SlideShare a Scribd company logo
Data sparse approximation of the
Karhunen-Lo`eve expansion
Alexander Litvinenko,
joint with B. Khoromskij (Leipzig) and H. Matthies(Braunschweig)
Institut f¨ur Wissenschaftliches Rechnen, Technische Universit¨at Braunschweig,
0531-391-3008, litvinen@tu-bs.de
March 5, 2008
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Stochastic PDE
We consider
− div(κ(x, ω)∇u) = f(x, ω) in D,
u = 0 on ∂D,
with stochastic coefficients κ(x, ω), x ∈ D ⊆ Rd
and ω belongs to the
space of random events Ω.
[Babuˇska, Ghanem, Matthies, Schwab, Vandewalle, ...].
Methods and techniques:
1. Response surface
2. Monte-Carlo
3. Perturbation
4. Stochastic Galerkin
Examples of covariance functions [Novak,(IWS),04]
The random field requires to specify its spatial correl. structure
covf (x, y) = E[(f(x, ·) − µf (x))(f(y, ·) − µf (y))],
where E is the expectation and µf (x) := E[f(x, ·)].
Let h =
3
i=1 h2
i /ℓ2
i + d2 − d
2
, where hi := xi − yi , i = 1, 2, 3,
ℓi are cov. lengths and d a parameter.
Gaussian cov(h) = σ2
· exp(−h2
),
exponential cov(h) = σ2
· exp(−h),
spherical
cov(h) =
σ2
· 1 − 3
2
h
hr
− 1
2
h3
h3
r
for 0 ≤ h ≤ hr ,
0 for h > hr .
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
KLE
The spectral representation of the cov. function is
Cκ(x, y) = ∞
i=0 λi ki(x)ki (y), where λi and ki(x) are the eigenvalues
and eigenfunctions.
The Karhunen-Lo`eve expansion [Loeve, 1977] is the series
κ(x, ω) = µk (x) +
∞
i=1
λi ki (x)ξi (ω), where
ξi (ω) are uncorrelated random variables and ki are basis functions in
L2
(D).
Eigenpairs λi , ki are the solution of
Tki = λi ki, ki ∈ L2
(D), i ∈ N, where.
T : L2
(D) → L2
(D),
(Tu)(x) := D
covk (x, y)u(y)dy.
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Computation of eigenpairs by FFT
If the cov. function depends on (x − y) then on a uniform tensor grid
the cov. matrix C is (block) Toeplitz.
Then C can be extended to the circulant one and the decomposition
C =
1
n
F H
ΛF (1)
may be computed like follows. Multiply (1) by F becomes
F C = ΛF ,
F C1 = ΛF1.
Since all entries of F1 are unity, obtain
λ = F C1.
F C1 may be computed very efficiently by FFT [Cooley, 1965] in
O(n log n) FLOPS.
C1 may be represented in a matrix or in a tensor format.
Multidimensional FFT
Lemma: The d-dim. FT F (d)
can be represented as following
F (d)
= (F
(1)
1 ⊗ I ⊗ I . . .)(I ⊗ F
(1)
2 ⊗ I . . .) . . . (I ⊗ I . . . ⊗ F
(1)
d ), (2)
and the complexity of F (d)
is O(nd
log n), where n is the number of
dofs in one direction.
Discrete eigenvalue problem
Let
Wij :=
k,m D
bi (x)bk (x)dxCkm
D
bj (y)bm(y)dy,
Mij =
D
bi (x)bj (x)dx.
Then we solve
W fh
ℓ = λℓMfh
ℓ , where W := MCM
Approximate C in
◮ low rank format
◮ the H-matrix format
◮ sparse tensor format
and use the Lanczos method to compute m largest eigenvalues.
Examples of H-matrix approximates of
cov(x, y) = e−2|x−y|
[Hackbusch et al. 99]
25 20
20 20
20 16
20 16
20 20
16 16
20 16
16 16
4 4
20 4 32
4 4
16 4 32
4 20
4 4
4 16
4 4
32 32
20 20
20 20 32
32 32
4 3
4 4 32
20 4
16 4 32
32 4
32 32
4 32
32 32
32 4
32 32
4 4
4 4
20 16
4 4
32 32
4 32
32 32
32 32
4 32
32 32
4 32
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
4 4
20 4 32
32 32 4
4 4
32 4
32 32 4
4 4
32 32
4 32 4
4 4
32 32
32 32 4
4
4 20
4 4 32
32 32
4 4
4
32 4
32 32
4 4
4
32 32
4 32
4 4
4
32 32
32 32
4 4
20 20
20 20 32
32 32
4 4
20 4 32
32 32
4 20
4 4 32
32 32
20 20
20 20 32
32 32
32 4
32 32
32 4
32 32
32 4
32 32
32 4
32 32
32 32
4 32
32 32
4 32
32 32
4 32
32 32
4 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
4 4 44 4
20 4 32
32 32
32 4
32 32
4 32
32 32
32 4
32 32
4 4
4 4
4 4
4 4 4
4 4
32 4
32 32 4
4 4
4 4
4 4
4 4 4
4
32 4
32 32
4 4
4 4
4 4
4 4
4 4 4
32 4
32 32
32 4
32 32
32 4
32 32
32 4
32 32
4 4
4 4
4 4
4 4
4 20
4 4 32
32 32
4 32
32 32
32 32
4 32
32 32
4 32
4
4 4
4 4
4 4
4 4
4 4
32 32
4 32 4
4
4 3
4 4
4 4
4 4
4
32 32
4 32
4 4
4
4 4
4 4
4 4
4 4
32 32
4 32
32 32
4 32
32 32
4 32
32 32
4 32
4
4 4
4 4
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
20 4 32
32 32
32 4
32 32
4 32
32 32
32 4
32 32
4 20
4 4 32
32 32
4 32
32 32
32 32
4 32
32 32
4 32
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
32 32
32 32 4
4 4
32 4
32 32 4
4 4
32 32
4 32 4
4 4
32 32
32 32 4
4
32 32
32 32
4 4
4
32 4
32 32
4 4
4
32 32
4 32
4 4
4
32 32
32 32
4 4
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 4
32 32
32 4
32 4
32 4
32 32
32 4
32 4
32 32
4 32
32 32
4 32
32 32
4 4
32 32
4 4
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
25 11
11 20 12
13
20 11
9 16
13
13
20 11
11 20 13
13 32
13
13
20 8
10 20 13
13 32 13
13
32 13
13 32
13
13
20 11
11 20 13
13 32 13
13
20 10
10 20 12
12 32
13
13
32 13
13 32 13
13
32 13
13 32
13
13
20 11
11 20 13
13 32 13
13
32 13
13 32
13
13
20 9
9 20 13
13 32 13
13
32 13
13 32
13
13
32 13
13 32 13
13
32 13
13 32
13
13
32 13
13 32 13
13
32 13
13 32
Figure: H-matrix approximations ∈ Rn×n
, n = 322
, with standard (left) and
weak (right) admissibility block partitionings. The biggest dense (dark) blocks
∈ Rn×n
, max. rank k = 4 left and k = 13 right.
H - Matrices
Comp. complexity is O(kn log n) and storage O(kn log n).
To assemble low-rank blocks use ACA [Bebendorf, Tyrtyshnikov].
Dependence of the computational time and storage requirements of
CH on the rank k, n = 322
.
k time (sec.) memory (MB) C−CH 2
C 2
2 0.04 2e + 6 3.5e − 5
6 0.1 4e + 6 1.4e − 5
9 0.14 5.4e + 6 1.4e − 5
12 0.17 6.8e + 6 3.1e − 7
17 0.23 9.3e + 6 6.3e − 8
The time for dense matrix C is 3.3 sec. and the storage 1.4e + 8 MB.
H - Matrices
Let h =
2
i=1 h2
i /ℓ2
i + d2 − d
2
, where hi := xi − yi , i = 1, 2, 3,
ℓi are cov. lengths and d = 1.
exponential cov(h) = σ2
· exp(−h),
The cov. matrix C ∈ Rn×n
, n = 652
.
ℓ1 ℓ2
C−CH 2
C 2
0.01 0.02 3e − 2
0.1 0.2 8e − 3
1 2 2.8e − 6
10 20 3.7e − 9
Exponential Singularvalue decay [see also Schwab et
al.]
0 100 200 300 400 500 600 700 800 900 1000
0
100
200
300
400
500
600
700
0 100 200 300 400 500 600 700 800 900 1000
0
1
2
3
4
5
6
7
8
9
10
x 10
4
0 100 200 300 400 500 600 700 800 900 1000
0
200
400
600
800
1000
1200
1400
1600
1800
0 100 200 300 400 500 600 700 800 900 1000
0
0.5
1
1.5
2
2.5
x 10
5
0 100 200 300 400 500 600 700 800 900 1000
0
50
100
150
0 100 200 300 400 500 600 700 800 900 1000
0
0.5
1
1.5
2
2.5
3
3.5
4
x 10
4
Sparse tensor decompositions of kernels
cov(x, y) = cov(x − y)
We want to approximate C ∈ RN×N
, N = nd
by
Cr =
r
k=1 V 1
k ⊗ ... ⊗ V d
k such that C − Cr ≤ ε.
The storage of C is O(N2
) = O(n2d
) and the storage of Cr is O(rdn2
).
To define V i
k use e.g. SVD.
Approximate all V i
k in the H-matrix format and become HKT format.
See basic arithmetics in [Hackbusch, Khoromskij, Tyrtyshnikov].
Assume f(x, y), x = (x1, x2), y = (y1, y2), then the equivalent approx.
problem is f(x1, x2; y1, y2) ≈
r
k=1 Φk (x1, y1)Ψk (x2, y2).
Numerical examples of tensor approximations
Gaussian kernel exp{−|x − y|2
} has the Kroneker rank 1.
The exponen. kernel e{
− |x − y|} can be approximated by a tensor
with low Kroneker rank
r 1 2 3 4 5 6 10
C−Cr ∞
C ∞
11.5 1.7 0.4 0.14 0.035 0.007 2.8e − 8
C−Cr 2
C 2
6.7 0.52 0.1 0.03 0.008 0.001 5.3e − 9
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Application: covariance of the solution
For SPDE with stochastic RHS the eigenvalue problem and spectral
decom. look like
Cf fℓ = λℓfℓ, Cf = Φf Λf ΦT
f .
If we only want the covariance
Cu = (K ⊗ K)−1
Cf = (K−1
⊗ K−1
)Cf = K−1
Cf K−T
,
one may with the KLE of Cf = Φf Λf ΦT
f reduce this to
Cu = K−1
Cf K−T
= K−1
Φf ΛΦT
f K−T
.
Application: higher order moments
Let operator K be deterministic and
Ku(θ) =
α∈J
Ku(α)
Hα(θ) = ˜f(θ) =
α∈J
f(α)
Hα(θ), with
u(α)
= [u
(α)
1 , ..., u
(α)
N ]T
. Projecting onto each Hα obtain
Ku(α)
= f(α)
.
The KLE of f(θ) is
f(θ) = f +
ℓ
λℓφℓ(θ)fl =
ℓ α
λℓφ
(α)
ℓ Hα(θ)fl
=
α
Hα(θ)f(α)
,
where f(α)
= ℓ
√
λℓφ
(α)
ℓ fl .
Application: higher order moments
The 3-rd moment of u is
M
(3)
u = E


α,β,γ
u(α)
⊗ u(β)
⊗ u(γ)
HαHβHγ

 =
α,β,γ
u(α)
⊗u(β)
⊗u(γ)
cα,β,γ,
cα,β,γ := E (Hα(θ)Hβ(θ)Hγ(θ)) = cα,β · γ!, and cα,β are constants
from the Hermitian algebra.
Using u(α)
= K−1
f(α)
= ℓ
√
λℓφ
(α)
ℓ K−1
fl and uℓ := K−1
fℓ, obtain
M
(3)
u =
p,q,r
tp,q,r up ⊗ uq ⊗ ur , where
tp,q,r := λpλqλr
α,β,γ
φ
(α)
p φ
(β)
q φ
(γ)
r cα,βγ.
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Conclusion
◮ Covariance matrices allow data sparse low-rank approximations.
◮ With application of H-matrices
◮ we extend the class of covariance functions to work with,
◮ allows non-regular discretisations of the cov. function on large
spatial grids.
◮ Application of sparse tensor product allows computation of k-th
moments.
Plans for Feature
1. Convergence of the Lanczos method with H-matrices
2. Implement sparse tensor vector product for the Lanczos method
3. HKT idea for d ≥ 3 dimensions
Thank you for your attention!
Questions?

More Related Content

PDF
Data sparse approximation of the Karhunen-Loeve expansion
PDF
Hidden Markov Random Field model and BFGS algorithm for Brain Image Segmentation
PDF
Q paper I puc-2014(MATHEMATICS)
PDF
exceptionaly long-range quantum lattice models
PDF
Hidden Markov Random Fields and Direct Search Methods for Medical Image Segme...
PDF
Parallel Coordinate Descent Algorithms
PDF
Goldberg-Coxeter construction for 3- or 4-valent plane maps
PDF
Solovay Kitaev theorem
Data sparse approximation of the Karhunen-Loeve expansion
Hidden Markov Random Field model and BFGS algorithm for Brain Image Segmentation
Q paper I puc-2014(MATHEMATICS)
exceptionaly long-range quantum lattice models
Hidden Markov Random Fields and Direct Search Methods for Medical Image Segme...
Parallel Coordinate Descent Algorithms
Goldberg-Coxeter construction for 3- or 4-valent plane maps
Solovay Kitaev theorem

What's hot (19)

PDF
Lecture note4coordinatedescent
PDF
SPSF02 - Graphical Data Representation
PDF
Solving the energy problem of helium final report
PDF
Sec 3 E Maths Notes Coordinate Geometry
PDF
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
PDF
Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
PDF
Capítulo 05 deflexão e rigidez
PDF
Maximizing Submodular Function over the Integer Lattice
PDF
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
PDF
Regret Minimization in Multi-objective Submodular Function Maximization
PPT
PDF
Hierarchical matrix approximation of large covariance matrices
PDF
A common unique random fixed point theorem in hilbert space using integral ty...
PDF
Low-rank tensor methods for stochastic forward and inverse problems
PDF
The low-rank basis problem for a matrix subspace
ODP
Linear cong slide 2
PDF
Tutorial no. 1.doc
PDF
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
PDF
Core–periphery detection in networks with nonlinear Perron eigenvectors
Lecture note4coordinatedescent
SPSF02 - Graphical Data Representation
Solving the energy problem of helium final report
Sec 3 E Maths Notes Coordinate Geometry
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
Capítulo 05 deflexão e rigidez
Maximizing Submodular Function over the Integer Lattice
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
Regret Minimization in Multi-objective Submodular Function Maximization
Hierarchical matrix approximation of large covariance matrices
A common unique random fixed point theorem in hilbert space using integral ty...
Low-rank tensor methods for stochastic forward and inverse problems
The low-rank basis problem for a matrix subspace
Linear cong slide 2
Tutorial no. 1.doc
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
Core–periphery detection in networks with nonlinear Perron eigenvectors
Ad

Similar to Data sparse approximation of Karhunen-Loeve Expansion (20)

PDF
Hierarchical matrices for approximating large covariance matries and computin...
PDF
Application of parallel hierarchical matrices and low-rank tensors in spatial...
PDF
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
PDF
Low rank tensor approximation of probability density and characteristic funct...
PDF
Litvinenko, Uncertainty Quantification - an Overview
PDF
A common random fixed point theorem for rational inequality in hilbert space
PDF
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
PDF
My presentation at University of Nottingham "Fast low-rank methods for solvin...
PDF
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
PDF
Bayesian inference on mixtures
PDF
Iterative methods with special structures
PDF
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
PDF
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
PDF
Low-rank tensor approximation (Introduction)
PDF
Solving integral equations on boundaries with corners, edges, and nearly sing...
PDF
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
PDF
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
PDF
Response Surface in Tensor Train format for Uncertainty Quantification
PDF
A small introduction into H-matrices which I gave for my colleagues
PDF
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
Hierarchical matrices for approximating large covariance matries and computin...
Application of parallel hierarchical matrices and low-rank tensors in spatial...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
Low rank tensor approximation of probability density and characteristic funct...
Litvinenko, Uncertainty Quantification - an Overview
A common random fixed point theorem for rational inequality in hilbert space
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
My presentation at University of Nottingham "Fast low-rank methods for solvin...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Bayesian inference on mixtures
Iterative methods with special structures
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
Low-rank tensor approximation (Introduction)
Solving integral equations on boundaries with corners, edges, and nearly sing...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
Response Surface in Tensor Train format for Uncertainty Quantification
A small introduction into H-matrices which I gave for my colleagues
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
Ad

More from Alexander Litvinenko (20)

PDF
Poster_density_driven_with_fracture_MLMC.pdf
PDF
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
PDF
litvinenko_Intrusion_Bari_2023.pdf
PDF
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
PDF
litvinenko_Gamm2023.pdf
PDF
Litvinenko_Poster_Henry_22May.pdf
PDF
Uncertain_Henry_problem-poster.pdf
PDF
Litvinenko_RWTH_UQ_Seminar_talk.pdf
PDF
Litv_Denmark_Weak_Supervised_Learning.pdf
PDF
Computing f-Divergences and Distances of High-Dimensional Probability Density...
PDF
Identification of unknown parameters and prediction of missing values. Compar...
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Identification of unknown parameters and prediction with hierarchical matrice...
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Application of parallel hierarchical matrices for parameter inference and pre...
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Propagation of Uncertainties in Density Driven Groundwater Flow
PDF
Simulation of propagation of uncertainties in density-driven groundwater flow
PDF
Approximation of large covariance matrices in statistics
PDF
Semi-Supervised Regression using Cluster Ensemble
Poster_density_driven_with_fracture_MLMC.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Intrusion_Bari_2023.pdf
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
litvinenko_Gamm2023.pdf
Litvinenko_Poster_Henry_22May.pdf
Uncertain_Henry_problem-poster.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Identification of unknown parameters and prediction of missing values. Compar...
Computation of electromagnetic fields scattered from dielectric objects of un...
Identification of unknown parameters and prediction with hierarchical matrice...
Computation of electromagnetic fields scattered from dielectric objects of un...
Application of parallel hierarchical matrices for parameter inference and pre...
Computation of electromagnetic fields scattered from dielectric objects of un...
Propagation of Uncertainties in Density Driven Groundwater Flow
Simulation of propagation of uncertainties in density-driven groundwater flow
Approximation of large covariance matrices in statistics
Semi-Supervised Regression using Cluster Ensemble

Recently uploaded (20)

PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
Pre independence Education in Inndia.pdf
PPTX
master seminar digital applications in india
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
01-Introduction-to-Information-Management.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Basic Mud Logging Guide for educational purpose
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Insiders guide to clinical Medicine.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Anesthesia in Laparoscopic Surgery in India
Renaissance Architecture: A Journey from Faith to Humanism
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Pre independence Education in Inndia.pdf
master seminar digital applications in india
TR - Agricultural Crops Production NC III.pdf
01-Introduction-to-Information-Management.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
STATICS OF THE RIGID BODIES Hibbelers.pdf
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
102 student loan defaulters named and shamed – Is someone you know on the list?
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Basic Mud Logging Guide for educational purpose
O7-L3 Supply Chain Operations - ICLT Program
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Insiders guide to clinical Medicine.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf

Data sparse approximation of Karhunen-Loeve Expansion

  • 1. Data sparse approximation of the Karhunen-Lo`eve expansion Alexander Litvinenko, joint with B. Khoromskij (Leipzig) and H. Matthies(Braunschweig) Institut f¨ur Wissenschaftliches Rechnen, Technische Universit¨at Braunschweig, 0531-391-3008, litvinen@tu-bs.de March 5, 2008
  • 4. Stochastic PDE We consider − div(κ(x, ω)∇u) = f(x, ω) in D, u = 0 on ∂D, with stochastic coefficients κ(x, ω), x ∈ D ⊆ Rd and ω belongs to the space of random events Ω. [Babuˇska, Ghanem, Matthies, Schwab, Vandewalle, ...]. Methods and techniques: 1. Response surface 2. Monte-Carlo 3. Perturbation 4. Stochastic Galerkin
  • 5. Examples of covariance functions [Novak,(IWS),04] The random field requires to specify its spatial correl. structure covf (x, y) = E[(f(x, ·) − µf (x))(f(y, ·) − µf (y))], where E is the expectation and µf (x) := E[f(x, ·)]. Let h = 3 i=1 h2 i /ℓ2 i + d2 − d 2 , where hi := xi − yi , i = 1, 2, 3, ℓi are cov. lengths and d a parameter. Gaussian cov(h) = σ2 · exp(−h2 ), exponential cov(h) = σ2 · exp(−h), spherical cov(h) = σ2 · 1 − 3 2 h hr − 1 2 h3 h3 r for 0 ≤ h ≤ hr , 0 for h > hr .
  • 7. KLE The spectral representation of the cov. function is Cκ(x, y) = ∞ i=0 λi ki(x)ki (y), where λi and ki(x) are the eigenvalues and eigenfunctions. The Karhunen-Lo`eve expansion [Loeve, 1977] is the series κ(x, ω) = µk (x) + ∞ i=1 λi ki (x)ξi (ω), where ξi (ω) are uncorrelated random variables and ki are basis functions in L2 (D). Eigenpairs λi , ki are the solution of Tki = λi ki, ki ∈ L2 (D), i ∈ N, where. T : L2 (D) → L2 (D), (Tu)(x) := D covk (x, y)u(y)dy.
  • 9. Computation of eigenpairs by FFT If the cov. function depends on (x − y) then on a uniform tensor grid the cov. matrix C is (block) Toeplitz. Then C can be extended to the circulant one and the decomposition C = 1 n F H ΛF (1) may be computed like follows. Multiply (1) by F becomes F C = ΛF , F C1 = ΛF1. Since all entries of F1 are unity, obtain λ = F C1. F C1 may be computed very efficiently by FFT [Cooley, 1965] in O(n log n) FLOPS. C1 may be represented in a matrix or in a tensor format.
  • 10. Multidimensional FFT Lemma: The d-dim. FT F (d) can be represented as following F (d) = (F (1) 1 ⊗ I ⊗ I . . .)(I ⊗ F (1) 2 ⊗ I . . .) . . . (I ⊗ I . . . ⊗ F (1) d ), (2) and the complexity of F (d) is O(nd log n), where n is the number of dofs in one direction.
  • 11. Discrete eigenvalue problem Let Wij := k,m D bi (x)bk (x)dxCkm D bj (y)bm(y)dy, Mij = D bi (x)bj (x)dx. Then we solve W fh ℓ = λℓMfh ℓ , where W := MCM Approximate C in ◮ low rank format ◮ the H-matrix format ◮ sparse tensor format and use the Lanczos method to compute m largest eigenvalues.
  • 12. Examples of H-matrix approximates of cov(x, y) = e−2|x−y| [Hackbusch et al. 99] 25 20 20 20 20 16 20 16 20 20 16 16 20 16 16 16 4 4 20 4 32 4 4 16 4 32 4 20 4 4 4 16 4 4 32 32 20 20 20 20 32 32 32 4 3 4 4 32 20 4 16 4 32 32 4 32 32 4 32 32 32 32 4 32 32 4 4 4 4 20 16 4 4 32 32 4 32 32 32 32 32 4 32 32 32 4 32 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 20 4 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 4 20 4 4 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 20 20 20 20 32 32 32 4 4 20 4 32 32 32 4 20 4 4 32 32 32 20 20 20 20 32 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 44 4 20 4 32 32 32 32 4 32 32 4 32 32 32 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 4 4 4 4 4 4 4 4 4 20 4 4 32 32 32 4 32 32 32 32 32 4 32 32 32 4 32 4 4 4 4 4 4 4 4 4 4 4 32 32 4 32 4 4 4 3 4 4 4 4 4 4 4 32 32 4 32 4 4 4 4 4 4 4 4 4 4 4 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 4 4 4 4 4 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 20 4 32 32 32 32 4 32 32 4 32 32 32 32 4 32 32 4 20 4 4 32 32 32 4 32 32 32 32 32 4 32 32 32 4 32 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 32 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 32 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 32 32 32 4 32 4 32 4 32 32 32 4 32 4 32 32 4 32 32 32 4 32 32 32 4 4 32 32 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 25 11 11 20 12 13 20 11 9 16 13 13 20 11 11 20 13 13 32 13 13 20 8 10 20 13 13 32 13 13 32 13 13 32 13 13 20 11 11 20 13 13 32 13 13 20 10 10 20 12 12 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 20 11 11 20 13 13 32 13 13 32 13 13 32 13 13 20 9 9 20 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 Figure: H-matrix approximations ∈ Rn×n , n = 322 , with standard (left) and weak (right) admissibility block partitionings. The biggest dense (dark) blocks ∈ Rn×n , max. rank k = 4 left and k = 13 right.
  • 13. H - Matrices Comp. complexity is O(kn log n) and storage O(kn log n). To assemble low-rank blocks use ACA [Bebendorf, Tyrtyshnikov]. Dependence of the computational time and storage requirements of CH on the rank k, n = 322 . k time (sec.) memory (MB) C−CH 2 C 2 2 0.04 2e + 6 3.5e − 5 6 0.1 4e + 6 1.4e − 5 9 0.14 5.4e + 6 1.4e − 5 12 0.17 6.8e + 6 3.1e − 7 17 0.23 9.3e + 6 6.3e − 8 The time for dense matrix C is 3.3 sec. and the storage 1.4e + 8 MB.
  • 14. H - Matrices Let h = 2 i=1 h2 i /ℓ2 i + d2 − d 2 , where hi := xi − yi , i = 1, 2, 3, ℓi are cov. lengths and d = 1. exponential cov(h) = σ2 · exp(−h), The cov. matrix C ∈ Rn×n , n = 652 . ℓ1 ℓ2 C−CH 2 C 2 0.01 0.02 3e − 2 0.1 0.2 8e − 3 1 2 2.8e − 6 10 20 3.7e − 9
  • 15. Exponential Singularvalue decay [see also Schwab et al.] 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 800 900 1000 0 1 2 3 4 5 6 7 8 9 10 x 10 4 0 100 200 300 400 500 600 700 800 900 1000 0 200 400 600 800 1000 1200 1400 1600 1800 0 100 200 300 400 500 600 700 800 900 1000 0 0.5 1 1.5 2 2.5 x 10 5 0 100 200 300 400 500 600 700 800 900 1000 0 50 100 150 0 100 200 300 400 500 600 700 800 900 1000 0 0.5 1 1.5 2 2.5 3 3.5 4 x 10 4
  • 16. Sparse tensor decompositions of kernels cov(x, y) = cov(x − y) We want to approximate C ∈ RN×N , N = nd by Cr = r k=1 V 1 k ⊗ ... ⊗ V d k such that C − Cr ≤ ε. The storage of C is O(N2 ) = O(n2d ) and the storage of Cr is O(rdn2 ). To define V i k use e.g. SVD. Approximate all V i k in the H-matrix format and become HKT format. See basic arithmetics in [Hackbusch, Khoromskij, Tyrtyshnikov]. Assume f(x, y), x = (x1, x2), y = (y1, y2), then the equivalent approx. problem is f(x1, x2; y1, y2) ≈ r k=1 Φk (x1, y1)Ψk (x2, y2).
  • 17. Numerical examples of tensor approximations Gaussian kernel exp{−|x − y|2 } has the Kroneker rank 1. The exponen. kernel e{ − |x − y|} can be approximated by a tensor with low Kroneker rank r 1 2 3 4 5 6 10 C−Cr ∞ C ∞ 11.5 1.7 0.4 0.14 0.035 0.007 2.8e − 8 C−Cr 2 C 2 6.7 0.52 0.1 0.03 0.008 0.001 5.3e − 9
  • 19. Application: covariance of the solution For SPDE with stochastic RHS the eigenvalue problem and spectral decom. look like Cf fℓ = λℓfℓ, Cf = Φf Λf ΦT f . If we only want the covariance Cu = (K ⊗ K)−1 Cf = (K−1 ⊗ K−1 )Cf = K−1 Cf K−T , one may with the KLE of Cf = Φf Λf ΦT f reduce this to Cu = K−1 Cf K−T = K−1 Φf ΛΦT f K−T .
  • 20. Application: higher order moments Let operator K be deterministic and Ku(θ) = α∈J Ku(α) Hα(θ) = ˜f(θ) = α∈J f(α) Hα(θ), with u(α) = [u (α) 1 , ..., u (α) N ]T . Projecting onto each Hα obtain Ku(α) = f(α) . The KLE of f(θ) is f(θ) = f + ℓ λℓφℓ(θ)fl = ℓ α λℓφ (α) ℓ Hα(θ)fl = α Hα(θ)f(α) , where f(α) = ℓ √ λℓφ (α) ℓ fl .
  • 21. Application: higher order moments The 3-rd moment of u is M (3) u = E   α,β,γ u(α) ⊗ u(β) ⊗ u(γ) HαHβHγ   = α,β,γ u(α) ⊗u(β) ⊗u(γ) cα,β,γ, cα,β,γ := E (Hα(θ)Hβ(θ)Hγ(θ)) = cα,β · γ!, and cα,β are constants from the Hermitian algebra. Using u(α) = K−1 f(α) = ℓ √ λℓφ (α) ℓ K−1 fl and uℓ := K−1 fℓ, obtain M (3) u = p,q,r tp,q,r up ⊗ uq ⊗ ur , where tp,q,r := λpλqλr α,β,γ φ (α) p φ (β) q φ (γ) r cα,βγ.
  • 23. Conclusion ◮ Covariance matrices allow data sparse low-rank approximations. ◮ With application of H-matrices ◮ we extend the class of covariance functions to work with, ◮ allows non-regular discretisations of the cov. function on large spatial grids. ◮ Application of sparse tensor product allows computation of k-th moments.
  • 24. Plans for Feature 1. Convergence of the Lanczos method with H-matrices 2. Implement sparse tensor vector product for the Lanczos method 3. HKT idea for d ≥ 3 dimensions
  • 25. Thank you for your attention! Questions?