SlideShare a Scribd company logo
School of Electrical and Computer Engineering
Introduction to Electronics
Module 1: Overview and
Background
An introduction to electronic components and a study of circuits
containing such devices.
Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering
School of Electrical and Computer Engineering
Review of Circuit
Elements
Review linear circuit components and properties
 Review
 Resistors, capacitors, inductors
○ i-v characteristics of these elements
 Sources, nodes
Lesson Objectives
3
Passive Elements
Resistor Capacitor Inductor
+ V -
i
R
iRV =
+ V -
C
i
dt
dV
Ci =
+ V -
L
i
dt
di
LV =
4
Series and Parallel Connections
Series Parallel
Resistors
Inductors
Capacitors
R1 R2
R = R1+R2
R1 R2
R3
3R
1
2R
1
1R
1
1
R
++
=
3C
1
2C
1
1C
1
1
C
++
=
C1 C2
C3
C1 C2 C3
C = C1+C2+C3
3L
1
2L
1
1L
1
1
L
++
=
L = L1+L2
L1 L2
L1
L2
L3
Connections and Sources
Ground Reference
for 0 volts
Node Voltage level the
same everywhere
on the node
Voltage Source Independent Dependent
Current Source Independent Dependent
+
-
6
Circuit Connections
V1
R1
R2
R3
R4
R5
+
V0
-
R6
IS V1
R1
R2
R3
R4
R5
+
V0
-
R6
IS
7
Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering
School of Electrical and Computer Engineering
Review of
Kirchoff’s Laws
Review of KVL and KCL
 Review
 Kirchhoff’s Current Law (KCL)
 Kirchhoff’s Voltage Law (KVL)
Lesson Objectives
9
Kirchhoff’s Voltage Law (KVL)
The sum of voltages
around any closed
loop is zero.
10
KVL Quiz
+
2v
-
+
4v
-
- 5v ++ -1v -
- VH +
11
KVL and Parallel Circuits
12
KVL Example
10V
2v
+ V0 -i1
i2
i3
20Ω 10Ω
5Ω
13
Kirchhoff’s Current Law (KCL)
∑ ∑= leavingentering ii
14
KCL and Series Circuits
15
KCL Example
10V
2v
+ V0 -i1
i2
i3
20Ω 10Ω
5Ω
16
 Introduced KVL and KCL
 Applied KVL to parallel elements
 Applied KCL to series elements
 Solved a simple circuit using
Kirchhoff’s Laws
Summary
17
Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering
School of Electrical and Computer Engineering
Review of
Impedance
Review of Impedance for Analyzing AC Circuits
 Review
 Impedances for steady-state sinusoidal inputs (AC)
Lesson Objectives
19
Impedances
In-phase Current leads voltage Current lags voltage
Frequency invariant
20
Impedances in Series
21
Impedances in Parallel
22
Kirchhoff’s Laws
23
Series RC
+
Vo
-
Vi
24
Series RLC
Vi
+
Vo
-
25
 Introduced KVL and KCL
 Applied KVL to parallel elements
 Applied KCL to series elements
 Solved a simple circuit using
Kirchhoff’s Laws
Summary
26
Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering
School of Electrical and Computer Engineering
Review of
Transfer Functions
Review of transfer functions for characterizing circuits
 Review transfer functions
 To characterize a circuit
 To find frequency response curves
Lesson Objectives
28
Transfer Function Two-Port Networks
Vi(t) = Ain(ωt + θin) H(ω) Vo(t) = Aoutcos(ωt + θout)
inoutinout )(HA)(HA θ+ω∠=θω=
outoutinin
oi
AAH
VVH
θ∠=θ∠ω
=ω
)(
)(
29
Summary of Simple Circuits
jRC1
1
H
ω+
=ω)(
+
Vo
-Vi
+
Vo
-
Vi
+
Vo
-
Vi jRCLC1
1
H 2
ω+ω−
=ω)(
jRC1
jRC
H
ω+
ω
=ω)(
30
 Defined transfer function for Two-Port
Networks
 Showed transfer functions of simple circuits
Summary
31
Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering
School of Electrical and Computer Engineering
Review of Frequency
Response Plots
(Bode)
Review of linear plots and Bode plots to show the frequency
characteristics of signals and circuits
 Define the frequency response for a transfer function
 Show linear plots and Bode plots
Lesson Objectives
)(ωH
Magnitude Plot: |H(ω)| vs ω
Angle Plot: ∠H(ω) vs ω
33
Frequency Response
0 200 400 600 800 1000
0
0.2
0.4
0.6
0.8
1
ω
Magnitude
0 200 400 600 800 1000
-100
-80
-60
-40
-20
0
ωAngle(deg)
Transfer Function
)tan()(
)(
)(
)(
ω−=ω∠
ω+
=ω
ω+
=ω
RCaH
RC1
1
H
jRC1
1
H
2
+
Vo
-
Vi
34
Circuit Response
Vi
Vo
0 0.05 0.1 0.15 0.2 0.25
-2
-1
0
1
2
Time (sec)
v(t)
0 0.05 0.1 0.15 0.2 0.25
-1.5
-1
-0.5
0
0.5
1
1.5
Time (sec)
v(t)
0 200 400 600 800 1000
0
0.2
0.4
0.6
0.8
1
ω
Magnitude
Vi = cos(50t) + cos(800t) Vo = 0.95cos(50t-20o) + 0.13cos(800t-85o)
0 200 400 600 800 1000
-100
-80
-60
-40
-20
0
ω
Angle(deg)
35
Bode Plots
Frequency ω (rad/sec) or f (Hz)1 10 100 1000
Frequency ω (rad/sec) or f (Hz)1 10 100 1000
36
Linear Plot and Bode Plot
10
0
10
1
10
2
10
3
-100
-80
-60
-40
-20
0
ω
Angle(deg)
10
0
10
1
10
2
10
3
-25
-20
-15
-10
-5
0
ω
Magnitude(dB)
0 200 400 600 800 1000
-100
-80
-60
-40
-20
0
ω
Angle(deg)
0 200 400 600 800 1000
0
0.2
0.4
0.6
0.8
1
ω
Magnitude
37
Bode Plot First-Order Characteristics
10
0
10
1
10
2
10
3
-100
-80
-60
-40
-20
0
ω
Angle(deg)
10
0
10
1
10
2
10
3
-25
-20
-15
-10
-5
0
ω
Magnitude(dB)
)tan()(
)(1
1
)(
1
1
)(
2
RCaH
RC
H
RCj
H
ω−=ω∠
ω+
=ω
ω+
=ω
38
Bode Plot of RLC Circuit, Overdamped
10
1
10
2
10
3
10
4
10
5
-80
-60
-40
-20
0
ω
Magnitude(dB)
10
1
10
2
10
3
10
4
10
5
-200
-150
-100
-50
0
ω
Angle(deg)
vs
+
-
vc
C
L
vs
+
-
-
R
ω+ω−
=ω
RCjLC
H
)(
)( 2
1
1
39
Bode Plot of RLC Circuit, Underdamped
10
1
10
2
10
3
10
4
10
5
-60
-40
-20
0
20
ω
Magnitude(dB)
10
1
10
2
10
3
10
4
10
5
-200
-150
-100
-50
0
ω
Angle(deg)
40
 A is a plot of the transfer function
versus frequency
 The frequency response can be used to determine the
steady-state sinusoidal response of a circuit at different
frequencies
Summary
41

More Related Content

PDF
00 bet course plan aug 2013
PPT
Unit 1 graph theory
PDF
Jntuh b.tech 3 year ece r16 syllabus
PPTX
Chapter 3 mathematical modeling
PDF
Ec 2009 scheme syllabus
PDF
Review of fourier series
PDF
PDF
NAS-Unit-5_Two Port Networks
00 bet course plan aug 2013
Unit 1 graph theory
Jntuh b.tech 3 year ece r16 syllabus
Chapter 3 mathematical modeling
Ec 2009 scheme syllabus
Review of fourier series
NAS-Unit-5_Two Port Networks

Viewers also liked (13)

PPTX
Presentation JPMC
PPTX
Question 2
PDF
Презентация Радио 54 Новосибирска
PPS
A felicidade anda por ai
PPTX
Evidence of editing finished
PPTX
Question 5
PPTX
New DOL Overtime Ruling: Are you Ready?
PDF
LA TÉCNICA DE LA TORTUGA - REGULACIÓN EMOCIONAL
PPTX
Rough cut evaluation
PPTX
презентація тема 8.
PDF
Презентация радиостанции Юнитон Новосибирск
PPTX
Cast Choice
PPTX
Location recce
Presentation JPMC
Question 2
Презентация Радио 54 Новосибирска
A felicidade anda por ai
Evidence of editing finished
Question 5
New DOL Overtime Ruling: Are you Ready?
LA TÉCNICA DE LA TORTUGA - REGULACIÓN EMOCIONAL
Rough cut evaluation
презентація тема 8.
Презентация радиостанции Юнитон Новосибирск
Cast Choice
Location recce
Ad

Similar to Module 1 ELECTRONICS (20)

PPTX
Transfer Functions-Feedback and Control System
PDF
Module 2 handouts part 1
PDF
PE315 Lecture 1 Summer 2021.pdf
PDF
Lecture-5-and-6-MIST-Spssssssssssecial (1).pdf
PPT
Control chap2
PDF
Electrical engineering principles lecture slides. circuit analysis by Maina
PPTX
BESCK104C_Module 1.pptx presentation ppt
PPT
Chapter 08.ppt Diode Circuit and applications
PDF
_4a3b3c2f3af76e42b511c6532a2e0cd0_week-3-slides.pdf
PDF
Ece 04
PDF
applications of differential equations in RL-RC electrical circuit problems
PDF
Quantum Electronic Transport : TranSiesta
PDF
Frequency domain analysis of Linear Time Invariant system
PPT
MUCLecture_2bfvsvsvsgdgr021_112434910.ppt
PPT
MUC_offer&caseLecture_2021_112434910.ppt
PPT
Circuit Theorems
PPTX
Basic Electrical (Short Course).pptx
PPTX
Linear circuit analysis Lecture 05 -1.pptx
PDF
basic-electrical-engineering-all-unit-notes.pdf
Transfer Functions-Feedback and Control System
Module 2 handouts part 1
PE315 Lecture 1 Summer 2021.pdf
Lecture-5-and-6-MIST-Spssssssssssecial (1).pdf
Control chap2
Electrical engineering principles lecture slides. circuit analysis by Maina
BESCK104C_Module 1.pptx presentation ppt
Chapter 08.ppt Diode Circuit and applications
_4a3b3c2f3af76e42b511c6532a2e0cd0_week-3-slides.pdf
Ece 04
applications of differential equations in RL-RC electrical circuit problems
Quantum Electronic Transport : TranSiesta
Frequency domain analysis of Linear Time Invariant system
MUCLecture_2bfvsvsvsgdgr021_112434910.ppt
MUC_offer&caseLecture_2021_112434910.ppt
Circuit Theorems
Basic Electrical (Short Course).pptx
Linear circuit analysis Lecture 05 -1.pptx
basic-electrical-engineering-all-unit-notes.pdf
Ad

More from Army Public School and College -Faisal (20)

PPTX
INPUT AND OUTPUT DEVICES
PPTX
INPUT AND OUTPUT DEVICES
PDF
Module 2 handouts part 2
DOCX
Cookies may be set by the website you are visiting
PPT
Boolean and comparison_instructions
PPTX
Object Oriented Programming
PPTX
Lecture 1 progrmming with C
PPT
Parallel processing Concepts

Recently uploaded (20)

PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Well-logging-methods_new................
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
DOCX
573137875-Attendance-Management-System-original
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPT
Project quality management in manufacturing
PDF
Digital Logic Computer Design lecture notes
PPTX
Welding lecture in detail for understanding
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
PPT on Performance Review to get promotions
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
UNIT 4 Total Quality Management .pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Well-logging-methods_new................
Embodied AI: Ushering in the Next Era of Intelligent Systems
573137875-Attendance-Management-System-original
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Model Code of Practice - Construction Work - 21102022 .pdf
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
bas. eng. economics group 4 presentation 1.pptx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Project quality management in manufacturing
Digital Logic Computer Design lecture notes
Welding lecture in detail for understanding
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPT on Performance Review to get promotions
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
CH1 Production IntroductoryConcepts.pptx
UNIT 4 Total Quality Management .pptx

Module 1 ELECTRONICS

  • 1. School of Electrical and Computer Engineering Introduction to Electronics Module 1: Overview and Background An introduction to electronic components and a study of circuits containing such devices.
  • 2. Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering School of Electrical and Computer Engineering Review of Circuit Elements Review linear circuit components and properties
  • 3.  Review  Resistors, capacitors, inductors ○ i-v characteristics of these elements  Sources, nodes Lesson Objectives 3
  • 4. Passive Elements Resistor Capacitor Inductor + V - i R iRV = + V - C i dt dV Ci = + V - L i dt di LV = 4
  • 5. Series and Parallel Connections Series Parallel Resistors Inductors Capacitors R1 R2 R = R1+R2 R1 R2 R3 3R 1 2R 1 1R 1 1 R ++ = 3C 1 2C 1 1C 1 1 C ++ = C1 C2 C3 C1 C2 C3 C = C1+C2+C3 3L 1 2L 1 1L 1 1 L ++ = L = L1+L2 L1 L2 L1 L2 L3
  • 6. Connections and Sources Ground Reference for 0 volts Node Voltage level the same everywhere on the node Voltage Source Independent Dependent Current Source Independent Dependent + - 6
  • 8. Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering School of Electrical and Computer Engineering Review of Kirchoff’s Laws Review of KVL and KCL
  • 9.  Review  Kirchhoff’s Current Law (KCL)  Kirchhoff’s Voltage Law (KVL) Lesson Objectives 9
  • 10. Kirchhoff’s Voltage Law (KVL) The sum of voltages around any closed loop is zero. 10
  • 11. KVL Quiz + 2v - + 4v - - 5v ++ -1v - - VH + 11
  • 12. KVL and Parallel Circuits 12
  • 13. KVL Example 10V 2v + V0 -i1 i2 i3 20Ω 10Ω 5Ω 13
  • 14. Kirchhoff’s Current Law (KCL) ∑ ∑= leavingentering ii 14
  • 15. KCL and Series Circuits 15
  • 16. KCL Example 10V 2v + V0 -i1 i2 i3 20Ω 10Ω 5Ω 16
  • 17.  Introduced KVL and KCL  Applied KVL to parallel elements  Applied KCL to series elements  Solved a simple circuit using Kirchhoff’s Laws Summary 17
  • 18. Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering School of Electrical and Computer Engineering Review of Impedance Review of Impedance for Analyzing AC Circuits
  • 19.  Review  Impedances for steady-state sinusoidal inputs (AC) Lesson Objectives 19
  • 20. Impedances In-phase Current leads voltage Current lags voltage Frequency invariant 20
  • 26.  Introduced KVL and KCL  Applied KVL to parallel elements  Applied KCL to series elements  Solved a simple circuit using Kirchhoff’s Laws Summary 26
  • 27. Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering School of Electrical and Computer Engineering Review of Transfer Functions Review of transfer functions for characterizing circuits
  • 28.  Review transfer functions  To characterize a circuit  To find frequency response curves Lesson Objectives 28
  • 29. Transfer Function Two-Port Networks Vi(t) = Ain(ωt + θin) H(ω) Vo(t) = Aoutcos(ωt + θout) inoutinout )(HA)(HA θ+ω∠=θω= outoutinin oi AAH VVH θ∠=θ∠ω =ω )( )( 29
  • 30. Summary of Simple Circuits jRC1 1 H ω+ =ω)( + Vo -Vi + Vo - Vi + Vo - Vi jRCLC1 1 H 2 ω+ω− =ω)( jRC1 jRC H ω+ ω =ω)( 30
  • 31.  Defined transfer function for Two-Port Networks  Showed transfer functions of simple circuits Summary 31
  • 32. Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering School of Electrical and Computer Engineering Review of Frequency Response Plots (Bode) Review of linear plots and Bode plots to show the frequency characteristics of signals and circuits
  • 33.  Define the frequency response for a transfer function  Show linear plots and Bode plots Lesson Objectives )(ωH Magnitude Plot: |H(ω)| vs ω Angle Plot: ∠H(ω) vs ω 33
  • 34. Frequency Response 0 200 400 600 800 1000 0 0.2 0.4 0.6 0.8 1 ω Magnitude 0 200 400 600 800 1000 -100 -80 -60 -40 -20 0 ωAngle(deg) Transfer Function )tan()( )( )( )( ω−=ω∠ ω+ =ω ω+ =ω RCaH RC1 1 H jRC1 1 H 2 + Vo - Vi 34
  • 35. Circuit Response Vi Vo 0 0.05 0.1 0.15 0.2 0.25 -2 -1 0 1 2 Time (sec) v(t) 0 0.05 0.1 0.15 0.2 0.25 -1.5 -1 -0.5 0 0.5 1 1.5 Time (sec) v(t) 0 200 400 600 800 1000 0 0.2 0.4 0.6 0.8 1 ω Magnitude Vi = cos(50t) + cos(800t) Vo = 0.95cos(50t-20o) + 0.13cos(800t-85o) 0 200 400 600 800 1000 -100 -80 -60 -40 -20 0 ω Angle(deg) 35
  • 36. Bode Plots Frequency ω (rad/sec) or f (Hz)1 10 100 1000 Frequency ω (rad/sec) or f (Hz)1 10 100 1000 36
  • 37. Linear Plot and Bode Plot 10 0 10 1 10 2 10 3 -100 -80 -60 -40 -20 0 ω Angle(deg) 10 0 10 1 10 2 10 3 -25 -20 -15 -10 -5 0 ω Magnitude(dB) 0 200 400 600 800 1000 -100 -80 -60 -40 -20 0 ω Angle(deg) 0 200 400 600 800 1000 0 0.2 0.4 0.6 0.8 1 ω Magnitude 37
  • 38. Bode Plot First-Order Characteristics 10 0 10 1 10 2 10 3 -100 -80 -60 -40 -20 0 ω Angle(deg) 10 0 10 1 10 2 10 3 -25 -20 -15 -10 -5 0 ω Magnitude(dB) )tan()( )(1 1 )( 1 1 )( 2 RCaH RC H RCj H ω−=ω∠ ω+ =ω ω+ =ω 38
  • 39. Bode Plot of RLC Circuit, Overdamped 10 1 10 2 10 3 10 4 10 5 -80 -60 -40 -20 0 ω Magnitude(dB) 10 1 10 2 10 3 10 4 10 5 -200 -150 -100 -50 0 ω Angle(deg) vs + - vc C L vs + - - R ω+ω− =ω RCjLC H )( )( 2 1 1 39
  • 40. Bode Plot of RLC Circuit, Underdamped 10 1 10 2 10 3 10 4 10 5 -60 -40 -20 0 20 ω Magnitude(dB) 10 1 10 2 10 3 10 4 10 5 -200 -150 -100 -50 0 ω Angle(deg) 40
  • 41.  A is a plot of the transfer function versus frequency  The frequency response can be used to determine the steady-state sinusoidal response of a circuit at different frequencies Summary 41