SlideShare a Scribd company logo
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 6 Ver. III (Nov. - Dec. 2015), PP 44-49
www.iosrjournals.org
DOI: 10.9790/5728-11634449 www.iosrjournals.org 44 | Page
On Certain Classess of Multivalent Functions
P. N. Kamble, M.G.Shrigan
1
Department of Mathematics Dr. Babasaheb Ambedkar Marathwada University, Aurangabad – 431004, (M.S.),
India
2
Department of Mathematics Dr D Y Patil School of Engineering & Technology, Pune - 412205, (M.S.), India
Abstract: In this we defined certain analytic p-valent function with negative type denoted by 𝜏 𝑝 . We obtained
sharp results concerning coefficient bounds, distortion theorem belonging to the class 𝜏 𝑝 .
Keywords: p-valent function, distortion theorem, convexity.
Mathematics Subject Classification (2000): 30C45, 30C50
I. Introduction
Let A (p) denote the class of f normalized univalent functions of the form
f z = zp
+ an+pzn+p
∞
n=1
, (an+p ≥ 0, p ∈ ℕ = {1,2,3, … }) (1.1)
analytic and p-valent in the unit disc E = {z : z  C;|z| < 1}.
A function f(z) Є A (p) is said to in the class of Sp
∗
() p-valently starlike function of order α (0 ≤ α < p)
if it satisfies, for z  E, the condition
1.2)(





f(z)
(z)fz
Re
'
Furthermore, a function f(z)  A (p) is said to in the class 𝒦p() of p-valently convex function of
order α (0 ≤ α < p) if it satisfies, for z  E, the condition
1.3)(1 








(z)f
(z)fz
Re '
''
It follows from the definition (1.2) and (1.3) that
f(z) 𝒦p() ⇔
zf ′ z
p
 Sp
∗
() (0 ≤ α < p) (1.4)
whose special case, when  = 0 is the familiar Alexander theorem (see for example [1] p.43, Theorem 2.12). We
also note that
𝒦p   Sp
∗
 (0 ≤ α < p)
Sp
∗
  Sp
∗
0  Sp
∗
( 0 ≤ α < p)
and
𝒦p   𝒦p 0  𝒦p (0 ≤ α < p)
Where Sp
∗
and 𝒦p denote the subclasses of A (p) consisting of p-valently starlike and convex functions
in unit disk E respectively.
Let τp(, ) denote the subclass of A (p) consisting of functions analytic and p-valent which can be express in
the form
f z = zp
− an+pzn+p
∞
n=1
, an+p ≥ 0
The subclass τp ,  of p-valent functions with negative coefficients is studied by H. M. Srivastava
and M. K. Auof [2].
Following S. Owa [3], we say that a function f(z) τp is in the subclass τp(, ) if and only if
On Certain Classess of Multivalent Functions
DOI: 10.9790/5728-11634449 www.iosrjournals.org 45 | Page
f′
z − pz1−p
f′ z + pz1−p(1 − 2α)
< β
The subclass τp ,  was studied by Goel and Sohi [4]. Moreover S. Owa studied several
interesting results on radius of convexity for p-valent function with negative coefficients. In this present paper
we investigate sharp results concerning coefficient inequalities, distortion theorem and radius of convexity for
class the τp ,  .
II. Main Result
Theorem 2.1 A function
f z = zp
− an+pzn+p
∞
n=1
, an+p ≥ 0
is in the class τp ,  if and only if
n + p (1 + β) an+p
∞
n=1
≤ 2β 1 − α p (2.1)
The result is sharp.
Proof: Assume (2.1) holds. We show that f z  τp(α, β).
Let z = 1. We have,
f z = zp
− an+pzn+p
∞
n=1
(2.2)
f′ z = pzp−1
− an+p n + p zn+p−1
∞
n=1
(2.3)
Now,
f′
z − pzp−1
= pzp−1
− an+p n + p zn+p−1
∞
n=1
− pzp−1
= − an+p n + p zn+p−1
∞
n=1
Also,
β f′
z + pzp−1
(1 − 2α)
= βpzp−1
−  an+p n + p zn+p−1
∞
n=1
+ βpzp−1
(1 − 2α)
= − an+p n + p zn+p−1
∞
n=1
+ 2βpzp−1
− 2αβpzp−1
Then,
f′
z − pzp−1
− β f′
z + pzp−1
(1 − 2α)
= − an+p n + p zn+p−1
∞
n=1
− − an+p n + p zn+p−1
∞
n=1
+ 2βpzp−1
− 2αβpzp−1
since 𝑧 = 1
𝑓′
𝑧 − 𝑝𝑧 𝑝−1
− 𝛽 𝑓′
𝑧 + 𝑝𝑧 𝑝−1
(1 − 2𝛼)
≤ 𝑛 + 𝑝 𝑎 𝑛+𝑝 + 
∞
𝑛=1
𝑛 + 𝑝 𝑎 𝑛+𝑝
∞
𝑛=1
− 2𝛽𝑝 + 2𝛼 𝑝
≤ (1 +  ) 𝑛 + 𝑝 𝑎 𝑛+𝑝
∞
𝑛=1
− 2𝛽𝑝 + 2𝛼𝛽𝑝
≤ (1 +  ) 𝑛 + 𝑝 𝑎 𝑛+𝑝
∞
𝑛=1
− 2𝛽(1 − )𝑝
≤ 0
On Certain Classess of Multivalent Functions
DOI: 10.9790/5728-11634449 www.iosrjournals.org 46 | Page
Hence by maximum modulus theorem, 𝑓 𝑧  𝜏 𝑝(𝛼, 𝛽).
Conversely, suppose that
𝑓′
𝑧 − 𝑝𝑧 𝑝−1
𝑓′ 𝑧 + 𝑝𝑧 𝑝−1(1 − 2𝛼)
=
𝑝𝑧 𝑝−1
− 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1 − 𝑝𝑧 𝑝−1
𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1 + 𝑝𝑧 𝑝−1(1 − 2)
=
− 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1
2𝑧 𝑝−1 1 −  𝑝 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1
since 𝑅𝑒(𝑧) ≤ 𝑧 for all z , we have
𝑅𝑒
𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1
2𝑧 𝑝−1 1 −  𝑝 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1
<  (2.4)
Choose value of z on real axis so that 𝑓 ′ 𝑧 is real. Upon clearing the denominator in (2.4) and letting 𝑧 → 1
through real values, we have
𝑛 + 𝑝 𝑎 𝑛+𝑝 
∞
𝑛=1
2 1 −  𝑝 −  𝑛 + 𝑝 𝑎 𝑛+𝑝
∞
𝑛=1
𝑛 + 𝑝 𝑎 𝑛+𝑝 +  𝑛 + 𝑝 𝑎 𝑛+𝑝
∞
𝑛=1

∞
𝑛=1
2 1 −  𝑝
𝑛 + 𝑝 (1 + 𝛽) 𝑎 𝑛+𝑝
∞
𝑛=1
≤ 2𝛽 1 − 𝛼 𝑝
This completes the proof.
III. Distortion Theorem
Theorem 3.1 If 𝑓 𝑧  𝜏 𝑝 𝛼, 𝛽 , then
𝑟 𝑝
−
2𝛽(1 − 𝛼)𝑝
(1 + 𝑝)(1 + 𝛽)
𝑟 𝑝+1
≤ 𝑓(𝑧) ≤ 𝑟 𝑝
+
2𝛽(1 − 𝛼)𝑝
(1 + 𝑝)(1 + 𝛽)
𝑟 𝑝+1
, 𝑧 = 𝑟 (3.1)
and
𝑝𝑟 𝑝−1
−
2𝛽(1 − 𝛼)𝑝
(1 + 𝛽)
𝑟 𝑝
≤ 𝑓′(𝑧) ≤ 𝑝𝑟 𝑝−1
+
2𝛽(1 − 𝛼)𝑝
(1 + 𝛽)
𝑟 𝑝
, 𝑧 = 𝑟 (3.2)
The result is sharp.
Proof: from Theorem 1, we have
𝑛 + 𝑝 (1 + 𝛽) 𝑎 𝑛+𝑝
∞
𝑛=1
≤ 2𝛽 1 − 𝛼 𝑝
1 + 𝑝 1 + 𝛽 𝑎 𝑛+𝑝
∞
𝑛=1
 𝑛 + 𝑝 (1 + 𝛽) 𝑎 𝑛+𝑝
∞
𝑛=1
≤ 2𝛽 1 − 𝛼 𝑝
This implies that
𝑎 𝑛+𝑝
∞
𝑛=1
≤
2𝛽 1 − 𝛼 𝑝
1 + 𝑝 (1 + 𝛽)
Hence
𝑓(𝑧) ≤ 𝑧 𝑝
+ 𝑎 𝑛+𝑝
∞
𝑛=1
𝑧 𝑛+𝑝
≤ 𝑟 𝑝
+ 𝑎 𝑛+𝑝
∞
𝑛=1
𝑟 𝑛+𝑝
∵ 𝑧 = 𝑟
≤ 𝑟 𝑝
+
2𝛽(1 − 𝛼)𝑝
(1 + 𝑝)(1 + 𝛽)
𝑟 𝑝+1
(3.3)
and
𝑓(𝑧) ≥ 𝑧 𝑝
− 𝑎 𝑛+𝑝
∞
𝑛=1
𝑧 𝑛+𝑝
On Certain Classess of Multivalent Functions
DOI: 10.9790/5728-11634449 www.iosrjournals.org 47 | Page
≥ 𝑟 𝑝
− 𝑎 𝑛+𝑝
∞
𝑛=1 𝑟 𝑛+𝑝
∵ 𝑧 = 𝑟
≥ 𝑟 𝑝
−
2𝛽(1 − 𝛼)𝑝
(1 + 𝑝)(1 + 𝛽)
𝑟 𝑝+1
(3.4)
From (3.3) and (3.4) we get,
𝑟 𝑝
−
2𝛽(1 − 𝛼)𝑝
(1 + 𝑝)(1 + 𝛽)
𝑟 𝑝+1
≤ 𝑓(𝑧) ≤ 𝑟 𝑝
+
2𝛽(1 − 𝛼)𝑝
(1 + 𝑝)(1 + 𝛽)
𝑟 𝑝+1
, 𝑧 = 𝑟
Thus (3.1) holds.
Also
𝑓′(𝑧) ≤ 𝑝 𝑧 𝑝−1
+ 𝑎 𝑛+𝑝 (𝑛 + 𝑝)
∞
𝑛=1
𝑧 𝑛+p−1
≤ 𝑟 𝑝−1
𝑝 + 𝑟 𝑎 𝑛+𝑝
∞
𝑛=1
(𝑛 + 𝑝) ∵ 𝑧 = 𝑟
≤ 𝑟 𝑝−1
𝑝 + 𝑟
2𝛽(1 − 𝛼)𝑝
(1 + 𝛽)
≤ 𝑝𝑟 𝑝−1
+
2𝛽(1 − 𝛼)𝑝
(1 + 𝛽)
𝑟 𝑝
(3.5)
Also,
𝑓′(𝑧) ≥ 𝑝 𝑧 𝑝−1
− 𝑎 𝑛+𝑝 (𝑛 + 𝑝)
∞
𝑛=1
𝑧 𝑛+𝑝−1
≥ 𝑟 𝑝−1
𝑝 − 𝑟 𝑎 𝑛+𝑝
∞
𝑛=1
𝑛 + 𝑝 ∵ 𝑧 = 𝑟
≥ 𝑟 𝑝−1
𝑝 − 𝑟
2𝛽(1 − 𝛼)𝑝
(1 + 𝛽)
≥ 𝑝𝑟 𝑝−1
−
2𝛽(1 − 𝛼)𝑝
(1 + 𝛽)
𝑟 𝑝
(3.6)
Thus from (3.5) and (3.6) we get,
𝑝𝑟 𝑝−1
−
2𝛽(1 − 𝛼)𝑝
(1 + 𝛽)
𝑟 𝑝
≤ 𝑓′(𝑧) ≤ 𝑝𝑟 𝑝−1
+
2𝛽(1 − 𝛼)𝑝
(1 + 𝛽)
𝑟 𝑝
, 𝑧 = 𝑟
Thus (3.1) holds.
This completes the proof.
IV. Radius of convexity
Theorem 4.1 If 𝑓 𝑧  𝜏 𝑝 𝛼, 𝛽 is p-valently convex in the disc then
𝑧 ≤
1 + 𝛽 𝑝
2𝛽 1 − 𝛼 (𝑛 + 𝑝)
1
𝑛
, 𝑛 = 1, 2, 3, … (4.1)
The result is sharp.
Proof: Let
𝑓 𝑧 = 𝑧 𝑝
− 𝑎 𝑛+𝑝 𝑧 𝑛+𝑝
∞
𝑛=1
Then,
𝑓′ 𝑧 = 𝑝𝑧 𝑝−1
− 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1
∞
𝑛=1
𝑓′′ 𝑧 = 𝑝(𝑝 − 1)𝑧 𝑝−2
− 𝑎 𝑛+𝑝 𝑛 + 𝑝 (𝑛 + 𝑝 − 1)𝑧 𝑛+𝑝−2
∞
𝑛=1
Now,
On Certain Classess of Multivalent Functions
DOI: 10.9790/5728-11634449 www.iosrjournals.org 48 | Page
1 +
𝑧𝑓′′
(𝑧)
𝑓′ (𝑧)
= 1 +
𝑝(𝑝 − 1)𝑧 𝑝−1
− 𝑎 𝑛+𝑝 𝑛 + 𝑝 (𝑛 + 𝑝 − 1)𝑧 𝑛+𝑝−1∞
𝑛=1
𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1
=
𝑝𝑧 𝑝−1
− 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1 + 𝑝(𝑝 − 1)𝑧 𝑝−1
− 𝑎 𝑛+𝑝 𝑛 + 𝑝 (𝑛 + 𝑝 − 1)𝑧 𝑛+𝑝−1∞
𝑛=1
𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1
=
𝑝2
𝑧 𝑝−1
− 𝑎 𝑛+𝑝 𝑛 + 𝑝 2
𝑧 𝑛+𝑝−1∞
𝑛=1
𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1
To prove the theorem it is sufficient to show,
1 +
𝑧𝑓′′
(𝑧)
𝑓′ (𝑧)
− 𝑝 ≤ 𝑝
Now,
1 +
𝑧𝑓′′
(𝑧)
𝑓′ (𝑧)
− 𝑝
=
𝑝2
𝑧 𝑝−1
− 𝑎 𝑛+𝑝 𝑛 + 𝑝 2
𝑧 𝑛+𝑝−1∞
𝑛=1
𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1
− 𝑝
=
𝑝2
𝑧 𝑝−1
− 𝑎 𝑛+𝑝 𝑛 + 𝑝 2
𝑧 𝑛+𝑝−1
− 𝑝2
𝑧 𝑝−1
+ 𝑝 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1
∞
𝑛=1
𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1
=
− 𝑎 𝑛+𝑝 𝑛 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1
𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞
𝑛=1
≤
|𝑎 𝑛+𝑝 |𝑛 𝑛 + 𝑝 |𝑧| 𝑛∞
𝑛=1
𝑝 − |𝑎 𝑛+𝑝 | 𝑛 + 𝑝 |𝑧| 𝑛∞
𝑛=1
Thus
1 +
𝑧𝑓′′
(𝑧)
𝑓′ (𝑧)
− 𝑝 ≤ 𝑝
if
|𝑎 𝑛+𝑝 | 𝑛 𝑛 + 𝑝 |𝑧| 𝑛∞
𝑛=1
𝑝 − |𝑎 𝑛+𝑝| 𝑛 + 𝑝 |𝑧| 𝑛∞
𝑛=1
≤ 𝑝
𝑛 𝑛 + 𝑝 𝑎 𝑛+𝑝 𝑧 𝑛
∞
𝑛=1
≤ 𝑝2
− 𝑝 𝑛 + 𝑝 𝑎 𝑛+𝑝 𝑧 𝑛
∞
𝑛=1
𝑛 𝑛 + 𝑝 + 𝑝 𝑛 + 𝑝 𝑎 𝑛+𝑝 𝑧 𝑛
∞
𝑛=1
≤ 𝑝2
𝑛2
+ 2𝑛𝑝 + 𝑝2
𝑎 𝑛+𝑝 z n
∞
𝑛=1
≤ p2
(n + p)2
an+p z n
∞
n=1
≤ p2
On Certain Classess of Multivalent Functions
DOI: 10.9790/5728-11634449 www.iosrjournals.org 49 | Page
n + p
p
2
an+p z n
∞
n=1
≤ 1
But from Theorem 1, we get
n + p (1 + β) an+p
2β(1 − α)p
∞
n=1
≤ 1
hence f(z) is p-valently convex if
n + p
p
2
an+p z n
≤
n + p (1 + β) an+p
2β(1 − α)p
n + p
p
2
z n
≤
n + p (1 + β)
2β(1 − α)p
or
z ≤
1 + β p
2β 1 − α (n + p)
1
n
, n = 1, 2, 3, …
This completes the proof.
References
[1]. P. L. Duren, Univalent Functions, Grundlehren Math. Wiss., Vol. 259, Springer, New York 1983.
[2]. H. M. Srivastava, M. K. Aouf, A certain derivative operator and its applications to a new class of analytic and multivalent functions
with negative coefficients, J. Math. Anal.Appl.171, (1992),1-13.
[3]. S. Owa, On certain subclasses of analytic p-valent functions, J. Korean Math. Soc. 20, (1983), 41-58.
[4]. R. M. Goel, N. S. Sohi, Multivalent functions with negative coefficients, Indian J. Pure Appl. Math. 12(7), (1981), 844-853.

More Related Content

PDF
Matrix Transformations on Some Difference Sequence Spaces
DOCX
Maximum Likelihood Estimation of Beetle
PDF
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
PDF
International Refereed Journal of Engineering and Science (IRJES)
PDF
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
PDF
Some properties of two-fuzzy Nor med spaces
PPTX
Functions of severable variables
PPTX
HERMITE SERIES
Matrix Transformations on Some Difference Sequence Spaces
Maximum Likelihood Estimation of Beetle
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
International Refereed Journal of Engineering and Science (IRJES)
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Some properties of two-fuzzy Nor med spaces
Functions of severable variables
HERMITE SERIES

What's hot (20)

PDF
On Bernstein Polynomials
PDF
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
PPTX
Backpropagation
DOCX
Fismat chapter 4
PDF
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
PDF
Integers and matrices (slides)
PDF
01. integral fungsi aljabar
PDF
A Non Local Boundary Value Problem with Integral Boundary Condition
PDF
F04573843
DOCX
capstone magic squares
PDF
Existence, Uniqueness and Stability Solution of Differential Equations with B...
PPTX
Vector calculus
PDF
Periodic Solutions for Non-Linear Systems of Integral Equations
PPTX
Calculas
PDF
On The Zeros of Certain Class of Polynomials
PPTX
Runge Kutta Method
PDF
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...
PPTX
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
PDF
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
PPTX
تطبيقات المعادلات التفاضلية
On Bernstein Polynomials
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Backpropagation
Fismat chapter 4
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Integers and matrices (slides)
01. integral fungsi aljabar
A Non Local Boundary Value Problem with Integral Boundary Condition
F04573843
capstone magic squares
Existence, Uniqueness and Stability Solution of Differential Equations with B...
Vector calculus
Periodic Solutions for Non-Linear Systems of Integral Equations
Calculas
On The Zeros of Certain Class of Polynomials
Runge Kutta Method
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
تطبيقات المعادلات التفاضلية
Ad

Viewers also liked (12)

PPT
Values inculcated by Mathematics
PPT
Hypergeometric distribution
PPTX
Heuristic method
PPT
Analytico - synthetic method of teaching mathematics
PPTX
The teaching of mathematics
PPTX
Teaching Techniques In Mathematics
PPTX
The laboratory method of teaching
PPT
INDUCTIVE-DEDUCTIVE METHOD OF TEACHING MATHEMATICS
PPTX
Project Method of Teaching
PPT
Methods of teaching Mathematics
PPTX
Deductive and inductive method of teching
PPT
PROBLEM SOLVING POWERPOINT
Values inculcated by Mathematics
Hypergeometric distribution
Heuristic method
Analytico - synthetic method of teaching mathematics
The teaching of mathematics
Teaching Techniques In Mathematics
The laboratory method of teaching
INDUCTIVE-DEDUCTIVE METHOD OF TEACHING MATHEMATICS
Project Method of Teaching
Methods of teaching Mathematics
Deductive and inductive method of teching
PROBLEM SOLVING POWERPOINT
Ad

Similar to On Certain Classess of Multivalent Functions (20)

PPTX
Geometric Function Theory .................................
DOCX
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
PPTX
Complex differentiation contains analytic function.pptx
PPTX
FOURIER SERIES Presentation of given functions.pptx
PDF
publisher in research
PPTX
Laurents & Taylors series of complex numbers.pptx
PPTX
Interpolation
DOCX
Integral dalam Bahasa Inggris
DOCX
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
DOCX
BSC_Computer Science_Discrete Mathematics_Unit-I
PPTX
formulanonekjdhdihddhkdddnfdbfdjfkddk.pptx
PPTX
INVERSE DIFFERENTIAL OPERATOR
PDF
DOUBLE INTEGRAL.Introduction Numerical Problem Based on Lagrange’s Method of ...
PDF
Lecture5_Laplace_ODE.pdf
PPTX
Fourier series
PDF
UNIT-4(Vector differentation).pdf pptx download
PPT
cps170_bayes_nets.ppt
PDF
Taller 1 parcial 3
Geometric Function Theory .................................
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Complex differentiation contains analytic function.pptx
FOURIER SERIES Presentation of given functions.pptx
publisher in research
Laurents & Taylors series of complex numbers.pptx
Interpolation
Integral dalam Bahasa Inggris
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_Computer Science_Discrete Mathematics_Unit-I
formulanonekjdhdihddhkdddnfdbfdjfkddk.pptx
INVERSE DIFFERENTIAL OPERATOR
DOUBLE INTEGRAL.Introduction Numerical Problem Based on Lagrange’s Method of ...
Lecture5_Laplace_ODE.pdf
Fourier series
UNIT-4(Vector differentation).pdf pptx download
cps170_bayes_nets.ppt
Taller 1 parcial 3

More from iosrjce (20)

PDF
An Examination of Effectuation Dimension as Financing Practice of Small and M...
PDF
Does Goods and Services Tax (GST) Leads to Indian Economic Development?
PDF
Childhood Factors that influence success in later life
PDF
Emotional Intelligence and Work Performance Relationship: A Study on Sales Pe...
PDF
Customer’s Acceptance of Internet Banking in Dubai
PDF
A Study of Employee Satisfaction relating to Job Security & Working Hours amo...
PDF
Consumer Perspectives on Brand Preference: A Choice Based Model Approach
PDF
Student`S Approach towards Social Network Sites
PDF
Broadcast Management in Nigeria: The systems approach as an imperative
PDF
A Study on Retailer’s Perception on Soya Products with Special Reference to T...
PDF
A Study Factors Influence on Organisation Citizenship Behaviour in Corporate ...
PDF
Consumers’ Behaviour on Sony Xperia: A Case Study on Bangladesh
PDF
Design of a Balanced Scorecard on Nonprofit Organizations (Study on Yayasan P...
PDF
Public Sector Reforms and Outsourcing Services in Nigeria: An Empirical Evalu...
PDF
Media Innovations and its Impact on Brand awareness & Consideration
PDF
Customer experience in supermarkets and hypermarkets – A comparative study
PDF
Social Media and Small Businesses: A Combinational Strategic Approach under t...
PDF
Secretarial Performance and the Gender Question (A Study of Selected Tertiary...
PDF
Implementation of Quality Management principles at Zimbabwe Open University (...
PDF
Organizational Conflicts Management In Selected Organizaions In Lagos State, ...
An Examination of Effectuation Dimension as Financing Practice of Small and M...
Does Goods and Services Tax (GST) Leads to Indian Economic Development?
Childhood Factors that influence success in later life
Emotional Intelligence and Work Performance Relationship: A Study on Sales Pe...
Customer’s Acceptance of Internet Banking in Dubai
A Study of Employee Satisfaction relating to Job Security & Working Hours amo...
Consumer Perspectives on Brand Preference: A Choice Based Model Approach
Student`S Approach towards Social Network Sites
Broadcast Management in Nigeria: The systems approach as an imperative
A Study on Retailer’s Perception on Soya Products with Special Reference to T...
A Study Factors Influence on Organisation Citizenship Behaviour in Corporate ...
Consumers’ Behaviour on Sony Xperia: A Case Study on Bangladesh
Design of a Balanced Scorecard on Nonprofit Organizations (Study on Yayasan P...
Public Sector Reforms and Outsourcing Services in Nigeria: An Empirical Evalu...
Media Innovations and its Impact on Brand awareness & Consideration
Customer experience in supermarkets and hypermarkets – A comparative study
Social Media and Small Businesses: A Combinational Strategic Approach under t...
Secretarial Performance and the Gender Question (A Study of Selected Tertiary...
Implementation of Quality Management principles at Zimbabwe Open University (...
Organizational Conflicts Management In Selected Organizaions In Lagos State, ...

Recently uploaded (20)

PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPT
protein biochemistry.ppt for university classes
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
famous lake in india and its disturibution and importance
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PDF
An interstellar mission to test astrophysical black holes
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
Cell Membrane: Structure, Composition & Functions
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
microscope-Lecturecjchchchchcuvuvhc.pptx
PPTX
2. Earth - The Living Planet Module 2ELS
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Biophysics 2.pdffffffffffffffffffffffffff
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
protein biochemistry.ppt for university classes
POSITIONING IN OPERATION THEATRE ROOM.ppt
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
7. General Toxicologyfor clinical phrmacy.pptx
famous lake in india and its disturibution and importance
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
An interstellar mission to test astrophysical black holes
Phytochemical Investigation of Miliusa longipes.pdf
The KM-GBF monitoring framework – status & key messages.pptx
2Systematics of Living Organisms t-.pptx
Cell Membrane: Structure, Composition & Functions
ECG_Course_Presentation د.محمد صقران ppt
microscope-Lecturecjchchchchcuvuvhc.pptx
2. Earth - The Living Planet Module 2ELS
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
Classification Systems_TAXONOMY_SCIENCE8.pptx
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...

On Certain Classess of Multivalent Functions

  • 1. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 6 Ver. III (Nov. - Dec. 2015), PP 44-49 www.iosrjournals.org DOI: 10.9790/5728-11634449 www.iosrjournals.org 44 | Page On Certain Classess of Multivalent Functions P. N. Kamble, M.G.Shrigan 1 Department of Mathematics Dr. Babasaheb Ambedkar Marathwada University, Aurangabad – 431004, (M.S.), India 2 Department of Mathematics Dr D Y Patil School of Engineering & Technology, Pune - 412205, (M.S.), India Abstract: In this we defined certain analytic p-valent function with negative type denoted by 𝜏 𝑝 . We obtained sharp results concerning coefficient bounds, distortion theorem belonging to the class 𝜏 𝑝 . Keywords: p-valent function, distortion theorem, convexity. Mathematics Subject Classification (2000): 30C45, 30C50 I. Introduction Let A (p) denote the class of f normalized univalent functions of the form f z = zp + an+pzn+p ∞ n=1 , (an+p ≥ 0, p ∈ ℕ = {1,2,3, … }) (1.1) analytic and p-valent in the unit disc E = {z : z  C;|z| < 1}. A function f(z) Є A (p) is said to in the class of Sp ∗ () p-valently starlike function of order α (0 ≤ α < p) if it satisfies, for z  E, the condition 1.2)(      f(z) (z)fz Re ' Furthermore, a function f(z)  A (p) is said to in the class 𝒦p() of p-valently convex function of order α (0 ≤ α < p) if it satisfies, for z  E, the condition 1.3)(1          (z)f (z)fz Re ' '' It follows from the definition (1.2) and (1.3) that f(z) 𝒦p() ⇔ zf ′ z p  Sp ∗ () (0 ≤ α < p) (1.4) whose special case, when  = 0 is the familiar Alexander theorem (see for example [1] p.43, Theorem 2.12). We also note that 𝒦p   Sp ∗  (0 ≤ α < p) Sp ∗   Sp ∗ 0  Sp ∗ ( 0 ≤ α < p) and 𝒦p   𝒦p 0  𝒦p (0 ≤ α < p) Where Sp ∗ and 𝒦p denote the subclasses of A (p) consisting of p-valently starlike and convex functions in unit disk E respectively. Let τp(, ) denote the subclass of A (p) consisting of functions analytic and p-valent which can be express in the form f z = zp − an+pzn+p ∞ n=1 , an+p ≥ 0 The subclass τp ,  of p-valent functions with negative coefficients is studied by H. M. Srivastava and M. K. Auof [2]. Following S. Owa [3], we say that a function f(z) τp is in the subclass τp(, ) if and only if
  • 2. On Certain Classess of Multivalent Functions DOI: 10.9790/5728-11634449 www.iosrjournals.org 45 | Page f′ z − pz1−p f′ z + pz1−p(1 − 2α) < β The subclass τp ,  was studied by Goel and Sohi [4]. Moreover S. Owa studied several interesting results on radius of convexity for p-valent function with negative coefficients. In this present paper we investigate sharp results concerning coefficient inequalities, distortion theorem and radius of convexity for class the τp ,  . II. Main Result Theorem 2.1 A function f z = zp − an+pzn+p ∞ n=1 , an+p ≥ 0 is in the class τp ,  if and only if n + p (1 + β) an+p ∞ n=1 ≤ 2β 1 − α p (2.1) The result is sharp. Proof: Assume (2.1) holds. We show that f z  τp(α, β). Let z = 1. We have, f z = zp − an+pzn+p ∞ n=1 (2.2) f′ z = pzp−1 − an+p n + p zn+p−1 ∞ n=1 (2.3) Now, f′ z − pzp−1 = pzp−1 − an+p n + p zn+p−1 ∞ n=1 − pzp−1 = − an+p n + p zn+p−1 ∞ n=1 Also, β f′ z + pzp−1 (1 − 2α) = βpzp−1 −  an+p n + p zn+p−1 ∞ n=1 + βpzp−1 (1 − 2α) = − an+p n + p zn+p−1 ∞ n=1 + 2βpzp−1 − 2αβpzp−1 Then, f′ z − pzp−1 − β f′ z + pzp−1 (1 − 2α) = − an+p n + p zn+p−1 ∞ n=1 − − an+p n + p zn+p−1 ∞ n=1 + 2βpzp−1 − 2αβpzp−1 since 𝑧 = 1 𝑓′ 𝑧 − 𝑝𝑧 𝑝−1 − 𝛽 𝑓′ 𝑧 + 𝑝𝑧 𝑝−1 (1 − 2𝛼) ≤ 𝑛 + 𝑝 𝑎 𝑛+𝑝 +  ∞ 𝑛=1 𝑛 + 𝑝 𝑎 𝑛+𝑝 ∞ 𝑛=1 − 2𝛽𝑝 + 2𝛼 𝑝 ≤ (1 +  ) 𝑛 + 𝑝 𝑎 𝑛+𝑝 ∞ 𝑛=1 − 2𝛽𝑝 + 2𝛼𝛽𝑝 ≤ (1 +  ) 𝑛 + 𝑝 𝑎 𝑛+𝑝 ∞ 𝑛=1 − 2𝛽(1 − )𝑝 ≤ 0
  • 3. On Certain Classess of Multivalent Functions DOI: 10.9790/5728-11634449 www.iosrjournals.org 46 | Page Hence by maximum modulus theorem, 𝑓 𝑧  𝜏 𝑝(𝛼, 𝛽). Conversely, suppose that 𝑓′ 𝑧 − 𝑝𝑧 𝑝−1 𝑓′ 𝑧 + 𝑝𝑧 𝑝−1(1 − 2𝛼) = 𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 − 𝑝𝑧 𝑝−1 𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 + 𝑝𝑧 𝑝−1(1 − 2) = − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 2𝑧 𝑝−1 1 −  𝑝 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 since 𝑅𝑒(𝑧) ≤ 𝑧 for all z , we have 𝑅𝑒 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 2𝑧 𝑝−1 1 −  𝑝 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 <  (2.4) Choose value of z on real axis so that 𝑓 ′ 𝑧 is real. Upon clearing the denominator in (2.4) and letting 𝑧 → 1 through real values, we have 𝑛 + 𝑝 𝑎 𝑛+𝑝  ∞ 𝑛=1 2 1 −  𝑝 −  𝑛 + 𝑝 𝑎 𝑛+𝑝 ∞ 𝑛=1 𝑛 + 𝑝 𝑎 𝑛+𝑝 +  𝑛 + 𝑝 𝑎 𝑛+𝑝 ∞ 𝑛=1  ∞ 𝑛=1 2 1 −  𝑝 𝑛 + 𝑝 (1 + 𝛽) 𝑎 𝑛+𝑝 ∞ 𝑛=1 ≤ 2𝛽 1 − 𝛼 𝑝 This completes the proof. III. Distortion Theorem Theorem 3.1 If 𝑓 𝑧  𝜏 𝑝 𝛼, 𝛽 , then 𝑟 𝑝 − 2𝛽(1 − 𝛼)𝑝 (1 + 𝑝)(1 + 𝛽) 𝑟 𝑝+1 ≤ 𝑓(𝑧) ≤ 𝑟 𝑝 + 2𝛽(1 − 𝛼)𝑝 (1 + 𝑝)(1 + 𝛽) 𝑟 𝑝+1 , 𝑧 = 𝑟 (3.1) and 𝑝𝑟 𝑝−1 − 2𝛽(1 − 𝛼)𝑝 (1 + 𝛽) 𝑟 𝑝 ≤ 𝑓′(𝑧) ≤ 𝑝𝑟 𝑝−1 + 2𝛽(1 − 𝛼)𝑝 (1 + 𝛽) 𝑟 𝑝 , 𝑧 = 𝑟 (3.2) The result is sharp. Proof: from Theorem 1, we have 𝑛 + 𝑝 (1 + 𝛽) 𝑎 𝑛+𝑝 ∞ 𝑛=1 ≤ 2𝛽 1 − 𝛼 𝑝 1 + 𝑝 1 + 𝛽 𝑎 𝑛+𝑝 ∞ 𝑛=1  𝑛 + 𝑝 (1 + 𝛽) 𝑎 𝑛+𝑝 ∞ 𝑛=1 ≤ 2𝛽 1 − 𝛼 𝑝 This implies that 𝑎 𝑛+𝑝 ∞ 𝑛=1 ≤ 2𝛽 1 − 𝛼 𝑝 1 + 𝑝 (1 + 𝛽) Hence 𝑓(𝑧) ≤ 𝑧 𝑝 + 𝑎 𝑛+𝑝 ∞ 𝑛=1 𝑧 𝑛+𝑝 ≤ 𝑟 𝑝 + 𝑎 𝑛+𝑝 ∞ 𝑛=1 𝑟 𝑛+𝑝 ∵ 𝑧 = 𝑟 ≤ 𝑟 𝑝 + 2𝛽(1 − 𝛼)𝑝 (1 + 𝑝)(1 + 𝛽) 𝑟 𝑝+1 (3.3) and 𝑓(𝑧) ≥ 𝑧 𝑝 − 𝑎 𝑛+𝑝 ∞ 𝑛=1 𝑧 𝑛+𝑝
  • 4. On Certain Classess of Multivalent Functions DOI: 10.9790/5728-11634449 www.iosrjournals.org 47 | Page ≥ 𝑟 𝑝 − 𝑎 𝑛+𝑝 ∞ 𝑛=1 𝑟 𝑛+𝑝 ∵ 𝑧 = 𝑟 ≥ 𝑟 𝑝 − 2𝛽(1 − 𝛼)𝑝 (1 + 𝑝)(1 + 𝛽) 𝑟 𝑝+1 (3.4) From (3.3) and (3.4) we get, 𝑟 𝑝 − 2𝛽(1 − 𝛼)𝑝 (1 + 𝑝)(1 + 𝛽) 𝑟 𝑝+1 ≤ 𝑓(𝑧) ≤ 𝑟 𝑝 + 2𝛽(1 − 𝛼)𝑝 (1 + 𝑝)(1 + 𝛽) 𝑟 𝑝+1 , 𝑧 = 𝑟 Thus (3.1) holds. Also 𝑓′(𝑧) ≤ 𝑝 𝑧 𝑝−1 + 𝑎 𝑛+𝑝 (𝑛 + 𝑝) ∞ 𝑛=1 𝑧 𝑛+p−1 ≤ 𝑟 𝑝−1 𝑝 + 𝑟 𝑎 𝑛+𝑝 ∞ 𝑛=1 (𝑛 + 𝑝) ∵ 𝑧 = 𝑟 ≤ 𝑟 𝑝−1 𝑝 + 𝑟 2𝛽(1 − 𝛼)𝑝 (1 + 𝛽) ≤ 𝑝𝑟 𝑝−1 + 2𝛽(1 − 𝛼)𝑝 (1 + 𝛽) 𝑟 𝑝 (3.5) Also, 𝑓′(𝑧) ≥ 𝑝 𝑧 𝑝−1 − 𝑎 𝑛+𝑝 (𝑛 + 𝑝) ∞ 𝑛=1 𝑧 𝑛+𝑝−1 ≥ 𝑟 𝑝−1 𝑝 − 𝑟 𝑎 𝑛+𝑝 ∞ 𝑛=1 𝑛 + 𝑝 ∵ 𝑧 = 𝑟 ≥ 𝑟 𝑝−1 𝑝 − 𝑟 2𝛽(1 − 𝛼)𝑝 (1 + 𝛽) ≥ 𝑝𝑟 𝑝−1 − 2𝛽(1 − 𝛼)𝑝 (1 + 𝛽) 𝑟 𝑝 (3.6) Thus from (3.5) and (3.6) we get, 𝑝𝑟 𝑝−1 − 2𝛽(1 − 𝛼)𝑝 (1 + 𝛽) 𝑟 𝑝 ≤ 𝑓′(𝑧) ≤ 𝑝𝑟 𝑝−1 + 2𝛽(1 − 𝛼)𝑝 (1 + 𝛽) 𝑟 𝑝 , 𝑧 = 𝑟 Thus (3.1) holds. This completes the proof. IV. Radius of convexity Theorem 4.1 If 𝑓 𝑧  𝜏 𝑝 𝛼, 𝛽 is p-valently convex in the disc then 𝑧 ≤ 1 + 𝛽 𝑝 2𝛽 1 − 𝛼 (𝑛 + 𝑝) 1 𝑛 , 𝑛 = 1, 2, 3, … (4.1) The result is sharp. Proof: Let 𝑓 𝑧 = 𝑧 𝑝 − 𝑎 𝑛+𝑝 𝑧 𝑛+𝑝 ∞ 𝑛=1 Then, 𝑓′ 𝑧 = 𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1 ∞ 𝑛=1 𝑓′′ 𝑧 = 𝑝(𝑝 − 1)𝑧 𝑝−2 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 (𝑛 + 𝑝 − 1)𝑧 𝑛+𝑝−2 ∞ 𝑛=1 Now,
  • 5. On Certain Classess of Multivalent Functions DOI: 10.9790/5728-11634449 www.iosrjournals.org 48 | Page 1 + 𝑧𝑓′′ (𝑧) 𝑓′ (𝑧) = 1 + 𝑝(𝑝 − 1)𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 (𝑛 + 𝑝 − 1)𝑧 𝑛+𝑝−1∞ 𝑛=1 𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 = 𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 + 𝑝(𝑝 − 1)𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 (𝑛 + 𝑝 − 1)𝑧 𝑛+𝑝−1∞ 𝑛=1 𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 = 𝑝2 𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 2 𝑧 𝑛+𝑝−1∞ 𝑛=1 𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 To prove the theorem it is sufficient to show, 1 + 𝑧𝑓′′ (𝑧) 𝑓′ (𝑧) − 𝑝 ≤ 𝑝 Now, 1 + 𝑧𝑓′′ (𝑧) 𝑓′ (𝑧) − 𝑝 = 𝑝2 𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 2 𝑧 𝑛+𝑝−1∞ 𝑛=1 𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 − 𝑝 = 𝑝2 𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 2 𝑧 𝑛+𝑝−1 − 𝑝2 𝑧 𝑝−1 + 𝑝 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 ∞ 𝑛=1 𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 = − 𝑎 𝑛+𝑝 𝑛 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 𝑝𝑧 𝑝−1 − 𝑎 𝑛+𝑝 𝑛 + 𝑝 𝑧 𝑛+𝑝−1∞ 𝑛=1 ≤ |𝑎 𝑛+𝑝 |𝑛 𝑛 + 𝑝 |𝑧| 𝑛∞ 𝑛=1 𝑝 − |𝑎 𝑛+𝑝 | 𝑛 + 𝑝 |𝑧| 𝑛∞ 𝑛=1 Thus 1 + 𝑧𝑓′′ (𝑧) 𝑓′ (𝑧) − 𝑝 ≤ 𝑝 if |𝑎 𝑛+𝑝 | 𝑛 𝑛 + 𝑝 |𝑧| 𝑛∞ 𝑛=1 𝑝 − |𝑎 𝑛+𝑝| 𝑛 + 𝑝 |𝑧| 𝑛∞ 𝑛=1 ≤ 𝑝 𝑛 𝑛 + 𝑝 𝑎 𝑛+𝑝 𝑧 𝑛 ∞ 𝑛=1 ≤ 𝑝2 − 𝑝 𝑛 + 𝑝 𝑎 𝑛+𝑝 𝑧 𝑛 ∞ 𝑛=1 𝑛 𝑛 + 𝑝 + 𝑝 𝑛 + 𝑝 𝑎 𝑛+𝑝 𝑧 𝑛 ∞ 𝑛=1 ≤ 𝑝2 𝑛2 + 2𝑛𝑝 + 𝑝2 𝑎 𝑛+𝑝 z n ∞ 𝑛=1 ≤ p2 (n + p)2 an+p z n ∞ n=1 ≤ p2
  • 6. On Certain Classess of Multivalent Functions DOI: 10.9790/5728-11634449 www.iosrjournals.org 49 | Page n + p p 2 an+p z n ∞ n=1 ≤ 1 But from Theorem 1, we get n + p (1 + β) an+p 2β(1 − α)p ∞ n=1 ≤ 1 hence f(z) is p-valently convex if n + p p 2 an+p z n ≤ n + p (1 + β) an+p 2β(1 − α)p n + p p 2 z n ≤ n + p (1 + β) 2β(1 − α)p or z ≤ 1 + β p 2β 1 − α (n + p) 1 n , n = 1, 2, 3, … This completes the proof. References [1]. P. L. Duren, Univalent Functions, Grundlehren Math. Wiss., Vol. 259, Springer, New York 1983. [2]. H. M. Srivastava, M. K. Aouf, A certain derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients, J. Math. Anal.Appl.171, (1992),1-13. [3]. S. Owa, On certain subclasses of analytic p-valent functions, J. Korean Math. Soc. 20, (1983), 41-58. [4]. R. M. Goel, N. S. Sohi, Multivalent functions with negative coefficients, Indian J. Pure Appl. Math. 12(7), (1981), 844-853.