SlideShare a Scribd company logo
𝐿 = {⟨a, b, c, d, b, c, e, c, b⟩17,
⟨b, d, a, b, b, d, e, d, c⟩6,
⟨c, d, a, b, c, e, b, c, b, c⟩5
,
⟨b, c, a, c, e, a⟩12,
⟨b, b, b⟩5}
Log
R1: if ‘c’ occurs, then ‘a’ must have previously occurred
R2: if ‘d’ occurs, then ‘e’ must eventually occur
Rules
Confidence of R1: 82% Confidence of R2: 93%
Measures
If you consider a model consisting of R1 and R2 together, what is its confidence?
Question
79 % 82 % 87.5 % 100 %
Measurement of Rule-based
LTL𝑓 Declarative Process Specifications
4th Int. Conference on Process Mining, ICPM 2022, Bolzano (Italy)
Alessio Cecconi Claudio Di Ciccio Arik Senderovich
alessio.cecconi@wu.ac.at claudio.diciccio@uniroma1.it sariks@yorku.ca
“If d, then e will follow”
“If c, then previously a”
“If d, then 𝐅(e)”
“If c, then 𝐎(a)”
Rule: Reactive Constraint (RCon) 𝜓
3
[1] De Giacomo and Vardi, “Linear temporal logic and linear dynamic logic on finite traces,” in IJCAI, 2013
[2] Pesic, Bosnacki, van der Aalst, “Enacting declarative languages using LTL: avoiding errors and improving performance,” in SPIN, 2010
[3] C., DC., De Giacomo, and Mendling, “Interestingness of traces in declarative process mining: The Janus LTLp f approach,” in BPM, 2018
“If a viral infection is detected, then an intravenous antiviral administration will follow”
“If antibiotics are administered, then an antibiogram must have been previously registered”
LTL𝑓 operator (finally) [1]
LTL𝑓 operator (once)
d → 𝐅(e)
c → 𝐎(a)
Activation
Activation
Target
Target
𝜑𝛼1
𝜑𝛼2
𝜑𝜏1
𝜑𝜏2
LTL𝑓
fomulae
LTL𝑓
fomulae
Any
DECLARE
rule [2]
can be
encoded
as an
RCon [3]
Rule: Reactive Constraint (RCon) 𝜓
4
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Rule semantics
(Interestingly) satisfied
Violated
Unaffected
𝜑𝜏
𝜑𝛼 𝜓



 
Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩
d → 𝐅(e) ● ● ● ● ● ● ● ● ●
d → 𝐅(e)
c → 𝐎(a)
Activation
Activation
Target
Target
𝜑𝛼1
𝜑𝛼2
𝜑𝜏1
𝜑𝜏2
LTL𝑓
fomulae
LTL𝑓
fomulae
Rule: Reactive Constraint (RCon) 𝜓
5
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Rule semantics
(Interestingly) satisfied
Violated
Unaffected
𝜑𝜏
𝜑𝛼 𝜓



 
Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩
d → 𝐅(e) ● ● ● ● ● ● ● ● ●
d → 𝐅(e)
c → 𝐎(a)
Activation
Activation
Target
Target
𝜑𝛼1
𝜑𝛼2
𝜑𝜏1
𝜑𝜏2
LTL𝑓
fomulae
LTL𝑓
fomulae
RCon Specification 𝑆 ≜ {𝜓1, 𝜓2, … 𝜓𝑛}
• Semantics: a specification is
• Satisfied iff an RCon is satisfied, but no violations occur
• Violated iff an RCon is violated
• Unaffected otherwise
• A specification is like a single RCon 𝑆 = 𝑆𝛼 → 𝑆τ
𝑆𝛼 =
𝑗=1
𝑆
𝜑𝛼𝑗 ; 𝑆τ =
𝑗=1
𝑆
¬(𝜑𝛼𝑗⋀¬𝜑𝜏𝑗
)
6
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
d → 𝐅(e)
c → 𝐎(a)
Activation
Activation
Target
Target
𝜑𝛼1
𝜑𝛼2
𝜑𝜏1
𝜑𝜏2
LTL𝑓
fomulae
LTL𝑓
fomulae
d → 𝐅(e)
c → 𝐎(a)
Activation
Activation
Target
Target
𝜑𝛼2
𝜑𝛼1
𝜑𝜏1
𝜑𝜏2
LTL𝑓
fomulae
LTL𝑓
fomulae
RCon Specification 𝑆 ≜ {𝜓1, 𝜓2, … 𝜓𝑛}
• Semantics: a specification is
• Satisfied iff an RCon is satisfied, but no violations occur
• Violated iff an RCon is violated
• Unaffected otherwise
• A specification is like a single RCon 𝑆 = 𝑆𝛼 → 𝑆τ
𝑆𝛼 =
𝑗=1
𝑆
𝜑𝛼𝑗 ; 𝑆τ =
𝑗=1
𝑆
¬(𝜑𝛼𝑗⋀¬𝜑𝜏𝑗
)
7
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
d (¬ d ∧ ¬𝐅(e))
∨ c ∧ (¬ c ∧ ¬𝐎(a))
𝑆𝛼 𝑆τ
LTL𝑓
fomula
LTL𝑓
fomula
RCon specification measurement?
𝑡𝟏 𝑡𝟐 𝑡𝟑 𝑡𝟒 … 𝑡𝒏
𝜓1 ● ● ● ● … ●
𝜓2 ● ● ● ● … ●
𝜓3 ● ● ● ● … ●
𝑆 ● ● ● ● … ●
8
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
𝒎(𝑺) ? ? ? ? … ?
Interestingess measures
• Based on probabilities [4]
– We needed to define the probability of single rules (done [5])
• We want to apply them also to entire specifications!
→ We need to define probabilities of specifications first (bear with us)
9
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
[4] Geng and Hamilton, “Interestingness measures for data mining: A survey,” ACM Comput. Surv., 2006.
[5] C., De Giacomo, DC., Maggi, Mendling, “Measuring the interestingness of temporal logic behavioral specifications in process mining,” Inf. Syst., 2021
Probability: from LTL𝑓 rules to RCon specifications
𝜑
𝜓1 ≜ 𝜑𝛼1
→ 𝜑𝜏1
𝑆 ≜ {𝜓1, 𝜓2, … , 𝜓𝑠}
↦ 𝑃(𝜑) [5]
↦ 𝑃(𝜓) [5]
↦ 𝑃 𝑆 = ?
10
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
In traces and logs!
[5] C., De Giacomo, DC., Maggi, Mendling, “Measuring the interestingness of temporal logic behavioral specifications in process mining,” Inf. Syst., 2021
Trace
Probability of an event 𝑒
in a trace 𝑡 of length 𝑛
to satisfy an LTL𝑓 formula 𝜑
• Bernoulli MLE [6]
𝑃 𝜑 𝑡 =
𝑖=1
𝑛
𝛺 𝑒𝑖, 𝜑
𝑛
,
𝛺 𝑒𝑖, 𝜑 ∈ 0,1
Log
Probability of a trace 𝑡
in a log 𝐿 of cardinality 𝑚
to satisfy an LTL𝑓 formula 𝜑
• MLE
𝑃(𝜑 𝐿 ) =
𝑖=1
𝑚
𝑃(𝑇 = 𝑡𝑖) 𝑃(𝜑 𝑡𝑖 )
Probability of an LTL𝑓 formula 𝜑
11
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Labelling
[6] Bickel and Doksum, Mathematical statistics: basic ideas and selected topics, volumes I-II package. CRC Press, 2015.
Probability of an LTL𝑓 formula 𝜑
Example: 𝜑 ≐ 𝐅(e)
Trace
𝑃 𝜑 𝑡2 =
7
9
= 0.78
12
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩
𝛺 𝑒, 𝜑 1 1 1 1 1 1 1 0 0
Trace Multiplicity 𝑃 𝜑 𝑡
𝑡1 17 0.78
𝑡2 6 0.78
𝑡3 5 0.60
𝑡4 12 0.83
𝑡5 5 0.00
Total 45
Labelling
Probability of an LTL𝑓 formula 𝜑
Example: 𝜑 ≐ 𝐅(e)
Trace
𝑃 𝜑 𝑡2 =
7
9
= 0.78
Log
𝑃(𝜑 𝐿 ) =
17
45
× 0.78 +
6
45
× 0.78 +
5
45
× 0.60 +
12
45
× 0.83 +
5
45
× 0.0
= 0.69
13
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩
𝛺 𝑒, 𝜑 1 1 1 1 1 1 1 0 0
Trace Multiplicity 𝑃 𝜑 𝑡
𝑡1 17 0.78
𝑡2 6 0.78
𝑡3 5 0.60
𝑡4 12 0.83
𝑡5 5 0.00
Total 45
Labelling
Probability of an RCon 𝝍 (activation 𝝋𝜶, target 𝝋𝝉)
Example: 𝜓 ≐ d → 𝐅(e)
14
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Trace Multiplicity 𝑃 𝝍 𝑡
𝑡1 17 1.00
𝑡2 6 0.67
𝑡3 5 1.00
𝑡4 12 NaN
𝑡5 5 NaN
Total 45
Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩
𝛺 𝑒, 𝜑𝛼 0 1 0 0 0 1 0 1 0
𝛺 𝑒, 𝜑𝜏 1 1 1 1 1 1 1 0 0
Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩
𝛺 𝑒, 𝜑𝛼 0 1 0 0 0 1 0 1 0
𝛺 𝑒, 𝜑𝜏 1 1 1 1 1 1 1 0 0
Probability of an RCon 𝝍 (activation 𝝋𝜶, target 𝝋𝝉)
Example: 𝜓 ≐ d → 𝐅(e)
Trace
𝑃 𝜓 𝑡 = 𝑃 𝜑𝜏 𝑡2 𝜑𝛼 𝑡2 =
2
2+1
= 0.67
15
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
𝜑𝜏 ¬𝜑𝜏
𝜑𝛼 11 10
¬𝜑𝛼 01 00
Trace Multiplicity 𝑃 𝝍 𝑡
𝑡1 17 1.00
𝑡2 6 0.67
𝑡3 5 1.00
𝑡4 12 NaN
𝑡5 5 NaN
Total 45
Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩
𝛺 𝑒, 𝜑𝛼 0 1 0 0 0 1 0 1 0
𝛺 𝑒, 𝜑𝜏 1 1 1 1 1 1 1 0 0
𝜴𝑹 ⅇ, 𝝍 ⨯ 1 ⨯ ⨯ ⨯ 1 ⨯ 0 ⨯
Division by 0
New
labelling
Probability of an RCon 𝝍 (activation 𝝋𝜶, target 𝝋𝝉)
Example: 𝜓 ≐ d → 𝐅(e)
Trace
𝑃 𝜓 𝑡 = 𝑃 𝜑𝜏 𝑡2 𝜑𝛼 𝑡2 =
2
2+1
= 0.67
Log
𝑃(𝜓 𝐿 ) =
17
45
× 1.0 +
6
45
× 0. 67 +
5
45
× 1.0 = 0.58
16
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
𝜑𝜏 ¬𝜑𝜏
𝜑𝛼 11 10
¬𝜑𝛼 01 00
Trace Multiplicity 𝑃 𝝍 𝑡
𝑡1 17 1.00
𝑡2 6 0.67
𝑡3 5 1.00
𝑡4 12 NaN
𝑡5 5 NaN
Total 45
Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩
𝛺 𝑒, 𝜑𝛼 0 1 0 0 0 1 0 1 0
𝛺 𝑒, 𝜑𝜏 1 1 1 1 1 1 1 0 0
𝜴𝑹 ⅇ, 𝝍 ⨯ 1 ⨯ ⨯ ⨯ 1 ⨯ 0 ⨯
New
labelling
Division by 0
Trace
Conditional probability of an event
in a trace t to satisfy the target
given the satisfaction of the
activator
• Bivariate Bernoulli MLE [1]
𝑃 𝜓 𝑡 = 𝑃(𝜑τ(𝑡)|𝜑𝛼(𝑡)) =
𝑝11
𝑝01 + 𝑝11
where
𝑝11 = 𝑃(𝜑τ(𝑡) ∩ 𝜑𝛼(𝑡)) =
𝑖=1
𝑛 𝛺(𝑒𝑖,𝜑𝛼)𝛺(𝑒𝑖,𝜑τ)
𝑛
Log
Probability of a trace t
in a log 𝐿
to satisfy an RCon 𝜓
• MLE
𝑃 𝜓 𝐿 =
𝑡∈𝐿
𝑃(𝑇 = 𝑡)𝑃(𝜓(𝑡))
Probability of an RCon 𝝍 (activation 𝝋𝜶, target 𝝋𝝉)
17
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Labelling mechanism
𝛺𝑅 𝑒, 𝜓 =
0, if 𝛺 𝑒, 𝜑𝛼 = 1 and 𝛺 𝑒, 𝜑τ = 0
1, if 𝛺 𝑒, 𝜑𝛼 = 1 and 𝛺 𝑒, 𝜑τ = 1
⨯, otherwise
[1] Dai, Ding, Wahba, “Multivariate bernoulli distribution,” Bernoulli, 2013.
Probability of a specification 𝑺
18
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩
𝛺 𝑒, 𝜑𝛼1
0 0 0 0 0 0 0 0 1
𝛺 𝑒, 𝜑𝜏2
0 0 1 1 1 1 1 1 1
𝜴 ⅇ, 𝑺𝜶 0 1 0 0 0 1 0 1 1
𝜴 ⅇ, 𝑺𝝉 0 1 1 1 1 1 1 0 1
𝛺 𝑒, 𝜑𝛼2
0 1 0 0 0 1 0 1 0
𝛺 𝑒, 𝜑𝜏2
1 1 1 1 1 1 1 0 0
𝜓1 ≐ c → 𝐎(a)
𝜓2 ≐ d → 𝐅(e)
𝑆 ≐ {𝜓1, 𝜓2}
MEMO 𝑆 ≜ 𝑆𝛼 → 𝑆τ where
𝑆𝛼 =
𝑗=1
𝑆
𝜑𝛼𝑗
; 𝑆τ =
𝑗=1
𝑆
¬(𝜑𝛼𝑗
⋀¬𝜑𝜏𝑗
)
Trace Multiplicity 𝑃 𝑆 𝒕
𝑡1 17 1.00
𝑡2 6 0.75
𝑡3 5 0.80
𝑡4 12 0.50
𝑡5 5 NaN
Total 45
Probability of a specification 𝑺
Trace: 𝑃 𝑆 𝑡 = 𝑃 𝑆τ 𝑆𝛼 =
3
3+1
= 0.75
Log: 𝑃(𝑆 𝐿 ) =
17
45
× 1.0 +
6
45
× 0.75 +
5
45
× 0.80 +
12
45
× 0.50 = 0.7
19
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩
𝛺 𝑒, 𝜑𝛼1
0 0 0 0 0 0 0 0 1
𝛺 𝑒, 𝜑𝜏2
0 0 1 1 1 1 1 1 1
𝜴 ⅇ, 𝑺𝜶 0 1 0 0 0 1 0 1 1
𝜴 ⅇ, 𝑺𝝉 0 1 1 1 1 1 1 0 1
𝛺 𝑒, 𝜑𝛼2
0 1 0 0 0 1 0 1 0
𝛺 𝑒, 𝜑𝜏2
1 1 1 1 1 1 1 0 0
𝜴 ⅇ, 𝑺𝜶 0 1 0 0 0 1 0 1 1
𝜴 ⅇ, 𝑺𝝉 0 1 1 1 1 1 1 0 1
𝜓1 ≐ c → 𝐎(a)
𝜓2 ≐ d → 𝐅(e)
𝑆 ≐ {𝜓1, 𝜓2}
Trace Multiplicity 𝑃 𝑆 𝒕
𝑡1 17 1.00
𝑡2 6 0.75
𝑡3 5 0.80
𝑡4 12 0.50
𝑡5 5 NaN
Total 45
Probability of a specification 𝑺
Trace: 𝑃 𝑆 𝑡 = 𝑃 𝑆τ 𝑆𝛼 =
3
3+1
= 0.75
Log: 𝑃(𝑆 𝐿 ) =
17
45
× 1.0 +
6
45
× 0.75 +
5
45
× 0.80 +
12
45
× 0.50 = 0.7
20
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩
𝛺 𝑒, 𝜑𝛼1
0 0 0 0 0 0 0 0 1
𝛺 𝑒, 𝜑𝜏2
0 0 1 1 1 1 1 1 1
𝜴 ⅇ, 𝑺𝜶 0 1 0 0 0 1 0 1 1
𝜴 ⅇ, 𝑺𝝉 0 1 1 1 1 1 1 0 1
𝛺 𝑒, 𝜑𝛼2
0 1 0 0 0 1 0 1 0
𝛺 𝑒, 𝜑𝜏2
1 1 1 1 1 1 1 0 0
𝜴 ⅇ, 𝑺𝜶 0 1 0 0 0 1 0 1 1
𝜴 ⅇ, 𝑺𝝉 0 1 1 1 1 1 1 0 1
𝜓1 ≐ c → 𝐎(a)
𝜓2 ≐ d → 𝐅(e)
𝑆 ≐ {𝜓1, 𝜓2}
Trace Multiplicity 𝑃 𝑆 𝒕
𝑡1 17 1.00
𝑡2 6 0.75
𝑡3 5 0.80
𝑡4 12 0.50
𝑡5 5 NaN
Total 45
Trace
Conditional probability of an event
in a trace t to satisfy the target
given the satisfaction of the
activator
• MLE
𝑃 𝑆 𝑡 = 𝑃(𝑆τ(𝑡)|𝑆𝛼(𝑡)) =
𝑝11
𝑝01 + 𝑝11
where
𝑝11 = 𝑃(𝑆τ(𝑡) ∩ 𝑆𝛼(𝑡)) =
𝑖=1
𝑛 𝛺(𝑒𝑖,𝑆𝛼)𝛺(𝑒𝑖,𝑆τ)
𝑛
Log
Probability of a trace t
in a log 𝐿
to satisfy a specification 𝑆
• MLE
𝑃 𝑆 𝐿 =
𝑡∈𝐿
𝑃(𝑇 = 𝑡)𝑃(𝑆(𝑡))
Probability of a specification 𝑺
21
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
MEMO 𝑆 ≜ 𝑆𝛼 → 𝑆τ where
𝑆𝛼 =
𝑗=1
𝑆
𝜑𝛼𝑗
; 𝑆τ =
𝑗=1
𝑆
¬(𝜑𝛼𝑗
⋀¬𝜑𝜏𝑗
)
Probability: From LTL𝑓 rules to RCon specifications
𝜑
𝜓1 ≜ 𝜑𝛼1
→ 𝜑𝜏1
𝑆 ≜ {𝜓1, 𝜓2, … , 𝜓𝑠}
↦ 𝑃(𝜑)
↦ 𝑃(𝜓) = 𝑃 𝜑𝜏 𝜑𝛼
↦ 𝑃 𝑆 = 𝑃(𝑆𝜏|𝑆𝛼)
22
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Done!
For traces and logs!
Specification measurements
23
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Measure Formula for 𝐴 ⇒ 𝐵
Support 𝑃(𝐴𝐵)
Recall 𝑃(𝐴|𝐵)
Confidence 𝑃(𝐵|𝐴)
Specificity 𝑃(¬𝐵|¬𝐴)
Lift
𝑃(𝐴𝐵)
𝑃 𝐴 𝑃(𝐵)
…
…
Measure Formula for 𝑆 (trace) Formula for 𝑆 (log)
Support 𝑃(Sα ∩ Sτ, t) 𝑃(Sα ∩ Sτ, 𝐿)
Recall 𝑃(Sα|Sτ, t) 𝑃(Sα|Sτ, 𝐿)
Confidence 𝑃(Sτ|Sα, t) 𝑃(Sτ|Sα, 𝐿)
Specificity 𝑃(¬Sτ|¬Sα, t) 𝑃(¬Sτ|¬Sα, 𝐿)
Lift
𝑃(Sα ∩ Sτ, t)
𝑃 Sα, t 𝑃(Sτ, t)
𝑃(Sα ∩ Sτ, 𝐿)
𝑃 Sα, 𝐿 𝑃(Sτ, 𝐿)
… … …
Evaluation: Discovery setup vs discovered quality
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
Discovred
specification
confidence
Confidence threshold
24
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Evaluation: Discovery setup vs discovered quality
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
Discovred
specification
confidence
Confidence threshold
JANUS
MINERful
PERRACOTTA
25
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
Recap and limitations
• Computation of quality measures
for declarative process
specifications
• Control-flow only
• Assumption of probabilistic
independence
Future work
• Multi-perspective approach
• Upgrade to Bayesian networks
• Logistic regression & statistical
analysis
• Applications of data featurization
– E.g., for trace clustering
Conclusions
26
Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
𝐿 = {⟨a, b, c, d, b, c, e, c, b⟩17,
⟨b, d, a, b, b, d, e, d, c⟩6,
⟨c, d, a, b, c, e, b, c, b, c⟩5
,
⟨b, c, a, c, e, a⟩12,
⟨b, b, b⟩5}
Log
R1: if ‘c’ occurs, then ‘a’ must have previously occurred
R2: if ‘d’ occurs, then ‘e’ must eventually occur
Rules
Confidence of R1: 82% Confidence of R2: 93%
Measures
If you consider a model consisting of R1 and R2 together, what is its confidence?
Question
79 % 82 % 87.5 % 100 %
Measurement of Rule-based
LTL𝑓 Declarative Process Specifications
4th Int. Conference on Process Mining, ICPM 2022, Bolzano (Italy)
Alessio Cecconi Claudio Di Ciccio Arik Senderovich
alessio.cecconi@wu.ac.at claudio.diciccio@uniroma1.it sariks@yorku.ca

More Related Content

PDF
Practical and Worst-Case Efficient Apportionment
PDF
My presentation at University of Nottingham "Fast low-rank methods for solvin...
PDF
Bayesian inference on mixtures
PDF
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
PDF
Triggering patterns of topology changes in dynamic attributed graphs
PDF
zkStudyClub - Improving performance of non-native arithmetic in SNARKs (Ivo K...
PDF
Low-rank tensor methods for stochastic forward and inverse problems
PDF
Slides: Jeffreys centroids for a set of weighted histograms
Practical and Worst-Case Efficient Apportionment
My presentation at University of Nottingham "Fast low-rank methods for solvin...
Bayesian inference on mixtures
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
Triggering patterns of topology changes in dynamic attributed graphs
zkStudyClub - Improving performance of non-native arithmetic in SNARKs (Ivo K...
Low-rank tensor methods for stochastic forward and inverse problems
Slides: Jeffreys centroids for a set of weighted histograms

Similar to Measurement of Rule-based LTLf Declarative Process Specifications (20)

PPT
4366 chapter7
PDF
CDT 22 slides.pdf
PDF
SIAM - Minisymposium on Guaranteed numerical algorithms
PPTX
UNIT DAA PPT cover all topics 2021 regulation
PDF
Data Smashing
PDF
Automatic bayesian cubature
PDF
ikh323-05
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
PPTX
Class 18: Measuring Cost
PDF
CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...
PDF
Automatic Bayesian method for Numerical Integration
PDF
Talk_HU_Berlin_Chiheb_benhammouda.pdf
PDF
Application of parallel hierarchical matrices and low-rank tensors in spatial...
PDF
A kernel-free particle method: Smile Problem Resolved
PDF
Efficient Random-Walk Methods forApproximating Polytope Volume
PDF
DeepXplore: Automated Whitebox Testing of Deep Learning
PPTX
04. Growth_Rate_AND_Asymptotic Notations_.pptx
PDF
Hierarchical matrix techniques for maximum likelihood covariance estimation
DOCX
Divide-and-Conquer & Dynamic ProgrammingDivide-and-Conqu.docx
4366 chapter7
CDT 22 slides.pdf
SIAM - Minisymposium on Guaranteed numerical algorithms
UNIT DAA PPT cover all topics 2021 regulation
Data Smashing
Automatic bayesian cubature
ikh323-05
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
Class 18: Measuring Cost
CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...
Automatic Bayesian method for Numerical Integration
Talk_HU_Berlin_Chiheb_benhammouda.pdf
Application of parallel hierarchical matrices and low-rank tensors in spatial...
A kernel-free particle method: Smile Problem Resolved
Efficient Random-Walk Methods forApproximating Polytope Volume
DeepXplore: Automated Whitebox Testing of Deep Learning
04. Growth_Rate_AND_Asymptotic Notations_.pptx
Hierarchical matrix techniques for maximum likelihood covariance estimation
Divide-and-Conquer & Dynamic ProgrammingDivide-and-Conqu.docx

More from Claudio Di Ciccio (16)

PDF
CAKE: Sharing Slices of Confidential Data on Blockchain
PDF
“I’m still / I’m still / Chaining from the Block”
PDF
Look but don’t touch: On the impalpable bond between blockchain and process
PDF
Blockchain and smart contracts: infrastructure and platforms
PPTX
Discovering Target-Branched Declare Constraints
PPTX
Introduction to the declarative specification of processes
PPTX
Declarative Specification of Processes: Discovery and Reasoning
PPTX
Extracting Event Logs for Process Mining from Data Stored on the Blockchain
PDF
Execution of business processes on the blockchain
PPTX
Blockchain based traceability of inter-organisational business processes
PPTX
Log-Based Understanding of Business Processes through Temporal Logic Query Ch...
PPTX
Resolving Inconsistencies and Redundancies in Declarative Process Models
PPTX
Automated Discovery of Declarative Process Models
PPTX
Semantical Vacuity Detection in Declarative Process Mining
PPTX
Detecting Flight Trajectory Anomalies and Predicting Diversions in Freight Tr...
PPTX
Ensuring Model Consistency in Declarative Process Discovery
CAKE: Sharing Slices of Confidential Data on Blockchain
“I’m still / I’m still / Chaining from the Block”
Look but don’t touch: On the impalpable bond between blockchain and process
Blockchain and smart contracts: infrastructure and platforms
Discovering Target-Branched Declare Constraints
Introduction to the declarative specification of processes
Declarative Specification of Processes: Discovery and Reasoning
Extracting Event Logs for Process Mining from Data Stored on the Blockchain
Execution of business processes on the blockchain
Blockchain based traceability of inter-organisational business processes
Log-Based Understanding of Business Processes through Temporal Logic Query Ch...
Resolving Inconsistencies and Redundancies in Declarative Process Models
Automated Discovery of Declarative Process Models
Semantical Vacuity Detection in Declarative Process Mining
Detecting Flight Trajectory Anomalies and Predicting Diversions in Freight Tr...
Ensuring Model Consistency in Declarative Process Discovery

Recently uploaded (20)

PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PDF
An interstellar mission to test astrophysical black holes
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PDF
The scientific heritage No 166 (166) (2025)
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
Cell Membrane: Structure, Composition & Functions
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
famous lake in india and its disturibution and importance
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
Biophysics 2.pdffffffffffffffffffffffffff
AlphaEarth Foundations and the Satellite Embedding dataset
Comparative Structure of Integument in Vertebrates.pptx
An interstellar mission to test astrophysical black holes
Derivatives of integument scales, beaks, horns,.pptx
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
bbec55_b34400a7914c42429908233dbd381773.pdf
The scientific heritage No 166 (166) (2025)
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
Classification Systems_TAXONOMY_SCIENCE8.pptx
Placing the Near-Earth Object Impact Probability in Context
Cell Membrane: Structure, Composition & Functions
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
7. General Toxicologyfor clinical phrmacy.pptx
famous lake in india and its disturibution and importance

Measurement of Rule-based LTLf Declarative Process Specifications

  • 1. 𝐿 = {⟨a, b, c, d, b, c, e, c, b⟩17, ⟨b, d, a, b, b, d, e, d, c⟩6, ⟨c, d, a, b, c, e, b, c, b, c⟩5 , ⟨b, c, a, c, e, a⟩12, ⟨b, b, b⟩5} Log R1: if ‘c’ occurs, then ‘a’ must have previously occurred R2: if ‘d’ occurs, then ‘e’ must eventually occur Rules Confidence of R1: 82% Confidence of R2: 93% Measures If you consider a model consisting of R1 and R2 together, what is its confidence? Question 79 % 82 % 87.5 % 100 %
  • 2. Measurement of Rule-based LTL𝑓 Declarative Process Specifications 4th Int. Conference on Process Mining, ICPM 2022, Bolzano (Italy) Alessio Cecconi Claudio Di Ciccio Arik Senderovich alessio.cecconi@wu.ac.at claudio.diciccio@uniroma1.it sariks@yorku.ca
  • 3. “If d, then e will follow” “If c, then previously a” “If d, then 𝐅(e)” “If c, then 𝐎(a)” Rule: Reactive Constraint (RCon) 𝜓 3 [1] De Giacomo and Vardi, “Linear temporal logic and linear dynamic logic on finite traces,” in IJCAI, 2013 [2] Pesic, Bosnacki, van der Aalst, “Enacting declarative languages using LTL: avoiding errors and improving performance,” in SPIN, 2010 [3] C., DC., De Giacomo, and Mendling, “Interestingness of traces in declarative process mining: The Janus LTLp f approach,” in BPM, 2018 “If a viral infection is detected, then an intravenous antiviral administration will follow” “If antibiotics are administered, then an antibiogram must have been previously registered” LTL𝑓 operator (finally) [1] LTL𝑓 operator (once) d → 𝐅(e) c → 𝐎(a) Activation Activation Target Target 𝜑𝛼1 𝜑𝛼2 𝜑𝜏1 𝜑𝜏2 LTL𝑓 fomulae LTL𝑓 fomulae Any DECLARE rule [2] can be encoded as an RCon [3]
  • 4. Rule: Reactive Constraint (RCon) 𝜓 4 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications Rule semantics (Interestingly) satisfied Violated Unaffected 𝜑𝜏 𝜑𝛼 𝜓      Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩ d → 𝐅(e) ● ● ● ● ● ● ● ● ● d → 𝐅(e) c → 𝐎(a) Activation Activation Target Target 𝜑𝛼1 𝜑𝛼2 𝜑𝜏1 𝜑𝜏2 LTL𝑓 fomulae LTL𝑓 fomulae
  • 5. Rule: Reactive Constraint (RCon) 𝜓 5 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications Rule semantics (Interestingly) satisfied Violated Unaffected 𝜑𝜏 𝜑𝛼 𝜓      Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩ d → 𝐅(e) ● ● ● ● ● ● ● ● ● d → 𝐅(e) c → 𝐎(a) Activation Activation Target Target 𝜑𝛼1 𝜑𝛼2 𝜑𝜏1 𝜑𝜏2 LTL𝑓 fomulae LTL𝑓 fomulae
  • 6. RCon Specification 𝑆 ≜ {𝜓1, 𝜓2, … 𝜓𝑛} • Semantics: a specification is • Satisfied iff an RCon is satisfied, but no violations occur • Violated iff an RCon is violated • Unaffected otherwise • A specification is like a single RCon 𝑆 = 𝑆𝛼 → 𝑆τ 𝑆𝛼 = 𝑗=1 𝑆 𝜑𝛼𝑗 ; 𝑆τ = 𝑗=1 𝑆 ¬(𝜑𝛼𝑗⋀¬𝜑𝜏𝑗 ) 6 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications d → 𝐅(e) c → 𝐎(a) Activation Activation Target Target 𝜑𝛼1 𝜑𝛼2 𝜑𝜏1 𝜑𝜏2 LTL𝑓 fomulae LTL𝑓 fomulae
  • 7. d → 𝐅(e) c → 𝐎(a) Activation Activation Target Target 𝜑𝛼2 𝜑𝛼1 𝜑𝜏1 𝜑𝜏2 LTL𝑓 fomulae LTL𝑓 fomulae RCon Specification 𝑆 ≜ {𝜓1, 𝜓2, … 𝜓𝑛} • Semantics: a specification is • Satisfied iff an RCon is satisfied, but no violations occur • Violated iff an RCon is violated • Unaffected otherwise • A specification is like a single RCon 𝑆 = 𝑆𝛼 → 𝑆τ 𝑆𝛼 = 𝑗=1 𝑆 𝜑𝛼𝑗 ; 𝑆τ = 𝑗=1 𝑆 ¬(𝜑𝛼𝑗⋀¬𝜑𝜏𝑗 ) 7 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications d (¬ d ∧ ¬𝐅(e)) ∨ c ∧ (¬ c ∧ ¬𝐎(a)) 𝑆𝛼 𝑆τ LTL𝑓 fomula LTL𝑓 fomula
  • 8. RCon specification measurement? 𝑡𝟏 𝑡𝟐 𝑡𝟑 𝑡𝟒 … 𝑡𝒏 𝜓1 ● ● ● ● … ● 𝜓2 ● ● ● ● … ● 𝜓3 ● ● ● ● … ● 𝑆 ● ● ● ● … ● 8 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications 𝒎(𝑺) ? ? ? ? … ?
  • 9. Interestingess measures • Based on probabilities [4] – We needed to define the probability of single rules (done [5]) • We want to apply them also to entire specifications! → We need to define probabilities of specifications first (bear with us) 9 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications [4] Geng and Hamilton, “Interestingness measures for data mining: A survey,” ACM Comput. Surv., 2006. [5] C., De Giacomo, DC., Maggi, Mendling, “Measuring the interestingness of temporal logic behavioral specifications in process mining,” Inf. Syst., 2021
  • 10. Probability: from LTL𝑓 rules to RCon specifications 𝜑 𝜓1 ≜ 𝜑𝛼1 → 𝜑𝜏1 𝑆 ≜ {𝜓1, 𝜓2, … , 𝜓𝑠} ↦ 𝑃(𝜑) [5] ↦ 𝑃(𝜓) [5] ↦ 𝑃 𝑆 = ? 10 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications In traces and logs! [5] C., De Giacomo, DC., Maggi, Mendling, “Measuring the interestingness of temporal logic behavioral specifications in process mining,” Inf. Syst., 2021
  • 11. Trace Probability of an event 𝑒 in a trace 𝑡 of length 𝑛 to satisfy an LTL𝑓 formula 𝜑 • Bernoulli MLE [6] 𝑃 𝜑 𝑡 = 𝑖=1 𝑛 𝛺 𝑒𝑖, 𝜑 𝑛 , 𝛺 𝑒𝑖, 𝜑 ∈ 0,1 Log Probability of a trace 𝑡 in a log 𝐿 of cardinality 𝑚 to satisfy an LTL𝑓 formula 𝜑 • MLE 𝑃(𝜑 𝐿 ) = 𝑖=1 𝑚 𝑃(𝑇 = 𝑡𝑖) 𝑃(𝜑 𝑡𝑖 ) Probability of an LTL𝑓 formula 𝜑 11 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications Labelling [6] Bickel and Doksum, Mathematical statistics: basic ideas and selected topics, volumes I-II package. CRC Press, 2015.
  • 12. Probability of an LTL𝑓 formula 𝜑 Example: 𝜑 ≐ 𝐅(e) Trace 𝑃 𝜑 𝑡2 = 7 9 = 0.78 12 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩ 𝛺 𝑒, 𝜑 1 1 1 1 1 1 1 0 0 Trace Multiplicity 𝑃 𝜑 𝑡 𝑡1 17 0.78 𝑡2 6 0.78 𝑡3 5 0.60 𝑡4 12 0.83 𝑡5 5 0.00 Total 45 Labelling
  • 13. Probability of an LTL𝑓 formula 𝜑 Example: 𝜑 ≐ 𝐅(e) Trace 𝑃 𝜑 𝑡2 = 7 9 = 0.78 Log 𝑃(𝜑 𝐿 ) = 17 45 × 0.78 + 6 45 × 0.78 + 5 45 × 0.60 + 12 45 × 0.83 + 5 45 × 0.0 = 0.69 13 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩ 𝛺 𝑒, 𝜑 1 1 1 1 1 1 1 0 0 Trace Multiplicity 𝑃 𝜑 𝑡 𝑡1 17 0.78 𝑡2 6 0.78 𝑡3 5 0.60 𝑡4 12 0.83 𝑡5 5 0.00 Total 45 Labelling
  • 14. Probability of an RCon 𝝍 (activation 𝝋𝜶, target 𝝋𝝉) Example: 𝜓 ≐ d → 𝐅(e) 14 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications Trace Multiplicity 𝑃 𝝍 𝑡 𝑡1 17 1.00 𝑡2 6 0.67 𝑡3 5 1.00 𝑡4 12 NaN 𝑡5 5 NaN Total 45 Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩ 𝛺 𝑒, 𝜑𝛼 0 1 0 0 0 1 0 1 0 𝛺 𝑒, 𝜑𝜏 1 1 1 1 1 1 1 0 0
  • 15. Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩ 𝛺 𝑒, 𝜑𝛼 0 1 0 0 0 1 0 1 0 𝛺 𝑒, 𝜑𝜏 1 1 1 1 1 1 1 0 0 Probability of an RCon 𝝍 (activation 𝝋𝜶, target 𝝋𝝉) Example: 𝜓 ≐ d → 𝐅(e) Trace 𝑃 𝜓 𝑡 = 𝑃 𝜑𝜏 𝑡2 𝜑𝛼 𝑡2 = 2 2+1 = 0.67 15 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications 𝜑𝜏 ¬𝜑𝜏 𝜑𝛼 11 10 ¬𝜑𝛼 01 00 Trace Multiplicity 𝑃 𝝍 𝑡 𝑡1 17 1.00 𝑡2 6 0.67 𝑡3 5 1.00 𝑡4 12 NaN 𝑡5 5 NaN Total 45 Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩ 𝛺 𝑒, 𝜑𝛼 0 1 0 0 0 1 0 1 0 𝛺 𝑒, 𝜑𝜏 1 1 1 1 1 1 1 0 0 𝜴𝑹 ⅇ, 𝝍 ⨯ 1 ⨯ ⨯ ⨯ 1 ⨯ 0 ⨯ Division by 0 New labelling
  • 16. Probability of an RCon 𝝍 (activation 𝝋𝜶, target 𝝋𝝉) Example: 𝜓 ≐ d → 𝐅(e) Trace 𝑃 𝜓 𝑡 = 𝑃 𝜑𝜏 𝑡2 𝜑𝛼 𝑡2 = 2 2+1 = 0.67 Log 𝑃(𝜓 𝐿 ) = 17 45 × 1.0 + 6 45 × 0. 67 + 5 45 × 1.0 = 0.58 16 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications 𝜑𝜏 ¬𝜑𝜏 𝜑𝛼 11 10 ¬𝜑𝛼 01 00 Trace Multiplicity 𝑃 𝝍 𝑡 𝑡1 17 1.00 𝑡2 6 0.67 𝑡3 5 1.00 𝑡4 12 NaN 𝑡5 5 NaN Total 45 Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩ 𝛺 𝑒, 𝜑𝛼 0 1 0 0 0 1 0 1 0 𝛺 𝑒, 𝜑𝜏 1 1 1 1 1 1 1 0 0 𝜴𝑹 ⅇ, 𝝍 ⨯ 1 ⨯ ⨯ ⨯ 1 ⨯ 0 ⨯ New labelling Division by 0
  • 17. Trace Conditional probability of an event in a trace t to satisfy the target given the satisfaction of the activator • Bivariate Bernoulli MLE [1] 𝑃 𝜓 𝑡 = 𝑃(𝜑τ(𝑡)|𝜑𝛼(𝑡)) = 𝑝11 𝑝01 + 𝑝11 where 𝑝11 = 𝑃(𝜑τ(𝑡) ∩ 𝜑𝛼(𝑡)) = 𝑖=1 𝑛 𝛺(𝑒𝑖,𝜑𝛼)𝛺(𝑒𝑖,𝜑τ) 𝑛 Log Probability of a trace t in a log 𝐿 to satisfy an RCon 𝜓 • MLE 𝑃 𝜓 𝐿 = 𝑡∈𝐿 𝑃(𝑇 = 𝑡)𝑃(𝜓(𝑡)) Probability of an RCon 𝝍 (activation 𝝋𝜶, target 𝝋𝝉) 17 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications Labelling mechanism 𝛺𝑅 𝑒, 𝜓 = 0, if 𝛺 𝑒, 𝜑𝛼 = 1 and 𝛺 𝑒, 𝜑τ = 0 1, if 𝛺 𝑒, 𝜑𝛼 = 1 and 𝛺 𝑒, 𝜑τ = 1 ⨯, otherwise [1] Dai, Ding, Wahba, “Multivariate bernoulli distribution,” Bernoulli, 2013.
  • 18. Probability of a specification 𝑺 18 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩ 𝛺 𝑒, 𝜑𝛼1 0 0 0 0 0 0 0 0 1 𝛺 𝑒, 𝜑𝜏2 0 0 1 1 1 1 1 1 1 𝜴 ⅇ, 𝑺𝜶 0 1 0 0 0 1 0 1 1 𝜴 ⅇ, 𝑺𝝉 0 1 1 1 1 1 1 0 1 𝛺 𝑒, 𝜑𝛼2 0 1 0 0 0 1 0 1 0 𝛺 𝑒, 𝜑𝜏2 1 1 1 1 1 1 1 0 0 𝜓1 ≐ c → 𝐎(a) 𝜓2 ≐ d → 𝐅(e) 𝑆 ≐ {𝜓1, 𝜓2} MEMO 𝑆 ≜ 𝑆𝛼 → 𝑆τ where 𝑆𝛼 = 𝑗=1 𝑆 𝜑𝛼𝑗 ; 𝑆τ = 𝑗=1 𝑆 ¬(𝜑𝛼𝑗 ⋀¬𝜑𝜏𝑗 ) Trace Multiplicity 𝑃 𝑆 𝒕 𝑡1 17 1.00 𝑡2 6 0.75 𝑡3 5 0.80 𝑡4 12 0.50 𝑡5 5 NaN Total 45
  • 19. Probability of a specification 𝑺 Trace: 𝑃 𝑆 𝑡 = 𝑃 𝑆τ 𝑆𝛼 = 3 3+1 = 0.75 Log: 𝑃(𝑆 𝐿 ) = 17 45 × 1.0 + 6 45 × 0.75 + 5 45 × 0.80 + 12 45 × 0.50 = 0.7 19 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩ 𝛺 𝑒, 𝜑𝛼1 0 0 0 0 0 0 0 0 1 𝛺 𝑒, 𝜑𝜏2 0 0 1 1 1 1 1 1 1 𝜴 ⅇ, 𝑺𝜶 0 1 0 0 0 1 0 1 1 𝜴 ⅇ, 𝑺𝝉 0 1 1 1 1 1 1 0 1 𝛺 𝑒, 𝜑𝛼2 0 1 0 0 0 1 0 1 0 𝛺 𝑒, 𝜑𝜏2 1 1 1 1 1 1 1 0 0 𝜴 ⅇ, 𝑺𝜶 0 1 0 0 0 1 0 1 1 𝜴 ⅇ, 𝑺𝝉 0 1 1 1 1 1 1 0 1 𝜓1 ≐ c → 𝐎(a) 𝜓2 ≐ d → 𝐅(e) 𝑆 ≐ {𝜓1, 𝜓2} Trace Multiplicity 𝑃 𝑆 𝒕 𝑡1 17 1.00 𝑡2 6 0.75 𝑡3 5 0.80 𝑡4 12 0.50 𝑡5 5 NaN Total 45
  • 20. Probability of a specification 𝑺 Trace: 𝑃 𝑆 𝑡 = 𝑃 𝑆τ 𝑆𝛼 = 3 3+1 = 0.75 Log: 𝑃(𝑆 𝐿 ) = 17 45 × 1.0 + 6 45 × 0.75 + 5 45 × 0.80 + 12 45 × 0.50 = 0.7 20 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications Trace 𝑡𝟐 ⟨ b, d, a, b, b, d, e, d, c ⟩ 𝛺 𝑒, 𝜑𝛼1 0 0 0 0 0 0 0 0 1 𝛺 𝑒, 𝜑𝜏2 0 0 1 1 1 1 1 1 1 𝜴 ⅇ, 𝑺𝜶 0 1 0 0 0 1 0 1 1 𝜴 ⅇ, 𝑺𝝉 0 1 1 1 1 1 1 0 1 𝛺 𝑒, 𝜑𝛼2 0 1 0 0 0 1 0 1 0 𝛺 𝑒, 𝜑𝜏2 1 1 1 1 1 1 1 0 0 𝜴 ⅇ, 𝑺𝜶 0 1 0 0 0 1 0 1 1 𝜴 ⅇ, 𝑺𝝉 0 1 1 1 1 1 1 0 1 𝜓1 ≐ c → 𝐎(a) 𝜓2 ≐ d → 𝐅(e) 𝑆 ≐ {𝜓1, 𝜓2} Trace Multiplicity 𝑃 𝑆 𝒕 𝑡1 17 1.00 𝑡2 6 0.75 𝑡3 5 0.80 𝑡4 12 0.50 𝑡5 5 NaN Total 45
  • 21. Trace Conditional probability of an event in a trace t to satisfy the target given the satisfaction of the activator • MLE 𝑃 𝑆 𝑡 = 𝑃(𝑆τ(𝑡)|𝑆𝛼(𝑡)) = 𝑝11 𝑝01 + 𝑝11 where 𝑝11 = 𝑃(𝑆τ(𝑡) ∩ 𝑆𝛼(𝑡)) = 𝑖=1 𝑛 𝛺(𝑒𝑖,𝑆𝛼)𝛺(𝑒𝑖,𝑆τ) 𝑛 Log Probability of a trace t in a log 𝐿 to satisfy a specification 𝑆 • MLE 𝑃 𝑆 𝐿 = 𝑡∈𝐿 𝑃(𝑇 = 𝑡)𝑃(𝑆(𝑡)) Probability of a specification 𝑺 21 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications MEMO 𝑆 ≜ 𝑆𝛼 → 𝑆τ where 𝑆𝛼 = 𝑗=1 𝑆 𝜑𝛼𝑗 ; 𝑆τ = 𝑗=1 𝑆 ¬(𝜑𝛼𝑗 ⋀¬𝜑𝜏𝑗 )
  • 22. Probability: From LTL𝑓 rules to RCon specifications 𝜑 𝜓1 ≜ 𝜑𝛼1 → 𝜑𝜏1 𝑆 ≜ {𝜓1, 𝜓2, … , 𝜓𝑠} ↦ 𝑃(𝜑) ↦ 𝑃(𝜓) = 𝑃 𝜑𝜏 𝜑𝛼 ↦ 𝑃 𝑆 = 𝑃(𝑆𝜏|𝑆𝛼) 22 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications Done! For traces and logs!
  • 23. Specification measurements 23 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications Measure Formula for 𝐴 ⇒ 𝐵 Support 𝑃(𝐴𝐵) Recall 𝑃(𝐴|𝐵) Confidence 𝑃(𝐵|𝐴) Specificity 𝑃(¬𝐵|¬𝐴) Lift 𝑃(𝐴𝐵) 𝑃 𝐴 𝑃(𝐵) … … Measure Formula for 𝑆 (trace) Formula for 𝑆 (log) Support 𝑃(Sα ∩ Sτ, t) 𝑃(Sα ∩ Sτ, 𝐿) Recall 𝑃(Sα|Sτ, t) 𝑃(Sα|Sτ, 𝐿) Confidence 𝑃(Sτ|Sα, t) 𝑃(Sτ|Sα, 𝐿) Specificity 𝑃(¬Sτ|¬Sα, t) 𝑃(¬Sτ|¬Sα, 𝐿) Lift 𝑃(Sα ∩ Sτ, t) 𝑃 Sα, t 𝑃(Sτ, t) 𝑃(Sα ∩ Sτ, 𝐿) 𝑃 Sα, 𝐿 𝑃(Sτ, 𝐿) … … …
  • 24. Evaluation: Discovery setup vs discovered quality 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 Discovred specification confidence Confidence threshold 24 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
  • 25. Evaluation: Discovery setup vs discovered quality 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 Discovred specification confidence Confidence threshold JANUS MINERful PERRACOTTA 25 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
  • 26. Recap and limitations • Computation of quality measures for declarative process specifications • Control-flow only • Assumption of probabilistic independence Future work • Multi-perspective approach • Upgrade to Bayesian networks • Logistic regression & statistical analysis • Applications of data featurization – E.g., for trace clustering Conclusions 26 Cecconi, Di Ciccio, Senderovich: Interestingness of Specifications
  • 27. 𝐿 = {⟨a, b, c, d, b, c, e, c, b⟩17, ⟨b, d, a, b, b, d, e, d, c⟩6, ⟨c, d, a, b, c, e, b, c, b, c⟩5 , ⟨b, c, a, c, e, a⟩12, ⟨b, b, b⟩5} Log R1: if ‘c’ occurs, then ‘a’ must have previously occurred R2: if ‘d’ occurs, then ‘e’ must eventually occur Rules Confidence of R1: 82% Confidence of R2: 93% Measures If you consider a model consisting of R1 and R2 together, what is its confidence? Question 79 % 82 % 87.5 % 100 %
  • 28. Measurement of Rule-based LTL𝑓 Declarative Process Specifications 4th Int. Conference on Process Mining, ICPM 2022, Bolzano (Italy) Alessio Cecconi Claudio Di Ciccio Arik Senderovich alessio.cecconi@wu.ac.at claudio.diciccio@uniroma1.it sariks@yorku.ca