PROGRAMA NACIONAL DE FORMACIÓN EN SISTEMA DE CALIDAD Y
AMBIENTE.
Matemática Aplicada.
Unidad I. parte II
Integrante:
Johelbys Campos C.I.: 24.156.988
Trayecto 3 Fase 2
Grupo-A
Febrero de 2021
Ejercicios propuestos 1.2:
Verifique si la ecuación diferencial es exacta, separable, homogénea o lineal.
𝟒) (𝟏 + 𝒙𝟐
+ 𝒚𝟐
+ 𝒙𝟐
𝒚𝟐)𝒅𝒚 = 𝒚𝟐
𝒅𝒙
Solución:
Verificamos si la ecuación diferencial es de variable separable si se cumple que:
𝑓(𝑦)𝑑𝑦 = 𝑔(𝑥)𝑑𝑥 ; 𝐻(𝑥, 𝑦)
𝑔(𝑥)
𝑓(𝑥)
(1 + 𝑥2
+ 𝑦2
+ 𝑥2
𝑦2)𝑑𝑦 = 𝑦2
𝑑𝑥 ; despejando queda:
𝑑𝑦
𝑦2
=
𝑑𝑥
1 + 𝑥2 + 𝑦2 + 𝑥2𝑦2
Por lo tanto (1 + 𝑥2
+ 𝑦2
+ 𝑥2
𝑦2)𝑑𝑦 = 𝑦2
𝑑𝑥 es separable.
𝟗) (𝒙 + 𝟏)
𝒅𝒚
𝒅𝒙
+ (𝒙 + 𝟐)𝒚 = 𝟐𝒙𝒆−𝒙
Solución:
Veamos si la ecuación diferencial (𝑥 + 1)
𝑑𝑦
𝑑𝑥
+ (𝑥 + 2)𝑦 = 2𝑥𝑒−𝑥
se puede expresar
en la forma estándar.
Dividimos entre (𝑥 + 1) a ambos lados de la ecuación así obtenemos:
𝑑𝑦
𝑑𝑥
+
(𝑥 + 2)𝑦
(𝑥 + 1)
=
2𝑥𝑒−𝑥
(𝑥 + 1)
𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠
𝑑𝑦
𝑑𝑥
+ 𝑝(𝑥)𝑦 = 𝑓(𝑥)
Donde:
𝑝(𝑥) =
(𝑥+2)
(𝑥+1)
𝑦 𝑓(𝑥) =
2𝑥𝑒−𝑥
(𝑥+1)
Asi la ecuación (𝑥 + 1)
𝑑𝑦
𝑑𝑥
+ (𝑥 + 2)𝑦 = 2𝑥𝑒−𝑥
es lineal
𝟏𝟑)
𝒅𝒚
𝒅𝒙
= −
(𝒙𝟑
+ 𝒚𝟑
)
𝟑𝒙𝒚𝟐
Solución:
𝐸𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 𝑑𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎𝑙
𝑑𝑦
𝑑𝑥
= −
(𝑥3
+ 𝑦3
)
3𝑥𝑦2
Donde 𝑀(𝑥, 𝑦) = 𝑥3
+ 𝑦3
𝑌 𝑁(𝑥, 𝑦) = 3𝑥𝑦2
Derivando 𝑀 con respecto a 𝑦 y a 𝑁 con respecto a 𝑥, se tiene que:
𝜕
𝜕𝑦
𝑀(𝑥, 𝑦) = 𝑥3
+ 𝑦3
= 3𝑦2
𝜕
𝜕𝑥
𝑁(𝑥, 𝑦) = 3𝑥𝑦2
= 3𝑦2
𝑐𝑜𝑚𝑜
𝜕
𝜕𝑦
𝑀(𝑥, 𝑦) =
𝜕
𝜕𝑥
𝑁(𝑥, 𝑦)
por lo tanto
𝑑𝑦
𝑑𝑥
= −
(𝑥3
+ 𝑦3)
3𝑥𝑦2
𝒆𝒔 𝒆𝒙𝒂𝒄𝒕𝒂
𝟑𝟎) (𝒙 + 𝒚)𝒅𝒙 + 𝒙𝒅𝒚 = 𝟎
Solución:
Sabemos que 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0
Verifiquemos que 𝑀(𝑥, 𝑦) = 𝑥 + 𝑦 𝑌 𝑁(𝑥, 𝑦) = 𝑥
Son homogéneas del mismo grado.
𝑀(𝑡𝑥, 𝑡𝑦) = (𝑡𝑥) + (𝑡𝑦) ; 𝑁(𝑡𝑥, 𝑡𝑦) = (𝑡𝑥)
= 𝑡(𝑥 + 𝑦) = 𝑡𝑥
= 𝑡𝑀(𝑥, 𝑦) = 𝑡𝑁(𝑥, 𝑦)
𝑎1 = 1 𝑎2 = 1
Como 𝑎1 = 𝑎2 𝑀(𝑥, 𝑦) 𝑌 𝑁(𝑥, 𝑦) son homogéneas del mismo grado.
Por lo tanto (𝑥 + 𝑦)𝑑𝑥 + 𝑥𝑑𝑦 = 0 es homogénea.

More Related Content

DOCX
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
PDF
Semana 19 ecuaciones con radicales álgebra uni ccesa007
PPTX
Plano numerico
PPTX
Arithmetic means
PPTX
Geometric mean
PPTX
Plane in 3 dimensional geometry
PPTX
Maths project
PPTX
Pair of linear equations in two variable
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
Semana 19 ecuaciones con radicales álgebra uni ccesa007
Plano numerico
Arithmetic means
Geometric mean
Plane in 3 dimensional geometry
Maths project
Pair of linear equations in two variable

What's hot (20)

PDF
Application of the Properties of Parallelogram
PPTX
Numerical solution of ordinary differential equations
PPTX
Linear equations
PPTX
Linear equations Class 10 by aryan kathuria
PPTX
Linear equations in two variables
PPT
Matrix algebra
PPT
Linear equation in tow variable
PDF
Ecuaciones lineal y homogena..
PPTX
Class 10 maths
PPTX
Geometric sequence and Series
PDF
Illustrations of Quadratic Equations
PPTX
Linear equations in 2 variables
PPTX
Pair of linear equations in two variables for classX
PPTX
Ultimate guide to systems of equations
PPTX
PPT on Linear Equations in two variables
PPTX
Arithmetic series
PPTX
11.1 linear equations in two variables
PPT
CLASS X MATHS LINEAR EQUATIONS
PDF
Semana 27 funciones exponenciales álgebra uni ccesa007
PPTX
Pair of linear equation in two variable
Application of the Properties of Parallelogram
Numerical solution of ordinary differential equations
Linear equations
Linear equations Class 10 by aryan kathuria
Linear equations in two variables
Matrix algebra
Linear equation in tow variable
Ecuaciones lineal y homogena..
Class 10 maths
Geometric sequence and Series
Illustrations of Quadratic Equations
Linear equations in 2 variables
Pair of linear equations in two variables for classX
Ultimate guide to systems of equations
PPT on Linear Equations in two variables
Arithmetic series
11.1 linear equations in two variables
CLASS X MATHS LINEAR EQUATIONS
Semana 27 funciones exponenciales álgebra uni ccesa007
Pair of linear equation in two variable
Ad

Similar to Johelbys campos2 (20)

PDF
Yoaniker morles2
PPTX
Functions of severable variables
PPTX
Ordinary Differential Equations: Variable separation method
PPTX
Lecture-1-Mech.pptx . .
DOCX
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
PDF
Maths-MS_Term2 (1).pdf
PDF
DE-PS.pdf
PPTX
Lesson 2: Final Exam Review (Part 1)
PDF
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
PPTX
Homogeneous Linear Differential Equations
DOCX
Btech_II_ engineering mathematics_unit2
DOCX
B.tech ii unit-2 material beta gamma function
DOCX
B.tech ii unit-5 material vector integration
PPTX
Functions ppt Dr Frost Maths Mixed questions
DOCX
Tugas 5.3 kalkulus integral
PDF
Study Material Numerical Differentiation and Integration
DOCX
B.tech ii unit-3 material multiple integration
DOCX
Btech_II_ engineering mathematics_unit3
PDF
DOUBLE INTEGRAL.Introduction Numerical Problem Based on Lagrange’s Method of ...
Yoaniker morles2
Functions of severable variables
Ordinary Differential Equations: Variable separation method
Lecture-1-Mech.pptx . .
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Maths-MS_Term2 (1).pdf
DE-PS.pdf
Lesson 2: Final Exam Review (Part 1)
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
Homogeneous Linear Differential Equations
Btech_II_ engineering mathematics_unit2
B.tech ii unit-2 material beta gamma function
B.tech ii unit-5 material vector integration
Functions ppt Dr Frost Maths Mixed questions
Tugas 5.3 kalkulus integral
Study Material Numerical Differentiation and Integration
B.tech ii unit-3 material multiple integration
Btech_II_ engineering mathematics_unit3
DOUBLE INTEGRAL.Introduction Numerical Problem Based on Lagrange’s Method of ...
Ad

Recently uploaded (20)

PDF
International_Financial_Reporting_Standa.pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
What if we spent less time fighting change, and more time building what’s rig...
PPTX
What’s under the hood: Parsing standardized learning content for AI
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
semiconductor packaging in vlsi design fab
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
Empowerment Technology for Senior High School Guide
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
advance database management system book.pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI .pdf
PPTX
Computer Architecture Input Output Memory.pptx
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
Education and Perspectives of Education.pptx
PDF
Journal of Dental Science - UDMY (2021).pdf
PDF
English Textual Question & Ans (12th Class).pdf
PPTX
Module on health assessment of CHN. pptx
International_Financial_Reporting_Standa.pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
What if we spent less time fighting change, and more time building what’s rig...
What’s under the hood: Parsing standardized learning content for AI
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
semiconductor packaging in vlsi design fab
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
Introduction to pro and eukaryotes and differences.pptx
Empowerment Technology for Senior High School Guide
A powerpoint presentation on the Revised K-10 Science Shaping Paper
advance database management system book.pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
MICROENCAPSULATION_NDDS_BPHARMACY__SEM VII_PCI .pdf
Computer Architecture Input Output Memory.pptx
Hazard Identification & Risk Assessment .pdf
Education and Perspectives of Education.pptx
Journal of Dental Science - UDMY (2021).pdf
English Textual Question & Ans (12th Class).pdf
Module on health assessment of CHN. pptx

Johelbys campos2

  • 1. PROGRAMA NACIONAL DE FORMACIÓN EN SISTEMA DE CALIDAD Y AMBIENTE. Matemática Aplicada. Unidad I. parte II Integrante: Johelbys Campos C.I.: 24.156.988 Trayecto 3 Fase 2 Grupo-A Febrero de 2021
  • 2. Ejercicios propuestos 1.2: Verifique si la ecuación diferencial es exacta, separable, homogénea o lineal. 𝟒) (𝟏 + 𝒙𝟐 + 𝒚𝟐 + 𝒙𝟐 𝒚𝟐)𝒅𝒚 = 𝒚𝟐 𝒅𝒙 Solución: Verificamos si la ecuación diferencial es de variable separable si se cumple que: 𝑓(𝑦)𝑑𝑦 = 𝑔(𝑥)𝑑𝑥 ; 𝐻(𝑥, 𝑦) 𝑔(𝑥) 𝑓(𝑥) (1 + 𝑥2 + 𝑦2 + 𝑥2 𝑦2)𝑑𝑦 = 𝑦2 𝑑𝑥 ; despejando queda: 𝑑𝑦 𝑦2 = 𝑑𝑥 1 + 𝑥2 + 𝑦2 + 𝑥2𝑦2 Por lo tanto (1 + 𝑥2 + 𝑦2 + 𝑥2 𝑦2)𝑑𝑦 = 𝑦2 𝑑𝑥 es separable. 𝟗) (𝒙 + 𝟏) 𝒅𝒚 𝒅𝒙 + (𝒙 + 𝟐)𝒚 = 𝟐𝒙𝒆−𝒙 Solución: Veamos si la ecuación diferencial (𝑥 + 1) 𝑑𝑦 𝑑𝑥 + (𝑥 + 2)𝑦 = 2𝑥𝑒−𝑥 se puede expresar en la forma estándar. Dividimos entre (𝑥 + 1) a ambos lados de la ecuación así obtenemos: 𝑑𝑦 𝑑𝑥 + (𝑥 + 2)𝑦 (𝑥 + 1) = 2𝑥𝑒−𝑥 (𝑥 + 1) 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑑𝑦 𝑑𝑥 + 𝑝(𝑥)𝑦 = 𝑓(𝑥) Donde: 𝑝(𝑥) = (𝑥+2) (𝑥+1) 𝑦 𝑓(𝑥) = 2𝑥𝑒−𝑥 (𝑥+1) Asi la ecuación (𝑥 + 1) 𝑑𝑦 𝑑𝑥 + (𝑥 + 2)𝑦 = 2𝑥𝑒−𝑥 es lineal
  • 3. 𝟏𝟑) 𝒅𝒚 𝒅𝒙 = − (𝒙𝟑 + 𝒚𝟑 ) 𝟑𝒙𝒚𝟐 Solución: 𝐸𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 𝑑𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎𝑙 𝑑𝑦 𝑑𝑥 = − (𝑥3 + 𝑦3 ) 3𝑥𝑦2 Donde 𝑀(𝑥, 𝑦) = 𝑥3 + 𝑦3 𝑌 𝑁(𝑥, 𝑦) = 3𝑥𝑦2 Derivando 𝑀 con respecto a 𝑦 y a 𝑁 con respecto a 𝑥, se tiene que: 𝜕 𝜕𝑦 𝑀(𝑥, 𝑦) = 𝑥3 + 𝑦3 = 3𝑦2 𝜕 𝜕𝑥 𝑁(𝑥, 𝑦) = 3𝑥𝑦2 = 3𝑦2 𝑐𝑜𝑚𝑜 𝜕 𝜕𝑦 𝑀(𝑥, 𝑦) = 𝜕 𝜕𝑥 𝑁(𝑥, 𝑦) por lo tanto 𝑑𝑦 𝑑𝑥 = − (𝑥3 + 𝑦3) 3𝑥𝑦2 𝒆𝒔 𝒆𝒙𝒂𝒄𝒕𝒂 𝟑𝟎) (𝒙 + 𝒚)𝒅𝒙 + 𝒙𝒅𝒚 = 𝟎 Solución: Sabemos que 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 Verifiquemos que 𝑀(𝑥, 𝑦) = 𝑥 + 𝑦 𝑌 𝑁(𝑥, 𝑦) = 𝑥 Son homogéneas del mismo grado. 𝑀(𝑡𝑥, 𝑡𝑦) = (𝑡𝑥) + (𝑡𝑦) ; 𝑁(𝑡𝑥, 𝑡𝑦) = (𝑡𝑥) = 𝑡(𝑥 + 𝑦) = 𝑡𝑥 = 𝑡𝑀(𝑥, 𝑦) = 𝑡𝑁(𝑥, 𝑦) 𝑎1 = 1 𝑎2 = 1 Como 𝑎1 = 𝑎2 𝑀(𝑥, 𝑦) 𝑌 𝑁(𝑥, 𝑦) son homogéneas del mismo grado. Por lo tanto (𝑥 + 𝑦)𝑑𝑥 + 𝑥𝑑𝑦 = 0 es homogénea.