SlideShare a Scribd company logo
Integration Application
THP-FTP-UB
Basic applications
Areas under curves
The area above the x-axis between
the values x = a and x = b and
beneath the curve in the diagram is
given as the value of the integral
evaluated between the limits x = a
and x = b:
where
 ( ) ( )
( ) ( )
b
b
x a
x a
f x dx F x
F b F a



 

( ) ( )f x F x
Basic applications
Areas under curves
If the integral is negative then the
area lies below the x-axis. For
example:
33 3
2 2
1 1
1
3
1
3
( 6 5) 3 5
3
( 3) (2 )
5
x x
x
x x dx x x
 
 
     
 
  
 

In order to make it easy,you may sketch the function graph first
Integration application (Aplikasi Integral)
The Area of The Region Between Two Curves
Example
Find the area of the region between the curves 𝑦 = 𝑥4
and 2𝑥 − 𝑥2.
Answer
Sketch the functions graph first, then finding where the
two curves intersect.
Try! Find the area of the region between 𝒚 𝟐
= 𝟒𝒙 and
4x – 3y = 4
The Area Bounded By the Curves in Form of
Parametric Equations
Example
Try!
Find the area of the
indicated region
A curve has parametric equations 𝑥 = 𝑐𝑜𝑠2
𝑡, 𝑦 = 3𝑠𝑖𝑛2
𝑡. Find the
area bounded by the curve, the x-axis and the ordinates at 𝑡 =
0 𝑎𝑛𝑑 𝑡 = 2𝜋
Volumes of Solid of Revolutions:
Method of Disks
Let 𝑉 be the volume of the solid generated.
Since the solid generated is a flat cylinder, so 𝑉 is:
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)
We finally obtain:
Volumes of Solid of Revolutions:
Method of Washers
Sometimes, slicing a solid of revolution result in disks with hole in
the middle
Find the volume of the solid generated by revolving the region
bounded by the parabolas 𝑦 = 𝑥2 and 𝑦2 = 8𝑥 about the 𝑥 −axis
Integration application (Aplikasi Integral)
15
Jika V(t) adl volume air dlm waduk pada waktu t, maka turunan V’(t) adl
laju mengalirnya air ke dalam waduk pada waktu t.
)V(t)V(tdt(t)V' 12
2t
1t

perubahan banyaknya air dalam waduk diantara t1 dan t2
Penerapan Integral dalam Ilmu Sains
 
2t
1t
dt
dt
d[C]
[C](t2)-[C](t1)
Jika [C](t) adl konsentrasi hasil suatu reaksi kimia
pd waktu t,maka laju reaksi adl turunan d[C]/dt
perubahan konsentrasi C dari waktu t1 ke t2
17
Jika laju pertumbuhan populasi adl dn/dt, maka
)n(t)n(tdt
dt
dn
12
2t
1t

pertambahan populasi selama periode waktu t1 ke t2

More Related Content

PDF
deret kuasa
PPT
Presentasi matematika-kelas-xii-turunan
PDF
Kalkulus modul limit fungsi
DOCX
Metode numerik untuk menyelesaikan sistem persamaan linier
PPT
koordinat tabung dan bola
PPTX
03. gerak dalam dua dan tiga dimensi
DOCX
Makalah Persamaan Deferensial NON EKSAK
PDF
Soal dan pembahasan integral permukaan
deret kuasa
Presentasi matematika-kelas-xii-turunan
Kalkulus modul limit fungsi
Metode numerik untuk menyelesaikan sistem persamaan linier
koordinat tabung dan bola
03. gerak dalam dua dan tiga dimensi
Makalah Persamaan Deferensial NON EKSAK
Soal dan pembahasan integral permukaan

What's hot (20)

PDF
Kalkulus modul vi kontinuitas
PPTX
Metode numerik pertemuan 7 (interpolasi lagrange)
PDF
Metamtika teknik 03-bernouli dan pdl-tk1
PPTX
Integral Permukaan
PPT
Ppt persamaan trigonometri
PPTX
Pert. 4 (gradien, Divergensi, dan Curl.pptx
PDF
Makalah kalkulus lanjut
PDF
2 deret fourier
PDF
Deret Geometri Tak Hingga
PPT
Medan vektor
PPT
Deret taylor and mac laurin
PPTX
Modul 1 pd linier orde satu
PDF
Matematika Diskrit - 09 graf - 06
PPTX
diferensial vektor
PPTX
5. KD 3.2 Pembagian Polinomial oleh berderajat dua.pptx
PPTX
Kuasa lingkaran, titik kuasa, garis kuasa ppt
PDF
Matematika sistem
PPT
Akar akar persamaan non linier
PPTX
Analisis vektor
Kalkulus modul vi kontinuitas
Metode numerik pertemuan 7 (interpolasi lagrange)
Metamtika teknik 03-bernouli dan pdl-tk1
Integral Permukaan
Ppt persamaan trigonometri
Pert. 4 (gradien, Divergensi, dan Curl.pptx
Makalah kalkulus lanjut
2 deret fourier
Deret Geometri Tak Hingga
Medan vektor
Deret taylor and mac laurin
Modul 1 pd linier orde satu
Matematika Diskrit - 09 graf - 06
diferensial vektor
5. KD 3.2 Pembagian Polinomial oleh berderajat dua.pptx
Kuasa lingkaran, titik kuasa, garis kuasa ppt
Matematika sistem
Akar akar persamaan non linier
Analisis vektor
Ad

Viewers also liked (20)

PPTX
Calculus Application of Integration
PDF
Application of the integral
PPTX
ppt on application of integrals
PPTX
Applications of integration
PPTX
Flash cards AoI
PPTX
Applications of integration
PPTX
Application of integrals flashcards
PDF
Application+of+Integrals
PDF
Applications of integrals
PPTX
Application of integration
PPT
08 numerical integration 2
PPTX
Applications of Definite Intergral
PPTX
Applications of numerical methods
PPT
Application of integral calculus
PPT
Numerical integration
PPTX
Final Project Powerpoint
PPTX
APPLICATION OF NUMERICAL METHODS IN SMALL SIZE
PPTX
NUMERICAL INTEGRATION AND ITS APPLICATIONS
PDF
Numerical Methods 3
PPTX
Application of calculus in everyday life
Calculus Application of Integration
Application of the integral
ppt on application of integrals
Applications of integration
Flash cards AoI
Applications of integration
Application of integrals flashcards
Application+of+Integrals
Applications of integrals
Application of integration
08 numerical integration 2
Applications of Definite Intergral
Applications of numerical methods
Application of integral calculus
Numerical integration
Final Project Powerpoint
APPLICATION OF NUMERICAL METHODS IN SMALL SIZE
NUMERICAL INTEGRATION AND ITS APPLICATIONS
Numerical Methods 3
Application of calculus in everyday life
Ad

Similar to Integration application (Aplikasi Integral) (20)

PDF
3. Quadrature Complete Theory Module-5.pdf
PDF
MATH225Final
PPTX
IAL Edexcel Pure 4 Integration topic 6.pptx
PPT
Developing Expert Voices
POTX
Ch 7 c volumes
PPT
Chap6_Sec1.ppt
PPT
Areas and Definite Integrals.ppt
PPTX
10 b review-cross-sectional formula
PPT
Integration
PPT
25 surface area
PPTX
7.2 volumes by slicing disks and washers
PPTX
7.3 volumes by cylindrical shells
PPTX
7.2 volumes by slicing disks and washers
DOCX
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
PPTX
definite intrigal of impulse and corresponding derivatives
PDF
lemh202 (1).pdfhjsbjsjshsisvsjsbishsisbsisvsus
PDF
Mathematics and Physics And Chemistry with your mind properly and then practice
PPT
Rate of change and tangent lines
PPT
mathmathmathmathmathmathmathmathmathmath
3. Quadrature Complete Theory Module-5.pdf
MATH225Final
IAL Edexcel Pure 4 Integration topic 6.pptx
Developing Expert Voices
Ch 7 c volumes
Chap6_Sec1.ppt
Areas and Definite Integrals.ppt
10 b review-cross-sectional formula
Integration
25 surface area
7.2 volumes by slicing disks and washers
7.3 volumes by cylindrical shells
7.2 volumes by slicing disks and washers
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
definite intrigal of impulse and corresponding derivatives
lemh202 (1).pdfhjsbjsjshsisvsjsbishsisbsisvsus
Mathematics and Physics And Chemistry with your mind properly and then practice
Rate of change and tangent lines
mathmathmathmathmathmathmathmathmathmath

More from Muhammad Luthfan (20)

PPTX
Pengumuman.pptx
PPT
Kuliah Mikrobiologi Umum FATTOMP 2014-150713101121-lva1-app6891.ppt
PPTX
Lipid Evaluation (FTP UB)
PPTX
Seminar MM Universitas Brawijaya
PPTX
Forkita Potensi Diri 150809115556-lva1-app6892
PPTX
Spl Solid Waste Treatment 150702072553-lva1-app6892
PPTX
Polisakarida Fungsional
PPTX
Suplemen makanan
PPTX
Spl Pengolahan Limbah Gas FTP UB 150702072311-lva1-app6892
PPTX
Listeria FTP UB 150207083307-conversion-gate02
PPT
Sterilisasi versi 2017
PPT
Sterilisasi Versi 2015
PPT
Sterilisasi versi 2016 (FTP UB)
PPT
Dasar Keteknikan (Dastek) Pengolahan Pangan FTP UB 150529064527-lva1-app6891
PPTX
Manajemen sanitasi dan limbah industri 160704035630
PPTX
PUP (Perencanaan Unit Pengolahan) Utilitas Air 160704042806
PPT
Introduction to Electrophoresis
PPT
Spl klasifikasi limbah 150702072113-lva1-app6892
PPT
Jenis - Jenis Pengawet Alami 141225053457-conversion-gate02
PPTX
Analisis Antioksidan + ORAC
Pengumuman.pptx
Kuliah Mikrobiologi Umum FATTOMP 2014-150713101121-lva1-app6891.ppt
Lipid Evaluation (FTP UB)
Seminar MM Universitas Brawijaya
Forkita Potensi Diri 150809115556-lva1-app6892
Spl Solid Waste Treatment 150702072553-lva1-app6892
Polisakarida Fungsional
Suplemen makanan
Spl Pengolahan Limbah Gas FTP UB 150702072311-lva1-app6892
Listeria FTP UB 150207083307-conversion-gate02
Sterilisasi versi 2017
Sterilisasi Versi 2015
Sterilisasi versi 2016 (FTP UB)
Dasar Keteknikan (Dastek) Pengolahan Pangan FTP UB 150529064527-lva1-app6891
Manajemen sanitasi dan limbah industri 160704035630
PUP (Perencanaan Unit Pengolahan) Utilitas Air 160704042806
Introduction to Electrophoresis
Spl klasifikasi limbah 150702072113-lva1-app6892
Jenis - Jenis Pengawet Alami 141225053457-conversion-gate02
Analisis Antioksidan + ORAC

Recently uploaded (20)

PDF
Computing-Curriculum for Schools in Ghana
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Pharma ospi slides which help in ospi learning
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
master seminar digital applications in india
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
GDM (1) (1).pptx small presentation for students
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Sports Quiz easy sports quiz sports quiz
PPTX
Lesson notes of climatology university.
Computing-Curriculum for Schools in Ghana
01-Introduction-to-Information-Management.pdf
Pharma ospi slides which help in ospi learning
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
master seminar digital applications in india
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Supply Chain Operations Speaking Notes -ICLT Program
O7-L3 Supply Chain Operations - ICLT Program
PPH.pptx obstetrics and gynecology in nursing
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
TR - Agricultural Crops Production NC III.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
VCE English Exam - Section C Student Revision Booklet
GDM (1) (1).pptx small presentation for students
STATICS OF THE RIGID BODIES Hibbelers.pdf
Sports Quiz easy sports quiz sports quiz
Lesson notes of climatology university.

Integration application (Aplikasi Integral)

  • 2. Basic applications Areas under curves The area above the x-axis between the values x = a and x = b and beneath the curve in the diagram is given as the value of the integral evaluated between the limits x = a and x = b: where  ( ) ( ) ( ) ( ) b b x a x a f x dx F x F b F a       ( ) ( )f x F x
  • 3. Basic applications Areas under curves If the integral is negative then the area lies below the x-axis. For example: 33 3 2 2 1 1 1 3 1 3 ( 6 5) 3 5 3 ( 3) (2 ) 5 x x x x x dx x x                  
  • 4. In order to make it easy,you may sketch the function graph first
  • 6. The Area of The Region Between Two Curves Example Find the area of the region between the curves 𝑦 = 𝑥4 and 2𝑥 − 𝑥2. Answer Sketch the functions graph first, then finding where the two curves intersect. Try! Find the area of the region between 𝒚 𝟐 = 𝟒𝒙 and 4x – 3y = 4
  • 7. The Area Bounded By the Curves in Form of Parametric Equations Example
  • 8. Try! Find the area of the indicated region A curve has parametric equations 𝑥 = 𝑐𝑜𝑠2 𝑡, 𝑦 = 3𝑠𝑖𝑛2 𝑡. Find the area bounded by the curve, the x-axis and the ordinates at 𝑡 = 0 𝑎𝑛𝑑 𝑡 = 2𝜋
  • 9. Volumes of Solid of Revolutions: Method of Disks Let 𝑉 be the volume of the solid generated. Since the solid generated is a flat cylinder, so 𝑉 is:
  • 13. Volumes of Solid of Revolutions: Method of Washers Sometimes, slicing a solid of revolution result in disks with hole in the middle Find the volume of the solid generated by revolving the region bounded by the parabolas 𝑦 = 𝑥2 and 𝑦2 = 8𝑥 about the 𝑥 −axis
  • 15. 15 Jika V(t) adl volume air dlm waduk pada waktu t, maka turunan V’(t) adl laju mengalirnya air ke dalam waduk pada waktu t. )V(t)V(tdt(t)V' 12 2t 1t  perubahan banyaknya air dalam waduk diantara t1 dan t2 Penerapan Integral dalam Ilmu Sains
  • 16.   2t 1t dt dt d[C] [C](t2)-[C](t1) Jika [C](t) adl konsentrasi hasil suatu reaksi kimia pd waktu t,maka laju reaksi adl turunan d[C]/dt perubahan konsentrasi C dari waktu t1 ke t2
  • 17. 17 Jika laju pertumbuhan populasi adl dn/dt, maka )n(t)n(tdt dt dn 12 2t 1t  pertambahan populasi selama periode waktu t1 ke t2