SlideShare a Scribd company logo
4
Most read
7
Most read
13
Most read
Problems on Modulation
techniques
Quote of the day
“Any man who reads too much and uses his
own brain too little falls into lazy habits of
thinking.”
― Albert Einstein
Important formulae to solve AM problems
c
m
E
E
m 
c
c
c
c f
t
E
t
e 

 2
where
)
cos(
)
( 

t
E
t
e m
m
m 
cos
)
( 
m
c E
E
E 

max m
c E
E
E 

min
min
max
min
max
E
E
E
E
m




c
c
total
t P
m
m
E
P 



















2
1
2
1
2
2
2
2
)
( c
c
USB
LSB P
m
E
m
P
P
4
8
2
2
2



 
  2
2
2
2
2
2
1
2
/
efficiency
on
transmissi
m
m
P
m
P
m
c
c




m
f
2
Bandwidth  1
R
for
2
2
2
2
2
2




 c
c
c
E
c
E
P
R
E
R
P
c
For an AM, amplitude of modulating signal is 0.5 V and
carrier amplitude is 1V.Find Modulation Index.
c
m
E
E
m 

Solution: Ec = 1 V and Em = 0.5 V
We know that
1
5
.
0

m
5
.
0

m
When the modulation percentage is 75%, an AM transmitter
radiates 10KW Power. How much of this is carrier Power?
Solution: Pt = 10 KW and m=0.75
c
total
t P
m
P 









2
1
2
)
(
We know that











2
1
2
)
(
m
P
P total
t
c
W
Pc
3
10
8
.
7 














2
75
.
0
1
10
10
2
3
c
P
KW
Pc 8
.
7


An AM transmitter radiates 20KW. If the modulation Index is
0.7. Find the carrier Power.(June-July2009(2002 scheme))
Solution: Pt = 20 KW and m=0.7
We know that
c
total
t P
m
P 









2
1
2
)
(











2
1
2
)
(
m
P
P total
t
c
W
Pc
3
10
064
.
16 














2
7
.
0
1
10
20
2
3
c
P
KW
Pc 064
.
16


The total Power content of an AM signal is 1000W.
Determine the power being transmitted at carrier
frequency and at each side bands when modulation
percentage is 100%. .(Dec 2014-Jan 2015)
Solution: Pt = 1000 W and m=1
c
total
t P
m
P 









2
1
2
)
(
We know that











2
1
2
)
(
m
P
P total
t
c
W
Pc 67
.
666














2
1
1
10
1
2
3
c
P
c
LSB
USB P
m
P
P 









4
2
67
.
666
4
1








 LSB
USB P
P
W
Pc 67
.
166


A500W, 100KHz carrier is modulated to a depth of 60% by
modulating frequency of 1KHz. Calculate the total power
transmitted. What are the sideband components of AM
Wave?(Dec –Jan 2010(2006 scheme))
Solution: Pc = 500 W, fc =100 KHz, m = 60% = .6 and fm =1 KHz
We know that
c
total
t P
m
P 









2
1
2
)
( 500
2
6
.
0
1
2
)
( 









 total
t
P
W
P total
t 590
)
( 

m
c
USB f
f
f 

 m
c
LSB f
f
f 


We know that
KHz
fUSB 101

 KHz
fLSB 99


A400W, 1MHz carrier is amplitude-modulated with a sinusoidal
signal 0f 2500Hz. The depth of modulation is 75%. Calculate the
sideband frequencies, bandwidth, and power in sidebands and
the total power in modulated wave. (June-July2008(2006 scheme))
Solution: Pc = 400 W, fc =1 MHz, m = 75% = .75 and fm =2.5 KHz
We know that
c
total
t P
m
P 









2
1
2
)
( 400
2
75
.
0
1
2
)
( 









 total
t
P
W
P total
t 5
.
512
)
( 

m
c
USB f
f
f 

 m
c
LSB f
f
f 


We know that
KHz
fUSB 5
.
1002

 KHz
fLSB 5
.
997


c
LSB
USB P
m
P
P 









4
2
400
4
75
.
0 2









 LSB
USB P
P W
25
.
56

m
f
BW 2


KHz
KHz
BW 5
5
.
2
2 



A Carrier of 750 W,1MHz is amplitude modulated by sinusoidal
signal of 2 KHz to a depth of 50%. Calculate Bandwidth, Power in
side band and total power transmitted.
Solution: Pc = 750 W, fc =1 MHz, m = 50% = .5 and fm =2 KHz
We know that
c
total
t P
m
P 









2
1
2
)
( 750
2
5
.
0
1
2
)
( 









 total
t
P
W
P total
t 75
.
843
)
( 

m
c
USB f
f
f 

 m
c
LSB f
f
f 


We know that
KHz
fUSB 1002

 KHz
fLSB 998


c
LSB
USB P
m
P
P 









4
2
750
4
5
.
0 2









 LSB
USB P
P W
875
.
46

KHz
f
BW m 4
2 


 KHz
f
f
BW LSB
USB 4




Calculate the percentage power saving when one side
band and carrier is suppressed in an AM signal with
modulation index equal to 1.(VTU Model QP-2014)
c
c
total
t P
P
m
P
2
3
2
1
2
)
( 










c
c
P
P
2
3
4
5
saved
power
of
Amount 
LSB
c P
P
P 

suppressed
12
10
 833
.
0
 %
3
.
83

Solution: m = 1
We know that
c
c P
m
P
P 










4
2
suppressed c
c
c P
P
P
P
4
5
4
1
suppressed 









total
P
Psuppressed
saved
power
of
Amount 
Calculate the percentage power saving when one side
band and carrier is suppressed in an AM signal if
percentage of modulation is 50%.
c
c
total
t P
P
m
P
8
9
2
1
2
)
( 










c
c
P
P
16
17
8
9
saved
power
of
Amount 
LSB
c P
P
P 

suppressed
17
8
16
9


 944
.
0
 %
4
.
94

Solution: m = 0.5
We know that
c
c P
m
P
P 










4
2
suppressed c
c
c P
P
P
P
16
17
16
1
suppressed 









total
P
Psuppressed
saved
power
of
Amount 
A Sinusoidal carrier frequency of 1.2MHz is amplitude modulated by a
sinusoidal voltage of frequency 20KHz resulting in maximum and
minimum modulated carrier amplitude of 110V & 90V respectively.
Calculate
I. frequency of lower and upper side bands
II. unmodulated carrier amplitude
III. Modulation index IV. Amplitude of each side band.
Solution: fc =1.2 MHz, Emax = 110V, Emin = 90V and fm =20 KHz
We know that
m
c
USB f
f
f 

 m
c
LSB f
f
f 


KHz
fUSB 1220

 KHz
fLSB 1180


min
max
min
max
also
E
E
E
E
m



2
min
max E
E
Ec


2
& min
max E
E
Em


We also know that
2
90
110

c
E V
Ec 100

2
90
110

 m
E V
Em 10


90
110
90
110



m 1
.
0

m
An audio frequency signal 10 sin(2π×500t) is used to amplitude
modulate a carrier of 50 sin(2π×105t).Calculate. (JAN2015)
Solution: fm =500 Hz , Em = 10V, fc =100 KHz and Ec = 50V.
We know that m
c
USB f
f
f 

 m
c
LSB f
f
f 


KHz
fUSB 5
.
100

 KHz
fLSB 5
.
99


R
E
P c


2
power
carrier
also
2
c
c
m
E
E
m 
2
band
side
of
Amplitude c
mE

We also know that
50
10

m %
50
2
.
0 

m
2
50
2
.
0 
 V
5

600
2
2500


c
P 08
.
2

I.frequency of side bands
II. Bandwidth
III. Modulation index
IV. Amplitude of each side band.
V. Transmission efficiency
VI. Total power delivered to a load of 600Ω.
m
f
BW 2


KHz
Hz
BW 1
500
2 



c
P
m
P 









2
1
power
total
and
2
t
125
.
2

 t
P
2
2
2
eff.
m
m


Transmission
Efficiency
2
2
2
.
0
2
2
.
0
eff.


%
96
.
1
196
.
0
eff. 


More Related Content

PDF
AM - Modulator and Demodulator
PPTX
Lecture Notes: EEEC6440315 Communication Systems - Inter Symbol Interference...
PPSX
Chapter 2 signals and spectra,
PPT
Chapter 4
PPTX
Ec8491 CT - Unit 1 - Single Sideband Suppressed Carrier (SSB-SC)
PPT
Amplitude modulation
PPT
Chapter 4 frequency modulation
PPTX
Generation of SSB and DSB_SC Modulation
AM - Modulator and Demodulator
Lecture Notes: EEEC6440315 Communication Systems - Inter Symbol Interference...
Chapter 2 signals and spectra,
Chapter 4
Ec8491 CT - Unit 1 - Single Sideband Suppressed Carrier (SSB-SC)
Amplitude modulation
Chapter 4 frequency modulation
Generation of SSB and DSB_SC Modulation

What's hot (20)

DOC
Chap 5
PDF
Companding & Pulse Code Modulation
PDF
Solved problems in waveguides
PDF
Introduction to Digital Signal Processing
PPTX
Introduction to equalization
PPTX
Delta modulation
PPTX
Types of Sampling in Analog Communication
PPTX
PPTX
8051 Microcontroller ppt
PPT
Multiple access techniques for wireless communications
PPTX
M ary psk and m ary qam ppt
PPTX
M ary psk modulation
PPTX
Chebyshev filter
PPTX
Digital modulation techniques...
PPT
Phase modulation
PPTX
Double SideBand Suppressed Carrier (DSB-SC)
PPTX
Power amplifiers
PDF
Design of IIR filters
PDF
Digital Modulation Unit 3
Chap 5
Companding & Pulse Code Modulation
Solved problems in waveguides
Introduction to Digital Signal Processing
Introduction to equalization
Delta modulation
Types of Sampling in Analog Communication
8051 Microcontroller ppt
Multiple access techniques for wireless communications
M ary psk and m ary qam ppt
M ary psk modulation
Chebyshev filter
Digital modulation techniques...
Phase modulation
Double SideBand Suppressed Carrier (DSB-SC)
Power amplifiers
Design of IIR filters
Digital Modulation Unit 3
Ad

Similar to Numerical Problems on Ampitude Modulation (20)

PDF
Communication Engineering class-5
PDF
NUmerical_Modulation index_techniques.pdf
PDF
am modulation description and diagrams.pdf
PPTX
Solved numericals on Am of the robaotics and artificial intelligence subject ...
PPTX
expanded each concept in the presentation to offer broader and clearer explan...
PDF
Lec. 4-AM - Part2_DSB-WC.pdf analog comm
DOC
6b5b68e90e cos tutorial 3
PDF
L2 fundamentals of amplitude modulation notes
PPTX
Amplitude modulation and Demodulation Techniques
PDF
Amplitude modulated-systems
PPT
Business utiliity plan for business management
PDF
2 Amplitude_Modulation.pdf
PDF
COMMUNICATION THEORY
PDF
blake sample-problems
PDF
Communication Engineering class 4
PDF
analog communication and introduction of AM
PDF
2766280 4 lecture4nee2107
PDF
introduction to communication Cha two ppt
PDF
Analog and digital communication 2 marks
PDF
COMMUNICATION SYSTEM_Module-2_part1 (1).pdf
Communication Engineering class-5
NUmerical_Modulation index_techniques.pdf
am modulation description and diagrams.pdf
Solved numericals on Am of the robaotics and artificial intelligence subject ...
expanded each concept in the presentation to offer broader and clearer explan...
Lec. 4-AM - Part2_DSB-WC.pdf analog comm
6b5b68e90e cos tutorial 3
L2 fundamentals of amplitude modulation notes
Amplitude modulation and Demodulation Techniques
Amplitude modulated-systems
Business utiliity plan for business management
2 Amplitude_Modulation.pdf
COMMUNICATION THEORY
blake sample-problems
Communication Engineering class 4
analog communication and introduction of AM
2766280 4 lecture4nee2107
introduction to communication Cha two ppt
Analog and digital communication 2 marks
COMMUNICATION SYSTEM_Module-2_part1 (1).pdf
Ad

Recently uploaded (20)

PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
Welding lecture in detail for understanding
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
web development for engineering and engineering
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
PPT on Performance Review to get promotions
PPT
Project quality management in manufacturing
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Geodesy 1.pptx...............................................
PPTX
Sustainable Sites - Green Building Construction
R24 SURVEYING LAB MANUAL for civil enggi
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Welding lecture in detail for understanding
Automation-in-Manufacturing-Chapter-Introduction.pdf
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
web development for engineering and engineering
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPT on Performance Review to get promotions
Project quality management in manufacturing
bas. eng. economics group 4 presentation 1.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Geodesy 1.pptx...............................................
Sustainable Sites - Green Building Construction

Numerical Problems on Ampitude Modulation

  • 1. Problems on Modulation techniques Quote of the day “Any man who reads too much and uses his own brain too little falls into lazy habits of thinking.” ― Albert Einstein
  • 2. Important formulae to solve AM problems c m E E m  c c c c f t E t e    2 where ) cos( ) (   t E t e m m m  cos ) (  m c E E E   max m c E E E   min min max min max E E E E m     c c total t P m m E P                     2 1 2 1 2 2 2 2 ) ( c c USB LSB P m E m P P 4 8 2 2 2        2 2 2 2 2 2 1 2 / efficiency on transmissi m m P m P m c c     m f 2 Bandwidth  1 R for 2 2 2 2 2 2      c c c E c E P R E R P c
  • 3. For an AM, amplitude of modulating signal is 0.5 V and carrier amplitude is 1V.Find Modulation Index. c m E E m   Solution: Ec = 1 V and Em = 0.5 V We know that 1 5 . 0  m 5 . 0  m
  • 4. When the modulation percentage is 75%, an AM transmitter radiates 10KW Power. How much of this is carrier Power? Solution: Pt = 10 KW and m=0.75 c total t P m P           2 1 2 ) ( We know that            2 1 2 ) ( m P P total t c W Pc 3 10 8 . 7                2 75 . 0 1 10 10 2 3 c P KW Pc 8 . 7  
  • 5. An AM transmitter radiates 20KW. If the modulation Index is 0.7. Find the carrier Power.(June-July2009(2002 scheme)) Solution: Pt = 20 KW and m=0.7 We know that c total t P m P           2 1 2 ) (            2 1 2 ) ( m P P total t c W Pc 3 10 064 . 16                2 7 . 0 1 10 20 2 3 c P KW Pc 064 . 16  
  • 6. The total Power content of an AM signal is 1000W. Determine the power being transmitted at carrier frequency and at each side bands when modulation percentage is 100%. .(Dec 2014-Jan 2015) Solution: Pt = 1000 W and m=1 c total t P m P           2 1 2 ) ( We know that            2 1 2 ) ( m P P total t c W Pc 67 . 666               2 1 1 10 1 2 3 c P c LSB USB P m P P           4 2 67 . 666 4 1          LSB USB P P W Pc 67 . 166  
  • 7. A500W, 100KHz carrier is modulated to a depth of 60% by modulating frequency of 1KHz. Calculate the total power transmitted. What are the sideband components of AM Wave?(Dec –Jan 2010(2006 scheme)) Solution: Pc = 500 W, fc =100 KHz, m = 60% = .6 and fm =1 KHz We know that c total t P m P           2 1 2 ) ( 500 2 6 . 0 1 2 ) (            total t P W P total t 590 ) (   m c USB f f f    m c LSB f f f    We know that KHz fUSB 101   KHz fLSB 99  
  • 8. A400W, 1MHz carrier is amplitude-modulated with a sinusoidal signal 0f 2500Hz. The depth of modulation is 75%. Calculate the sideband frequencies, bandwidth, and power in sidebands and the total power in modulated wave. (June-July2008(2006 scheme)) Solution: Pc = 400 W, fc =1 MHz, m = 75% = .75 and fm =2.5 KHz We know that c total t P m P           2 1 2 ) ( 400 2 75 . 0 1 2 ) (            total t P W P total t 5 . 512 ) (   m c USB f f f    m c LSB f f f    We know that KHz fUSB 5 . 1002   KHz fLSB 5 . 997   c LSB USB P m P P           4 2 400 4 75 . 0 2           LSB USB P P W 25 . 56  m f BW 2   KHz KHz BW 5 5 . 2 2    
  • 9. A Carrier of 750 W,1MHz is amplitude modulated by sinusoidal signal of 2 KHz to a depth of 50%. Calculate Bandwidth, Power in side band and total power transmitted. Solution: Pc = 750 W, fc =1 MHz, m = 50% = .5 and fm =2 KHz We know that c total t P m P           2 1 2 ) ( 750 2 5 . 0 1 2 ) (            total t P W P total t 75 . 843 ) (   m c USB f f f    m c LSB f f f    We know that KHz fUSB 1002   KHz fLSB 998   c LSB USB P m P P           4 2 750 4 5 . 0 2           LSB USB P P W 875 . 46  KHz f BW m 4 2     KHz f f BW LSB USB 4    
  • 10. Calculate the percentage power saving when one side band and carrier is suppressed in an AM signal with modulation index equal to 1.(VTU Model QP-2014) c c total t P P m P 2 3 2 1 2 ) (            c c P P 2 3 4 5 saved power of Amount  LSB c P P P   suppressed 12 10  833 . 0  % 3 . 83  Solution: m = 1 We know that c c P m P P            4 2 suppressed c c c P P P P 4 5 4 1 suppressed           total P Psuppressed saved power of Amount 
  • 11. Calculate the percentage power saving when one side band and carrier is suppressed in an AM signal if percentage of modulation is 50%. c c total t P P m P 8 9 2 1 2 ) (            c c P P 16 17 8 9 saved power of Amount  LSB c P P P   suppressed 17 8 16 9    944 . 0  % 4 . 94  Solution: m = 0.5 We know that c c P m P P            4 2 suppressed c c c P P P P 16 17 16 1 suppressed           total P Psuppressed saved power of Amount 
  • 12. A Sinusoidal carrier frequency of 1.2MHz is amplitude modulated by a sinusoidal voltage of frequency 20KHz resulting in maximum and minimum modulated carrier amplitude of 110V & 90V respectively. Calculate I. frequency of lower and upper side bands II. unmodulated carrier amplitude III. Modulation index IV. Amplitude of each side band. Solution: fc =1.2 MHz, Emax = 110V, Emin = 90V and fm =20 KHz We know that m c USB f f f    m c LSB f f f    KHz fUSB 1220   KHz fLSB 1180   min max min max also E E E E m    2 min max E E Ec   2 & min max E E Em   We also know that 2 90 110  c E V Ec 100  2 90 110   m E V Em 10   90 110 90 110    m 1 . 0  m
  • 13. An audio frequency signal 10 sin(2π×500t) is used to amplitude modulate a carrier of 50 sin(2π×105t).Calculate. (JAN2015) Solution: fm =500 Hz , Em = 10V, fc =100 KHz and Ec = 50V. We know that m c USB f f f    m c LSB f f f    KHz fUSB 5 . 100   KHz fLSB 5 . 99   R E P c   2 power carrier also 2 c c m E E m  2 band side of Amplitude c mE  We also know that 50 10  m % 50 2 . 0   m 2 50 2 . 0   V 5  600 2 2500   c P 08 . 2  I.frequency of side bands II. Bandwidth III. Modulation index IV. Amplitude of each side band. V. Transmission efficiency VI. Total power delivered to a load of 600Ω. m f BW 2   KHz Hz BW 1 500 2     c P m P           2 1 power total and 2 t 125 . 2   t P 2 2 2 eff. m m   Transmission Efficiency 2 2 2 . 0 2 2 . 0 eff.   % 96 . 1 196 . 0 eff.  