6
Most read
7
Most read
11
Most read
Modeling of Electromechanical
System
•Electrical and Mechanical System Basics
•Armature Controlled D.C Motor
-Reduced Order
•Field Controlled D.C Motor
1
Electrical System
2
Component Laplace V-I Relation I-V Relation
Resistor R
Capacitor
Inductor
dt
t
di
L
t
v L
L
)
(
)
( 
dt
t
i
C
t
v c
c 
 )
(
)
(
1
R
t
i
t
v R
R )
(
)
( 
R
t
v
t
i R
R
)
(
)
( 
dt
t
dv
C
t
i c
c
)
(
)
( 
dt
t
v
L
t
i L
L 
 )
(
)
(
1
Ls
Cs
1
Basic motion concepts
v  adt ;
x  vdt ;
dt
f 
d
mv  ma N
dt
T 
d
J  J Nm
J , Moment of inertia
For rotational systems
 dt ;    dt
For translational systems
3
..
Mechanical Translational
4
5
Mechanical - Rotational
oltage
back-emf v
where e
,
e
dt
di
L
i
R
u b
b
a
a
a
a 



Mechanical Subsystem
Bω
ω
J
Tmotor 
 
Input: voltage u
Output: Angular velocity 
Electrical Subsystem (loop method):
Armature Controlled D.C Motor
u
ia
T
Ra La
J

B
eb
6
Torque-Current:
Voltage-Speed:
a
t
motor i
K
T 
• Combing previous equations results in the following mathematical
model:
Power Transformation:
ω
K
e b
b 










0
a
t
b
a
a
a
a
i
-K
B
ω
J
u
ω
K
i
R
dt
di
L


Armature Controlled D.C Motor
u
ia
T
Ra La
J

B
eb
7
Taking Laplace transform of the system’s differential equations with
zero initial conditions gives:
Eliminating Ia yields the input-output transfer function
  b
t
a
a
a
a
t
K
K
BR
s
BL
JR
Js
L
K
U(s)
Ω(s)




 2
 
 








0
(s)
I
Ω(s)-K
B
Js
U(s)
Ω(s)
K
(s)
I
R
s
L
a
t
b
a
a
a
Armature Controlled D.C Motor
8
 
 t
a K
Ω(s)
B
Js
(s)
I /


Reduced Order Model
Assuming small inductance, La 0
Armature Controlled D.C Motor
9
)
( b
t
a
a
t
K
K
BR
s
JR
K
U(s)
Ω(s)



If output of the D.C motor is angular position θ then we know
Which yields following transfer function
Armature Controlled D.C Motor
)
(
)
( s
s
s
or
dt
d


 


u
ia
T
Ra La
J
θ
B
eb
10
)]
(
[ b
t
a
a
t
K
K
BR
s
JR
s
K
U(s)
(s)




Applying KVL at field circuit
Field Controlled D.C Motor
if
Tm
Rf
Lf J
ω
B
Ra La
ea
ef
dt
di
L
R
i
e
f
f
f
f
f 

Mechanical Subsystem
Bω
ω
J
Tm 
 
11
Torque-Current: f
f
m i
K
T 
Combing previous equations and taking Laplace transform (considering
initial conditions to zero) results in the following mathematical model:
Power Transformation:











)
(
)
(
)
(
)
(
)
(
)
(
s
I
K
s
B
s
Js
s
I
sL
s
I
R
s
E
f
f
f
f
f
f
f
where Kf: torque constant
Field Controlled D.C Motor
12
If angular position θ is output of the motor
Eliminating If(S) yields
Field Controlled D.C Motor
  )
( f
f
f
f R
s
L
B
Js
K
(s)
E
Ω(s)



if
Tm
Rf
Lf J
θ
B
Ra La
ea
ef
  )
( f
f
f
f R
s
L
B
Js
s
K
(s)
E
(s)




13

More Related Content

PDF
Bode plot
PDF
Time response first order
PPTX
Root locus method
PPTX
Lecture 12 time_domain_analysis_of_control_systems
PDF
Modern Control - Lec07 - State Space Modeling of LTI Systems
PPTX
State space analysis.pptx
PDF
TIME DOMAIN ANALYSIS
PPTX
Stability of Control System
Bode plot
Time response first order
Root locus method
Lecture 12 time_domain_analysis_of_control_systems
Modern Control - Lec07 - State Space Modeling of LTI Systems
State space analysis.pptx
TIME DOMAIN ANALYSIS
Stability of Control System

What's hot (20)

PPTX
Unit 4 frequency response-Bode plot
PPTX
Root locus compensation
PPT
Bode plot
PDF
Frequency Response Analysis
PPTX
Time domain analysis
PPT
First & second order of the control systems
PDF
Introduction to control system
PDF
Bode Plots
PPT
STate Space Analysis
PPTX
Discrete Time Systems & its classifications
PPTX
Forced sensor (Sensor)
PDF
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
PPT
Root locus
PPT
PDF
TIME RESPONSE ANALYSIS
PPTX
Z Transform
PPT
Transfer function and mathematical modeling
PPT
State space analysis, eign values and eign vectors
PPTX
Stability ppt
Unit 4 frequency response-Bode plot
Root locus compensation
Bode plot
Frequency Response Analysis
Time domain analysis
First & second order of the control systems
Introduction to control system
Bode Plots
STate Space Analysis
Discrete Time Systems & its classifications
Forced sensor (Sensor)
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Root locus
TIME RESPONSE ANALYSIS
Z Transform
Transfer function and mathematical modeling
State space analysis, eign values and eign vectors
Stability ppt
Ad

Similar to modeling of system electromechanical, Armature Controlled D.C Motor -Reduced Order Field Controlled D.C Motor (20)

PPTX
lecture-6-7_modeling_of__electromechanical_systems.pptx
PPTX
Lecture 7 modelling-of__real_world_systems
PPTX
lecture-6 & 7 modelling of electrical and real world systems.pptx
PPTX
07 modelling.electric.motors
PDF
EM-I PPT (1).pdf
PPTX
ME-314- Control Engineering - Week 03-04
PPT
Chapter3&4_Chhoper fed DC MOTOR DRIVES_U1_U2_U3.ppt
PPT
DC Machines with explanation in detail of everything
DOCX
Lab manual
PPTX
Lecture6.pptx
PDF
401072 chapter 1 fundamental of electrical drives
PDF
PPT
Unit7-DC_Motors.ppt
PPTX
تحكم في الآلات الكهربائية 1.pptx
PPTX
Machines électriques a courant continu.pptx
PPT
DC Motors and Generators Construction and Working.ppt
PPT
Unit 2 -DC Motors ocnstruction and working.ppt
PPT
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
PPT
Unit7-DC_Motors.ppt
PPT
Unit7-DC_Motors.ppt
lecture-6-7_modeling_of__electromechanical_systems.pptx
Lecture 7 modelling-of__real_world_systems
lecture-6 & 7 modelling of electrical and real world systems.pptx
07 modelling.electric.motors
EM-I PPT (1).pdf
ME-314- Control Engineering - Week 03-04
Chapter3&4_Chhoper fed DC MOTOR DRIVES_U1_U2_U3.ppt
DC Machines with explanation in detail of everything
Lab manual
Lecture6.pptx
401072 chapter 1 fundamental of electrical drives
Unit7-DC_Motors.ppt
تحكم في الآلات الكهربائية 1.pptx
Machines électriques a courant continu.pptx
DC Motors and Generators Construction and Working.ppt
Unit 2 -DC Motors ocnstruction and working.ppt
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors.ppt
Unit7-DC_Motors.ppt
Ad

More from Waqas Afzal (20)

PPT
Z Transform
PPTX
Discrete Time Fourier Transform
PPTX
frequency modulation
PPTX
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
PPT
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
PPTX
Programmable Logic Controller | Ladder Logic diagrams| Block diagram | I/O Mo...
PPTX
time domain analysis, Rise Time, Delay time, Damping Ratio, Overshoot, Settli...
PPTX
state space representation,State Space Model Controllability and Observabilit...
PPTX
PID controller, P, I and D control Comparison PI, PD and PID Controller P, I,...
PPTX
modeling of system electronics, Operational Amplifier Basics Solved Examples ...
PPTX
modeling of system rotational, Basic Elements Modeling-Spring(K), Damper(D), ...
PPTX
modeling of MECHANICAL system (translational), Basic Elements Modeling-Spring...
PPTX
modeling of system electrical, Basic Elements Modeling-R,L,C Solved Examples ...
PPTX
introduction to modeling, Types of Models, Classification of mathematical mod...
PPT
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
PPT
Transfer Function, Concepts of stability(critical, Absolute & Relative) Poles...
PPTX
Signal Flow Graph, SFG and Mason Gain Formula, Example solved with Masson Gai...
PPTX
block diagram reduction with examples
PPTX
Block diagram, Transfer Function from block diagram reduction, (8 Rules to re...
PDF
automatic control, Basic Definitions, Classification of Control systems, Requ...
Z Transform
Discrete Time Fourier Transform
frequency modulation
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Programmable Logic Controller | Ladder Logic diagrams| Block diagram | I/O Mo...
time domain analysis, Rise Time, Delay time, Damping Ratio, Overshoot, Settli...
state space representation,State Space Model Controllability and Observabilit...
PID controller, P, I and D control Comparison PI, PD and PID Controller P, I,...
modeling of system electronics, Operational Amplifier Basics Solved Examples ...
modeling of system rotational, Basic Elements Modeling-Spring(K), Damper(D), ...
modeling of MECHANICAL system (translational), Basic Elements Modeling-Spring...
modeling of system electrical, Basic Elements Modeling-R,L,C Solved Examples ...
introduction to modeling, Types of Models, Classification of mathematical mod...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
Transfer Function, Concepts of stability(critical, Absolute & Relative) Poles...
Signal Flow Graph, SFG and Mason Gain Formula, Example solved with Masson Gai...
block diagram reduction with examples
Block diagram, Transfer Function from block diagram reduction, (8 Rules to re...
automatic control, Basic Definitions, Classification of Control systems, Requ...

Recently uploaded (20)

PPTX
Information Storage and Retrieval Techniques Unit III
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PPTX
communication and presentation skills 01
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PPTX
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PPTX
CyberSecurity Mobile and Wireless Devices
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PDF
August -2025_Top10 Read_Articles_ijait.pdf
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PPTX
Feature types and data preprocessing steps
PDF
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
Information Storage and Retrieval Techniques Unit III
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
communication and presentation skills 01
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
August 2025 - Top 10 Read Articles in Network Security & Its Applications
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
CyberSecurity Mobile and Wireless Devices
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
August -2025_Top10 Read_Articles_ijait.pdf
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
Feature types and data preprocessing steps
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
distributed database system" (DDBS) is often used to refer to both the distri...

modeling of system electromechanical, Armature Controlled D.C Motor -Reduced Order Field Controlled D.C Motor

  • 1. Modeling of Electromechanical System •Electrical and Mechanical System Basics •Armature Controlled D.C Motor -Reduced Order •Field Controlled D.C Motor 1
  • 2. Electrical System 2 Component Laplace V-I Relation I-V Relation Resistor R Capacitor Inductor dt t di L t v L L ) ( ) (  dt t i C t v c c   ) ( ) ( 1 R t i t v R R ) ( ) (  R t v t i R R ) ( ) (  dt t dv C t i c c ) ( ) (  dt t v L t i L L   ) ( ) ( 1 Ls Cs 1
  • 3. Basic motion concepts v  adt ; x  vdt ; dt f  d mv  ma N dt T  d J  J Nm J , Moment of inertia For rotational systems  dt ;    dt For translational systems 3 ..
  • 6. oltage back-emf v where e , e dt di L i R u b b a a a a     Mechanical Subsystem Bω ω J Tmotor    Input: voltage u Output: Angular velocity  Electrical Subsystem (loop method): Armature Controlled D.C Motor u ia T Ra La J  B eb 6
  • 7. Torque-Current: Voltage-Speed: a t motor i K T  • Combing previous equations results in the following mathematical model: Power Transformation: ω K e b b            0 a t b a a a a i -K B ω J u ω K i R dt di L   Armature Controlled D.C Motor u ia T Ra La J  B eb 7
  • 8. Taking Laplace transform of the system’s differential equations with zero initial conditions gives: Eliminating Ia yields the input-output transfer function   b t a a a a t K K BR s BL JR Js L K U(s) Ω(s)      2             0 (s) I Ω(s)-K B Js U(s) Ω(s) K (s) I R s L a t b a a a Armature Controlled D.C Motor 8    t a K Ω(s) B Js (s) I /  
  • 9. Reduced Order Model Assuming small inductance, La 0 Armature Controlled D.C Motor 9 ) ( b t a a t K K BR s JR K U(s) Ω(s)   
  • 10. If output of the D.C motor is angular position θ then we know Which yields following transfer function Armature Controlled D.C Motor ) ( ) ( s s s or dt d       u ia T Ra La J θ B eb 10 )] ( [ b t a a t K K BR s JR s K U(s) (s)    
  • 11. Applying KVL at field circuit Field Controlled D.C Motor if Tm Rf Lf J ω B Ra La ea ef dt di L R i e f f f f f   Mechanical Subsystem Bω ω J Tm    11
  • 12. Torque-Current: f f m i K T  Combing previous equations and taking Laplace transform (considering initial conditions to zero) results in the following mathematical model: Power Transformation:            ) ( ) ( ) ( ) ( ) ( ) ( s I K s B s Js s I sL s I R s E f f f f f f f where Kf: torque constant Field Controlled D.C Motor 12
  • 13. If angular position θ is output of the motor Eliminating If(S) yields Field Controlled D.C Motor   ) ( f f f f R s L B Js K (s) E Ω(s)    if Tm Rf Lf J θ B Ra La ea ef   ) ( f f f f R s L B Js s K (s) E (s)     13