SlideShare a Scribd company logo
International Journal of Engineering Inventions
e-ISSN: 2278-7461, p-ISSN: 2319-6491
Volume 3, Issue 8 (April 2014) PP: 01-16
www.ijeijournal.com Page | 1
Periodic Solutions for Non-Linear Systems of Integral Equations
Prof. Dr. Raad. N. Butris1
, Baybeen S. Fars2
1, 2
Department of Mathematics, Faculty of Science, University of Zakho
Abstract: The aim of this paper is to study the existence and approximation of periodic solutions for non-linear
systems of integral equations, by using the numerical-analytic method which were introduced by Samoilenko[
10, 11]. The study of such nonlinear integral equations is more general and leads us to improve and extend the
results of Butris [2].
Keyword And Phrases: Numerical-analytic methods, existence and approximation of periodic solutions,
nonlinear system, integral equations.
I. Introduction
Integral equation has been arisen in many mathematical and engineering field, so that solving this kind
of problems are more efficient and useful in many research branches. Analytical solution of this kind of
equation is not accessible in general form of equation and we can only get an exact solution only in special
cases. But in industrial problems we have not spatial cases so that we try to solve this kind of equations
numerically in general format. Many numerical schemes are employed to give an approximate solution with
sufficient accuracy [3,4,6, ,12,13,14,15]. Many author create and develop numerical-analytic methods [1, 2,5,
7,8,9] and schemes to investigate periodic solution of integral equations describing many applications in
mathematical and engineering field.
Consider the following system of non-linear integral equations which has the form:
𝑥 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + 𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏
𝑏 𝑠
𝑎 𝑠
)𝑑𝑠 ⋯( I1 )
𝑦 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + 𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏
𝑏 𝑠
𝑎 𝑠
)𝑑𝑠 ⋯ ( I2 )
where 𝑥 ∈ 𝐷 ⊂ 𝑅 𝑛
, 𝐷 is closed and bounded domain subset of Euclidean space 𝑅 𝑛
.
Let the vector functions
𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 = 𝑓11 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓12 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , … , 𝑓1𝑛 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 ,
𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 = 𝑓21 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , 𝑓22 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , … , 𝑓2𝑛 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ,
𝑔1 𝑡, 𝑥, 𝑦 = 𝑔11 𝑡, 𝑥, 𝑦 , 𝑔12 𝑡, 𝑥, 𝑦 , … , 𝑔1𝑛 𝑡, 𝑥, 𝑦 ,
𝑔2 𝑡, 𝑥, 𝑦 = 𝑔21 𝑡, 𝑥, 𝑦 , 𝑔22 𝑡, 𝑥, 𝑦 , … , 𝑔2𝑛 𝑡, 𝑥, 𝑦 ,
𝐹0 𝑡 = (𝐹01 𝑡 , 𝐹02 𝑡 , … , 𝐹0𝑛 𝑡 ),
and
𝐺0 𝑡 = (𝐺01 𝑡 , 𝐺02 𝑡 , ⋯ , 𝐺0𝑛 𝑡 )
are defined and continuous on the domains:
𝑡, 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑅1
× 𝐷 × 𝐷1 × 𝐷2 = −∞, ∞ × 𝐷 × 𝐷1 × 𝐷2 × 𝐷3
𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑅1
× 𝐷 × 𝐷1 × 𝐷2 = −∞, ∞ × 𝐷 × 𝐷1 × 𝐷2 × 𝐷3
⋯ 1.1
and periodic in t of period T, Also a(t) and b(t) are continuous and periodic in t of period 𝑇.
Suppose that the functions 𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , 𝑔1 𝑡, 𝑥, 𝑦
and 𝑔2 𝑡, 𝑥, 𝑦 satisfies the following inequalities:
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 2
𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 ≤ 𝑀1 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ≤ 𝑀2 , 𝑀1, 𝑀2 > 0
𝑔1 𝑡, 𝑥, 𝑦 ≤ 𝑁1 , 𝑔1 𝑡, 𝑥, 𝑦 ≤ 𝑁1 , 𝑁1, 𝑁 2 > 0
⋯ 1.2
𝑓1 𝑡, 𝑥1, 𝑦1, 𝑧1, 𝑤1 − 𝑓1 𝑡, 𝑥2, 𝑦2, 𝑧2, 𝑤2 ≤ 𝐾1 𝑥1 − 𝑥2 + 𝐾2 𝑦1−𝑦2 +
+𝐾3 𝑧1−𝑧2 + 𝐾4 𝑤1−𝑤2 ⋯ 1.3
𝑓2 𝑡, 𝑥1, 𝑦1, 𝑢1, 𝑣1 − 𝑓2 𝑡, 𝑥2, 𝑦2, 𝑢2, 𝑣2 ≤ 𝐿1 𝑥1 − 𝑥2 + 𝐿2 𝑦1−𝑦2 +
+𝐿3 𝑢1−𝑢2 + 𝐿4 𝑣1−𝑣2 , ⋯ 1.4
𝑔1 𝑡, 𝑥1, 𝑦1 − 𝑔1 𝑡, 𝑥2, 𝑦2 ≤ 𝑅1 𝑥1 − 𝑥2 + 𝑅2 𝑦1 − 𝑦2 , ⋯ 1.5
𝑔2 𝑡, 𝑥1, 𝑦1 − 𝑔2 𝑡, 𝑥2, 𝑦2 ≤ 𝐻1 𝑥1 − 𝑥2 + 𝐻2 𝑦1 − 𝑦2 , ⋯ 1.6
for all 𝑡 ∈ 𝑅1
, 𝑥, 𝑥1, 𝑥2 ∈ 𝐷 , 𝑦 , 𝑦1, 𝑦2 ∈ 𝐷1, 𝑧, 𝑧1, 𝑧2, 𝑢, 𝑢1, 𝑢2 ∈ 𝐷2 , and 𝑤, 𝑤1, 𝑤2, 𝑣, 𝑣1, 𝑣2 ∈ 𝐷3, where 𝑀1 =
𝑀11, 𝑀12, … , 𝑀1𝑛 ,
𝑀2 = 𝑀21, 𝑀22, … , 𝑀2𝑛 , 𝑁1 = (𝑁11, 𝑁12, … , 𝑁1𝑛 ) and
𝑁2 = 𝑁21, 𝑁22, … , 𝑁2𝑛 are positive constant vectors and 𝐾1 = (𝐾1 𝑖𝑗
), 𝐾2 = (𝐾2 𝑖𝑗
), 𝐾3 = (𝐾3 𝑖𝑗
), 𝐾4 = (𝐾4 𝑖𝑗
),
𝐿1 = (𝐿1 𝑖𝑗
), 𝐿2 = (𝐿2 𝑖𝑗
),
𝐿3 = ( 𝐿3 𝑖𝑗
), 𝐿4 = (𝐿4 𝑖𝑗
), 𝑅1 = (𝑅1 𝑖𝑗
), 𝑅2 = (𝑅2 𝑖𝑗
), 𝐻1 = (𝐻1 𝑖𝑗
), and
𝐻2 = (𝐻2 𝑖𝑗
) are positive constant matrices.
Also 𝐺1 𝑡, 𝑠 and 𝐺2 𝑡, 𝑠 are (n×n) continuous positive matrix and
periodic in t, s of period T in the domain 𝑅1
× 𝑅1
and satisfy the following conditions:
𝐺1 𝑡, 𝑠 ≤ 𝛾 𝑒−𝜆1 𝑡−𝑠
, 𝛾, 𝜆1 > 0 ⋯ 1.7
and
𝐺2(𝑡, 𝑠) ≤ 𝛿 𝑒−𝜆2 𝑡−𝑠
, 𝛿, 𝜆2 > 0 ⋯ 1.8
where −∞ < 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 < ∞ , 𝑖, 𝑗 = 1,2, ⋯ , 𝑛,
and 𝑕 = 𝑚𝑎𝑥𝑡∈ 0,𝑇 𝑏 𝑡 − 𝑎 𝑡 , . = 𝑚𝑎𝑥𝑡∈ 0,𝑇 .
Now define a non-empty sets as follows:
𝐷𝑓1
= 𝐷 −
𝑇
2
𝑀 1 ,
𝐷1𝑓2
= 𝐷1 −
𝑇
2
𝑀 2 ,
𝐷2𝑓1
= 𝐷2 −
𝑇
2
𝛾
𝜆1
𝑅1 𝑀1 + 𝑅2 𝑀2 ,
𝐷3𝑓1
= 𝐷3 −
𝑇
2
𝑕 𝑅1 𝑀1 + 𝑅2 𝑀2 ,
𝐷2𝑓2
= 𝐷2 −
𝑇
2
𝛿
𝜆2
𝐻1 𝑀1 + 𝐻2 𝑀2 ,
𝐷3𝑓2
= 𝐷3 −
𝑇
2
𝑕 𝐻1 𝑀1 + 𝐻2 𝑀2 .
⋯ 1.9
Forever, we suppose that the greatest eigen-value 𝑞 𝑚𝑎𝑥 of the following
matrix:
Q0 =
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝑇
2
[𝐿1 + 𝐻1(𝐿3
𝛿
𝜆2
+ 𝑕𝐿4)]
𝑇
2
[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)]
⋯ 1.10
is less than unity, i.e.
𝑞 𝑚𝑎𝑥 𝑄0 =
φ1 + 𝜑1
2 + 4(𝜑2 − 𝜑3)
2
< 1 , ⋯ 1.11
where φ1 =
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] +
𝑇
2
[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)],
φ2 = (
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)])(
𝑇
2
[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)]) and
𝜑3 = (
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)])(
𝑇
2
[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)]).
By using lemma 3.1[10],we can state and prove the following lemma:
Lemma 1.1. Let 𝑓1(𝑡, 𝑥, 𝑦, 𝑧, 𝑤) and 𝑓2(𝑡, 𝑥, 𝑦, 𝑢, 𝑣) be a vector functions which are defined and continuous in
the interval 0, 𝑇 , then the inequality:
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 3
𝐿1 𝑡, 𝑥0, 𝑦0
𝐿2(𝑡, 𝑥0, 𝑦0)
≤
𝑀1 𝛼 𝑡
𝑀2 𝛼 𝑡
⋯ 1.12
satisfies for 0 ≤ 𝑡 ≤ 𝑇 and 𝛼 𝑡 ≤
𝑇
2
,
where 𝛼 𝑡 = 2𝑡(1 −
𝑡
𝑇
) for all 𝑡 ∈ 0, 𝑇 ,
𝐿1 𝑡, 𝑥0, 𝑦0 = [𝑓1(𝑠, 𝑥0, 𝑦0,
𝑡
0
𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥0, 𝑦0)
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥0, 𝑦0)𝑑𝜏
𝑏 𝑠
𝑎 𝑠
) −
1
𝑇
𝑓1(𝑠, 𝑥0, 𝑦0,
𝑇
0
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥0, 𝑦0)
𝑠
−∞
𝑑𝜏, 𝑔1(𝜏, 𝑥0, 𝑦0)𝑑𝜏
𝑏 𝑠
𝑎 𝑠
)𝑑𝑠]𝑑𝑠
𝐿2 𝑡, 𝑥0, 𝑦0 = [𝑓2(𝑠, 𝑥0, 𝑦0,
𝑡
0
𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥0, 𝑦0)
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥0, 𝑦0)𝑑𝜏
𝑏 𝑠
𝑎 𝑠
) −
1
𝑇
𝑓2(𝑠, 𝑥0, 𝑦0,
𝑇
0
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥0, 𝑦0)
𝑠
−∞
𝑑𝜏, 𝑔2(𝜏, 𝑥0, 𝑦0)𝑑𝜏
𝑏 𝑠
𝑎 𝑠
)𝑑𝑠]𝑑𝑠
Proof.
𝐿1 𝑡, 𝑥0, 𝑦0 ≤ (1 −
𝑡
𝑇
) 𝑓1(𝑠, 𝑥0, 𝑦0, 𝐺1
𝑠
−∞
𝑠, 𝜏 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏,
𝑡
0
, 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏
𝑏(𝑠)
𝑎(𝑠)
) 𝑑𝑠 +
+
𝑡
𝑇
𝑓1(𝑠, 𝑥0, 𝑦0, 𝐺1
𝑠
−∞
𝑠, 𝜏 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏,
𝑇
𝑡
𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏)
𝑏(𝑠)
𝑎(𝑠)
𝑑𝑠
≤ (1 −
𝑡
𝑇
) 𝑀1
𝑡
0
𝑑𝑠 +
𝑡
𝑇
𝑀1
𝑇
𝑡
𝑑𝑠
≤ 𝑀1[(1 −
𝑡
𝑇
)𝑡 +
𝑡
𝑇
(𝑇 − 𝑡)]
so that:
𝐿1 𝑡, 𝑥0, 𝑦0 ≤ 𝑀1 𝛼 𝑡 ⋯ 1.13
And similarly, we get also
𝐿2 𝑡, 𝑥0, 𝑦0 ≤ 𝑀2 𝛼 𝑡 ⋯ 1.14
From ( 1.13) and ( 1.14), then the inequality ( 1.12) satisfies for all
0 ≤ 𝑡 ≤ 𝑇 and 𝛼 𝑡 ≤
𝑇
2
. ∎
II. Approximation Solution Of (I1) And (I2)
In this section, we study the approximate periodic solution of (I1) and
(I2) by proving the following theorem:
Theorem 2.1. If the system (I1) and (I2) satisfies the inequalities ( 1.2), ( 1.3), 1.4), (1.5),(1.6) and
conditions(1.7),(1.8) has periodic solutions 𝑥 = 𝑥 𝑡, 𝑥0, 𝑦0 and 𝑦 = 𝑦(𝑡, 𝑥0, 𝑦0), then the sequence of
functions:
𝑥 𝑚+1 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + [𝑓1(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 4
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)
𝑏 𝑠
𝑎 𝑠
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 ,
𝑇
0
, 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠
𝑏 𝑠
𝑎 𝑠
⋯ 2.1
with
𝑥0 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 = 𝑥0 , for all m = 0, 1,2, ⋯
𝑦 𝑚+1 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + [𝑓2(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)
𝑏 𝑠
𝑎 𝑠
−
1
𝑇
𝑓2(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 ,
𝑇
0
, 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠
𝑏 𝑠
𝑎 𝑠
⋯ 2.2
with
𝑦0 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 = 𝑦0 , for all m = 0, 1,2, ⋯
periodic in t of period T, and uniformly converges as 𝑚 → ∞ in the domain:
𝑡, 𝑥0, 𝑦0 ∈ 0, 𝑇 × 𝐷𝑓1
× 𝐷1𝑓2
⋯ 2.3
to the limit functions 𝑥0
𝑡, 𝑥0, 𝑦0 , 𝑦0
𝑡, 𝑥0, 𝑦0 defined in the domain ( 2.3) which are periodic in t of period T
and satisfying the system of integral equations:
𝑥 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + [𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)
𝑏 𝑠
𝑎 𝑠
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 ,
𝑇
0
, 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠
𝑏 𝑠
𝑎 𝑠
⋯ 2.4
and
𝑦 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + [𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 5
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)
𝑏 𝑠
𝑎 𝑠
−
1
𝑇
𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 ,
𝑇
0
, 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠
𝑏 𝑠
𝑎 𝑠
⋯ 2.5
provided that:
𝑥0
𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0
𝑦0
𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0
≤ 𝑄0
𝑚
(𝐸 − 𝑄0)−1
𝐶0 ⋯ 2.6
for all 𝑚 ≥ 0 , where
𝐶0 =
𝑇
2
𝑀1
𝑇
2
𝑀2
, 𝐸 is identity matrix.
Proof. Consider the sequence of functions 𝑥1 𝑡, 𝑥0, 𝑦0 , 𝑥2 𝑡, 𝑥0, 𝑦0 , ⋯,
𝑥 𝑚 𝑡, 𝑥0, 𝑦0 , ⋯, and 𝑦1 𝑡, 𝑥0, 𝑦0 , 𝑦2 𝑡, 𝑥0, 𝑦0 , ⋯ , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 , ⋯, defined
by the recurrences relations ( 2.1) and ( 2.2). Each of these functions of sequence defined and continuous in the
domain ( 1.1) and periodic in 𝑡 of period 𝑇.
Now, by the lemma 1.1, and using the sequence of functions (2.1),
when 𝑚 = 0, we get:
By mathematical induction and lemma1.1 , we have the following inequality:
𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥0 ≤
𝑇
2
𝑀1 ⋯ 2.13
i.e. 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷, for all 𝑡 ∈ 𝑅1
, 𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
, 𝑚 = 0,1,2, ⋯,
and
𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦0 ≤
𝑇
2
𝑀2 ⋯ 2.14
i.e. 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷, for all 𝑡 ∈ 𝑅1
, 𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
, 𝑚 = 0,1,2, ⋯,
Now, from ( 2.13), we get:
𝑧 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑧0(𝑡, 𝑥0, 𝑦0) ≤
𝑇
2
(
𝛾
𝜆1
) 𝑅1 𝑀1 + 𝑅2 𝑀2 ⋯ 2.15
and
𝑤 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑤0(𝑡, 𝑥0, 𝑦0) ≤
𝑇
2
𝑕 𝑅1 𝑀1 + 𝑅2 𝑀2 ⋯ 2.16
for all 𝑡 ∈ 𝑅1
, 𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
, 𝑧0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2𝑓1
and
𝑤0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3𝑓1
,
i.e. 𝑧 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2 and 𝑤 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3 , for all 𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
,
where
𝑧 𝑚 𝑡, 𝑥0, 𝑦0 = 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠
𝑡
−∞
and
𝑤 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠
𝑏(𝑡)
𝑎(𝑡)
, 𝑚 = 0,1,2, ⋯ ,
Also from (4.2.14), we get:
𝑢 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑢0(𝑡, 𝑥0, 𝑦0) ≤
𝑇
2
(
𝛿
𝜆2
) 𝐻1 𝑀1 + 𝐻2 𝑀2 ⋯ 2.17
and
𝑉𝑚 𝑡, 𝑥0, 𝑦0 − 𝑉0(𝑡, 𝑥0, 𝑦0) ≤
𝑇
2
𝑕 𝐻1 𝑀1 + 𝐻2 𝑀2 ⋯ 2.18
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 6
for all 𝑡 ∈ 𝑅1
, 𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
, 𝑢0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2𝑓2
and
𝑣0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3𝑓2
,
i.e. 𝑢 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2 and 𝑣 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3, for all 𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
,
where
𝑢 𝑚 𝑡, 𝑥0, 𝑦0 = 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠
𝑡
−∞
and
𝑣 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠
𝑏(𝑡)
𝑎(𝑡)
, 𝑚 = 0,1,2, ⋯ ,
Next, we claim that two sequences 𝑥 𝑚 (𝑡, 𝑥0, 𝑦0)} 𝑚=0
∞
, 𝑦 𝑚 (𝑡, 𝑥0, 𝑦0)} 𝑚=0
∞
are convergent uniformly to the limit functions 𝑥, 𝑦 on the domain ( 2.3).
By mathematical induction and lemma 1.1, we find that:
𝑥 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 ≤
≤ 𝛼(𝑡)[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚−1 𝑡, 𝑥0, 𝑦0
+𝛼(𝑡)[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚−1 𝑡, 𝑥0, 𝑦0
⋯ 2.19
and
𝑦 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ≤
≤ 𝛼(𝑡)[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚−1 𝑡, 𝑥0, 𝑦0 +
+𝛼(𝑡)[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚−1 𝑡, 𝑥0, 𝑦0
⋯ 2.20
We can write the inequalities ( 2.19) and ( 2.20) in a vector form:
𝐶 𝑚+1 𝑡, 𝑥0, 𝑦0 ≤ 𝑄 𝑡 𝐶 𝑚 𝑡, 𝑥0, 𝑦0 ⋯ 2.21
where
𝐶 𝑚+1 𝑡, 𝑥0, 𝑦0 =
𝑥 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0
𝑦 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0
,
and
𝑄 𝑡 =
𝛼(𝑡)[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝛼(𝑡)[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝛼(𝑡)[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝛼(𝑡)[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)]
,
𝐶 𝑚 𝑡, 𝑥0, 𝑦0 =
𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚−1 𝑡, 𝑥0, 𝑦0
𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚−1 𝑡, 𝑥0, 𝑦0
Now, we take the maximum value to both sides of the inequality ( 2.21),
for all 0 ≤ 𝑡 ≤ 𝑇 and 𝛼 𝑡 ≤
𝑇
2
, we get:
𝐶 𝑚+1 ≤ 𝑄0 𝐶 𝑚 , ⋯ 2.22
where 𝑄0 = 𝑚𝑎𝑥𝑡∈ 0,𝑇 𝑄(𝑡) .
Q0 =
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝑇
2
[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)]
𝑇
2
[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)]
By iterating the inequality (4.2.22), we find that:
𝐶 𝑚+1 ≤ 𝑄0
𝑚
𝐶0 , ⋯ 2.23
which leads to the estimate:
𝐶𝑖 ≤ 𝑄0
𝑖−1
𝑚
𝑖=1
𝐶0
𝑚
𝑖=1
⋯ 2.24
Since the matrix 𝑄0 has maximum eigen-values of (4.1.13) and the series
(4.2.24) is uniformly convergent, i. e.
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 7
lim
𝑚→∞
𝑄0
𝑖−1
𝑚
𝑖=1
𝐶0 = 𝑄0
𝑖−1
∞
𝑖=1
𝐶0 = (𝐸 − 𝑄0)−1
𝐶0 ⋯ ( 2.25)
The limiting relation (4.2.25) signifies a uniform convergence of the sequence
𝑥 𝑚 (𝑡, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑡, 𝑥0, 𝑦0) 𝑚=0
∞
in the domain (4.2.3) as 𝑚 → ∞.
Let
lim
𝑚→∞
𝑥 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑥0
𝑡, 𝑥0, 𝑦0 ,
lim
𝑚→∞
𝑦 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑦0
𝑡, 𝑥0, 𝑦0 .
⋯ ( 2.26)
Finally, we show that 𝑥 𝑡, 𝑥0, 𝑦0 ≡ 𝑥0
𝑡, 𝑥0, 𝑦0 ∈ 𝐷 and
𝑦 𝑡, 𝑥0, 𝑦0 ≡ 𝑦0
(𝑡, 𝑥0, 𝑦0) ∈ 𝐷1, for all 𝑥0 ∈ 𝐷𝑓1
and 𝑦0 ∈ 𝐷1𝑓2
.
By using inequalities ( 2.1) and ( 2.4) and lemma 1.1, such that:
[𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 −
− [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠
≤ 𝛼(𝑡) [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 +
+[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 ≤
≤
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 +
+[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 .
From inequality ( 2.26) and on the other hand suppose that:.
𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 ≤ 𝜖1 ,
𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ≤ 𝜖2 .
Thus
[𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 −
− [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠
≤
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]𝜖1 +
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]𝜖2
Putting 𝜖1 =
𝜖3
𝑇
2
[𝐾1+𝑅1(
𝛾
𝜆1
𝐾3+𝑕 𝐾4)]
and 𝜖2 =
𝜖4
𝑇
2
[𝐾2+𝑅2(
𝛾
𝜆1
𝐾3+𝑕𝐾4)]
and substituting in the last equation, we have:
[𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) −
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 8
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 −
− [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠
≤
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝜖3
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
+
+
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
𝜖4
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)]
≤ 𝜖3 + 𝜖4,
and choosing 𝜖3 + 𝜖4 = 𝜖 , we get:
[𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 −
− [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 ≤ 𝜖
for all 𝑚 ≥ 0,
i. e. lim
𝑚→∞
[𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 =
− [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑡
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) −
−
1
𝑇
𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0),
𝑇
0
𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠.
So 𝑥 𝑡, 𝑥0, 𝑦0 ∈ 𝐷, and 𝑥 𝑡, 𝑥0, 𝑦0 ≡ 𝑥0
(𝑡, 𝑥0, 𝑦0) is a periodic solution of ( I1),
Also by using the same method above we can prove 𝑦 𝑡, 𝑥0, 𝑦0 ∈ 𝐷1, and 𝑦 𝑡, 𝑥0, 𝑦0 ≡ 𝑦0
𝑡, 𝑥0, 𝑦0 is
also periodic solution of (𝐼2 ).
Theorem 2.2. With the hypotheses and all conditions of the theorem 2.1, the periodic solution of integral
equations ( 𝐼1 ) and ( 𝐼2 ) are a unique on the domain (1.3).
Proof. Suppose that 𝑥 𝑡, 𝑥0, 𝑦0 and 𝑦 𝑡, 𝑥0, 𝑦0 be another periodic solutions
for the systems (𝐼1) and ( 𝐼2 ) defined and continuous and periodic in 𝑡 of period 𝑇, this means that:
𝑥 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + [𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 9
, 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)
𝑏 𝑠
𝑎 𝑠
−
1
𝑇
𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 ,
𝑇
0
, 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠
𝑏 𝑠
𝑎 𝑠
⋯ 2.27
and
𝑦 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + [𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 ,
𝑡
0
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)
𝑏 𝑠
𝑎 𝑠
−
1
𝑇
𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 ,
𝑇
0
, 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠
𝑏 𝑠
𝑎 𝑠
⋯ 2.28
For their difference, we should obtain the inequality:
𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 ≤
≤
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 +
+
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ⋯ 2.29
And also
𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 ≤
≤ (1 −
𝑡
𝑇
) [𝐿1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐿2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0
𝑡
0
+
𝛿
𝜆2
𝐿3 𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 +
+𝑕𝐿4(𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 )]𝑑𝑠
+
𝑡
𝑇
𝐿1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐿2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 +
𝑇
𝑡
+
𝛿
𝜆2
𝐿3 𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 +
+𝑕𝐿4(𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 )]𝑑𝑠
≤ 𝛼(𝑡)[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 +
+𝛼(𝑡)[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0
so that:
𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ≤
≤
𝑇
2
[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 +
+
𝑇
2
[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ⋯ 2.30
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 10
and the inequalities (4.2.29) and (4.2.30) would lead to the estimate:
𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0
𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0
≤ 𝑄0
𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0
𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0
⋯ 2.31
By iterating the inequality (4.2.27), which should find:
𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0
𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0
≤ 𝑄0
𝑚 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0
𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0
.
But 𝑄0
𝑚
→ 0 as 𝑚 → ∞, so that proceeding in the last inequality which is contradict the supposition It follows
immediately 𝑥 𝑡, 𝑥0, 𝑦0 = 𝑥 𝑡, 𝑥0, 𝑦0 and
𝑦 𝑡, 𝑥0, 𝑦0 = 𝑦 𝑡, 𝑥0, 𝑦0 .
III. Existence of Solution of (𝑰 𝟏) and (𝑰 𝟐)
The problem of existence of periodic solution of period T of the system
( 𝐼1) and ( 𝐼2) are uniquely connected with the existence of zero of the functions ∆1 0, 𝑥0, 𝑦0 = ∆1 and
∆2 0, 𝑥0, 𝑦0 = ∆2 which has the form:
∆1: 𝐷𝑓1
× 𝐷1𝑓2
→ 𝑅 𝑛
∆1 0, 𝑥0, 𝑦0 =
1
𝑇
𝑓1(𝑡, 𝑥0
𝑡, 𝑥0, 𝑦0 , 𝑦0
𝑡, 𝑥0, 𝑦0 ,
𝑇
0
, 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0
𝑡
−∞
𝑑𝑠
, 𝑔1 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡
𝑏 𝑡
𝑎 𝑡
⋯ 3.1
∆2: 𝐷𝑓1
× 𝐷1𝑓2
→ 𝑅 𝑛
∆2 0, 𝑥0, 𝑦0 =
1
𝑇
𝑓2(𝑡, 𝑥0
𝑡, 𝑥0, 𝑦0 , 𝑦0
𝑡, 𝑥0, 𝑦0 ,
𝑇
0
, 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0
𝑡
−∞
𝑑𝑠
, 𝑔2 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡
𝑏 𝑡
𝑎 𝑡
⋯ 3.2
where the function 𝑥0
𝑡, 𝑥0, 𝑦0 is the limit of the sequence of the functions 𝑥 𝑚 (𝑡, 𝑥0, 𝑦0) and the function
𝑦0
𝑡, 𝑥0, 𝑦0 is the limit of the sequence of the functions 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 .
Since this two functions are approximately determined from the sequences of functions:
∆1𝑚 : 𝐷𝑓1
× 𝐷1𝑓2
→ 𝑅 𝑛
∆1𝑚 0, 𝑥0, 𝑦0 =
1
𝑇
𝑓1(𝑡, 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ,
𝑇
0
, 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0
𝑡
−∞
𝑑𝑠
, 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡
𝑏 𝑡
𝑎 𝑡
⋯ 3.3
∆2𝑚 : 𝐷𝑓1
× 𝐷1𝑓2
→ 𝑅 𝑛
∆2𝑚 0, 𝑥0, 𝑦0 =
1
𝑇
𝑓2(𝑡, 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ,
𝑇
0
, 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0
𝑡
−∞
𝑑𝑠
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 11
, 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡
𝑏 𝑡
𝑎 𝑡
⋯ 3.4
for all 𝑚 = 0,1,2, ⋯
Theorem 3.1. If the hypotheses and all conditions of the theorem 2.1 and 2.2 are satisfied, then the following
inequality satisfied:
∆1 0, 𝑥0, 𝑦0 − ∆1𝑚 0, 𝑥0, 𝑦0 ≤ 𝑑 𝑚 ⋯ 3.5
∆2 0, 𝑥0, 𝑦0 − ∆2𝑚 0, 𝑥0, 𝑦0 ≤ 𝜂 𝑚 ⋯ 3.6
satisfied for all 𝑚 ≥ 0 , 𝑥0 ∈ 𝐷𝑓1
and 𝑦0 ∈ 𝐷1𝑓2
,
where
𝑑 𝑚 = [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] [𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] ,
, 𝑄0
𝑚+1
𝐸 − 𝑄0
−1
𝐶0
and
𝜂 𝑚 = [𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] [𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] ,
, 𝑄0
𝑚+1
𝐸 − 𝑄0
−1
𝐶0 .
Proof. By using the relation ( 3.1) and ( 3.3), we have:
∆1 0, 𝑥0, 𝑦0 − ∆1𝑚 0, 𝑥0, 𝑦0
≤ [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥0
𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 +
+[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦0
𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0
≤ [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] [𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] ,
, 𝑄0
𝑚+1
𝐸 − 𝑄0
−1
𝐶0 = 𝑑 𝑚
And also by using the relation ( 3.2) and ( 3.4), we get:
∆2 0, 𝑥0, 𝑦0 − ∆2𝑚 0, 𝑥0, 𝑦0 ≤
≤ [𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] [𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] ,
, 𝑄0
𝑚+1
𝐸 − 𝑄0
−1
𝐶0 = 𝜂 𝑚
where . denotes the ordinary scalar product in the space 𝑅 𝑛
. ∎
Theorem 3.2. Let the vector functions 𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ,
𝑔1 𝑡, 𝑥, 𝑦 and 𝑔2 𝑡, 𝑥, 𝑦 be defined on the domain:
𝐺 = 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇, 𝑎 ≤ 𝑥, 𝑦 ≤ 𝑏, 𝑐 ≤ 𝑧, 𝑢 ≤ 𝑑, 𝑒 ≤ 𝑤, 𝑣 ≤ 𝑓} ⊆ 𝑅1
,
and periodic in t of period T.
Assume that the sequence of functions (4.3.3) and (4.3.4) satisfies the
inequalities:
min
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆1m 0, x0, y0 ≤ − 𝑑m ,
max
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆1m 0, x0, y0 ≥ 𝑑m ,
⋯ 3.7
min
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆2m 0, x0, y0 ≤ − ηm
,
max
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆2m 0, x0, y0 ≥ ηm
,
⋯ 3.8
for all 𝑚 ≥ 0, where
𝑑 𝑚 = [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] [𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] ,
, 𝑄0
𝑚+1
𝐸 − 𝑄0
−1
𝐶0
and
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 12
𝜂 𝑚 = [𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] [𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] ,
, 𝑄0
𝑚+1
𝐸 − 𝑄0
−1
𝐶0
Then the system (4.1.1) and (4.1.2) has periodic solution of period T
𝑥 = 𝑥(𝑡, 𝑥0, 𝑦0) and 𝑦 = 𝑦(𝑡, 𝑥0, 𝑦0) for which 𝑥0 ∈ [𝑎 +
𝑇
2
𝑀1, 𝑏 −
𝑇
2
𝑀1] and
𝑦0 ∈ [𝑐 +
𝑇
2
𝑀2, 𝑑 −
𝑇
2
𝑀2].
Proof. Let 𝑥1, 𝑥2 be any two points in the interval [𝑎 +
𝑇
2
𝑀1, 𝑏 −
𝑇
2
𝑀1] and 𝑦1, 𝑦2 be any two points in the
interval [𝑐 +
𝑇
2
𝑀2, 𝑑 −
𝑇
2
𝑀2],
such that:
Δ1m 0, 𝑥1, 𝑦1 = min
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆1m 0, 𝑥0, 𝑦0 ,
Δ1m 0, 𝑥2, 𝑦2 = max
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆1𝑚 0, 𝑥0, 𝑦0 ,
⋯ 3.9
Δ2m 0, 𝑥1, 𝑦1 = min
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆2m 0, x0, y0 ,
Δ2m 0, 𝑥2, 𝑦2 = max
a+
𝑇
2
𝑀1≤x0≤b−
𝑇
2
𝑀1
c+
𝑇
2
𝑀2≤y0≤d−
𝑇
2
𝑀2
∆2m 0, x0, y0 ,
⋯ 3.10
By using the inequalities ( 3.5), ( 3.6), ( 3.7) and ( 3.8), we have:
∆1 0, 𝑥1, 𝑦1 = ∆1𝑚 0, 𝑥1, 𝑦1 + ∆1 0, 𝑥1, 𝑦1 − ∆1𝑚 (0, 𝑥1, 𝑦1) ≤ 0 ,
∆1 0, 𝑥2, 𝑦2 = ∆1𝑚 0, 𝑥2, 𝑦2 + ∆1 0, 𝑥2, 𝑦2 − ∆1𝑚 (0, 𝑥2, 𝑦2) ≤ 0 .
⋯ 3.11
∆2 0, 𝑥1, 𝑦1 = ∆2𝑚 0, 𝑥1, 𝑦1 + ∆2 0, 𝑥1, 𝑦1 − ∆2𝑚 (0, 𝑥1, 𝑦1) ≤ 0 ,
∆2 0, 𝑥2, 𝑦2 = ∆2𝑚 0, 𝑥2, 𝑦2 + ∆2 0, 𝑥2, 𝑦2 − ∆2𝑚 (0, 𝑥2, 𝑦2) ≤ 0 .
⋯ 3.12
It follows from the inequalities ( 3.11) and ( 3.12) in virtue of the
continuity of the functions ∆1(0, 𝑥0, 𝑦0) and ∆1(0, 𝑥0, 𝑦0) that there exists an isolated singular point (𝑥0
, 𝑦0
) =
(𝑥0, 𝑦0) , 𝑥0
∈ 𝑥1, 𝑥2 and 𝑦0
∈ 𝑦1, 𝑦2 ,
so that ∆1(0, 𝑥0
, 𝑦0
) = 0 and ∆2(0, 𝑥0
, 𝑦0
) = 0. This means that the system ( 3.1) and (4.3.2) has a periodic
solutions 𝑥 𝑡, 𝑥0, 𝑦0 , 𝑦 𝑡, 𝑥0, 𝑦0 for which
𝑥0 ∈ [𝑎 +
𝑇
2
𝑀1, 𝑏 −
𝑇
2
𝑀1] and 𝑦0 ∈ [𝑐 +
𝑇
2
𝑀2, 𝑑 −
𝑇
2
𝑀2]. ∎
Remark 3.1. Theorem 3.2 is proved when 𝑅 𝑛
= 𝑅1
, on the other hand as 𝑥0, 𝑦0 are a scalar singular point
which should be isolated (For this remark, see [5]).
IV. Stability Theorem Of Solution (𝑰 𝟏) And (𝑰 𝟐)
In this section, we study theorem on stability of a periodic solution for the integral equations ( 𝐼1) and ( 𝐼2).
Theorem 4.1. If the function ∆1 0, 𝑥0, 𝑦0 , Δ2(0, 𝑥0, 𝑦0) are defined by
equations ( 3.1) and ( 3.2), where the function 𝑥0
(𝑡, 𝑥0, 𝑦0) is a limit of the sequence of the functions ( 2.1) , the
function 𝑦0
(𝑡, 𝑥0, 𝑦0) is the limit of the sequence of the functions ( 2.2) , Then the following inequalities yields:
∆1 0, 𝑥0, 𝑦0 ≤ 𝑀1 ⋯ 4.1
∆2 0, 𝑥0, 𝑦0 ≤ 𝑀2 ⋯ 4.2
and
∆2 0, 𝑥0
1
, 𝑦0
1
− ∆2 0, 𝑥0
2
, 𝑦0
2
≤ 𝐹1 𝐹2 𝐸3 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐹1 𝐹2 𝐸2( 𝐸3 + 𝐸4 + 𝐹1 𝐸4(1 −
𝑇
2
𝐸1)) 𝐺0
1
𝑡 − 𝐺0
2
(𝑡)
⋯ 4.4
for all 𝑥0
, 𝑥0
1
, 𝑥0
2
∈ 𝐷𝑓1
, 𝑦0
, 𝑦0
1
, 𝑦0
2
∈ 𝐷1𝑓2
, and 𝛼 𝑡 = 2𝑡(1 −
𝑡
𝑇
) ≤
𝑇
2
,
where 𝐸1 = [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)], 𝐸2 = [𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)],
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 13
𝐸3 = [𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)], 𝐸4 = [𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)],
𝐹1 = [(1 −
𝑇
2
𝐸1)(1 −
𝑇
2
𝐸4)]−1
and 𝐹2 = (1 −
𝑇2
4
𝑁2 𝑁3 𝐹1)−1
Proof. From the properties of the functions 𝑥0
𝑡, 𝑥0, 𝑦0 and 𝑦0
𝑡, 𝑥0, 𝑦0 as in the theorem 4.2.1, the
functions Δ1 = ∆1 𝑥0, 𝑦0 , Δ1 = ∆1 𝑥0, 𝑦0 ,
𝑥0 ∈ 𝐷𝑓1
, 𝑦0 ∈ 𝐷1𝑓2
are continuous and bounded by 𝑀1, 𝑀2 in the domain ( 1.3).
From relation ( 3.1), we find:
∆1 (0, 𝑥0 , 𝑦0 ≤
1
𝑇
𝑓1(𝑡, 𝑥0
𝑡, 𝑥0, 𝑦0 , 𝑦0
𝑡, 𝑥0, 𝑦0 ,
𝑇
0
, 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0 𝑑𝑠,
𝑡
−∞
, 𝑔1 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0 𝑑 𝑠)
𝑏(𝑡)
𝑎(𝑡)
𝑑𝑡
by using the Lemma 4.1.1, gives:
∆1(0, 𝑥0, 𝑦0) ≤ 𝑀1.
And from relation ( 3.2), we get:
∆2 (0, 𝑥0 , 𝑦0 ≤
1
𝑇
𝑓2(𝑡, 𝑥0
𝑡, 𝑥0, 𝑦0 , 𝑦0
𝑡, 𝑥0, 𝑦0 ,
𝑇
0
, 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0 𝑑𝑠,
𝑡
−∞
, 𝑔2 𝑠, 𝑥0
𝑠, 𝑥0, 𝑦0 , 𝑦0
𝑠, 𝑥0, 𝑦0 𝑑𝑠)
𝑏(𝑡)
𝑎(𝑡)
𝑑𝑡
and using Lemma 4.1.1, we have:
∆2(0, 𝑥0, 𝑦0) ≤ 𝑀2
By using equation ( 3.1) and lemma 1.1, we get:
∆1 0, 𝑥0
1
, 𝑦0
1
− ∆1 0, 𝑥0
2
, 𝑦0
2
≤
1
𝑇
[𝐾1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
𝑇
0
+𝐾2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
+
+
𝛾
𝜆1
𝐾3(𝑅1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝑅2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
) +
+ 𝑕𝐾4(𝑅1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝑅2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
)]𝑑𝑡
≤ [𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
so,
∆1 0, 𝑥0
1
, 𝑦0
1
− ∆1 0, 𝑥0
2
, 𝑦0
2
≤ 𝐸1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝐸2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
⋯ 4.5
And also by using equation ( 3.2) and lemma 1.1, gives:
∆2 0, 𝑥0
1
, 𝑦0
1
− ∆2 0, 𝑥0
2
, 𝑦0
2
≤
1
𝑇
[𝐿1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
𝑇
0
+𝐿2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
+
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 14
+
𝛿
𝜆2
𝐿3(𝐻1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝐻2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
) +
+ 𝑕𝐿4(𝐻1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝐻2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
)]𝑑𝑡
≤ [𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
.
Therefore,
∆2 0, 𝑥0
1
, 𝑦0
1
− ∆2 0, 𝑥0
2
, 𝑦0
2
≤ 𝐸3 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝐸4 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
⋯ 4.6
where the functions 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
, 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
, 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
and
𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
are solutions of the equation:
𝑥 𝑡, 𝑥0
𝑘
, 𝑦0
𝑘
= 𝐹0
𝑘
𝑡 + [𝑓1(𝑠, 𝑥(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
),
𝑡
0
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))𝑑𝜏
𝑏 𝑠
𝑎 𝑠
) −
−
1
𝑇
𝑓1(𝑠, 𝑥(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
)
𝑇
0
,
, 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))
𝑠
−∞
𝑑𝜏,
, 𝑔1(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))𝑑𝜏
𝑏 𝑠
𝑎 𝑠
)𝑑𝑠]𝑑𝑠 ⋯ ( 4.7)
and
𝑦 𝑡, 𝑥0
𝑘
, 𝑦0
𝑘
= 𝐺0
𝑘
𝑡 + [𝑓2(𝑠, 𝑥(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
),
𝑡
0
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))𝑑𝜏
𝑏 𝑠
𝑎 𝑠
) −
−
1
𝑇
𝑓2(𝑠, 𝑥(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝑠, 𝑥0
𝑘
, 𝑦0
𝑘
)
𝑇
0
,
, 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))
𝑠
−∞
𝑑𝜏,
, 𝑔2(𝜏, 𝑥(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
), 𝑦(𝜏, 𝑥0
𝑘
, 𝑦0
𝑘
))𝑑𝜏
𝑏 𝑠
𝑎 𝑠
)𝑑𝑠]𝑑𝑠 ⋯ ( 4.8)
where 𝑘 = 1, 2.
From (4.4.7), we get:
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 15
+𝛼(𝑡)[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝛼 𝑡 [𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤ 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
[𝐾1 + 𝑅1(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+
𝑇
2
[𝐾2 + 𝑅2(
𝛾
𝜆1
𝐾3 + 𝑕𝐾4)] 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
such that:
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+
𝑇
2
𝐸2 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
therefore:
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ (1 −
𝑇
2
𝐸1)−1
𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2(1 −
𝑇
2
𝐸1)−1
𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
⋯ 4.9
And also from relation ( 4.8), we have:
𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤
≤ 𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+𝛼(𝑡)[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+𝛼(𝑡)[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤
≤ 𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+
𝑇
2
[𝐿1 + 𝐻1(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+
𝑇
2
[𝐿2 + 𝐻2(
𝛿
𝜆2
𝐿3 + 𝑕𝐿4)] 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
so that:
𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤ 𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+
𝑇
2
𝐸3 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
+
+
𝑇
2
𝐸4 𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
and hence:
𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤ (1 −
𝑇
2
𝐸4)−1
𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+
𝑇
2
𝐸3(1 −
𝑇
2
𝐸4)−1
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
⋯ 4.10
Now, by substituting inequality ( 4.10) in ( 4.9), we get:
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ (1 −
𝑇
2
𝐸1)−1
𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2(1 −
𝑇
2
𝐸1)−1
[(1 −
𝑇
2
𝐸4)−1
𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+
𝑇
2
𝐸3(1 −
𝑇
2
𝐸4)−1
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
]
≤ (1 −
𝑇
2
𝐸1)−1
𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2[(1 −
𝑇
2
𝐸1)(1 −
𝑇
2
𝐸4)]−1
𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+
𝑇2
4
𝐸2 𝐸3[(1 −
𝑇
2
𝐸1)(1 −
𝑇
2
𝐸4)]−1
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
]
putting 𝐹1 = [(1 −
𝑇
2
𝐸1)(1 −
𝑇
2
𝐸4)]−1
,
and substituting in the last inequality, we obtain:
Periodic Solutions for Non-Linear Systems of Integral Equations
www.ijeijournal.com Page | 16
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ (1 −
𝑇
2
𝐸1)−1
𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2 𝐹1 𝐺0
1
𝑡 − 𝐺0
2
𝑡 + +
𝑇2
4
𝐸2 𝐸3 𝐹1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
]
as the 𝐹1(1 −
𝑇
2
𝐸4) = (1 −
𝑇
2
𝐸1)−1
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ 𝐹1(1 −
𝑇
2
𝐸4) 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2 𝐹1 𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
𝑇2
4
𝐸2 𝐸3 𝐹1 𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
]
which implies that:
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤≤ 𝐹1(1 −
𝑇
2
𝐸4)(1 −
𝑇2
4
𝐸2 𝐸3 𝐹1)−1
𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2 𝐹1(1 −
𝑇2
4
𝐸2 𝐸3 𝐹1)−1
𝐺0
1
𝑡 − 𝐺0
2
𝑡
putting 𝐹2 = (1 −
𝑇2
4
𝐸2 𝐸3 𝐹1)−1
and substituting in the last inequality, we obtain:
𝑥0
𝑡, 𝑥0
1
, 𝑦0
1
− 𝑥0
𝑡, 𝑥0
2
, 𝑦0
2
≤ 𝐹1 𝐹2(1 −
𝑇
2
𝐸4) 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2 𝐹1 𝐹2 𝐺0
1
𝑡 − 𝐺0
2
𝑡 ⋯ 4.11
Also, substituting the inequalities ( 4.11) in ( 4.10), we find that:
𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤ (1 −
𝑇
2
𝐸4)−1
𝐺0
1
𝑡 − 𝐺0
2
𝑡 +
+
𝑇
2
𝐸3(1 −
𝑇
2
𝐸4)−1
[𝐹1 𝐹2(1 −
𝑇
2
𝐸4) 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+
𝑇
2
𝐸2 𝐹1 𝐹2 𝐺0
1
𝑡 − 𝐺0
2
𝑡 ]
and hence
𝑦0
𝑡, 𝑥0
1
, 𝑦0
1
−𝑦0
𝑡, 𝑥0
2
, 𝑦0
2
≤
𝑇
2
𝐸3 𝐹1 𝐹2 𝐹0
1
𝑡 − 𝐹0
2
𝑡 +
+[𝐹1(1 −
𝑇
2
𝐸1) +
𝑇
2
𝐹1 𝐹2 𝐸2] 𝐺0
1
𝑡 − 𝐺0
2
𝑡
⋯ 4.12
so, substituting inequalities ( 4.11) and ( 4.12) in inequality ( 4.5), we get the inequality ( 4.3).
and the same, substituting inequalities ( 4.11) and ( 4.12) in inequality
( 4.6), gives the inequality ( 4.4). ∎
REFERENCES
[1] Aziz, M.A., (2006), Periodic solutions for some systems of non-linear ordinary differential equations, M. Sc. Thesis, college of
Education, University of Mosul.
[2] Butris, R. N. and Rafeq, A. Sh., (2011), Existence and Uniqueness, Solution for Non-linear Volterra Integral Equation, J. Duhok
Univ. Vol.No. 1, (Pure and Eng. Sciences).
[3] Jaswon, M. A. and Symm, G. T., (1977), Integral Equations Methods in Potential Theory and Elastostatics, A subsidiary of
Hart court brace Jovanovich Publishers, Academic press, London.
[4] Korol, I. I., (2005), On periodic solutions of one class of systems of differential equations, Ukraine, Math. J. Vol. 57, No. 4.
[5] Mitropolsky, Yu. A. and Martynyuk, D. I., (1979), For Periodic Solutions for the Oscillations System with Retarded Argument,
Kiev, Ukraine.
[6] Rama, M. M., (1981), Ordinary Differential Equations Theory and Applications, Britain.
[7] Rafeq, A. Sh., (2009), Periodic solutions for some classes of non-linear systems of integro-differential equations, M. Sc. Thesis,
college of Education, University of Duhok.
[8] Perestyuk, N. A., (1971), The periodic solutions for non-linear systems of differential equations, Math. and Meca. J., Univ. of Kiev,
Kiev, Ukraine,5, 136-146.
[9] Perestyuk, N. A. and Martynyuk, D. I., (1976), Periodic solutions of a certain class systems of differential equations, Math. J., Univ.
of Kiev , Ukraine,No 3.
[10] Samoilenko, A. M. and Ronto, N. I., (1976), A Numerical – Analytic Methods for Investigating of Periodic Solutions, Kiev,
Ukraine.
[11] Samoilenko, A. M., (1966), A numerical – analytic methods for investigations of periodic systems of ordinary differential equations
II, Kiev, Ukraine, Math. J.,No 5.
[12] Shestopalov, Y. V. and Smirnov, Y. G., (2002), Integral Equations, Karlstad University.
[13] Struble, R. A., (1962), Non-Linear Differential Equations, Mc Graw-Hall Book Company Inc., New York.
[14] Tarang, M., (2004), Stability of the spline collocation method for Volterra integro-differential equations, Thesis, University of
Tartu.
[15] Tricomi, F. G., (1965), Integral Equations, Turin University, Turin, Italy.

More Related Content

PDF
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
PPTX
Functions of severable variables
PDF
Existence, Uniqueness and Stability Solution of Differential Equations with B...
PDF
On Bernstein Polynomials
PDF
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
PDF
A Class of Polynomials Associated with Differential Operator and with a Gener...
DOCX
Paul Bleau Calc III Project 2 - Basel Problem
DOCX
BSC_Computer Science_Discrete Mathematics_Unit-I
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
Functions of severable variables
Existence, Uniqueness and Stability Solution of Differential Equations with B...
On Bernstein Polynomials
PROBABILITY DISTRIBUTION OF SUM OF TWO CONTINUOUS VARIABLES AND CONVOLUTION
A Class of Polynomials Associated with Differential Operator and with a Gener...
Paul Bleau Calc III Project 2 - Basel Problem
BSC_Computer Science_Discrete Mathematics_Unit-I

What's hot (19)

DOCX
Latihan 8.3 Thomas (Kalkulus Integral)
PPTX
MT102 Лекц 6
PDF
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
DOCX
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
PPTX
Gram-Schmidt process linear algbera
PPTX
MT102 Лекц 7
DOCX
Tugas 5.3 kalkulus integral
DOCX
Btech_II_ engineering mathematics_unit3
PPTX
MT102 Лекц 10
PPTX
MT102 Лекц 11
PPTX
Ordinary Differential Equations: Variable separation method
PPTX
MT102 Лекц 16
PPTX
Differential equations
PPTX
MT102 Лекц 14
PPTX
MT102 Лекц 15
DOCX
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
PDF
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
PPTX
Homogeneous Linear Differential Equations
DOCX
Btech_II_ engineering mathematics_unit5
Latihan 8.3 Thomas (Kalkulus Integral)
MT102 Лекц 6
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Gram-Schmidt process linear algbera
MT102 Лекц 7
Tugas 5.3 kalkulus integral
Btech_II_ engineering mathematics_unit3
MT102 Лекц 10
MT102 Лекц 11
Ordinary Differential Equations: Variable separation method
MT102 Лекц 16
Differential equations
MT102 Лекц 14
MT102 Лекц 15
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
Homogeneous Linear Differential Equations
Btech_II_ engineering mathematics_unit5
Ad
Ad

Similar to Periodic Solutions for Non-Linear Systems of Integral Equations (20)

PDF
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
PDF
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
PDF
Kt2418201822
PDF
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
PDF
Fixed point theorem of discontinuity and weak compatibility in non complete n...
PDF
11.fixed point theorem of discontinuity and weak compatibility in non complet...
PDF
A Study of Periodic Points and Their Stability on a One-Dimensional Chaotic S...
PDF
C0560913
PDF
Method Of Averaging For Differential Equations On An Infinite Interval Theory...
PDF
Dynamical systems solved ex
PDF
Euler lagrange equation
PDF
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
PDF
NODDEA2012_VANKOVA
PDF
Multifrequency Oscillations Of Nonlinear Systems A M Samoilenko R Petryshyn
PDF
PaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
PDF
D021018022
PDF
B0560508
PDF
Exponential decay for the solution of the nonlinear equation induced by the m...
PDF
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
Kt2418201822
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
Fixed point theorem of discontinuity and weak compatibility in non complete n...
11.fixed point theorem of discontinuity and weak compatibility in non complet...
A Study of Periodic Points and Their Stability on a One-Dimensional Chaotic S...
C0560913
Method Of Averaging For Differential Equations On An Infinite Interval Theory...
Dynamical systems solved ex
Euler lagrange equation
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
NODDEA2012_VANKOVA
Multifrequency Oscillations Of Nonlinear Systems A M Samoilenko R Petryshyn
PaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
D021018022
B0560508
Exponential decay for the solution of the nonlinear equation induced by the m...
Decay Property for Solutions to Plate Type Equations with Variable Coefficients

More from International Journal of Engineering Inventions www.ijeijournal.com (20)

Recently uploaded (20)

PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
Design Guidelines and solutions for Plastics parts
PPT
Total quality management ppt for engineering students
PPTX
Current and future trends in Computer Vision.pptx
PDF
Visual Aids for Exploratory Data Analysis.pdf
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PPTX
Feature types and data preprocessing steps
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Exploratory_Data_Analysis_Fundamentals.pdf
Design Guidelines and solutions for Plastics parts
Total quality management ppt for engineering students
Current and future trends in Computer Vision.pptx
Visual Aids for Exploratory Data Analysis.pdf
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
Fundamentals of safety and accident prevention -final (1).pptx
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
Management Information system : MIS-e-Business Systems.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Nature of X-rays, X- Ray Equipment, Fluoroscopy
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
Feature types and data preprocessing steps

Periodic Solutions for Non-Linear Systems of Integral Equations

  • 1. International Journal of Engineering Inventions e-ISSN: 2278-7461, p-ISSN: 2319-6491 Volume 3, Issue 8 (April 2014) PP: 01-16 www.ijeijournal.com Page | 1 Periodic Solutions for Non-Linear Systems of Integral Equations Prof. Dr. Raad. N. Butris1 , Baybeen S. Fars2 1, 2 Department of Mathematics, Faculty of Science, University of Zakho Abstract: The aim of this paper is to study the existence and approximation of periodic solutions for non-linear systems of integral equations, by using the numerical-analytic method which were introduced by Samoilenko[ 10, 11]. The study of such nonlinear integral equations is more general and leads us to improve and extend the results of Butris [2]. Keyword And Phrases: Numerical-analytic methods, existence and approximation of periodic solutions, nonlinear system, integral equations. I. Introduction Integral equation has been arisen in many mathematical and engineering field, so that solving this kind of problems are more efficient and useful in many research branches. Analytical solution of this kind of equation is not accessible in general form of equation and we can only get an exact solution only in special cases. But in industrial problems we have not spatial cases so that we try to solve this kind of equations numerically in general format. Many numerical schemes are employed to give an approximate solution with sufficient accuracy [3,4,6, ,12,13,14,15]. Many author create and develop numerical-analytic methods [1, 2,5, 7,8,9] and schemes to investigate periodic solution of integral equations describing many applications in mathematical and engineering field. Consider the following system of non-linear integral equations which has the form: 𝑥 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + 𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝑡 0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏 𝑏 𝑠 𝑎 𝑠 )𝑑𝑠 ⋯( I1 ) 𝑦 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + 𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝑡 0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏 𝑏 𝑠 𝑎 𝑠 )𝑑𝑠 ⋯ ( I2 ) where 𝑥 ∈ 𝐷 ⊂ 𝑅 𝑛 , 𝐷 is closed and bounded domain subset of Euclidean space 𝑅 𝑛 . Let the vector functions 𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 = 𝑓11 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓12 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , … , 𝑓1𝑛 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 = 𝑓21 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , 𝑓22 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , … , 𝑓2𝑛 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , 𝑔1 𝑡, 𝑥, 𝑦 = 𝑔11 𝑡, 𝑥, 𝑦 , 𝑔12 𝑡, 𝑥, 𝑦 , … , 𝑔1𝑛 𝑡, 𝑥, 𝑦 , 𝑔2 𝑡, 𝑥, 𝑦 = 𝑔21 𝑡, 𝑥, 𝑦 , 𝑔22 𝑡, 𝑥, 𝑦 , … , 𝑔2𝑛 𝑡, 𝑥, 𝑦 , 𝐹0 𝑡 = (𝐹01 𝑡 , 𝐹02 𝑡 , … , 𝐹0𝑛 𝑡 ), and 𝐺0 𝑡 = (𝐺01 𝑡 , 𝐺02 𝑡 , ⋯ , 𝐺0𝑛 𝑡 ) are defined and continuous on the domains: 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑅1 × 𝐷 × 𝐷1 × 𝐷2 = −∞, ∞ × 𝐷 × 𝐷1 × 𝐷2 × 𝐷3 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑅1 × 𝐷 × 𝐷1 × 𝐷2 = −∞, ∞ × 𝐷 × 𝐷1 × 𝐷2 × 𝐷3 ⋯ 1.1 and periodic in t of period T, Also a(t) and b(t) are continuous and periodic in t of period 𝑇. Suppose that the functions 𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , 𝑔1 𝑡, 𝑥, 𝑦 and 𝑔2 𝑡, 𝑥, 𝑦 satisfies the following inequalities:
  • 2. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 2 𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 ≤ 𝑀1 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 ≤ 𝑀2 , 𝑀1, 𝑀2 > 0 𝑔1 𝑡, 𝑥, 𝑦 ≤ 𝑁1 , 𝑔1 𝑡, 𝑥, 𝑦 ≤ 𝑁1 , 𝑁1, 𝑁 2 > 0 ⋯ 1.2 𝑓1 𝑡, 𝑥1, 𝑦1, 𝑧1, 𝑤1 − 𝑓1 𝑡, 𝑥2, 𝑦2, 𝑧2, 𝑤2 ≤ 𝐾1 𝑥1 − 𝑥2 + 𝐾2 𝑦1−𝑦2 + +𝐾3 𝑧1−𝑧2 + 𝐾4 𝑤1−𝑤2 ⋯ 1.3 𝑓2 𝑡, 𝑥1, 𝑦1, 𝑢1, 𝑣1 − 𝑓2 𝑡, 𝑥2, 𝑦2, 𝑢2, 𝑣2 ≤ 𝐿1 𝑥1 − 𝑥2 + 𝐿2 𝑦1−𝑦2 + +𝐿3 𝑢1−𝑢2 + 𝐿4 𝑣1−𝑣2 , ⋯ 1.4 𝑔1 𝑡, 𝑥1, 𝑦1 − 𝑔1 𝑡, 𝑥2, 𝑦2 ≤ 𝑅1 𝑥1 − 𝑥2 + 𝑅2 𝑦1 − 𝑦2 , ⋯ 1.5 𝑔2 𝑡, 𝑥1, 𝑦1 − 𝑔2 𝑡, 𝑥2, 𝑦2 ≤ 𝐻1 𝑥1 − 𝑥2 + 𝐻2 𝑦1 − 𝑦2 , ⋯ 1.6 for all 𝑡 ∈ 𝑅1 , 𝑥, 𝑥1, 𝑥2 ∈ 𝐷 , 𝑦 , 𝑦1, 𝑦2 ∈ 𝐷1, 𝑧, 𝑧1, 𝑧2, 𝑢, 𝑢1, 𝑢2 ∈ 𝐷2 , and 𝑤, 𝑤1, 𝑤2, 𝑣, 𝑣1, 𝑣2 ∈ 𝐷3, where 𝑀1 = 𝑀11, 𝑀12, … , 𝑀1𝑛 , 𝑀2 = 𝑀21, 𝑀22, … , 𝑀2𝑛 , 𝑁1 = (𝑁11, 𝑁12, … , 𝑁1𝑛 ) and 𝑁2 = 𝑁21, 𝑁22, … , 𝑁2𝑛 are positive constant vectors and 𝐾1 = (𝐾1 𝑖𝑗 ), 𝐾2 = (𝐾2 𝑖𝑗 ), 𝐾3 = (𝐾3 𝑖𝑗 ), 𝐾4 = (𝐾4 𝑖𝑗 ), 𝐿1 = (𝐿1 𝑖𝑗 ), 𝐿2 = (𝐿2 𝑖𝑗 ), 𝐿3 = ( 𝐿3 𝑖𝑗 ), 𝐿4 = (𝐿4 𝑖𝑗 ), 𝑅1 = (𝑅1 𝑖𝑗 ), 𝑅2 = (𝑅2 𝑖𝑗 ), 𝐻1 = (𝐻1 𝑖𝑗 ), and 𝐻2 = (𝐻2 𝑖𝑗 ) are positive constant matrices. Also 𝐺1 𝑡, 𝑠 and 𝐺2 𝑡, 𝑠 are (n×n) continuous positive matrix and periodic in t, s of period T in the domain 𝑅1 × 𝑅1 and satisfy the following conditions: 𝐺1 𝑡, 𝑠 ≤ 𝛾 𝑒−𝜆1 𝑡−𝑠 , 𝛾, 𝜆1 > 0 ⋯ 1.7 and 𝐺2(𝑡, 𝑠) ≤ 𝛿 𝑒−𝜆2 𝑡−𝑠 , 𝛿, 𝜆2 > 0 ⋯ 1.8 where −∞ < 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 < ∞ , 𝑖, 𝑗 = 1,2, ⋯ , 𝑛, and 𝑕 = 𝑚𝑎𝑥𝑡∈ 0,𝑇 𝑏 𝑡 − 𝑎 𝑡 , . = 𝑚𝑎𝑥𝑡∈ 0,𝑇 . Now define a non-empty sets as follows: 𝐷𝑓1 = 𝐷 − 𝑇 2 𝑀 1 , 𝐷1𝑓2 = 𝐷1 − 𝑇 2 𝑀 2 , 𝐷2𝑓1 = 𝐷2 − 𝑇 2 𝛾 𝜆1 𝑅1 𝑀1 + 𝑅2 𝑀2 , 𝐷3𝑓1 = 𝐷3 − 𝑇 2 𝑕 𝑅1 𝑀1 + 𝑅2 𝑀2 , 𝐷2𝑓2 = 𝐷2 − 𝑇 2 𝛿 𝜆2 𝐻1 𝑀1 + 𝐻2 𝑀2 , 𝐷3𝑓2 = 𝐷3 − 𝑇 2 𝑕 𝐻1 𝑀1 + 𝐻2 𝑀2 . ⋯ 1.9 Forever, we suppose that the greatest eigen-value 𝑞 𝑚𝑎𝑥 of the following matrix: Q0 = 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑇 2 [𝐿1 + 𝐻1(𝐿3 𝛿 𝜆2 + 𝑕𝐿4)] 𝑇 2 [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] ⋯ 1.10 is less than unity, i.e. 𝑞 𝑚𝑎𝑥 𝑄0 = φ1 + 𝜑1 2 + 4(𝜑2 − 𝜑3) 2 < 1 , ⋯ 1.11 where φ1 = 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] + 𝑇 2 [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)], φ2 = ( 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)])( 𝑇 2 [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)]) and 𝜑3 = ( 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)])( 𝑇 2 [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)]). By using lemma 3.1[10],we can state and prove the following lemma: Lemma 1.1. Let 𝑓1(𝑡, 𝑥, 𝑦, 𝑧, 𝑤) and 𝑓2(𝑡, 𝑥, 𝑦, 𝑢, 𝑣) be a vector functions which are defined and continuous in the interval 0, 𝑇 , then the inequality:
  • 3. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 3 𝐿1 𝑡, 𝑥0, 𝑦0 𝐿2(𝑡, 𝑥0, 𝑦0) ≤ 𝑀1 𝛼 𝑡 𝑀2 𝛼 𝑡 ⋯ 1.12 satisfies for 0 ≤ 𝑡 ≤ 𝑇 and 𝛼 𝑡 ≤ 𝑇 2 , where 𝛼 𝑡 = 2𝑡(1 − 𝑡 𝑇 ) for all 𝑡 ∈ 0, 𝑇 , 𝐿1 𝑡, 𝑥0, 𝑦0 = [𝑓1(𝑠, 𝑥0, 𝑦0, 𝑡 0 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥0, 𝑦0) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥0, 𝑦0)𝑑𝜏 𝑏 𝑠 𝑎 𝑠 ) − 1 𝑇 𝑓1(𝑠, 𝑥0, 𝑦0, 𝑇 0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥0, 𝑦0) 𝑠 −∞ 𝑑𝜏, 𝑔1(𝜏, 𝑥0, 𝑦0)𝑑𝜏 𝑏 𝑠 𝑎 𝑠 )𝑑𝑠]𝑑𝑠 𝐿2 𝑡, 𝑥0, 𝑦0 = [𝑓2(𝑠, 𝑥0, 𝑦0, 𝑡 0 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥0, 𝑦0) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥0, 𝑦0)𝑑𝜏 𝑏 𝑠 𝑎 𝑠 ) − 1 𝑇 𝑓2(𝑠, 𝑥0, 𝑦0, 𝑇 0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥0, 𝑦0) 𝑠 −∞ 𝑑𝜏, 𝑔2(𝜏, 𝑥0, 𝑦0)𝑑𝜏 𝑏 𝑠 𝑎 𝑠 )𝑑𝑠]𝑑𝑠 Proof. 𝐿1 𝑡, 𝑥0, 𝑦0 ≤ (1 − 𝑡 𝑇 ) 𝑓1(𝑠, 𝑥0, 𝑦0, 𝐺1 𝑠 −∞ 𝑠, 𝜏 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏, 𝑡 0 , 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏 𝑏(𝑠) 𝑎(𝑠) ) 𝑑𝑠 + + 𝑡 𝑇 𝑓1(𝑠, 𝑥0, 𝑦0, 𝐺1 𝑠 −∞ 𝑠, 𝜏 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏, 𝑇 𝑡 𝑔1 𝜏, 𝑥0, 𝑦0 𝑑𝜏) 𝑏(𝑠) 𝑎(𝑠) 𝑑𝑠 ≤ (1 − 𝑡 𝑇 ) 𝑀1 𝑡 0 𝑑𝑠 + 𝑡 𝑇 𝑀1 𝑇 𝑡 𝑑𝑠 ≤ 𝑀1[(1 − 𝑡 𝑇 )𝑡 + 𝑡 𝑇 (𝑇 − 𝑡)] so that: 𝐿1 𝑡, 𝑥0, 𝑦0 ≤ 𝑀1 𝛼 𝑡 ⋯ 1.13 And similarly, we get also 𝐿2 𝑡, 𝑥0, 𝑦0 ≤ 𝑀2 𝛼 𝑡 ⋯ 1.14 From ( 1.13) and ( 1.14), then the inequality ( 1.12) satisfies for all 0 ≤ 𝑡 ≤ 𝑇 and 𝛼 𝑡 ≤ 𝑇 2 . ∎ II. Approximation Solution Of (I1) And (I2) In this section, we study the approximate periodic solution of (I1) and (I2) by proving the following theorem: Theorem 2.1. If the system (I1) and (I2) satisfies the inequalities ( 1.2), ( 1.3), 1.4), (1.5),(1.6) and conditions(1.7),(1.8) has periodic solutions 𝑥 = 𝑥 𝑡, 𝑥0, 𝑦0 and 𝑦 = 𝑦(𝑡, 𝑥0, 𝑦0), then the sequence of functions: 𝑥 𝑚+1 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + [𝑓1(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑡 0
  • 4. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 4 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏) 𝑏 𝑠 𝑎 𝑠 − 1 𝑇 𝑓1(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑇 0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠 𝑏 𝑠 𝑎 𝑠 ⋯ 2.1 with 𝑥0 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 = 𝑥0 , for all m = 0, 1,2, ⋯ 𝑦 𝑚+1 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + [𝑓2(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑡 0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏) 𝑏 𝑠 𝑎 𝑠 − 1 𝑇 𝑓2(𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑇 0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝑚 𝜏, 𝑥0, 𝑦0 , 𝑦 𝑚 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠 𝑏 𝑠 𝑎 𝑠 ⋯ 2.2 with 𝑦0 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 = 𝑦0 , for all m = 0, 1,2, ⋯ periodic in t of period T, and uniformly converges as 𝑚 → ∞ in the domain: 𝑡, 𝑥0, 𝑦0 ∈ 0, 𝑇 × 𝐷𝑓1 × 𝐷1𝑓2 ⋯ 2.3 to the limit functions 𝑥0 𝑡, 𝑥0, 𝑦0 , 𝑦0 𝑡, 𝑥0, 𝑦0 defined in the domain ( 2.3) which are periodic in t of period T and satisfying the system of integral equations: 𝑥 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + [𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝑡 0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏) 𝑏 𝑠 𝑎 𝑠 − 1 𝑇 𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑇 0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠 𝑏 𝑠 𝑎 𝑠 ⋯ 2.4 and 𝑦 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + [𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝑡 0
  • 5. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 5 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏) 𝑏 𝑠 𝑎 𝑠 − 1 𝑇 𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑇 0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠 𝑏 𝑠 𝑎 𝑠 ⋯ 2.5 provided that: 𝑥0 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 𝑦0 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ≤ 𝑄0 𝑚 (𝐸 − 𝑄0)−1 𝐶0 ⋯ 2.6 for all 𝑚 ≥ 0 , where 𝐶0 = 𝑇 2 𝑀1 𝑇 2 𝑀2 , 𝐸 is identity matrix. Proof. Consider the sequence of functions 𝑥1 𝑡, 𝑥0, 𝑦0 , 𝑥2 𝑡, 𝑥0, 𝑦0 , ⋯, 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 , ⋯, and 𝑦1 𝑡, 𝑥0, 𝑦0 , 𝑦2 𝑡, 𝑥0, 𝑦0 , ⋯ , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 , ⋯, defined by the recurrences relations ( 2.1) and ( 2.2). Each of these functions of sequence defined and continuous in the domain ( 1.1) and periodic in 𝑡 of period 𝑇. Now, by the lemma 1.1, and using the sequence of functions (2.1), when 𝑚 = 0, we get: By mathematical induction and lemma1.1 , we have the following inequality: 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥0 ≤ 𝑇 2 𝑀1 ⋯ 2.13 i.e. 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷, for all 𝑡 ∈ 𝑅1 , 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 , 𝑚 = 0,1,2, ⋯, and 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦0 ≤ 𝑇 2 𝑀2 ⋯ 2.14 i.e. 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷, for all 𝑡 ∈ 𝑅1 , 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 , 𝑚 = 0,1,2, ⋯, Now, from ( 2.13), we get: 𝑧 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑧0(𝑡, 𝑥0, 𝑦0) ≤ 𝑇 2 ( 𝛾 𝜆1 ) 𝑅1 𝑀1 + 𝑅2 𝑀2 ⋯ 2.15 and 𝑤 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑤0(𝑡, 𝑥0, 𝑦0) ≤ 𝑇 2 𝑕 𝑅1 𝑀1 + 𝑅2 𝑀2 ⋯ 2.16 for all 𝑡 ∈ 𝑅1 , 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 , 𝑧0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2𝑓1 and 𝑤0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3𝑓1 , i.e. 𝑧 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2 and 𝑤 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3 , for all 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 , where 𝑧 𝑚 𝑡, 𝑥0, 𝑦0 = 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠 𝑡 −∞ and 𝑤 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠 𝑏(𝑡) 𝑎(𝑡) , 𝑚 = 0,1,2, ⋯ , Also from (4.2.14), we get: 𝑢 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑢0(𝑡, 𝑥0, 𝑦0) ≤ 𝑇 2 ( 𝛿 𝜆2 ) 𝐻1 𝑀1 + 𝐻2 𝑀2 ⋯ 2.17 and 𝑉𝑚 𝑡, 𝑥0, 𝑦0 − 𝑉0(𝑡, 𝑥0, 𝑦0) ≤ 𝑇 2 𝑕 𝐻1 𝑀1 + 𝐻2 𝑀2 ⋯ 2.18
  • 6. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 6 for all 𝑡 ∈ 𝑅1 , 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 , 𝑢0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2𝑓2 and 𝑣0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3𝑓2 , i.e. 𝑢 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷2 and 𝑣 𝑚 𝑡, 𝑥0, 𝑦0 ∈ 𝐷3, for all 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 , where 𝑢 𝑚 𝑡, 𝑥0, 𝑦0 = 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠 𝑡 −∞ and 𝑣 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠 𝑏(𝑡) 𝑎(𝑡) , 𝑚 = 0,1,2, ⋯ , Next, we claim that two sequences 𝑥 𝑚 (𝑡, 𝑥0, 𝑦0)} 𝑚=0 ∞ , 𝑦 𝑚 (𝑡, 𝑥0, 𝑦0)} 𝑚=0 ∞ are convergent uniformly to the limit functions 𝑥, 𝑦 on the domain ( 2.3). By mathematical induction and lemma 1.1, we find that: 𝑥 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 ≤ ≤ 𝛼(𝑡)[𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚−1 𝑡, 𝑥0, 𝑦0 +𝛼(𝑡)[𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚−1 𝑡, 𝑥0, 𝑦0 ⋯ 2.19 and 𝑦 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ≤ ≤ 𝛼(𝑡)[𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚−1 𝑡, 𝑥0, 𝑦0 + +𝛼(𝑡)[𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚−1 𝑡, 𝑥0, 𝑦0 ⋯ 2.20 We can write the inequalities ( 2.19) and ( 2.20) in a vector form: 𝐶 𝑚+1 𝑡, 𝑥0, 𝑦0 ≤ 𝑄 𝑡 𝐶 𝑚 𝑡, 𝑥0, 𝑦0 ⋯ 2.21 where 𝐶 𝑚+1 𝑡, 𝑥0, 𝑦0 = 𝑥 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 𝑦 𝑚+1 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 , and 𝑄 𝑡 = 𝛼(𝑡)[𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝛼(𝑡)[𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝛼(𝑡)[𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝛼(𝑡)[𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] , 𝐶 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚−1 𝑡, 𝑥0, 𝑦0 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚−1 𝑡, 𝑥0, 𝑦0 Now, we take the maximum value to both sides of the inequality ( 2.21), for all 0 ≤ 𝑡 ≤ 𝑇 and 𝛼 𝑡 ≤ 𝑇 2 , we get: 𝐶 𝑚+1 ≤ 𝑄0 𝐶 𝑚 , ⋯ 2.22 where 𝑄0 = 𝑚𝑎𝑥𝑡∈ 0,𝑇 𝑄(𝑡) . Q0 = 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑇 2 [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑇 2 [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] By iterating the inequality (4.2.22), we find that: 𝐶 𝑚+1 ≤ 𝑄0 𝑚 𝐶0 , ⋯ 2.23 which leads to the estimate: 𝐶𝑖 ≤ 𝑄0 𝑖−1 𝑚 𝑖=1 𝐶0 𝑚 𝑖=1 ⋯ 2.24 Since the matrix 𝑄0 has maximum eigen-values of (4.1.13) and the series (4.2.24) is uniformly convergent, i. e.
  • 7. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 7 lim 𝑚→∞ 𝑄0 𝑖−1 𝑚 𝑖=1 𝐶0 = 𝑄0 𝑖−1 ∞ 𝑖=1 𝐶0 = (𝐸 − 𝑄0)−1 𝐶0 ⋯ ( 2.25) The limiting relation (4.2.25) signifies a uniform convergence of the sequence 𝑥 𝑚 (𝑡, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑡, 𝑥0, 𝑦0) 𝑚=0 ∞ in the domain (4.2.3) as 𝑚 → ∞. Let lim 𝑚→∞ 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑥0 𝑡, 𝑥0, 𝑦0 , lim 𝑚→∞ 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 = 𝑦0 𝑡, 𝑥0, 𝑦0 . ⋯ ( 2.26) Finally, we show that 𝑥 𝑡, 𝑥0, 𝑦0 ≡ 𝑥0 𝑡, 𝑥0, 𝑦0 ∈ 𝐷 and 𝑦 𝑡, 𝑥0, 𝑦0 ≡ 𝑦0 (𝑡, 𝑥0, 𝑦0) ∈ 𝐷1, for all 𝑥0 ∈ 𝐷𝑓1 and 𝑦0 ∈ 𝐷1𝑓2 . By using inequalities ( 2.1) and ( 2.4) and lemma 1.1, such that: [𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 − − [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 ≤ 𝛼(𝑡) [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + +[𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 ≤ ≤ 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 + +[𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 . From inequality ( 2.26) and on the other hand suppose that:. 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 ≤ 𝜖1 , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ≤ 𝜖2 . Thus [𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 − − [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 ≤ 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)]𝜖1 + 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)]𝜖2 Putting 𝜖1 = 𝜖3 𝑇 2 [𝐾1+𝑅1( 𝛾 𝜆1 𝐾3+𝑕 𝐾4)] and 𝜖2 = 𝜖4 𝑇 2 [𝐾2+𝑅2( 𝛾 𝜆1 𝐾3+𝑕𝐾4)] and substituting in the last equation, we have: [𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) −
  • 8. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 8 − 1 𝑇 𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 − − [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 ≤ 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝜖3 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] + + 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝜖4 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] ≤ 𝜖3 + 𝜖4, and choosing 𝜖3 + 𝜖4 = 𝜖 , we get: [𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 − − [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 ≤ 𝜖 for all 𝑚 ≥ 0, i. e. lim 𝑚→∞ [𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑦 𝑚 (𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑤 𝑚 (𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠 = − [𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑡 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0)) − − 1 𝑇 𝑓1(𝑠, 𝑥(𝑠, 𝑥0, 𝑦0), 𝑦(𝑠, 𝑥0, 𝑦0), 𝑇 0 𝑧 𝑠, 𝑥0, 𝑦0 , 𝑤(𝑠, 𝑥0, 𝑦0))𝑑𝑠]𝑑𝑠. So 𝑥 𝑡, 𝑥0, 𝑦0 ∈ 𝐷, and 𝑥 𝑡, 𝑥0, 𝑦0 ≡ 𝑥0 (𝑡, 𝑥0, 𝑦0) is a periodic solution of ( I1), Also by using the same method above we can prove 𝑦 𝑡, 𝑥0, 𝑦0 ∈ 𝐷1, and 𝑦 𝑡, 𝑥0, 𝑦0 ≡ 𝑦0 𝑡, 𝑥0, 𝑦0 is also periodic solution of (𝐼2 ). Theorem 2.2. With the hypotheses and all conditions of the theorem 2.1, the periodic solution of integral equations ( 𝐼1 ) and ( 𝐼2 ) are a unique on the domain (1.3). Proof. Suppose that 𝑥 𝑡, 𝑥0, 𝑦0 and 𝑦 𝑡, 𝑥0, 𝑦0 be another periodic solutions for the systems (𝐼1) and ( 𝐼2 ) defined and continuous and periodic in 𝑡 of period 𝑇, this means that: 𝑥 𝑡, 𝑥0, 𝑦0 = 𝐹0 𝑡 + [𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝑡 0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏,
  • 9. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 9 , 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏) 𝑏 𝑠 𝑎 𝑠 − 1 𝑇 𝑓1(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑇 0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠 𝑏 𝑠 𝑎 𝑠 ⋯ 2.27 and 𝑦 𝑡, 𝑥0, 𝑦0 = 𝐺0 𝑡 + [𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝑡 0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏) 𝑏 𝑠 𝑎 𝑠 − 1 𝑇 𝑓2(𝑠, 𝑥 𝑠, 𝑥0, 𝑦0 , 𝑇 0 , 𝑦 𝑠, 𝑥0, 𝑦0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 ) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥 𝜏, 𝑥0, 𝑦0 , 𝑦 𝜏, 𝑥0, 𝑦0 )𝑑𝜏)𝑑𝑠]𝑑𝑠 𝑏 𝑠 𝑎 𝑠 ⋯ 2.28 For their difference, we should obtain the inequality: 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 ≤ ≤ 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 + + 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ⋯ 2.29 And also 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 ≤ ≤ (1 − 𝑡 𝑇 ) [𝐿1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐿2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 𝑡 0 + 𝛿 𝜆2 𝐿3 𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 + +𝑕𝐿4(𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 )]𝑑𝑠 + 𝑡 𝑇 𝐿1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐿2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 + 𝑇 𝑡 + 𝛿 𝜆2 𝐿3 𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 + +𝑕𝐿4(𝐻1 𝑥 𝑠, 𝑥0, 𝑦0 − 𝑥 𝑠, 𝑥0, 𝑦0 + 𝐻2 𝑦 𝑠, 𝑥0, 𝑦0 − 𝑦 𝑠, 𝑥0, 𝑦0 )]𝑑𝑠 ≤ 𝛼(𝑡)[𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 + +𝛼(𝑡)[𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 so that: 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ≤ ≤ 𝑇 2 [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 + + 𝑇 2 [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ⋯ 2.30
  • 10. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 10 and the inequalities (4.2.29) and (4.2.30) would lead to the estimate: 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ≤ 𝑄0 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ⋯ 2.31 By iterating the inequality (4.2.27), which should find: 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 ≤ 𝑄0 𝑚 𝑥 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑡, 𝑥0, 𝑦0 𝑦 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑡, 𝑥0, 𝑦0 . But 𝑄0 𝑚 → 0 as 𝑚 → ∞, so that proceeding in the last inequality which is contradict the supposition It follows immediately 𝑥 𝑡, 𝑥0, 𝑦0 = 𝑥 𝑡, 𝑥0, 𝑦0 and 𝑦 𝑡, 𝑥0, 𝑦0 = 𝑦 𝑡, 𝑥0, 𝑦0 . III. Existence of Solution of (𝑰 𝟏) and (𝑰 𝟐) The problem of existence of periodic solution of period T of the system ( 𝐼1) and ( 𝐼2) are uniquely connected with the existence of zero of the functions ∆1 0, 𝑥0, 𝑦0 = ∆1 and ∆2 0, 𝑥0, 𝑦0 = ∆2 which has the form: ∆1: 𝐷𝑓1 × 𝐷1𝑓2 → 𝑅 𝑛 ∆1 0, 𝑥0, 𝑦0 = 1 𝑇 𝑓1(𝑡, 𝑥0 𝑡, 𝑥0, 𝑦0 , 𝑦0 𝑡, 𝑥0, 𝑦0 , 𝑇 0 , 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑡 −∞ 𝑑𝑠 , 𝑔1 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡 𝑏 𝑡 𝑎 𝑡 ⋯ 3.1 ∆2: 𝐷𝑓1 × 𝐷1𝑓2 → 𝑅 𝑛 ∆2 0, 𝑥0, 𝑦0 = 1 𝑇 𝑓2(𝑡, 𝑥0 𝑡, 𝑥0, 𝑦0 , 𝑦0 𝑡, 𝑥0, 𝑦0 , 𝑇 0 , 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑡 −∞ 𝑑𝑠 , 𝑔2 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡 𝑏 𝑡 𝑎 𝑡 ⋯ 3.2 where the function 𝑥0 𝑡, 𝑥0, 𝑦0 is the limit of the sequence of the functions 𝑥 𝑚 (𝑡, 𝑥0, 𝑦0) and the function 𝑦0 𝑡, 𝑥0, 𝑦0 is the limit of the sequence of the functions 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 . Since this two functions are approximately determined from the sequences of functions: ∆1𝑚 : 𝐷𝑓1 × 𝐷1𝑓2 → 𝑅 𝑛 ∆1𝑚 0, 𝑥0, 𝑦0 = 1 𝑇 𝑓1(𝑡, 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 , 𝑇 0 , 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑡 −∞ 𝑑𝑠 , 𝑔1 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡 𝑏 𝑡 𝑎 𝑡 ⋯ 3.3 ∆2𝑚 : 𝐷𝑓1 × 𝐷1𝑓2 → 𝑅 𝑛 ∆2𝑚 0, 𝑥0, 𝑦0 = 1 𝑇 𝑓2(𝑡, 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 , 𝑇 0 , 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑡 −∞ 𝑑𝑠
  • 11. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 11 , 𝑔2 𝑠, 𝑥 𝑚 𝑠, 𝑥0, 𝑦0 , 𝑦 𝑚 𝑠, 𝑥0, 𝑦0 𝑑𝑠)𝑑𝑡 𝑏 𝑡 𝑎 𝑡 ⋯ 3.4 for all 𝑚 = 0,1,2, ⋯ Theorem 3.1. If the hypotheses and all conditions of the theorem 2.1 and 2.2 are satisfied, then the following inequality satisfied: ∆1 0, 𝑥0, 𝑦0 − ∆1𝑚 0, 𝑥0, 𝑦0 ≤ 𝑑 𝑚 ⋯ 3.5 ∆2 0, 𝑥0, 𝑦0 − ∆2𝑚 0, 𝑥0, 𝑦0 ≤ 𝜂 𝑚 ⋯ 3.6 satisfied for all 𝑚 ≥ 0 , 𝑥0 ∈ 𝐷𝑓1 and 𝑦0 ∈ 𝐷1𝑓2 , where 𝑑 𝑚 = [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] , , 𝑄0 𝑚+1 𝐸 − 𝑄0 −1 𝐶0 and 𝜂 𝑚 = [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] , , 𝑄0 𝑚+1 𝐸 − 𝑄0 −1 𝐶0 . Proof. By using the relation ( 3.1) and ( 3.3), we have: ∆1 0, 𝑥0, 𝑦0 − ∆1𝑚 0, 𝑥0, 𝑦0 ≤ [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥0 𝑡, 𝑥0, 𝑦0 − 𝑥 𝑚 𝑡, 𝑥0, 𝑦0 + +[𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦0 𝑡, 𝑥0, 𝑦0 − 𝑦 𝑚 𝑡, 𝑥0, 𝑦0 ≤ [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] , , 𝑄0 𝑚+1 𝐸 − 𝑄0 −1 𝐶0 = 𝑑 𝑚 And also by using the relation ( 3.2) and ( 3.4), we get: ∆2 0, 𝑥0, 𝑦0 − ∆2𝑚 0, 𝑥0, 𝑦0 ≤ ≤ [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] , , 𝑄0 𝑚+1 𝐸 − 𝑄0 −1 𝐶0 = 𝜂 𝑚 where . denotes the ordinary scalar product in the space 𝑅 𝑛 . ∎ Theorem 3.2. Let the vector functions 𝑓1 𝑡, 𝑥, 𝑦, 𝑧, 𝑤 , 𝑓2 𝑡, 𝑥, 𝑦, 𝑢, 𝑣 , 𝑔1 𝑡, 𝑥, 𝑦 and 𝑔2 𝑡, 𝑥, 𝑦 be defined on the domain: 𝐺 = 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇, 𝑎 ≤ 𝑥, 𝑦 ≤ 𝑏, 𝑐 ≤ 𝑧, 𝑢 ≤ 𝑑, 𝑒 ≤ 𝑤, 𝑣 ≤ 𝑓} ⊆ 𝑅1 , and periodic in t of period T. Assume that the sequence of functions (4.3.3) and (4.3.4) satisfies the inequalities: min a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆1m 0, x0, y0 ≤ − 𝑑m , max a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆1m 0, x0, y0 ≥ 𝑑m , ⋯ 3.7 min a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆2m 0, x0, y0 ≤ − ηm , max a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆2m 0, x0, y0 ≥ ηm , ⋯ 3.8 for all 𝑚 ≥ 0, where 𝑑 𝑚 = [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] , , 𝑄0 𝑚+1 𝐸 − 𝑄0 −1 𝐶0 and
  • 12. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 12 𝜂 𝑚 = [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] , , 𝑄0 𝑚+1 𝐸 − 𝑄0 −1 𝐶0 Then the system (4.1.1) and (4.1.2) has periodic solution of period T 𝑥 = 𝑥(𝑡, 𝑥0, 𝑦0) and 𝑦 = 𝑦(𝑡, 𝑥0, 𝑦0) for which 𝑥0 ∈ [𝑎 + 𝑇 2 𝑀1, 𝑏 − 𝑇 2 𝑀1] and 𝑦0 ∈ [𝑐 + 𝑇 2 𝑀2, 𝑑 − 𝑇 2 𝑀2]. Proof. Let 𝑥1, 𝑥2 be any two points in the interval [𝑎 + 𝑇 2 𝑀1, 𝑏 − 𝑇 2 𝑀1] and 𝑦1, 𝑦2 be any two points in the interval [𝑐 + 𝑇 2 𝑀2, 𝑑 − 𝑇 2 𝑀2], such that: Δ1m 0, 𝑥1, 𝑦1 = min a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆1m 0, 𝑥0, 𝑦0 , Δ1m 0, 𝑥2, 𝑦2 = max a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆1𝑚 0, 𝑥0, 𝑦0 , ⋯ 3.9 Δ2m 0, 𝑥1, 𝑦1 = min a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆2m 0, x0, y0 , Δ2m 0, 𝑥2, 𝑦2 = max a+ 𝑇 2 𝑀1≤x0≤b− 𝑇 2 𝑀1 c+ 𝑇 2 𝑀2≤y0≤d− 𝑇 2 𝑀2 ∆2m 0, x0, y0 , ⋯ 3.10 By using the inequalities ( 3.5), ( 3.6), ( 3.7) and ( 3.8), we have: ∆1 0, 𝑥1, 𝑦1 = ∆1𝑚 0, 𝑥1, 𝑦1 + ∆1 0, 𝑥1, 𝑦1 − ∆1𝑚 (0, 𝑥1, 𝑦1) ≤ 0 , ∆1 0, 𝑥2, 𝑦2 = ∆1𝑚 0, 𝑥2, 𝑦2 + ∆1 0, 𝑥2, 𝑦2 − ∆1𝑚 (0, 𝑥2, 𝑦2) ≤ 0 . ⋯ 3.11 ∆2 0, 𝑥1, 𝑦1 = ∆2𝑚 0, 𝑥1, 𝑦1 + ∆2 0, 𝑥1, 𝑦1 − ∆2𝑚 (0, 𝑥1, 𝑦1) ≤ 0 , ∆2 0, 𝑥2, 𝑦2 = ∆2𝑚 0, 𝑥2, 𝑦2 + ∆2 0, 𝑥2, 𝑦2 − ∆2𝑚 (0, 𝑥2, 𝑦2) ≤ 0 . ⋯ 3.12 It follows from the inequalities ( 3.11) and ( 3.12) in virtue of the continuity of the functions ∆1(0, 𝑥0, 𝑦0) and ∆1(0, 𝑥0, 𝑦0) that there exists an isolated singular point (𝑥0 , 𝑦0 ) = (𝑥0, 𝑦0) , 𝑥0 ∈ 𝑥1, 𝑥2 and 𝑦0 ∈ 𝑦1, 𝑦2 , so that ∆1(0, 𝑥0 , 𝑦0 ) = 0 and ∆2(0, 𝑥0 , 𝑦0 ) = 0. This means that the system ( 3.1) and (4.3.2) has a periodic solutions 𝑥 𝑡, 𝑥0, 𝑦0 , 𝑦 𝑡, 𝑥0, 𝑦0 for which 𝑥0 ∈ [𝑎 + 𝑇 2 𝑀1, 𝑏 − 𝑇 2 𝑀1] and 𝑦0 ∈ [𝑐 + 𝑇 2 𝑀2, 𝑑 − 𝑇 2 𝑀2]. ∎ Remark 3.1. Theorem 3.2 is proved when 𝑅 𝑛 = 𝑅1 , on the other hand as 𝑥0, 𝑦0 are a scalar singular point which should be isolated (For this remark, see [5]). IV. Stability Theorem Of Solution (𝑰 𝟏) And (𝑰 𝟐) In this section, we study theorem on stability of a periodic solution for the integral equations ( 𝐼1) and ( 𝐼2). Theorem 4.1. If the function ∆1 0, 𝑥0, 𝑦0 , Δ2(0, 𝑥0, 𝑦0) are defined by equations ( 3.1) and ( 3.2), where the function 𝑥0 (𝑡, 𝑥0, 𝑦0) is a limit of the sequence of the functions ( 2.1) , the function 𝑦0 (𝑡, 𝑥0, 𝑦0) is the limit of the sequence of the functions ( 2.2) , Then the following inequalities yields: ∆1 0, 𝑥0, 𝑦0 ≤ 𝑀1 ⋯ 4.1 ∆2 0, 𝑥0, 𝑦0 ≤ 𝑀2 ⋯ 4.2 and ∆2 0, 𝑥0 1 , 𝑦0 1 − ∆2 0, 𝑥0 2 , 𝑦0 2 ≤ 𝐹1 𝐹2 𝐸3 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐹1 𝐹2 𝐸2( 𝐸3 + 𝐸4 + 𝐹1 𝐸4(1 − 𝑇 2 𝐸1)) 𝐺0 1 𝑡 − 𝐺0 2 (𝑡) ⋯ 4.4 for all 𝑥0 , 𝑥0 1 , 𝑥0 2 ∈ 𝐷𝑓1 , 𝑦0 , 𝑦0 1 , 𝑦0 2 ∈ 𝐷1𝑓2 , and 𝛼 𝑡 = 2𝑡(1 − 𝑡 𝑇 ) ≤ 𝑇 2 , where 𝐸1 = [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)], 𝐸2 = [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)],
  • 13. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 13 𝐸3 = [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)], 𝐸4 = [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)], 𝐹1 = [(1 − 𝑇 2 𝐸1)(1 − 𝑇 2 𝐸4)]−1 and 𝐹2 = (1 − 𝑇2 4 𝑁2 𝑁3 𝐹1)−1 Proof. From the properties of the functions 𝑥0 𝑡, 𝑥0, 𝑦0 and 𝑦0 𝑡, 𝑥0, 𝑦0 as in the theorem 4.2.1, the functions Δ1 = ∆1 𝑥0, 𝑦0 , Δ1 = ∆1 𝑥0, 𝑦0 , 𝑥0 ∈ 𝐷𝑓1 , 𝑦0 ∈ 𝐷1𝑓2 are continuous and bounded by 𝑀1, 𝑀2 in the domain ( 1.3). From relation ( 3.1), we find: ∆1 (0, 𝑥0 , 𝑦0 ≤ 1 𝑇 𝑓1(𝑡, 𝑥0 𝑡, 𝑥0, 𝑦0 , 𝑦0 𝑡, 𝑥0, 𝑦0 , 𝑇 0 , 𝐺1 𝑡, 𝑠 𝑔1 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑑𝑠, 𝑡 −∞ , 𝑔1 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑑 𝑠) 𝑏(𝑡) 𝑎(𝑡) 𝑑𝑡 by using the Lemma 4.1.1, gives: ∆1(0, 𝑥0, 𝑦0) ≤ 𝑀1. And from relation ( 3.2), we get: ∆2 (0, 𝑥0 , 𝑦0 ≤ 1 𝑇 𝑓2(𝑡, 𝑥0 𝑡, 𝑥0, 𝑦0 , 𝑦0 𝑡, 𝑥0, 𝑦0 , 𝑇 0 , 𝐺2 𝑡, 𝑠 𝑔2 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑑𝑠, 𝑡 −∞ , 𝑔2 𝑠, 𝑥0 𝑠, 𝑥0, 𝑦0 , 𝑦0 𝑠, 𝑥0, 𝑦0 𝑑𝑠) 𝑏(𝑡) 𝑎(𝑡) 𝑑𝑡 and using Lemma 4.1.1, we have: ∆2(0, 𝑥0, 𝑦0) ≤ 𝑀2 By using equation ( 3.1) and lemma 1.1, we get: ∆1 0, 𝑥0 1 , 𝑦0 1 − ∆1 0, 𝑥0 2 , 𝑦0 2 ≤ 1 𝑇 [𝐾1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + 𝑇 0 +𝐾2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 + + 𝛾 𝜆1 𝐾3(𝑅1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝑅2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ) + + 𝑕𝐾4(𝑅1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝑅2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 )]𝑑𝑡 ≤ [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +[𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 so, ∆1 0, 𝑥0 1 , 𝑦0 1 − ∆1 0, 𝑥0 2 , 𝑦0 2 ≤ 𝐸1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝐸2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ⋯ 4.5 And also by using equation ( 3.2) and lemma 1.1, gives: ∆2 0, 𝑥0 1 , 𝑦0 1 − ∆2 0, 𝑥0 2 , 𝑦0 2 ≤ 1 𝑇 [𝐿1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + 𝑇 0 +𝐿2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 +
  • 14. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 14 + 𝛿 𝜆2 𝐿3(𝐻1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝐻2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ) + + 𝑕𝐿4(𝐻1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝐻2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 )]𝑑𝑡 ≤ [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +[𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 . Therefore, ∆2 0, 𝑥0 1 , 𝑦0 1 − ∆2 0, 𝑥0 2 , 𝑦0 2 ≤ 𝐸3 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝐸4 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ⋯ 4.6 where the functions 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 , 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 , 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 and 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 are solutions of the equation: 𝑥 𝑡, 𝑥0 𝑘 , 𝑦0 𝑘 = 𝐹0 𝑘 𝑡 + [𝑓1(𝑠, 𝑥(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑡 0 , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 )) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ))𝑑𝜏 𝑏 𝑠 𝑎 𝑠 ) − − 1 𝑇 𝑓1(𝑠, 𝑥(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ) 𝑇 0 , , 𝐺1 𝑠, 𝜏 𝑔1(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 )) 𝑠 −∞ 𝑑𝜏, , 𝑔1(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ))𝑑𝜏 𝑏 𝑠 𝑎 𝑠 )𝑑𝑠]𝑑𝑠 ⋯ ( 4.7) and 𝑦 𝑡, 𝑥0 𝑘 , 𝑦0 𝑘 = 𝐺0 𝑘 𝑡 + [𝑓2(𝑠, 𝑥(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑡 0 , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 )) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ))𝑑𝜏 𝑏 𝑠 𝑎 𝑠 ) − − 1 𝑇 𝑓2(𝑠, 𝑥(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝑠, 𝑥0 𝑘 , 𝑦0 𝑘 ) 𝑇 0 , , 𝐺2 𝑠, 𝜏 𝑔2(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 )) 𝑠 −∞ 𝑑𝜏, , 𝑔2(𝜏, 𝑥(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ), 𝑦(𝜏, 𝑥0 𝑘 , 𝑦0 𝑘 ))𝑑𝜏 𝑏 𝑠 𝑎 𝑠 )𝑑𝑠]𝑑𝑠 ⋯ ( 4.8) where 𝑘 = 1, 2. From (4.4.7), we get: 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝐹0 1 𝑡 − 𝐹0 2 𝑡 +
  • 15. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 15 +𝛼(𝑡)[𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝛼 𝑡 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 [𝐾1 + 𝑅1( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + + 𝑇 2 [𝐾2 + 𝑅2( 𝛾 𝜆1 𝐾3 + 𝑕𝐾4)] 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 such that: 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + + 𝑇 2 𝐸2 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 therefore: 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ (1 − 𝑇 2 𝐸1)−1 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2(1 − 𝑇 2 𝐸1)−1 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ⋯ 4.9 And also from relation ( 4.8), we have: 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ ≤ 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + +𝛼(𝑡)[𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + +𝛼(𝑡)[𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ ≤ 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇 2 [𝐿1 + 𝐻1( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + + 𝑇 2 [𝐿2 + 𝐻2( 𝛿 𝜆2 𝐿3 + 𝑕𝐿4)] 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 so that: 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇 2 𝐸3 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 + + 𝑇 2 𝐸4 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 and hence: 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ (1 − 𝑇 2 𝐸4)−1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇 2 𝐸3(1 − 𝑇 2 𝐸4)−1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ⋯ 4.10 Now, by substituting inequality ( 4.10) in ( 4.9), we get: 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ (1 − 𝑇 2 𝐸1)−1 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2(1 − 𝑇 2 𝐸1)−1 [(1 − 𝑇 2 𝐸4)−1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇 2 𝐸3(1 − 𝑇 2 𝐸4)−1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ] ≤ (1 − 𝑇 2 𝐸1)−1 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2[(1 − 𝑇 2 𝐸1)(1 − 𝑇 2 𝐸4)]−1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇2 4 𝐸2 𝐸3[(1 − 𝑇 2 𝐸1)(1 − 𝑇 2 𝐸4)]−1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ] putting 𝐹1 = [(1 − 𝑇 2 𝐸1)(1 − 𝑇 2 𝐸4)]−1 , and substituting in the last inequality, we obtain:
  • 16. Periodic Solutions for Non-Linear Systems of Integral Equations www.ijeijournal.com Page | 16 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ (1 − 𝑇 2 𝐸1)−1 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2 𝐹1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇2 4 𝐸2 𝐸3 𝐹1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ] as the 𝐹1(1 − 𝑇 2 𝐸4) = (1 − 𝑇 2 𝐸1)−1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝐹1(1 − 𝑇 2 𝐸4) 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2 𝐹1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + 𝑇2 4 𝐸2 𝐸3 𝐹1 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ] which implies that: 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤≤ 𝐹1(1 − 𝑇 2 𝐸4)(1 − 𝑇2 4 𝐸2 𝐸3 𝐹1)−1 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2 𝐹1(1 − 𝑇2 4 𝐸2 𝐸3 𝐹1)−1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 putting 𝐹2 = (1 − 𝑇2 4 𝐸2 𝐸3 𝐹1)−1 and substituting in the last inequality, we obtain: 𝑥0 𝑡, 𝑥0 1 , 𝑦0 1 − 𝑥0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝐹1 𝐹2(1 − 𝑇 2 𝐸4) 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2 𝐹1 𝐹2 𝐺0 1 𝑡 − 𝐺0 2 𝑡 ⋯ 4.11 Also, substituting the inequalities ( 4.11) in ( 4.10), we find that: 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ (1 − 𝑇 2 𝐸4)−1 𝐺0 1 𝑡 − 𝐺0 2 𝑡 + + 𝑇 2 𝐸3(1 − 𝑇 2 𝐸4)−1 [𝐹1 𝐹2(1 − 𝑇 2 𝐸4) 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + + 𝑇 2 𝐸2 𝐹1 𝐹2 𝐺0 1 𝑡 − 𝐺0 2 𝑡 ] and hence 𝑦0 𝑡, 𝑥0 1 , 𝑦0 1 −𝑦0 𝑡, 𝑥0 2 , 𝑦0 2 ≤ 𝑇 2 𝐸3 𝐹1 𝐹2 𝐹0 1 𝑡 − 𝐹0 2 𝑡 + +[𝐹1(1 − 𝑇 2 𝐸1) + 𝑇 2 𝐹1 𝐹2 𝐸2] 𝐺0 1 𝑡 − 𝐺0 2 𝑡 ⋯ 4.12 so, substituting inequalities ( 4.11) and ( 4.12) in inequality ( 4.5), we get the inequality ( 4.3). and the same, substituting inequalities ( 4.11) and ( 4.12) in inequality ( 4.6), gives the inequality ( 4.4). ∎ REFERENCES [1] Aziz, M.A., (2006), Periodic solutions for some systems of non-linear ordinary differential equations, M. Sc. Thesis, college of Education, University of Mosul. [2] Butris, R. N. and Rafeq, A. Sh., (2011), Existence and Uniqueness, Solution for Non-linear Volterra Integral Equation, J. Duhok Univ. Vol.No. 1, (Pure and Eng. Sciences). [3] Jaswon, M. A. and Symm, G. T., (1977), Integral Equations Methods in Potential Theory and Elastostatics, A subsidiary of Hart court brace Jovanovich Publishers, Academic press, London. [4] Korol, I. I., (2005), On periodic solutions of one class of systems of differential equations, Ukraine, Math. J. Vol. 57, No. 4. [5] Mitropolsky, Yu. A. and Martynyuk, D. I., (1979), For Periodic Solutions for the Oscillations System with Retarded Argument, Kiev, Ukraine. [6] Rama, M. M., (1981), Ordinary Differential Equations Theory and Applications, Britain. [7] Rafeq, A. Sh., (2009), Periodic solutions for some classes of non-linear systems of integro-differential equations, M. Sc. Thesis, college of Education, University of Duhok. [8] Perestyuk, N. A., (1971), The periodic solutions for non-linear systems of differential equations, Math. and Meca. J., Univ. of Kiev, Kiev, Ukraine,5, 136-146. [9] Perestyuk, N. A. and Martynyuk, D. I., (1976), Periodic solutions of a certain class systems of differential equations, Math. J., Univ. of Kiev , Ukraine,No 3. [10] Samoilenko, A. M. and Ronto, N. I., (1976), A Numerical – Analytic Methods for Investigating of Periodic Solutions, Kiev, Ukraine. [11] Samoilenko, A. M., (1966), A numerical – analytic methods for investigations of periodic systems of ordinary differential equations II, Kiev, Ukraine, Math. J.,No 5. [12] Shestopalov, Y. V. and Smirnov, Y. G., (2002), Integral Equations, Karlstad University. [13] Struble, R. A., (1962), Non-Linear Differential Equations, Mc Graw-Hall Book Company Inc., New York. [14] Tarang, M., (2004), Stability of the spline collocation method for Volterra integro-differential equations, Thesis, University of Tartu. [15] Tricomi, F. G., (1965), Integral Equations, Turin University, Turin, Italy.