SlideShare a Scribd company logo
Laplacian colormaps: a framework
for structure-preserving color transformations
Davide Eynard, Artiom Kovnatsky, Michael Bronstein
Institute of Computational Science, Faculty of Informatics
University of Lugano, Switzerland
Eurographics, 8 April 2014
This research was supported by the ERC Starting Grant No. 307047 (COMET).
1 / 40
2 / 40
3 / 40
4 / 40
Color transformations
RGB source Luma
5 / 40
Color transformations
RGB source Luma
Standard color transformations may break image structure!
6 / 40
Color transformations
RGB source Luma Desired outcome
Standard color transformations may break image structure!
7 / 40
Image Laplacian
Input N × M image with d color
channels, column-stacked into an
NM × d matrix X
Represented as graph with K vertices
(e.g. superpixels) and weighted edges
8 / 40
Image Laplacian
Input N × M image with d color
channels, column-stacked into an
NM × d matrix X
Represented as graph with K vertices
(e.g. superpixels) and weighted edges
K × K adjacency matrix WX
wij = exp −
δ2
ij
2σ2
s
+
xki
− xkj
2
2
2σ2
r
K × K Laplacian
LX = DX−WX, DX = diag(
j=i
wij)
xki
xkj
wij
9 / 40
Laplacians = structure descriptors
UT
LXU = ΛX, VT
LYV = ΛY
X u4 u5 u6 u7
Y v4 v5 v6 v7
Similar structure ⇐⇒ similar Laplacian eigenvectors
10 / 40
Laplacians = structure descriptors
UT
LXU = ΛX, VT
LYV = ΛY
X u4 u5 u6 u7
Y v4 v5 v6 v7
Similar structure ⇐⇒ similar Laplacian eigenvectors
Ideally, two Laplacians are jointly diagonalizable (iff they
commute): there exists a joint eigenbasis ˆU = U = V
11 / 40
Laplacians = structure descriptors
X u2 u3 u4 u5
RGB source
12 / 40
Laplacians = structure descriptors
X u2 u3 u4 u5
RGB source
Y v2 v3 v4 v5
Luma (‘bad’ color conversion)
13 / 40
Laplacians = structure descriptors
X u2 u3 u4 u5
RGB source
Y v2 v3 v4 v5
Luma (‘bad’ color conversion)
Z t2 t3 t4 t5
‘Good’ color conversion
14 / 40
Laplacians = structure descriptors
X u2 u3 u4 u5 Clustering
RGB source
Y v2 v3 v4 v5 Clustering
Luma (‘bad’ color conversion)
Z t2 t3 t4 t5 Clustering
‘Good’ color conversion
15 / 40
Finding joint eigenbases
Joint approximate diagonalization
Find joint approximate
eigenbasis ˆU
min
ˆU
off( ˆU
T
LX
ˆU) + off( ˆU
T
LY
ˆU)
s.t. ˆU
T
ˆU = I
where off(A) = i=j a2
ij.
Cardoso 1995, Eynard et al. 2012, Kovnatsky et al. 2013
16 / 40
Finding joint eigenbases
Joint approximate diagonalization
Find joint approximate
eigenbasis ˆU
min
ˆU
off( ˆU
T
LX
ˆU) + off( ˆU
T
LY
ˆU)
s.t. ˆU
T
ˆU = I
where off(A) = i=j a2
ij.
Closest commuting Laplacians
Find closest commuting
pair ˜LX, ˜LY
min
˜LX,˜LY
˜LX − LX
2
F + ˜LY − LY
2
F
s.t. ˜LX
˜LY = ˜LY
˜LX
Since ˜LX and ˜LY commute, they
have a joint eigenbasis ˆU
Cardoso 1995, Eynard et al. 2012, Kovnatsky et al. 2013, Bronstein et al. 2013
17 / 40
Finding joint eigenbases
Joint approximate diagonalization
Find joint approximate
eigenbasis ˆU
min
ˆU
off( ˆU
T
LX
ˆU) + off( ˆU
T
LY
ˆU)
s.t. ˆU
T
ˆU = I
where off(A) = i=j a2
ij.
Closest commuting Laplacians
Find closest commuting
pair ˜LX, ˜LY
min
˜LX,˜LY
˜LX − LX
2
F + ˜LY − LY
2
F
s.t. ˜LX
˜LY = ˜LY
˜LX
Since ˜LX and ˜LY commute, they
have a joint eigenbasis ˆU
These two problems are equivalent!
(approx. joint diagonalizability ⇐⇒ approx. commutativity)
Cardoso 1995, Eynard et al. 2012, Kovnatsky et al. 2013, Bronstein et al. 2013
18 / 40
Laplacian colormaps
X
19 / 40
Laplacian colormaps
X
−→
Φθ
Y = Φθ(X)
Parametric colormap Φθ : RNM×d → RNM×d parametrized
by θ = (θ1, . . . , θn)
Global: each pixel x is transformed same way, y = Φθ(x)
Local: different transformations in q regions,
Φθ(X) =
q
i=1 wiΦθi
(X)
20 / 40
Laplacian colormaps
X
−→
Φθ
Y = Φθ(X)
LX LY
LX = DX − WX LΦθ(X) = DΦθ(X) − WΦθ(X)
Find an optimal parametric color transformation
min
θ∈Rn
LXLΦθ(X) − LΦθ(X)LX
2
F + regularization on θ
21 / 40
Color-to-gray conversion
Color mapping by a global color transformation of the form
Φθ(R, G, B) = θ1 + θ2Rθ3
+ θ4Gθ5
+ θ6Bθ7
Luma Col2Gray Rasche Decolorize Neumann Smith Lu Ours
2.18/-1.05 1.96/-0.10 1.43/-1.38 1.35/0.86 2.22/0.29 2.13/-0.29 1.47/0.82 1.19/1.15
ˇCad´ık 2008; Gooch et al. 2005; Rasche et al. 2005; Grundland, Dodgson 2007;
Neumann et al. 2007; Smith et al. 2008; Lu et al. 2012; Kuhn et al. 2008
22 / 40
Color-to-gray conversion
Color mapping by a global color transformation of the form
Φθ(R, G, B) = θ1 + θ2Rθ3
+ θ4Gθ5
+ θ6Bθ7
Luma Col2Gray Rasche Decolorize Neumann Smith Lu Ours
5.01/-0.55 3.42/-0.89 3.59/-0.48 3.44/1.41 5.44/-0.66 5.04/-0.19 2.90/0.50 1.28/0.86
9.27/-0.57 7.05/-0.53 7.20/-0.04 7.28/1.45 10.17/-1.05 9.13/-1.02 6.30/1.01 3.78/0.76
ˇCad´ık 2008; Gooch et al. 2005; Rasche et al. 2005; Grundland, Dodgson 2007;
Neumann et al. 2007; Smith et al. 2008; Lu et al. 2012; Kuhn et al. 2008
23 / 40
Color-to-gray conversion
Color mapping by a global color transformation of the form
Φθ(R, G, B) = θ1 + θ2Rθ3
+ θ4Gθ5
+ θ6Bθ7
Luma Col2Gray Rasche Decolorize Neumann Smith Lu Ours
0.97/0.27 1.24/-1.30 0.97/-0.08 1.02/0.61 1.66/-0.86 1.05/0.32 0.80/0.22 0.85/0.82
ˇCad´ık 2008; Gooch et al. 2005; Rasche et al. 2005; Grundland, Dodgson 2007;
Neumann et al. 2007; Smith et al. 2008; Lu et al. 2012; Kuhn et al. 2008
24 / 40
Color-to-gray conversion
Color mapping by a global color transformation of the form
Φθ(R, G, B) = θ1 + θ2Rθ3
+ θ4Gθ5
+ θ6Bθ7
Luma Col2Gray Rasche Decolorize Neumann Smith Lu Ours
RWMS 2.84 2.31 2.46 2.20 4.85 2.94 1.90 1.33
z-score -0.17 -0.31 -0.63 0.55 -0.53 -0.09 0.34 0.84
ˇCad´ık 2008; Gooch et al. 2005; Rasche et al. 2005; Grundland, Dodgson 2007;
Neumann et al. 2007; Smith et al. 2008; Lu et al. 2012; Kuhn et al. 2008
25 / 40
Computational complexity: Color-to-gray example
10-1
100
101
102
103
Time(sec)
#vertices253 641 1130 22946 91784 367136
0.597
RWMSerror
0.599
x10-3
Linear (n=3)
Non-linear (n=7)
Superpixels Scaling
Complexity O(K2)
Laplacian dimension K MN (realtime performance with
small K)
Optimization on θ is performed with small Laplacians. Then,
Φθ is applied on full image
Superpixels: Ren, Malik 2003
26 / 40
Color-blind image optimization
RGB source
X
Ψ
Seen by color-blind
Ψ(X)
Vi´enot et al. 1999, Kim et al. 2012
27 / 40
Color-blind image optimization
RGB source
X Φθ(X)
Ψ
Seen by color-blind
Φθ
(Φθ ◦ Ψ)(X)
28 / 40
Color-blind image optimization
RGB source
X Φθ(X)
Ψ
Seen by color-blind
Φθ
(Φθ ◦ Ψ)(X)
LXLΦθ(X)−LΦθ(X)LX
LXL(Φθ◦Ψ)(X)−L(Φθ◦Ψ)(X)LX
29 / 40
Color-blind image optimization: protanopia
RGB Lau
1.23
Optimized
0.50
Lau et al. 2011
30 / 40
Color-blind image optimization: tritanopia
RGB Lau
1.69
Optimized
0.53
Lau et al. 2011
31 / 40
Gamut mapping
Map image colors to a gamut G
(convex polytope)
min
θ∈Rn
LXLΦθ(X) − LΦθ(X)LX
2
F
+ regularization on θ
s.t. Φθ(X) ⊆ G
sRGB
G
32 / 40
Gamut mapping
Original Lau et al. Ours HPMINDE (clip)
Lau et al. 2011
33 / 40
RGB+NIR fusion
NIR RGB Lau et al. Ours
Lau et al. 2011
34 / 40
Multiple image fusion
Morning
Day
Evening
Night
Fusion
35 / 40
Summary
Framework
theoretically grounded
versatile
global/local
realtime
36 / 40
Summary
Framework
theoretically grounded
versatile
global/local
realtime
Applications
color-to-grayscale
color-blind optimization
gamut mapping
multispectral image fusion
37 / 40
Thank you!
38 / 40
Qualitative evaluation
Web survey
124 volunteers, 2884 pairwise evaluations
Thurstone’s law of comparative judgements → z-score
Consistent with ˇCad´ık’s results
39 / 40
Extension: local colormap
RGB Luma Lau et al.
Global Local Clusters
Φθ(X) = q
i=1 wiΦθi
(X)
Lau et al. 2011
40 / 40

More Related Content

PDF
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
PDF
Improved Trainings of Wasserstein GANs (WGAN-GP)
PDF
Projectors and Projection Onto a Line
PDF
Optimal L-shaped matrix reordering, aka graph's core-periphery
PDF
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
PDF
Fractional Calculus A Commutative Method on Real Analytic Functions
PDF
Shortest path search for real road networks and dynamic costs with pgRouting
PDF
On Convolution of Graph Signals and Deep Learning on Graph Domains
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
Improved Trainings of Wasserstein GANs (WGAN-GP)
Projectors and Projection Onto a Line
Optimal L-shaped matrix reordering, aka graph's core-periphery
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Fractional Calculus A Commutative Method on Real Analytic Functions
Shortest path search for real road networks and dynamic costs with pgRouting
On Convolution of Graph Signals and Deep Learning on Graph Domains

What's hot (20)

PPTX
Minimal spanning tree class 15
PPT
Prim's Algorithm on minimum spanning tree
PDF
Wireless Localization: Ranging (second part)
PDF
Parallel Wavelet Schemes for Images
PPTX
A framework for practical fast matrix multiplication (BLIS retreat)
PDF
Small updates of matrix functions used for network centrality
PDF
Core–periphery detection in networks with nonlinear Perron eigenvectors
PPT
ADA - Minimum Spanning Tree Prim Kruskal and Dijkstra
PPTX
Presentation 2(power point presentation) dis2016
PDF
On learning statistical mixtures maximizing the complete likelihood
PPT
Shortest path (Dijkistra's Algorithm) & Spanning Tree (Prim's Algorithm)
PDF
SU(3) fermions in a three-band graphene-like model
PDF
Wasserstein GAN
PDF
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
PDF
Algorithms explained
PDF
Prim algorithm
PPT
Single source stortest path bellman ford and dijkstra
PPTX
Num Integration
PDF
[Question Paper] Advanced SQL (Old Course) [April / 2015]
Minimal spanning tree class 15
Prim's Algorithm on minimum spanning tree
Wireless Localization: Ranging (second part)
Parallel Wavelet Schemes for Images
A framework for practical fast matrix multiplication (BLIS retreat)
Small updates of matrix functions used for network centrality
Core–periphery detection in networks with nonlinear Perron eigenvectors
ADA - Minimum Spanning Tree Prim Kruskal and Dijkstra
Presentation 2(power point presentation) dis2016
On learning statistical mixtures maximizing the complete likelihood
Shortest path (Dijkistra's Algorithm) & Spanning Tree (Prim's Algorithm)
SU(3) fermions in a three-band graphene-like model
Wasserstein GAN
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
Algorithms explained
Prim algorithm
Single source stortest path bellman ford and dijkstra
Num Integration
[Question Paper] Advanced SQL (Old Course) [April / 2015]
Ad

Viewers also liked (10)

PDF
Notes on Spectral Clustering
PPTX
Distributed approximate spectral clustering for large scale datasets
PDF
Introduction to Sparse Methods
DOCX
A secure-anti-collusion-data-sharing-scheme-for-dynamic-groups-in-the-cloud
PPTX
Webinar: Adobe Experience Manager Clustering Made Easy on MongoDB
PPTX
Privacy preserving multi-keyword ranked search over encrypted cloud data
PPTX
Eigen value and eigen vector
PPTX
Spectral clustering - Houston ML Meetup
PPT
Cloud Computing Security Issues
PPTX
Data security in cloud computing
Notes on Spectral Clustering
Distributed approximate spectral clustering for large scale datasets
Introduction to Sparse Methods
A secure-anti-collusion-data-sharing-scheme-for-dynamic-groups-in-the-cloud
Webinar: Adobe Experience Manager Clustering Made Easy on MongoDB
Privacy preserving multi-keyword ranked search over encrypted cloud data
Eigen value and eigen vector
Spectral clustering - Houston ML Meetup
Cloud Computing Security Issues
Data security in cloud computing
Ad

Similar to Laplacian Colormaps: a framework for structure-preserving color transformations (20)

PDF
Sparsity Based Super Resolution Using Color Channel Constraints
PDF
Hierarchical matrices for approximating large covariance matries and computin...
PDF
Nelly Litvak – Asymptotic behaviour of ranking algorithms in directed random ...
PDF
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
PDF
Data sparse approximation of the Karhunen-Loeve expansion
PDF
Data sparse approximation of Karhunen-Loeve Expansion
PDF
Density theorems for Euclidean point configurations
PDF
Slides: A glance at information-geometric signal processing
PDF
Solving integral equations on boundaries with corners, edges, and nearly sing...
PDF
Image formation
PDF
論文紹介:Towards Robust Adaptive Object Detection Under Noisy Annotations
PDF
MVPA with SpaceNet: sparse structured priors
PDF
Low rank tensor approximation of probability density and characteristic funct...
PDF
Integral equation methods for scattering from multi-dielectric cylinders
PDF
Parallel Evaluation of Multi-Semi-Joins
PDF
Big data matrix factorizations and Overlapping community detection in graphs
PPT
CS 354 Understanding Color
PDF
Macrocanonical models for texture synthesis
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Sparsity Based Super Resolution Using Color Channel Constraints
Hierarchical matrices for approximating large covariance matries and computin...
Nelly Litvak – Asymptotic behaviour of ranking algorithms in directed random ...
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of Karhunen-Loeve Expansion
Density theorems for Euclidean point configurations
Slides: A glance at information-geometric signal processing
Solving integral equations on boundaries with corners, edges, and nearly sing...
Image formation
論文紹介:Towards Robust Adaptive Object Detection Under Noisy Annotations
MVPA with SpaceNet: sparse structured priors
Low rank tensor approximation of probability density and characteristic funct...
Integral equation methods for scattering from multi-dielectric cylinders
Parallel Evaluation of Multi-Semi-Joins
Big data matrix factorizations and Overlapping community detection in graphs
CS 354 Understanding Color
Macrocanonical models for texture synthesis
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...

More from Davide Eynard (14)

PDF
Building Compatible Bases on Graphs, Images, and Manifolds
PDF
An integrated approach to discover tag semantics
PDF
SAnno: a unifying framework for semantic annotation
PDF
A Virtuous Cycle of Semantics and Participation
PDF
Talk Hpl
PDF
ReSearch - Searching for Researchers
PDF
PhDLinux: A Linux Crash Course for PhD Students
PDF
Exploiting user gratification for collaborative semantic annotation
PDF
Performance Attacks on Intrusion Detection Systems
PDF
Cracking Codes With Genetic Algorithms
PDF
Rewire the Net
PDF
Fast algorithms for large scale genome alignment and comparison
PDF
Unambiguous Recognizable Two-dimensional Languages
ODP
Research on collaborative information sharing systems
Building Compatible Bases on Graphs, Images, and Manifolds
An integrated approach to discover tag semantics
SAnno: a unifying framework for semantic annotation
A Virtuous Cycle of Semantics and Participation
Talk Hpl
ReSearch - Searching for Researchers
PhDLinux: A Linux Crash Course for PhD Students
Exploiting user gratification for collaborative semantic annotation
Performance Attacks on Intrusion Detection Systems
Cracking Codes With Genetic Algorithms
Rewire the Net
Fast algorithms for large scale genome alignment and comparison
Unambiguous Recognizable Two-dimensional Languages
Research on collaborative information sharing systems

Recently uploaded (20)

PPTX
Introduction to Cardiovascular system_structure and functions-1
PPTX
2. Earth - The Living Planet earth and life
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PDF
. Radiology Case Scenariosssssssssssssss
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PDF
The scientific heritage No 166 (166) (2025)
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
famous lake in india and its disturibution and importance
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPT
protein biochemistry.ppt for university classes
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PPTX
microscope-Lecturecjchchchchcuvuvhc.pptx
PDF
HPLC-PPT.docx high performance liquid chromatography
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Introduction to Cardiovascular system_structure and functions-1
2. Earth - The Living Planet earth and life
ECG_Course_Presentation د.محمد صقران ppt
. Radiology Case Scenariosssssssssssssss
AlphaEarth Foundations and the Satellite Embedding dataset
The scientific heritage No 166 (166) (2025)
POSITIONING IN OPERATION THEATRE ROOM.ppt
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
famous lake in india and its disturibution and importance
Derivatives of integument scales, beaks, horns,.pptx
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
Phytochemical Investigation of Miliusa longipes.pdf
protein biochemistry.ppt for university classes
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
microscope-Lecturecjchchchchcuvuvhc.pptx
HPLC-PPT.docx high performance liquid chromatography
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...

Laplacian Colormaps: a framework for structure-preserving color transformations

  • 1. Laplacian colormaps: a framework for structure-preserving color transformations Davide Eynard, Artiom Kovnatsky, Michael Bronstein Institute of Computational Science, Faculty of Informatics University of Lugano, Switzerland Eurographics, 8 April 2014 This research was supported by the ERC Starting Grant No. 307047 (COMET). 1 / 40
  • 6. Color transformations RGB source Luma Standard color transformations may break image structure! 6 / 40
  • 7. Color transformations RGB source Luma Desired outcome Standard color transformations may break image structure! 7 / 40
  • 8. Image Laplacian Input N × M image with d color channels, column-stacked into an NM × d matrix X Represented as graph with K vertices (e.g. superpixels) and weighted edges 8 / 40
  • 9. Image Laplacian Input N × M image with d color channels, column-stacked into an NM × d matrix X Represented as graph with K vertices (e.g. superpixels) and weighted edges K × K adjacency matrix WX wij = exp − δ2 ij 2σ2 s + xki − xkj 2 2 2σ2 r K × K Laplacian LX = DX−WX, DX = diag( j=i wij) xki xkj wij 9 / 40
  • 10. Laplacians = structure descriptors UT LXU = ΛX, VT LYV = ΛY X u4 u5 u6 u7 Y v4 v5 v6 v7 Similar structure ⇐⇒ similar Laplacian eigenvectors 10 / 40
  • 11. Laplacians = structure descriptors UT LXU = ΛX, VT LYV = ΛY X u4 u5 u6 u7 Y v4 v5 v6 v7 Similar structure ⇐⇒ similar Laplacian eigenvectors Ideally, two Laplacians are jointly diagonalizable (iff they commute): there exists a joint eigenbasis ˆU = U = V 11 / 40
  • 12. Laplacians = structure descriptors X u2 u3 u4 u5 RGB source 12 / 40
  • 13. Laplacians = structure descriptors X u2 u3 u4 u5 RGB source Y v2 v3 v4 v5 Luma (‘bad’ color conversion) 13 / 40
  • 14. Laplacians = structure descriptors X u2 u3 u4 u5 RGB source Y v2 v3 v4 v5 Luma (‘bad’ color conversion) Z t2 t3 t4 t5 ‘Good’ color conversion 14 / 40
  • 15. Laplacians = structure descriptors X u2 u3 u4 u5 Clustering RGB source Y v2 v3 v4 v5 Clustering Luma (‘bad’ color conversion) Z t2 t3 t4 t5 Clustering ‘Good’ color conversion 15 / 40
  • 16. Finding joint eigenbases Joint approximate diagonalization Find joint approximate eigenbasis ˆU min ˆU off( ˆU T LX ˆU) + off( ˆU T LY ˆU) s.t. ˆU T ˆU = I where off(A) = i=j a2 ij. Cardoso 1995, Eynard et al. 2012, Kovnatsky et al. 2013 16 / 40
  • 17. Finding joint eigenbases Joint approximate diagonalization Find joint approximate eigenbasis ˆU min ˆU off( ˆU T LX ˆU) + off( ˆU T LY ˆU) s.t. ˆU T ˆU = I where off(A) = i=j a2 ij. Closest commuting Laplacians Find closest commuting pair ˜LX, ˜LY min ˜LX,˜LY ˜LX − LX 2 F + ˜LY − LY 2 F s.t. ˜LX ˜LY = ˜LY ˜LX Since ˜LX and ˜LY commute, they have a joint eigenbasis ˆU Cardoso 1995, Eynard et al. 2012, Kovnatsky et al. 2013, Bronstein et al. 2013 17 / 40
  • 18. Finding joint eigenbases Joint approximate diagonalization Find joint approximate eigenbasis ˆU min ˆU off( ˆU T LX ˆU) + off( ˆU T LY ˆU) s.t. ˆU T ˆU = I where off(A) = i=j a2 ij. Closest commuting Laplacians Find closest commuting pair ˜LX, ˜LY min ˜LX,˜LY ˜LX − LX 2 F + ˜LY − LY 2 F s.t. ˜LX ˜LY = ˜LY ˜LX Since ˜LX and ˜LY commute, they have a joint eigenbasis ˆU These two problems are equivalent! (approx. joint diagonalizability ⇐⇒ approx. commutativity) Cardoso 1995, Eynard et al. 2012, Kovnatsky et al. 2013, Bronstein et al. 2013 18 / 40
  • 20. Laplacian colormaps X −→ Φθ Y = Φθ(X) Parametric colormap Φθ : RNM×d → RNM×d parametrized by θ = (θ1, . . . , θn) Global: each pixel x is transformed same way, y = Φθ(x) Local: different transformations in q regions, Φθ(X) = q i=1 wiΦθi (X) 20 / 40
  • 21. Laplacian colormaps X −→ Φθ Y = Φθ(X) LX LY LX = DX − WX LΦθ(X) = DΦθ(X) − WΦθ(X) Find an optimal parametric color transformation min θ∈Rn LXLΦθ(X) − LΦθ(X)LX 2 F + regularization on θ 21 / 40
  • 22. Color-to-gray conversion Color mapping by a global color transformation of the form Φθ(R, G, B) = θ1 + θ2Rθ3 + θ4Gθ5 + θ6Bθ7 Luma Col2Gray Rasche Decolorize Neumann Smith Lu Ours 2.18/-1.05 1.96/-0.10 1.43/-1.38 1.35/0.86 2.22/0.29 2.13/-0.29 1.47/0.82 1.19/1.15 ˇCad´ık 2008; Gooch et al. 2005; Rasche et al. 2005; Grundland, Dodgson 2007; Neumann et al. 2007; Smith et al. 2008; Lu et al. 2012; Kuhn et al. 2008 22 / 40
  • 23. Color-to-gray conversion Color mapping by a global color transformation of the form Φθ(R, G, B) = θ1 + θ2Rθ3 + θ4Gθ5 + θ6Bθ7 Luma Col2Gray Rasche Decolorize Neumann Smith Lu Ours 5.01/-0.55 3.42/-0.89 3.59/-0.48 3.44/1.41 5.44/-0.66 5.04/-0.19 2.90/0.50 1.28/0.86 9.27/-0.57 7.05/-0.53 7.20/-0.04 7.28/1.45 10.17/-1.05 9.13/-1.02 6.30/1.01 3.78/0.76 ˇCad´ık 2008; Gooch et al. 2005; Rasche et al. 2005; Grundland, Dodgson 2007; Neumann et al. 2007; Smith et al. 2008; Lu et al. 2012; Kuhn et al. 2008 23 / 40
  • 24. Color-to-gray conversion Color mapping by a global color transformation of the form Φθ(R, G, B) = θ1 + θ2Rθ3 + θ4Gθ5 + θ6Bθ7 Luma Col2Gray Rasche Decolorize Neumann Smith Lu Ours 0.97/0.27 1.24/-1.30 0.97/-0.08 1.02/0.61 1.66/-0.86 1.05/0.32 0.80/0.22 0.85/0.82 ˇCad´ık 2008; Gooch et al. 2005; Rasche et al. 2005; Grundland, Dodgson 2007; Neumann et al. 2007; Smith et al. 2008; Lu et al. 2012; Kuhn et al. 2008 24 / 40
  • 25. Color-to-gray conversion Color mapping by a global color transformation of the form Φθ(R, G, B) = θ1 + θ2Rθ3 + θ4Gθ5 + θ6Bθ7 Luma Col2Gray Rasche Decolorize Neumann Smith Lu Ours RWMS 2.84 2.31 2.46 2.20 4.85 2.94 1.90 1.33 z-score -0.17 -0.31 -0.63 0.55 -0.53 -0.09 0.34 0.84 ˇCad´ık 2008; Gooch et al. 2005; Rasche et al. 2005; Grundland, Dodgson 2007; Neumann et al. 2007; Smith et al. 2008; Lu et al. 2012; Kuhn et al. 2008 25 / 40
  • 26. Computational complexity: Color-to-gray example 10-1 100 101 102 103 Time(sec) #vertices253 641 1130 22946 91784 367136 0.597 RWMSerror 0.599 x10-3 Linear (n=3) Non-linear (n=7) Superpixels Scaling Complexity O(K2) Laplacian dimension K MN (realtime performance with small K) Optimization on θ is performed with small Laplacians. Then, Φθ is applied on full image Superpixels: Ren, Malik 2003 26 / 40
  • 27. Color-blind image optimization RGB source X Ψ Seen by color-blind Ψ(X) Vi´enot et al. 1999, Kim et al. 2012 27 / 40
  • 28. Color-blind image optimization RGB source X Φθ(X) Ψ Seen by color-blind Φθ (Φθ ◦ Ψ)(X) 28 / 40
  • 29. Color-blind image optimization RGB source X Φθ(X) Ψ Seen by color-blind Φθ (Φθ ◦ Ψ)(X) LXLΦθ(X)−LΦθ(X)LX LXL(Φθ◦Ψ)(X)−L(Φθ◦Ψ)(X)LX 29 / 40
  • 30. Color-blind image optimization: protanopia RGB Lau 1.23 Optimized 0.50 Lau et al. 2011 30 / 40
  • 31. Color-blind image optimization: tritanopia RGB Lau 1.69 Optimized 0.53 Lau et al. 2011 31 / 40
  • 32. Gamut mapping Map image colors to a gamut G (convex polytope) min θ∈Rn LXLΦθ(X) − LΦθ(X)LX 2 F + regularization on θ s.t. Φθ(X) ⊆ G sRGB G 32 / 40
  • 33. Gamut mapping Original Lau et al. Ours HPMINDE (clip) Lau et al. 2011 33 / 40
  • 34. RGB+NIR fusion NIR RGB Lau et al. Ours Lau et al. 2011 34 / 40
  • 39. Qualitative evaluation Web survey 124 volunteers, 2884 pairwise evaluations Thurstone’s law of comparative judgements → z-score Consistent with ˇCad´ık’s results 39 / 40
  • 40. Extension: local colormap RGB Luma Lau et al. Global Local Clusters Φθ(X) = q i=1 wiΦθi (X) Lau et al. 2011 40 / 40