SlideShare a Scribd company logo
LEARNING WITH F#
Phillip Trelford, Applied Games, Microsoft
Research
Overview
 Learning Probabilistic Models
 Factor Graphs
 Inference in Factor Graphs
 Projects
 TrueSkill Analysis
 Internal adCenter competition
 Benefits of F#
Overview
 Learning Probabilistic Models
 Factor Graphs
 Inference in Factor Graphs
 Projects
 TrueSkill Analysis
 Internal adCenter competition
 Benefits of F#
Factor Graphs
 Bi-partite graphs
 Random variables
 Factors
 Two purposes:
 Representation of the structure of a probability
distribution (more fine grained than Bayes Nets)
 Represent an algorithm where computations are
performed along the edges (schedules)
TrueSkill™ Factor Graph
s1
s1 s2
s2 s3
s3 s4
s4
t1
t1
y1
2
y1
2
t2
t2 t3
t3
y2
3
y2
3
Inference in Factor Graphs
 Computational question:
 What are the marginals of the joint probability?
 What is the mode of the joint probability?
 Naive approach require exponential run-time:
 Marginals:
 Mode:
Message Passing in Factor
Graphs
w1w1 w2w2
++
ss
cc
Overview
 Learning Probabilistic Models
 Factor Graphs
 Inference in Factor Graphs
 Projects
 TrueSkill Analysis
 Internal adCenter competition
 Benefits of F#
 Given:
 Match outcomes: Orderings among k teams
consisting of n1, n2 , ..., nk players, respectively
 Questions:
 Skill si for each player such that
 Global ranking among all players
 Fair matches between teams of players
TrueSkill Rating Problem
Xbox 360 Live
 Launched in September 2005
 Every game uses TrueSkill™ to match players
 > 6 million players
 > 1 million matches per day
 > 2 billion hours of gameplay
Xbox Live Activity viewer
 Code size: 1400 LOC + 1400 LOC
 Project size: 2 project / 21 files
 Development time: 2 month
 Features
 Parser: High performance (> 2GB logs in 1 hour)
 Parser: Recreation of matchmaking server status
 Viewer: SQL database integration (deep schema)
Xbox 360 & Halo 3
 Xbox 360 Live
 Launched in September 2005
 Every game uses TrueSkill™ to match players
 > 6 million players
 > 1 million matches per day
 > 2 billion hours of gameplay
 Halo 3
 Launched on 25th
September 2007
 Largest entertainment launch in history
 > 500,000 player concurrently playing
F# Tools for Halo 3
 Questions
 Controllable player skill progression (slow-down!)
 Controllable skill distributions (re-ordering)
 Simulations
 Large scale simulation of > 8,000,000,000
matches
 Distributed application written in C# using .Net
remoting
 Tools
 Result viewer (Logged results: 52 GB of data)
 Real-time simulator of partial update
Halo 3 Simulation Result
Viewer
 Code size: 1800 LOC
 Project size: 11 files
 Development time: 2 month
 Features
 Multithreaded histogram viewer (due to file size)
 Real-time spline editor (monotonically increasing)
 Based on WinForms (compatability)
Halo 3 Partial Update Analyser
 Code size: 2600 LOC
 Project size: 10 files
 Development time: 1 month
 Features
 SQL database integration (analysis of beta test
data)
 Full integration of C# TrueSkill code (.Net library)
 Real time changes
Overview
 Learning Probabilistic Models
 Factor Graphs
 Inference in Factor Graphs
 Projects
 TrueSkill Analysis
 Internal adCenter competition
 Benefits of F#
The adCenter Problem
 Cash-cow of Search
 Selling “web space” at www.live.com
and www.msn.com.
 “Paid Search” (prices by auctions)
 The internal competition focuses on
Paid Search.
The Internal adCenter
Competition
 Start of competition: February 2007
 Start of training phase: May 2007
 End of training phase: June 2007
 Task:
 Predict the probability of click of a few days of real
data from several weeks of training data (logged page
views)
 Resources:
 4 (2 x 2) 64-bit CPU machine
 16 GB of RAM
 200 GB HD
The Scale of Things
 Weeks of data in training:
7,000,000,000 impressions
 2 weeks of CPU time during training:
2 wks × 7 days × 86,400 sec/day =
1,209,600 seconds
 Learning algorithmspeed requirement:
 5,787 impression updates / sec
 172.8 μs per impression update
Tool Chain: Existing Tools
 Excel 2007
 Scientific Visualisation
 Small Scale Simulations
 SQL Server2005
 1.6 TB of “active” data (for 2 weeks of data + indices)
 Ad-Hoc Queries and Stored Procedures
 Visual Studio 2005 & F#
 54 projects solution (many small tools)
 FSI for rapid development and code testing
 Strong typing as a surrogate for correctness
SQL Schema Generator
 Code size: 500 LOC
 Project size: 1 file
 Development time: 2 weeks
 Features
 Code defines the schema (unlike LINQ)!
 High-performance insertion via computed bulk-
insertion with automated key propagation
 Code sample is now part of the F# distribution
Strong Typing and SQL
Datastores
/// A single page-view
type PageView =
{
ClientDateTime : DateTime
GmtSeconds : int
TargetDomainId : int16
Medium : MediumType option
StartPosition : int
PageNum : byte
[<SqlStringLengthAttribute(256)>]
Query : string
Gender : Gender option
AgeBucket : AgeGroup option
ReturnedAdCnt : byte
AbTestingType : byte option
AlgorithmId : int option
ANID : int128 option
GUID : int128 option
[<SqlStringLengthAttribute(15)>]
PassportZipCode : string option
[<SqlStringLengthAttribute(2)>]
PassportCountry : string option
PassportRegion : int
[<SqlStringLengthAttribute(2)>]
PassportOccupation : char
LocationCountry : int
LocationState : int
LocationMetroArea : int
CategoryId : int16
SubCategoryId : int16
FormCode : int16
ReturnedAds : Advertisement array
}
/// A single page-view
type PageView =
{
ClientDateTime : DateTime
GmtSeconds : int
TargetDomainId : int16
Medium : MediumType option
StartPosition : int
PageNum : byte
[<SqlStringLengthAttribute(256)>]
Query : string
Gender : Gender option
AgeBucket : AgeGroup option
ReturnedAdCnt : byte
AbTestingType : byte option
AlgorithmId : int option
ANID : int128 option
GUID : int128 option
[<SqlStringLengthAttribute(15)>]
PassportZipCode : string option
[<SqlStringLengthAttribute(2)>]
PassportCountry : string option
PassportRegion : int
[<SqlStringLengthAttribute(2)>]
PassportOccupation : char
LocationCountry : int
LocationState : int
LocationMetroArea : int
CategoryId : int16
SubCategoryId : int16
FormCode : int16
ReturnedAds : Advertisement array
}
/// Different types of media
type MediumType =
| PaidSearch
| ContextualSearch
/// A single displayed advertisement
type Advertisement =
{
AdId : int
OrderItemId : int
CampDayId : int16
CampHourNum : byte
ProductId : ProductType
MatchType : MatchType
AdLayoutId : AdLayout
RelativePosition : byte
DeliveryEngineRank : int16
ActualBid : int
ProbabilityOfClick : int16
MatchScore : int
ImpressionCnt : int
ClickCnt : int
ConversionCnt : int
TotalCost : int
}
/// Different types of media
type MediumType =
| PaidSearch
| ContextualSearch
/// A single displayed advertisement
type Advertisement =
{
AdId : int
OrderItemId : int
CampDayId : int16
CampHourNum : byte
ProductId : ProductType
MatchType : MatchType
AdLayoutId : AdLayout
RelativePosition : byte
DeliveryEngineRank : int16
ActualBid : int
ProbabilityOfClick : int16
MatchScore : int
ImpressionCnt : int
ClickCnt : int
ConversionCnt : int
TotalCost : int
}
/// Create the SQL schema
let schema = bulkBuild ("cpidssdm18", “Cambridge", “June10")
/// Try to open the CSV file and read it pageview by pageview
File.OpenTextReader “HourlyRelevanceFeed.csv"
|> Seq.map (fun s -> s.Split [|','|])
|> Seq.chunkBy (fun xs -> xs.[0])
|> Seq.iteri (fun i (rguid,xss) ->
/// Write the current in-memory bulk to the Sql database
if i % 10000 = 0 then
schema.Flush ()
/// Get the strongly typed object from the list of CSV file lines
let pageView = PageView.Parse xss
/// Insert it
pageView |> schema.Insert
)
/// One final flush
schema.Flush ()
/// Create the SQL schema
let schema = bulkBuild ("cpidssdm18", “Cambridge", “June10")
/// Try to open the CSV file and read it pageview by pageview
File.OpenTextReader “HourlyRelevanceFeed.csv"
|> Seq.map (fun s -> s.Split [|','|])
|> Seq.chunkBy (fun xs -> xs.[0])
|> Seq.iteri (fun i (rguid,xss) ->
/// Write the current in-memory bulk to the Sql database
if i % 10000 = 0 then
schema.Flush ()
/// Get the strongly typed object from the list of CSV file lines
let pageView = PageView.Parse xss
/// Insert it
pageView |> schema.Insert
)
/// One final flush
schema.Flush ()
Overview
 Learning Probabilistic Models
 Factor Graphs
 Inference in Factor Graphs
 Projects
 TrueSkill Analysis
 Internal adCenter competition
 Benefits of F#
Overview
 Learning Probabilistic Models
 Factor Graphs
 Inference in Factor Graphs
 Projects
 TrueSkill Analysis
 Internal adCenter competition
 Benefits of F#
Benefits of F#
 Four main reasons:
1. A language that both developers and
researchers speak!
2. It leads to
1. “Correct” programs
2. Succinct programs
3. Highly performant code
3. Interoperability with .NET
4. It’s fun to program!

More Related Content

PPTX
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
PPTX
2014 bigdatacamp asya_kamsky
PDF
Hadoop - MongoDB Webinar June 2014
PPTX
Back to Basics Webinar 5: Introduction to the Aggregation Framework
PPTX
Indexing Strategies to Help You Scale
PPT
Introduction to MongoDB
PPTX
Back to Basics: My First MongoDB Application
PPTX
Back to Basics, webinar 2: La tua prima applicazione MongoDB
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
2014 bigdatacamp asya_kamsky
Hadoop - MongoDB Webinar June 2014
Back to Basics Webinar 5: Introduction to the Aggregation Framework
Indexing Strategies to Help You Scale
Introduction to MongoDB
Back to Basics: My First MongoDB Application
Back to Basics, webinar 2: La tua prima applicazione MongoDB

What's hot (20)

PDF
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
PPTX
Webinar: Getting Started with MongoDB - Back to Basics
PPTX
Joins and Other Aggregation Enhancements Coming in MongoDB 3.2
PDF
Indexing and Query Optimizer (Mongo Austin)
PDF
Analytics with MongoDB Aggregation Framework and Hadoop Connector
PPTX
Webinar: Index Tuning and Evaluation
PPTX
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
PDF
R statistics with mongo db
PPTX
Conceptos básicos. Seminario web 5: Introducción a Aggregation Framework
PPTX
Introduction to MongoDB and Hadoop
PDF
Indexing and Performance Tuning
PPTX
Beyond the Basics 2: Aggregation Framework
KEY
Cubes - Lightweight Python OLAP (EuroPython 2012 talk)
PPTX
Back to Basics Webinar 1: Introduction to NoSQL
PPTX
MongoDB - Aggregation Pipeline
PPT
Fast querying indexing for performance (4)
PPTX
Conexión de MongoDB con Hadoop - Luis Alberto Giménez - CAPSiDE #DevOSSAzureDays
PDF
Webinar: Working with Graph Data in MongoDB
ODP
2011 Mongo FR - Indexing in MongoDB
PDF
Java/Scala Lab: Борис Трофимов - Обжигающая Big Data.
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Webinar: Getting Started with MongoDB - Back to Basics
Joins and Other Aggregation Enhancements Coming in MongoDB 3.2
Indexing and Query Optimizer (Mongo Austin)
Analytics with MongoDB Aggregation Framework and Hadoop Connector
Webinar: Index Tuning and Evaluation
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
R statistics with mongo db
Conceptos básicos. Seminario web 5: Introducción a Aggregation Framework
Introduction to MongoDB and Hadoop
Indexing and Performance Tuning
Beyond the Basics 2: Aggregation Framework
Cubes - Lightweight Python OLAP (EuroPython 2012 talk)
Back to Basics Webinar 1: Introduction to NoSQL
MongoDB - Aggregation Pipeline
Fast querying indexing for performance (4)
Conexión de MongoDB con Hadoop - Luis Alberto Giménez - CAPSiDE #DevOSSAzureDays
Webinar: Working with Graph Data in MongoDB
2011 Mongo FR - Indexing in MongoDB
Java/Scala Lab: Борис Трофимов - Обжигающая Big Data.
Ad

Similar to Learning with F# (20)

PDF
Scalding big ADta
PPTX
Developing your first application using FIWARE
PPTX
Developing your first application using FI-WARE
PPTX
A miało być tak... bez wycieków
PDF
Real-Time Spark: From Interactive Queries to Streaming
PPT
Whidbey old
PDF
Simplify Feature Engineering in Your Data Warehouse
PDF
Timeplus: One single binary to tackle streaming and historical analytics
PDF
RichFaces: rich:* component library
PPTX
AI與大數據數據處理 Spark實戰(20171216)
PPTX
Data visualization in python/Django
PDF
Fast NoSQL from HDDs?
PDF
Build a game with javascript (april 2017)
PPTX
Class[3][5th jun] [three js]
PPTX
Day 1 - Technical Bootcamp azure synapse analytics
PDF
Norikra: SQL Stream Processing In Ruby
PDF
FMK2019 being an optimist in a pessimistic world by vincenzo menanno
PDF
Ajax Performance Tuning and Best Practices
PPTX
WSO2Con USA 2015: WSO2 Analytics Platform - The One Stop Shop for All Your Da...
PDF
A Rusty introduction to Apache Arrow and how it applies to a time series dat...
Scalding big ADta
Developing your first application using FIWARE
Developing your first application using FI-WARE
A miało być tak... bez wycieków
Real-Time Spark: From Interactive Queries to Streaming
Whidbey old
Simplify Feature Engineering in Your Data Warehouse
Timeplus: One single binary to tackle streaming and historical analytics
RichFaces: rich:* component library
AI與大數據數據處理 Spark實戰(20171216)
Data visualization in python/Django
Fast NoSQL from HDDs?
Build a game with javascript (april 2017)
Class[3][5th jun] [three js]
Day 1 - Technical Bootcamp azure synapse analytics
Norikra: SQL Stream Processing In Ruby
FMK2019 being an optimist in a pessimistic world by vincenzo menanno
Ajax Performance Tuning and Best Practices
WSO2Con USA 2015: WSO2 Analytics Platform - The One Stop Shop for All Your Da...
A Rusty introduction to Apache Arrow and how it applies to a time series dat...
Ad

More from Phillip Trelford (20)

PPTX
How to be a rock star developer
PPTX
Mobile F#un
PPTX
F# eXchange Keynote 2016
PPTX
FSharp eye for the Haskell guy - London 2015
PPTX
Beyond lists - Copenhagen 2015
PPTX
F# for C# devs - Copenhagen .Net 2015
PPTX
Generative Art - Functional Vilnius 2015
PPTX
24 hours later - FSharp Gotham 2015
PPTX
Building cross platform games with Xamarin - Birmingham 2015
PPTX
Beyond Lists - Functional Kats Conf Dublin 2015
PPTX
FSharp On The Desktop - Birmingham FP 2015
PPTX
Ready, steady, cross platform games - ProgNet 2015
PPTX
F# for C# devs - NDC Oslo 2015
PPTX
F# for C# devs - Leeds Sharp 2015
PPTX
Build a compiler in 2hrs - NCrafts Paris 2015
PPTX
24 Hours Later - NCrafts Paris 2015
PPTX
Real World F# - SDD 2015
PPTX
F# for C# devs - SDD 2015
PPTX
Machine learning from disaster - GL.Net 2015
PPTX
F# for Trading - QuantLabs 2014
How to be a rock star developer
Mobile F#un
F# eXchange Keynote 2016
FSharp eye for the Haskell guy - London 2015
Beyond lists - Copenhagen 2015
F# for C# devs - Copenhagen .Net 2015
Generative Art - Functional Vilnius 2015
24 hours later - FSharp Gotham 2015
Building cross platform games with Xamarin - Birmingham 2015
Beyond Lists - Functional Kats Conf Dublin 2015
FSharp On The Desktop - Birmingham FP 2015
Ready, steady, cross platform games - ProgNet 2015
F# for C# devs - NDC Oslo 2015
F# for C# devs - Leeds Sharp 2015
Build a compiler in 2hrs - NCrafts Paris 2015
24 Hours Later - NCrafts Paris 2015
Real World F# - SDD 2015
F# for C# devs - SDD 2015
Machine learning from disaster - GL.Net 2015
F# for Trading - QuantLabs 2014

Learning with F#

  • 1. LEARNING WITH F# Phillip Trelford, Applied Games, Microsoft Research
  • 2. Overview  Learning Probabilistic Models  Factor Graphs  Inference in Factor Graphs  Projects  TrueSkill Analysis  Internal adCenter competition  Benefits of F#
  • 3. Overview  Learning Probabilistic Models  Factor Graphs  Inference in Factor Graphs  Projects  TrueSkill Analysis  Internal adCenter competition  Benefits of F#
  • 4. Factor Graphs  Bi-partite graphs  Random variables  Factors  Two purposes:  Representation of the structure of a probability distribution (more fine grained than Bayes Nets)  Represent an algorithm where computations are performed along the edges (schedules)
  • 5. TrueSkill™ Factor Graph s1 s1 s2 s2 s3 s3 s4 s4 t1 t1 y1 2 y1 2 t2 t2 t3 t3 y2 3 y2 3
  • 6. Inference in Factor Graphs  Computational question:  What are the marginals of the joint probability?  What is the mode of the joint probability?  Naive approach require exponential run-time:  Marginals:  Mode:
  • 7. Message Passing in Factor Graphs w1w1 w2w2 ++ ss cc
  • 8. Overview  Learning Probabilistic Models  Factor Graphs  Inference in Factor Graphs  Projects  TrueSkill Analysis  Internal adCenter competition  Benefits of F#
  • 9.  Given:  Match outcomes: Orderings among k teams consisting of n1, n2 , ..., nk players, respectively  Questions:  Skill si for each player such that  Global ranking among all players  Fair matches between teams of players TrueSkill Rating Problem
  • 10. Xbox 360 Live  Launched in September 2005  Every game uses TrueSkill™ to match players  > 6 million players  > 1 million matches per day  > 2 billion hours of gameplay
  • 11. Xbox Live Activity viewer  Code size: 1400 LOC + 1400 LOC  Project size: 2 project / 21 files  Development time: 2 month  Features  Parser: High performance (> 2GB logs in 1 hour)  Parser: Recreation of matchmaking server status  Viewer: SQL database integration (deep schema)
  • 12. Xbox 360 & Halo 3  Xbox 360 Live  Launched in September 2005  Every game uses TrueSkill™ to match players  > 6 million players  > 1 million matches per day  > 2 billion hours of gameplay  Halo 3  Launched on 25th September 2007  Largest entertainment launch in history  > 500,000 player concurrently playing
  • 13. F# Tools for Halo 3  Questions  Controllable player skill progression (slow-down!)  Controllable skill distributions (re-ordering)  Simulations  Large scale simulation of > 8,000,000,000 matches  Distributed application written in C# using .Net remoting  Tools  Result viewer (Logged results: 52 GB of data)  Real-time simulator of partial update
  • 14. Halo 3 Simulation Result Viewer  Code size: 1800 LOC  Project size: 11 files  Development time: 2 month  Features  Multithreaded histogram viewer (due to file size)  Real-time spline editor (monotonically increasing)  Based on WinForms (compatability)
  • 15. Halo 3 Partial Update Analyser  Code size: 2600 LOC  Project size: 10 files  Development time: 1 month  Features  SQL database integration (analysis of beta test data)  Full integration of C# TrueSkill code (.Net library)  Real time changes
  • 16. Overview  Learning Probabilistic Models  Factor Graphs  Inference in Factor Graphs  Projects  TrueSkill Analysis  Internal adCenter competition  Benefits of F#
  • 17. The adCenter Problem  Cash-cow of Search  Selling “web space” at www.live.com and www.msn.com.  “Paid Search” (prices by auctions)  The internal competition focuses on Paid Search.
  • 18. The Internal adCenter Competition  Start of competition: February 2007  Start of training phase: May 2007  End of training phase: June 2007  Task:  Predict the probability of click of a few days of real data from several weeks of training data (logged page views)  Resources:  4 (2 x 2) 64-bit CPU machine  16 GB of RAM  200 GB HD
  • 19. The Scale of Things  Weeks of data in training: 7,000,000,000 impressions  2 weeks of CPU time during training: 2 wks × 7 days × 86,400 sec/day = 1,209,600 seconds  Learning algorithmspeed requirement:  5,787 impression updates / sec  172.8 μs per impression update
  • 20. Tool Chain: Existing Tools  Excel 2007  Scientific Visualisation  Small Scale Simulations  SQL Server2005  1.6 TB of “active” data (for 2 weeks of data + indices)  Ad-Hoc Queries and Stored Procedures  Visual Studio 2005 & F#  54 projects solution (many small tools)  FSI for rapid development and code testing  Strong typing as a surrogate for correctness
  • 21. SQL Schema Generator  Code size: 500 LOC  Project size: 1 file  Development time: 2 weeks  Features  Code defines the schema (unlike LINQ)!  High-performance insertion via computed bulk- insertion with automated key propagation  Code sample is now part of the F# distribution
  • 22. Strong Typing and SQL Datastores /// A single page-view type PageView = { ClientDateTime : DateTime GmtSeconds : int TargetDomainId : int16 Medium : MediumType option StartPosition : int PageNum : byte [<SqlStringLengthAttribute(256)>] Query : string Gender : Gender option AgeBucket : AgeGroup option ReturnedAdCnt : byte AbTestingType : byte option AlgorithmId : int option ANID : int128 option GUID : int128 option [<SqlStringLengthAttribute(15)>] PassportZipCode : string option [<SqlStringLengthAttribute(2)>] PassportCountry : string option PassportRegion : int [<SqlStringLengthAttribute(2)>] PassportOccupation : char LocationCountry : int LocationState : int LocationMetroArea : int CategoryId : int16 SubCategoryId : int16 FormCode : int16 ReturnedAds : Advertisement array } /// A single page-view type PageView = { ClientDateTime : DateTime GmtSeconds : int TargetDomainId : int16 Medium : MediumType option StartPosition : int PageNum : byte [<SqlStringLengthAttribute(256)>] Query : string Gender : Gender option AgeBucket : AgeGroup option ReturnedAdCnt : byte AbTestingType : byte option AlgorithmId : int option ANID : int128 option GUID : int128 option [<SqlStringLengthAttribute(15)>] PassportZipCode : string option [<SqlStringLengthAttribute(2)>] PassportCountry : string option PassportRegion : int [<SqlStringLengthAttribute(2)>] PassportOccupation : char LocationCountry : int LocationState : int LocationMetroArea : int CategoryId : int16 SubCategoryId : int16 FormCode : int16 ReturnedAds : Advertisement array } /// Different types of media type MediumType = | PaidSearch | ContextualSearch /// A single displayed advertisement type Advertisement = { AdId : int OrderItemId : int CampDayId : int16 CampHourNum : byte ProductId : ProductType MatchType : MatchType AdLayoutId : AdLayout RelativePosition : byte DeliveryEngineRank : int16 ActualBid : int ProbabilityOfClick : int16 MatchScore : int ImpressionCnt : int ClickCnt : int ConversionCnt : int TotalCost : int } /// Different types of media type MediumType = | PaidSearch | ContextualSearch /// A single displayed advertisement type Advertisement = { AdId : int OrderItemId : int CampDayId : int16 CampHourNum : byte ProductId : ProductType MatchType : MatchType AdLayoutId : AdLayout RelativePosition : byte DeliveryEngineRank : int16 ActualBid : int ProbabilityOfClick : int16 MatchScore : int ImpressionCnt : int ClickCnt : int ConversionCnt : int TotalCost : int } /// Create the SQL schema let schema = bulkBuild ("cpidssdm18", “Cambridge", “June10") /// Try to open the CSV file and read it pageview by pageview File.OpenTextReader “HourlyRelevanceFeed.csv" |> Seq.map (fun s -> s.Split [|','|]) |> Seq.chunkBy (fun xs -> xs.[0]) |> Seq.iteri (fun i (rguid,xss) -> /// Write the current in-memory bulk to the Sql database if i % 10000 = 0 then schema.Flush () /// Get the strongly typed object from the list of CSV file lines let pageView = PageView.Parse xss /// Insert it pageView |> schema.Insert ) /// One final flush schema.Flush () /// Create the SQL schema let schema = bulkBuild ("cpidssdm18", “Cambridge", “June10") /// Try to open the CSV file and read it pageview by pageview File.OpenTextReader “HourlyRelevanceFeed.csv" |> Seq.map (fun s -> s.Split [|','|]) |> Seq.chunkBy (fun xs -> xs.[0]) |> Seq.iteri (fun i (rguid,xss) -> /// Write the current in-memory bulk to the Sql database if i % 10000 = 0 then schema.Flush () /// Get the strongly typed object from the list of CSV file lines let pageView = PageView.Parse xss /// Insert it pageView |> schema.Insert ) /// One final flush schema.Flush ()
  • 23. Overview  Learning Probabilistic Models  Factor Graphs  Inference in Factor Graphs  Projects  TrueSkill Analysis  Internal adCenter competition  Benefits of F#
  • 24. Overview  Learning Probabilistic Models  Factor Graphs  Inference in Factor Graphs  Projects  TrueSkill Analysis  Internal adCenter competition  Benefits of F#
  • 25. Benefits of F#  Four main reasons: 1. A language that both developers and researchers speak! 2. It leads to 1. “Correct” programs 2. Succinct programs 3. Highly performant code 3. Interoperability with .NET 4. It’s fun to program!