SlideShare a Scribd company logo
КОМПЬЮТЕРНОЕ ЗРЕНИЕ: ОБУЧЕНИЕ
РАСПОЗНАВАНИЮ ОБЪЕКТОВ
Kate Saenko, University of Massachusetts, Lowell
COMPUTER VISION: LEARNING TO
DETECT OBJECTS
Kate Saenko, University of Massachusetts, Lowell
What is computer vision?2
Computer Vision
3
Terminator 2
we’re not quite there yet, but….
terminator 2, enemy of the state (from UCSD “Fact or Fiction” DVD)
Machine Learning: What is it?
 Program a computer to learn
from experience
 Learn from “big data”
Machine Learning in practice
Machine learning is not perfect
6
Machine learning is not perfect
7
Personal photo albums
Lots of image data available!
Data for computer vision
What are applications of computer
vision?
10
Surveillance and security
Computer Vision: Surveillance and Security
Smart cars
 Mobileye
 Vision systems currently in high-end BMW, GM, Volvo models
 By 2010: 70% of car manufacturers
Slide content courtesy of Amnon Shashua
Scientific Images
Medical Imaging
Image guided surgery
Grimson et al., MIT
3D imaging
MRI, CT
slide by S. Seitz
Vision for Robotics
http://www.robocup.org/NASA’s Mars Spirit Rover
http://en.wikipedia.org/wiki/Spirit_rover
slide by S. Seitz
Object Detection: Face Detection
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
What is object detection?17
Goal of object detection
18
Detect: PERSON
Why is object detection difficult?
19
Why is object detection difficult?
20
Can you detect all objects in this image?
Easy to collect data on the web!
21
Difficult to label image annotations
22
 Easy to label from search engine
 Much more difficult and costly to label
dog apple
dog apple
Goal of this research:
23
 Learn from weakly labeled data!
How well can we do without bounding box
labels?24
Computer detecting pedestrians
25
Computer detecting 7,000 object categories
How well can we do without bounding box
labels?
Join work with Karim Ali
Confidence-rated Multiple instance
Boosting for Detection
Motivation
27
 Object Detection
 High accuracy requires large labeled data sets
 Scalability
 Reducing annotation requirements
 Semi-supervised Learning
 Active Learning
 Multiple-Instance Learning
Overview
28
CR-
MILBOOST
Multiple instance learning with noise
29
 MI Learning cannot handle noisy bags
Outline
30
 Reminder: What is MIL?
 CR-MILBoost (CVPR’14)
 Conclusion & Future Work
 Discussion
Reminder: What is MIL?
31
 Supervised Learning
 Each instance has an associated label
 MIL: Weaker Supervision
 Examples come in bags
 Each Bag has a label
 Negative Bag: all instances in bag are negative
 Positive Bag: at least one instance in bag is positive
Supervised vs MIL (binary)
32
 Supervised Learning  MI Learning
xi, yi( ) Î RD
´ -1,1{ } Xi = xi1,… , xiK{ }, yi( )Î RD
( )
K
´ -1,1{ }
j x( )> 0 if y = +1
j x( )< 0 if y = -1
max
j
j(xij ) > 0 if yi = +1
max
j
j(xij ) < 0 if yi = -1
j*
x( )= argmin
j x( )
L j;x, y( ) j*
x( )= argmin
j x( )
L j;X, y( )
Related Methods
33
 How to estimate latent labels for positives
Gartner, ICML’02
Xi =
1
N
xijå
Xu, ICML’04
j(Xi ) =
1
N
j(xijå )
Andrews, NIPS’03
j(Xi )= max
j
j(xij )
Bunescu, ICML’07
SVM Constraints
Viola, NIPS’07
pi =1-Õj (1- pij )
Supervised MIL
CR-MILBOOST
34
j*
(x) = argminÕ pi
ti
(1- pi )1-ti
pij =
1
1+e
-j xij( )
pi =1-Õj (1- pij )
 MILBoost
CR-MILBOOST
35
j*
(x) = argminÕ pi
ti
(1- pi )1-ti
 MILBoost
wij =
yi - pi
pi
pij
j(x) = akhk (x)
k
å
CR-MILBOOST
36
 Two Step Procedure
 Estimate Probabilities on latent label
 Integrate estimate in new loss
 Mitigates label estimation error by incorporating
priors
CR-MILBOOST
37
Q = j1 x( ),j2 x( ),… ,jq x( ){ }
hij º P yij = yi Q( )=
1
1+e
-yi jq xij( )å
hi º P yi Q( )= max
j
hij
 Step 1
CR-MILBOOST
38
 Step 2
j*
(x) = argminÕ pi
ti
(1- pi )1-ti
pij =
1
1+e
-j xij( )
pi =1-Õj (1- pij )
hij
hi
CR-MILBOOST
39
 Step 2
wij =
yi - pi
hi pi
hij pij
j(x) = akhk (x)
k
å
Experiments: Features
40
h*
e,R (x) =
xe (x,m)
mÎR
å
xd (x,m)
dÎF,mÎR
å
 Weak Learners:
 An edge orientation
 A sub-window
 A threshold
e,R,t( )
 Simple, Efficient
 Q=4, number of stumps
f x( ) = akhk x( )
k
å
Experiments: Pedestrian Detection
41
 Training Data
 200 images automatically downloaded from the web
 200 “objectness” bounding boxes
Experiments: Pedestrian Detection
42
 Testing Data
 INRIA Person
 300 images containing 600 pedestrians
Experiments: Pedestrian Detection
43
Experiments: Pedestrian Detection
44
Experiments: Pedestrian Detection
45
Experiments: Horse Detection
46
 Training Data
 200 images automatically downloaded from the web
 200 “objectness” bounding boxes
Experiments: Horse Detection
47
 Testing Data
 200 images containing 200 side-view horses
Experiments: Horse Detection
48
Experiments: Horse Detection
49
Experiments: Horse Detection
50
Conclusion
51
 New MIL method: CR-MILBOOST
 Two step procedure
 Dramatic increase in performance 200% on two
datasets
 Quality of selected examples still suffer from
additional ambiguity when compared to the fully
supervised examples
Joint work with Judy Hoffman, Eric Tzeng,
Sergio Guadarrama and Trevor Darrell at UC
Berkeley
Adapting Deep CNNs from
Classification to Detection
53
Recall: classification is easier than detection
54
 Classification label: Easy to label
 Detection label: much more difficult and costly!
dog apple
dog apple
ICLASSIFY
dogapple
I
DET
dog
apple
ICLASSIFY
cat
W
CLASSIFY
dog
W
CLASSIFY
apple
Classifiers
WDET
dog
WDET
apple
Detectors
WCLASSIFY
cat WDET
cat IDET
?
Main idea behind the approach
cat: 0.90
dog: 0.85
airplane: 0.05
person: 0.10
layers 1-5
fc6 fc7
fcA
fcB
Classification data
from categories A and B
Train Classification
CNN
Deep Convolutional Neural Network
dog: 0.87
person: 0.15
cat: 0.90
dog: 0.85
background: 0.25
airplane: 0.05
person: 0.10
layers 1-5
det
layers 1-5
fc6
det
fc6
fc7
det
fc7
fcA
fcB
det
fcB
Classification data
from categories A and B
Train Classification
CNN
Detection data
from categories B
Labeled
warped region
Train adapted
detection CNN
dog
background
background: 0.25
det
layers 1-5
det
fc6
det
fc7
Final Combined and
fully adapted CNN
cat: 0.90
airplane: 0.02det
fcA
dog: 0.45
person: 0.15
det
fcB
adapt
background
(c) Output Layer Adaptation
(a)ClassificationCNN
(b) Hidden Layer Adaptation
Results on ILSVRC 2013 Detection
Results on ILSVRC 2013 Detection
Results on ILSVRC 2013 Detection
Learning Object Detectors From Weakly Supervised Image Data
Preliminary results on 7K categories
62
Conclusion
63
 Presented two new methods for object detector
training with minimal bounding box annotation
 MIL based method for learning from results of image
search
 Adaptation from classification to detection task
Questions?
64

More Related Content

PDF
Pycon tati gabru
PPTX
Online Vigilance Analysis Combining Video and Electrooculography Features
PPTX
아리랑 위성영상 AI 객체 검출 경진대회 1등 수상자 솔루션
PPTX
Rapid object detection using boosted cascade of simple features
PPTX
Map reduce
PDF
Object Detection with Discrmininatively Trained Part based Models
PDF
Real time pedestrian detection with deformable part models [h. cho, p. rybski...
PPTX
High Performance Pedestrian Detection On TEGRA X1
Pycon tati gabru
Online Vigilance Analysis Combining Video and Electrooculography Features
아리랑 위성영상 AI 객체 검출 경진대회 1등 수상자 솔루션
Rapid object detection using boosted cascade of simple features
Map reduce
Object Detection with Discrmininatively Trained Part based Models
Real time pedestrian detection with deformable part models [h. cho, p. rybski...
High Performance Pedestrian Detection On TEGRA X1

Viewers also liked (11)

PDF
Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...
PDF
20141008物体検出器
PDF
Deformable Part Models are Convolutional Neural Networks
PDF
Opencv object detection_takmin
PPT
Avihu Efrat's Viola and Jones face detection slides
PPTX
Face detection ppt by Batyrbek
PDF
Real time pedestrian detection, tracking, and distance estimation
PDF
Pedestrian Detection Technology - Brochure
PPTX
Object Recognition
PPTX
KantoCV/Selective Search for Object Recognition
PPT
Introduction To Map Reduce
Andrey V. Savchenko - Sequential Hierarchical Image Recognition based on the ...
20141008物体検出器
Deformable Part Models are Convolutional Neural Networks
Opencv object detection_takmin
Avihu Efrat's Viola and Jones face detection slides
Face detection ppt by Batyrbek
Real time pedestrian detection, tracking, and distance estimation
Pedestrian Detection Technology - Brochure
Object Recognition
KantoCV/Selective Search for Object Recognition
Introduction To Map Reduce
Ad

Similar to Learning Object Detectors From Weakly Supervised Image Data (20)

PDF
Image Classification and Annotation Using Deep Learning
PPTX
DeepLearning
PPTX
Deep Learning for Data Scientists - Data Science ATL Meetup Presentation, 201...
PDF
物件偵測與辨識技術
PDF
IRJET- Weakly Supervised Object Detection by using Fast R-CNN
PPTX
presentation of IntroductionDeepLearning.pptx
PDF
imageclassification-160206090009.pdf
PPTX
Introduction to Computer Vision and its Applications
PDF
IRJET- Deep Learning Techniques for Object Detection
PPTX
Deep learning for Computer Vision intro
PPTX
Deep learning summary
PPTX
PyConZA'17 Deep Learning for Computer Vision
PDF
Deep Learning for Computer Vision - ExecutiveML
PPTX
cnn.pptx
PPTX
A leap around AI
PDF
OBJECT IDENTIFICATION
PDF
Introduction to the Artificial Intelligence and Computer Vision revolution
PDF
Convolutional Neural Network Based Real Time Object Detection Using YOLO V4
PDF
Introduction to ml
PDF
Getting Started with Machine Learning
Image Classification and Annotation Using Deep Learning
DeepLearning
Deep Learning for Data Scientists - Data Science ATL Meetup Presentation, 201...
物件偵測與辨識技術
IRJET- Weakly Supervised Object Detection by using Fast R-CNN
presentation of IntroductionDeepLearning.pptx
imageclassification-160206090009.pdf
Introduction to Computer Vision and its Applications
IRJET- Deep Learning Techniques for Object Detection
Deep learning for Computer Vision intro
Deep learning summary
PyConZA'17 Deep Learning for Computer Vision
Deep Learning for Computer Vision - ExecutiveML
cnn.pptx
A leap around AI
OBJECT IDENTIFICATION
Introduction to the Artificial Intelligence and Computer Vision revolution
Convolutional Neural Network Based Real Time Object Detection Using YOLO V4
Introduction to ml
Getting Started with Machine Learning
Ad

More from Yandex (20)

PDF
Предсказание оттока игроков из World of Tanks
PDF
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
PDF
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
PDF
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
PDF
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
PDF
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
PDF
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
PDF
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
PDF
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
PDF
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
PDF
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
PDF
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
PDF
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
PDF
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
PDF
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
PDF
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
PDF
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
PDF
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
PDF
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
PDF
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...
Предсказание оттока игроков из World of Tanks
Как принять/организовать работу по поисковой оптимизации сайта, Сергей Царик,...
Структурированные данные, Юлия Тихоход, лекция в Школе вебмастеров Яндекса
Представление сайта в поиске, Сергей Лысенко, лекция в Школе вебмастеров Яндекса
Плохие методы продвижения сайта, Екатерины Гладких, лекция в Школе вебмастеро...
Основные принципы ранжирования, Сергей Царик и Антон Роменский, лекция в Школ...
Основные принципы индексирования сайта, Александр Смирнов, лекция в Школе веб...
Мобильное приложение: как и зачем, Александр Лукин, лекция в Школе вебмастеро...
Сайты на мобильных устройствах, Олег Ножичкин, лекция в Школе вебмастеров Янд...
Качественная аналитика сайта, Юрий Батиевский, лекция в Школе вебмастеров Янд...
Что можно и что нужно измерять на сайте, Петр Аброськин, лекция в Школе вебма...
Как правильно поставить ТЗ на создание сайта, Алексей Бородкин, лекция в Школ...
Как защитить свой сайт, Пётр Волков, лекция в Школе вебмастеров
Как правильно составить структуру сайта, Дмитрий Сатин, лекция в Школе вебмас...
Технические особенности создания сайта, Дмитрий Васильева, лекция в Школе веб...
Конструкторы для отдельных элементов сайта, Елена Першина, лекция в Школе веб...
Контент для интернет-магазинов, Катерина Ерошина, лекция в Школе вебмастеров ...
Как написать хороший текст для сайта, Катерина Ерошина, лекция в Школе вебмас...
Usability и дизайн - как не помешать пользователю, Алексей Иванов, лекция в Ш...
Cайт. Зачем он и каким должен быть, Алексей Иванов, лекция в Школе вебмастеро...

Recently uploaded (20)

PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPT
protein biochemistry.ppt for university classes
DOCX
Viruses (History, structure and composition, classification, Bacteriophage Re...
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PPTX
Microbiology with diagram medical studies .pptx
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
microscope-Lecturecjchchchchcuvuvhc.pptx
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPTX
BIOMOLECULES PPT........................
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PDF
HPLC-PPT.docx high performance liquid chromatography
PDF
Sciences of Europe No 170 (2025)
PPTX
2. Earth - The Living Planet earth and life
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
AlphaEarth Foundations and the Satellite Embedding dataset
Phytochemical Investigation of Miliusa longipes.pdf
neck nodes and dissection types and lymph nodes levels
7. General Toxicologyfor clinical phrmacy.pptx
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
protein biochemistry.ppt for university classes
Viruses (History, structure and composition, classification, Bacteriophage Re...
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
Microbiology with diagram medical studies .pptx
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
Biophysics 2.pdffffffffffffffffffffffffff
microscope-Lecturecjchchchchcuvuvhc.pptx
Derivatives of integument scales, beaks, horns,.pptx
BIOMOLECULES PPT........................
Classification Systems_TAXONOMY_SCIENCE8.pptx
HPLC-PPT.docx high performance liquid chromatography
Sciences of Europe No 170 (2025)
2. Earth - The Living Planet earth and life
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
TOTAL hIP ARTHROPLASTY Presentation.pptx

Learning Object Detectors From Weakly Supervised Image Data