SlideShare a Scribd company logo
Nuclear Reactions
Some Basics
II. Reaction Kinematics
Reaction Kinematics
• A beam incident on a target will result in many different reactions,
including elastic and inelastic scattering, representing different collisions
of beam particles with different nuclei.
• To isolate a specific reaction (to measure, e.g., its cross section or some
other prediction of theory), in addition to identifying the correct particles
involved, we need to “look” at the right place, i.e. isolate products moving
in the “correct” momentum (i.e. energy and direction).
• To assist in identifying the correct energy and direction of emitted
particles, we utilize the kinematics of the reaction, i.e. the predictions of:
– Conservation of energy
– Conservation of linear momentum
for this reaction (for CEBAF energies, must use relativistic expressions)
• Two-body kinematics
– Used when two particles are present in the “final state” (i.e. after collision)
• Three-body kinematics
– Used when three particles are present in the final state
Two-Body Kinematics
Elastic Scattering in a plane (non-relativistic)
p1
K1
m2
m1
K1’
P2’
K2’
θ1’
m2
P1’
m1
θ2’
Given initial state: m1, m2, p1, p2=0
Find final state: K1’, K2’, θ2’, θ2’
• Recall: K = ½ mv2, p = mv, K = p2/2m
• Only relevant physics laws are conservation of energy and momentum
• Conservation of Energy: K1 = K1’ + K2’ (1)
• Conservation of Momentum: p1 = p1’cosθ1’ + p2’cosθ2’ (2)
0 = p1’sinθ1’ - p2’sinθ2’ (3)
• We have 3 equations, and 4 unknowns (K1’,K2’, θ1’ ,θ2’)
• Therefore K’s and θ’s are not uniquely determined
• If given one of the final state variables we can calculate the other three
Two-Body Kinematics
Elastic Scattering in a plane (non-relativistic)
Some Observations
• If the initial conditions (m1, m2, , =0) are known in an actual elastic
scattering experiment, and if a final state particle is chosen to be detected at an
angle θ1, two-body kinematics determine a unique angle θ2 at which the other
particle will emerge as well as both kinetic energies.
• Said differently, if two detectors are to detect particles corresponding to a single
elastic scattering event, they have to be placed at “conjugate” angles, i.e.
angles related through two-body kinematics
• Note: A single elastic scattering event (labeled A) detected at conjugate angles
(θ1, θ2)A is represented by a single point on a plot of K1’ vs. K2‘ . For the same
initial conditions, another event with particles detected at a different set of
conjugate angles (θ1, θ2)B will produce a different combination of K1’ and K2’
and will be represented by a different single point (labeled B) on the same plot.
1
p
r
2
p
r
K2’
K1’
A
B
Two-Body Kinematics
Elastic Scattering (Relativistic)
• Conservation of (total) Energy (here use c =1):
E1 + m2 = E1’ + E2’ (1)
• Conservation of Momentum:
p1 = p1’cosθ1’ + p2’cosθ2’(2)
0 = p1’sinθ1’ - p2’sinθ2’ (3)
• Recall: E1 = K1 + m1 and E1
2 = p1
2 +m1
2
E1’ = K1’ + m1 and E1’2 = p1’2 +m1
2
E2’ = K2’ + m2 and E2’2 = p2’2 +m2
2
• Solve (1), (2), (3) for K1’, K2’, θ2’
p1
K1
m2
m1
K1’
P2’
K2’
θ1’
m2
P1’
m1
θ2’
Given: m1, m2, K1, θ1’
Find: K1’, K2’, θ2’
Relativistic Two-Body Kinematics
Elastic Scattering – Results (1)
( ) ( )
[ ]
( )
[ ]
( ) ( )
[ ]
( )
[ ]
( ) ( ) ( )
2
1
'
1
2
2
1
2
2
1
'
1
2
1
'
2
'
2
2
2
1
2
2
1
'
2
2
2
1
2
2
1
2
2
2
2
'
2
1
2
1
2
'
2
'
1
2
2
1
2
2
1
'
1
2
2
1
2
2
1
2
1
2
1
'
1
1
2
1
1
'
1
ρ
1
θ
cot
ρ
1
γ
ρ
ρ
cotθ
ρ
ρ
1
cotθ
θ
cos
p
m
E
2
θ
cos
p
m
E
4m
A
cosθ
p
m
E
A
E
θ
cos
p
m
E
2
θ
cos
p
m
E
4m
A
cosθ
p
m
E
A
E
−
+
−
+
±
+
−
=
−
+
−
+
−
±
+
=
−
+
−
+
−
±
+
=
Where A1, A2, ρ1, ρ2, γ are given by:
Relativistic Two-Body Kinematics
Elastic Scattering – Results (2)
( )
( )
( ) ( )
[ ]
( ) ( )
[ ]
( )
2
1
2
2
1
2
1
2
2
cm
2
1
2
2
1
2
2
2
2
2
1
1
2
2
2
1
2
2
1
2
1
2
1
2
1
1
1
1
1
2
2
1
2
2
2
1
2
2
1
2
1
1
m
2E
m
m
m
E
c
v
1
1
γ
p
m
E
4m
A
m
E
p
A
ρ
p
m
E
4m
A
m
E
p
A
ρ
K
m
m
m
m
2
A
K
m
m
m
m
2
A
+
+
+
=
−
=
−
+
−
+
=
−
+
−
+
=
+
+
=
+
+
=
Interactive program that calculate 2-body kinematics:
http://www.calstatela.edu/academic/nuclear_physics/2bdkin.html
Relativistic Two-Body Kinematics
Elastic Scattering - Observations
• Note: Not any θ1, θ2 pairs are possible in two-body kinematics
– Square root in E1, E2 must be > 0
• Note: If m1 = m2 then θ1’ + θ2’ < π/2 (unlike classical mechanics)
• Interactive program that calculate 2-body kinematics:
– http://www.calstatela.edu/academic/nuclear_physics/2bdkin.html
( )
[ ]
( )
[ ]
2
1
2
2
1
2
2
2
1
2
2
2
2
'
2
2
2
1
2
1
1
2
2
2
1
2
1
2
1
'
1
2
p
4m
K
2m
m
m
4m
A
θ
sin
p
4m
K
2m
m
m
4m
A
θ
sin
+
+
−
≤
+
+
−
≤
Three-Body Kinematics
Nuclear Reaction (Relativistic)
mT
K1’
P2’
K2’
θ1’
P1’
m1
θ2’
m2
po
Ko
mo
θ3’
mR
PR
KR
• Conservation of energy and momentum hold again.
Eo + mT = E1’ + E2’ + ER’ (1)
po = p1’cosθ1’ + p2’cosθ2’ + pRcosθ3’ (2)
0 = p1’sinθ1’ - p2’sinθ2’ + pRsinθ3’ (3)
– In addition, but ignore for now, there may be “out-of-plane” (φ) momentum
components
• Here we have 3 equations and 6 unknowns (E1’, E2’, ER’, θ1’, θ2’, θ3’)
• Need to know 3 variables in the final state to compute everything else
Computing
Relativistic Three-Body Kinematics
• Will not solve analytically expressions for unknowns here.
• Go to:
http://www.calstatela.edu/academic/nuclear_physics/kin3
b.htm
– On-line program that computes relativistic three-body kinematics
Relativistic Three-Body Kinematics
Nuclear Reaction – An Observation
• If 2 of the 3 final state unknowns are specified (e.g. by specifying
the energy and direction of one of the detected particles) the
reaction is represented on the E1
’ vs E2
’ plot for the remaining 2
particles by a curve (compared to a point in 2-body scattering)
• In computing the 5-fold cross section:
N corresponds to events on the curve projected to “byte”∆E2’
E2’
2'
2'
1'
2'
2'
1'
5
∆E
∆Ω
Qnx∆
Ne
dE
dΩ
dΩ
σ
d
Ω
=
E1’
N
∆E2’
The 3He(e,e’p)2H Reaction Mechanism
• The presumed reaction mechanism is represented by the
diagram:
• This is known as the Plane Wave Impulse Approximation,
i.e. virtual photon interacts only with a single bound proton,
which is subsequently ejected from the target and detected,
while leaving the rest of 3He (i.e. 2H) unaffected (spectator)
• Valid at high energies (e.g. CEBAF)
• Note: Only one virtual photon is assumed to be exchanged
2H
p
p
γ
3He
e
e’
Definitions of Kinematic Variables
• Incident electron: momentum ki, total energy Ei , mass me
• Scattered (and detected) electron: kf, Ef, me
• Ejected (and detected) proton: pp, Ep, mp
• Target nucleus (3He): pA, EA, MA
• Left over nucleus (2H, spectator): pB, EB.
• NOTES (all quantities in lab frame):
– Target momentum pA=0 (target at rest in lab)
– Target total energy EA = mAc2 (target at rest, rest energy only)
– Ei = Ti (kinetic energy of incident electron) + mec2 (its rest energy)
• Here ignore mec2 = 0.511 MeV since Te =1-6 GeV at CEBAF >> mec2
Therefore: Ei ≈ Ti ≈ ki (recall E2 = k2c2 + (moc2)2, E in MeV/c2, k in Mev/c)
– Ef ≈ Tf ≈ kf (similarly)
– (here can’t neglect rest energy, heavier proton is
not ultra-relativistic)
2
2
p
2
2
p
p )
c
(M
c
p
E +
=
Some Additional Kinematic Variables
Scattering plane
(contains e, e’)
Reaction plane
(contains ‘γ’ and p)
Angle between scattering
and reaction planes
• Incident electron scattering angle: θe
• Angle between scattering and reaction planes: φ
– “In-plane” kinematics: φ = 0 (p “forward” of q), φ = π (p “backward” of q)
– “out-of-plane” kinematics: φ ≠ 0
• Angle between q and pp: θpq
Additional Kinematic Variables
• In a typical (e,e’p) experiment we measure:
– Ei, ki (incident beam energy, momentum)
• Recall: Ei = Ti = ki (ultra-relativistic electrons)
– Ef, kf (scattered electron energy, momentum, using Hall A HRS)
• Similarly recall: Ef = Tf = kf (ultra-relativistic electrons)
– pp (momentum of ejected proton (using Hall A HRS)
• Virtual photon momentum q may be calculated from conservation of
momentum at the e-e’-’γ vertex (ki = kf + q):
q = ki – kf
• Virtual photon energy ω may be calculated from conservation of
energy at the same vertex (Ei = Ef + ω):
ω = Ei – Ef
• q and ω are also the momentum and energy transferred to (and
absorbed by) the target nucleus by the virtual photon through this
collision.
Missing Momentum and Energy
• “Missing momentum”, pmiss, is the momentum of the undetected recoil
nucleus (2H). It may be calculated from conservation of momentum at
the ‘γ’-3He-p vertex (q = pp + pB). Therefore:
pmiss ≡ pB = q - pp
• “Missing energy”, Emiss, is the unaccounted part of the energy transfer
ω after kinetic energies Tp and TB of the known pieces of the broken up
nucleus are subtracted from it. i.e.
Emiss = ω – Tp – TB
– Note: Tp = Ep - Mpc2 = (pp
2c2 + Mp
2c4)1/2 – Mpc2
TB = EB – MBc2 = (pB
2c2 + MB
2c4) 1/2 – MBc2
• Note: Since the values of ki, kf, pp, are known (measured), the values of
q, ω, pmiss and Emiss can be calculated for each event of this reaction.
The Emiss Spectrum for 3He(e,e’p)X
• Emiss consists of the energy required to “separate” (un-bind) the
ejected proton from the target nucleus plus any “excitation” energy
the recoil nucleus might have (above its lowest, ground state). i.e.
Emiss = Esep + Eexc
where: Esep = Mpc2 + MBc2 – MAc2
• Since 3He does not have any excited states, and if the only e+3He
reaction channel possible is 3He(e,e’p)2H, there should be only one
peak in the Emiss spectrum, at the value of Esep, which can be
calculated to be 5.49 MeV (from mA = mp + m2H + Esep).
• Of course, there are additional channels available, including the 3-body
breakup channel 3He(e,e’p)pn and particle creation at higher Emiss,
leading to additional features in the Emiss spectrum.
• The 2H nucleus (deuteron) has a binding energy of (i.e. it breaks up at)
2.22 MeV. Therefore a second peak would be expected in the
spectrum at Emiss = 5.49 + 2.22 = 7.71 MeV. See Figure in next slide…
The Emiss Spectrum for 3He(e,e’p)X #1
The Emiss Spectrum for 3He(e,e’p)X #2
The Emiss Spectrum for 3He(e,e’p)X #3

More Related Content

PDF
Elastic scattering reaction of on partial wave scattering matrix, differentia...
PDF
Quantum Theory Of Scattering Educational Tool
PDF
Solutions modern particlephysics
PPTX
Lecture
PPTX
B.Sc.Sem VI Physics -I, Unit iii
PPTX
Quantum%20Physics.pptx
PDF
PPT
PRINCIPLES OF ESR
Elastic scattering reaction of on partial wave scattering matrix, differentia...
Quantum Theory Of Scattering Educational Tool
Solutions modern particlephysics
Lecture
B.Sc.Sem VI Physics -I, Unit iii
Quantum%20Physics.pptx
PRINCIPLES OF ESR

Similar to Kinematics variables.pdfrelativistic kinematics reaction kinematics (17)

PPT
PPTX
PPTX
Charged particle interaction with matter
PPTX
PPT-On-Q.-M.-Reality-M.-Sc..pptx for MSc
PPTX
PPT-On-Quantum mechanics.-Reality-M.-Sc..pptx
PPTX
The reality of Quantum mechanics and stuff part 1
PPTX
Quantiuwewe e3er14e we3223 32222 m2.pptx
PPTX
Lecture4. Decay Rates and Cross sections.pptx
PDF
Radiation Physics Laboratory – Complementary Exercise Set
PPTX
Nuclear reactions
DOC
Atoms and nuclei
PPT
Poster Icqc
PPTX
ATOMIC STRUCTURE[PART2] CLASS 11, CHEMISTRY
PPT
2.4 momentum &amp; energy 2017
PDF
Radiation Interaction.pdf
PDF
02Siebers-BasicInteractionsandQuantities.pdf
Charged particle interaction with matter
PPT-On-Q.-M.-Reality-M.-Sc..pptx for MSc
PPT-On-Quantum mechanics.-Reality-M.-Sc..pptx
The reality of Quantum mechanics and stuff part 1
Quantiuwewe e3er14e we3223 32222 m2.pptx
Lecture4. Decay Rates and Cross sections.pptx
Radiation Physics Laboratory – Complementary Exercise Set
Nuclear reactions
Atoms and nuclei
Poster Icqc
ATOMIC STRUCTURE[PART2] CLASS 11, CHEMISTRY
2.4 momentum &amp; energy 2017
Radiation Interaction.pdf
02Siebers-BasicInteractionsandQuantities.pdf
Ad

Recently uploaded (20)

PPTX
History, Philosophy and sociology of education (1).pptx
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Cell Types and Its function , kingdom of life
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
advance database management system book.pdf
PPTX
Lesson notes of climatology university.
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
Computing-Curriculum for Schools in Ghana
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
History, Philosophy and sociology of education (1).pptx
Chinmaya Tiranga quiz Grand Finale.pdf
Hazard Identification & Risk Assessment .pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Complications of Minimal Access Surgery at WLH
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
Supply Chain Operations Speaking Notes -ICLT Program
Final Presentation General Medicine 03-08-2024.pptx
Cell Types and Its function , kingdom of life
202450812 BayCHI UCSC-SV 20250812 v17.pptx
What if we spent less time fighting change, and more time building what’s rig...
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
advance database management system book.pdf
Lesson notes of climatology university.
Digestion and Absorption of Carbohydrates, Proteina and Fats
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Computing-Curriculum for Schools in Ghana
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Ad

Kinematics variables.pdfrelativistic kinematics reaction kinematics

  • 1. Nuclear Reactions Some Basics II. Reaction Kinematics
  • 2. Reaction Kinematics • A beam incident on a target will result in many different reactions, including elastic and inelastic scattering, representing different collisions of beam particles with different nuclei. • To isolate a specific reaction (to measure, e.g., its cross section or some other prediction of theory), in addition to identifying the correct particles involved, we need to “look” at the right place, i.e. isolate products moving in the “correct” momentum (i.e. energy and direction). • To assist in identifying the correct energy and direction of emitted particles, we utilize the kinematics of the reaction, i.e. the predictions of: – Conservation of energy – Conservation of linear momentum for this reaction (for CEBAF energies, must use relativistic expressions) • Two-body kinematics – Used when two particles are present in the “final state” (i.e. after collision) • Three-body kinematics – Used when three particles are present in the final state
  • 3. Two-Body Kinematics Elastic Scattering in a plane (non-relativistic) p1 K1 m2 m1 K1’ P2’ K2’ θ1’ m2 P1’ m1 θ2’ Given initial state: m1, m2, p1, p2=0 Find final state: K1’, K2’, θ2’, θ2’ • Recall: K = ½ mv2, p = mv, K = p2/2m • Only relevant physics laws are conservation of energy and momentum • Conservation of Energy: K1 = K1’ + K2’ (1) • Conservation of Momentum: p1 = p1’cosθ1’ + p2’cosθ2’ (2) 0 = p1’sinθ1’ - p2’sinθ2’ (3) • We have 3 equations, and 4 unknowns (K1’,K2’, θ1’ ,θ2’) • Therefore K’s and θ’s are not uniquely determined • If given one of the final state variables we can calculate the other three
  • 4. Two-Body Kinematics Elastic Scattering in a plane (non-relativistic) Some Observations • If the initial conditions (m1, m2, , =0) are known in an actual elastic scattering experiment, and if a final state particle is chosen to be detected at an angle θ1, two-body kinematics determine a unique angle θ2 at which the other particle will emerge as well as both kinetic energies. • Said differently, if two detectors are to detect particles corresponding to a single elastic scattering event, they have to be placed at “conjugate” angles, i.e. angles related through two-body kinematics • Note: A single elastic scattering event (labeled A) detected at conjugate angles (θ1, θ2)A is represented by a single point on a plot of K1’ vs. K2‘ . For the same initial conditions, another event with particles detected at a different set of conjugate angles (θ1, θ2)B will produce a different combination of K1’ and K2’ and will be represented by a different single point (labeled B) on the same plot. 1 p r 2 p r K2’ K1’ A B
  • 5. Two-Body Kinematics Elastic Scattering (Relativistic) • Conservation of (total) Energy (here use c =1): E1 + m2 = E1’ + E2’ (1) • Conservation of Momentum: p1 = p1’cosθ1’ + p2’cosθ2’(2) 0 = p1’sinθ1’ - p2’sinθ2’ (3) • Recall: E1 = K1 + m1 and E1 2 = p1 2 +m1 2 E1’ = K1’ + m1 and E1’2 = p1’2 +m1 2 E2’ = K2’ + m2 and E2’2 = p2’2 +m2 2 • Solve (1), (2), (3) for K1’, K2’, θ2’ p1 K1 m2 m1 K1’ P2’ K2’ θ1’ m2 P1’ m1 θ2’ Given: m1, m2, K1, θ1’ Find: K1’, K2’, θ2’
  • 6. Relativistic Two-Body Kinematics Elastic Scattering – Results (1) ( ) ( ) [ ] ( ) [ ] ( ) ( ) [ ] ( ) [ ] ( ) ( ) ( ) 2 1 ' 1 2 2 1 2 2 1 ' 1 2 1 ' 2 ' 2 2 2 1 2 2 1 ' 2 2 2 1 2 2 1 2 2 2 2 ' 2 1 2 1 2 ' 2 ' 1 2 2 1 2 2 1 ' 1 2 2 1 2 2 1 2 1 2 1 ' 1 1 2 1 1 ' 1 ρ 1 θ cot ρ 1 γ ρ ρ cotθ ρ ρ 1 cotθ θ cos p m E 2 θ cos p m E 4m A cosθ p m E A E θ cos p m E 2 θ cos p m E 4m A cosθ p m E A E − + − + ± + − = − + − + − ± + = − + − + − ± + = Where A1, A2, ρ1, ρ2, γ are given by:
  • 7. Relativistic Two-Body Kinematics Elastic Scattering – Results (2) ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) 2 1 2 2 1 2 1 2 2 cm 2 1 2 2 1 2 2 2 2 2 1 1 2 2 2 1 2 2 1 2 1 2 1 2 1 1 1 1 1 2 2 1 2 2 2 1 2 2 1 2 1 1 m 2E m m m E c v 1 1 γ p m E 4m A m E p A ρ p m E 4m A m E p A ρ K m m m m 2 A K m m m m 2 A + + + = − = − + − + = − + − + = + + = + + = Interactive program that calculate 2-body kinematics: http://www.calstatela.edu/academic/nuclear_physics/2bdkin.html
  • 8. Relativistic Two-Body Kinematics Elastic Scattering - Observations • Note: Not any θ1, θ2 pairs are possible in two-body kinematics – Square root in E1, E2 must be > 0 • Note: If m1 = m2 then θ1’ + θ2’ < π/2 (unlike classical mechanics) • Interactive program that calculate 2-body kinematics: – http://www.calstatela.edu/academic/nuclear_physics/2bdkin.html ( ) [ ] ( ) [ ] 2 1 2 2 1 2 2 2 1 2 2 2 2 ' 2 2 2 1 2 1 1 2 2 2 1 2 1 2 1 ' 1 2 p 4m K 2m m m 4m A θ sin p 4m K 2m m m 4m A θ sin + + − ≤ + + − ≤
  • 9. Three-Body Kinematics Nuclear Reaction (Relativistic) mT K1’ P2’ K2’ θ1’ P1’ m1 θ2’ m2 po Ko mo θ3’ mR PR KR • Conservation of energy and momentum hold again. Eo + mT = E1’ + E2’ + ER’ (1) po = p1’cosθ1’ + p2’cosθ2’ + pRcosθ3’ (2) 0 = p1’sinθ1’ - p2’sinθ2’ + pRsinθ3’ (3) – In addition, but ignore for now, there may be “out-of-plane” (φ) momentum components • Here we have 3 equations and 6 unknowns (E1’, E2’, ER’, θ1’, θ2’, θ3’) • Need to know 3 variables in the final state to compute everything else
  • 10. Computing Relativistic Three-Body Kinematics • Will not solve analytically expressions for unknowns here. • Go to: http://www.calstatela.edu/academic/nuclear_physics/kin3 b.htm – On-line program that computes relativistic three-body kinematics
  • 11. Relativistic Three-Body Kinematics Nuclear Reaction – An Observation • If 2 of the 3 final state unknowns are specified (e.g. by specifying the energy and direction of one of the detected particles) the reaction is represented on the E1 ’ vs E2 ’ plot for the remaining 2 particles by a curve (compared to a point in 2-body scattering) • In computing the 5-fold cross section: N corresponds to events on the curve projected to “byte”∆E2’ E2’ 2' 2' 1' 2' 2' 1' 5 ∆E ∆Ω Qnx∆ Ne dE dΩ dΩ σ d Ω = E1’ N ∆E2’
  • 12. The 3He(e,e’p)2H Reaction Mechanism • The presumed reaction mechanism is represented by the diagram: • This is known as the Plane Wave Impulse Approximation, i.e. virtual photon interacts only with a single bound proton, which is subsequently ejected from the target and detected, while leaving the rest of 3He (i.e. 2H) unaffected (spectator) • Valid at high energies (e.g. CEBAF) • Note: Only one virtual photon is assumed to be exchanged 2H p p γ 3He e e’
  • 13. Definitions of Kinematic Variables • Incident electron: momentum ki, total energy Ei , mass me • Scattered (and detected) electron: kf, Ef, me • Ejected (and detected) proton: pp, Ep, mp • Target nucleus (3He): pA, EA, MA • Left over nucleus (2H, spectator): pB, EB. • NOTES (all quantities in lab frame): – Target momentum pA=0 (target at rest in lab) – Target total energy EA = mAc2 (target at rest, rest energy only) – Ei = Ti (kinetic energy of incident electron) + mec2 (its rest energy) • Here ignore mec2 = 0.511 MeV since Te =1-6 GeV at CEBAF >> mec2 Therefore: Ei ≈ Ti ≈ ki (recall E2 = k2c2 + (moc2)2, E in MeV/c2, k in Mev/c) – Ef ≈ Tf ≈ kf (similarly) – (here can’t neglect rest energy, heavier proton is not ultra-relativistic) 2 2 p 2 2 p p ) c (M c p E + =
  • 14. Some Additional Kinematic Variables Scattering plane (contains e, e’) Reaction plane (contains ‘γ’ and p) Angle between scattering and reaction planes • Incident electron scattering angle: θe • Angle between scattering and reaction planes: φ – “In-plane” kinematics: φ = 0 (p “forward” of q), φ = π (p “backward” of q) – “out-of-plane” kinematics: φ ≠ 0 • Angle between q and pp: θpq
  • 15. Additional Kinematic Variables • In a typical (e,e’p) experiment we measure: – Ei, ki (incident beam energy, momentum) • Recall: Ei = Ti = ki (ultra-relativistic electrons) – Ef, kf (scattered electron energy, momentum, using Hall A HRS) • Similarly recall: Ef = Tf = kf (ultra-relativistic electrons) – pp (momentum of ejected proton (using Hall A HRS) • Virtual photon momentum q may be calculated from conservation of momentum at the e-e’-’γ vertex (ki = kf + q): q = ki – kf • Virtual photon energy ω may be calculated from conservation of energy at the same vertex (Ei = Ef + ω): ω = Ei – Ef • q and ω are also the momentum and energy transferred to (and absorbed by) the target nucleus by the virtual photon through this collision.
  • 16. Missing Momentum and Energy • “Missing momentum”, pmiss, is the momentum of the undetected recoil nucleus (2H). It may be calculated from conservation of momentum at the ‘γ’-3He-p vertex (q = pp + pB). Therefore: pmiss ≡ pB = q - pp • “Missing energy”, Emiss, is the unaccounted part of the energy transfer ω after kinetic energies Tp and TB of the known pieces of the broken up nucleus are subtracted from it. i.e. Emiss = ω – Tp – TB – Note: Tp = Ep - Mpc2 = (pp 2c2 + Mp 2c4)1/2 – Mpc2 TB = EB – MBc2 = (pB 2c2 + MB 2c4) 1/2 – MBc2 • Note: Since the values of ki, kf, pp, are known (measured), the values of q, ω, pmiss and Emiss can be calculated for each event of this reaction.
  • 17. The Emiss Spectrum for 3He(e,e’p)X • Emiss consists of the energy required to “separate” (un-bind) the ejected proton from the target nucleus plus any “excitation” energy the recoil nucleus might have (above its lowest, ground state). i.e. Emiss = Esep + Eexc where: Esep = Mpc2 + MBc2 – MAc2 • Since 3He does not have any excited states, and if the only e+3He reaction channel possible is 3He(e,e’p)2H, there should be only one peak in the Emiss spectrum, at the value of Esep, which can be calculated to be 5.49 MeV (from mA = mp + m2H + Esep). • Of course, there are additional channels available, including the 3-body breakup channel 3He(e,e’p)pn and particle creation at higher Emiss, leading to additional features in the Emiss spectrum. • The 2H nucleus (deuteron) has a binding energy of (i.e. it breaks up at) 2.22 MeV. Therefore a second peak would be expected in the spectrum at Emiss = 5.49 + 2.22 = 7.71 MeV. See Figure in next slide…
  • 18. The Emiss Spectrum for 3He(e,e’p)X #1
  • 19. The Emiss Spectrum for 3He(e,e’p)X #2
  • 20. The Emiss Spectrum for 3He(e,e’p)X #3