SlideShare a Scribd company logo
By:- Pranav Khandelwal
INVERSE
TRIGONOMETRIC
FUNCTION
INTRODUCTION
▶ Onto function : (aka surjective function)
- Range and Co-Domain of a function are same, for eg:
For a function to be inverse trigo function, it needs to be 1-1 and onto
function (aka bijective function)
▶ One to one function: (aka injective function)
-No two elements have same output, for eg:
𝒔𝒊𝒏−𝟏 𝒙
▶ Domain : [-
1,1]
▶ Range : [-
π
,π
]
2 2
▶ Increasing
function
▶ Odd function
▶ sin−1( −𝑥) = -
sin−1 𝑥
▶ sin−1
𝑥=
𝑑 1
𝑑𝑥
1−𝑥2
𝒄𝒐𝒔−𝟏 𝒙
▶ Domain : [-1,1]
▶ Range : [0, π]
▶ Decreasing function
▶ Neither odd nor even
▶ cos−1( −𝑥 )= π -
cos−1 𝑥
𝑑
𝑥
▶
𝑑
cos−1 𝑥
= -
1
1−𝑥2
𝒕𝒂𝒏−𝟏 𝒙
▶ Domain : All Real
no.s π
▶ Range : (-π
,)
2
2
▶ Increasing function
▶ Odd function
▶ tan−1 −𝑥 =
−tan−1 𝑥
𝑑
𝑥
▶
𝑑
tan−1 𝑥
=
1
1+𝑥2
𝒄𝒐𝒕−𝟏 𝒙
▶ Domain : All Real No.s
▶ Range : (0, π)
▶ Decreasing function
▶ Neither odd nor even
function
▶ cot−1(−𝑥)= π - cot−1 𝑥
𝑑
𝑥
▶
𝑑
cot−1(𝑥)=
−
1
1+𝑥2
𝒔𝒆𝒄−𝟏 𝒙
▶ Domain : −∞, −1 𝑈 [1,
∞)
2
2
▶ Range : [0,π
) U
(𝜋
,π]
▶ Neither even nor odd
function
▶ sec−1(−𝑥) = π - sec−1 𝑥
𝑑
𝑥
▶
𝑑
sec−1 𝑥
=
1
𝑥
𝑥2−1
𝒄𝒐𝒔𝒆𝒄−𝟏 𝒙
▶ Domain : −∞. −1 U [1,
∞)
▶ Range : [
�
�
2
− , 0) U
(0,
2
𝜋
]
▶ Odd function
▶ csc−1 −𝑥=
−csc−1 𝑥
𝑑
𝑥
▶
𝑑
csc−1 𝑥
= -
1
𝑥
𝑥2−1
NOTE:
▶ None of the inverse trigo functions are periodic functions.
▶ 𝑓(f −1 𝑥 ) = x for every x belonging to its domain
▶ Sign of an inequality changes if we apply a decreasing function
on both sides of an inequality. Sign of inequality remains same if
it's an increasing function.
▶ 𝑦 = sin−1(sin 𝑥) = nπ + (−1)𝑛 𝑥
▶ 𝑦 = cs𝑐−1 (csc 𝑥) = nπ +
(−1)𝑛 𝑥
▶ 𝑦 = cos−1 (cos 𝑥) =
2nπ ± 𝑥
▶ 𝑦 = sec−1 (sec 𝑥) =
2nπ ± 𝑥
▶ 𝑦 = tan−1(tan 𝑥) =
𝑛𝜋 + 𝑥
▶ 𝑦 = cot−1(𝑐𝑜𝑡 𝑥) =
𝑛𝜋 + 𝑥
PROPERTIES:
▶ sin−1 𝑥 + cos−1 𝑥
=
�
�
▶ tan−1 𝑥 +
co𝑡−1 𝑥 =
2
�
�
2
▶ s𝑒𝑐−1 𝑥 +
cosec−1 𝑥 =
�
�
2
�
�
▶ sin−1 1
=
csc−1 𝑥
�
�
▶ cos−1 1
=
sec−1 𝑥
▶
tan
−1 1
𝑥
cot−1
𝑥
= ቊ
−𝜋 +
cot−1 𝑥
; 𝑥 >
0
; 𝑥 <
0
�
�
�
�
▶ tan−1 𝑥 + tan−1 1
=
ቐ2 −
𝜋
2
; 𝑥 >
0
; 𝑥 <
▶ tan−1 𝑥 + tan−1 𝑦
=
tan−
1
𝑥+
𝑦
1−𝑥
𝑦
; 𝑥 > 0, 𝑦 > 0,
𝑥𝑦 < 1
𝜋 +
tan−1
𝑥+
𝑦
1−𝑥
𝑦
; 𝑥 > 0, 𝑦 > 0,
𝑥𝑦 > 1
▶ tan−1 𝑥 − tan−1 𝑦 =
tan−1
𝑥−
𝑦
1+𝑥
𝑦
; 𝑥 > 0, 𝑦
> 0
THANKYOU

More Related Content

PPTX
Inverse_trigonometric_function presentation.pptx
PDF
PDF
12 th class ch 2 notes economices full notes
PPT
PPTX
Inverse trignometry
PPTX
Math12 lesson7
PPTX
Math12 lesson7
PPT
Sadiq Hussain
Inverse_trigonometric_function presentation.pptx
12 th class ch 2 notes economices full notes
Inverse trignometry
Math12 lesson7
Math12 lesson7
Sadiq Hussain

Similar to ITF-converted.pptx class 12 cbse project (20)

PDF
Class 12th Inverse Trigonometric Functions .pdf
PPTX
inverse trigonometric function_1669522645.pptx
PDF
Chapter 3 - Inverse Functions.pdf
DOCX
The inverse trigonometric functions
PPT
Inverse trig functions
PDF
CRMS Calculus 2010 February 8, 2010_A
DOCX
Inverse trigonometric functions xii[1]
PPT
inverse_trig_functions class 12th (1).ppt
PPT
MATHS-1.ppt
PPTX
11 the inverse trigonometric functions x
PPTX
6.1 inverse trig functions
PDF
Inverse circular function
PPTX
Inverse Trigonometric Functions.pptx dhhdhdhdhdhhd
PPT
inverse trigonometric functions anf their properties
PDF
01 Inverse Function. Chapter 0. Calculus
PDF
Inverse-Trigonometric-Functions.pdf
PPT
Graphing Trig Functions-Tangent and Cotangent.ppt
PPT
PPT_CLASS_12_MATHS_CH_2_Maths_XI_Inverse_trignometric_functions (1).ppt
PDF
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
PDF
Lesson16 -inverse_trigonometric_functions_041_slides
Class 12th Inverse Trigonometric Functions .pdf
inverse trigonometric function_1669522645.pptx
Chapter 3 - Inverse Functions.pdf
The inverse trigonometric functions
Inverse trig functions
CRMS Calculus 2010 February 8, 2010_A
Inverse trigonometric functions xii[1]
inverse_trig_functions class 12th (1).ppt
MATHS-1.ppt
11 the inverse trigonometric functions x
6.1 inverse trig functions
Inverse circular function
Inverse Trigonometric Functions.pptx dhhdhdhdhdhhd
inverse trigonometric functions anf their properties
01 Inverse Function. Chapter 0. Calculus
Inverse-Trigonometric-Functions.pdf
Graphing Trig Functions-Tangent and Cotangent.ppt
PPT_CLASS_12_MATHS_CH_2_Maths_XI_Inverse_trignometric_functions (1).ppt
Lesson 16: Inverse Trigonometric Functions (Section 041 slides)
Lesson16 -inverse_trigonometric_functions_041_slides
Ad

Recently uploaded (20)

PDF
01-Introduction-to-Information-Management.pdf
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Cell Types and Its function , kingdom of life
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Presentation on HIE in infants and its manifestations
PPTX
Pharma ospi slides which help in ospi learning
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
A systematic review of self-coping strategies used by university students to ...
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Lesson notes of climatology university.
PPTX
master seminar digital applications in india
PPTX
Institutional Correction lecture only . . .
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
01-Introduction-to-Information-Management.pdf
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
O7-L3 Supply Chain Operations - ICLT Program
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Cell Types and Its function , kingdom of life
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Presentation on HIE in infants and its manifestations
Pharma ospi slides which help in ospi learning
Chinmaya Tiranga quiz Grand Finale.pdf
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
O5-L3 Freight Transport Ops (International) V1.pdf
GDM (1) (1).pptx small presentation for students
A systematic review of self-coping strategies used by university students to ...
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Lesson notes of climatology university.
master seminar digital applications in india
Institutional Correction lecture only . . .
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Ad

ITF-converted.pptx class 12 cbse project

  • 2. INTRODUCTION ▶ Onto function : (aka surjective function) - Range and Co-Domain of a function are same, for eg: For a function to be inverse trigo function, it needs to be 1-1 and onto function (aka bijective function) ▶ One to one function: (aka injective function) -No two elements have same output, for eg:
  • 3. 𝒔𝒊𝒏−𝟏 𝒙 ▶ Domain : [- 1,1] ▶ Range : [- π ,π ] 2 2 ▶ Increasing function ▶ Odd function ▶ sin−1( −𝑥) = - sin−1 𝑥 ▶ sin−1 𝑥= 𝑑 1 𝑑𝑥 1−𝑥2
  • 4. 𝒄𝒐𝒔−𝟏 𝒙 ▶ Domain : [-1,1] ▶ Range : [0, π] ▶ Decreasing function ▶ Neither odd nor even ▶ cos−1( −𝑥 )= π - cos−1 𝑥 𝑑 𝑥 ▶ 𝑑 cos−1 𝑥 = - 1 1−𝑥2
  • 5. 𝒕𝒂𝒏−𝟏 𝒙 ▶ Domain : All Real no.s π ▶ Range : (-π ,) 2 2 ▶ Increasing function ▶ Odd function ▶ tan−1 −𝑥 = −tan−1 𝑥 𝑑 𝑥 ▶ 𝑑 tan−1 𝑥 = 1 1+𝑥2
  • 6. 𝒄𝒐𝒕−𝟏 𝒙 ▶ Domain : All Real No.s ▶ Range : (0, π) ▶ Decreasing function ▶ Neither odd nor even function ▶ cot−1(−𝑥)= π - cot−1 𝑥 𝑑 𝑥 ▶ 𝑑 cot−1(𝑥)= − 1 1+𝑥2
  • 7. 𝒔𝒆𝒄−𝟏 𝒙 ▶ Domain : −∞, −1 𝑈 [1, ∞) 2 2 ▶ Range : [0,π ) U (𝜋 ,π] ▶ Neither even nor odd function ▶ sec−1(−𝑥) = π - sec−1 𝑥 𝑑 𝑥 ▶ 𝑑 sec−1 𝑥 = 1 𝑥 𝑥2−1
  • 8. 𝒄𝒐𝒔𝒆𝒄−𝟏 𝒙 ▶ Domain : −∞. −1 U [1, ∞) ▶ Range : [ � � 2 − , 0) U (0, 2 𝜋 ] ▶ Odd function ▶ csc−1 −𝑥= −csc−1 𝑥 𝑑 𝑥 ▶ 𝑑 csc−1 𝑥 = - 1 𝑥 𝑥2−1
  • 9. NOTE: ▶ None of the inverse trigo functions are periodic functions. ▶ 𝑓(f −1 𝑥 ) = x for every x belonging to its domain ▶ Sign of an inequality changes if we apply a decreasing function on both sides of an inequality. Sign of inequality remains same if it's an increasing function. ▶ 𝑦 = sin−1(sin 𝑥) = nπ + (−1)𝑛 𝑥 ▶ 𝑦 = cs𝑐−1 (csc 𝑥) = nπ + (−1)𝑛 𝑥
  • 10. ▶ 𝑦 = cos−1 (cos 𝑥) = 2nπ ± 𝑥 ▶ 𝑦 = sec−1 (sec 𝑥) = 2nπ ± 𝑥
  • 11. ▶ 𝑦 = tan−1(tan 𝑥) = 𝑛𝜋 + 𝑥 ▶ 𝑦 = cot−1(𝑐𝑜𝑡 𝑥) = 𝑛𝜋 + 𝑥
  • 12. PROPERTIES: ▶ sin−1 𝑥 + cos−1 𝑥 = � � ▶ tan−1 𝑥 + co𝑡−1 𝑥 = 2 � � 2 ▶ s𝑒𝑐−1 𝑥 + cosec−1 𝑥 = � � 2 � � ▶ sin−1 1 = csc−1 𝑥 � � ▶ cos−1 1 = sec−1 𝑥 ▶ tan −1 1 𝑥 cot−1 𝑥 = ቊ −𝜋 + cot−1 𝑥 ; 𝑥 > 0 ; 𝑥 < 0 � � � � ▶ tan−1 𝑥 + tan−1 1 = ቐ2 − 𝜋 2 ; 𝑥 > 0 ; 𝑥 <
  • 13. ▶ tan−1 𝑥 + tan−1 𝑦 = tan− 1 𝑥+ 𝑦 1−𝑥 𝑦 ; 𝑥 > 0, 𝑦 > 0, 𝑥𝑦 < 1 𝜋 + tan−1 𝑥+ 𝑦 1−𝑥 𝑦 ; 𝑥 > 0, 𝑦 > 0, 𝑥𝑦 > 1 ▶ tan−1 𝑥 − tan−1 𝑦 = tan−1 𝑥− 𝑦 1+𝑥 𝑦 ; 𝑥 > 0, 𝑦 > 0