Hybrid transformers (HT) have the advantages of the conventional transformer, the regulatory abilities of
power electronic converters, and reduce the impact of the grid. The impacts of the existing grid are
voltage sag, voltage swell, harmonic distortion, and voltage unbalanced. The power electronic converter
has a controllable advantage such as regulating the voltage and can transfer only a fraction of the power.
The aim of the paper is to augment the conventional power distribution transformer with a partially rated
power electronic module to enhance flexibility and introduce new features to the distribution transformer.
In this paper, the proposed back-to-back converter included an active front rectifier and a modular
multilevel converter (MMC) was simulated by MATLAB/Simulink software. The proposed back-to-back
converter was used at the primary side of the distribution transformer to compensate for the voltage sag
and swell issues. The simulation results were obtained under different conditions such as various supply
voltages and various loads. Hence, the proposed system has the ability to regulate the output voltage
under various conditions with ±10%.