Module-3 : Transmission

Lecture-5 (4/5/00)
Marc Moonen
Dept. E.E./ESAT, K.U.Leuven
marc.moonen@esat.kuleuven.ac.be
www.esat.kuleuven.ac.be/sista/~moonen/

Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven/ESAT-SISTA

4/5/00
p. 1
Prelude
Comments on lectures being too fast/technical
* I assume comments are representative for (+/-)whole group
* Audience = always right, so some action needed….
To my own defense :-)
* Want to give an impression/summary of what today’s
transmission techniques are like (`box full of mathematics
& signal processing’, see Lecture-1).
Ex: GSM has channel identification (Lecture-6), Viterbi (Lecture-4),...

* Try & tell the story about the maths, i.o. math. derivation.
* Compare with textbooks, consult with colleagues working in
transmission...
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 2
Prelude
Good news
* New start (I): Will summarize Lectures (1-2-)3-4.
-only 6 formulas* New start (II) : Starting point for Lectures 5-6 is 1 (simple)
input-output model/formula (for Tx+channel+Rx).
* Lectures 3-4-5-6 = basic dig.comms principles, from then
on focus on specific systems, DMT (e.g. ADSL), CDMA
(e.g. 3G mobile), ...

Bad news :
* Some formulas left (transmission without formulas = fraud)
* Need your effort !
* Be specific about the further (math) problems you may have.
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 3
Lecture-5 : Equalization
Problem Statement :
• Optimal receiver structure consists of
* Whitened Matched Filter (WMF) front-end
(= matched filter + symbol-rate sampler + `pre-cursor
equalizer’ filter)
* Maximum Likelihood Sequence Estimator (MLSE),
(instead of simple memory-less decision device)

• Problem: Complexity of Viterbi Algorithm (MLSE)
• Solution: Use equalization filter + memory-less
decision device (instead of MLSE)...
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 4
Lecture-5: Equalization - Overview
• Summary of Lectures (1-2-)3-4
Transmission of 1 symbol :
Matched Filter (MF) front-end

Transmission of a symbol sequence :
Whitened Matched Filter (WMF) front-end & MLSE (Viterbi)

• Zero-forcing Equalization
Linear filters
Decision feedback equalizers

• MMSE Equalization
• Fractionally Spaced Equalizers
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 5
Summary of Lectures (1-2-)3-4
Channel Model:
ak (symbols)

ˆ
ak
h(t)

?

transmitter

+
n(t)
AWGN

channel

...

?
receiver (to be defined)

Continuous-time channel
=Linear filter channel + additive white Gaussian noise (AWGN)
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 6
Summary of Lectures (1-2-)3-4
Transmitter:

r(t)

s(t)

ˆ
ak

ak . Es

p(t)

h(t)

...

transmit
pulse

transmitter

+
n(t)
AWGN

channel

?

receiver (to be defined)

* Constellations (linear modulation):
n bits -> 1 symbol a k (PAM/QAM/PSK/..)
* Transmit filter p(t) :

s(t )

Es .

ak . p(t kTs )
k

Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 7
Summary of Lectures (1-2-)3-4
p(t)

Transmitter:

t

s(t)

Example

ak . Es

t

p(t)
discrete-time
symbol sequence

transmit
pulse

continuous-time
transmit signal

transmitter
-> piecewise constant p(t) (`sample & hold’) gives s(t) with
infinite bandwidth, so not the greatest choice for p(t)..
-> p(t) usually chosen as a (perfect) low-pass filter (e.g. RRC)
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 8
Summary of Lectures (1-2-)3-4
Receiver:
In Lecture-3, a receiver structure was postulated (front-end
filter + symbol-rate sampler + memory-less decision
device). For transmission of 1 symbol, it was found that the
front-end filter should be `matched’ to the received pulse.
a0 . Es

p(t)

h(t)

transmit
pulse

transmitter
Postacademic Course on
Telecommunications

1/Ts

+
n(t)
AWGN

channel
Module-3 Transmission
Lecture-5 Equalization

front-end
filter

u0

ˆ
a0

receiver
Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 9
Summary of Lectures (1-2-)3-4
Receiver: In Lecture-4, optimal receiver design was
based on a minimum distance criterion :

min a0 ,a1 ,...,aK | r (t )
ˆ ˆ
ˆ

ˆ
ak . p' (t kTs ) |2 dt

Es .
k

• Transmitted signal is

• Received signal

s(t )

Es .

ak . p(t kTs )
k

r (t )

Es .

ak . p' (t kTs ) n(t )
k

• p’(t)=p(t)*h(t)=transmitted pulse, filtered by channel
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 10
Summary of Lectures (1-2-)3-4
Receiver: In Lecture-4, it was found that for transmission
of 1 symbol, the receiver structure of Lecture 3 is indeed
optimal !

min a0 u0
ˆ
p’(t)=p(t)*h(t)

sample at t=0

a0 . Es

p(t)

h(t)

transmit
pulse

transmitter
Postacademic Course on
Telecommunications

ˆ
( Es .g 0 ).a0

2

+
n(t)
AWGN

channel
Module-3 Transmission
Lecture-5 Equalization

1/Ts
p’(-t)*
u0
front-end
filter

ˆ
a0

receiver
Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 11
Summary of Lectures (1-2-)3-4
• Receiver: For transmission of a symbol sequence, the
optimal receiver structure is...
K

K

Es .
k 1 l 1

ak . Es

p(t)

h(t)

transmit
pulse

transmitter
Postacademic Course on
Telecommunications

+
n(t)
AWGN

channel
Module-3 Transmission
Lecture-5 Equalization

2

ˆ*
ak .uk

uk

min a0 ,...,aK
ˆ
ˆ

ˆ*
ˆ
ak .g k l .al

K

ˆ
ak

k 1

1/Ts
p’(-t)*
front-end
filter
receiver

sample at t=k.Ts

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 12
Summary of Lectures (1-2-)3-4
Receiver:
• This receiver structure is remarkable, for it is
based on symbol-rate sampling (=usually below
Nyquist-rate sampling), which appears to be
allowable if preceded by a matched-filter front-end.
• Criterion for decision device is too complicated.
Need for a simpler criterion/procedure...

Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 13
Summary of Lectures (1-2-)3-4
Receiver: 1st simplification by insertion of an additional
(magic) filter (after sampler).
* Filter = `pre-cursor equalizer’ (see below)
* Complete front-end = `Whitened matched filter’
K

min a0 ,...,aK
ˆ
ˆ

K

ym
m 1

2

ˆ
ak .hm

k

k 1

uk
ak . Es

p(t)
transmit
pulse

transmitter
Postacademic Course on
Telecommunications

h(t)

+

n(t)
AWGN
channel

1/Ts
p’(-t)*
front-end
filter

Module-3 Transmission
Lecture-5 Equalization

yk

ˆ
ak

1/L*(1/z*)

receiver
Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 14
Summary of Lectures (1-2-)3-4
Receiver: The additional filter is `magic’ in that it turns the
complete transmitter-receiver chain into a simple inputoutput model:

yk

h0 .ak

h1..ak

h2 ..ak

yk

(h0 h1.z 1 h2 .z 2 h3 .z 3 ...).ak


1

2

h3 .ak

3

... wk
wk

H (z)

uk
ak . Es

p(t)
transmit
pulse

h(t)

1/Ts
p’(-t)*
front-end
n(t)
filter

ˆ
ak

+

AWGN
transmitter channel
Postacademic Course on
Telecommunications

yk

Module-3 Transmission
Lecture-5 Equalization

1/L*(1/z*)

receiver
Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 15
Summary of Lectures (1-2-)3-4
Receiver: The additional filter is `magic’ in that it turns the
complete transmitter-receiver chain into a simple inputoutput model:

yk

h0 .ak

h1.ak

1

h2 .ak

2

h3 .ak

3

... wk

wk = additive white Gaussian noise
means interference from future
(`pre-cursor) symbols has been cancelled, hence only
interference from past (`post-cursor’) symbols remains

h1

h

Postacademic Course on
Telecommunications

2

... 0

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 16
Summary of Lectures (1-2-)3-4
Receiver: Based on the input-output model

yk

h0 .ak

h1..ak

h2 ..ak

1

2

h3 .ak

3

... wk

one can compute the transmitted symbol sequence as
K

min a0 ,...,aK
ˆ
ˆ

K

ym
m 1

2

ˆ
ak .hm

k

k 1

A recursive procedure for this = Viterbi Algorithm
Problem = complexity proportional to M^N !
(N=channel-length=number of non-zero taps in H(z) )
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 17
Problem statement (revisited)
• Cheap alternative for MLSE/Viterbi ?
• Solution: equalization filter + memory-less
decision device (`slicer’)
Linear filters
Non-linear filters (decision feedback)
• Complexity : linear in number filter taps
• Performance : with channel coding, approaches
MLSE performance
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 18
Preliminaries (I)
• Our starting point will be the input-output model for
transmitter + channel + receiver whitened matched filter
front-end

yk

h0 .ak

h1.ak

1

h2 .ak

ak

ak
h0

h1

2

h3 .ak
ak

1

h2

2

3

... wk
ak

h3

wk
Postacademic Course on
Telecommunications

3

yk
Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 19
Preliminaries (II)
• PS: z-transform is `shorthand notation’ for discrete-time
signals…

A( z )

ai .z

i

a0 .z

0

a1.z

1

a2 . z

2

....

h0 .z

0

h1.z

1

h2 .z

2

....

i 0

H ( z)

hi .z

i

i 0

…and for input/output behavior of discrete-time systems

yk

h0 .ak

h1.ak

1

h2 .ak

hence
Y ( z ) H ( z ).A( z ) W ( z )
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

2

h3 .ak
A(z )

3

... wk
Y (z )

H(z)
W (z )

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 20
Preliminaries (III)

• PS: if a different receiver front-end is used (e.g. MF
instead of WMF, or …), a similar model holds

yk

~
... h 2 .ak

2

~
h 1.ak

1

~
~
h0 .ak h1.ak

1

~
h2 .ak

2

~
... wk

for which equalizers can be designed in a similar fashion...

Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 21
Preliminaries (IV)
PS: properties/advantages of the WMF front end
• additive noise wk = white (colored in general model)
• H(z) does not have anti-causal taps h 1 h 2 ... 0
pps: anti-causal taps originate, e.g., from transmit filter design (RRC,
etc.). practical implementation based on causal filters + delays...

• H(z) `minimum-phase’ :
1

=`stable’ zeroes, hence (causal) inverse H ( z ) exists &
stable
= energy of the impulse response maximally concentrated
in the early samples
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 22
Preliminaries (V)
yk

h0 .ak

h1.ak 1 h2 .ak 2 h3 .ak 3 ...
 



wk


ISI

NOISE

• `Equalization’: compensate for channel distortion.
Resulting signal fed into memory-less decision device.

• In this Lecture :
- channel distortion model assumed to be known
- no constraints on the complexity of the
equalization filter (number of filter taps)
• Assumptions relaxed in Lecture 6
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 23
Zero-forcing & MMSE Equalizers
yk

h0 .ak

h1.ak 1 h2 .ak 2 h3 .ak 3 ...
 



wk


ISI

NOISE

2 classes :
Zero-forcing (ZF) equalizers
eliminate inter-symbol-interference (ISI) at the
slicer input
Minimum mean-square error (MMSE) equalizers
tradeoff between minimizing ISI and minimizing
noise at the slicer input
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 24
Zero-forcing Equalizers
Zero-forcing Linear Equalizer (LE) :
- equalization filter is inverse of H(z)
- decision device (`slicer’)
C ( z)
A(z )

H 1 ( z)
ˆ
A( z )

Y (z )
C(z)

H(z)

W (z )

• Problem : noise enhancement ( C(z).W(z) large)
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 25
Zero-forcing Equalizers
Zero-forcing Linear Equalizer (LE) :
- ps: under the constraint of zero-ISI at the slicer
input, the LE with whitened matched filter front-end
is optimal in that it minimizes the noise at the slicer
input
- pps: if a different front-end is used, H(z) may have
unstable zeros (non-minimum-phase), hence may
be `difficult’ to invert.
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 26
Zero-forcing Equalizers
Zero-forcing Non-linear Equalizer
Decision Feedback Equalization (DFE) :
- derivation based on `alternative’ inverse of H(z) :
A(z )

ˆ
A( z )

Y (z )

H(z)
W (z )

1-H(z)

(ps: this is possible if H(z) has h0 1
another property of the WMF model)

, which is

- now move slicer inside the feedback loop :
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 27
Zero-forcing Equalizers
A(z )

Y (z )
ˆ
A( z )

H(z)
W (z )

D(z)

D( z ) 1 H ( z )

moving slicer inside the feedback loop has…
- beneficial effect on noise: noise is removed that
would otherwise circulate back through the loop
- beneficial effect on stability of the feedback loop:
output of the slicer is always bounded, hence
feedback loop always stable
Performance intermediate between MLSE and linear equaliz.
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 28
Zero-forcing Equalizers
Decision Feedback equalization (DFE) :
- general DFE structure
C(z): `pre-cursor’ equalizer
(eliminates ISI from future symbols)

D(z): `post-cursor’ equalizer
(eliminates ISI from past symbols)
A(z )

Y (z )

C(z)

H(z)
W (z )
Postacademic Course on
Telecommunications

ˆ
A( z )

Module-3 Transmission
Lecture-5 Equalization

D(z)
Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 29
Zero-forcing Equalizers
Decision Feedback equalization (DFE) :
- Problem : Error propagation
Decision errors at the output of the slicer cause a
corrupted estimate of the postcursor ISI.
Hence a single error causes a reduction of the noise
margin for a number of future decisions.
Results in increased bit-error rate.
A(z )

Y (z )

H(z)
W (z )
Postacademic Course on
Telecommunications

ˆ
A( z )

C(z)

Module-3 Transmission
Lecture-5 Equalization

D(z)
Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 30
Zero-forcing Equalizers
`Figure of merit’
LE

DFE

MLSE

MF

• receiver with higher `figure of merit’ has lower error
probability

•

is `matched filter bound’ (transmission of 1 symbol)
• DFE-performance lower than MLSE-performance, as DFE
relies on only the first channel impulse response sample h0
(eliminating all other hi ‘s), while MLSE uses energy of all
taps hi . DFE benefits from minimum-phase property (cfr.
supra, p.20)
MF

Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 31
MMSE Equalizers

• Zero-forcing equalizers: minimize noise at
slicer input under zero-ISI constraint
• Generalize the criterion of optimality to allow
for residual ISI at the slicer & reduce noise
variance at the slicer
=Minimum mean-square error equalizers

Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 32
MMSE Equalizers
MMSE Linear Equalizer (LE) :
A(z )

ˆ
A( z )

Y (z )
C(z)

H(z)

W (z )

- combined minimization of ISI and noise leads to
1
)
*
z
* 1
S A ( z ).H ( z ).H ( * ) SW ( z )
z
S A ( z ).H * (

C ( z)

Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

1
)
*
z
* 1
H ( z ).H ( * )
z
H *(

Marc Moonen
K.U.Leuven-ESAT/SISTA

2
n

4/5/00
p. 33
MMSE Equalizers
1
)
*
z
* 1
S A ( z ).H ( z ).H ( * ) SW ( z )
z
S A ( z ).H * (

C ( z)

-

1
)
*
z
* 1
H ( z ).H ( * )
z
H *(

2
W

S A (z ) 1

signal power spectrum (normalized)
2
SW ( z )
noise power spectrum (white)
W
1
for zero noise power -> zero-forcing C ( z ) H ( z )
* 1
H ( * ) (in the nominator) is a discrete-time matched filter,
z
often `difficult’ to realize in practice
(stable poles in H(z) introduce anticausal MF)

Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 34
MMSE Equalizers
MMSE Decision Feedback Equalizer :
• MMSE-LE has correlated `slicer errors’
(=difference between slicer in- and output)
• MSE may be further reduced by incorporating a `whitening’
filter (prediction filter) E(z) for the slicer errors
A(z )

Y (z )
ˆ
A( z )

C(z)E(z)

H(z)
W (z )

1-E(z)

• E(z)=1 -> linear equalizer
• Theory & formulas : see textbooks
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 35
Fractionally Spaced Equalizers
Motivation:
• All equalizers (up till now) based on (whitened) matched
filter front-end, i.e. with symbol-rate sampling, preceded by
an (analog) front-end filter matched to the received pulse
p’(t)=p(t)*h(t).
• Symbol-rate sampling = below Nyquist-rate sampling
(aliasing!). Hence matched filter is crucial for performance !
• MF front-end requires analog filter, adapted to channel
h(t), hence difficult to realize...
• A fortiori: what if channel h(t) is unknown ?
• Synchronization problem : correct sampling phase is
crucial for performance !
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 36
Fractionally Spaced Equalizers
• Fractionally spaced equalizers are based on Nyquist-rate
sampling, usually 2 x symbol-rate sampling (if excess
bandwidth < 100%).
• Nyquist-rate sampling also provides sufficient statistics,
hence provides appropriate front-end for optimal receivers.
• Sampler preceded by fixed (i.e. channel independent)
analog anti-aliasing (e.g. ideal low-pass) front-end filter.
• `Matched filter’ is moved to digital domain (after sampler).
• Avoids synchronization problem associated with MF
front-end.
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 37
Fractionally Spaced Equalizers
• Input-output model for fractionally spaced equalization :
`symbol rate’ samples :

yk

~
... h0 .ak

~
h1.ak

1

~
h2 .ak

2

~
... wk

`intermediate’ samples :

yk

1/ 2

~
... h1/ 2 .ak

~
h3/ 2 .ak

1

~
h5 / 2 .ak

2

~
... wk

1/ 2

• may be viewed as 1-input/2-outputs system
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 38
Fractionally Spaced Equalizers
• Discrete-time matched filter + Equalizer (LE) :
1/2Ts

r (t )

F(f)

MF(z)

2

C(z)

ˆ
A( z )

equalizer

• Fractionally spaced equalizer (LE) :
1/2Ts

r (t )

F(f)

C(z)

2

ˆ
A( z )

Fractionally spaced equalizer
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 39
Fractionally Spaced Equalizers

• Fractionally spaced equalizer (DFE):
1/2Ts

r (t )

F(f)

C(z)

ˆ
A( z )

2
D(z)

• Theory & formulas : see textbooks & Lecture 6

Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 40
Conclusions
• Cheaper alternatives to MLSE, based on
equalization filters + memoryless decision
device (slicer)
• Symbol-rate equalizers :
-LE versus DFE
-zero-forcing versus MMSE
-optimal with matched filter front-end, but several
assumptions underlying this structure are often
violated in practice
• Fractionally spaced equalizers (see also Lecture-6)
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 41
Assignment 3.1
• Symbol-rate zero-forcing linear equalizer has

H 1 ( z)

C ( z)

i.e. a finite impulse response (`all-zeroes’) filter

H ( z)

h0

h1.z

1

h2 .z

2

is turned into an infinite impulse response filter

C ( z ) 1 /(h0

1

h1.z

h2 .z 2 )

• Investigate this statement for the case of fractionally spaced
equalization, for a simple channel model

yk
yk

h0 .ak
1/ 2

h1.ak

h1/ 2 .ak

1

h2 .ak

h3 / 2 .ak

1

2

h5 / 2 .ak

2

and discover that there exist finite-impulse response inverses in this
case. This represents a significant advantage in practice. Investigate
the minimal filter length for the zero-forcing equalization filter.
Postacademic Course on
Telecommunications

Module-3 Transmission
Lecture-5 Equalization

Marc Moonen
K.U.Leuven-ESAT/SISTA

4/5/00
p. 42

More Related Content

PPTX
Model checking of time petri nets
PDF
Matlab task1
PDF
7076 chapter5 slides
PDF
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
DOC
Comparitive analysis of bit error rates of multiple input multiple output tra...
PDF
Ff tand matlab-wanjun huang
PDF
A novel delay dictionary design for compressive sensing-based time varying ch...
PPTX
Fourier transforms
Model checking of time petri nets
Matlab task1
7076 chapter5 slides
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
Comparitive analysis of bit error rates of multiple input multiple output tra...
Ff tand matlab-wanjun huang
A novel delay dictionary design for compressive sensing-based time varying ch...
Fourier transforms

What's hot (20)

PDF
Analysis Predicted Location of Harmonic Distortion in RF Upconverter Structure
PDF
Non-Uniform sampling and reconstruction of multi-band signals
PDF
signal and system Lecture 1
PPTX
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
PDF
PPTX
Sampling theorem
PDF
(2013) Rigaud et al. - A parametric model and estimation techniques for the i...
PDF
FK_icassp_2014
PDF
(2012) Rigaud, David, Daudet - Piano Sound Analysis Using Non-negative Matrix...
PDF
(2011) Rigaud, David, Daudet - A Parametric Model of Piano Tuning
PPTX
Digital Communication Unit 1
PDF
(2012) Rigaud, Falaize, David, Daudet - Does Inharmonicity Improve an NMF-Bas...
PDF
Phase Unwrapping
PDF
Elaborato cn
PDF
Blind channel estimation for mimo ofdm systems
PDF
PDF
Introduction to Communication Systems 2
PPTX
Impulse Response ppt
PDF
Rigaud_et_al_WASPAA
PDF
Dft and its applications
Analysis Predicted Location of Harmonic Distortion in RF Upconverter Structure
Non-Uniform sampling and reconstruction of multi-band signals
signal and system Lecture 1
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
Sampling theorem
(2013) Rigaud et al. - A parametric model and estimation techniques for the i...
FK_icassp_2014
(2012) Rigaud, David, Daudet - Piano Sound Analysis Using Non-negative Matrix...
(2011) Rigaud, David, Daudet - A Parametric Model of Piano Tuning
Digital Communication Unit 1
(2012) Rigaud, Falaize, David, Daudet - Does Inharmonicity Improve an NMF-Bas...
Phase Unwrapping
Elaborato cn
Blind channel estimation for mimo ofdm systems
Introduction to Communication Systems 2
Impulse Response ppt
Rigaud_et_al_WASPAA
Dft and its applications
Ad

Viewers also liked (20)

PPT
PPT
Audio led bargraph equalizer
PPT
Td and-fd-mmse-teq
PPT
Seminar 20091023 heydt_presentation
PPT
Bmev3 w mov
PPT
Allaboutequalizers
PPT
01 intro
PPTX
Crowdfunding your invention_ia
PPTX
CR346-Lec00 history
PPT
Ht upload
PPT
Lec16 memoryhier
PPT
PPT
Lecture 04
PPTX
Inventors association of ct april 23 2013
PPT
35 dijkstras alg
PPT
06tcpip
PPT
Lecture5 cuda-memory-spring-2010
PPTX
Fairfield univ lyons internet mktg 110315
PPT
Ch15 transforms
PDF
Themasessie TOPdesk-SCOM-koppeling
Audio led bargraph equalizer
Td and-fd-mmse-teq
Seminar 20091023 heydt_presentation
Bmev3 w mov
Allaboutequalizers
01 intro
Crowdfunding your invention_ia
CR346-Lec00 history
Ht upload
Lec16 memoryhier
Lecture 04
Inventors association of ct april 23 2013
35 dijkstras alg
06tcpip
Lecture5 cuda-memory-spring-2010
Fairfield univ lyons internet mktg 110315
Ch15 transforms
Themasessie TOPdesk-SCOM-koppeling
Ad

Similar to Lecture5 (20)

PPT
lecture5.ppt
PPT
lecture4.ppt
PPT
lecture6.ppt
PPT
lecture3.ppt
PPT
lecture8.ppt
PPT
lecture1.ppt
PPT
lecture10.ppt
PPT
lecture2.ppt
PPT
lecture9.ppt
PPT
Final ppt
PDF
Paper id 22201419
PPTX
Introduction to Modulation and Demodulation.pptx
PDF
Spread spectrum communications and CDMA
PDF
Amplitude modulation (Communication Electronics )
PDF
Orthogonal Frequency Division Multiplexing (OFDM)
PDF
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
PDF
ECE 341- Signal -Lecture 1 electronics.pdf
PPT
Analog communicationintroduction
PDF
Iaetsd a novel scheduling algorithms for mimo based wireless networks
PPT
Introduction to Modulation and Demodulation (1).ppt
lecture5.ppt
lecture4.ppt
lecture6.ppt
lecture3.ppt
lecture8.ppt
lecture1.ppt
lecture10.ppt
lecture2.ppt
lecture9.ppt
Final ppt
Paper id 22201419
Introduction to Modulation and Demodulation.pptx
Spread spectrum communications and CDMA
Amplitude modulation (Communication Electronics )
Orthogonal Frequency Division Multiplexing (OFDM)
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
ECE 341- Signal -Lecture 1 electronics.pdf
Analog communicationintroduction
Iaetsd a novel scheduling algorithms for mimo based wireless networks
Introduction to Modulation and Demodulation (1).ppt

Recently uploaded (20)

PDF
Hybrid model detection and classification of lung cancer
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PPTX
Tartificialntelligence_presentation.pptx
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
A novel scalable deep ensemble learning framework for big data classification...
PPTX
The various Industrial Revolutions .pptx
PPTX
Web Crawler for Trend Tracking Gen Z Insights.pptx
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PPTX
Benefits of Physical activity for teenagers.pptx
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
Getting Started with Data Integration: FME Form 101
PDF
A review of recent deep learning applications in wood surface defect identifi...
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
DP Operators-handbook-extract for the Mautical Institute
PPT
What is a Computer? Input Devices /output devices
Hybrid model detection and classification of lung cancer
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
Tartificialntelligence_presentation.pptx
O2C Customer Invoices to Receipt V15A.pptx
Hindi spoken digit analysis for native and non-native speakers
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
A novel scalable deep ensemble learning framework for big data classification...
The various Industrial Revolutions .pptx
Web Crawler for Trend Tracking Gen Z Insights.pptx
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Benefits of Physical activity for teenagers.pptx
Assigned Numbers - 2025 - Bluetooth® Document
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Getting Started with Data Integration: FME Form 101
A review of recent deep learning applications in wood surface defect identifi...
Module 1.ppt Iot fundamentals and Architecture
DP Operators-handbook-extract for the Mautical Institute
What is a Computer? Input Devices /output devices

Lecture5

  • 1. Module-3 : Transmission Lecture-5 (4/5/00) Marc Moonen Dept. E.E./ESAT, K.U.Leuven marc.moonen@esat.kuleuven.ac.be www.esat.kuleuven.ac.be/sista/~moonen/ Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven/ESAT-SISTA 4/5/00 p. 1
  • 2. Prelude Comments on lectures being too fast/technical * I assume comments are representative for (+/-)whole group * Audience = always right, so some action needed…. To my own defense :-) * Want to give an impression/summary of what today’s transmission techniques are like (`box full of mathematics & signal processing’, see Lecture-1). Ex: GSM has channel identification (Lecture-6), Viterbi (Lecture-4),... * Try & tell the story about the maths, i.o. math. derivation. * Compare with textbooks, consult with colleagues working in transmission... Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 2
  • 3. Prelude Good news * New start (I): Will summarize Lectures (1-2-)3-4. -only 6 formulas* New start (II) : Starting point for Lectures 5-6 is 1 (simple) input-output model/formula (for Tx+channel+Rx). * Lectures 3-4-5-6 = basic dig.comms principles, from then on focus on specific systems, DMT (e.g. ADSL), CDMA (e.g. 3G mobile), ... Bad news : * Some formulas left (transmission without formulas = fraud) * Need your effort ! * Be specific about the further (math) problems you may have. Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 3
  • 4. Lecture-5 : Equalization Problem Statement : • Optimal receiver structure consists of * Whitened Matched Filter (WMF) front-end (= matched filter + symbol-rate sampler + `pre-cursor equalizer’ filter) * Maximum Likelihood Sequence Estimator (MLSE), (instead of simple memory-less decision device) • Problem: Complexity of Viterbi Algorithm (MLSE) • Solution: Use equalization filter + memory-less decision device (instead of MLSE)... Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 4
  • 5. Lecture-5: Equalization - Overview • Summary of Lectures (1-2-)3-4 Transmission of 1 symbol : Matched Filter (MF) front-end Transmission of a symbol sequence : Whitened Matched Filter (WMF) front-end & MLSE (Viterbi) • Zero-forcing Equalization Linear filters Decision feedback equalizers • MMSE Equalization • Fractionally Spaced Equalizers Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 5
  • 6. Summary of Lectures (1-2-)3-4 Channel Model: ak (symbols) ˆ ak h(t) ? transmitter + n(t) AWGN channel ... ? receiver (to be defined) Continuous-time channel =Linear filter channel + additive white Gaussian noise (AWGN) Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 6
  • 7. Summary of Lectures (1-2-)3-4 Transmitter: r(t) s(t) ˆ ak ak . Es p(t) h(t) ... transmit pulse transmitter + n(t) AWGN channel ? receiver (to be defined) * Constellations (linear modulation): n bits -> 1 symbol a k (PAM/QAM/PSK/..) * Transmit filter p(t) : s(t ) Es . ak . p(t kTs ) k Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 7
  • 8. Summary of Lectures (1-2-)3-4 p(t) Transmitter: t s(t) Example ak . Es t p(t) discrete-time symbol sequence transmit pulse continuous-time transmit signal transmitter -> piecewise constant p(t) (`sample & hold’) gives s(t) with infinite bandwidth, so not the greatest choice for p(t).. -> p(t) usually chosen as a (perfect) low-pass filter (e.g. RRC) Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 8
  • 9. Summary of Lectures (1-2-)3-4 Receiver: In Lecture-3, a receiver structure was postulated (front-end filter + symbol-rate sampler + memory-less decision device). For transmission of 1 symbol, it was found that the front-end filter should be `matched’ to the received pulse. a0 . Es p(t) h(t) transmit pulse transmitter Postacademic Course on Telecommunications 1/Ts + n(t) AWGN channel Module-3 Transmission Lecture-5 Equalization front-end filter u0 ˆ a0 receiver Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 9
  • 10. Summary of Lectures (1-2-)3-4 Receiver: In Lecture-4, optimal receiver design was based on a minimum distance criterion : min a0 ,a1 ,...,aK | r (t ) ˆ ˆ ˆ ˆ ak . p' (t kTs ) |2 dt Es . k • Transmitted signal is • Received signal s(t ) Es . ak . p(t kTs ) k r (t ) Es . ak . p' (t kTs ) n(t ) k • p’(t)=p(t)*h(t)=transmitted pulse, filtered by channel Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 10
  • 11. Summary of Lectures (1-2-)3-4 Receiver: In Lecture-4, it was found that for transmission of 1 symbol, the receiver structure of Lecture 3 is indeed optimal ! min a0 u0 ˆ p’(t)=p(t)*h(t) sample at t=0 a0 . Es p(t) h(t) transmit pulse transmitter Postacademic Course on Telecommunications ˆ ( Es .g 0 ).a0 2 + n(t) AWGN channel Module-3 Transmission Lecture-5 Equalization 1/Ts p’(-t)* u0 front-end filter ˆ a0 receiver Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 11
  • 12. Summary of Lectures (1-2-)3-4 • Receiver: For transmission of a symbol sequence, the optimal receiver structure is... K K Es . k 1 l 1 ak . Es p(t) h(t) transmit pulse transmitter Postacademic Course on Telecommunications + n(t) AWGN channel Module-3 Transmission Lecture-5 Equalization 2 ˆ* ak .uk uk min a0 ,...,aK ˆ ˆ ˆ* ˆ ak .g k l .al K ˆ ak k 1 1/Ts p’(-t)* front-end filter receiver sample at t=k.Ts Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 12
  • 13. Summary of Lectures (1-2-)3-4 Receiver: • This receiver structure is remarkable, for it is based on symbol-rate sampling (=usually below Nyquist-rate sampling), which appears to be allowable if preceded by a matched-filter front-end. • Criterion for decision device is too complicated. Need for a simpler criterion/procedure... Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 13
  • 14. Summary of Lectures (1-2-)3-4 Receiver: 1st simplification by insertion of an additional (magic) filter (after sampler). * Filter = `pre-cursor equalizer’ (see below) * Complete front-end = `Whitened matched filter’ K min a0 ,...,aK ˆ ˆ K ym m 1 2 ˆ ak .hm k k 1 uk ak . Es p(t) transmit pulse transmitter Postacademic Course on Telecommunications h(t) + n(t) AWGN channel 1/Ts p’(-t)* front-end filter Module-3 Transmission Lecture-5 Equalization yk ˆ ak 1/L*(1/z*) receiver Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 14
  • 15. Summary of Lectures (1-2-)3-4 Receiver: The additional filter is `magic’ in that it turns the complete transmitter-receiver chain into a simple inputoutput model: yk h0 .ak h1..ak h2 ..ak yk (h0 h1.z 1 h2 .z 2 h3 .z 3 ...).ak  1 2 h3 .ak 3 ... wk wk H (z) uk ak . Es p(t) transmit pulse h(t) 1/Ts p’(-t)* front-end n(t) filter ˆ ak + AWGN transmitter channel Postacademic Course on Telecommunications yk Module-3 Transmission Lecture-5 Equalization 1/L*(1/z*) receiver Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 15
  • 16. Summary of Lectures (1-2-)3-4 Receiver: The additional filter is `magic’ in that it turns the complete transmitter-receiver chain into a simple inputoutput model: yk h0 .ak h1.ak 1 h2 .ak 2 h3 .ak 3 ... wk wk = additive white Gaussian noise means interference from future (`pre-cursor) symbols has been cancelled, hence only interference from past (`post-cursor’) symbols remains h1 h Postacademic Course on Telecommunications 2 ... 0 Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 16
  • 17. Summary of Lectures (1-2-)3-4 Receiver: Based on the input-output model yk h0 .ak h1..ak h2 ..ak 1 2 h3 .ak 3 ... wk one can compute the transmitted symbol sequence as K min a0 ,...,aK ˆ ˆ K ym m 1 2 ˆ ak .hm k k 1 A recursive procedure for this = Viterbi Algorithm Problem = complexity proportional to M^N ! (N=channel-length=number of non-zero taps in H(z) ) Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 17
  • 18. Problem statement (revisited) • Cheap alternative for MLSE/Viterbi ? • Solution: equalization filter + memory-less decision device (`slicer’) Linear filters Non-linear filters (decision feedback) • Complexity : linear in number filter taps • Performance : with channel coding, approaches MLSE performance Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 18
  • 19. Preliminaries (I) • Our starting point will be the input-output model for transmitter + channel + receiver whitened matched filter front-end yk h0 .ak h1.ak 1 h2 .ak ak ak h0 h1 2 h3 .ak ak 1 h2 2 3 ... wk ak h3 wk Postacademic Course on Telecommunications 3 yk Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 19
  • 20. Preliminaries (II) • PS: z-transform is `shorthand notation’ for discrete-time signals… A( z ) ai .z i a0 .z 0 a1.z 1 a2 . z 2 .... h0 .z 0 h1.z 1 h2 .z 2 .... i 0 H ( z) hi .z i i 0 …and for input/output behavior of discrete-time systems yk h0 .ak h1.ak 1 h2 .ak hence Y ( z ) H ( z ).A( z ) W ( z ) Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization 2 h3 .ak A(z ) 3 ... wk Y (z ) H(z) W (z ) Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 20
  • 21. Preliminaries (III) • PS: if a different receiver front-end is used (e.g. MF instead of WMF, or …), a similar model holds yk ~ ... h 2 .ak 2 ~ h 1.ak 1 ~ ~ h0 .ak h1.ak 1 ~ h2 .ak 2 ~ ... wk for which equalizers can be designed in a similar fashion... Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 21
  • 22. Preliminaries (IV) PS: properties/advantages of the WMF front end • additive noise wk = white (colored in general model) • H(z) does not have anti-causal taps h 1 h 2 ... 0 pps: anti-causal taps originate, e.g., from transmit filter design (RRC, etc.). practical implementation based on causal filters + delays... • H(z) `minimum-phase’ : 1 =`stable’ zeroes, hence (causal) inverse H ( z ) exists & stable = energy of the impulse response maximally concentrated in the early samples Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 22
  • 23. Preliminaries (V) yk h0 .ak h1.ak 1 h2 .ak 2 h3 .ak 3 ...     wk  ISI NOISE • `Equalization’: compensate for channel distortion. Resulting signal fed into memory-less decision device. • In this Lecture : - channel distortion model assumed to be known - no constraints on the complexity of the equalization filter (number of filter taps) • Assumptions relaxed in Lecture 6 Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 23
  • 24. Zero-forcing & MMSE Equalizers yk h0 .ak h1.ak 1 h2 .ak 2 h3 .ak 3 ...     wk  ISI NOISE 2 classes : Zero-forcing (ZF) equalizers eliminate inter-symbol-interference (ISI) at the slicer input Minimum mean-square error (MMSE) equalizers tradeoff between minimizing ISI and minimizing noise at the slicer input Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 24
  • 25. Zero-forcing Equalizers Zero-forcing Linear Equalizer (LE) : - equalization filter is inverse of H(z) - decision device (`slicer’) C ( z) A(z ) H 1 ( z) ˆ A( z ) Y (z ) C(z) H(z) W (z ) • Problem : noise enhancement ( C(z).W(z) large) Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 25
  • 26. Zero-forcing Equalizers Zero-forcing Linear Equalizer (LE) : - ps: under the constraint of zero-ISI at the slicer input, the LE with whitened matched filter front-end is optimal in that it minimizes the noise at the slicer input - pps: if a different front-end is used, H(z) may have unstable zeros (non-minimum-phase), hence may be `difficult’ to invert. Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 26
  • 27. Zero-forcing Equalizers Zero-forcing Non-linear Equalizer Decision Feedback Equalization (DFE) : - derivation based on `alternative’ inverse of H(z) : A(z ) ˆ A( z ) Y (z ) H(z) W (z ) 1-H(z) (ps: this is possible if H(z) has h0 1 another property of the WMF model) , which is - now move slicer inside the feedback loop : Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 27
  • 28. Zero-forcing Equalizers A(z ) Y (z ) ˆ A( z ) H(z) W (z ) D(z) D( z ) 1 H ( z ) moving slicer inside the feedback loop has… - beneficial effect on noise: noise is removed that would otherwise circulate back through the loop - beneficial effect on stability of the feedback loop: output of the slicer is always bounded, hence feedback loop always stable Performance intermediate between MLSE and linear equaliz. Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 28
  • 29. Zero-forcing Equalizers Decision Feedback equalization (DFE) : - general DFE structure C(z): `pre-cursor’ equalizer (eliminates ISI from future symbols) D(z): `post-cursor’ equalizer (eliminates ISI from past symbols) A(z ) Y (z ) C(z) H(z) W (z ) Postacademic Course on Telecommunications ˆ A( z ) Module-3 Transmission Lecture-5 Equalization D(z) Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 29
  • 30. Zero-forcing Equalizers Decision Feedback equalization (DFE) : - Problem : Error propagation Decision errors at the output of the slicer cause a corrupted estimate of the postcursor ISI. Hence a single error causes a reduction of the noise margin for a number of future decisions. Results in increased bit-error rate. A(z ) Y (z ) H(z) W (z ) Postacademic Course on Telecommunications ˆ A( z ) C(z) Module-3 Transmission Lecture-5 Equalization D(z) Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 30
  • 31. Zero-forcing Equalizers `Figure of merit’ LE DFE MLSE MF • receiver with higher `figure of merit’ has lower error probability • is `matched filter bound’ (transmission of 1 symbol) • DFE-performance lower than MLSE-performance, as DFE relies on only the first channel impulse response sample h0 (eliminating all other hi ‘s), while MLSE uses energy of all taps hi . DFE benefits from minimum-phase property (cfr. supra, p.20) MF Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 31
  • 32. MMSE Equalizers • Zero-forcing equalizers: minimize noise at slicer input under zero-ISI constraint • Generalize the criterion of optimality to allow for residual ISI at the slicer & reduce noise variance at the slicer =Minimum mean-square error equalizers Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 32
  • 33. MMSE Equalizers MMSE Linear Equalizer (LE) : A(z ) ˆ A( z ) Y (z ) C(z) H(z) W (z ) - combined minimization of ISI and noise leads to 1 ) * z * 1 S A ( z ).H ( z ).H ( * ) SW ( z ) z S A ( z ).H * ( C ( z) Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization 1 ) * z * 1 H ( z ).H ( * ) z H *( Marc Moonen K.U.Leuven-ESAT/SISTA 2 n 4/5/00 p. 33
  • 34. MMSE Equalizers 1 ) * z * 1 S A ( z ).H ( z ).H ( * ) SW ( z ) z S A ( z ).H * ( C ( z) - 1 ) * z * 1 H ( z ).H ( * ) z H *( 2 W S A (z ) 1 signal power spectrum (normalized) 2 SW ( z ) noise power spectrum (white) W 1 for zero noise power -> zero-forcing C ( z ) H ( z ) * 1 H ( * ) (in the nominator) is a discrete-time matched filter, z often `difficult’ to realize in practice (stable poles in H(z) introduce anticausal MF) Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 34
  • 35. MMSE Equalizers MMSE Decision Feedback Equalizer : • MMSE-LE has correlated `slicer errors’ (=difference between slicer in- and output) • MSE may be further reduced by incorporating a `whitening’ filter (prediction filter) E(z) for the slicer errors A(z ) Y (z ) ˆ A( z ) C(z)E(z) H(z) W (z ) 1-E(z) • E(z)=1 -> linear equalizer • Theory & formulas : see textbooks Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 35
  • 36. Fractionally Spaced Equalizers Motivation: • All equalizers (up till now) based on (whitened) matched filter front-end, i.e. with symbol-rate sampling, preceded by an (analog) front-end filter matched to the received pulse p’(t)=p(t)*h(t). • Symbol-rate sampling = below Nyquist-rate sampling (aliasing!). Hence matched filter is crucial for performance ! • MF front-end requires analog filter, adapted to channel h(t), hence difficult to realize... • A fortiori: what if channel h(t) is unknown ? • Synchronization problem : correct sampling phase is crucial for performance ! Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 36
  • 37. Fractionally Spaced Equalizers • Fractionally spaced equalizers are based on Nyquist-rate sampling, usually 2 x symbol-rate sampling (if excess bandwidth < 100%). • Nyquist-rate sampling also provides sufficient statistics, hence provides appropriate front-end for optimal receivers. • Sampler preceded by fixed (i.e. channel independent) analog anti-aliasing (e.g. ideal low-pass) front-end filter. • `Matched filter’ is moved to digital domain (after sampler). • Avoids synchronization problem associated with MF front-end. Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 37
  • 38. Fractionally Spaced Equalizers • Input-output model for fractionally spaced equalization : `symbol rate’ samples : yk ~ ... h0 .ak ~ h1.ak 1 ~ h2 .ak 2 ~ ... wk `intermediate’ samples : yk 1/ 2 ~ ... h1/ 2 .ak ~ h3/ 2 .ak 1 ~ h5 / 2 .ak 2 ~ ... wk 1/ 2 • may be viewed as 1-input/2-outputs system Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 38
  • 39. Fractionally Spaced Equalizers • Discrete-time matched filter + Equalizer (LE) : 1/2Ts r (t ) F(f) MF(z) 2 C(z) ˆ A( z ) equalizer • Fractionally spaced equalizer (LE) : 1/2Ts r (t ) F(f) C(z) 2 ˆ A( z ) Fractionally spaced equalizer Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 39
  • 40. Fractionally Spaced Equalizers • Fractionally spaced equalizer (DFE): 1/2Ts r (t ) F(f) C(z) ˆ A( z ) 2 D(z) • Theory & formulas : see textbooks & Lecture 6 Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 40
  • 41. Conclusions • Cheaper alternatives to MLSE, based on equalization filters + memoryless decision device (slicer) • Symbol-rate equalizers : -LE versus DFE -zero-forcing versus MMSE -optimal with matched filter front-end, but several assumptions underlying this structure are often violated in practice • Fractionally spaced equalizers (see also Lecture-6) Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 41
  • 42. Assignment 3.1 • Symbol-rate zero-forcing linear equalizer has H 1 ( z) C ( z) i.e. a finite impulse response (`all-zeroes’) filter H ( z) h0 h1.z 1 h2 .z 2 is turned into an infinite impulse response filter C ( z ) 1 /(h0 1 h1.z h2 .z 2 ) • Investigate this statement for the case of fractionally spaced equalization, for a simple channel model yk yk h0 .ak 1/ 2 h1.ak h1/ 2 .ak 1 h2 .ak h3 / 2 .ak 1 2 h5 / 2 .ak 2 and discover that there exist finite-impulse response inverses in this case. This represents a significant advantage in practice. Investigate the minimal filter length for the zero-forcing equalization filter. Postacademic Course on Telecommunications Module-3 Transmission Lecture-5 Equalization Marc Moonen K.U.Leuven-ESAT/SISTA 4/5/00 p. 42