SlideShare a Scribd company logo
2
Most read
4
Most read
1
For all your educational needs, please visit at : www.theOPGupta.com
Complete Study Guide & Notes On
INVERSE TRIGONOMETRIC FUNCTIONS
The essence of Mathematics is not to make simple things complicated,
but to make complicated things simple!
IMPORTANT TERMS, DEFINITIONS & RESULTS
 A list of formulae for Trigonometric Functions (class XI) has been added for
reference at the end of this formulae guide.
01. Basic Introduction: A function : A B
f  is said to be invertible if f is bijective (i.e., one-one
and onto). The inverse of the function f is denoted by : B A
f  such that 1
( )
f y x

 if ( )
f x y
 ,
A, B
x y
   . As trigonometric functions are many-one so, their inverse doesn’t exist. But they
become one-one onto by restricting their domains. Therefore, inverse of trigonometric functions are
defined with restricted domains. In fact, in the discussion below we have used all the restrictions
required so that the inverse of the concerned trigonometric functions do exist. If these restrictions are
removed, the terms will represent inverse trigonometric relations and not the functions. Note that
the inverse trigonometric functions are also called as Inverse Circular Functions.
02. List of Formulae and their proofs for Inverse Trigonometric Functions:
A. a)    
1 1 1
1,1
sin cosec ,
   

 
 
 
x
x
x b)      
1 1 1
cosec sin , , 1 1,
   
 
 
     
x
x
x
c)    
1 1 1
1,1
cos sec ,
   

 
 
 
x
x
x d)      
1 1 1
sec cos , , 1 1,
   
 
 
     
x
x
x
e)  
1
1
1
1
1
π
cot , 0
tan
cot , 0



  
 

  

 
   
  




x
x
x
x
x
f)  
1
1
1
1
1
π
tan , 0
cot
tan , 0



  
 

  

 
   
  




x
x
x
x
x
PROOF a) Let 1
( )
sin θ


x then, sinθ  x
1
cosecθ

x
= 1 1
θ cosec  
 
 

x
=
1 1 1
sin cosec
   
   
 
x
x
[H.P.]
Other results can be proved in the same way!
B. a)    
1 1
sin sin , 1,1
x x x
 
     b)    
1 1
cos π cos , 1,1
 
    
x x x
c)  
1 1
tan tan , R
x x x
 
    d)  
1 1
| |
cosec cosec , 1
 

   x
x x
e)  
1 1
| |
sec π sec , 1
 
   
x
x x f)  
1 1
cot π cot , R
 
   
x x x
PROOF b) Let  
1
cos θ

 
x then, cosθ  x
  1
cosθ cos π θ cos π θ


       
x
x x
 
1 1 1
cos
θ π cos π cos
  
 
    
x x x [H.P.]
Similarly, we can prove other results!
C. a)  
1 π π
2 2
sin sin ,

 
  x
x x b)  
1
0 π
cos cos ,

 
 x
x x
c)  
1 π π
2 2
tan tan ,

 
  x
x x d)  
1 π π
, 0
2 2
cosec cosec ,

  
  x x
x x
e)  
1 π
0 π,
2
sec sec ,

  
 x x
x x f)  
1
0 π
cot cot ,

 
 x
x x
A Formulae Guide By OP Gupta (Indira Award Winner)
Inverse Trigonometric Functions By OP Gupta (INDIRA AWARD Winner, Elect. & Comm. Engineering)
2
For all your educational needs, please visit at : www.theOPGupta.com
PROOF a) Let    
1
sin θ ...


x i
then,  
sinθ ...
 ii
x
Substituting the value of x in (i) from (ii) we get,
1
sin sinθ θ

 (Replacing θ by x)
1
sin sin

 
x x [H.P.]
For other results we can proceed similarly!
D. a)  
1 1 π
sin cos , 1,1
2
 
   
x x x
b) 1 1 π
tan cot , R
2
 
  
x x x
c) 1 1
| | 1 or 1
π
cosec sec , 1 . .,
2
 
  
  
x x
x x i e x
PROOF a) Let 1
( )
sin θ


x then, sinθ  x
1 1
π π π
2 2 2
cos θ θ cos cos θ
 
 
 
 
 
      
x x x
1 1 π
, 1 1
2
sin cos
 
   
 
x x
x [H.P.]
Similarly, proceed for other results!
E. a) 1 1 1 2 2
sin sin sin 1 1
    
    
 
x y x y y x
b) 1 1 1 2 2
cos cos cos 1 1
    
   
 

x y xy x y
c)
1
1 1 1
1
, 1
, 0, 0, 1
, 0, 0, 1
tan
1
tan tan π tan
1
π tan
1

  

  

  
 

  

  
  
 

  
   
 
  




  


 

xy
x y xy
x y xy
x y
xy
x y
x y
xy
x y
xy
d)
1
1 1 1
1
, 1
, 0, 0, 1
, 0, 0, 1
tan
1
tan tan π tan
1
π tan
1

  

  
 
  
 

  

   
  
 

  
    
 
  




  


 

xy
x y xy
x y xy
x y
xy
x y
x y
xy
x y
xy
e) 1 1
1 1
1
tan tan tan tan
 
   
  
 
  
 
  
x y z xyz
z
xy yz zx
x y
PROOF a) Let 1
sin θ


x and 1
sin β


y . Then, sinθ  x and sinβ  y .
Now ( ) sinθcosβ cosθsinβ
sin θ β  

2 2
sinθ 1 sin β 1 sin θsinβ
    
( )
sin θ β
 + 2 2
1 1
   
x y y x
1 2 2
θ β sin 1 1
  
     
 
x y y x
1 1 1 2 2
sin sin sin 1 1
    
     
 
x y x y y x [H.P.]
A Complete Formulae Guide  Compiled By OP Gupta (M.+91-9650350480 | +91-9718240480)
3
For all your educational needs, please visit at : www.theOPGupta.com
b) 1 1 1 2 2
cos cos cos 1 1
    
   
 

x y xy x y
Do yourself. Proceed as in (a).
c) Let 1
tan θ


x and 1
tan β


y . Then, tanθ  x and tanβ  y .
Now  
tan θ tanβ
tan
1 tanθtanβ 1
θ β
 
 
 

x y
xy
1
θ β tan
1
  

    

 
x y
xy
1 1 1
tan tan tan
1
    

    

 
x y
x y
xy
For 0

x , 1
tan
x will be a positive angle and for 0

y , 1
tan
y will also be a positive angle.
Therefore, LHS of (c) will be a positive angle and hence RHS should also be a positive angle.
Case I When 0, 0
 
x y and 1

xy then
1


x y
xy
is positive.
So, 1
tan
1
  

 

 
x y
xy
will be a positive angle.
Hence, 1 1 1
tan tan tan
1
    

   

 
x y
x y
xy
[H.P.]
Case II When 0, 0
 
x y and 1

xy then
1


x y
xy
is negative.
So, 1
tan
1
  

 

 
x y
xy
will be a negative angle. Therefore we add π to make it positive and balanced.
Hence, 1 1 1
tan tan π tan
1
    

    

 
x y
x y
xy
[H.P.]
Case III When 0, 0
 
x y and 1

xy then
1


x y
xy
is positive.
So, 1 1
tan tan
 

x y will be a negative angle and 1
tan
1
  

 

 
x y
xy
will be a positive angle. Therefore to
balance it we will be adding – π .
Hence, 1 1 1
tan tan π tan
1
    

     

 
x y
x y
xy
[H.P.]
d) Let 1
tan θ


x and 1
tan β


y . Then, tanθ  x and tanβ  y .
Now  
tan θ tanβ
tan
1 tanθtanβ 1
θ β
x y
xy
 
 
 

1
θ β tan
1
x y
xy
  

    

 
1 1 1
tan tan tan
1
x y
x y
xy
    

    

 
…(A)
Case I When 0, 0
 
x y and 1
xy   then
1
x y
xy


is positive (or negative depending upon the
absolute value of the angles x and y). Also if 0, 0
 
x y then,
π
θ,β 0,
2
 
 
 
. So
π π
θ β ,
2 2
 
  
 
 
i.e.,
1 1 π π
tan tan ,
2 2
x y
   
  
 
 
.
Inverse Trigonometric Functions By OP Gupta (INDIRA AWARD Winner, Elect. & Comm. Engineering)
4
For all your educational needs, please visit at : www.theOPGupta.com
Hence, 1 1 1
tan tan tan
1
x y
x y
xy
    

   

 
, 1
xy   [By using (A) [H.P.]
Case II When 0, 0
x y
  and 1
xy   then
1
x y
xy


is negative. Also if 0, 0
x y
  then,
π π
θ 0, ,β ,0
2 2
   
  
   
   
i.e.,
π π
θ 0, , β 0,
2 2
   
  
   
   
. So θ β (0,π)
  i.e., 1 1
tan tan (0,π)
x y
 
  .
As 1
tan
1
x y
xy
  

 

 
is a negative angle. Therefore we add π in RHS of (A) to make it positive and
balanced.
Hence, 1 1 1
tan tan π tan
1
x y
x y
xy
    

    

 
, 0, 0
x y
  and 1
xy   [H.P.]
Case III When 0, 0
x y
  and 1
xy   then
1
x y
xy


is positive. Also if 0, 0
x y
  then,
π π
θ ,0 ,β 0,
2 2
   
  
   
   
i.e.,
π π
θ ,0 , β ,0
2 2
   
    
   
   
. So θ β ( π,0)
   i.e., 1 1
tan tan ( π,0)
x y
 
   .
So, 1 1
tan tan
x y
 
 will be a negative angle and 1
tan
1
x y
xy
  

 

 
will be a positive angle. Therefore to
balance it we will be adding – π in RHS of (A).
Hence, 1 1 1
tan tan π tan
1
x y
x y
xy
    

     

 
, 0, 0
x y
  and 1
xy   [H.P.]
F. a) 2
1 1 2
2 tan sin , | | 1
1
   
 
 

 
x
x x
x
b)
2
1
2
1 1
2 tan cos , 0
1
   

 
 

 
x
x x
x
c) 1
2
1 2
2 tan tan , 1 1
1
   
   
 

 
x
x x
x
PROOF a) Let 1
tan θ


x then, tanθ  x .
As 2 2
2tanθ 2
sin2θ sin2θ
1 tan θ 1
  
 
x
x
i.e., 1
2 2
1 1
2 2
2θ sin 2tan sin
1 1
    
    
 
 
x x
x
x x
[H.P.]
Other results can also be proved in the same way!
03. Principal Value: Numerically smallest angle is known as the principal value.
Finding the principal value: For finding the principal value, following algorithm can be followed–
STEP1– Firstly, draw a trigonometric circle and mark the quadrant in which the angle may lie.
STEP2– Select anticlockwise direction for 1st
and 2nd
quadrants and clockwise direction for 3rd
and
4th
quadrants.
STEP3– Find the angles in the first rotation.
STEP4– Select the numerically least (magnitude wise) angle among these two values. The angle thus
found will be the principal value.
STEP5– In case, two angles one with positive sign and the other with the negative sign qualify for
the numerically least angle then, it is the convention to select the angle with positive sign as
principal value.
The principal value is never numerically greater than  .
A Complete Formulae Guide  Compiled By OP Gupta (M.+91-9650350480 | +91-9718240480)
5
For all your educational needs, please visit at : www.theOPGupta.com
04. Table demonstrating domains and ranges of Inverse Trigonometric functions:
Discussion about the range of inverse circular functions
other than their respective principal value branch
We know that the domain of sine function is the set of real numbers and range is the closed
interval [–1, 1]. If we restrict its domain to
3π π
,
2 2
 
 
 
 
,
π π
,
2 2
 

 
 
,
π 3π
,
2 2
 
 
 
etc. then, it
becomes bijective with the range [–1, 1]. So, we can define the inverse of sine function in
each of these intervals. Hence, all the intervals of sin–1
function, except principal value
branch (here except of
π π
,
2 2
 

 
 
for sin–1
function) are known as the range of sin–1
other
than its principal value branch. The same discussion can be extended for other inverse
circular functions. (Refer Q16 in Mathematicia Vol.1 By OP Gupta)
05. To simplify inverse trigonometrical expressions, following substitutions can be considered:
Inverse Trigonometric Functions i.e., ( )
f x Domain/ Values of x Range/ Values of ( )
f x
1
sin
x [ 1, 1]
 π π
,
2 2
 

 
 
1
cos
x [ 1, 1]
 [0, π]
1
cosec
x R ( 1, 1)
  π π
, {0}
2 2
 
 
 
 
1
sec
x R ( 1, 1)
  π
[0, π]
2
 
  
 
1
tan
x R π π
,
2 2
 

 
 
1
cot
x R (0, π)
Expression Substitution
2 2 2 2
or
a x a x
  tanθ or cotθ
 
x a x a
2 2 2 2
or
a x a x
  sinθ or cosθ
 
x a x a
2 2 2 2
or
x a x a
  secθ or cosecθ
 
x a x a
or
a x a x
a x a x
 
 
cos2θ

x a
2 2 2 2
2 2 2 2
or
a x a x
a x a x
 
 
2 2
cos 2θ

x a
or
x a x
a x x


2 2
sin θ or cos θ
 
x a x a
or
x a x
a x x


2 2
tan θ or cot θ
 
x a x a
Inverse Trigonometric Functions By OP Gupta (INDIRA AWARD Winner, Elect. & Comm. Engineering)
6
For all your educational needs, please visit at : www.theOPGupta.com
Note the followings and keep them in mind:
 The symbol 1
sin x

is used to denote the smallest angle whether positive or negative, such
that the sine of this angle will give us x. Similarly 1 1 1 1
, , , ,
cos x tan x cosec x sec x
   
and
1
cot x

are defined.
 You should note that 1
sin x

can be written as arcsinx . Similarly other Inverse Trigonometric
Functions can also be written as arccosx, arctanx, arcsecx etc.
 Also note that sin x
1
(and similarly other Inverse Trigonometric Functions) is entirely
different from 1
( )
sin x 
. In fact, 1
sin x

is the measure of an angle in Radians whose sine is x
whereas 1
( )
sin x 
is
1
sin x
(which is obvious as per the laws of exponents).
 Keep in mind that these inverse trigonometric relations are true only in their domains i.e.,
they are valid only for some values of ‘x’ for which inverse trigonometric functions are well
defined!
Check out NCERT Textbook Part I for the Graphs of Inverse Trigonometric Functions.
 Trigonometric Formulae (Only For Reference):
 Relation between trigonometric ratios
a)
sinθ
tan θ
cosθ
 b)
1
tan θ
cot θ
 c) tan θ.cotθ 1

d)
cosθ
cot θ
sinθ
 e)
1
cosecθ
sin θ
 f)
1
secθ
cosθ

 Trigonometric identities
a) 2 2
sin θ cos θ 1
 
b) 2 2
sec θ 1 tan θ
 
c) 2 2
cosec θ 1 cot θ
 
 Addition / subtraction formulae & some related
results
a)  
sin sin cos cos sin
A B A B A B
  
b)  
cos cos cos sin sin
A B A B A B
  
    2 2
2 2
) cos cos cos sin
cos sin
c A B A B A B
B A
   
 
    2 2
2 2
) sin sin sin sin
cos cos
d A B A B A B
B A
   
 
e)  
tan tan
tan
1 tan tan
A B
A B
A B

 

f)  
cot cot 1
cot
cot cot
B A
A B
B A
 


 Multiple angle formulae involving 2A & 3A
a)sin2 2sin cos
A A A

b)
2 2
sin 2sin cos
A A
A 
c) 2 2
cos2 cos sin
A A A
 
d) 2 2
cos cos sin
2 2
A A
A  
e) 2
cos2 2cos 1
A A
 
f) 2
2cos 1 cos2
A A
 
g) 2
cos2 1 2sin
A A
 
h) 2
2sin 1 cos2
A A
 
i) 2
2tan
sin2
1 tan
A
A
A


j)
2
2
1 tan
cos2
1 tan
A
A
A



A Complete Formulae Guide  Compiled By OP Gupta (M.+91-9650350480 | +91-9718240480)
7
For all your educational needs, please visit at : www.theOPGupta.com
k) 2
2 tan
tan 2
1 tan
A
A
A


l) 3
sin3 3sin 4sin
A A A
 
m) 3
cos3 4cos 3cos
A A A
 
n)
3
2
3tan tan
tan 3
1 3tan
A A
A
A



 Transformation of sums / differences into products
& vice-versa
a) sin sin 2sin cos
2 2
C D
C D
C D

 

b)sin sin 2cos sin
2 2
C D
C D
C D

 

c)cos cos 2cos cos
2 2
C D
C D
C D

 

d)cos cos 2sin sin
2 2
C D C D
C D
 
  
e)    
sin sin
2sin cos A B A B
A B    
f)    
2 sin sin
cos sin A B A B
A B    
g)    
cos cos
2cos cos A B A B
A B    
h)    
cos cos
2sin sin A B A B
A B    
 Relations in Different Measures of Angle
  
π
Angle in Radian Measure Angle in Degree Measure
180
= ×
  
180
Angle in Degree Measure Angle in Radian Measure
π
= ×
 θ (in radian measure)
l
r

Also followings are of importance as well:
 o
1Right angle 90
  o
1 = 60 , 1 = 60
  
  
.
o
1 = = 0.01745 radians Approx
180

 o
1 radian = 57 17 45 or 206265 seconds
  .
 General Solutions
a) sin sin ( 1 ) ,
n
x y x n y where n Z

      .
b) cos cos 2 ,
x y x n y where n Z

     .
c) tan tan ,
x y x n y where n Z

     .
 Relation in Degree & Radian Measures
Angles in Degree o
0 o
30 o
45 o
60 o
90 o
180 o
270 o
360
Angles in Radian
c
0
c
6

 
 
 
c
4

 
 
 
c
3

 
 
 
c
2

 
 
 
 c

c
3
2

 
 
 
 c
2
 In actual practice, we omit the exponent ‘c’ and instead of writing  c
we simply write  and
similarly for others.
 For the values of Trigonometric Ratios at Standard Angles (i.e, o o o o o
0 ,30 ,45 ,60 and 90 ), check the
following page.
For the complete discussion of the Trigonometric Functions, please refer to the
FORMULAE GUIDE Of TRIGONOMETRIC FUNCTIONS of Class XI.
Inverse Trigonometric Functions By OP Gupta (INDIRA AWARD Winner, Elect. & Comm. Engineering)
8
For all your educational needs, please visit at : www.theOPGupta.com
 Trigonometric Ratio of Standard Angles
Degree / Radian  
 o
0 o
30 o
45 o
60 o
90
T – Ratios 
 0
π
6
π
4
π
3
π
2
sin 0 1
2
1
2
3
2
1
cos 1 3
2
1
2
1
2
0
tan 0 1
3
1 3 
cosec  2 2
2
3
1
sec 1
2
3
2 2 
cot  3 1
1
3
0
 Trigonometric Ratios of Allied Angles
Angles  

π
θ
2

π
θ
2
 π θ
 π θ
 3π
θ
2

3π
θ
2
 2π θ
 OR
θ

2π θ

T- Ratios  

sin cosθ cosθ sinθ  sinθ  cosθ  cosθ  sinθ sinθ
cos sinθ  sinθ  cosθ  cosθ  sinθ sinθ cosθ cosθ
tan cot θ  cot θ tanθ
 tan θ cot θ  cot θ  tan θ tan θ
cot tan θ  tan θ  cot θ cot θ tan θ  tan θ  cot θ cot θ
sec cosecθ  cosecθ  secθ  secθ  cosecθ cosecθ secθ secθ
cosec secθ secθ cosecθ  cosecθ  secθ  secθ  cosecθ cosecθ
 Domain and Range of Trigonometric Functions
T- Functions 
 Domain Range
sin x R [ 1, 1]

cos x R [ 1, 1]

tan x { R : (2 1)π 2, Z}
x x n n
    R
cot x { R : π, Z}
x x n n
   R
cosec x { R : π, Z}
x x n n
   R ( 1, 1)
 
sec x { R : (2 1)π 2, Z}
x x n n
    R ( 1, 1)
 
Any queries and/or suggestion(s), please write to me at
theopgupta@gmail.com
Please mention your details : Name, Student/Teacher/Tutor,
School/Institution, Place, Contact No. (if you wish)

More Related Content

PDF
Sopimus ammatillisten vuosityöajasta – mistä on kyse?
PDF
Layered caching in OpenResty (OpenResty Con 2018)
PPTX
RevistingABC: Beyond blended: new definitions, principles and resources
PDF
Experience using the IO-500
PPTX
MapInfo Professional 12.0 and SQL Server 2008
PPTX
LOne A Novel Approach Towards Fake News Detection Using Customized Bidirectio...
ODP
Powerpoint
PDF
XII MATHS FORMULAS.pdf
Sopimus ammatillisten vuosityöajasta – mistä on kyse?
Layered caching in OpenResty (OpenResty Con 2018)
RevistingABC: Beyond blended: new definitions, principles and resources
Experience using the IO-500
MapInfo Professional 12.0 and SQL Server 2008
LOne A Novel Approach Towards Fake News Detection Using Customized Bidirectio...
Powerpoint
XII MATHS FORMULAS.pdf

Similar to Inverse-Trigonometric-Functions.pdf (20)

PDF
economics
PDF
Math resources trigonometric_formulas
PDF
Math resources trigonometric_formulas class 11th and 12th
PPTX
NDA-Mathematics.pptx djfjsdjfbdjbfjdbjfbjd
PPT
Trigonometric ratios and identities 1
PPT
Algebra 2 unit 9.8
PDF
Trig cheat sheet
PDF
Trigonometry cheat sheet
PDF
Trig cheat sheet
DOCX
TRIGONOMETRY
PDF
Sample question paper 2 with solution
PDF
Arihant NEET Objective Physics Volume 1 By DC Pandey 2022 Edition.pdf
PPTX
ITF-converted.pptx class 12 cbse project
PDF
Trigonometry 10th edition larson solutions manual
PDF
Class 11_Chapter 3_Lecture_3
PDF
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
DOCX
Trigonometry for class xi
PDF
Trigo Sheet Cheat :D
PDF
Module 5 circular functions
PDF
Maths04
economics
Math resources trigonometric_formulas
Math resources trigonometric_formulas class 11th and 12th
NDA-Mathematics.pptx djfjsdjfbdjbfjdbjfbjd
Trigonometric ratios and identities 1
Algebra 2 unit 9.8
Trig cheat sheet
Trigonometry cheat sheet
Trig cheat sheet
TRIGONOMETRY
Sample question paper 2 with solution
Arihant NEET Objective Physics Volume 1 By DC Pandey 2022 Edition.pdf
ITF-converted.pptx class 12 cbse project
Trigonometry 10th edition larson solutions manual
Class 11_Chapter 3_Lecture_3
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
Trigonometry for class xi
Trigo Sheet Cheat :D
Module 5 circular functions
Maths04
Ad

Recently uploaded (20)

PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
Institutional Correction lecture only . . .
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Presentation on HIE in infants and its manifestations
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
VCE English Exam - Section C Student Revision Booklet
human mycosis Human fungal infections are called human mycosis..pptx
Pharmacology of Heart Failure /Pharmacotherapy of CHF
102 student loan defaulters named and shamed – Is someone you know on the list?
Institutional Correction lecture only . . .
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
STATICS OF THE RIGID BODIES Hibbelers.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Computing-Curriculum for Schools in Ghana
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Presentation on HIE in infants and its manifestations
O7-L3 Supply Chain Operations - ICLT Program
Chinmaya Tiranga quiz Grand Finale.pdf
RMMM.pdf make it easy to upload and study
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
202450812 BayCHI UCSC-SV 20250812 v17.pptx
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Microbial diseases, their pathogenesis and prophylaxis
Abdominal Access Techniques with Prof. Dr. R K Mishra
Ad

Inverse-Trigonometric-Functions.pdf

  • 1. 1 For all your educational needs, please visit at : www.theOPGupta.com Complete Study Guide & Notes On INVERSE TRIGONOMETRIC FUNCTIONS The essence of Mathematics is not to make simple things complicated, but to make complicated things simple! IMPORTANT TERMS, DEFINITIONS & RESULTS  A list of formulae for Trigonometric Functions (class XI) has been added for reference at the end of this formulae guide. 01. Basic Introduction: A function : A B f  is said to be invertible if f is bijective (i.e., one-one and onto). The inverse of the function f is denoted by : B A f  such that 1 ( ) f y x   if ( ) f x y  , A, B x y    . As trigonometric functions are many-one so, their inverse doesn’t exist. But they become one-one onto by restricting their domains. Therefore, inverse of trigonometric functions are defined with restricted domains. In fact, in the discussion below we have used all the restrictions required so that the inverse of the concerned trigonometric functions do exist. If these restrictions are removed, the terms will represent inverse trigonometric relations and not the functions. Note that the inverse trigonometric functions are also called as Inverse Circular Functions. 02. List of Formulae and their proofs for Inverse Trigonometric Functions: A. a)     1 1 1 1,1 sin cosec ,            x x x b)       1 1 1 cosec sin , , 1 1,               x x x c)     1 1 1 1,1 cos sec ,            x x x d)       1 1 1 sec cos , , 1 1,               x x x e)   1 1 1 1 1 π cot , 0 tan cot , 0                           x x x x x f)   1 1 1 1 1 π tan , 0 cot tan , 0                           x x x x x PROOF a) Let 1 ( ) sin θ   x then, sinθ  x 1 cosecθ  x = 1 1 θ cosec        x = 1 1 1 sin cosec           x x [H.P.] Other results can be proved in the same way! B. a)     1 1 sin sin , 1,1 x x x        b)     1 1 cos π cos , 1,1        x x x c)   1 1 tan tan , R x x x       d)   1 1 | | cosec cosec , 1       x x x e)   1 1 | | sec π sec , 1       x x x f)   1 1 cot π cot , R       x x x PROOF b) Let   1 cos θ    x then, cosθ  x   1 cosθ cos π θ cos π θ           x x x   1 1 1 cos θ π cos π cos           x x x [H.P.] Similarly, we can prove other results! C. a)   1 π π 2 2 sin sin ,      x x x b)   1 0 π cos cos ,     x x x c)   1 π π 2 2 tan tan ,      x x x d)   1 π π , 0 2 2 cosec cosec ,       x x x x e)   1 π 0 π, 2 sec sec ,      x x x x f)   1 0 π cot cot ,     x x x A Formulae Guide By OP Gupta (Indira Award Winner)
  • 2. Inverse Trigonometric Functions By OP Gupta (INDIRA AWARD Winner, Elect. & Comm. Engineering) 2 For all your educational needs, please visit at : www.theOPGupta.com PROOF a) Let     1 sin θ ...   x i then,   sinθ ...  ii x Substituting the value of x in (i) from (ii) we get, 1 sin sinθ θ   (Replacing θ by x) 1 sin sin    x x [H.P.] For other results we can proceed similarly! D. a)   1 1 π sin cos , 1,1 2       x x x b) 1 1 π tan cot , R 2      x x x c) 1 1 | | 1 or 1 π cosec sec , 1 . ., 2         x x x x i e x PROOF a) Let 1 ( ) sin θ   x then, sinθ  x 1 1 π π π 2 2 2 cos θ θ cos cos θ                  x x x 1 1 π , 1 1 2 sin cos         x x x [H.P.] Similarly, proceed for other results! E. a) 1 1 1 2 2 sin sin sin 1 1             x y x y y x b) 1 1 1 2 2 cos cos cos 1 1             x y xy x y c) 1 1 1 1 1 , 1 , 0, 0, 1 , 0, 0, 1 tan 1 tan tan π tan 1 π tan 1                                                     xy x y xy x y xy x y xy x y x y xy x y xy d) 1 1 1 1 1 , 1 , 0, 0, 1 , 0, 0, 1 tan 1 tan tan π tan 1 π tan 1                                                        xy x y xy x y xy x y xy x y x y xy x y xy e) 1 1 1 1 1 tan tan tan tan                    x y z xyz z xy yz zx x y PROOF a) Let 1 sin θ   x and 1 sin β   y . Then, sinθ  x and sinβ  y . Now ( ) sinθcosβ cosθsinβ sin θ β    2 2 sinθ 1 sin β 1 sin θsinβ      ( ) sin θ β  + 2 2 1 1     x y y x 1 2 2 θ β sin 1 1            x y y x 1 1 1 2 2 sin sin sin 1 1              x y x y y x [H.P.]
  • 3. A Complete Formulae Guide  Compiled By OP Gupta (M.+91-9650350480 | +91-9718240480) 3 For all your educational needs, please visit at : www.theOPGupta.com b) 1 1 1 2 2 cos cos cos 1 1             x y xy x y Do yourself. Proceed as in (a). c) Let 1 tan θ   x and 1 tan β   y . Then, tanθ  x and tanβ  y . Now   tan θ tanβ tan 1 tanθtanβ 1 θ β        x y xy 1 θ β tan 1             x y xy 1 1 1 tan tan tan 1               x y x y xy For 0  x , 1 tan x will be a positive angle and for 0  y , 1 tan y will also be a positive angle. Therefore, LHS of (c) will be a positive angle and hence RHS should also be a positive angle. Case I When 0, 0   x y and 1  xy then 1   x y xy is positive. So, 1 tan 1          x y xy will be a positive angle. Hence, 1 1 1 tan tan tan 1              x y x y xy [H.P.] Case II When 0, 0   x y and 1  xy then 1   x y xy is negative. So, 1 tan 1          x y xy will be a negative angle. Therefore we add π to make it positive and balanced. Hence, 1 1 1 tan tan π tan 1               x y x y xy [H.P.] Case III When 0, 0   x y and 1  xy then 1   x y xy is positive. So, 1 1 tan tan    x y will be a negative angle and 1 tan 1          x y xy will be a positive angle. Therefore to balance it we will be adding – π . Hence, 1 1 1 tan tan π tan 1                x y x y xy [H.P.] d) Let 1 tan θ   x and 1 tan β   y . Then, tanθ  x and tanβ  y . Now   tan θ tanβ tan 1 tanθtanβ 1 θ β x y xy        1 θ β tan 1 x y xy             1 1 1 tan tan tan 1 x y x y xy               …(A) Case I When 0, 0   x y and 1 xy   then 1 x y xy   is positive (or negative depending upon the absolute value of the angles x and y). Also if 0, 0   x y then, π θ,β 0, 2       . So π π θ β , 2 2          i.e., 1 1 π π tan tan , 2 2 x y            .
  • 4. Inverse Trigonometric Functions By OP Gupta (INDIRA AWARD Winner, Elect. & Comm. Engineering) 4 For all your educational needs, please visit at : www.theOPGupta.com Hence, 1 1 1 tan tan tan 1 x y x y xy              , 1 xy   [By using (A) [H.P.] Case II When 0, 0 x y   and 1 xy   then 1 x y xy   is negative. Also if 0, 0 x y   then, π π θ 0, ,β ,0 2 2                i.e., π π θ 0, , β 0, 2 2                . So θ β (0,π)   i.e., 1 1 tan tan (0,π) x y     . As 1 tan 1 x y xy          is a negative angle. Therefore we add π in RHS of (A) to make it positive and balanced. Hence, 1 1 1 tan tan π tan 1 x y x y xy               , 0, 0 x y   and 1 xy   [H.P.] Case III When 0, 0 x y   and 1 xy   then 1 x y xy   is positive. Also if 0, 0 x y   then, π π θ ,0 ,β 0, 2 2                i.e., π π θ ,0 , β ,0 2 2                  . So θ β ( π,0)    i.e., 1 1 tan tan ( π,0) x y      . So, 1 1 tan tan x y    will be a negative angle and 1 tan 1 x y xy          will be a positive angle. Therefore to balance it we will be adding – π in RHS of (A). Hence, 1 1 1 tan tan π tan 1 x y x y xy                , 0, 0 x y   and 1 xy   [H.P.] F. a) 2 1 1 2 2 tan sin , | | 1 1            x x x x b) 2 1 2 1 1 2 tan cos , 0 1             x x x x c) 1 2 1 2 2 tan tan , 1 1 1              x x x x PROOF a) Let 1 tan θ   x then, tanθ  x . As 2 2 2tanθ 2 sin2θ sin2θ 1 tan θ 1      x x i.e., 1 2 2 1 1 2 2 2θ sin 2tan sin 1 1               x x x x x [H.P.] Other results can also be proved in the same way! 03. Principal Value: Numerically smallest angle is known as the principal value. Finding the principal value: For finding the principal value, following algorithm can be followed– STEP1– Firstly, draw a trigonometric circle and mark the quadrant in which the angle may lie. STEP2– Select anticlockwise direction for 1st and 2nd quadrants and clockwise direction for 3rd and 4th quadrants. STEP3– Find the angles in the first rotation. STEP4– Select the numerically least (magnitude wise) angle among these two values. The angle thus found will be the principal value. STEP5– In case, two angles one with positive sign and the other with the negative sign qualify for the numerically least angle then, it is the convention to select the angle with positive sign as principal value. The principal value is never numerically greater than  .
  • 5. A Complete Formulae Guide  Compiled By OP Gupta (M.+91-9650350480 | +91-9718240480) 5 For all your educational needs, please visit at : www.theOPGupta.com 04. Table demonstrating domains and ranges of Inverse Trigonometric functions: Discussion about the range of inverse circular functions other than their respective principal value branch We know that the domain of sine function is the set of real numbers and range is the closed interval [–1, 1]. If we restrict its domain to 3π π , 2 2         , π π , 2 2        , π 3π , 2 2       etc. then, it becomes bijective with the range [–1, 1]. So, we can define the inverse of sine function in each of these intervals. Hence, all the intervals of sin–1 function, except principal value branch (here except of π π , 2 2        for sin–1 function) are known as the range of sin–1 other than its principal value branch. The same discussion can be extended for other inverse circular functions. (Refer Q16 in Mathematicia Vol.1 By OP Gupta) 05. To simplify inverse trigonometrical expressions, following substitutions can be considered: Inverse Trigonometric Functions i.e., ( ) f x Domain/ Values of x Range/ Values of ( ) f x 1 sin x [ 1, 1]  π π , 2 2        1 cos x [ 1, 1]  [0, π] 1 cosec x R ( 1, 1)   π π , {0} 2 2         1 sec x R ( 1, 1)   π [0, π] 2        1 tan x R π π , 2 2        1 cot x R (0, π) Expression Substitution 2 2 2 2 or a x a x   tanθ or cotθ   x a x a 2 2 2 2 or a x a x   sinθ or cosθ   x a x a 2 2 2 2 or x a x a   secθ or cosecθ   x a x a or a x a x a x a x     cos2θ  x a 2 2 2 2 2 2 2 2 or a x a x a x a x     2 2 cos 2θ  x a or x a x a x x   2 2 sin θ or cos θ   x a x a or x a x a x x   2 2 tan θ or cot θ   x a x a
  • 6. Inverse Trigonometric Functions By OP Gupta (INDIRA AWARD Winner, Elect. & Comm. Engineering) 6 For all your educational needs, please visit at : www.theOPGupta.com Note the followings and keep them in mind:  The symbol 1 sin x  is used to denote the smallest angle whether positive or negative, such that the sine of this angle will give us x. Similarly 1 1 1 1 , , , , cos x tan x cosec x sec x     and 1 cot x  are defined.  You should note that 1 sin x  can be written as arcsinx . Similarly other Inverse Trigonometric Functions can also be written as arccosx, arctanx, arcsecx etc.  Also note that sin x 1 (and similarly other Inverse Trigonometric Functions) is entirely different from 1 ( ) sin x  . In fact, 1 sin x  is the measure of an angle in Radians whose sine is x whereas 1 ( ) sin x  is 1 sin x (which is obvious as per the laws of exponents).  Keep in mind that these inverse trigonometric relations are true only in their domains i.e., they are valid only for some values of ‘x’ for which inverse trigonometric functions are well defined! Check out NCERT Textbook Part I for the Graphs of Inverse Trigonometric Functions.  Trigonometric Formulae (Only For Reference):  Relation between trigonometric ratios a) sinθ tan θ cosθ  b) 1 tan θ cot θ  c) tan θ.cotθ 1  d) cosθ cot θ sinθ  e) 1 cosecθ sin θ  f) 1 secθ cosθ   Trigonometric identities a) 2 2 sin θ cos θ 1   b) 2 2 sec θ 1 tan θ   c) 2 2 cosec θ 1 cot θ    Addition / subtraction formulae & some related results a)   sin sin cos cos sin A B A B A B    b)   cos cos cos sin sin A B A B A B        2 2 2 2 ) cos cos cos sin cos sin c A B A B A B B A           2 2 2 2 ) sin sin sin sin cos cos d A B A B A B B A       e)   tan tan tan 1 tan tan A B A B A B     f)   cot cot 1 cot cot cot B A A B B A      Multiple angle formulae involving 2A & 3A a)sin2 2sin cos A A A  b) 2 2 sin 2sin cos A A A  c) 2 2 cos2 cos sin A A A   d) 2 2 cos cos sin 2 2 A A A   e) 2 cos2 2cos 1 A A   f) 2 2cos 1 cos2 A A   g) 2 cos2 1 2sin A A   h) 2 2sin 1 cos2 A A   i) 2 2tan sin2 1 tan A A A   j) 2 2 1 tan cos2 1 tan A A A   
  • 7. A Complete Formulae Guide  Compiled By OP Gupta (M.+91-9650350480 | +91-9718240480) 7 For all your educational needs, please visit at : www.theOPGupta.com k) 2 2 tan tan 2 1 tan A A A   l) 3 sin3 3sin 4sin A A A   m) 3 cos3 4cos 3cos A A A   n) 3 2 3tan tan tan 3 1 3tan A A A A     Transformation of sums / differences into products & vice-versa a) sin sin 2sin cos 2 2 C D C D C D     b)sin sin 2cos sin 2 2 C D C D C D     c)cos cos 2cos cos 2 2 C D C D C D     d)cos cos 2sin sin 2 2 C D C D C D      e)     sin sin 2sin cos A B A B A B     f)     2 sin sin cos sin A B A B A B     g)     cos cos 2cos cos A B A B A B     h)     cos cos 2sin sin A B A B A B      Relations in Different Measures of Angle    π Angle in Radian Measure Angle in Degree Measure 180 = ×    180 Angle in Degree Measure Angle in Radian Measure π = ×  θ (in radian measure) l r  Also followings are of importance as well:  o 1Right angle 90   o 1 = 60 , 1 = 60       . o 1 = = 0.01745 radians Approx 180   o 1 radian = 57 17 45 or 206265 seconds   .  General Solutions a) sin sin ( 1 ) , n x y x n y where n Z        . b) cos cos 2 , x y x n y where n Z       . c) tan tan , x y x n y where n Z       .  Relation in Degree & Radian Measures Angles in Degree o 0 o 30 o 45 o 60 o 90 o 180 o 270 o 360 Angles in Radian c 0 c 6        c 4        c 3        c 2         c  c 3 2         c 2  In actual practice, we omit the exponent ‘c’ and instead of writing  c we simply write  and similarly for others.  For the values of Trigonometric Ratios at Standard Angles (i.e, o o o o o 0 ,30 ,45 ,60 and 90 ), check the following page. For the complete discussion of the Trigonometric Functions, please refer to the FORMULAE GUIDE Of TRIGONOMETRIC FUNCTIONS of Class XI.
  • 8. Inverse Trigonometric Functions By OP Gupta (INDIRA AWARD Winner, Elect. & Comm. Engineering) 8 For all your educational needs, please visit at : www.theOPGupta.com  Trigonometric Ratio of Standard Angles Degree / Radian    o 0 o 30 o 45 o 60 o 90 T – Ratios   0 π 6 π 4 π 3 π 2 sin 0 1 2 1 2 3 2 1 cos 1 3 2 1 2 1 2 0 tan 0 1 3 1 3  cosec  2 2 2 3 1 sec 1 2 3 2 2  cot  3 1 1 3 0  Trigonometric Ratios of Allied Angles Angles    π θ 2  π θ 2  π θ  π θ  3π θ 2  3π θ 2  2π θ  OR θ  2π θ  T- Ratios    sin cosθ cosθ sinθ  sinθ  cosθ  cosθ  sinθ sinθ cos sinθ  sinθ  cosθ  cosθ  sinθ sinθ cosθ cosθ tan cot θ  cot θ tanθ  tan θ cot θ  cot θ  tan θ tan θ cot tan θ  tan θ  cot θ cot θ tan θ  tan θ  cot θ cot θ sec cosecθ  cosecθ  secθ  secθ  cosecθ cosecθ secθ secθ cosec secθ secθ cosecθ  cosecθ  secθ  secθ  cosecθ cosecθ  Domain and Range of Trigonometric Functions T- Functions   Domain Range sin x R [ 1, 1]  cos x R [ 1, 1]  tan x { R : (2 1)π 2, Z} x x n n     R cot x { R : π, Z} x x n n    R cosec x { R : π, Z} x x n n    R ( 1, 1)   sec x { R : (2 1)π 2, Z} x x n n     R ( 1, 1)   Any queries and/or suggestion(s), please write to me at theopgupta@gmail.com Please mention your details : Name, Student/Teacher/Tutor, School/Institution, Place, Contact No. (if you wish)