SlideShare a Scribd company logo
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Volume 4 Issue 1, January 2015
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
Quadruple Simultaneous Fourier series Equations
Involving Heat Polynomials
Gunjan Shukla1
, K.C. Tripathi2
.1
Dr. Ambedkar Institute of Technology for Handicapped, Kanpur -208002, Uttar Pradesh, India
2
Defence Materials & Stores Research & Development Establishment, Kanpur-208013, U.P. India
Abstract: Quadruple series equations are useful in finding the solution of four part boundary value problems of electrostatics,
elasticity and other fields of mathematical physics. In the present paper, we have considered the quadruple series equations involving
heat polynomials and solved them.
1. Introduction
Quadruple series equations are useful in finding the solution
of four part boundary value problems of electrostatics,
elasticity and other fields of mathematical physics. Cooke [1]
devised the method for finding the solution of quadruple
series equations involving Fourier–Bessel series and
obtained their solution by using operator theory. Recently
Dwivedi and Trivedi [2] Dwivedi and Gupta [3] Dwivedi
and Singh [4] considered various types of quadruple series
equations involving different polynomials. In the present
paper, we have considered the quadruple series equations
involving heat polynomials.
2. Quadruple Simultaneous Fourier Series
Equations Involving Heat Polynomials
Quadruple series equations involving heat polynomials
considered here, are the generalization of dual series
equations considered by Pathak [3] and corresponding
triple series equations considered. Solution is obtained
by reducing the problem to simultaneous Fredholm
integral equations of the second kind.
3. The Equations
Here we shall consider the two sets of quadruple series
equations involving heat polynomials of the first kind and
second kind respectively.
(i) Quadruple Series Equations of the First Kind
Quadruple series equations of the first kind to be studied
here are given as:
n
n p, 1
n 0
A
P (x, t) f (x, t), 0 x a
1
n p
2
∞
+ σ
=
−= ≤ <
 
Γ µ + + + 
 
∑ (1.1)
n n
n
n p, 2
n 0
t A
P (x, t) f (x, t), a x b
1
n p
2
∞ −
+ ν
=
−= < <
 
Γ ν + + + 
 
∑

(1.2)
n
n p, 3
n 0
A
P (x, t) f (x, t), b x c
1
n p
2
∞
+ σ
=
−= < <
 
Γ µ + + + 
 
∑
(1.3)
n n
n
n p, 4
n 0
t A
P (x, t) f (x, t),c x
1
n p
2
∞ −
+ ν
=
−= < < ∞
 
Γ ν + + + 
 
∑
 (1.4)
(ii) Quadruple Series Equations of the Second Kind
Quadruple series equations of the second kind to be
analysed, here are given as:
n n
n
n p, 1
n 0
t B
P (x, t) g (x, t),0 x a
1
n p
2
∞ −
+ ν
=
−= ≤ <
 
Γ ν + + + 
 
∑
 (1.5)
n
n p, 2
n 0
B
P (x, t) g (x, t), a x b
1
n p
2
∞
+ σ
=
−= < <
 
Γ µ + + + 
 
∑
(1.6)
n n
n
n p, 3
n 0
t B
P (x, t) g (x, t),b x c
1
n p
2
∞ −
+ ν
=
−= < <
 
Γ ν + + + 
 
∑
 (1.7)
n
n p, 4
n 0
B
P (x, t) g (x, t),c x
1
n p
2
∞
+ σ
=
−= < < ∞
 
Γ µ + + + 
 
∑
(1.8)
In above equations if (x, t) and
ig (x, t) (i 1, 2, 3, 4)= are the prescribed functions
t 0≥ > and n,P (x, t)ν − is the heat polynomials.
nA and nB are the unknown coefficients to be determined.
4. The Solution
(i) Equations of the First Kind
In order to solve the quadruple series equations of the first
kind, we set
Paper ID: SUB1567 147
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Volume 4 Issue 1, January 2015
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
where 1(x, t)φ and 2(x, t)φ are unknown functions.
Using relation (1.1) in equations (1.2), (1.3), (2.1) and (2.2),
we obtain
n a b
n 1 1
0 a4(n p)
1 1
n p A
2 2
A f (x, t)+ (x, t)
1
2 (n p)! n p
2
+
   
Γ σ + Γ µ + + +   
    φ  + Γ σ + + + 
 
∫ ∫
c
3 2 n p,
b c
f (x, t)+ (x, t) W (x, t)d (x)
∞
+ σ
+ φ Ω∫ ∫ (2.3)
Substituting this expression for nA in equations (1.2) and
(1.4), we get
n n
n p,
4(n p)n 0
1 1
t e n p P (x, t)
2 2
1 1
2 (n p)! n p n p
2 2
−
∞ + ν
+=
   
Γ σ + Γ µ + + + −   
   
   
+ Γ σ + + + Γ ν + + +   
   
∑
a b c
1 1 3 2 n p,
0 a b c
f ( , t)+ (x, t) f ( , t)+ (x, t) W ( , t)d ( )
∞
+ σ
 ξ φ + ξ φ ξ Ω ξ  ∫ ∫ ∫ ∫
Putting the value of d ( )Ω ξ from equation (1.2) and
changing the order of integration and summation in above
equations, we get
a b c2 2 2 2
1 1 3 2
0 a b c
f ( , t)d + ( , t)d f ( , t)d + ( , t)d
∞σ σ σ σ ξ ξ ξ ξ φ ξ ξ+ ξ ξ ξ ξ φ ξ ξ  ∫ ∫ ∫ ∫
n
1 n p, n p,
2
4(n p)n 0
1
n p P (x, t)W ( , t)
t 2
2
1 1
2 (n p)! n p n p
2 2
∞ + ν + σ−σ
+=
   
Γ µ + + + − ξ   
   ×
   
+ Γ σ + + + Γ ν + + +   
   
∑

(2.6)
2
4
f (x, t), a x b
f (x, t), c x
< <
= 
< < ∞
(2.7)
Using the summation result (1.4) in equations (2.6) and
(2.7), we have
a b2 2
1 1
0 a
f ( , t)S(x, , t)d ( , t)S(x, , t)dσ σ
ξ ξ ξ ξ + ξ φ ξ ξ ξ∫ ∫
c 2 2
3 2
b c
f ( , t)S(x, , t)d ( , t)S(x, , t)d
∞σ σ
+ ξ ξ ξ ξ + ξ φ ξ ξ ξ∫ ∫
⇒
b 2 2
1 2
a c
( , t)S(x, , t)d ( , t)S(x, , t)d
∞σ σ
ξ φ ξ ξ ξ + ξ φ ξ ξ ξ∫ ∫
where
a c2 2
1 2 1 3
0 b
F (x, t) f (x, t) f ( , t)S(x, , t)d f ( , t)S(x, , t)dσ σ
= − ξ ξ ξ ξ− ξ ξ ξ ξ∫ ∫
(2.12)
a c2 2
2 4 1 3
0 b
F (x, t) f (x, t) f ( , t)S(x, , t)d f ( , t)S(x, , t)dσ σ
= − ξ ξ ξ ξ− ξ ξ ξ ξ∫ ∫
(2.13)
Now using the notation given by (1.6) in
equation(2.10), we get
2
1-2 4t *b 2
1 2 1a
e a
( , t) S ( , x, y) d
x (m) ( m)
σ −ξ
σ
ων−
 ξ 
ξ φ ξ ξ ξ 
Γ Γ ν −σ +  
∫
2
2 -1 4t *
2
2 2 1c
e a
( , t) S ( , x, y) d
x (m) ( m)
ν −ξ∞ σ
ων−
 ξ 
+ ξ φ ξ ξ ξ 
Γ Γ ν−σ+  
∫
= 1F (x, t), a x b< < (2.14)
2
* x 4t
1
a
a
e ( , t)S ( , x, y)d
(m) ( m)
−ξ
ξ
 ξ φ ξ ξ ξΓ Γ ν −σ + ∫
2 2b 4t 4t
1 x 2 x
x c
e ( , t)S ( , x, y)d e ( , t)S ( , x, y)d
∞−ξ ξ + ξ φ ξ ξ ξ+ ξ φ ξ ξ ξ∫ ∫
2 1
1x F (x, t), a x bν−
= < < (2.15)
Putting the value of summation in terms of integral
from (1.5) in equation (2.15), we obtain
( ) ( )
2 m 1 m 1x 4t 2 2 2 2
1
a 0
e ( , t)d (y) y x y dy
− ν−σ+ −ξ−ξ
ξ φ ξ ξ η ξ − −∫ ∫
( ) ( )
2 m 1 m 1b x4t 2 2 2 2
1
x 0
e ( , t)d (y) y x y dy
− ν−σ+ −
−ξ
+ ξ φ ξ ξ η ξ − −∫ ∫
( ) ( )
2 m 1 m 1x4t 2 2 2 2
2
c 0
e ( , t)d (y) y x y dy
− ν−σ+ −∞ −ξ
+ ξ φ ξ ξ η ξ − −∫ ∫
1* 1 2
(m) ( m)
F (x, t) a x b
a x − ν
Γ Γ ν − σ +
= < < (2.16)
Changing the order of integration in equation (2.16),
we get
( ) ( )
2
4ta b
1
1 m 1 m0 a2 2 2 2
(y)dy e ( , t)
d
x y y
−ξ
−ν+σ− −
η ξ φ ξ
ξ
− ξ −
∫ ∫
Paper ID: SUB1567 148
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Volume 4 Issue 1, January 2015
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
( ) ( )
2
4tx b
1
1 m 1 ma y2 2 2 2
(y)dy e ( , t)
d
x y y
−ξ
−ν+σ− −
η ξ φ ξ
+ ξ
− ξ −
∫ ∫
( ) ( )
2
4tx
2
1 m 1 m0 c2 2 2 2
(y)dy e ( , t)
d
x y y
−ξ∞
−ν+σ− −
η ξ φ ξ
+ ξ
− ξ −
∫ ∫
1* 1 2
(m) ( m)
F (x, t) a x b
a x − ν
Γ Γ ν − σ +
< <
(2.17)
Assuming
( )
2
4tb
1
1 1 my 2 2
e ( , t)
(y) d
y
−ξ
−
ξ φ ξ
φ= ξ
ξ −
∫
(2.18)
And
( )
2
4t
2
2 1 my 2 2
e ( , t)
(y) d
y
−ξ∞
−
ξ φ ξ
φ= ξ
ξ −
∫
(2.19)
Now in view of the equation (4.18) equation (4.17)
can be rewritten as
( )
x
1
11 m * 1 2a 2 2
(y) y (m) ( m)
dy F (x, t)
a xx y
−ν+σ− − ν
η φ Γ Γ ν − σ +
=
−
∫
( ) ( )
2
4ta b
1
1 m 1 m0 a2 2 2 2
(y)dy e ( , t)
d
x y y
−ξ
−ν+σ− −
η ξ φ ξ
− ξ
− ξ −
∫ ∫
( ) ( )
2
4tx
2
1 m 1 m0 c2 2 2 2
(y)dy e ( , t)
d a x b
x y y
−ξ∞
−ν+σ− −
η ξ φ ξ
− ξ < <
− ξ −
∫ ∫
The solution of the above equation is given as
( )
y
1 ma 2 2
Sin(1 m) d 2xdx
(y) (y)
dy y x
ν−σ+
− ν + σ − π
η φ =
π −
∫
( )
a
1* 1 2 1 m0 2 2
(m) ( m) (z)dz
F (x, t)
a x x z
− ν −ν+σ−
Γ Γ ν − σ + η
× −
 −
∫
( ) ( )
2
4tb x
1
1 m 1 ma 02 2 2 2
e ( , t) (z)dz
d
z x z
−ξ
− −ν+σ−
ξ φ ξ η
× ξ −
ξ − −
∫ ∫
( )
2
4t
2
1 mc 2 2
e ( , t)
d , a x b
z
−ξ∞
−

ξ φ ξ 
× ξ < <
ξ −

∫
( )
y
1 3 ma 2 2
Sin(1 m) d 2xdx
(y) (y) F (y, t)
dy y x
ν−σ+
− ν + σ − π
η φ = −
π −
∫
( ) ( )
2
4ta b
1
1 m 1 m0 a2 2 2 2
(z)dz e ( , t)
d
x z z
−ξ
−ν+σ− −

η ξ φ ξ
× ξ
 − ξ −

∫ ∫
( ) ( )
2
4tx
2
1 m 1 m0 c2 2 2 2
e ( , t)(z)dz
d a x b
x z z
−ξ∞
−ν+σ− −

ξ φ ξη 
+ ξ < <
− ξ −

∫ ∫
(2.20)
where
1 *
Sin(1 m) (m) ( m) d
F (y, t)=
dya
− ν + σ − π Γ Γ ν − σ +
π
( )
2y
1
ma 2 2
2x F (x, t)
dx
y x
ν
ν−σ+
−
−
∫
(2.21)
Changing the order of integration in equation (2.20),
we get
1 3
Sin(1 m) d
(y) (y) F (y, t) (z)dz
dy
− ν + σ − π
η φ = − η ×
π 
( ) ( ) ( )
2
4ty b
1
m 1 m 1 ma 02 2 2 2 2 2
2xdx e ( , t)
d
y x x z z
−ξ
ν−σ+ −ν+σ− −
ξ φ ξ
ξ
− − ξ −
∫ ∫
( ) ( )
a y
m 1 m0 a 2 2 2 2
d 2xdx
(z)dz.
dy y x x z
ν−σ+ −ν+σ−
+ η
− −
∫ ∫
( )
2
4t y
2
1 mc a2 2
e ( , t) d
d (z)dz.
dyz
−ξ∞
−
ξ φ ξ
× ξ + η
ξ −
∫ ∫
( ) ( ) ( )
2
4ty
2
m 1 m 1 mz 02 2 2 2 2 2
2xdx e ( , t)
d
y x x z z
−ξ∞
ν−σ+ −ν+σ− −

ξ φ ξ 
× ξ
− − ξ −

∫ ∫
a x b< < (2.22)
( ) ( )
y
m 1 mz 2 2 2 2
2xdx
Sin(1 m)y x x z
ν−σ+ −ν+σ−
π
=
− ν + σ − π− −
∫
(2.23)
In equation (4.22), we get
{a
1 3
0
Sin(1 m)
(y) (y) F (y, t) (z)dz
−ν+σ− π
η φ= − η
π ∫
( )
( )( ) ( )
2
m
2 2 4tb
1
m 1 ma2 2 2 2 2 2
a z e ( , t)
d
y z y a z
ν−σ+
−ξ
ν−σ+ −
− ξ φ ξ
× ξ
− − ξ −
∫
( )
( )( ) ( )
2
m
2 2 4ta
2
m 1 m0 c2 2 2 2 2 2
a z e ( , t)
(z)dz d
y z y a z
ν−σ+
−ξ∞
ν−σ+ −
− ξ φ ξ
+ η ξ
− − ξ −
∫ ∫
( )
2
4ty
2
1 ma c 2 2
d e ( , t)
(z)dz d
dy Sin(1 m) z
−ξ∞
−

π ξ φ ξ 
+ η ξ
−ν+σ− π ξ −

∫ ∫
a x b< < (2.24)
Equations (4.18) and (4.19) are Able–type integral
equations, hence their solutions are given by
( )
2 b4t 1
1 m
2 2
Sin(1 m) d 2y. (y)
e ( , t) dy
d y
−ξ
ξ
− π φ
ξ φ ξ =−
π ξ − ξ
∫
(2.25)
And
( )
2
4t 2
2 m
2 2
Sin(1 m) d 2y. (y)
e ( , t) dy
d y
∞−ξ
ξ
− π φ
ξ φ ξ =−
π ξ − ξ
∫
(2.26)
With the help of equations (2.25) and (2.26), we obtain
Paper ID: SUB1567 149
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Volume 4 Issue 1, January 2015
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
( ) ( ) ( ) ( )
2
4tb b
1 1
1 m m ma a2 2 2 2 2 2 2 2
e ( , t) Sin(1 m) 2x. (x)
d dx
y a y x a x y
−ξ
− −
ξ φ ξ − π φ
ξ =
ξ − π − − −
∫ ∫
(2.27)
( ) ( ) ( ) ( )
2
4t
2 2
1 m m mc c2 2 2 2 2 2 2 2
e ( , t) Sin(1 m) 2x. (x)
d dx
y c y x c x y
−ξ∞ ∞
− −
ξ φ ξ − π φ
ξ =
ξ − π − − −
∫ ∫
(2.28)
Substituting the results (2.27) and (2.28) is equation
(2.24), we have
1 3 2 2 2 m
Sin(1 m) Sin(1 m)
(y) (y) F (y, t)
(y a )ν−σ+
− ν + σ − π − π
η φ = −
π −
( )
( )( ) ( )
2m
2 2
a b
1
m2 2 2 20 a 2 2
(z) a z 2x. (x)
dz dx
y z x z x a
ν−σ+ η − φ
×
− − −

∫ ∫
( ) ( )
( )( ) ( )
2m m
2 2 2 2
a
2
m2 2 2 20 c 2 2
(z) a z c z 2x. (x)
dz dx
y z x z x a
ν−σ+
∞
η − − φ 
+ × 
− − −

∫ ∫
( )
( ) ( )
m
2 2
y
2
m2 2a c 2 2
(z) c zd Sin(1 m) 2x (x)
dz dx,
dy x z x c
∞η − − π φ
− ×
π− −
∫ ∫
a x b< < (2.29)
Changing the order of integration of the equation
(2.29), we get
1 3 2 2 2 m
Sin(1 m) Sin(1 m)
(y) (y) F (y, t)
(y a )ν−σ+
− ν + σ − π − π
η φ = −
π −
( )
( )
( )( )
m
2 2
b a
1
m 2 2 2 2a 02 2
(z) a z2x. (x)
dx dz
y z x zx a
ν−σ+ η −φ
×
− − −

∫ ∫
( )
( ) ( )
( )( )
m m
2 2 2 2
a
2
m 2 2 2 2c 02 2
(z) a z c z2x (x)
dx dz
y z x zx a
ν−σ+
∞
η − −φ 
+ × 
− − −

∫ ∫
( )
( )
( )
m
2 2
y
2
m 2 2c a2 2
(z) c zSin(1 m) 2x (x) d
dx dz,
dy x zx c
∞ η −− π φ
− ×
π −−
∫ ∫
a x b< < (2.30)
Now, above equation can be written as
b
1 1 3 2
a c
(y) (y) M(x, y) (y)dx F (y, t) N(x, y) (x)dx,
∞
η φ + φ = − φ∫ ∫
a x b< < (2.31)
where
( )
2 2 2 m m
2 2
Sin(1 m)Sin(1 m) 2x
M(x, y) .
(y a ) x a
ν−σ+
− ν + σ − − π
=
π − −
( )
( )( )
m
2 2
a
2 2 2 20
(z) a z
dz
y z x z
ν−σ+
η −
×
− −
∫ (2.32)
( )
2 2 2 m m
2 2
Sin(1 m) Sin(1 m) 2x
N(x, y) .
(y a ) x c
ν−σ+
− ν + σ − π − π
=
π − −
( ) ( )
( )( )
m m
2 2 2 2
a
2 2 2 20
(z) a z c z Sin(1 m)
dz
y z x z
ν−σ+
η − − − π
× +
π− −
∫
( )
( )
( )
m
2 2
y
m 2 2a2 2
(z) c z2x d
dz
dy x zx c
η −
−−
∫
(2.33)
Again starting from equation (2.11), we have
b 2 2
1 2 2
a c
( , t)S(x, , t)d ( , t)S(x, , t)d F (x, t),
∞σ σ
ξ φ ξ ξ ξ + ξ φ ξ ξ ξ =∫ ∫
c x< < ∞ (2.34)
Using the notation given by equation (4.6), we obtain
2
1 2 4t *b 2
1 w2 1a
e a
( , t) S ( , x, y) d
x (m) ( m)
− σ −ξ
σ
ν−
 ξ 
ξ φ ξ ξ ξ 
Γ Γ ν − σ + 
∫
2
1 2 4t *
2
2 w2 1c
e a
( , t) S ( , x, y) d
x (m) ( m)
− σ −ξ∞ σ
ν−
 ξ 
+ ξ φ ξ ξ ξ 
Γ Γ ν − σ + 
∫
= 2F (x, t), c x< < ∞ (2.35)
2
* b 4t
1
a
a
e ( , t)S ( , x, y)d
(m) ( m)
−ξ
ξ
 ξ φ ξ ξ ξΓ Γ ν − σ + ∫
2 2x 4t 4t
2 2
c x
e ( , t)S ( , x, y)d e ( , t)S ( , x, y)d
∞−ξ −ξ
ξ ξ
+ ξ φ ξ ξ ξ+ ξ φ ξ ξ ξ∫ ∫
2 1
2x F (x, t), c xν−
= < < ∞ (2.36)
Putting the value of summation in terms of integral
from (2.5) in above equation, we get
( ) ( )
2 m 1 m 1b 4t 2 2 2 2
1
a 0
e ( , t)d (y) y x y dy
− ν−σ+ −ξ−ξ
ξ φ ξ ξ η ξ − −∫ ∫
( ) ( )
2 m 1 m 1x 4t 2 2 2 2
2
c 0
e ( , t)d (y) y x y dy
− ν−σ+ −ξ−ξ
+ ξ φ ξ ξ η ξ − −∫ ∫
( ) ( )
2 m 1 m 1x4t 2 2 2 2
2
x 0
e ( , t)d (y) y x y dy
− ν−σ+ −∞ −ξ
+ ξ φ ξ ξ η ξ − −∫ ∫
2* 1 2
(m) ( m)
F (x, t) c x
a x − ν
Γ Γ ν − σ +
= < < ∞ (2.37)
Changing the order of integration in equation (2.37),
we get
( ) ( )
2
4ta b
1
1 m 1 m0 a2 2 2 2
(y)dy e ( , t)
d
x y y
−ξ
−ν+σ− −
η ξ φ ξ
ξ
− ξ −
∫ ∫
Paper ID: SUB1567 150
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Volume 4 Issue 1, January 2015
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
( ) ( )
2
4tb b
1
1 m 1 ma y2 2 2 2
(y)dy e ( , t)
d
x y y
−ξ
−ν+σ− −
η ξ φ ξ
+ ξ
− ξ −
∫ ∫
( ) ( )
2
4tc b
2
1 m 1 m0 y2 2 2 2
(y)dy e ( , t)
d
x y y
−ξ
−ν+σ− −
η ξ φ ξ
+ ξ
− ξ −
∫ ∫
( ) ( )
2
4tx
2
1 m 1 mc y2 2 2 2
(y)dy e ( , t)
d
x y y
−ξ∞
−ν+σ− −
η ξ φ ξ
+ ξ
− ξ −
∫ ∫
2* 1 2
(m) ( m)
F (x, t) c x
a x − ν
Γ Γ ν − σ +
< < ∞ (2.38)
In view of the equations (2.18) and (2.19) above
equation becomes
( )
x
2
21 m * 1 2c 2 2
(y) (y) (m) ( m)
dy F (x, t)
a xx y
−ν+σ− − ν
η φ Γ Γ ν − σ +
=
−
∫
( ) ( )
2
4ta b
1
1 m 1 m0 a2 2 2 2
(y)dy e ( , t)
d
x y y
−ξ
−ν+σ− −
η ξ φ ξ
− ξ
− ξ −
∫ ∫
( ) ( )
2
4tb b
1
1 m 1 ma y2 2 2 2
(y)dy e ( , t)
d
x y y
−ξ
−ν+σ− −
η ξ φ ξ
− ξ
− ξ −
∫ ∫
( ) ( )
2
4tc
2
1 m 1 m0 c2 2 2 2
e ( , t)(y)dy
d c x
x y y
−ξ∞
−ν+σ− −
ξ φ ξη
− ξ < < ∞
− ξ −
∫ ∫
(2.39)
The solution to the equation (2.39) is given by
( )
y
2 mc 2 2
Sin(1 m) d 2xdx
(y) (y)
dy y x
ν−σ+
−ν + σ − π
η φ =
π −
∫
( )
a
2* 1 2 1 m0 2 2
(m) ( m) (z)dz
F (x, t)
a x x y
− ν −ν+σ−
Γ Γ ν −σ + η
× −
 −
∫
( ) ( )
2
4tb b
1
1 m 1 ma a2 2 2 2
e ( , t) (z)dz
d
z x z
−ξ
− −ν+σ−
ξ φ ξ η
× ξ −
ξ − −
∫ ∫
( ) ( )
2
4tb c
1
1 m 1 mz 02 2 2 2
e ( , t) (z)dz
d
z x z
−ξ
− −ν+σ−
ξ φ ξ η
× ξ −
ξ − −
∫ ∫
( )
2
4t
2
1 mc 2 2
e ( , t)
d c x
z
−ξ∞
−

ξ φ ξ 
× ξ < < ∞
ξ −

∫ (2.40)
Let
4 *
Sin(1 m) (m) ( m) d
F (y, t)
dya
− ν + σ − π Γ Γ ν − σ +
=
π
( )
2y
2
mc 2 2
2x F (x, t)dx
dx
y x
ν
ν−σ+
−
∫ (2.41)
Using (2.41) in (2.40) and changing the order of
integration, we get
{ a
2 4
0
Sin(1 m) d
(y) (y) F (y, t) (z)dz
dy
−ν + σ − π
η φ = − η ×
π ∫
( ) ( ) ( )
2
4ty b
1
m 1 m 1 mc a2 2 2 2 2 2
2xdx e ( , t)
d
y x x z z
−ξ
ν−σ+ −ν+σ− −
ξ φ ξ
ξ
− − ξ −
∫ ∫
( ) ( )
b y
m 1 ma c 2 2 2 2
d 2xdx
(z)dz.
dy y x x z
ν−σ+ −ν+σ−
+ η
− −
∫ ∫
( )
2
4tb c
1
1 mz 02 2
e ( , t) d
d (z)dz.
dyz
−ξ
−
ξ φ ξ
× ξ + η
ξ −
∫ ∫
( ) ( ) ( )
2
4ty
1
m 1 m 1 mc c2 2 2 2 2 2
2xdx e ( , t)
d ,
y x x z z
−ξ∞
ν−σ+ −ν+σ− −

ξ φ ξ 
× ξ
− − ξ −

∫ ∫
c x< < ∞ (2.42)
We know that
( ) ( )
( )
( )( )
m
2 2
y
m 1 m mc 2 2 2 2 2 2 2 2
c zd 2xdx
dy y x x z y z y c
ν−σ+
ν−σ+ −ν+σ− ν−σ+
−
=
− − − −
∫
(2.43)
Using the result (2.43) in equation (2.42), we get
{ a
2 4
0
Sin(1 m)
(y) (y) F (y, t) (z)dz
−ν + σ− π
η φ = − η
π ∫
( )
( )( ) ( )
2
m
2 2 4tb
1
m 1 ma2 2 2 2 2 2
c z e ( , t)
d
y z y c z
ν−σ+
−ξ
ν−σ+ −
− ξ φ ξ
× ξ
− − ξ −
∫
( )
( )( ) ( )
2
m
2 2 4tb b
1
m 1 ma z2 2 2 2 2 2
c z e ( , t)
(z)dz d
y z y c z
ν−σ+
−ξ
ν−σ+ −
− ξ φ ξ
+ η × ξ
− − ξ −
∫ ∫
( )
( )( ) ( )
2
m
2 2 4tc
2
m 1 m0 c2 2 2 2 2 2
c z e ( , t)
(z)dz d ,
y z y c z
ν−σ+
−ξ∞
ν−σ+ −
− ξ φ ξ
+ η × ξ
− − ξ −
∫ ∫
c x< < ∞ (2.44)
( )
( )
m
2 2
a
2 4 2 2 m 2 20
(z) c zSin(1 m)
(y) (y) F (y, t) dz
(y a ) y z
ν−σ+
ν−σ+
 η −−ν +σ− π
η φ = − 
π − −

∫
Paper ID: SUB1567 151
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Volume 4 Issue 1, January 2015
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
( )
( )
( )
2
m
2 24tb b
1
1 m 2 2a a2 2
(z) c ze ( , t)
dz dz
y zz
ν−σ+
−ξ
−
η −ξ φ ξ
× +
−ξ −
∫ ∫
( )
( )
( )
2
m
2 24tb c
1
1 m 2 2z 02 2
(z) c ze ( , t)
d dz
y zz
ν−σ+
−ξ
−
η −ξ φ ξ
× ξ +
−ξ −
∫ ∫
( )
2
4t
2
1 mc 2 2
e ( , t)
d , c x
z
−ξ∞
−

ξ φ ξ 
× ξ < < ∞
ξ −

∫
(2.45)
Substituting the values from (2.27) and (2.28) in above
equation, we obtain
2 4 2 2 2 m
Sin(1 m) Sin(1 m)
(y) (y) F (y, t)
(y c )ν−σ+
− ν + σ − π − π
η φ = −
π −
( ) ( )
( )( ) ( )
m m
2 2 2 2
a b
1
m2 2 2 20 a 2 2
(z) a z c z 2x (x)
dz dx
y z x z x a
ν−σ+ η − − φ
×
− − −

∫ ∫
( )
( )( ) ( )
2m
2 2
c
2
m2 2 2 20 c 2 2
(z) c z 2x (x)
dz dx
y z x z x c
ν−σ+
∞
η − φ 
+ 
− − −

∫ ∫
( )
( )
m
2 2
b
2 2 m 2 2a
(z) c zSin(1 m)
dz
(y c ) y z
ν−σ+
ν−σ+
η −− ν + σ − π
−
π − −
∫
( )
2
4tb
1
1 mz 2 2
e ( , t)
d , c x
z
−ξ
−

ξ φ ξ 
× ξ < < ∞
ξ −

∫ (2.46)
Changing the order of integration of equation (2.46), we get
2 4 2 2 2 m
Sin(1 m) Sin(1 m)
(y) (y) F (y, t)
(y c )ν−σ+
− ν + σ − π − π
η φ = −
π −
( )
( ) ( )
( )( )
m m
2 2 2 2
b a
1
m 2 2 2 2a 02 2
(z) a z c z2x (x)
dx dz
y z x zx a
ν−σ+ η − −φ
×
− − −

∫ ∫
( )
( )
( )( )
2m
2 2
c
2
m 2 2 2 2c 02 2
(z) c z2x (x)
dx dz
y z x zx c
ν−σ+
∞
η −φ 
+ 
− − −

∫ ∫
( )
2
4tb
1
2 2 m 1 ma 2 2
Sin(1 m) e ( , t)
d
(y c ) z
−ξ
ν−σ+ −
− ν + σ − π ξ φ ξ
− ξ
π − ξ −
∫
( )
( )
m
2 2
b
2 2z
(z) c z
dz, c x
y z
ν−σ+
η −
× < < ∞
−
∫
(2.47)
Again using the value from equation (2.27) in equation
(2.47), we get
2 4 2 2 2 m
Sin(1 m) Sin(1 m)
(y) (y) F (y, t)
(y c )ν−σ+
−ν + σ− π − π
η φ = −
π −
( )
( ) ( )
( )( )
m m
2 2 2 2
b a
1
m 2 2 2 2a 02 2
(z) a z c z2x (x)
dx dz
y z x zx a
ν−σ+ η − −φ
×
− − −

∫ ∫
( )
( )( )
( )( )
m
2 2 2 2
b b
1
m 2 2 2 2a z2 2
(z) a z c z2x (x)
dx dz
y z x zx a
ν−σ+ η − −φ
+
− − −

∫ ∫
( )
( )
( )( )
2m
2 2
c
2
m 2 2 2 2c 02 2
(z) c z2x (x)
dx dz c x
y z x zx c
ν−σ+
∞
η −φ 
+ < < ∞
− − −

∫ ∫
(2.48)
Equation (2.39) can now be written as
b
2 2 4 1
c a
(y) (y) P(x, y) (x)dx F (y, t) Q(x, y) (x)dx,
∞
η φ + φ = − φ∫ ∫
c x< < ∞ (2.49)
Where
2 2 2 m 2 2 m
Sin(1 m) Sin(1 m) 2x
P(x, y) .
(y c ) (x c )ν−σ+
− ν + σ − π − π
=
π − −
( )
( )( )
2m
2 2
c
2 2 2 20
(z) c z
dz
y z x z
ν−σ+
η −
− −
∫
(2.50)
And
( ) ( )
( )( )
m m
2 2 2 2
a
2 2 2 20
(z) a z c z
dz
y z x z
ν−σ+ η − −

− −

∫
( ) ( )
( )( )
m m
2 2 2 2
b
2 2 2 2z
(z) a z c z
dz
y z x z
ν−σ+ η − − 
+ 
− − 

∫
(2.51)
Equations (2.31) and (2.39) are Fredholm integral equations
of the second kind which determine 1(x)φ and 2(x)φ .
Values of 1( , t)φ ξ and 2( , t)φ ξ can be determined
with the help of equations (2.25) and (2.26) respectively.
Finally, the coefficients nA can be computed from
equation(2.3), which satisfy the quadruple series equations
involving heat polynomials, of the first kind.
where 1(x, t)ψ and 2(x, t)ψ are unknown functions.
Using equation (1.1) in equations (2.52), (2.53), (1.1) in
equations (2.52), (2.53), (1.6) and (1.8), we obtain
a b
n 1 2
0 a4(n p)
1 1
n p
2 2
B (x, t)+ g (x, t)
1
2 (n p)! n p
2
+
   
Γ σ + Γ µ + + +   
   = ψ  + Γ σ + + + 
 
∫ ∫
c
2 4 n p,
b c
(x, t)+ g (x, t) W (x, t)d (x)
∞
+ σ
+ ψ Ω∫ ∫
(2.54)
Substituting this expression for nB in equations (1.5)
and (1.7), we get
n n
n p,
4(n p)n 0
1 1
t e n p P (x, t)
2 2
1 1
2 (n p)! n p n p
2 2
−
∞ + ν
+=
   
Γ σ + Γ µ + + + −   
   
   
+ Γ σ + + + Γ ν + + +   
   
∑
Paper ID: SUB1567 152
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Volume 4 Issue 1, January 2015
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
a b c
1 2 2 4 n p,
0 a b c
(x, t)+ g (x, t) (x, t)+ g (x, t) W ( , t)d ( )
∞
+ σ
 ψ + ψ ξ Ω ξ  ∫ ∫ ∫ ∫
Using the results (1.2) in above equations and changing the
order of integration and summation, we get
a b c2 2 2 2
1 2 2 4
0 a b c
( , t)d + g ( , t)d ( , t)d + g ( , t)d
∞σ σ σ σ ξ ψ ξ ξ ξ ξ ξ + ξ ψ ξ ξ ξ ξ ξ  ∫ ∫ ∫ ∫
n
1 n p,
2
n p,
4(n p)n 0
1
n p P (x, t)
t 2
2 W ( , t)
1 1
2 (n p)! n p n p
2 2
∞ + ν−σ
+ σ
+=
   
Γ µ + + + −   
    × ξ
   
+ Γ σ+ + + Γ ν + + +   
   
∑

Using summation result (1.4) in equations (2.57) and
(2.58), we have
a b2 2
1 2
0 a
( , t)S(x, , t)d + g ( , t)S(x, , t)dσ σ
ξ ψ ξ ξ ξ ξ ξ ξ ξ∫ ∫
c 2 2
2 4
b c
( , t)S(x, , t)d + g ( , t)S(x, , t)d
∞σ σ
+ ξ ψ ξ ξ ξ ξ ξ ξ ξ∫ ∫
a c2 2
1 2
0 b
( , t)S(x, , t)d + ( , t)S(x, , t)dσ σ
ξ ψ ξ ξ ξ ξ ψ ξ ξ ξ∫ ∫
where
b 2
1 1 2
a
G (x, t) g (x, t) g ( , t)S(x, , t)dσ
= − ξ ξ ξ ξ∫
2
4
c
g ( , t)S(x, , t)d
∞ σ
− ξ ξ ξ ξ∫ (2.63)
and
b 2
2 3 2
a
G (x, t) g (x, t) g ( , t)S(x, , t)dσ
= − ξ ξ ξ ξ∫
2
4
c
g ( , t)S(x, , t)d
∞ σ
− ξ ξ ξ ξ∫ (2.64)
Starting from equation (2.61), using notation given by
(1.6), we get
2
2 1 4t *a 2
1 1 20
e a
( , t) S ( , x, y) d
x (m) ( m)
− σ+ −ξ
σ
ω− + ν
 ξ 
ξ ψ ξ ξ ξ 
Γ Γ ν − σ +  
∫
2
1 2 4t *c 2
2 2 1b
e a
( , t) S ( , x, y) d
x (m) ( m)
− σ −ξ
σ
ων−
 ξ 
+ ξ ψ ξ ξ ξ 
Γ Γ ν − σ +  
∫
= 1G (x, t), 0 x a≤ < (2.65)
2
* x 4t
1
0
a
e ( , t)S ( , x, y)d
(m) ( m)
−ξ
ξ
 ξ ψ ξ ξ ξΓ Γ ν − σ + ∫
2 2a c4t 4t
1 x 2 x
x b
e ( , t)S ( , x, y)d e ( , t)S ( , x, y)d−ξ −ξ + ξ ψ ξ ξ ξ+ ξ ψ ξ ξ ξ∫ ∫
=
2 1
1x G (x, t), 0 x aν−
≤ < (2.66)
Now putting the value of summation in terms of
integral from (1.5) in equation (2.66), we obtain
( ) ( )
2 m 1 m 1x 4t 2 2 2 2
1
0 0
e ( , t) (y) y x y d dy
− ν−σ+ −ξ−ξ
ξ ψ ξ η ξ − − ξ∫ ∫
( ) ( )
2 m 1 m 1a x4t 2 2 2 2
1
x 0
e ( , t) (y) y x y d dy
− ν−σ+ −
−ξ
+ ξ ψ ξ η ξ − − ξ∫ ∫
( ) ( )
2 m 1 m 1c x4t 2 2 2 2
2
b 0
e ( , t) (y) y x y d dy
− ν−σ+ −
−ξ
+ ξ ψ ξ η ξ − − ξ∫ ∫
1* 1 2
(m) ( m)
G (x, t), 0 x a
a x − ν
Γ Γ ν − σ +
= ≤ < (2.67)
Inverting the order of integration of equation (2.67),
we get
( ) ( )
2
4tx a
1
1 m 1 m0 y2 2 2 2
(y) e ( , t)
dy d
x y x y
−ξ
−ν+σ− −
η ξ ψ ξ
ξ
− −
∫ ∫
( ) ( )
2
4tx c
2
1 m 1 m0 b2 2 2 2
(y) e ( , t)
dy d
x y x y
−ξ
−ν+σ− −
η ξ ψ ξ
+ ξ
− −
∫ ∫
1* 1 2
(m) ( m)
G (x, t), 0 x a
a x − ν
Γ Γ ν − σ +
= ≤ < (2.68)
Assuming,
( )
2
4ta
1
1 1 my 2 2
e ( , t)
(y) d
x y
−ξ
−
ξ ψ ξ
ψ= ξ
−
∫
(2.69)
Now equation (2.68) can be written as
( ) ( )
2
4tx c
2
11 m 1 m0 b2 2 2 2
(y) e ( , t)
dy (y) d
x y x y
−ξ
−ν+σ− −
 
η ξ ψ ξ 
ψ + ξ 
 − −
 
∫ ∫
1* 1 2
(m) ( m)
G (x, t), 0 x a
a x − ν
Γ Γ ν − σ +
= ≤ < (2.70)
With the help of equations (1.8), we can solve the
above equation as
( )
2
4tc
2
1 1 mb 2 2
e ( , t)
(y) (y) d
y
−ξ
−
 
ξ ψ ξ 
η ψ + ξ 
 ξ −
 
∫
y
2 2 m0
Sin(1 m) d 2xdx
dy (y x )ν−σ+
− ν + σ − π
= −
π −∫
1* 1 2
(m) ( m)
G (x, t), 0 x a
a x − ν
Γ Γ ν − σ +
= ≤ < (2.71)
Now equation (2.71) takes the form
( )
2
4tc
2
1 3 1 mb 2 2
e ( , t)
(y) (y) G (y, t) (y) d , 0 x a
y
−ξ
−
ξ ψ ξ
η ψ= −η ξ ≤ <
ξ −
∫
(2.72)
Where
3 *
Sin(1 m) (m) ( m)
G (y, t)
a
− ν + σ − π Γ Γ ν − σ +
=
π
( )
2y
1
m0 2 2
d 2x G (x, t)
dx
dy y x
ν
ν−σ+
×
−
∫
(2.73)
Solving the integral equation (2.69) as
2 a4t 1
1 2 2 m
Sin(1 m) d 2y (y)
e ( , t) dy
d (y )
−ξ
ξ
− π ψ
ξ ψ ξ =−
π ξ − ξ∫
(2.74)
With the help of equation (2.74), we obtain
Paper ID: SUB1567 153
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Volume 4 Issue 1, January 2015
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
( ) ( ) ( )( )
2
4ta a
1 1
1 m m m0 02 2 2 2 2 2
e ( , t) Sin(1 m) 2x (x)
d
y y x y x
−ξ
− −
ξ ψ ξ − π ψ
ξ =
ξ − π − −
∫ ∫
(2.75)
Again, let
( )
2
4tc
2
2 1 my 2 2
e ( , t)
(y) d
y
−ξ
−
ξ ψ ξ
ψ= ξ
ξ −
∫
(2.76)
Solving (2.76) similarly as (2.74) and (2.75)
respectively, we get
( )
2 c4t 2
2 m
2 2
Sin(1 m) d 2y (y)
e ( , t) dy
d y
−ξ
ξ
− π ψ
ξ ψ ξ =−
π ξ − ξ
∫
(2.77)
( ) ( ) ( ) ( )
2
4tc c
2 2
1 m m mb b2 2 2 2 2 2 2 2
e ( , t) Sin(1 m) 2x (x)dx
d
y b y x b x y
−ξ
− −
ξ ψ ξ − π ψ
ξ =
ξ − π − − −
∫ ∫
(2.78)
Now using the equation (2.79) in (2.72), we get
( )
1 3 m
2 2
Sin(1 m) (y)
(y) (y) G (y, t)
b y
−
− π η
η ψ= −
π −
( ) ( )
c
2
mb 2 2 2 2
2x (x)dx
x
x b x y
ψ
− −
∫
(2.79)
Equcation (2.80) reduces to the following form
c
1 3 2
b
(y) (y) G (y, t) R(x, y) (y)dx, 0 x aη ψ= − ψ ≤ <∫ (2.80)
where
( ) ( ) ( )
m m
2 2 2 2 2 2
Sin(1 m) (y) 2x
R(x, y)
b y x b x y
−
− π η
=
π − − −
(2.81)
Again starting from equation (2.62) and using the
notation (1.6), we have
2
2 1 4t *a 2
1 2 10
e a
( , t) S ( , x, y) d
x (m) ( m)
− σ+ −ξ
σ
ων−
 ξ 
ξ ψ ξ ξ ξ 
Γ Γ ν − σ +  
∫
2
2 1 4t *c 2
2 2 1b
e a
( , t) S ( , x, y) d
x (m) ( m)
σ+ −ξ
σ
ων−
 ξ 
+ ξ ψ ξ ξ ξ 
Γ Γ ν − σ +  
∫
= 2G (x, t), bx c< < (2.82)
2
* a 4t
1
0
a
e ( , t)S ( , x, y)d
(m) ( m)
−ξ
ξξ ψ ξ ξ ξ
Γ Γ ν − σ + ∫
2x 4t
2
b
e ( , t)S ( , x, y)d−ξ
ξ+ ξ ψ ξ ξ ξ∫
2c 4t
2 x
x
e ( , t)S ( , x, y)d−ξ
+ ξ ψ ξ ξ ξ∫
=
2 1
2x G (x, t), bx cν−
< < (2.83)
Putting the value of summation in terms of integral
from (1.5) in above equation, we get
( ) ( )
2 m 1 m 1a 4t 2 2 2 2
1
0 0
e ( , t)d (y) y x y dy
− ν−σ+ −ξ−ξ
ξ ψ ξ ξ η ξ − −∫ ∫
( ) ( )
2 m 1 m 1x 4t 2 2 2 2
2
b 0
e ( , t)d (y) y x y dy
− ν−σ+ −ξ−ξ
+ ξ ψ ξ ξ η ξ − −∫ ∫
( ) ( )
2 m 1 m 1c x4t 2 2 2 2
2
x 0
e ( , t)d (y) y x y dy
− ν−σ+ −
−ξ
+ ξ ψ ξ ξ η ξ − −∫ ∫
2* 1 2
(m) ( m)
G (x, t),
a x − ν
Γ Γ ν − σ +
= (2.84)
Inverting the order of integration we get
( ) ( )
2
4ta a
1
1 m 1 m0 y2 2 2 2
(y) e ( , t)
dy d
x y x y
−ξ
−ν+σ− −
η ξ ψ ξ
ξ
− −
∫ ∫
( ) ( )
2
4tb c
2
1 m 1 m0 b2 2 2 2
(y) e ( , t)
dy d
x y x y
−ξ
−ν+σ− −
η ξ ψ ξ
+ ξ
− −
∫ ∫
( ) ( )
2
4tx c
2
1 m 1 mb y2 2 2 2
(y) e ( , t)
dy d
x y x y
−ξ
−ν+σ− −
η ξ ψ ξ
+ ξ
− −
∫ ∫
2* 1 2
(m) ( m)
G (x, t), bx c
a x − ν
Γ Γ ν − σ +
= < < (2.85)
Using (2.69) and (2.76) the above equation becomes
( )
x
2
21 m * 1 2b 2 2
(y) (y)dy (m) ( m)
G (x, t)
a xx y
−ν+σ− − ν
η ψ Γ Γ ν − σ +
=
−
∫
( ) ( )
a b
1
1 m 1 m0 02 2 2 2
(y) (y) (y)
dy dy
x y x y
−ν+σ− −ν+σ−
η ψ η
− −
− −
∫ ∫
( )
2
4tc
2
1 mb 2 2
e ( , t)
d b x c
y
−ξ
−
ξ ψ ξ
ξ < <
ξ −
∫
(2.86)
The equation (2.87) can be solved as
y
2 2 2 mb
Sin(1 m) d 2xdx
(y) (y)
dy (y x )ν−σ+
−ν + σ − π
η ψ =
π −∫
( )
a
1
2* 1 2 1 m0 2 2
(m) ( m) (z) (z)dz
G (x, t)
a x x z
− ν −ν+σ−
Γ Γ ν − σ − η ψ
× −
 −
∫
( ) ( )
2
4tb c
2
1 m 1 m0 b2 2 2 2
(z)dz e ( , t)
d ,
x z z
−ξ
−ν+σ− −

η ξ ψ ξ 
− ξ
− ξ −

∫ ∫
b x c< < (2.87)
y
2 4 2 2 mb
Sin(1 m) d 2xdx
(y) (y)G (y, t)
dy (y x )ν−σ+
− ν + σ − π
η ψ −
π −∫
( ) ( ) ( )
2
4ta b c
1 2
1 m 1 m 1 m0 0 b2 2 2 2 2 2
(z) (z) (z)dz e ( , t)
dz d ,
x z x z z
−ξ
−ν+σ− −ν+σ− −
 
η ψ η ξ ψ ξ 
× + ξ 
 − − ξ −
 
∫ ∫ ∫
b x c< < (2.88)
Where
4 *
Sin(1 m) (m) ( m)
G (y, t)
a
− ν + σ − π Γ Γ ν − σ +
=
π
( )
2y
2
mb 2 2
d 2x G (x, t)
dx
dy y x
ν
ν−σ+
×
−
∫
(2.89)
y
2 4 2 2 mb
Sin(1 m) d 2xdx
(y) (y) G (y, t)
dy (y x )ν−σ+
−ν +σ− π
η ψ= −
π −∫
( ) ( )
2
4ta c
2
31 m 1 m0 b2 2 2 2
dz e ( , t)
G (z, t) (z) d
x z z
−ξ
−ν+σ− −
  
ξ ψ ξ × − η ξ 
 − ξ −  
∫ ∫
Paper ID: SUB1567 154
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438
Volume 4 Issue 1, January 2015
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
( ) ( )
2
4tb c
2
1 m 1 m0 b2 2 2 2
e ( , t)(z)dz
d , b x c
x z z
−ξ
−ν+σ− −

ξ ψ ξη + ξ < <
− ξ − 
∫ ∫
(2.90)
Breaking the last term of the above equation into two parts,
we get y
2 4 2 2 mb
Sin(1 m) d 2xdx
(y) (y) G (y, t)
dy (y x )ν−σ+
− ν + σ − π
η ψ= −
π −∫
( ) ( ) ( )
2
4ta b c
3 2
1 m 1 m 1 m0 a b2 2 2 2 2 2
G (z, t)dz (z)dz e ( , t)
d ,
x z x z z
−ξ
−ν+σ− −ν+σ− −
 
η ξ ψ ξ × + × ξ 
− − ξ − 
∫ ∫ ∫
b x c< < (2.91)
Changing the order of integration, the equation (2.92)
becomes
a
2 4 3
0
Sin(1 m)
(y) (y) G (y, t) G (z, t)dz

− ν + σ − π 
η ψ= − 
π 

∫
y b
2 2 m 2 2 1 mb a
d 2xdx
(z)dz
dy (y x ) (x z )ν−σ+ −ν+σ−
× + η
− −∫ ∫
( )
2
4ty c
2
2 2 m 2 2 1 m 1 mb b 2 2
d 2xdx e ( , t)
d
dy (y x ) (x z ) z
−ξ
ν−σ+ −ν+σ− −

ξ ψ ξ 
× × ξ
− − ξ −

∫ ∫
b x c< < (2.92)
We know that
y
2 2 m 2 2 1 mb
d 2xdx
dy (y x ) (x z )ν−σ+ −ν+σ−
− −∫
2 2 m
2 2 m 2 2
(b z )
(y b ) (y z )
ν−σ+
ν−σ+
−
=
− −
(2.93)
Using the result (2.79) and (2.94) to the equation
(2.93), we get
a
2 4 3
0
Sin(1 m)
(y) (y) G (y, t) G (z, t)dz

− ν + σ − π 
η ψ= − 
π 

∫
2 2 m 2 2 mb
2 2 m 2 2 2 2 m 2 2a
(b z ) (b z )
(z)dz
(y b ) (y z ) (y b ) (y z )
ν−σ+ ν−σ+
ν−σ+ ν−σ+
− −
× + η ×
− − − −∫
c
2
2 2 m 2 2 m 2 2b
2x (x)Sin(1 m)
d x b x c
(b z ) (x b ) (x z )−
ψ− π
× < <
π − − − 
∫
(2.94)
( )
2 2 ma
3
2 4 m 2 202 2
G (z, t)(b z )Sin(1 m)
(y) (y) G (y, t) dz
(y z )y b
ν−σ+
ν−σ+
−−ν + σ − π
η ψ= −
−π −
∫
( )
2 2 2mb
m 2 2 2 2a2 2 2
Sin(1 m) Sin(1 m) (z)(b z )
dz
(x z )(y z )y b
ν−σ+
ν−σ+
− ν + σ − π − π η −
− +
− −π −
∫
c
2
2 2 mb
2x (x)
d x, b x c
(x b )
ψ
× < <
−∫ (2.95)
Now changing the order of integration of the last term
of the equation (2.96), we get
( )
2 2 ma
3
2 4 m 2 202 2
G (z, t)(b z )Sin(1 m)
(y) (y) G (y, t) dz
(y z )y b
ν−σ+
ν−σ+
−−ν +σ− π
η ψ= −
−π −
∫
( )
c
2
m 2 2 mb2 2 2
Sin(1 m) Sin(1 m) 2x (x)
dx
(x b )y b
ν−σ+
−ν + σ− π − π ψ
− ×
−π −
∫
(2.96) Now equation (2.97) can be rewritten as
( )
c
2 2 4 mb 2 2
Sin(1 m)
(y) (y) S(x, y) (x)dx G (y, t)
y b
ν−σ+
− ν + σ −
η ψ + ψ = −
π −
∫
2 2 ma
3
2 20
G (z, t)(b z )
d z, b x c
(y z )
ν−σ+
−
< <
−∫ (2.97)
Where S(x, y) is the symmetric kernel
( )
m 2 2 m
2 2 2
Sin(1 m) Sin(1 m) 2x
S(x, y) .
(x b )y b
ν−σ+
− ν + σ − π − π
=
−π −
2 2 2mb
2 2 2 2a
(z)(b z )
dz,
(x z )(y z )
ν−σ+
η −
×
− −∫ (2.98)
Equations (2.98) and (2.81) are Fredholm integral
equations of the second kind determine 2(y)ψ and
1(y).ψ 1( , t)Ψ ξ and 2( , t)Ψ ξ can be then
computed from equations (2.74) and (2.78)
respectively. Finally, the coefficients nB can be
calculated with the help of equation (2.54) which
satisfy the equations from (1.5) to (1.8).
Particular Case
If we let c → ∞ in equation (1.1) to (1.8), they reduce to
the corresponding triple series equation involving heat
polynomials and this solution can be shown to agree with
that obtained earlier for triple series equations. Similarly, we
can obtain the corresponding dual series equations involving
heat polynomials.
Acknowledgement
Authors are thankful to Dr. G.K. Dubey and Dr. A.P.
Dwivedi for their co-operation & support provided to me for
preparing the paper. Authors are also thankful to Mr. Manish
Verma, Scientist ‘C’ DMSRDE, Kanpur for his support.
References
[1] Cooke, J.C. (1992): The solution of triple and Quadruple
integral equations and Fourier Series Equations,Quart
.J.Mech. Appl. Math., 45, pp. 247-263.
[2] Dwivedi, A.P. & Trivedi, T.N. (1972) : Quadruple series
equations involving Jacobi polynomials , Proc. Nat.
Acad. Sci. India , 42 (A) , pp. 203-208.
[3] Dwivedi, A.P. & Gupta, P. (1980): Quadruple series
equations involving Jacobi Polynomials of different
indices, Acta Cienca Indica, 6 (M) , pp. 241-247.
[4] Dwivedi, A.P. & Singh, V.B. (1997): Quadruple series
equations involving series of Jacobi polynomials,
Ind.J.Pure & Appl. Math. , 28, 1068-1077.
Paper ID: SUB1567 155

More Related Content

PDF
An approach to decrease dimensions of drift
PDF
Neutrosophic Soft Topological Spaces on New Operations
PDF
Algebra 6
PDF
On 1 d fractional supersymmetric theory
PDF
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
PDF
Maths ms
PDF
Capitulo 5 Soluciones Purcell 9na Edicion
An approach to decrease dimensions of drift
Neutrosophic Soft Topological Spaces on New Operations
Algebra 6
On 1 d fractional supersymmetric theory
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
Maths ms
Capitulo 5 Soluciones Purcell 9na Edicion

What's hot (20)

PDF
Capitulo 4 Soluciones Purcell 9na Edicion
PDF
C142530
PDF
Capitulo 7 Soluciones Purcell 9na Edicion
PPTX
Inner product space
PDF
Solovay Kitaev theorem
PDF
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
PDF
solucionario de purcell 2
PDF
Solution Manual : Chapter - 05 Integration
PDF
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
PDF
Solution Manual : Chapter - 02 Limits and Continuity
PPT
11 x1 t09 03 rules for differentiation (2013)
PDF
E041046051
PDF
Solving the energy problem of helium final report
PDF
Solution Manual : Chapter - 01 Functions
PDF
Hw4sol
PDF
Succesive differntiation
PPTX
4.1 the chain rule
PDF
MODULE 4- Quadratic Expression and Equations
PDF
solucionario de purcell 1
ODP
Power point
Capitulo 4 Soluciones Purcell 9na Edicion
C142530
Capitulo 7 Soluciones Purcell 9na Edicion
Inner product space
Solovay Kitaev theorem
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
solucionario de purcell 2
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 02 Limits and Continuity
11 x1 t09 03 rules for differentiation (2013)
E041046051
Solving the energy problem of helium final report
Solution Manual : Chapter - 01 Functions
Hw4sol
Succesive differntiation
4.1 the chain rule
MODULE 4- Quadratic Expression and Equations
solucionario de purcell 1
Power point
Ad

Viewers also liked (20)

Ad

Similar to Sub1567 (20)

PDF
PDF
A common random fixed point theorem for rational ineqality in hilbert space ...
PDF
Bc4103338340
PPT
Dubey
PDF
maths ppt.pdf
PDF
maths ppt.pdf
PDF
convulution
PDF
Capitulo 2 corripio
PDF
corripio
PDF
Signals and systems: part i solutions
PDF
Stereographic Circular Normal Moment Distribution
PPTX
VECTOR FORM INTRINSIC FINITE ELEMENT (VFIFE).pptx
PDF
A0212010109
PDF
Answers to Problems for Advanced Engineering Mathematics 6th Edition Internat...
PDF
IIT Jam math 2016 solutions BY Trajectoryeducation
PDF
Measures of different reliability parameters for a complex redundant system u...
PDF
PDF
Aieee 2012 Solved Paper by Prabhat Gaurav
PDF
University of manchester mathematical formula tables
PDF
Solutions for Problems in "A First Course in Differential Equations" (11th Ed...
A common random fixed point theorem for rational ineqality in hilbert space ...
Bc4103338340
Dubey
maths ppt.pdf
maths ppt.pdf
convulution
Capitulo 2 corripio
corripio
Signals and systems: part i solutions
Stereographic Circular Normal Moment Distribution
VECTOR FORM INTRINSIC FINITE ELEMENT (VFIFE).pptx
A0212010109
Answers to Problems for Advanced Engineering Mathematics 6th Edition Internat...
IIT Jam math 2016 solutions BY Trajectoryeducation
Measures of different reliability parameters for a complex redundant system u...
Aieee 2012 Solved Paper by Prabhat Gaurav
University of manchester mathematical formula tables
Solutions for Problems in "A First Course in Differential Equations" (11th Ed...

More from International Journal of Science and Research (IJSR) (20)

PDF
Innovations in the Diagnosis and Treatment of Chronic Heart Failure
PDF
Design and implementation of carrier based sinusoidal pwm (bipolar) inverter
PDF
Polarization effect of antireflection coating for soi material system
PDF
Image resolution enhancement via multi surface fitting
PDF
Ad hoc networks technical issues on radio links security &amp; qo s
PDF
Microstructure analysis of the carbon nano tubes aluminum composite with diff...
PDF
Improving the life of lm13 using stainless spray ii coating for engine applic...
PDF
An overview on development of aluminium metal matrix composites with hybrid r...
PDF
Pesticide mineralization in water using silver nanoparticles incorporated on ...
PDF
Comparative study on computers operated by eyes and brain
PDF
T s eliot and the concept of literary tradition and the importance of allusions
PDF
Effect of select yogasanas and pranayama practices on selected physiological ...
PDF
Grid computing for load balancing strategies
PDF
A new algorithm to improve the sharing of bandwidth
PDF
Main physical causes of climate change and global warming a general overview
PDF
Performance assessment of control loops
PDF
Capital market in bangladesh an overview
PDF
Faster and resourceful multi core web crawling
PDF
Extended fuzzy c means clustering algorithm in segmentation of noisy images
PDF
Parallel generators of pseudo random numbers with control of calculation errors
Innovations in the Diagnosis and Treatment of Chronic Heart Failure
Design and implementation of carrier based sinusoidal pwm (bipolar) inverter
Polarization effect of antireflection coating for soi material system
Image resolution enhancement via multi surface fitting
Ad hoc networks technical issues on radio links security &amp; qo s
Microstructure analysis of the carbon nano tubes aluminum composite with diff...
Improving the life of lm13 using stainless spray ii coating for engine applic...
An overview on development of aluminium metal matrix composites with hybrid r...
Pesticide mineralization in water using silver nanoparticles incorporated on ...
Comparative study on computers operated by eyes and brain
T s eliot and the concept of literary tradition and the importance of allusions
Effect of select yogasanas and pranayama practices on selected physiological ...
Grid computing for load balancing strategies
A new algorithm to improve the sharing of bandwidth
Main physical causes of climate change and global warming a general overview
Performance assessment of control loops
Capital market in bangladesh an overview
Faster and resourceful multi core web crawling
Extended fuzzy c means clustering algorithm in segmentation of noisy images
Parallel generators of pseudo random numbers with control of calculation errors

Sub1567

  • 1. International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Volume 4 Issue 1, January 2015 www.ijsr.net Licensed Under Creative Commons Attribution CC BY Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials Gunjan Shukla1 , K.C. Tripathi2 .1 Dr. Ambedkar Institute of Technology for Handicapped, Kanpur -208002, Uttar Pradesh, India 2 Defence Materials & Stores Research & Development Establishment, Kanpur-208013, U.P. India Abstract: Quadruple series equations are useful in finding the solution of four part boundary value problems of electrostatics, elasticity and other fields of mathematical physics. In the present paper, we have considered the quadruple series equations involving heat polynomials and solved them. 1. Introduction Quadruple series equations are useful in finding the solution of four part boundary value problems of electrostatics, elasticity and other fields of mathematical physics. Cooke [1] devised the method for finding the solution of quadruple series equations involving Fourier–Bessel series and obtained their solution by using operator theory. Recently Dwivedi and Trivedi [2] Dwivedi and Gupta [3] Dwivedi and Singh [4] considered various types of quadruple series equations involving different polynomials. In the present paper, we have considered the quadruple series equations involving heat polynomials. 2. Quadruple Simultaneous Fourier Series Equations Involving Heat Polynomials Quadruple series equations involving heat polynomials considered here, are the generalization of dual series equations considered by Pathak [3] and corresponding triple series equations considered. Solution is obtained by reducing the problem to simultaneous Fredholm integral equations of the second kind. 3. The Equations Here we shall consider the two sets of quadruple series equations involving heat polynomials of the first kind and second kind respectively. (i) Quadruple Series Equations of the First Kind Quadruple series equations of the first kind to be studied here are given as: n n p, 1 n 0 A P (x, t) f (x, t), 0 x a 1 n p 2 ∞ + σ = −= ≤ <   Γ µ + + +    ∑ (1.1) n n n n p, 2 n 0 t A P (x, t) f (x, t), a x b 1 n p 2 ∞ − + ν = −= < <   Γ ν + + +    ∑  (1.2) n n p, 3 n 0 A P (x, t) f (x, t), b x c 1 n p 2 ∞ + σ = −= < <   Γ µ + + +    ∑ (1.3) n n n n p, 4 n 0 t A P (x, t) f (x, t),c x 1 n p 2 ∞ − + ν = −= < < ∞   Γ ν + + +    ∑  (1.4) (ii) Quadruple Series Equations of the Second Kind Quadruple series equations of the second kind to be analysed, here are given as: n n n n p, 1 n 0 t B P (x, t) g (x, t),0 x a 1 n p 2 ∞ − + ν = −= ≤ <   Γ ν + + +    ∑  (1.5) n n p, 2 n 0 B P (x, t) g (x, t), a x b 1 n p 2 ∞ + σ = −= < <   Γ µ + + +    ∑ (1.6) n n n n p, 3 n 0 t B P (x, t) g (x, t),b x c 1 n p 2 ∞ − + ν = −= < <   Γ ν + + +    ∑  (1.7) n n p, 4 n 0 B P (x, t) g (x, t),c x 1 n p 2 ∞ + σ = −= < < ∞   Γ µ + + +    ∑ (1.8) In above equations if (x, t) and ig (x, t) (i 1, 2, 3, 4)= are the prescribed functions t 0≥ > and n,P (x, t)ν − is the heat polynomials. nA and nB are the unknown coefficients to be determined. 4. The Solution (i) Equations of the First Kind In order to solve the quadruple series equations of the first kind, we set Paper ID: SUB1567 147
  • 2. International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Volume 4 Issue 1, January 2015 www.ijsr.net Licensed Under Creative Commons Attribution CC BY where 1(x, t)φ and 2(x, t)φ are unknown functions. Using relation (1.1) in equations (1.2), (1.3), (2.1) and (2.2), we obtain n a b n 1 1 0 a4(n p) 1 1 n p A 2 2 A f (x, t)+ (x, t) 1 2 (n p)! n p 2 +     Γ σ + Γ µ + + +        φ  + Γ σ + + +    ∫ ∫ c 3 2 n p, b c f (x, t)+ (x, t) W (x, t)d (x) ∞ + σ + φ Ω∫ ∫ (2.3) Substituting this expression for nA in equations (1.2) and (1.4), we get n n n p, 4(n p)n 0 1 1 t e n p P (x, t) 2 2 1 1 2 (n p)! n p n p 2 2 − ∞ + ν +=     Γ σ + Γ µ + + + −            + Γ σ + + + Γ ν + + +        ∑ a b c 1 1 3 2 n p, 0 a b c f ( , t)+ (x, t) f ( , t)+ (x, t) W ( , t)d ( ) ∞ + σ  ξ φ + ξ φ ξ Ω ξ  ∫ ∫ ∫ ∫ Putting the value of d ( )Ω ξ from equation (1.2) and changing the order of integration and summation in above equations, we get a b c2 2 2 2 1 1 3 2 0 a b c f ( , t)d + ( , t)d f ( , t)d + ( , t)d ∞σ σ σ σ ξ ξ ξ ξ φ ξ ξ+ ξ ξ ξ ξ φ ξ ξ  ∫ ∫ ∫ ∫ n 1 n p, n p, 2 4(n p)n 0 1 n p P (x, t)W ( , t) t 2 2 1 1 2 (n p)! n p n p 2 2 ∞ + ν + σ−σ +=     Γ µ + + + − ξ       ×     + Γ σ + + + Γ ν + + +        ∑  (2.6) 2 4 f (x, t), a x b f (x, t), c x < < =  < < ∞ (2.7) Using the summation result (1.4) in equations (2.6) and (2.7), we have a b2 2 1 1 0 a f ( , t)S(x, , t)d ( , t)S(x, , t)dσ σ ξ ξ ξ ξ + ξ φ ξ ξ ξ∫ ∫ c 2 2 3 2 b c f ( , t)S(x, , t)d ( , t)S(x, , t)d ∞σ σ + ξ ξ ξ ξ + ξ φ ξ ξ ξ∫ ∫ ⇒ b 2 2 1 2 a c ( , t)S(x, , t)d ( , t)S(x, , t)d ∞σ σ ξ φ ξ ξ ξ + ξ φ ξ ξ ξ∫ ∫ where a c2 2 1 2 1 3 0 b F (x, t) f (x, t) f ( , t)S(x, , t)d f ( , t)S(x, , t)dσ σ = − ξ ξ ξ ξ− ξ ξ ξ ξ∫ ∫ (2.12) a c2 2 2 4 1 3 0 b F (x, t) f (x, t) f ( , t)S(x, , t)d f ( , t)S(x, , t)dσ σ = − ξ ξ ξ ξ− ξ ξ ξ ξ∫ ∫ (2.13) Now using the notation given by (1.6) in equation(2.10), we get 2 1-2 4t *b 2 1 2 1a e a ( , t) S ( , x, y) d x (m) ( m) σ −ξ σ ων−  ξ  ξ φ ξ ξ ξ  Γ Γ ν −σ +   ∫ 2 2 -1 4t * 2 2 2 1c e a ( , t) S ( , x, y) d x (m) ( m) ν −ξ∞ σ ων−  ξ  + ξ φ ξ ξ ξ  Γ Γ ν−σ+   ∫ = 1F (x, t), a x b< < (2.14) 2 * x 4t 1 a a e ( , t)S ( , x, y)d (m) ( m) −ξ ξ  ξ φ ξ ξ ξΓ Γ ν −σ + ∫ 2 2b 4t 4t 1 x 2 x x c e ( , t)S ( , x, y)d e ( , t)S ( , x, y)d ∞−ξ ξ + ξ φ ξ ξ ξ+ ξ φ ξ ξ ξ∫ ∫ 2 1 1x F (x, t), a x bν− = < < (2.15) Putting the value of summation in terms of integral from (1.5) in equation (2.15), we obtain ( ) ( ) 2 m 1 m 1x 4t 2 2 2 2 1 a 0 e ( , t)d (y) y x y dy − ν−σ+ −ξ−ξ ξ φ ξ ξ η ξ − −∫ ∫ ( ) ( ) 2 m 1 m 1b x4t 2 2 2 2 1 x 0 e ( , t)d (y) y x y dy − ν−σ+ − −ξ + ξ φ ξ ξ η ξ − −∫ ∫ ( ) ( ) 2 m 1 m 1x4t 2 2 2 2 2 c 0 e ( , t)d (y) y x y dy − ν−σ+ −∞ −ξ + ξ φ ξ ξ η ξ − −∫ ∫ 1* 1 2 (m) ( m) F (x, t) a x b a x − ν Γ Γ ν − σ + = < < (2.16) Changing the order of integration in equation (2.16), we get ( ) ( ) 2 4ta b 1 1 m 1 m0 a2 2 2 2 (y)dy e ( , t) d x y y −ξ −ν+σ− − η ξ φ ξ ξ − ξ − ∫ ∫ Paper ID: SUB1567 148
  • 3. International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Volume 4 Issue 1, January 2015 www.ijsr.net Licensed Under Creative Commons Attribution CC BY ( ) ( ) 2 4tx b 1 1 m 1 ma y2 2 2 2 (y)dy e ( , t) d x y y −ξ −ν+σ− − η ξ φ ξ + ξ − ξ − ∫ ∫ ( ) ( ) 2 4tx 2 1 m 1 m0 c2 2 2 2 (y)dy e ( , t) d x y y −ξ∞ −ν+σ− − η ξ φ ξ + ξ − ξ − ∫ ∫ 1* 1 2 (m) ( m) F (x, t) a x b a x − ν Γ Γ ν − σ + < < (2.17) Assuming ( ) 2 4tb 1 1 1 my 2 2 e ( , t) (y) d y −ξ − ξ φ ξ φ= ξ ξ − ∫ (2.18) And ( ) 2 4t 2 2 1 my 2 2 e ( , t) (y) d y −ξ∞ − ξ φ ξ φ= ξ ξ − ∫ (2.19) Now in view of the equation (4.18) equation (4.17) can be rewritten as ( ) x 1 11 m * 1 2a 2 2 (y) y (m) ( m) dy F (x, t) a xx y −ν+σ− − ν η φ Γ Γ ν − σ + = − ∫ ( ) ( ) 2 4ta b 1 1 m 1 m0 a2 2 2 2 (y)dy e ( , t) d x y y −ξ −ν+σ− − η ξ φ ξ − ξ − ξ − ∫ ∫ ( ) ( ) 2 4tx 2 1 m 1 m0 c2 2 2 2 (y)dy e ( , t) d a x b x y y −ξ∞ −ν+σ− − η ξ φ ξ − ξ < < − ξ − ∫ ∫ The solution of the above equation is given as ( ) y 1 ma 2 2 Sin(1 m) d 2xdx (y) (y) dy y x ν−σ+ − ν + σ − π η φ = π − ∫ ( ) a 1* 1 2 1 m0 2 2 (m) ( m) (z)dz F (x, t) a x x z − ν −ν+σ− Γ Γ ν − σ + η × −  − ∫ ( ) ( ) 2 4tb x 1 1 m 1 ma 02 2 2 2 e ( , t) (z)dz d z x z −ξ − −ν+σ− ξ φ ξ η × ξ − ξ − − ∫ ∫ ( ) 2 4t 2 1 mc 2 2 e ( , t) d , a x b z −ξ∞ −  ξ φ ξ  × ξ < < ξ −  ∫ ( ) y 1 3 ma 2 2 Sin(1 m) d 2xdx (y) (y) F (y, t) dy y x ν−σ+ − ν + σ − π η φ = − π − ∫ ( ) ( ) 2 4ta b 1 1 m 1 m0 a2 2 2 2 (z)dz e ( , t) d x z z −ξ −ν+σ− −  η ξ φ ξ × ξ  − ξ −  ∫ ∫ ( ) ( ) 2 4tx 2 1 m 1 m0 c2 2 2 2 e ( , t)(z)dz d a x b x z z −ξ∞ −ν+σ− −  ξ φ ξη  + ξ < < − ξ −  ∫ ∫ (2.20) where 1 * Sin(1 m) (m) ( m) d F (y, t)= dya − ν + σ − π Γ Γ ν − σ + π ( ) 2y 1 ma 2 2 2x F (x, t) dx y x ν ν−σ+ − − ∫ (2.21) Changing the order of integration in equation (2.20), we get 1 3 Sin(1 m) d (y) (y) F (y, t) (z)dz dy − ν + σ − π η φ = − η × π  ( ) ( ) ( ) 2 4ty b 1 m 1 m 1 ma 02 2 2 2 2 2 2xdx e ( , t) d y x x z z −ξ ν−σ+ −ν+σ− − ξ φ ξ ξ − − ξ − ∫ ∫ ( ) ( ) a y m 1 m0 a 2 2 2 2 d 2xdx (z)dz. dy y x x z ν−σ+ −ν+σ− + η − − ∫ ∫ ( ) 2 4t y 2 1 mc a2 2 e ( , t) d d (z)dz. dyz −ξ∞ − ξ φ ξ × ξ + η ξ − ∫ ∫ ( ) ( ) ( ) 2 4ty 2 m 1 m 1 mz 02 2 2 2 2 2 2xdx e ( , t) d y x x z z −ξ∞ ν−σ+ −ν+σ− −  ξ φ ξ  × ξ − − ξ −  ∫ ∫ a x b< < (2.22) ( ) ( ) y m 1 mz 2 2 2 2 2xdx Sin(1 m)y x x z ν−σ+ −ν+σ− π = − ν + σ − π− − ∫ (2.23) In equation (4.22), we get {a 1 3 0 Sin(1 m) (y) (y) F (y, t) (z)dz −ν+σ− π η φ= − η π ∫ ( ) ( )( ) ( ) 2 m 2 2 4tb 1 m 1 ma2 2 2 2 2 2 a z e ( , t) d y z y a z ν−σ+ −ξ ν−σ+ − − ξ φ ξ × ξ − − ξ − ∫ ( ) ( )( ) ( ) 2 m 2 2 4ta 2 m 1 m0 c2 2 2 2 2 2 a z e ( , t) (z)dz d y z y a z ν−σ+ −ξ∞ ν−σ+ − − ξ φ ξ + η ξ − − ξ − ∫ ∫ ( ) 2 4ty 2 1 ma c 2 2 d e ( , t) (z)dz d dy Sin(1 m) z −ξ∞ −  π ξ φ ξ  + η ξ −ν+σ− π ξ −  ∫ ∫ a x b< < (2.24) Equations (4.18) and (4.19) are Able–type integral equations, hence their solutions are given by ( ) 2 b4t 1 1 m 2 2 Sin(1 m) d 2y. (y) e ( , t) dy d y −ξ ξ − π φ ξ φ ξ =− π ξ − ξ ∫ (2.25) And ( ) 2 4t 2 2 m 2 2 Sin(1 m) d 2y. (y) e ( , t) dy d y ∞−ξ ξ − π φ ξ φ ξ =− π ξ − ξ ∫ (2.26) With the help of equations (2.25) and (2.26), we obtain Paper ID: SUB1567 149
  • 4. International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Volume 4 Issue 1, January 2015 www.ijsr.net Licensed Under Creative Commons Attribution CC BY ( ) ( ) ( ) ( ) 2 4tb b 1 1 1 m m ma a2 2 2 2 2 2 2 2 e ( , t) Sin(1 m) 2x. (x) d dx y a y x a x y −ξ − − ξ φ ξ − π φ ξ = ξ − π − − − ∫ ∫ (2.27) ( ) ( ) ( ) ( ) 2 4t 2 2 1 m m mc c2 2 2 2 2 2 2 2 e ( , t) Sin(1 m) 2x. (x) d dx y c y x c x y −ξ∞ ∞ − − ξ φ ξ − π φ ξ = ξ − π − − − ∫ ∫ (2.28) Substituting the results (2.27) and (2.28) is equation (2.24), we have 1 3 2 2 2 m Sin(1 m) Sin(1 m) (y) (y) F (y, t) (y a )ν−σ+ − ν + σ − π − π η φ = − π − ( ) ( )( ) ( ) 2m 2 2 a b 1 m2 2 2 20 a 2 2 (z) a z 2x. (x) dz dx y z x z x a ν−σ+ η − φ × − − −  ∫ ∫ ( ) ( ) ( )( ) ( ) 2m m 2 2 2 2 a 2 m2 2 2 20 c 2 2 (z) a z c z 2x. (x) dz dx y z x z x a ν−σ+ ∞ η − − φ  + ×  − − −  ∫ ∫ ( ) ( ) ( ) m 2 2 y 2 m2 2a c 2 2 (z) c zd Sin(1 m) 2x (x) dz dx, dy x z x c ∞η − − π φ − × π− − ∫ ∫ a x b< < (2.29) Changing the order of integration of the equation (2.29), we get 1 3 2 2 2 m Sin(1 m) Sin(1 m) (y) (y) F (y, t) (y a )ν−σ+ − ν + σ − π − π η φ = − π − ( ) ( ) ( )( ) m 2 2 b a 1 m 2 2 2 2a 02 2 (z) a z2x. (x) dx dz y z x zx a ν−σ+ η −φ × − − −  ∫ ∫ ( ) ( ) ( ) ( )( ) m m 2 2 2 2 a 2 m 2 2 2 2c 02 2 (z) a z c z2x (x) dx dz y z x zx a ν−σ+ ∞ η − −φ  + ×  − − −  ∫ ∫ ( ) ( ) ( ) m 2 2 y 2 m 2 2c a2 2 (z) c zSin(1 m) 2x (x) d dx dz, dy x zx c ∞ η −− π φ − × π −− ∫ ∫ a x b< < (2.30) Now, above equation can be written as b 1 1 3 2 a c (y) (y) M(x, y) (y)dx F (y, t) N(x, y) (x)dx, ∞ η φ + φ = − φ∫ ∫ a x b< < (2.31) where ( ) 2 2 2 m m 2 2 Sin(1 m)Sin(1 m) 2x M(x, y) . (y a ) x a ν−σ+ − ν + σ − − π = π − − ( ) ( )( ) m 2 2 a 2 2 2 20 (z) a z dz y z x z ν−σ+ η − × − − ∫ (2.32) ( ) 2 2 2 m m 2 2 Sin(1 m) Sin(1 m) 2x N(x, y) . (y a ) x c ν−σ+ − ν + σ − π − π = π − − ( ) ( ) ( )( ) m m 2 2 2 2 a 2 2 2 20 (z) a z c z Sin(1 m) dz y z x z ν−σ+ η − − − π × + π− − ∫ ( ) ( ) ( ) m 2 2 y m 2 2a2 2 (z) c z2x d dz dy x zx c η − −− ∫ (2.33) Again starting from equation (2.11), we have b 2 2 1 2 2 a c ( , t)S(x, , t)d ( , t)S(x, , t)d F (x, t), ∞σ σ ξ φ ξ ξ ξ + ξ φ ξ ξ ξ =∫ ∫ c x< < ∞ (2.34) Using the notation given by equation (4.6), we obtain 2 1 2 4t *b 2 1 w2 1a e a ( , t) S ( , x, y) d x (m) ( m) − σ −ξ σ ν−  ξ  ξ φ ξ ξ ξ  Γ Γ ν − σ +  ∫ 2 1 2 4t * 2 2 w2 1c e a ( , t) S ( , x, y) d x (m) ( m) − σ −ξ∞ σ ν−  ξ  + ξ φ ξ ξ ξ  Γ Γ ν − σ +  ∫ = 2F (x, t), c x< < ∞ (2.35) 2 * b 4t 1 a a e ( , t)S ( , x, y)d (m) ( m) −ξ ξ  ξ φ ξ ξ ξΓ Γ ν − σ + ∫ 2 2x 4t 4t 2 2 c x e ( , t)S ( , x, y)d e ( , t)S ( , x, y)d ∞−ξ −ξ ξ ξ + ξ φ ξ ξ ξ+ ξ φ ξ ξ ξ∫ ∫ 2 1 2x F (x, t), c xν− = < < ∞ (2.36) Putting the value of summation in terms of integral from (2.5) in above equation, we get ( ) ( ) 2 m 1 m 1b 4t 2 2 2 2 1 a 0 e ( , t)d (y) y x y dy − ν−σ+ −ξ−ξ ξ φ ξ ξ η ξ − −∫ ∫ ( ) ( ) 2 m 1 m 1x 4t 2 2 2 2 2 c 0 e ( , t)d (y) y x y dy − ν−σ+ −ξ−ξ + ξ φ ξ ξ η ξ − −∫ ∫ ( ) ( ) 2 m 1 m 1x4t 2 2 2 2 2 x 0 e ( , t)d (y) y x y dy − ν−σ+ −∞ −ξ + ξ φ ξ ξ η ξ − −∫ ∫ 2* 1 2 (m) ( m) F (x, t) c x a x − ν Γ Γ ν − σ + = < < ∞ (2.37) Changing the order of integration in equation (2.37), we get ( ) ( ) 2 4ta b 1 1 m 1 m0 a2 2 2 2 (y)dy e ( , t) d x y y −ξ −ν+σ− − η ξ φ ξ ξ − ξ − ∫ ∫ Paper ID: SUB1567 150
  • 5. International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Volume 4 Issue 1, January 2015 www.ijsr.net Licensed Under Creative Commons Attribution CC BY ( ) ( ) 2 4tb b 1 1 m 1 ma y2 2 2 2 (y)dy e ( , t) d x y y −ξ −ν+σ− − η ξ φ ξ + ξ − ξ − ∫ ∫ ( ) ( ) 2 4tc b 2 1 m 1 m0 y2 2 2 2 (y)dy e ( , t) d x y y −ξ −ν+σ− − η ξ φ ξ + ξ − ξ − ∫ ∫ ( ) ( ) 2 4tx 2 1 m 1 mc y2 2 2 2 (y)dy e ( , t) d x y y −ξ∞ −ν+σ− − η ξ φ ξ + ξ − ξ − ∫ ∫ 2* 1 2 (m) ( m) F (x, t) c x a x − ν Γ Γ ν − σ + < < ∞ (2.38) In view of the equations (2.18) and (2.19) above equation becomes ( ) x 2 21 m * 1 2c 2 2 (y) (y) (m) ( m) dy F (x, t) a xx y −ν+σ− − ν η φ Γ Γ ν − σ + = − ∫ ( ) ( ) 2 4ta b 1 1 m 1 m0 a2 2 2 2 (y)dy e ( , t) d x y y −ξ −ν+σ− − η ξ φ ξ − ξ − ξ − ∫ ∫ ( ) ( ) 2 4tb b 1 1 m 1 ma y2 2 2 2 (y)dy e ( , t) d x y y −ξ −ν+σ− − η ξ φ ξ − ξ − ξ − ∫ ∫ ( ) ( ) 2 4tc 2 1 m 1 m0 c2 2 2 2 e ( , t)(y)dy d c x x y y −ξ∞ −ν+σ− − ξ φ ξη − ξ < < ∞ − ξ − ∫ ∫ (2.39) The solution to the equation (2.39) is given by ( ) y 2 mc 2 2 Sin(1 m) d 2xdx (y) (y) dy y x ν−σ+ −ν + σ − π η φ = π − ∫ ( ) a 2* 1 2 1 m0 2 2 (m) ( m) (z)dz F (x, t) a x x y − ν −ν+σ− Γ Γ ν −σ + η × −  − ∫ ( ) ( ) 2 4tb b 1 1 m 1 ma a2 2 2 2 e ( , t) (z)dz d z x z −ξ − −ν+σ− ξ φ ξ η × ξ − ξ − − ∫ ∫ ( ) ( ) 2 4tb c 1 1 m 1 mz 02 2 2 2 e ( , t) (z)dz d z x z −ξ − −ν+σ− ξ φ ξ η × ξ − ξ − − ∫ ∫ ( ) 2 4t 2 1 mc 2 2 e ( , t) d c x z −ξ∞ −  ξ φ ξ  × ξ < < ∞ ξ −  ∫ (2.40) Let 4 * Sin(1 m) (m) ( m) d F (y, t) dya − ν + σ − π Γ Γ ν − σ + = π ( ) 2y 2 mc 2 2 2x F (x, t)dx dx y x ν ν−σ+ − ∫ (2.41) Using (2.41) in (2.40) and changing the order of integration, we get { a 2 4 0 Sin(1 m) d (y) (y) F (y, t) (z)dz dy −ν + σ − π η φ = − η × π ∫ ( ) ( ) ( ) 2 4ty b 1 m 1 m 1 mc a2 2 2 2 2 2 2xdx e ( , t) d y x x z z −ξ ν−σ+ −ν+σ− − ξ φ ξ ξ − − ξ − ∫ ∫ ( ) ( ) b y m 1 ma c 2 2 2 2 d 2xdx (z)dz. dy y x x z ν−σ+ −ν+σ− + η − − ∫ ∫ ( ) 2 4tb c 1 1 mz 02 2 e ( , t) d d (z)dz. dyz −ξ − ξ φ ξ × ξ + η ξ − ∫ ∫ ( ) ( ) ( ) 2 4ty 1 m 1 m 1 mc c2 2 2 2 2 2 2xdx e ( , t) d , y x x z z −ξ∞ ν−σ+ −ν+σ− −  ξ φ ξ  × ξ − − ξ −  ∫ ∫ c x< < ∞ (2.42) We know that ( ) ( ) ( ) ( )( ) m 2 2 y m 1 m mc 2 2 2 2 2 2 2 2 c zd 2xdx dy y x x z y z y c ν−σ+ ν−σ+ −ν+σ− ν−σ+ − = − − − − ∫ (2.43) Using the result (2.43) in equation (2.42), we get { a 2 4 0 Sin(1 m) (y) (y) F (y, t) (z)dz −ν + σ− π η φ = − η π ∫ ( ) ( )( ) ( ) 2 m 2 2 4tb 1 m 1 ma2 2 2 2 2 2 c z e ( , t) d y z y c z ν−σ+ −ξ ν−σ+ − − ξ φ ξ × ξ − − ξ − ∫ ( ) ( )( ) ( ) 2 m 2 2 4tb b 1 m 1 ma z2 2 2 2 2 2 c z e ( , t) (z)dz d y z y c z ν−σ+ −ξ ν−σ+ − − ξ φ ξ + η × ξ − − ξ − ∫ ∫ ( ) ( )( ) ( ) 2 m 2 2 4tc 2 m 1 m0 c2 2 2 2 2 2 c z e ( , t) (z)dz d , y z y c z ν−σ+ −ξ∞ ν−σ+ − − ξ φ ξ + η × ξ − − ξ − ∫ ∫ c x< < ∞ (2.44) ( ) ( ) m 2 2 a 2 4 2 2 m 2 20 (z) c zSin(1 m) (y) (y) F (y, t) dz (y a ) y z ν−σ+ ν−σ+  η −−ν +σ− π η φ = −  π − −  ∫ Paper ID: SUB1567 151
  • 6. International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Volume 4 Issue 1, January 2015 www.ijsr.net Licensed Under Creative Commons Attribution CC BY ( ) ( ) ( ) 2 m 2 24tb b 1 1 m 2 2a a2 2 (z) c ze ( , t) dz dz y zz ν−σ+ −ξ − η −ξ φ ξ × + −ξ − ∫ ∫ ( ) ( ) ( ) 2 m 2 24tb c 1 1 m 2 2z 02 2 (z) c ze ( , t) d dz y zz ν−σ+ −ξ − η −ξ φ ξ × ξ + −ξ − ∫ ∫ ( ) 2 4t 2 1 mc 2 2 e ( , t) d , c x z −ξ∞ −  ξ φ ξ  × ξ < < ∞ ξ −  ∫ (2.45) Substituting the values from (2.27) and (2.28) in above equation, we obtain 2 4 2 2 2 m Sin(1 m) Sin(1 m) (y) (y) F (y, t) (y c )ν−σ+ − ν + σ − π − π η φ = − π − ( ) ( ) ( )( ) ( ) m m 2 2 2 2 a b 1 m2 2 2 20 a 2 2 (z) a z c z 2x (x) dz dx y z x z x a ν−σ+ η − − φ × − − −  ∫ ∫ ( ) ( )( ) ( ) 2m 2 2 c 2 m2 2 2 20 c 2 2 (z) c z 2x (x) dz dx y z x z x c ν−σ+ ∞ η − φ  +  − − −  ∫ ∫ ( ) ( ) m 2 2 b 2 2 m 2 2a (z) c zSin(1 m) dz (y c ) y z ν−σ+ ν−σ+ η −− ν + σ − π − π − − ∫ ( ) 2 4tb 1 1 mz 2 2 e ( , t) d , c x z −ξ −  ξ φ ξ  × ξ < < ∞ ξ −  ∫ (2.46) Changing the order of integration of equation (2.46), we get 2 4 2 2 2 m Sin(1 m) Sin(1 m) (y) (y) F (y, t) (y c )ν−σ+ − ν + σ − π − π η φ = − π − ( ) ( ) ( ) ( )( ) m m 2 2 2 2 b a 1 m 2 2 2 2a 02 2 (z) a z c z2x (x) dx dz y z x zx a ν−σ+ η − −φ × − − −  ∫ ∫ ( ) ( ) ( )( ) 2m 2 2 c 2 m 2 2 2 2c 02 2 (z) c z2x (x) dx dz y z x zx c ν−σ+ ∞ η −φ  +  − − −  ∫ ∫ ( ) 2 4tb 1 2 2 m 1 ma 2 2 Sin(1 m) e ( , t) d (y c ) z −ξ ν−σ+ − − ν + σ − π ξ φ ξ − ξ π − ξ − ∫ ( ) ( ) m 2 2 b 2 2z (z) c z dz, c x y z ν−σ+ η − × < < ∞ − ∫ (2.47) Again using the value from equation (2.27) in equation (2.47), we get 2 4 2 2 2 m Sin(1 m) Sin(1 m) (y) (y) F (y, t) (y c )ν−σ+ −ν + σ− π − π η φ = − π − ( ) ( ) ( ) ( )( ) m m 2 2 2 2 b a 1 m 2 2 2 2a 02 2 (z) a z c z2x (x) dx dz y z x zx a ν−σ+ η − −φ × − − −  ∫ ∫ ( ) ( )( ) ( )( ) m 2 2 2 2 b b 1 m 2 2 2 2a z2 2 (z) a z c z2x (x) dx dz y z x zx a ν−σ+ η − −φ + − − −  ∫ ∫ ( ) ( ) ( )( ) 2m 2 2 c 2 m 2 2 2 2c 02 2 (z) c z2x (x) dx dz c x y z x zx c ν−σ+ ∞ η −φ  + < < ∞ − − −  ∫ ∫ (2.48) Equation (2.39) can now be written as b 2 2 4 1 c a (y) (y) P(x, y) (x)dx F (y, t) Q(x, y) (x)dx, ∞ η φ + φ = − φ∫ ∫ c x< < ∞ (2.49) Where 2 2 2 m 2 2 m Sin(1 m) Sin(1 m) 2x P(x, y) . (y c ) (x c )ν−σ+ − ν + σ − π − π = π − − ( ) ( )( ) 2m 2 2 c 2 2 2 20 (z) c z dz y z x z ν−σ+ η − − − ∫ (2.50) And ( ) ( ) ( )( ) m m 2 2 2 2 a 2 2 2 20 (z) a z c z dz y z x z ν−σ+ η − −  − −  ∫ ( ) ( ) ( )( ) m m 2 2 2 2 b 2 2 2 2z (z) a z c z dz y z x z ν−σ+ η − −  +  − −   ∫ (2.51) Equations (2.31) and (2.39) are Fredholm integral equations of the second kind which determine 1(x)φ and 2(x)φ . Values of 1( , t)φ ξ and 2( , t)φ ξ can be determined with the help of equations (2.25) and (2.26) respectively. Finally, the coefficients nA can be computed from equation(2.3), which satisfy the quadruple series equations involving heat polynomials, of the first kind. where 1(x, t)ψ and 2(x, t)ψ are unknown functions. Using equation (1.1) in equations (2.52), (2.53), (1.1) in equations (2.52), (2.53), (1.6) and (1.8), we obtain a b n 1 2 0 a4(n p) 1 1 n p 2 2 B (x, t)+ g (x, t) 1 2 (n p)! n p 2 +     Γ σ + Γ µ + + +       = ψ  + Γ σ + + +    ∫ ∫ c 2 4 n p, b c (x, t)+ g (x, t) W (x, t)d (x) ∞ + σ + ψ Ω∫ ∫ (2.54) Substituting this expression for nB in equations (1.5) and (1.7), we get n n n p, 4(n p)n 0 1 1 t e n p P (x, t) 2 2 1 1 2 (n p)! n p n p 2 2 − ∞ + ν +=     Γ σ + Γ µ + + + −            + Γ σ + + + Γ ν + + +        ∑ Paper ID: SUB1567 152
  • 7. International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Volume 4 Issue 1, January 2015 www.ijsr.net Licensed Under Creative Commons Attribution CC BY a b c 1 2 2 4 n p, 0 a b c (x, t)+ g (x, t) (x, t)+ g (x, t) W ( , t)d ( ) ∞ + σ  ψ + ψ ξ Ω ξ  ∫ ∫ ∫ ∫ Using the results (1.2) in above equations and changing the order of integration and summation, we get a b c2 2 2 2 1 2 2 4 0 a b c ( , t)d + g ( , t)d ( , t)d + g ( , t)d ∞σ σ σ σ ξ ψ ξ ξ ξ ξ ξ + ξ ψ ξ ξ ξ ξ ξ  ∫ ∫ ∫ ∫ n 1 n p, 2 n p, 4(n p)n 0 1 n p P (x, t) t 2 2 W ( , t) 1 1 2 (n p)! n p n p 2 2 ∞ + ν−σ + σ +=     Γ µ + + + −        × ξ     + Γ σ+ + + Γ ν + + +        ∑  Using summation result (1.4) in equations (2.57) and (2.58), we have a b2 2 1 2 0 a ( , t)S(x, , t)d + g ( , t)S(x, , t)dσ σ ξ ψ ξ ξ ξ ξ ξ ξ ξ∫ ∫ c 2 2 2 4 b c ( , t)S(x, , t)d + g ( , t)S(x, , t)d ∞σ σ + ξ ψ ξ ξ ξ ξ ξ ξ ξ∫ ∫ a c2 2 1 2 0 b ( , t)S(x, , t)d + ( , t)S(x, , t)dσ σ ξ ψ ξ ξ ξ ξ ψ ξ ξ ξ∫ ∫ where b 2 1 1 2 a G (x, t) g (x, t) g ( , t)S(x, , t)dσ = − ξ ξ ξ ξ∫ 2 4 c g ( , t)S(x, , t)d ∞ σ − ξ ξ ξ ξ∫ (2.63) and b 2 2 3 2 a G (x, t) g (x, t) g ( , t)S(x, , t)dσ = − ξ ξ ξ ξ∫ 2 4 c g ( , t)S(x, , t)d ∞ σ − ξ ξ ξ ξ∫ (2.64) Starting from equation (2.61), using notation given by (1.6), we get 2 2 1 4t *a 2 1 1 20 e a ( , t) S ( , x, y) d x (m) ( m) − σ+ −ξ σ ω− + ν  ξ  ξ ψ ξ ξ ξ  Γ Γ ν − σ +   ∫ 2 1 2 4t *c 2 2 2 1b e a ( , t) S ( , x, y) d x (m) ( m) − σ −ξ σ ων−  ξ  + ξ ψ ξ ξ ξ  Γ Γ ν − σ +   ∫ = 1G (x, t), 0 x a≤ < (2.65) 2 * x 4t 1 0 a e ( , t)S ( , x, y)d (m) ( m) −ξ ξ  ξ ψ ξ ξ ξΓ Γ ν − σ + ∫ 2 2a c4t 4t 1 x 2 x x b e ( , t)S ( , x, y)d e ( , t)S ( , x, y)d−ξ −ξ + ξ ψ ξ ξ ξ+ ξ ψ ξ ξ ξ∫ ∫ = 2 1 1x G (x, t), 0 x aν− ≤ < (2.66) Now putting the value of summation in terms of integral from (1.5) in equation (2.66), we obtain ( ) ( ) 2 m 1 m 1x 4t 2 2 2 2 1 0 0 e ( , t) (y) y x y d dy − ν−σ+ −ξ−ξ ξ ψ ξ η ξ − − ξ∫ ∫ ( ) ( ) 2 m 1 m 1a x4t 2 2 2 2 1 x 0 e ( , t) (y) y x y d dy − ν−σ+ − −ξ + ξ ψ ξ η ξ − − ξ∫ ∫ ( ) ( ) 2 m 1 m 1c x4t 2 2 2 2 2 b 0 e ( , t) (y) y x y d dy − ν−σ+ − −ξ + ξ ψ ξ η ξ − − ξ∫ ∫ 1* 1 2 (m) ( m) G (x, t), 0 x a a x − ν Γ Γ ν − σ + = ≤ < (2.67) Inverting the order of integration of equation (2.67), we get ( ) ( ) 2 4tx a 1 1 m 1 m0 y2 2 2 2 (y) e ( , t) dy d x y x y −ξ −ν+σ− − η ξ ψ ξ ξ − − ∫ ∫ ( ) ( ) 2 4tx c 2 1 m 1 m0 b2 2 2 2 (y) e ( , t) dy d x y x y −ξ −ν+σ− − η ξ ψ ξ + ξ − − ∫ ∫ 1* 1 2 (m) ( m) G (x, t), 0 x a a x − ν Γ Γ ν − σ + = ≤ < (2.68) Assuming, ( ) 2 4ta 1 1 1 my 2 2 e ( , t) (y) d x y −ξ − ξ ψ ξ ψ= ξ − ∫ (2.69) Now equation (2.68) can be written as ( ) ( ) 2 4tx c 2 11 m 1 m0 b2 2 2 2 (y) e ( , t) dy (y) d x y x y −ξ −ν+σ− −   η ξ ψ ξ  ψ + ξ   − −   ∫ ∫ 1* 1 2 (m) ( m) G (x, t), 0 x a a x − ν Γ Γ ν − σ + = ≤ < (2.70) With the help of equations (1.8), we can solve the above equation as ( ) 2 4tc 2 1 1 mb 2 2 e ( , t) (y) (y) d y −ξ −   ξ ψ ξ  η ψ + ξ   ξ −   ∫ y 2 2 m0 Sin(1 m) d 2xdx dy (y x )ν−σ+ − ν + σ − π = − π −∫ 1* 1 2 (m) ( m) G (x, t), 0 x a a x − ν Γ Γ ν − σ + = ≤ < (2.71) Now equation (2.71) takes the form ( ) 2 4tc 2 1 3 1 mb 2 2 e ( , t) (y) (y) G (y, t) (y) d , 0 x a y −ξ − ξ ψ ξ η ψ= −η ξ ≤ < ξ − ∫ (2.72) Where 3 * Sin(1 m) (m) ( m) G (y, t) a − ν + σ − π Γ Γ ν − σ + = π ( ) 2y 1 m0 2 2 d 2x G (x, t) dx dy y x ν ν−σ+ × − ∫ (2.73) Solving the integral equation (2.69) as 2 a4t 1 1 2 2 m Sin(1 m) d 2y (y) e ( , t) dy d (y ) −ξ ξ − π ψ ξ ψ ξ =− π ξ − ξ∫ (2.74) With the help of equation (2.74), we obtain Paper ID: SUB1567 153
  • 8. International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Volume 4 Issue 1, January 2015 www.ijsr.net Licensed Under Creative Commons Attribution CC BY ( ) ( ) ( )( ) 2 4ta a 1 1 1 m m m0 02 2 2 2 2 2 e ( , t) Sin(1 m) 2x (x) d y y x y x −ξ − − ξ ψ ξ − π ψ ξ = ξ − π − − ∫ ∫ (2.75) Again, let ( ) 2 4tc 2 2 1 my 2 2 e ( , t) (y) d y −ξ − ξ ψ ξ ψ= ξ ξ − ∫ (2.76) Solving (2.76) similarly as (2.74) and (2.75) respectively, we get ( ) 2 c4t 2 2 m 2 2 Sin(1 m) d 2y (y) e ( , t) dy d y −ξ ξ − π ψ ξ ψ ξ =− π ξ − ξ ∫ (2.77) ( ) ( ) ( ) ( ) 2 4tc c 2 2 1 m m mb b2 2 2 2 2 2 2 2 e ( , t) Sin(1 m) 2x (x)dx d y b y x b x y −ξ − − ξ ψ ξ − π ψ ξ = ξ − π − − − ∫ ∫ (2.78) Now using the equation (2.79) in (2.72), we get ( ) 1 3 m 2 2 Sin(1 m) (y) (y) (y) G (y, t) b y − − π η η ψ= − π − ( ) ( ) c 2 mb 2 2 2 2 2x (x)dx x x b x y ψ − − ∫ (2.79) Equcation (2.80) reduces to the following form c 1 3 2 b (y) (y) G (y, t) R(x, y) (y)dx, 0 x aη ψ= − ψ ≤ <∫ (2.80) where ( ) ( ) ( ) m m 2 2 2 2 2 2 Sin(1 m) (y) 2x R(x, y) b y x b x y − − π η = π − − − (2.81) Again starting from equation (2.62) and using the notation (1.6), we have 2 2 1 4t *a 2 1 2 10 e a ( , t) S ( , x, y) d x (m) ( m) − σ+ −ξ σ ων−  ξ  ξ ψ ξ ξ ξ  Γ Γ ν − σ +   ∫ 2 2 1 4t *c 2 2 2 1b e a ( , t) S ( , x, y) d x (m) ( m) σ+ −ξ σ ων−  ξ  + ξ ψ ξ ξ ξ  Γ Γ ν − σ +   ∫ = 2G (x, t), bx c< < (2.82) 2 * a 4t 1 0 a e ( , t)S ( , x, y)d (m) ( m) −ξ ξξ ψ ξ ξ ξ Γ Γ ν − σ + ∫ 2x 4t 2 b e ( , t)S ( , x, y)d−ξ ξ+ ξ ψ ξ ξ ξ∫ 2c 4t 2 x x e ( , t)S ( , x, y)d−ξ + ξ ψ ξ ξ ξ∫ = 2 1 2x G (x, t), bx cν− < < (2.83) Putting the value of summation in terms of integral from (1.5) in above equation, we get ( ) ( ) 2 m 1 m 1a 4t 2 2 2 2 1 0 0 e ( , t)d (y) y x y dy − ν−σ+ −ξ−ξ ξ ψ ξ ξ η ξ − −∫ ∫ ( ) ( ) 2 m 1 m 1x 4t 2 2 2 2 2 b 0 e ( , t)d (y) y x y dy − ν−σ+ −ξ−ξ + ξ ψ ξ ξ η ξ − −∫ ∫ ( ) ( ) 2 m 1 m 1c x4t 2 2 2 2 2 x 0 e ( , t)d (y) y x y dy − ν−σ+ − −ξ + ξ ψ ξ ξ η ξ − −∫ ∫ 2* 1 2 (m) ( m) G (x, t), a x − ν Γ Γ ν − σ + = (2.84) Inverting the order of integration we get ( ) ( ) 2 4ta a 1 1 m 1 m0 y2 2 2 2 (y) e ( , t) dy d x y x y −ξ −ν+σ− − η ξ ψ ξ ξ − − ∫ ∫ ( ) ( ) 2 4tb c 2 1 m 1 m0 b2 2 2 2 (y) e ( , t) dy d x y x y −ξ −ν+σ− − η ξ ψ ξ + ξ − − ∫ ∫ ( ) ( ) 2 4tx c 2 1 m 1 mb y2 2 2 2 (y) e ( , t) dy d x y x y −ξ −ν+σ− − η ξ ψ ξ + ξ − − ∫ ∫ 2* 1 2 (m) ( m) G (x, t), bx c a x − ν Γ Γ ν − σ + = < < (2.85) Using (2.69) and (2.76) the above equation becomes ( ) x 2 21 m * 1 2b 2 2 (y) (y)dy (m) ( m) G (x, t) a xx y −ν+σ− − ν η ψ Γ Γ ν − σ + = − ∫ ( ) ( ) a b 1 1 m 1 m0 02 2 2 2 (y) (y) (y) dy dy x y x y −ν+σ− −ν+σ− η ψ η − − − − ∫ ∫ ( ) 2 4tc 2 1 mb 2 2 e ( , t) d b x c y −ξ − ξ ψ ξ ξ < < ξ − ∫ (2.86) The equation (2.87) can be solved as y 2 2 2 mb Sin(1 m) d 2xdx (y) (y) dy (y x )ν−σ+ −ν + σ − π η ψ = π −∫ ( ) a 1 2* 1 2 1 m0 2 2 (m) ( m) (z) (z)dz G (x, t) a x x z − ν −ν+σ− Γ Γ ν − σ − η ψ × −  − ∫ ( ) ( ) 2 4tb c 2 1 m 1 m0 b2 2 2 2 (z)dz e ( , t) d , x z z −ξ −ν+σ− −  η ξ ψ ξ  − ξ − ξ −  ∫ ∫ b x c< < (2.87) y 2 4 2 2 mb Sin(1 m) d 2xdx (y) (y)G (y, t) dy (y x )ν−σ+ − ν + σ − π η ψ − π −∫ ( ) ( ) ( ) 2 4ta b c 1 2 1 m 1 m 1 m0 0 b2 2 2 2 2 2 (z) (z) (z)dz e ( , t) dz d , x z x z z −ξ −ν+σ− −ν+σ− −   η ψ η ξ ψ ξ  × + ξ   − − ξ −   ∫ ∫ ∫ b x c< < (2.88) Where 4 * Sin(1 m) (m) ( m) G (y, t) a − ν + σ − π Γ Γ ν − σ + = π ( ) 2y 2 mb 2 2 d 2x G (x, t) dx dy y x ν ν−σ+ × − ∫ (2.89) y 2 4 2 2 mb Sin(1 m) d 2xdx (y) (y) G (y, t) dy (y x )ν−σ+ −ν +σ− π η ψ= − π −∫ ( ) ( ) 2 4ta c 2 31 m 1 m0 b2 2 2 2 dz e ( , t) G (z, t) (z) d x z z −ξ −ν+σ− −    ξ ψ ξ × − η ξ   − ξ −   ∫ ∫ Paper ID: SUB1567 154
  • 9. International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Volume 4 Issue 1, January 2015 www.ijsr.net Licensed Under Creative Commons Attribution CC BY ( ) ( ) 2 4tb c 2 1 m 1 m0 b2 2 2 2 e ( , t)(z)dz d , b x c x z z −ξ −ν+σ− −  ξ ψ ξη + ξ < < − ξ −  ∫ ∫ (2.90) Breaking the last term of the above equation into two parts, we get y 2 4 2 2 mb Sin(1 m) d 2xdx (y) (y) G (y, t) dy (y x )ν−σ+ − ν + σ − π η ψ= − π −∫ ( ) ( ) ( ) 2 4ta b c 3 2 1 m 1 m 1 m0 a b2 2 2 2 2 2 G (z, t)dz (z)dz e ( , t) d , x z x z z −ξ −ν+σ− −ν+σ− −   η ξ ψ ξ × + × ξ  − − ξ −  ∫ ∫ ∫ b x c< < (2.91) Changing the order of integration, the equation (2.92) becomes a 2 4 3 0 Sin(1 m) (y) (y) G (y, t) G (z, t)dz  − ν + σ − π  η ψ= −  π   ∫ y b 2 2 m 2 2 1 mb a d 2xdx (z)dz dy (y x ) (x z )ν−σ+ −ν+σ− × + η − −∫ ∫ ( ) 2 4ty c 2 2 2 m 2 2 1 m 1 mb b 2 2 d 2xdx e ( , t) d dy (y x ) (x z ) z −ξ ν−σ+ −ν+σ− −  ξ ψ ξ  × × ξ − − ξ −  ∫ ∫ b x c< < (2.92) We know that y 2 2 m 2 2 1 mb d 2xdx dy (y x ) (x z )ν−σ+ −ν+σ− − −∫ 2 2 m 2 2 m 2 2 (b z ) (y b ) (y z ) ν−σ+ ν−σ+ − = − − (2.93) Using the result (2.79) and (2.94) to the equation (2.93), we get a 2 4 3 0 Sin(1 m) (y) (y) G (y, t) G (z, t)dz  − ν + σ − π  η ψ= −  π   ∫ 2 2 m 2 2 mb 2 2 m 2 2 2 2 m 2 2a (b z ) (b z ) (z)dz (y b ) (y z ) (y b ) (y z ) ν−σ+ ν−σ+ ν−σ+ ν−σ+ − − × + η × − − − −∫ c 2 2 2 m 2 2 m 2 2b 2x (x)Sin(1 m) d x b x c (b z ) (x b ) (x z )− ψ− π × < < π − − −  ∫ (2.94) ( ) 2 2 ma 3 2 4 m 2 202 2 G (z, t)(b z )Sin(1 m) (y) (y) G (y, t) dz (y z )y b ν−σ+ ν−σ+ −−ν + σ − π η ψ= − −π − ∫ ( ) 2 2 2mb m 2 2 2 2a2 2 2 Sin(1 m) Sin(1 m) (z)(b z ) dz (x z )(y z )y b ν−σ+ ν−σ+ − ν + σ − π − π η − − + − −π − ∫ c 2 2 2 mb 2x (x) d x, b x c (x b ) ψ × < < −∫ (2.95) Now changing the order of integration of the last term of the equation (2.96), we get ( ) 2 2 ma 3 2 4 m 2 202 2 G (z, t)(b z )Sin(1 m) (y) (y) G (y, t) dz (y z )y b ν−σ+ ν−σ+ −−ν +σ− π η ψ= − −π − ∫ ( ) c 2 m 2 2 mb2 2 2 Sin(1 m) Sin(1 m) 2x (x) dx (x b )y b ν−σ+ −ν + σ− π − π ψ − × −π − ∫ (2.96) Now equation (2.97) can be rewritten as ( ) c 2 2 4 mb 2 2 Sin(1 m) (y) (y) S(x, y) (x)dx G (y, t) y b ν−σ+ − ν + σ − η ψ + ψ = − π − ∫ 2 2 ma 3 2 20 G (z, t)(b z ) d z, b x c (y z ) ν−σ+ − < < −∫ (2.97) Where S(x, y) is the symmetric kernel ( ) m 2 2 m 2 2 2 Sin(1 m) Sin(1 m) 2x S(x, y) . (x b )y b ν−σ+ − ν + σ − π − π = −π − 2 2 2mb 2 2 2 2a (z)(b z ) dz, (x z )(y z ) ν−σ+ η − × − −∫ (2.98) Equations (2.98) and (2.81) are Fredholm integral equations of the second kind determine 2(y)ψ and 1(y).ψ 1( , t)Ψ ξ and 2( , t)Ψ ξ can be then computed from equations (2.74) and (2.78) respectively. Finally, the coefficients nB can be calculated with the help of equation (2.54) which satisfy the equations from (1.5) to (1.8). Particular Case If we let c → ∞ in equation (1.1) to (1.8), they reduce to the corresponding triple series equation involving heat polynomials and this solution can be shown to agree with that obtained earlier for triple series equations. Similarly, we can obtain the corresponding dual series equations involving heat polynomials. Acknowledgement Authors are thankful to Dr. G.K. Dubey and Dr. A.P. Dwivedi for their co-operation & support provided to me for preparing the paper. Authors are also thankful to Mr. Manish Verma, Scientist ‘C’ DMSRDE, Kanpur for his support. References [1] Cooke, J.C. (1992): The solution of triple and Quadruple integral equations and Fourier Series Equations,Quart .J.Mech. Appl. Math., 45, pp. 247-263. [2] Dwivedi, A.P. & Trivedi, T.N. (1972) : Quadruple series equations involving Jacobi polynomials , Proc. Nat. Acad. Sci. India , 42 (A) , pp. 203-208. [3] Dwivedi, A.P. & Gupta, P. (1980): Quadruple series equations involving Jacobi Polynomials of different indices, Acta Cienca Indica, 6 (M) , pp. 241-247. [4] Dwivedi, A.P. & Singh, V.B. (1997): Quadruple series equations involving series of Jacobi polynomials, Ind.J.Pure & Appl. Math. , 28, 1068-1077. Paper ID: SUB1567 155