institutional Correction lecture only . . .
Microbial disease of the cardiovascular and lymphatic systems
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Cell Types and Its function , kingdom of life
Supply Chain Operations Speaking Notes -ICLT Program
PPH.pptx obstetrics and gynecology in nursing
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Cell Structure & Organelles in detailed.
Renaissance Architecture: A Journey from Faith to Humanism
TR - Agricultural Crops Production NC III.pdf
01-Introduction-to-Information-Management.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf

Information visualization: perception and principles