SlideShare a Scribd company logo
MATLABMATLAB TutorialTutorial
MATLAB Basics
&
Signal Processing Toolbox
TOCTOC
Part 2: Signal Processing Toolbox
• Representing Signals
• Basic Waveform Generation
• Convolution
• Impulse Response
• Frequency Response
• Discrete Fourier Transform
• Filters
Part 1: Introduction
• Toolboxes & Simulink
• Commands & functions
• Help system
• Variables & operators
• Graphics
• Symbolic Math Toolbox
MATLABMATLAB TutorialTutorial
Part 1Part 1
MATLAB Basics
WhatWhat isis MATLAB?MATLAB?
Matlab = Matrix Laboratory
A software environment for interactive numerical computations
Examples:
Matrix computations and linear algebra
Solving nonlinear equations
Numerical solution of differential equations
Mathematical optimization
Statistics and data analysis
Signal processing
Modelling of dynamical systems
Solving partial differential equations
Simulation of engineering systems
MATLAB ToolboxesMATLAB Toolboxes
MATLAB has a number of add-on software modules, called toolboxes, that
perform more specialized computations.
Signal & Image Processing
Signal Processing- Image Processing Communications - System
Identification - Wavelet Filter Design
Control Design
Control System - Fuzzy Logic - Robust Control -
µ-Analysis and Synthesis - LMI Control
Model Predictive Control
More than 60 toolboxes!More than 60 toolboxes!
SimulinkSimulink
Simulink - a package for modeling dynamic systems
SimulinkSimulink ((cont‘dcont‘d))
Analyzing results:
MATLABMATLAB WorkspaceWorkspace
The MATLAB environment is command oriented
Some Useful MATLAB commandsSome Useful MATLAB commands
what List all m-files in current directory
dir List all files in current directory
ls Same as dir
type test Display test.m in command window
delete test Delete test.m
cd a: Change directory to a:
chdir a: Same as cd
pwd Show current directory
which test Display current directory path to test.m
ConstructionConstruction
• Core functionality: compiled C-routines
• Most functionality is given as m-files, grouped into toolboxes
– m-files contain source code, can be copied and altered
– m-files are platform independent (PC, Unix/Linux, MAC)
• Simulation of dynamical systems is performed in Simulink
MathMath
• MATLAB can do simple math just as a calculator.
2^16^Exponentiation, ab
56/8 = 856/ or Division, a b
3.14*4.20*Multiplication, a*b
90-44-Subtraction, a – b
3 + 22+Addition, a + b
EXAMPLESYMBOLOPERATION
÷
Interactive CalculationsInteractive Calculations
Matlab is interactive, no need to declare variables
>> 2+3*4/2
>> a=5e-3; b=1; a+b
Most elementary functions and constants are already defined
>> cos(pi)
>> abs(1+i)
>> sin(pi)
FunctionsFunctions
MATLAB has many built-in functions.
Some math functions are:
acos, acosh acot, acsc, acsch, asec, asech, asin,
asinh, atan, atan2, atanh, cos, cosh, cot, coth,
csc, csch, sec, sech, sin, sinh, tan, tanh, exp,
log, log10, log2, pow2, sqrt, nextpow2, abs, angle,
conj, imag, real, unwrap, isreal, cplxpair, fix,
floor, ceil, round, mod, rem, sign, cart2sph,
cart2pol, pol2cart, sph2cart, factor, isprime,
primes, gcd, lcm, rat, rats, perms, nchoosek, airy,
besselj, bessely, besselh, besseli, besselk, beta,
betainc, betaln, ellipj, ellipke, erf, erfc, erfcx,
erfinv, expint, gamma, gammainc, gammaln, legendre,
cross, dot
The Help SystemThe Help System
Search for appropriate function
>> lookfor keyword
Rapid help with syntax and function definition
>> help function
An advanced hyperlinked help system is launched by
>> helpdesk
Complete manuals (html & pdf)
http://www.mathworks.com/access/helpdesk/help/helpdesk.html
>> lookfor convolution
CONV Convolution and polynomial multiplication.
CONV2 Two dimensional convolution.
CONVN N-dimensional convolution.
DECONV Deconvolution and polynomial division.
CONVENC Convolutionally encode binary data.
DISTSPEC Compute the distance spectrum of a convolutional code.
...
>> help conv
CONV Convolution and polynomial multiplication.
C = CONV(A, B) convolves vectors A and B. The resulting
vector is length LENGTH(A)+LENGTH(B)-1.
If A and B are vectors of polynomial coefficients, convolving
them is equivalent to multiplying the two polynomials.
Class support for inputs A,B:
float: double, single
See also deconv, conv2, convn, filter and, in the Signal
Processing Toolbox, xcorr, convmtx.
...
The help system exampleThe help system example
Step 1:
Step 2:
MATLAB Variable NamesMATLAB Variable Names
• Variable names ARE case sensitive
• Variable names can contain up to 63 characters (as of MATLAB
6.5 and newer)
• Variable names must start with a letter followed by letters, digits,
and underscores.
All variables are shown with
>> who
>> whos
Variables can be stored on file
>> save filename
>> clear
>> load filename
ans Default variable name for results
pi Value of ππππ
inf
NaN Not a number e.g. 0/0
i and j i = j =
eps Smallest incremental number
realmin The smallest usable positive real number
realmax The largest usable positive real number
MATLAB Special VariablesMATLAB Special Variables
∞
1−
MATLAB Math & Assignment OperatorsMATLAB Math & Assignment Operators
Power ^ or .^ a^b or a.^b
Multiplication * or .* a*b or a.*b
Division / or ./ a/b or a./b
or  or . ba or b.a
NOTE: 56/8 = 856
- (unary) + (unary)
Addition + a + b
Subtraction - a - b
Assignment = a = b (assign b to a)
MATLAB MatricesMATLAB Matrices
• MATLAB treats all variables as matrices. For our purposes a matrix can be
thought of as an array, in fact, that is how it is stored.
• Vectors are special forms of matrices and contain only one row OR one
column.
• Scalars are matrices with only one row AND one column
Vectors and MatricesVectors and Matrices
Vectors (arrays) are defined as
>> v = [1, 2, 4, 5]
>> w = [1; 2; 4; 5]
Matrices (2D arrays) defined similarly
>> A = [1,2,3;4,-5,6;5,-6,7]
Polynomial examplePolynomial example
01045.02.1 23
=+++ xxx
>> x=[1.2,0.5,4,10]
x =
1.200 0.500 4.00 10.00
>> roots(x)
ans =
0.59014943179299 + 2.20679713205154i
0.59014943179299 - 2.20679713205154i
-1.59696553025265
Find polynomial roots:
GraphicsGraphics
Visualization of vector data is available
>> x=-pi:0.1:pi; y=sin(x);
>> plot(x,y)
>> xlabel(’x’); ylabel(’y=sin(x)’);
stem(x,y)plot(x,y)
Matlab Selection StructuresMatlab Selection Structures
An if-elseif-else structure in MATLAB.
if expression1 % is true
% execute these commands
elseif expression2 % is true
% execute these commands
else % the default
% execute these commands
end
A for loop in MATLAB: for x = array
for x = 1: 0.5 : 10
% execute these commands
end
A while loop in MATLAB: while expression
while x <= 10
% execute these commands
end
MATLAB Repetition StructuresMATLAB Repetition Structures
>> x = -1:.05:1;
>> for n = 1:8
subplot(4,2,n);
plot(x,sin(n*pi*x));
end
““for” loop examplefor” loop example
function [A] = area(a,b,c)
s = (a+b+c)/2;
A = sqrt(s*(s-a)*(s-b)*(s-c));
To evaluate the area of a triangle with side of length 10, 15, 20:
>> Area = area(10,15,20)
Area =
72.6184
File area.m:
mm--file examplefile example
Task:
Usage example:
IntegrationIntegration exampleexample
example with trapz function:
>> x = 0:0.5:10; y = 0.5 * sqrt(x) + x .* sin(x);
>> integral1 = trapz(x,y)
integral1 =
18.1655
∫ 





+
10
0
)sin(
2
1
dxxxxFind the integral:
SymbolicSymbolic MathMath ToolboxToolbox
The Symbolic Math Toolbox uses "symbolic objects" produced by the "sym" funtion.
>> x = sym('x'); % produces a symbolic variable named x
>> f=x^3; % defines a function
Example: ( )3
x
dx
d
- ? dxx∫
3
- ?
>> x = sym('x');
>> diff(x^3)
ans =
3*x^2
>> int(x^3)
ans =
1/4*x^4
SymbolicSymbolic MathMath ToolboxToolbox
Once a symbolic variable is defined, you can use it to build functions. EZPLOT
makes it easy to plot symbolic expressions.
>> x = sym('x');
>> f = 1/(5+4*cos(x))
>> ezplot(f)
SymbolicSymbolic MathMath ToolboxToolbox
sinc(x)=si(πx)=sin(πx)/(πx)
>> ezplot(sinc(x))
Plot the following functions:
>> x = sym('x');
Gaussian
>> ezplot(exp(-pi*x*x))
MATLABMATLAB TutorialTutorial
Part 2Part 2
Signal Processing Toolbox
WhatWhat IsIs thethe SignalSignal ProcessingProcessing Toolbox?Toolbox?
The Signal Processing Toolbox is a collection of tools or functions
expressed mostly in M-files, that implement a variety of signal
processing tasks.
Command line functions for:
• Analog and digital filter analysis
• Digital filter implementation
• FIR and IIR digital filter design
• Analog filter design
• Statistical signal processing and
spectral analysis
• Waveform generation
Interactive tools (GUIs) for:
• Filter design and analysis
• Window design and analysis
• Signal plotting and analysis
• Spectral analysis
• Filtering signals
RepresentingRepresenting signalssignals
MATLAB represents signals as vectors:
>> x=[1,2,3,5,3,2,1]
x =
1 2 3 5 3 2 1
>> stem(x)
WaveformWaveform GenerationGeneration
A sample signal y consisting of two sinusoids, one at 50Hz and one at 120 Hz with twice
the amplitude:
>> y = sin(2*pi*50*t) + 2*sin(2*pi*120*t);
>> plot(t(1:50),y(1:50));
Consider generating data with a 1000 Hz sample frequency.
An appropriate time vector:
>> t = 0:0.001:1; % a 1001-element row vector that represents
% time running from zero to one second
% in steps of one millisecond.
WaveformWaveform GenerationGeneration
Basic Signals:
Unit impulse:
>> t = 0:0.01:1;
>> y = [zeros(1,50),1,zeros(1,50)];
>> plot(t,y);
Unit step:
>> y = [zeros(1,50),ones(1,51)];
>> plot(t,y);
Triangle:
>> t=-1:0.001:1;
>> y=tripuls(t);
>> plot (t,y);
Rectangle:
>> t=-1:0.001:1;
>> y=rectpuls(t);
>> plot (t,y);
WaveformWaveform GenerationGeneration
Common Sequences:
Sawtooth:
>> fs = 10000;
>> t = 0:1/fs:1.5;
>> x = sawtooth(2*pi*50*t);
>> plot(t,x), axis([0 0.2 -1 1]);
Square wave:
>> t=0:20;
>> y=square(t);
>> plot(t,y)
Sinc function:
>> t = -5:0.1:5;
>> y = sinc(t);
>> plot(t,y)
ConvolutionConvolution
>> t1=-1:0.001:1;
>> tri=tripuls(t1,2);
>> plot(t1,tri);
*
=>> c=conv(tri,tri);
>> t2=-2:0.001:2;
>> plot(t2,c);
ConvolutionConvolution ((ExampleExample))
Let the rectangular pulse x(n)= r(0.1n-5) be an input to an LTI system with
impulse response h(n)=0.9n s(n). Determine the output y(n).
>> x=rectpuls(n,10);
>> x=circshift(x,[0 5]);
>> stem(n,x)
>> step=[zeros(1,5),ones(1,51)];
>> h=0.9.^n.*step;
>> stem(n,h)
>> y=conv(h,x);
>> stem(y)
FiltersFilters
Z-transform Y(z) of a digital filter’s output y(n) is related to the z-transform
X(z) of the input by:
The system can also be specified by a linear difference equation:
MATLAB function filter - filter data with a recursive (IIR) or
nonrecursive (FIR) filter
FilterFilter ((ExampleExample 1)1)
Given the following difference eqaution of a filter:
Calculate and plot the impulse response h(n) and unit step response s(n) at n= -20,…,100.
y(n)-y(n-1)+0.9y(n-2)=x(n)
>> a=[1,-1,0.9]; b=[1];
>> n=[-20:120];
>> x=[zeros(1,20),1,zeros(1,120)];
>> h=filter(b,a,x);
>> stem(n,h); title('impulse response');
>> x=[zeros(1,20),ones(1,121)];
>> s=filter(b,a,x);
>> stem(n,s); title('step response');
FilterFilter ((ExampleExample 2)2)
Create a 10-point averaging lowpass FIR filter:
]9[
10
1
...]1[
10
1
][
10
1
][ −++−+= nxnxnxny
As an input consider a 1-second duration signal sampled at 100 Hz, composed of
two sinusoidal components at 3 Hz and 40 Hz.
>> fs = 100;
>> t = 0:1/fs:1;
>> x = sin(2*pi*t*3)+.25*sin(2*pi*t*40);
>> b = ones(1,10)/10; % 10 point averaging filter
>> y = filter(b,1,x);
>> plot(t,x,'b',t,y,'r')
DiscreteDiscrete--Time Fourier SeriesTime Fourier Series
DTFS is a frequency-domain representation for periodic discrete-time sequences.
For a signal x[n] with fundamental period N, the DTFS equations are given by:
nNjk
N
k
k eanx )/2(
1
0
][ π
∑
−
=
=
nNjk
N
n
k enx
N
a )/2(
1
0
][
1 π−
−
=
∑=
fft – is an efficient implementation in MATLAB to calculate ak.
DiscreteDiscrete--Time Fourier SeriesTime Fourier Series ((ExampleExample))
Find DTFS for periodic discrete-time signal x[n]
with period N=30
>> x=[1,1,zeros(1,28)];
>> N=30; n=0:N-1;
>> a=(1/N)*fft(x);
>> real_part=real(a);
>> stem(n,real_part);
>> xlabel('k'); ylabel('real(a)');
>> imag_part=imag(a);
>> stem(n,imag_part);
>> xlabel('k'); ylabel('imag(a)');
FrequencyFrequency ResponseResponse ((ExampleExample))
Find the frequency response of a 10-point averaging lowpass FIR filter and
plot ist magnitude and phase
]9[
10
1
...]1[
10
1
][
10
1
][ −++−+= nxnxnxny
>> b = ones(1,10)/10; a=1;
>> [H omega]=freqz(b,a,100,'whole');
>> magH=abs(H);
>> plot(omega, magH); grid;
>> angH=angle(H);
>> plot(omega, angH/pi); grid;
>> N=256; % number of samples
>> T=1/128; % sampling frequency=128Hz
>> k=0:N-1; time=k*T;
>> f=0.25+2*sin(2*pi*5*k*T)+1*sin(2*pi*12.5*k*T)+…
+1.5*sin(2*pi*20*k*T)+0.5*sin(2*pi*35*k*T);
>> plot(time,f); title('Signal sampled at 128Hz');
>> F=fft(f);
>> magF=abs([F(1)/N,F(2:N/2)/(N/2)]);
>> hertz=k(1:N/2)*(1/(N*T));
>> stem(hertz,magF), title('Frequency components');
ExampleExample
Find the spectrum of the following signal:
f=0.25+2sin(2π5k)+sin(2π12.5k)+1.5sin(2π20k)+0.5sin(2π35k)
ExampleExample
Find the frequency components of a signal buried in noise. Consider data
sampled at 1000 Hz. Form a signal consisting of 50 Hz and 120 Hz sinusoids
and corrupt the signal with random noise.
>> t = 0:0.001:0.6;
>> x = sin(2*pi*50*t) + sin(2*pi*120*t);
>> y = x + 2*randn(1,length(t));
>> plot(y(1:50));
ExampleExample ((cont‘dcont‘d))
It is difficult to identify the frequency components by studying the original signal.
The discrete Fourier transform of the noisy signal using a 512-point fast Fourier transform
(FFT):
>> Y = fft(y,512);
The power spectral density, a measurement of the energy at various frequencies, is
>> Pyy = Y.*conj(Y) / 512;
>> f = 1000*(0:255)/512;
>> plot(f,Pyy(1:256))
LinksLinks
One-hour recorded online Webinars
http://www.mathworks.com/company/events/archived_webinars.html
All matlab manuals
http://www.mathworks.com/access/helpdesk/help/helpdesk.html
Matlab Tutorials
http://www.math.ufl.edu/help/matlab-tutorial/
http://www.math.unh.edu/~mathadm/tutorial/software/matlab/

More Related Content

PPTX
Matlab ppt
PPTX
Matlab ppt
PPT
Introduction to matlab
PPT
Matlab Basic Tutorial
PDF
MATLAB INTRODUCTION
PPTX
Introduction to MATLAB
PDF
Introduction to matlab
PDF
MATLAB Basics-Part1
Matlab ppt
Matlab ppt
Introduction to matlab
Matlab Basic Tutorial
MATLAB INTRODUCTION
Introduction to MATLAB
Introduction to matlab
MATLAB Basics-Part1

What's hot (20)

PPT
Unit 1(stld)
PPT
Introduction to matlab
PPTX
Matlab Functions
PDF
Matlab-free course by Mohd Esa
PPSX
Matlab basic and image
DOCX
Programmable logic array
PPT
Introduction to MATLAB
PDF
Matlab for beginners, Introduction, signal processing
PPT
Matlab Introduction
PPTX
Discrete Fourier Transform
PPT
Matlab introduction
PPTX
MATLAB - Arrays and Matrices
PPTX
Basic operators in matlab
DOCX
4 bit uni shift reg
PPTX
Presentation on Karnaugh Map
PDF
Matlab introduction lecture 1
PPT
MATLAB/SIMULINK for engineering applications: day 3
PDF
PPT
Matlab practical and lab session
PPTX
Feedback control: Handout1
Unit 1(stld)
Introduction to matlab
Matlab Functions
Matlab-free course by Mohd Esa
Matlab basic and image
Programmable logic array
Introduction to MATLAB
Matlab for beginners, Introduction, signal processing
Matlab Introduction
Discrete Fourier Transform
Matlab introduction
MATLAB - Arrays and Matrices
Basic operators in matlab
4 bit uni shift reg
Presentation on Karnaugh Map
Matlab introduction lecture 1
MATLAB/SIMULINK for engineering applications: day 3
Matlab practical and lab session
Feedback control: Handout1
Ad

Viewers also liked (6)

PPSX
Introduction to MATLAB
DOCX
matlab code for channel estimation for ofdm
PPT
Simulating communication systems with MATLAB: An introduction
PDF
Introduction to Matlab
PPTX
Matlab Introduction
PDF
Introduction to Digital Image Processing Using MATLAB
Introduction to MATLAB
matlab code for channel estimation for ofdm
Simulating communication systems with MATLAB: An introduction
Introduction to Matlab
Matlab Introduction
Introduction to Digital Image Processing Using MATLAB
Ad

Similar to Matlab intro (20)

PPTX
Introduction to matlab lecture 1 of 4
PPSX
matlab-130408153714-phpapp02_lab123.ppsx
PPTX
Mat lab workshop
PPT
Introduction to Matlab.ppt
PDF
A complete introduction on matlab and matlab's projects
PDF
Introduction to MATLAB
PPTX
Matlab introduction
PPTX
Summer training matlab
PPT
MatlabIntro (1).ppt
PPTX
MATLAB Workshop yugjjnhhasfhlhhlllhl.pptx
PPT
Matlab anilkumar
PDF
Summer training matlab
PPT
Matlab Overviiew
PDF
Dsp lab _eec-652__vi_sem_18012013
PDF
Dsp lab _eec-652__vi_sem_18012013
PPT
Matlab
PPT
Matlab intro
PPT
MatlabIntro.ppt
PPT
MatlabIntro.ppt
PPT
MatlabIntro.ppt
Introduction to matlab lecture 1 of 4
matlab-130408153714-phpapp02_lab123.ppsx
Mat lab workshop
Introduction to Matlab.ppt
A complete introduction on matlab and matlab's projects
Introduction to MATLAB
Matlab introduction
Summer training matlab
MatlabIntro (1).ppt
MATLAB Workshop yugjjnhhasfhlhhlllhl.pptx
Matlab anilkumar
Summer training matlab
Matlab Overviiew
Dsp lab _eec-652__vi_sem_18012013
Dsp lab _eec-652__vi_sem_18012013
Matlab
Matlab intro
MatlabIntro.ppt
MatlabIntro.ppt
MatlabIntro.ppt

Recently uploaded (20)

PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
web development for engineering and engineering
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
Lecture Notes Electrical Wiring System Components
PDF
PPT on Performance Review to get promotions
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
OOP with Java - Java Introduction (Basics)
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
UNIT 4 Total Quality Management .pptx
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
Operating System & Kernel Study Guide-1 - converted.pdf
web development for engineering and engineering
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
bas. eng. economics group 4 presentation 1.pptx
Lecture Notes Electrical Wiring System Components
PPT on Performance Review to get promotions
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
CYBER-CRIMES AND SECURITY A guide to understanding
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
OOP with Java - Java Introduction (Basics)
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Foundation to blockchain - A guide to Blockchain Tech
UNIT 4 Total Quality Management .pptx
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Automation-in-Manufacturing-Chapter-Introduction.pdf

Matlab intro

  • 2. TOCTOC Part 2: Signal Processing Toolbox • Representing Signals • Basic Waveform Generation • Convolution • Impulse Response • Frequency Response • Discrete Fourier Transform • Filters Part 1: Introduction • Toolboxes & Simulink • Commands & functions • Help system • Variables & operators • Graphics • Symbolic Math Toolbox
  • 4. WhatWhat isis MATLAB?MATLAB? Matlab = Matrix Laboratory A software environment for interactive numerical computations Examples: Matrix computations and linear algebra Solving nonlinear equations Numerical solution of differential equations Mathematical optimization Statistics and data analysis Signal processing Modelling of dynamical systems Solving partial differential equations Simulation of engineering systems
  • 5. MATLAB ToolboxesMATLAB Toolboxes MATLAB has a number of add-on software modules, called toolboxes, that perform more specialized computations. Signal & Image Processing Signal Processing- Image Processing Communications - System Identification - Wavelet Filter Design Control Design Control System - Fuzzy Logic - Robust Control - µ-Analysis and Synthesis - LMI Control Model Predictive Control More than 60 toolboxes!More than 60 toolboxes!
  • 6. SimulinkSimulink Simulink - a package for modeling dynamic systems
  • 8. MATLABMATLAB WorkspaceWorkspace The MATLAB environment is command oriented
  • 9. Some Useful MATLAB commandsSome Useful MATLAB commands what List all m-files in current directory dir List all files in current directory ls Same as dir type test Display test.m in command window delete test Delete test.m cd a: Change directory to a: chdir a: Same as cd pwd Show current directory which test Display current directory path to test.m
  • 10. ConstructionConstruction • Core functionality: compiled C-routines • Most functionality is given as m-files, grouped into toolboxes – m-files contain source code, can be copied and altered – m-files are platform independent (PC, Unix/Linux, MAC) • Simulation of dynamical systems is performed in Simulink
  • 11. MathMath • MATLAB can do simple math just as a calculator. 2^16^Exponentiation, ab 56/8 = 856/ or Division, a b 3.14*4.20*Multiplication, a*b 90-44-Subtraction, a – b 3 + 22+Addition, a + b EXAMPLESYMBOLOPERATION ÷
  • 12. Interactive CalculationsInteractive Calculations Matlab is interactive, no need to declare variables >> 2+3*4/2 >> a=5e-3; b=1; a+b Most elementary functions and constants are already defined >> cos(pi) >> abs(1+i) >> sin(pi)
  • 13. FunctionsFunctions MATLAB has many built-in functions. Some math functions are: acos, acosh acot, acsc, acsch, asec, asech, asin, asinh, atan, atan2, atanh, cos, cosh, cot, coth, csc, csch, sec, sech, sin, sinh, tan, tanh, exp, log, log10, log2, pow2, sqrt, nextpow2, abs, angle, conj, imag, real, unwrap, isreal, cplxpair, fix, floor, ceil, round, mod, rem, sign, cart2sph, cart2pol, pol2cart, sph2cart, factor, isprime, primes, gcd, lcm, rat, rats, perms, nchoosek, airy, besselj, bessely, besselh, besseli, besselk, beta, betainc, betaln, ellipj, ellipke, erf, erfc, erfcx, erfinv, expint, gamma, gammainc, gammaln, legendre, cross, dot
  • 14. The Help SystemThe Help System Search for appropriate function >> lookfor keyword Rapid help with syntax and function definition >> help function An advanced hyperlinked help system is launched by >> helpdesk Complete manuals (html & pdf) http://www.mathworks.com/access/helpdesk/help/helpdesk.html
  • 15. >> lookfor convolution CONV Convolution and polynomial multiplication. CONV2 Two dimensional convolution. CONVN N-dimensional convolution. DECONV Deconvolution and polynomial division. CONVENC Convolutionally encode binary data. DISTSPEC Compute the distance spectrum of a convolutional code. ... >> help conv CONV Convolution and polynomial multiplication. C = CONV(A, B) convolves vectors A and B. The resulting vector is length LENGTH(A)+LENGTH(B)-1. If A and B are vectors of polynomial coefficients, convolving them is equivalent to multiplying the two polynomials. Class support for inputs A,B: float: double, single See also deconv, conv2, convn, filter and, in the Signal Processing Toolbox, xcorr, convmtx. ... The help system exampleThe help system example Step 1: Step 2:
  • 16. MATLAB Variable NamesMATLAB Variable Names • Variable names ARE case sensitive • Variable names can contain up to 63 characters (as of MATLAB 6.5 and newer) • Variable names must start with a letter followed by letters, digits, and underscores. All variables are shown with >> who >> whos Variables can be stored on file >> save filename >> clear >> load filename
  • 17. ans Default variable name for results pi Value of ππππ inf NaN Not a number e.g. 0/0 i and j i = j = eps Smallest incremental number realmin The smallest usable positive real number realmax The largest usable positive real number MATLAB Special VariablesMATLAB Special Variables ∞ 1−
  • 18. MATLAB Math & Assignment OperatorsMATLAB Math & Assignment Operators Power ^ or .^ a^b or a.^b Multiplication * or .* a*b or a.*b Division / or ./ a/b or a./b or or . ba or b.a NOTE: 56/8 = 856 - (unary) + (unary) Addition + a + b Subtraction - a - b Assignment = a = b (assign b to a)
  • 19. MATLAB MatricesMATLAB Matrices • MATLAB treats all variables as matrices. For our purposes a matrix can be thought of as an array, in fact, that is how it is stored. • Vectors are special forms of matrices and contain only one row OR one column. • Scalars are matrices with only one row AND one column
  • 20. Vectors and MatricesVectors and Matrices Vectors (arrays) are defined as >> v = [1, 2, 4, 5] >> w = [1; 2; 4; 5] Matrices (2D arrays) defined similarly >> A = [1,2,3;4,-5,6;5,-6,7]
  • 21. Polynomial examplePolynomial example 01045.02.1 23 =+++ xxx >> x=[1.2,0.5,4,10] x = 1.200 0.500 4.00 10.00 >> roots(x) ans = 0.59014943179299 + 2.20679713205154i 0.59014943179299 - 2.20679713205154i -1.59696553025265 Find polynomial roots:
  • 22. GraphicsGraphics Visualization of vector data is available >> x=-pi:0.1:pi; y=sin(x); >> plot(x,y) >> xlabel(’x’); ylabel(’y=sin(x)’); stem(x,y)plot(x,y)
  • 23. Matlab Selection StructuresMatlab Selection Structures An if-elseif-else structure in MATLAB. if expression1 % is true % execute these commands elseif expression2 % is true % execute these commands else % the default % execute these commands end A for loop in MATLAB: for x = array for x = 1: 0.5 : 10 % execute these commands end A while loop in MATLAB: while expression while x <= 10 % execute these commands end MATLAB Repetition StructuresMATLAB Repetition Structures
  • 24. >> x = -1:.05:1; >> for n = 1:8 subplot(4,2,n); plot(x,sin(n*pi*x)); end ““for” loop examplefor” loop example
  • 25. function [A] = area(a,b,c) s = (a+b+c)/2; A = sqrt(s*(s-a)*(s-b)*(s-c)); To evaluate the area of a triangle with side of length 10, 15, 20: >> Area = area(10,15,20) Area = 72.6184 File area.m: mm--file examplefile example Task: Usage example:
  • 26. IntegrationIntegration exampleexample example with trapz function: >> x = 0:0.5:10; y = 0.5 * sqrt(x) + x .* sin(x); >> integral1 = trapz(x,y) integral1 = 18.1655 ∫       + 10 0 )sin( 2 1 dxxxxFind the integral:
  • 27. SymbolicSymbolic MathMath ToolboxToolbox The Symbolic Math Toolbox uses "symbolic objects" produced by the "sym" funtion. >> x = sym('x'); % produces a symbolic variable named x >> f=x^3; % defines a function Example: ( )3 x dx d - ? dxx∫ 3 - ? >> x = sym('x'); >> diff(x^3) ans = 3*x^2 >> int(x^3) ans = 1/4*x^4
  • 28. SymbolicSymbolic MathMath ToolboxToolbox Once a symbolic variable is defined, you can use it to build functions. EZPLOT makes it easy to plot symbolic expressions. >> x = sym('x'); >> f = 1/(5+4*cos(x)) >> ezplot(f)
  • 29. SymbolicSymbolic MathMath ToolboxToolbox sinc(x)=si(πx)=sin(πx)/(πx) >> ezplot(sinc(x)) Plot the following functions: >> x = sym('x'); Gaussian >> ezplot(exp(-pi*x*x))
  • 30. MATLABMATLAB TutorialTutorial Part 2Part 2 Signal Processing Toolbox
  • 31. WhatWhat IsIs thethe SignalSignal ProcessingProcessing Toolbox?Toolbox? The Signal Processing Toolbox is a collection of tools or functions expressed mostly in M-files, that implement a variety of signal processing tasks. Command line functions for: • Analog and digital filter analysis • Digital filter implementation • FIR and IIR digital filter design • Analog filter design • Statistical signal processing and spectral analysis • Waveform generation Interactive tools (GUIs) for: • Filter design and analysis • Window design and analysis • Signal plotting and analysis • Spectral analysis • Filtering signals
  • 32. RepresentingRepresenting signalssignals MATLAB represents signals as vectors: >> x=[1,2,3,5,3,2,1] x = 1 2 3 5 3 2 1 >> stem(x)
  • 33. WaveformWaveform GenerationGeneration A sample signal y consisting of two sinusoids, one at 50Hz and one at 120 Hz with twice the amplitude: >> y = sin(2*pi*50*t) + 2*sin(2*pi*120*t); >> plot(t(1:50),y(1:50)); Consider generating data with a 1000 Hz sample frequency. An appropriate time vector: >> t = 0:0.001:1; % a 1001-element row vector that represents % time running from zero to one second % in steps of one millisecond.
  • 34. WaveformWaveform GenerationGeneration Basic Signals: Unit impulse: >> t = 0:0.01:1; >> y = [zeros(1,50),1,zeros(1,50)]; >> plot(t,y); Unit step: >> y = [zeros(1,50),ones(1,51)]; >> plot(t,y); Triangle: >> t=-1:0.001:1; >> y=tripuls(t); >> plot (t,y); Rectangle: >> t=-1:0.001:1; >> y=rectpuls(t); >> plot (t,y);
  • 35. WaveformWaveform GenerationGeneration Common Sequences: Sawtooth: >> fs = 10000; >> t = 0:1/fs:1.5; >> x = sawtooth(2*pi*50*t); >> plot(t,x), axis([0 0.2 -1 1]); Square wave: >> t=0:20; >> y=square(t); >> plot(t,y) Sinc function: >> t = -5:0.1:5; >> y = sinc(t); >> plot(t,y)
  • 36. ConvolutionConvolution >> t1=-1:0.001:1; >> tri=tripuls(t1,2); >> plot(t1,tri); * =>> c=conv(tri,tri); >> t2=-2:0.001:2; >> plot(t2,c);
  • 37. ConvolutionConvolution ((ExampleExample)) Let the rectangular pulse x(n)= r(0.1n-5) be an input to an LTI system with impulse response h(n)=0.9n s(n). Determine the output y(n). >> x=rectpuls(n,10); >> x=circshift(x,[0 5]); >> stem(n,x) >> step=[zeros(1,5),ones(1,51)]; >> h=0.9.^n.*step; >> stem(n,h) >> y=conv(h,x); >> stem(y)
  • 38. FiltersFilters Z-transform Y(z) of a digital filter’s output y(n) is related to the z-transform X(z) of the input by: The system can also be specified by a linear difference equation: MATLAB function filter - filter data with a recursive (IIR) or nonrecursive (FIR) filter
  • 39. FilterFilter ((ExampleExample 1)1) Given the following difference eqaution of a filter: Calculate and plot the impulse response h(n) and unit step response s(n) at n= -20,…,100. y(n)-y(n-1)+0.9y(n-2)=x(n) >> a=[1,-1,0.9]; b=[1]; >> n=[-20:120]; >> x=[zeros(1,20),1,zeros(1,120)]; >> h=filter(b,a,x); >> stem(n,h); title('impulse response'); >> x=[zeros(1,20),ones(1,121)]; >> s=filter(b,a,x); >> stem(n,s); title('step response');
  • 40. FilterFilter ((ExampleExample 2)2) Create a 10-point averaging lowpass FIR filter: ]9[ 10 1 ...]1[ 10 1 ][ 10 1 ][ −++−+= nxnxnxny As an input consider a 1-second duration signal sampled at 100 Hz, composed of two sinusoidal components at 3 Hz and 40 Hz. >> fs = 100; >> t = 0:1/fs:1; >> x = sin(2*pi*t*3)+.25*sin(2*pi*t*40); >> b = ones(1,10)/10; % 10 point averaging filter >> y = filter(b,1,x); >> plot(t,x,'b',t,y,'r')
  • 41. DiscreteDiscrete--Time Fourier SeriesTime Fourier Series DTFS is a frequency-domain representation for periodic discrete-time sequences. For a signal x[n] with fundamental period N, the DTFS equations are given by: nNjk N k k eanx )/2( 1 0 ][ π ∑ − = = nNjk N n k enx N a )/2( 1 0 ][ 1 π− − = ∑= fft – is an efficient implementation in MATLAB to calculate ak.
  • 42. DiscreteDiscrete--Time Fourier SeriesTime Fourier Series ((ExampleExample)) Find DTFS for periodic discrete-time signal x[n] with period N=30 >> x=[1,1,zeros(1,28)]; >> N=30; n=0:N-1; >> a=(1/N)*fft(x); >> real_part=real(a); >> stem(n,real_part); >> xlabel('k'); ylabel('real(a)'); >> imag_part=imag(a); >> stem(n,imag_part); >> xlabel('k'); ylabel('imag(a)');
  • 43. FrequencyFrequency ResponseResponse ((ExampleExample)) Find the frequency response of a 10-point averaging lowpass FIR filter and plot ist magnitude and phase ]9[ 10 1 ...]1[ 10 1 ][ 10 1 ][ −++−+= nxnxnxny >> b = ones(1,10)/10; a=1; >> [H omega]=freqz(b,a,100,'whole'); >> magH=abs(H); >> plot(omega, magH); grid; >> angH=angle(H); >> plot(omega, angH/pi); grid;
  • 44. >> N=256; % number of samples >> T=1/128; % sampling frequency=128Hz >> k=0:N-1; time=k*T; >> f=0.25+2*sin(2*pi*5*k*T)+1*sin(2*pi*12.5*k*T)+… +1.5*sin(2*pi*20*k*T)+0.5*sin(2*pi*35*k*T); >> plot(time,f); title('Signal sampled at 128Hz'); >> F=fft(f); >> magF=abs([F(1)/N,F(2:N/2)/(N/2)]); >> hertz=k(1:N/2)*(1/(N*T)); >> stem(hertz,magF), title('Frequency components'); ExampleExample Find the spectrum of the following signal: f=0.25+2sin(2π5k)+sin(2π12.5k)+1.5sin(2π20k)+0.5sin(2π35k)
  • 45. ExampleExample Find the frequency components of a signal buried in noise. Consider data sampled at 1000 Hz. Form a signal consisting of 50 Hz and 120 Hz sinusoids and corrupt the signal with random noise. >> t = 0:0.001:0.6; >> x = sin(2*pi*50*t) + sin(2*pi*120*t); >> y = x + 2*randn(1,length(t)); >> plot(y(1:50));
  • 46. ExampleExample ((cont‘dcont‘d)) It is difficult to identify the frequency components by studying the original signal. The discrete Fourier transform of the noisy signal using a 512-point fast Fourier transform (FFT): >> Y = fft(y,512); The power spectral density, a measurement of the energy at various frequencies, is >> Pyy = Y.*conj(Y) / 512; >> f = 1000*(0:255)/512; >> plot(f,Pyy(1:256))
  • 47. LinksLinks One-hour recorded online Webinars http://www.mathworks.com/company/events/archived_webinars.html All matlab manuals http://www.mathworks.com/access/helpdesk/help/helpdesk.html Matlab Tutorials http://www.math.ufl.edu/help/matlab-tutorial/ http://www.math.unh.edu/~mathadm/tutorial/software/matlab/