SlideShare a Scribd company logo
Overview	
  of	
  the	
  NLP-­‐TEA	
  2015	
  Shared	
  Task	
  
for	
  Chinese	
  Gramma@cal	
  Error	
  Diagnosis
Lung-­‐Hao	
  Lee,	
  Na%onal	
  Taiwan	
  Normal	
  University	
  
Liang-­‐Chih	
  Yu,	
  Yuan	
  Ze	
  University	
  
Li-­‐Ping	
  Chang,	
  Na%onal	
  Taiwan	
  Normal	
  University	
  
	
  
Introduc%on
•  The	
   NLP-­‐TEA	
   2015	
   shared	
   task	
   features	
   a	
  
Chinese	
   Gramma%cal	
   Error	
   Diagnosis	
   (CGED)	
  
task,	
  providing	
  an	
  evalua%on	
  plaMorm	
  for	
  the	
  
development	
   and	
   implementa%on	
   of	
   NLP	
  
tools	
  for	
  computer-­‐assisted	
  Chinese	
  learning	
  
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 2
Shared	
  Task	
  Descrip%on
•  The	
   developed	
   tool	
   is	
   expected	
   to	
   iden%fy	
   the	
   error	
  
types	
  and	
  its	
  posi%on	
  at	
  which	
  it	
  occurs	
  in	
  the	
  sentence	
  
•  Four	
   PADS	
   error	
   types	
   are	
   included	
   in	
   the	
   target	
  
modifica%on	
  taxonomy	
  
–  Mis-­‐Ordering	
  (Permuta%on)	
  
–  Redundancy	
  (Addi%on)	
  
–  Omission	
  (Dele%on)	
  
–  Mis-­‐Selec%on	
  (Subs%tu%on)	
  
•  For	
  the	
  sake	
  of	
  simplicity,	
  the	
  input	
  sentence	
  is	
  selected	
  
to	
  contain	
  one	
  defined	
  error	
  types	
  
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 3
Tes%ng	
  Examples	
  
•  Example	
  1	
  
Input:	
  (sid=B2-­‐0080) 	
  他是我的以前的室友	
  
Output:	
  B2-­‐0080,	
  4,	
  4,	
  	
  Redundant
•  Example	
  2	
  
Input:	
  (sid=A2-­‐0017) 	
  那電影是機器人的故事	
  
Output:	
  A2-­‐0017,	
  2,	
  2,	
  Missing
•  Example	
  3	
  
Input:	
  (sid=A2-­‐0017) 	
  那部電影是機器人的故事	
  
Output:	
  A2-­‐0017,	
  Correct	
  
•  Example	
  4	
  
Input:	
  (sid=B1-­‐1193) 	
  吳先生是修理腳踏車的拿手	
  
Output:	
  B1-­‐1193,	
  11,	
  12,	
  	
  Selec%on
•  Example	
  5	
  
Input:	
  (sid=B2-­‐2292)	
  	
  所以我不會讓失望她	
  
Output:	
  B2-­‐2292,	
  7,	
  9,	
  Disorder	
  
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 4
Data	
  Prepara%on
•  The	
  essay	
  sec%on	
  of	
  the	
  computer-­‐based	
  Test	
  
of	
  Chinese	
  as	
  a	
  Foreign	
  Language	
  (TOCFL)	
  
•  Na%ve	
   Chinese	
   speakers	
   were	
   trained	
   to	
  
manually	
   annotate	
   gramma%cal	
   errors	
   and	
  
provide	
   correc%ons	
   corresponding	
   to	
   each	
  
error	
  
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 5
Training	
  Set
•  This	
  set	
  included	
  2,205	
  selected	
  sentences	
  
•  Error	
   types	
   were	
   categorized	
   as	
   redundant	
   (430	
  
instances),	
   missing	
   (620),	
   selec%on	
   (849),	
   and	
  
disorder	
  (306)	
  
•  Each	
  sentence	
  is	
  represented	
  in	
  SGML	
  format	
  
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 6
Dryrun	
  Set
•  A	
   total	
   of	
   55	
   sentences	
   were	
   given	
   to	
  
par%cipants	
  to	
  familiarize	
  themselves	
  with	
  the	
  
final	
  tes%ng	
  process.	
  	
  
•  The	
  purpose	
  is	
  output	
  format	
  valida%on	
  only	
  
•  No	
   macer	
   which	
   performance	
   can	
   be	
  
achieved	
   that	
   will	
   not	
   be	
   included	
   in	
   our	
  
official	
  evalua%on.	
  
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 7
Test	
  Set
•  This	
  set	
  consists	
  of	
  1,000	
  tes%ng	
  sentences	
  
•  Half	
   of	
   these	
   sentences	
   contained	
   no	
  
gramma%cal	
   errors,	
   while	
   the	
   other	
   half	
  
included	
   a	
   single	
   defined	
   gramma%cal	
   error:	
  
redundant	
   (132	
   instances),	
   missing	
   (126),	
  
selec%on	
  (110),	
  and	
  disorder	
  (132)	
  	
  
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 8
Performance	
  Metrics
•  Correctness	
  is	
  determined	
  at	
  three	
  levels	
  
– Detec%on-­‐level	
  	
  
– Iden%fica%on-­‐level	
  
– Posi%on-­‐level	
  
•  Metrics	
  
– False	
  posi%ve	
  rate	
  (FPR)	
  =	
  FP	
  /	
  (FP+TP)	
  
– Accuracy	
  =	
  (TP+TN)	
  /	
  (TP+FP+TN+FN)	
  
– Precision	
  =	
  TP	
  /	
  (TP+FP)	
  
– Recall	
  =	
  TP	
  /	
  (TP+FN)	
  
– F1	
  =	
  2	
  *	
  Precision	
  *	
  Recall	
  /	
  (Precision+Recall)	
  
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 9
Evalua%on	
  Examples	
  
•  FPR	
  =	
  0.5	
  
•  Detec%on-­‐level	
  	
  Acc.	
  =	
  0.75,	
  Pre.=0.67,	
  Rec.=1,	
  	
  F1=0.8	
  
•  Correc%on-­‐level	
  Acc.	
  =	
  0.625,	
  Pre.=0.5,	
  Rec.=0.75,	
  	
  F1=0.6	
  
•  Posi%on-­‐level	
  Acc.	
  =	
  0.5,	
  Pre.=0.33,	
  Rec.=0.5,	
  	
  F1=0.4	
  
	
  
•  System	
  Results	
  
“B1-­‐1138,	
   7,	
   8,	
   Disorder”,	
   “A2-­‐0087,	
   12,	
   13,	
   Missing”,	
   “A2-­‐0904,	
   5,	
   6,	
  
Missing”,	
   “B1-­‐0990,	
   correct”,	
   “A2-­‐0789,	
   2,	
   5,	
   Disorder”,	
   “B1-­‐0295,	
  
correct”,	
  “B2-­‐0591,	
  3,	
  3,	
  Redundant”	
  and	
  “A2-­‐0920,	
  4,	
  5,	
  Selec%on”	
  	
  
•  Gold	
  Standard	
  
“B1-­‐1138,	
   7,	
   10,	
   Disorder”,	
   “A2-­‐0087,	
   12,	
   13,	
   Missing”,	
   “A2-­‐0904,	
  
correct”,	
   “B1-­‐0990,	
   correct”,	
   “A2-­‐0789,	
   2,	
   3,	
   Selec%on”,	
   “B1-­‐0295,	
  
correct”,	
  “B2-­‐0591,	
  3,	
  3,	
  Redundant”	
  and	
  “A2-­‐0920,	
  correct”	
  	
  
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 10
13	
  Par%cipants	
  and	
  18	
  Submiced	
  Runs
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 11
Tes%ng	
  Results
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 12
Summary
•  It	
   is	
   a	
   really	
   difficult	
   task	
   to	
   develop	
   the	
  
computer-­‐assisted	
  Chinese	
  learning	
  tool,	
  since	
  
there	
   are	
   only	
   target	
   sentences	
   without	
   the	
  
help	
  of	
  their	
  context	
  
•  None	
   of	
   the	
   submiced	
   systems	
   provided	
  
superior	
   performance.	
   In	
   general,	
   this	
  
research	
  problem	
  s%ll	
  has	
  long	
  way	
  to	
  go.	
  
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 13
Conclusions
•  All	
   submissions	
   contribute	
   to	
   the	
   common	
  
effort	
   to	
   produce	
   an	
   effec%ve	
   Chinese	
  
gramma%cal	
  diagnosis	
  tool	
  	
  
•  The	
   individual	
   reports	
   in	
   the	
   shared	
   task	
  
proceedings	
   provide	
   useful	
   insight	
   into	
  
Chinese	
  language	
  processing	
  	
  
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 14
Future	
  Work
•  NLP-­‐TEA-­‐3	
  Workshop	
  in	
  COLING	
  2016	
  
– To	
  be	
  bided	
  	
  
– Osaka,	
  Japan	
  
•  The	
  Shared	
  Task	
  
– Chinese	
  Gramma%cal	
  Error	
  Diagnosis	
  
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 15
Acknowledgments
•  Ministry	
  of	
  Educa%on,	
  Taiwan	
  
– Aim	
  for	
  the	
  Top	
  University	
  Project	
  
– Center	
  of	
  Learning	
  Technology	
  for	
  Chinese,	
  NTNU	
  
– Innova%ve	
  Center	
  for	
  Big	
  Data	
  and	
  Digital	
  
Convergence,	
  YZU	
  
•  Ministry	
  of	
  Science	
  and	
  Technology,	
  Taiwan	
  
– Interna%onal	
  Research-­‐Intensive	
  Center	
  of	
  
Excellence	
  Program	
  
– Grant	
  no.:	
  MOST	
  104-­‐2911-­‐I-­‐003-­‐301
SIGHAN	
  2015	
  @	
  Beijing,	
  China
 16
THANK	
  YOU
•  All	
   data	
   sets	
   with	
   gold	
   standards	
   and	
  
evalua%on	
   tool	
   are	
   publicly	
   available	
   for	
  
research	
  purposes	
  at	
  
	
  	
  	
  
hcp://ir.itc.ntnu.edu.tw/lre/nlptea15cged.htm
NLP-­‐TEA	
  2015	
  @	
  Beijing,	
  China
 17

More Related Content

PDF
Smart like a Fox: How clever students trick dumb programming assignment asses...
PPTX
Multi-method Evaluation in Scientific Paper Recommender Systems
PDF
Empirical Methods in Software Engineering - an Overview
PDF
Diversity Maximization Speedup for Fault Localization
PDF
What machine translation developers are doing to make post-editors happy
PDF
Wcre13a.ppt
PDF
Improving Translator Productivity with MT: A Patent Translation Case Study
PDF
Ssbse12b.ppt
Smart like a Fox: How clever students trick dumb programming assignment asses...
Multi-method Evaluation in Scientific Paper Recommender Systems
Empirical Methods in Software Engineering - an Overview
Diversity Maximization Speedup for Fault Localization
What machine translation developers are doing to make post-editors happy
Wcre13a.ppt
Improving Translator Productivity with MT: A Patent Translation Case Study
Ssbse12b.ppt

What's hot (10)

PPT
T-76.5612 Introduction
PPT
Jarian van de Laar - Test Policy - Test Strategy
PDF
Wcre13b.ppt
PDF
Pragmatic software testing education - SIGCSE 2019
PPTX
Linguistic Evaluation of Support Verb Construction Translations by OpenLogos ...
PDF
130411 francis palma - detection of process antipatterns -- a bpel perspective
PDF
Introduction to cyclical learning rates for training neural nets
PDF
Exploratory testing STEW 2016
PDF
Influence of the population structure on the performance of an Agent-Based Ev...
PPT
Generating test cases using UML Communication Diagram
T-76.5612 Introduction
Jarian van de Laar - Test Policy - Test Strategy
Wcre13b.ppt
Pragmatic software testing education - SIGCSE 2019
Linguistic Evaluation of Support Verb Construction Translations by OpenLogos ...
130411 francis palma - detection of process antipatterns -- a bpel perspective
Introduction to cyclical learning rates for training neural nets
Exploratory testing STEW 2016
Influence of the population structure on the performance of an Agent-Based Ev...
Generating test cases using UML Communication Diagram
Ad

Similar to Lung-Hao Lee - 2015 - Overview of the NLP-TEA 2015 Shared Task for Chinese Grammatical Error Diagnosis (20)

PDF
Yuen-Hsien Tseng - 2015 - Overview of SIGHAN 2015 Bake-off for Chinese Spelli...
PPTX
MT and Post Editing in master's level translation education
PPTX
Training language models to follow instructions with human feedback (Instruct...
PDF
Thesis presentation on Computer-Assisted Language Testing in Iran
PPTX
Proficiency Testing for GCLP by Dr PD.pptx
PDF
2 anton muzhailo - formal test process improvement. how to invest to the te...
PPTX
Metamorphic Testing Thesis Defense.pptx
PPT
Test Management introduction
PDF
Gap assessment Continuous Testing
PDF
PPTX
Bab 1 Fundamentals Of Testing
PPT
Test management
PDF
Triantafyllia Voulibasi
PDF
Natural language processing for requirements engineering: ICSE 2021 Technical...
PPTX
Aspiring Minds | Automata
PPTX
Testing Your Testing Program
PPTX
Testing Your Testing Program
PDF
Optimism Webinar 2 - Moving from AB testing to true experimentation
PPTX
2211 APSIPA
PDF
Benchmarking transfer learning approaches for NLP
Yuen-Hsien Tseng - 2015 - Overview of SIGHAN 2015 Bake-off for Chinese Spelli...
MT and Post Editing in master's level translation education
Training language models to follow instructions with human feedback (Instruct...
Thesis presentation on Computer-Assisted Language Testing in Iran
Proficiency Testing for GCLP by Dr PD.pptx
2 anton muzhailo - formal test process improvement. how to invest to the te...
Metamorphic Testing Thesis Defense.pptx
Test Management introduction
Gap assessment Continuous Testing
Bab 1 Fundamentals Of Testing
Test management
Triantafyllia Voulibasi
Natural language processing for requirements engineering: ICSE 2021 Technical...
Aspiring Minds | Automata
Testing Your Testing Program
Testing Your Testing Program
Optimism Webinar 2 - Moving from AB testing to true experimentation
2211 APSIPA
Benchmarking transfer learning approaches for NLP
Ad

More from Association for Computational Linguistics (20)

PDF
Muis - 2016 - Weak Semi-Markov CRFs for NP Chunking in Informal Text
PDF
Castro - 2018 - A High Coverage Method for Automatic False Friends Detection ...
PDF
Castro - 2018 - A Crowd-Annotated Spanish Corpus for Humour Analysis
PDF
Muthu Kumar Chandrasekaran - 2018 - Countering Position Bias in Instructor In...
PDF
Daniel Gildea - 2018 - The ACL Anthology: Current State and Future Directions
PDF
Elior Sulem - 2018 - Semantic Structural Evaluation for Text Simplification
PDF
Daniel Gildea - 2018 - The ACL Anthology: Current State and Future Directions
PDF
Wenqiang Lei - 2018 - Sequicity: Simplifying Task-oriented Dialogue Systems w...
PDF
Matthew Marge - 2017 - Exploring Variation of Natural Human Commands to a Rob...
PDF
Venkatesh Duppada - 2017 - SeerNet at EmoInt-2017: Tweet Emotion Intensity Es...
PDF
Satoshi Sonoh - 2015 - Toshiba MT System Description for the WAT2015 Workshop
PDF
Chenchen Ding - 2015 - NICT at WAT 2015
PDF
John Richardson - 2015 - KyotoEBMT System Description for the 2nd Workshop on...
PDF
John Richardson - 2015 - KyotoEBMT System Description for the 2nd Workshop on...
PDF
Zhongyuan Zhu - 2015 - Evaluating Neural Machine Translation in English-Japan...
PDF
Zhongyuan Zhu - 2015 - Evaluating Neural Machine Translation in English-Japan...
PDF
Hyoung-Gyu Lee - 2015 - NAVER Machine Translation System for WAT 2015
PDF
Satoshi Sonoh - 2015 - Toshiba MT System Description for the WAT2015 Workshop
PDF
Chenchen Ding - 2015 - NICT at WAT 2015
PDF
Graham Neubig - 2015 - Neural Reranking Improves Subjective Quality of Machin...
Muis - 2016 - Weak Semi-Markov CRFs for NP Chunking in Informal Text
Castro - 2018 - A High Coverage Method for Automatic False Friends Detection ...
Castro - 2018 - A Crowd-Annotated Spanish Corpus for Humour Analysis
Muthu Kumar Chandrasekaran - 2018 - Countering Position Bias in Instructor In...
Daniel Gildea - 2018 - The ACL Anthology: Current State and Future Directions
Elior Sulem - 2018 - Semantic Structural Evaluation for Text Simplification
Daniel Gildea - 2018 - The ACL Anthology: Current State and Future Directions
Wenqiang Lei - 2018 - Sequicity: Simplifying Task-oriented Dialogue Systems w...
Matthew Marge - 2017 - Exploring Variation of Natural Human Commands to a Rob...
Venkatesh Duppada - 2017 - SeerNet at EmoInt-2017: Tweet Emotion Intensity Es...
Satoshi Sonoh - 2015 - Toshiba MT System Description for the WAT2015 Workshop
Chenchen Ding - 2015 - NICT at WAT 2015
John Richardson - 2015 - KyotoEBMT System Description for the 2nd Workshop on...
John Richardson - 2015 - KyotoEBMT System Description for the 2nd Workshop on...
Zhongyuan Zhu - 2015 - Evaluating Neural Machine Translation in English-Japan...
Zhongyuan Zhu - 2015 - Evaluating Neural Machine Translation in English-Japan...
Hyoung-Gyu Lee - 2015 - NAVER Machine Translation System for WAT 2015
Satoshi Sonoh - 2015 - Toshiba MT System Description for the WAT2015 Workshop
Chenchen Ding - 2015 - NICT at WAT 2015
Graham Neubig - 2015 - Neural Reranking Improves Subjective Quality of Machin...

Recently uploaded (20)

PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
Introduction to pro and eukaryotes and differences.pptx
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
My India Quiz Book_20210205121199924.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PPTX
Computer Architecture Input Output Memory.pptx
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PPTX
20th Century Theater, Methods, History.pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
advance database management system book.pdf
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
AI-driven educational solutions for real-life interventions in the Philippine...
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Introduction to pro and eukaryotes and differences.pptx
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Virtual and Augmented Reality in Current Scenario
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
My India Quiz Book_20210205121199924.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
What if we spent less time fighting change, and more time building what’s rig...
Indian roads congress 037 - 2012 Flexible pavement
FORM 1 BIOLOGY MIND MAPS and their schemes
Computer Architecture Input Output Memory.pptx
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
20th Century Theater, Methods, History.pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
advance database management system book.pdf
Chinmaya Tiranga quiz Grand Finale.pdf
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
ChatGPT for Dummies - Pam Baker Ccesa007.pdf

Lung-Hao Lee - 2015 - Overview of the NLP-TEA 2015 Shared Task for Chinese Grammatical Error Diagnosis

  • 1. Overview  of  the  NLP-­‐TEA  2015  Shared  Task   for  Chinese  Gramma@cal  Error  Diagnosis Lung-­‐Hao  Lee,  Na%onal  Taiwan  Normal  University   Liang-­‐Chih  Yu,  Yuan  Ze  University   Li-­‐Ping  Chang,  Na%onal  Taiwan  Normal  University    
  • 2. Introduc%on •  The   NLP-­‐TEA   2015   shared   task   features   a   Chinese   Gramma%cal   Error   Diagnosis   (CGED)   task,  providing  an  evalua%on  plaMorm  for  the   development   and   implementa%on   of   NLP   tools  for  computer-­‐assisted  Chinese  learning   NLP-­‐TEA  2015  @  Beijing,  China 2
  • 3. Shared  Task  Descrip%on •  The   developed   tool   is   expected   to   iden%fy   the   error   types  and  its  posi%on  at  which  it  occurs  in  the  sentence   •  Four   PADS   error   types   are   included   in   the   target   modifica%on  taxonomy   –  Mis-­‐Ordering  (Permuta%on)   –  Redundancy  (Addi%on)   –  Omission  (Dele%on)   –  Mis-­‐Selec%on  (Subs%tu%on)   •  For  the  sake  of  simplicity,  the  input  sentence  is  selected   to  contain  one  defined  error  types   NLP-­‐TEA  2015  @  Beijing,  China 3
  • 4. Tes%ng  Examples   •  Example  1   Input:  (sid=B2-­‐0080)  他是我的以前的室友   Output:  B2-­‐0080,  4,  4,    Redundant •  Example  2   Input:  (sid=A2-­‐0017)  那電影是機器人的故事   Output:  A2-­‐0017,  2,  2,  Missing •  Example  3   Input:  (sid=A2-­‐0017)  那部電影是機器人的故事   Output:  A2-­‐0017,  Correct   •  Example  4   Input:  (sid=B1-­‐1193)  吳先生是修理腳踏車的拿手   Output:  B1-­‐1193,  11,  12,    Selec%on •  Example  5   Input:  (sid=B2-­‐2292)    所以我不會讓失望她   Output:  B2-­‐2292,  7,  9,  Disorder   NLP-­‐TEA  2015  @  Beijing,  China 4
  • 5. Data  Prepara%on •  The  essay  sec%on  of  the  computer-­‐based  Test   of  Chinese  as  a  Foreign  Language  (TOCFL)   •  Na%ve   Chinese   speakers   were   trained   to   manually   annotate   gramma%cal   errors   and   provide   correc%ons   corresponding   to   each   error   NLP-­‐TEA  2015  @  Beijing,  China 5
  • 6. Training  Set •  This  set  included  2,205  selected  sentences   •  Error   types   were   categorized   as   redundant   (430   instances),   missing   (620),   selec%on   (849),   and   disorder  (306)   •  Each  sentence  is  represented  in  SGML  format   NLP-­‐TEA  2015  @  Beijing,  China 6
  • 7. Dryrun  Set •  A   total   of   55   sentences   were   given   to   par%cipants  to  familiarize  themselves  with  the   final  tes%ng  process.     •  The  purpose  is  output  format  valida%on  only   •  No   macer   which   performance   can   be   achieved   that   will   not   be   included   in   our   official  evalua%on.   NLP-­‐TEA  2015  @  Beijing,  China 7
  • 8. Test  Set •  This  set  consists  of  1,000  tes%ng  sentences   •  Half   of   these   sentences   contained   no   gramma%cal   errors,   while   the   other   half   included   a   single   defined   gramma%cal   error:   redundant   (132   instances),   missing   (126),   selec%on  (110),  and  disorder  (132)     NLP-­‐TEA  2015  @  Beijing,  China 8
  • 9. Performance  Metrics •  Correctness  is  determined  at  three  levels   – Detec%on-­‐level     – Iden%fica%on-­‐level   – Posi%on-­‐level   •  Metrics   – False  posi%ve  rate  (FPR)  =  FP  /  (FP+TP)   – Accuracy  =  (TP+TN)  /  (TP+FP+TN+FN)   – Precision  =  TP  /  (TP+FP)   – Recall  =  TP  /  (TP+FN)   – F1  =  2  *  Precision  *  Recall  /  (Precision+Recall)   NLP-­‐TEA  2015  @  Beijing,  China 9
  • 10. Evalua%on  Examples   •  FPR  =  0.5   •  Detec%on-­‐level    Acc.  =  0.75,  Pre.=0.67,  Rec.=1,    F1=0.8   •  Correc%on-­‐level  Acc.  =  0.625,  Pre.=0.5,  Rec.=0.75,    F1=0.6   •  Posi%on-­‐level  Acc.  =  0.5,  Pre.=0.33,  Rec.=0.5,    F1=0.4     •  System  Results   “B1-­‐1138,   7,   8,   Disorder”,   “A2-­‐0087,   12,   13,   Missing”,   “A2-­‐0904,   5,   6,   Missing”,   “B1-­‐0990,   correct”,   “A2-­‐0789,   2,   5,   Disorder”,   “B1-­‐0295,   correct”,  “B2-­‐0591,  3,  3,  Redundant”  and  “A2-­‐0920,  4,  5,  Selec%on”     •  Gold  Standard   “B1-­‐1138,   7,   10,   Disorder”,   “A2-­‐0087,   12,   13,   Missing”,   “A2-­‐0904,   correct”,   “B1-­‐0990,   correct”,   “A2-­‐0789,   2,   3,   Selec%on”,   “B1-­‐0295,   correct”,  “B2-­‐0591,  3,  3,  Redundant”  and  “A2-­‐0920,  correct”     NLP-­‐TEA  2015  @  Beijing,  China 10
  • 11. 13  Par%cipants  and  18  Submiced  Runs NLP-­‐TEA  2015  @  Beijing,  China 11
  • 12. Tes%ng  Results NLP-­‐TEA  2015  @  Beijing,  China 12
  • 13. Summary •  It   is   a   really   difficult   task   to   develop   the   computer-­‐assisted  Chinese  learning  tool,  since   there   are   only   target   sentences   without   the   help  of  their  context   •  None   of   the   submiced   systems   provided   superior   performance.   In   general,   this   research  problem  s%ll  has  long  way  to  go.   NLP-­‐TEA  2015  @  Beijing,  China 13
  • 14. Conclusions •  All   submissions   contribute   to   the   common   effort   to   produce   an   effec%ve   Chinese   gramma%cal  diagnosis  tool     •  The   individual   reports   in   the   shared   task   proceedings   provide   useful   insight   into   Chinese  language  processing     NLP-­‐TEA  2015  @  Beijing,  China 14
  • 15. Future  Work •  NLP-­‐TEA-­‐3  Workshop  in  COLING  2016   – To  be  bided     – Osaka,  Japan   •  The  Shared  Task   – Chinese  Gramma%cal  Error  Diagnosis   NLP-­‐TEA  2015  @  Beijing,  China 15
  • 16. Acknowledgments •  Ministry  of  Educa%on,  Taiwan   – Aim  for  the  Top  University  Project   – Center  of  Learning  Technology  for  Chinese,  NTNU   – Innova%ve  Center  for  Big  Data  and  Digital   Convergence,  YZU   •  Ministry  of  Science  and  Technology,  Taiwan   – Interna%onal  Research-­‐Intensive  Center  of   Excellence  Program   – Grant  no.:  MOST  104-­‐2911-­‐I-­‐003-­‐301 SIGHAN  2015  @  Beijing,  China 16
  • 17. THANK  YOU •  All   data   sets   with   gold   standards   and   evalua%on   tool   are   publicly   available   for   research  purposes  at         hcp://ir.itc.ntnu.edu.tw/lre/nlptea15cged.htm NLP-­‐TEA  2015  @  Beijing,  China 17