SlideShare a Scribd company logo
Davis-Putnam Procedure
1
Lecture 9
Davis-Putnam Procedure
The Davis-Putnam method is the most efficient
method for deciding the validity of propositional
formulae.
This procedure provides a mechanism for checking
the satisfiability of a set of formulae.
2
the satisfiability of a set of formulae.
It is a proof by refutation method.
The first step of the procedure is to negate the formula to
be proved valid. Then it is converted into conjunctive
normal form.
Next some rules are iterated through until all the
elements of the set are contradictory which means
that the negated formula is unsatisfiable.
Rules
a) If literal l is in a clause but no occurrence of lc
appears in any clause, delete all clauses
containing l.
b) Remove any clause which is subsumed by any
other clause.
3
other clause.
c) If a one literal clause, say l is present, delete all
clauses containing l and remove each occurrence
of lc in any other clause.
d) If (a) or (c) cannot be applied, choose a literal l,
such that l, lc appear in some clauses and replace
the clause set by 2 sets of clauses.
i. The first set formed as in (c ).
ii. The set of clauses with all clauses containing lc removed
and l removed from all remaining.
Example 1
1. p ∨∨∨∨ ¬¬¬¬ q ∨∨∨∨ r
2. ¬¬¬¬ p
3. ¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ r
4. p ∨∨∨∨ q
5. t ∨∨∨∨ q
s
By (c) using (2) obtain
1. ¬¬¬¬ q ∨∨∨∨ r
2. ¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ r
3. q
4. s
4
6. s
By (a) remove 5.
1. p ∨∨∨∨ ¬¬¬¬ q ∨∨∨∨ r
2. ¬¬¬¬ p
3. ¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ r
4. p ∨∨∨∨ q
5. s
By (c) using (3) obtain
1. r
2. ¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ r
3. s
By (c ) using (3) obtain
1. r
2. ¬¬¬¬ r
Example 2
1. p ∨∨∨∨ q
2. p ∨∨∨∨ ¬¬¬¬q
3. ¬¬¬¬ p ∨∨∨∨ r
4. ¬¬¬¬ r ∨∨∨∨ ¬¬¬¬ p
By (d) choosing p.
Instead we
could have
choose q
2nd rule
1. p
2. ¬¬¬¬ p ∨∨∨∨ r
1st rule
1. p
2. ¬¬¬¬ p ∨∨∨∨ r
5
By (d) choosing p.
1st rule
1. r
2. ¬¬¬¬ r
2nd rule
1. q
2. ¬¬¬¬ q
2. ¬¬¬¬ p ∨∨∨∨ r
3. ¬¬¬¬ r ∨∨∨∨ ¬¬¬¬ p
By (c) using (1)
1. r
2. ¬¬¬¬ r
2. ¬¬¬¬ p ∨∨∨∨ r
3. ¬¬¬¬ r ∨∨∨∨ ¬¬¬¬ p
By (c) using
(1)
1. r
2. ¬¬¬¬ r
Exercise
Apply the Davis and Putnam
procedure to the following set of
clauses
6
clauses
1. s
2. ¬p
3. p ∨ q
4. ¬ s ∨ ¬ r
5. p ∨ ¬q ∨ r
Exercise
1. s
2. ¬¬¬¬p
3. p ∨∨∨∨ q
4. ¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ r
5. p ∨∨∨∨ ¬¬¬¬q ∨∨∨∨ r
By (c) using (1)
1. q
2. ¬¬¬¬ r
3. ¬¬¬¬q ∨∨∨∨ r
7
5. p ∨∨∨∨ ¬¬¬¬q ∨∨∨∨ r
By (c) using (1)
1. ¬¬¬¬p
2. p ∨∨∨∨ q
3. ¬¬¬¬ r
4. p ∨∨∨∨ ¬¬¬¬q ∨∨∨∨ r
3. ¬¬¬¬q ∨∨∨∨ r
By (c) using (1)
1. ¬¬¬¬ r
2. r
Exercise
Use the Davis-Putnam procedure to
establish the validity of:
8
1. ((p→ q) ∧ (q→ r)) → ¬ (¬ r ∧ p)
Negate & convert to CNF
((p→ q) ∧ (q→ r)) ∧ ¬¬(¬ r ∧ p)
(¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r ∧ p
9
(¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r ∧ p
1. ¬p ∨ q
2. ¬q ∨ r
3. ¬r
4. p
1. ((p→ q) ∧ (q→ r)) → ¬ (¬ r ∧ p)
By (c) using (3)
1. ¬p ∨ q
2. ¬q
By (c) using (2)
1. ¬p
2. p
10
2. ¬q
3. p
2. p
Since complementary literals have been
derived, the negated formula is unsatisifiable,
thus the original formula is valid.
2. ((p→ q) ∧ (r→ s) ∧ (p ∨ r)) → (q ∨ s)
Negate & convert to CNF
(¬¬¬¬p ∨∨∨∨ q) ∧∧∧∧ (¬¬¬¬r ∨∨∨∨ s) ∧∧∧∧ (p ∨∨∨∨ r) ∧∧∧∧ (¬¬¬¬q ∧∧∧∧ ¬¬¬¬s)
1. ¬¬¬¬p ∨∨∨∨ q
11
1. ¬¬¬¬p ∨∨∨∨ q
2. ¬¬¬¬r ∨∨∨∨ s
3. p ∨∨∨∨ r
4. ¬¬¬¬q
5. ¬¬¬¬s
2. ((p→ q) ∧ (r→ s) ∧ (p ∨ r)) → (q ∨ s)
By (c) using (4)
1. ¬¬¬¬p
2. ¬¬¬¬r ∨∨∨∨ s
3. p ∨∨∨∨ r
By (c) using (2)
1. s
2. ¬¬¬¬s
12
3. p ∨∨∨∨ r
4. ¬¬¬¬s
By (c) using (1)
1. ¬¬¬¬r ∨∨∨∨ s
2. r
3. ¬¬¬¬s
Since
complementary
literals have been
derived, the negated
formula is
unsatisifiable, thus
the original formula
is valid.
3. ¬(p → q) ∨ r ∨ ¬ ((p ∧ ¬ q) ∨ (p ∧ r))
Negate & convert to CNF
(p → q) ∧ ¬r ∧ ¬¬((p ∧ ¬q) ∨ (p ∧ r))
(¬p ∨ q) ∧ ¬r ∧ ((p ∧ ¬q) ∨ (p ∧ r))
13
(¬p ∨ q) ∧ ¬r ∧ ((p ∧ ¬q) ∨ (p ∧ r))
(¬p ∨ q) ∧ ¬r ∧ (p ∧ (¬q ∨ r))
1. ¬p ∨ q
2. ¬r
3. p
4. ¬q ∨ r
3. ¬(p → q) ∨ r ∨ ¬ ((p ∧ ¬ q) ∨ (p ∧ r))
By (c) using (2)
1. ¬p ∨ q
2. p
By (c) using (2)
1. q
2. ¬q
14
2. p
3. ¬q
2. ¬q
Since complementary literals have been
derived, the negated formula is unsatisifiable,
thus the original formula is valid.
4. ((p ∧ ¬ q) ∧ (p ∨ r)) → (q ∧ r)
Negate & convert to CNF
((p ∧ ¬ q) ∧ (p ∨ r)) ∧ (¬q ∨ ¬r)
1. p
15
1. p
2. ¬ q
3. p ∨ r
4. ¬q ∨ ¬r
4. ((p ∧ ¬ q) ∧ (p ∨ r)) → (q ∧ r)
By (a)
1. ¬q
2. ¬q ∨ ¬r
16
2. ¬q ∨ ¬r
By (a)
1. { }
Since complementary literals have not been
derived, the negated formula is satisifiable,
thus the original formula is not valid.
5. ( (p ∧ q) ∨ (r ⇒ s) ) ⇒ ( (p ∨ (r ⇒ s)) ∧ (q ∨ (r ⇒ s) ) )
Negate and Convert to CNF
( (p ∧ q) ∨ (¬r ∨ s) ) ∧ ¬ [ (r ⇒ s) ∨ (p ∧ q) ]
(p ∨ ¬r ∨ s) ∧ (q ∨ ¬r ∨ s) ∧ ¬ [(¬ r ∨ s) ∨ (p ∧ q)]
(p ∨ ¬r ∨ s) ∧ (q ∨ ¬r ∨ s) ∧ r ∧¬ s ∧ (¬p ∨ ¬q)(p ∨ ¬r ∨ s) ∧ (q ∨ ¬r ∨ s) ∧ r ∧¬ s ∧ (¬p ∨ ¬q)
p ∨ ¬r ∨ s
q ∨ ¬r ∨ s
r
¬s
¬p ∨ ¬q
17
By Rule (c) using 3.
p ∨ s
q ∨ s
¬s
By Rule (c) using 1.
q
¬q
5. ( (p ∧ q) ∨ (r ⇒ s) ) ⇒ ( (p ∨ (r ⇒ s)) ∧ (q ∨ (r ⇒ s) ) )
¬s
¬p ∨ ¬q
By Rule (c) using 3.
p
q
¬p ∨ ¬q
Since complementary
literals have been
derived, the negated
formula is
unsatisifiable, thus the
original formula is
valid.
18
[((p ∨ ¬q) ⇒ r) ∧ (s ⇒ (t ∧ u)) ∧ (s ∧ p)] ⇒ (r ∧ t)
Negate and Convert to CNF
[( ¬¬¬¬ (p ∨∨∨∨ ¬¬¬¬q) ∨∨∨∨ r) ∧∧∧∧ (¬¬¬¬s ∨∨∨∨ (t ∧∧∧∧ u)) ∧∧∧∧ (s ∧∧∧∧ p)] ∧∧∧∧ ¬¬¬¬ (r ∧∧∧∧ t)
[ ((¬¬¬¬ p ∧∧∧∧ q) ∨∨∨∨ r) ∧∧∧∧ (¬¬¬¬s ∨∨∨∨ (t ∧∧∧∧ u)) ∧∧∧∧ (s ∧∧∧∧ p)] ∧∧∧∧ ¬¬¬¬ (r ∧∧∧∧ t)
(¬¬¬¬ p ∨∨∨∨ r) ∧∧∧∧ (q ∨∨∨∨ r) ∧∧∧∧ (¬¬¬¬s ∨∨∨∨ t) ∧∧∧∧ (¬¬¬¬s ∨∨∨∨ u) ∧∧∧∧ (s ∧∧∧∧ p) ∧∧∧∧ (¬¬¬¬ r ∨∨∨∨ ¬¬¬¬ t)(¬¬¬¬ p ∨∨∨∨ r) ∧∧∧∧ (q ∨∨∨∨ r) ∧∧∧∧ (¬¬¬¬s ∨∨∨∨ t) ∧∧∧∧ (¬¬¬¬s ∨∨∨∨ u) ∧∧∧∧ (s ∧∧∧∧ p) ∧∧∧∧ (¬¬¬¬ r ∨∨∨∨ ¬¬¬¬ t)
¬¬¬¬ p ∨∨∨∨ r
q ∨∨∨∨ r
¬¬¬¬s ∨∨∨∨ t
¬¬¬¬s ∨∨∨∨ u
s
p
¬¬¬¬r ∨∨∨∨ ¬¬¬¬ t 19

More Related Content

PPTX
Ecuaciones Diferenciales Ordinarias.pptx
PDF
Mobile Robot PD and DOB control
DOCX
labquimica N12 (1).docx
PPTX
Runge Kutta Fehlberg
PPT
Olympic Games of Montreal in 1076
PDF
Distribuição Log Normal - Valor Esperado
PPT
hard v soft power
PPT
Soft Power Presentation
Ecuaciones Diferenciales Ordinarias.pptx
Mobile Robot PD and DOB control
labquimica N12 (1).docx
Runge Kutta Fehlberg
Olympic Games of Montreal in 1076
Distribuição Log Normal - Valor Esperado
hard v soft power
Soft Power Presentation

Viewers also liked (6)

PPTX
Theories of bureaucratic politics ppt
PPTX
Role of bureaucracy in formulation of foreign policy.
PPTX
Theory of sovereignty
PPTX
Foreign Policy and Level of Analysis Problem
PPT
FOREIGN POLICY ANALYSIS
ODP
Foreign policy powerpoint
Theories of bureaucratic politics ppt
Role of bureaucracy in formulation of foreign policy.
Theory of sovereignty
Foreign Policy and Level of Analysis Problem
FOREIGN POLICY ANALYSIS
Foreign policy powerpoint
Ad

Similar to Lecture 09 -_davis_putnam (20)

PDF
Assignment No. 5 on Unit-III Representation of Expression
PDF
Assignment No. 4 on Unit-II Mathematical Logic
PDF
Truth, deduction, computation lecture 9
PDF
PDF
Logic and proof
PDF
unit-3.pdf SRM MATHS DISCREATE MATHS 2024
PDF
[gaNita] 2. Propositional Equivalences [math.fsu.edu].pdf
PPTX
CMSC 56 | Lecture 2: Propositional Equivalences
PPTX
UNIT-III-PPT.pptx
PPTX
Computational logic Propositional Calculus proof system
PDF
Logical equivalence, laws of logic
PDF
Assignment No. 3 on Unit-II Mathematical Logic
PPTX
Unit 4 Propositional logic Discrete Mathematics
PPTX
CNF_Presentation in Discrete Mathamatics.pptx
PDF
Assignment No. 6 on Representation of Expression
PDF
Controllers for 3R Robot
PDF
Truth, deduction, computation; lecture 5
PDF
Formal Logic - Lesson 6 - Switching Circuits
PDF
Quaternionic rigid meromorphic cocycles
DOCX
Discrete Structures
Assignment No. 5 on Unit-III Representation of Expression
Assignment No. 4 on Unit-II Mathematical Logic
Truth, deduction, computation lecture 9
Logic and proof
unit-3.pdf SRM MATHS DISCREATE MATHS 2024
[gaNita] 2. Propositional Equivalences [math.fsu.edu].pdf
CMSC 56 | Lecture 2: Propositional Equivalences
UNIT-III-PPT.pptx
Computational logic Propositional Calculus proof system
Logical equivalence, laws of logic
Assignment No. 3 on Unit-II Mathematical Logic
Unit 4 Propositional logic Discrete Mathematics
CNF_Presentation in Discrete Mathamatics.pptx
Assignment No. 6 on Representation of Expression
Controllers for 3R Robot
Truth, deduction, computation; lecture 5
Formal Logic - Lesson 6 - Switching Circuits
Quaternionic rigid meromorphic cocycles
Discrete Structures
Ad

Recently uploaded (20)

PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
HVAC Specification 2024 according to central public works department
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Practical Manual AGRO-233 Principles and Practices of Natural Farming
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
HVAC Specification 2024 according to central public works department
History, Philosophy and sociology of education (1).pptx
Chinmaya Tiranga quiz Grand Finale.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
AI-driven educational solutions for real-life interventions in the Philippine...
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
LDMMIA Reiki Yoga Finals Review Spring Summer
What if we spent less time fighting change, and more time building what’s rig...
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
FORM 1 BIOLOGY MIND MAPS and their schemes
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين

Lecture 09 -_davis_putnam

  • 1. Davis-Putnam Procedure 1 Lecture 9 Davis-Putnam Procedure The Davis-Putnam method is the most efficient method for deciding the validity of propositional formulae. This procedure provides a mechanism for checking the satisfiability of a set of formulae. 2 the satisfiability of a set of formulae. It is a proof by refutation method. The first step of the procedure is to negate the formula to be proved valid. Then it is converted into conjunctive normal form. Next some rules are iterated through until all the elements of the set are contradictory which means that the negated formula is unsatisfiable. Rules a) If literal l is in a clause but no occurrence of lc appears in any clause, delete all clauses containing l. b) Remove any clause which is subsumed by any other clause. 3 other clause. c) If a one literal clause, say l is present, delete all clauses containing l and remove each occurrence of lc in any other clause. d) If (a) or (c) cannot be applied, choose a literal l, such that l, lc appear in some clauses and replace the clause set by 2 sets of clauses. i. The first set formed as in (c ). ii. The set of clauses with all clauses containing lc removed and l removed from all remaining. Example 1 1. p ∨∨∨∨ ¬¬¬¬ q ∨∨∨∨ r 2. ¬¬¬¬ p 3. ¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ r 4. p ∨∨∨∨ q 5. t ∨∨∨∨ q s By (c) using (2) obtain 1. ¬¬¬¬ q ∨∨∨∨ r 2. ¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ r 3. q 4. s 4 6. s By (a) remove 5. 1. p ∨∨∨∨ ¬¬¬¬ q ∨∨∨∨ r 2. ¬¬¬¬ p 3. ¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ r 4. p ∨∨∨∨ q 5. s By (c) using (3) obtain 1. r 2. ¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ r 3. s By (c ) using (3) obtain 1. r 2. ¬¬¬¬ r
  • 2. Example 2 1. p ∨∨∨∨ q 2. p ∨∨∨∨ ¬¬¬¬q 3. ¬¬¬¬ p ∨∨∨∨ r 4. ¬¬¬¬ r ∨∨∨∨ ¬¬¬¬ p By (d) choosing p. Instead we could have choose q 2nd rule 1. p 2. ¬¬¬¬ p ∨∨∨∨ r 1st rule 1. p 2. ¬¬¬¬ p ∨∨∨∨ r 5 By (d) choosing p. 1st rule 1. r 2. ¬¬¬¬ r 2nd rule 1. q 2. ¬¬¬¬ q 2. ¬¬¬¬ p ∨∨∨∨ r 3. ¬¬¬¬ r ∨∨∨∨ ¬¬¬¬ p By (c) using (1) 1. r 2. ¬¬¬¬ r 2. ¬¬¬¬ p ∨∨∨∨ r 3. ¬¬¬¬ r ∨∨∨∨ ¬¬¬¬ p By (c) using (1) 1. r 2. ¬¬¬¬ r Exercise Apply the Davis and Putnam procedure to the following set of clauses 6 clauses 1. s 2. ¬p 3. p ∨ q 4. ¬ s ∨ ¬ r 5. p ∨ ¬q ∨ r Exercise 1. s 2. ¬¬¬¬p 3. p ∨∨∨∨ q 4. ¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ r 5. p ∨∨∨∨ ¬¬¬¬q ∨∨∨∨ r By (c) using (1) 1. q 2. ¬¬¬¬ r 3. ¬¬¬¬q ∨∨∨∨ r 7 5. p ∨∨∨∨ ¬¬¬¬q ∨∨∨∨ r By (c) using (1) 1. ¬¬¬¬p 2. p ∨∨∨∨ q 3. ¬¬¬¬ r 4. p ∨∨∨∨ ¬¬¬¬q ∨∨∨∨ r 3. ¬¬¬¬q ∨∨∨∨ r By (c) using (1) 1. ¬¬¬¬ r 2. r Exercise Use the Davis-Putnam procedure to establish the validity of: 8
  • 3. 1. ((p→ q) ∧ (q→ r)) → ¬ (¬ r ∧ p) Negate & convert to CNF ((p→ q) ∧ (q→ r)) ∧ ¬¬(¬ r ∧ p) (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r ∧ p 9 (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r ∧ p 1. ¬p ∨ q 2. ¬q ∨ r 3. ¬r 4. p 1. ((p→ q) ∧ (q→ r)) → ¬ (¬ r ∧ p) By (c) using (3) 1. ¬p ∨ q 2. ¬q By (c) using (2) 1. ¬p 2. p 10 2. ¬q 3. p 2. p Since complementary literals have been derived, the negated formula is unsatisifiable, thus the original formula is valid. 2. ((p→ q) ∧ (r→ s) ∧ (p ∨ r)) → (q ∨ s) Negate & convert to CNF (¬¬¬¬p ∨∨∨∨ q) ∧∧∧∧ (¬¬¬¬r ∨∨∨∨ s) ∧∧∧∧ (p ∨∨∨∨ r) ∧∧∧∧ (¬¬¬¬q ∧∧∧∧ ¬¬¬¬s) 1. ¬¬¬¬p ∨∨∨∨ q 11 1. ¬¬¬¬p ∨∨∨∨ q 2. ¬¬¬¬r ∨∨∨∨ s 3. p ∨∨∨∨ r 4. ¬¬¬¬q 5. ¬¬¬¬s 2. ((p→ q) ∧ (r→ s) ∧ (p ∨ r)) → (q ∨ s) By (c) using (4) 1. ¬¬¬¬p 2. ¬¬¬¬r ∨∨∨∨ s 3. p ∨∨∨∨ r By (c) using (2) 1. s 2. ¬¬¬¬s 12 3. p ∨∨∨∨ r 4. ¬¬¬¬s By (c) using (1) 1. ¬¬¬¬r ∨∨∨∨ s 2. r 3. ¬¬¬¬s Since complementary literals have been derived, the negated formula is unsatisifiable, thus the original formula is valid.
  • 4. 3. ¬(p → q) ∨ r ∨ ¬ ((p ∧ ¬ q) ∨ (p ∧ r)) Negate & convert to CNF (p → q) ∧ ¬r ∧ ¬¬((p ∧ ¬q) ∨ (p ∧ r)) (¬p ∨ q) ∧ ¬r ∧ ((p ∧ ¬q) ∨ (p ∧ r)) 13 (¬p ∨ q) ∧ ¬r ∧ ((p ∧ ¬q) ∨ (p ∧ r)) (¬p ∨ q) ∧ ¬r ∧ (p ∧ (¬q ∨ r)) 1. ¬p ∨ q 2. ¬r 3. p 4. ¬q ∨ r 3. ¬(p → q) ∨ r ∨ ¬ ((p ∧ ¬ q) ∨ (p ∧ r)) By (c) using (2) 1. ¬p ∨ q 2. p By (c) using (2) 1. q 2. ¬q 14 2. p 3. ¬q 2. ¬q Since complementary literals have been derived, the negated formula is unsatisifiable, thus the original formula is valid. 4. ((p ∧ ¬ q) ∧ (p ∨ r)) → (q ∧ r) Negate & convert to CNF ((p ∧ ¬ q) ∧ (p ∨ r)) ∧ (¬q ∨ ¬r) 1. p 15 1. p 2. ¬ q 3. p ∨ r 4. ¬q ∨ ¬r 4. ((p ∧ ¬ q) ∧ (p ∨ r)) → (q ∧ r) By (a) 1. ¬q 2. ¬q ∨ ¬r 16 2. ¬q ∨ ¬r By (a) 1. { } Since complementary literals have not been derived, the negated formula is satisifiable, thus the original formula is not valid.
  • 5. 5. ( (p ∧ q) ∨ (r ⇒ s) ) ⇒ ( (p ∨ (r ⇒ s)) ∧ (q ∨ (r ⇒ s) ) ) Negate and Convert to CNF ( (p ∧ q) ∨ (¬r ∨ s) ) ∧ ¬ [ (r ⇒ s) ∨ (p ∧ q) ] (p ∨ ¬r ∨ s) ∧ (q ∨ ¬r ∨ s) ∧ ¬ [(¬ r ∨ s) ∨ (p ∧ q)] (p ∨ ¬r ∨ s) ∧ (q ∨ ¬r ∨ s) ∧ r ∧¬ s ∧ (¬p ∨ ¬q)(p ∨ ¬r ∨ s) ∧ (q ∨ ¬r ∨ s) ∧ r ∧¬ s ∧ (¬p ∨ ¬q) p ∨ ¬r ∨ s q ∨ ¬r ∨ s r ¬s ¬p ∨ ¬q 17 By Rule (c) using 3. p ∨ s q ∨ s ¬s By Rule (c) using 1. q ¬q 5. ( (p ∧ q) ∨ (r ⇒ s) ) ⇒ ( (p ∨ (r ⇒ s)) ∧ (q ∨ (r ⇒ s) ) ) ¬s ¬p ∨ ¬q By Rule (c) using 3. p q ¬p ∨ ¬q Since complementary literals have been derived, the negated formula is unsatisifiable, thus the original formula is valid. 18 [((p ∨ ¬q) ⇒ r) ∧ (s ⇒ (t ∧ u)) ∧ (s ∧ p)] ⇒ (r ∧ t) Negate and Convert to CNF [( ¬¬¬¬ (p ∨∨∨∨ ¬¬¬¬q) ∨∨∨∨ r) ∧∧∧∧ (¬¬¬¬s ∨∨∨∨ (t ∧∧∧∧ u)) ∧∧∧∧ (s ∧∧∧∧ p)] ∧∧∧∧ ¬¬¬¬ (r ∧∧∧∧ t) [ ((¬¬¬¬ p ∧∧∧∧ q) ∨∨∨∨ r) ∧∧∧∧ (¬¬¬¬s ∨∨∨∨ (t ∧∧∧∧ u)) ∧∧∧∧ (s ∧∧∧∧ p)] ∧∧∧∧ ¬¬¬¬ (r ∧∧∧∧ t) (¬¬¬¬ p ∨∨∨∨ r) ∧∧∧∧ (q ∨∨∨∨ r) ∧∧∧∧ (¬¬¬¬s ∨∨∨∨ t) ∧∧∧∧ (¬¬¬¬s ∨∨∨∨ u) ∧∧∧∧ (s ∧∧∧∧ p) ∧∧∧∧ (¬¬¬¬ r ∨∨∨∨ ¬¬¬¬ t)(¬¬¬¬ p ∨∨∨∨ r) ∧∧∧∧ (q ∨∨∨∨ r) ∧∧∧∧ (¬¬¬¬s ∨∨∨∨ t) ∧∧∧∧ (¬¬¬¬s ∨∨∨∨ u) ∧∧∧∧ (s ∧∧∧∧ p) ∧∧∧∧ (¬¬¬¬ r ∨∨∨∨ ¬¬¬¬ t) ¬¬¬¬ p ∨∨∨∨ r q ∨∨∨∨ r ¬¬¬¬s ∨∨∨∨ t ¬¬¬¬s ∨∨∨∨ u s p ¬¬¬¬r ∨∨∨∨ ¬¬¬¬ t 19