SlideShare a Scribd company logo
Paul J. Bleau
Dr. Brendan Sullivan
MATH 2103*01
12/13/15
1. History of the Basel Problem
a. 1644: Pietro Mengoli puts forth the challenge of finding the exact value (not
simply an estimate) of the precise summation of the reciprocals of the squares of
the natural numbers.
b. 1689: The Bernoulli Brothers, Jakob and Johann, face the infinite series. Jakob
particularly was interested in the divergence of infinite series (and of infinite
series in general) and coins the phrase “Basel Problem” in reference to their
hometown, which was also the home town of the problem’s eventual solver.
c. 1734: Leonhard Euler gains immediate fame by solving the Basel Problem at the
age of 28 and presenting it in The Saint Petersburg Academy of Science. Euler’s
proof uses Trigonometry and Factorials to find the exact sum to be
𝜋2
6
.
d. 2015: Paul Bleau aces his 2nd Calc III Project by following Euler’s discovery
using multivariable Calculus
2. 𝐼 = ∬
1
1−𝑥𝑦𝑅
𝑑𝐴 = ∬ 1 + (𝑥𝑦)1
+ (𝑥𝑦)2
+ (𝑥𝑦)3
+ (𝑥𝑦)4
+ ⋯ 𝑑𝐴𝑅
= ∬ 1 + 𝑥𝑦 + 𝑥2
𝑦2
+ 𝑥3
𝑦3
+ 𝑥4
𝑦4
+ ⋯ 𝑑𝐴
𝑅
3. ∫ ∫ 1 + 𝑥𝑦 + 𝑥2
𝑦2
+ 𝑥3
𝑦3
+ 𝑥4
𝑦4
+ ⋯ 𝑑𝑥𝑑𝑦
1
0
1
0
= ∫(𝑥 +
𝑦𝑥2
2
+
𝑦2
𝑥3
3
1
0
+
𝑦3
𝑥4
4
+
𝑦4
𝑥5
5
+ ⋯ |
1
0
𝑑𝑦
= ∫((1+
𝑦
2
+
𝑦2
3
+
𝑦3
4
+
𝑦4
5
1
0
+ ⋯ ) − (0 + 0 + 0 + 0 + 0 + ⋯))𝑑𝑦
= ∫1 +
𝑦
2
+
𝑦2
3
+
𝑦3
4
+
𝑦4
5
+ ⋯ 𝑑𝑦 = (𝑦 +
𝑦2
4
+
𝑦3
9
+
𝑦4
16
+
𝑦5
25
+ ⋯ |
1
0
1
0
= ((1 +
1
4
+
1
9
+
1
16
+
1
25
+ ⋯ )− (0 + 0 + 0 + 0 + 0 + ⋯ ))
= 1 +
1
4
+
1
9
+
1
16
+
1
25
+ ⋯
We know that ∑
1
𝑛2 =
1
12 +
1
22 +
1
32 +
1
42 +
1
52 + ⋯ =∞
𝑛=1 1 +
1
4
+
1
9
+
1
16
+
1
25
+ ⋯
∴ 𝐼 = ∑
1
𝑛2
∞
𝑛=1
4.
X vs. Y U vs. V
A: x = 0 v = u
B: y = 1 v = 1 - u
C: x = 1 v = u - 1
D: y = 0 v = -u
𝑥 = 𝑢 − 𝑣 𝑦 = 𝑢 + 𝑣
𝑑𝑥
𝑑𝑢
= 1
𝑑𝑥
𝑑𝑣
= −1
𝑑𝑦
𝑑𝑢
= 1
𝑑𝑦
𝑑𝑣
= 1
𝑦 − 𝑥 = ( 𝑢 + 𝑣) − ( 𝑢 − 𝑣) = 2𝑣 𝑣 =
𝑦 − 𝑥
2
𝑦 + 𝑥 = ( 𝑢 + 𝑣) + ( 𝑢 − 𝑣) = 2𝑢 𝑢 =
𝑦 + 𝑥
2
∬
1
1 − 𝑥𝑦
𝑅
𝑑𝑥𝑑𝑦 = ∬
1
1 − ( 𝑢2 − 𝑣2)
𝐽𝑑𝑣𝑑𝑢
𝐷
5. 𝐽 = |
𝑑𝑥
𝑑𝑢
𝑑𝑥
𝑑𝑣
𝑑𝑦
𝑑𝑢
𝑑𝑦
𝑑𝑣
| = ((
𝑑𝑥
𝑑𝑢
) (
𝑑𝑦
𝑑𝑣
)− (
𝑑𝑥
𝑑𝑣
) (
𝑑𝑦
𝑑𝑢
))
|
1 −1
1 1
| = (1𝑥1)− (−1𝑥1) = 1 − (−1) = 2
∴ ∬
1
1 − ( 𝑢2 − 𝑣2)
𝐽𝑑𝑣𝑑𝑢
𝑑
= ∬
1
1 − ( 𝑢2 − 𝑣2)
(2) 𝑑𝑣𝑑𝑢
𝑑
Due to the nature of our diamond, we have the ability to integrate the top half of
the domain, then multiply that value by 2 to find the area of the whole diamond. Also,
since our Jacobian is a constant, this can be pulled out of the integral. Due to this, our
final value will be multiplied by 4. These next steps will integrate the top half of the
diamond using two integrals.
∫ ∫
1
1 − ( 𝑢2 − 𝑣2)
(2) 𝑑𝑣𝑑𝑢
𝐷
= (2) ∫ ∫
1
1 − ( 𝑢2 − 𝑣2)
𝑑𝑣𝑑𝑢
𝐷
𝐼1 = ∫ ∫
1
(1 − 𝑢2) + 𝑣2
𝑢
0
𝑑𝑣𝑑𝑢
1
2⁄
0
, 𝐼2 = ∫ ∫
1
(1 − 𝑢2) + 𝑣2
1−𝑢
0
𝑑𝑣𝑑𝑢
1
1
2⁄
𝑠𝑜 𝑡ℎ𝑎𝑡 𝐼 = 4(𝐼1 + 𝐼2)
𝐼1 = ∫ (
1
√1− 𝑢2
tan−1
(
𝑣
√1− 𝑢2
)|
𝑢
0
𝑑𝑢
1
2⁄
0
= ∫ (((1 − 𝑢2)−1
2⁄
tan−1
(𝑢(1 − 𝑢2 )−1
2⁄
))
1
2⁄
0
− ((1 − 𝑢2)−1
2⁄
tan−1
(0(1 − 𝑢2)−1
2⁄
)))𝑑𝑢
= ∫ (((1− 𝑢2)−1
2⁄
tan−1
(𝑢(1 − 𝑢2)−1
2⁄
)) − (0))
1
2⁄
0
𝑑𝑢
= ∫ (1 − 𝑢2)−1
2⁄
tan−1
(𝑢(1 − 𝑢2)−1
2⁄
) 𝑑𝑢
1
2⁄
0
= ∫ 𝑡𝑎𝑛−1
(
𝑢
√1 − 𝑢2
) ∙
𝑑𝑢
√1 − 𝑢2
1
2⁄
0
Let’s use substitution to make this integrand more cooperative.
Let 𝑢 = 𝑠𝑖𝑛𝜃 𝑎𝑛𝑑 ∴ 𝑑𝑢 = 𝑐𝑜𝑠𝜃𝑑𝜃
However, we must also adjust our bounds to account for the substitution.
Whereas 𝑢1 = 0 𝑎𝑛𝑑 𝑢2 = 1
2⁄ , 𝜃1 = 0 𝑎𝑛𝑑 𝜃2 =
𝜋
6
Now, we can substitute
∫ 𝑡𝑎𝑛−1
(
𝑢
√1−𝑢2 ) ∙
𝑑𝑢
√1−𝑢2
1
2⁄
0
with ∫ 𝑡𝑎𝑛−1
(
𝑠𝑖𝑛𝜃
√1−𝑠𝑖𝑛2 𝜃
)∙
𝑐𝑜𝑠𝜃
√1−𝑠𝑖𝑛2 𝜃
𝑑𝜃
𝜋
6⁄
0
Using trigonometric identities, we know that 𝑠𝑖𝑛2
𝜃 + 𝑐𝑜𝑠2
𝜃 = 1
𝑎𝑛𝑑 ∴ √1 − 𝑠𝑖𝑛2 𝜃 = 𝑐𝑜𝑠𝜃
We can now substitute further to find that
∫ 𝑡𝑎𝑛−1
(
𝑠𝑖𝑛𝜃
√1− 𝑠𝑖𝑛2 𝜃
) ∙
𝑐𝑜𝑠𝜃
√1 − 𝑠𝑖𝑛2 𝜃
𝑑𝜃
𝜋
6⁄
0
= ∫ 𝑡𝑎𝑛−1
(
𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃
) ∙
𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜃
𝑑𝜃
𝜋
6⁄
0
= ∫ 𝑡𝑎𝑛−1( 𝑡𝑎𝑛𝜃) ∙ 1𝑑𝜃
𝜋
6⁄
0
= ∫ 𝜃𝑑𝜃
𝜋
6⁄
0
= (
𝜃2
2
|
𝜋
6⁄
0
= (
(
𝜋
6
)2
2
−
02
2
)
= (
𝜋2
36
2
) =
( 𝜋2)
72
𝐼1 =
𝜋2
72
𝐼2 = ∫ ∫
1
(1 − 𝑢2 ) + 𝑣2
1−𝑢
0
𝑑𝑣𝑑𝑢
1
1
2⁄
= ∫(
1
√1− 𝑢2
tan−1
(
𝑣
√1− 𝑢2
)|
1 − 𝑢
0
𝑑𝑢
1
1
2⁄
= ∫(((1 − 𝑢2)−1
2⁄
tan−1
((1 − 𝑢)(1 − 𝑢2)−1
2⁄
))
1
1
2⁄
− ((1 − 𝑢2)−1
2⁄
tan−1
(0(1 − 𝑢2)−1
2⁄
)))𝑑𝑢
= ∫(((1 − 𝑢2)−1
2⁄
tan−1
((1 − 𝑢)(1 − 𝑢2)−1
2⁄
)) − (0))
1
1
2⁄
𝑑𝑢
= ∫(1 − 𝑢2)−1
2⁄
tan−1
((1 − 𝑢)(1− 𝑢2 )−1
2⁄
)𝑑𝑢
1
1
2⁄
= ∫ 𝑡𝑎𝑛−1
(
1 − 𝑢
√1 − 𝑢2
) ∙
𝑑𝑢
√1 − 𝑢2
1
1
2⁄
Let’s again use substitution to make this integrand more cooperative as well.
Let 𝑢 = cos(2𝜃) 𝑎𝑛𝑑 ∴ 𝑑𝑢 = 2sin(2𝜃)𝑑𝜃
However, we must also adjust our bounds to account for the substitution.
Whereas 𝑢1 = 1
2⁄ 𝑎𝑛𝑑 𝑢2 = 1, 𝜃1 = 0 𝑎𝑛𝑑 𝜃2 =
𝜋
6
Now, we can substitute
∫ 𝑡𝑎𝑛−1
(
1−𝑢
√1−𝑢2 ) ∙
𝑑𝑢
√1−𝑢2
1
1
2⁄
with ∫ 𝑡𝑎𝑛−1
(
1−cos(2𝜃)
√1−𝑐𝑜𝑠2
(2𝜃)
) ∙
2sin(2𝜃)
√1−𝑐𝑜𝑠2
(2𝜃)
𝑑𝜃
𝜋
6⁄
0
Using trigonometric identities, we know that 𝑠𝑖𝑛2
𝜃 + 𝑐𝑜𝑠2
𝜃 = 1
𝑎𝑛𝑑 ∴ √1 − 𝑐𝑜𝑠2(2𝜃) = sin(2𝜃)
We can now substitute further to find that
∫ 𝑡𝑎𝑛−1
(
1 − cos(2𝜃)
√1 − 𝑐𝑜𝑠2(2𝜃)
) ∙
2sin(2𝜃)
√1 − 𝑐𝑜𝑠2(2𝜃)
𝑑𝜃
𝜋
6⁄
0
= ∫ 𝑡𝑎𝑛−1
(
1 − cos(2𝜃)
√1 − 𝑐𝑜𝑠2(2𝜃)
) ∙
2sin(2𝜃)
sin(2𝜃)
𝑑𝜃
𝜋
6⁄
0
We can move the constant 2 out of the integral, then multiply top and bottom
by
1
√1−cos(2𝜃)
to find
= 2 ∫ 𝑡𝑎𝑛−1
(
1 − cos(2𝜃)
√1 − 𝑐𝑜𝑠2(2𝜃)
) ∙
1
√1 − cos(2𝜃)
1
√1 − cos(2𝜃)
𝑑𝜃
𝜋
6⁄
0
= 2∫ 𝑡𝑎𝑛−1
(√
1 − cos(2𝜃)
1 + cos(2𝜃)
)𝑑𝜃
𝜋
6⁄
0
= 2 ∫ 𝑡𝑎𝑛−1
𝜋
6⁄
0
(√
2𝑠𝑖𝑛2 𝜃
2𝑐𝑜𝑠2 𝜃
) 𝑑𝜃 = 2 ∫ 𝑡𝑎𝑛−1
(√ 𝑡𝑎𝑛2 𝜃
𝜋
6⁄
0
)𝑑𝜃 = 2 ∫ 𝜃𝑑𝜃
𝜋
6⁄
0
= 2(
𝜃2
2
|
𝜋
6⁄
0
= 2(
(
𝜋
6
)2
2
−
02
2
)
= 2(
𝜋2
36
2
) =
2( 𝜋2)
72
=
𝜋2
36
𝐼2 =
𝜋2
36
Recall that 𝐼 = 4( 𝐼1 + 𝐼2) 𝑎𝑛𝑑 ∴ 𝐼 = 4 (
𝜋2
72
+
𝜋2
36
) = 4(
𝜋2
24
) =
𝜋2
6
Extra Credit
a. 𝑇 = ∫ ∫ ∫
1
1−𝑥𝑦𝑧
𝑑𝑥𝑑𝑦𝑑𝑧
1
0
1
0
1
0
= ∭ 1 + (𝑥𝑦𝑧)1
+ (𝑥𝑦𝑧)2
+ (𝑥𝑦𝑧)3
+ (𝑥𝑦𝑧)4
+ ⋯ 𝑑𝑉𝐸
= ∭1
𝐸
+ 𝑥𝑦𝑧 + 𝑥2
𝑦2
𝑧2
+ 𝑥3
𝑦3
𝑧3
+ 𝑥4
𝑦4
𝑧4
+ ⋯ 𝑑𝑉
= ∫∫ ∫1
1
0
+ 𝑥𝑦
1
0
1
0
+ 𝑥2
𝑦2
+ 𝑥3
𝑦3
+ 𝑥4
𝑦4
+ ⋯ 𝑑𝑥𝑑𝑦𝑑𝑧
= ∫∫(𝑥 +
𝑦𝑧𝑥2
2
+
1
0
1
0
𝑦2
𝑧2
𝑥3
3
+
𝑦3
𝑧3
𝑥4
4
+
𝑦4
𝑧4
𝑥5
5
+ ⋯ |
1
0
𝑑𝑦𝑑𝑧
= ∫ ∫((1 +
𝑦𝑧
2
+
1
0
1
0
𝑦2
𝑧2
3
+
𝑦3
𝑧3
4
+
𝑦4
𝑧4
5
+ ⋯ ) − (0 + 0 + 0 + 0 + 0 + ⋯))𝑑𝑦𝑑𝑧
= ∫∫ 1 +
𝑦𝑧
2
+
1
0
1
0
𝑦2
𝑧2
3
+
𝑦3
𝑧3
4
+
𝑦4
𝑧4
5
+ ⋯ 𝑑𝑦𝑑𝑧
= ∫(𝑦 +
1
0
𝑧𝑦2
4
+
𝑧2
𝑦3
9
+
𝑧3
𝑦4
16
+
𝑧4
𝑦5
25
+ … |
1
0
𝑑𝑧
= ∫((1 +
𝑧
4
1
0
+
𝑧2
9
+
𝑧3
16
+
𝑧4
25
+ ⋯) − (0 + 0 + 0 + 0 + 0 + ⋯))𝑑𝑧
= ∫ 1 +
𝑧
4
1
0
+
𝑧2
9
+
𝑧3
16
+
𝑧4
25
+ ⋯ 𝑑𝑧
= (𝑧 +
𝑧2
8
+
𝑧3
27
+
𝑧4
64
+
𝑧5
125
+ … |
1
0
= ((1 +
1
8
+
1
27
+
1
64
+
1
125
+ ⋯ ) − (0 + 0 + 0 + 0 + 0 + ⋯ ))
= 1 +
1
8
+
1
27
+
1
64
+
1
125
+ ⋯
We know that ∑
1
𝑛3 =
1
13 +
1
23 +
1
33 +
1
43 +
1
53 + ⋯ =∞
𝑛=1 1 +
1
8
+
1
27
+
1
64
+
1
125
+ ⋯
∴ 𝑇 = ∑
1
𝑛3
∞
𝑛=1
Unfortunately, this value is not yet known. Leonhard Euler made an attempt but the
closest he got was determining ∑
(−1) 𝑘
(2𝑘+1)3
∞
𝑛=1 =
𝜋3
32
.
b. However, the value of ∑
1
𝑛 𝑘
∞
𝑛=1 can be determined for all real, even k values, thanks to
Euler and methods used in this project. The value of ∑
1
𝑛 𝑘
∞
𝑛=1 is given by
2(𝑘−2)
𝜋 𝑘
3(2𝑘−2)!
for all
real, even values of k.
c. Not a problem on the Project Page but I noticed that the amount of projects done in our
Calc classes is relative to n – 1 for all Calculus n…Def Eq’s doesn’t have 3, does it?!
Bibliography
- Bhand, Ajit. "The Basel Problem and Euler's Triumph." Talk Math. Wordpress, 8
Nov. 2010. Web. 7 Dec. 2015.
- Sangwin, C. J. "An Infinite Series of Surprises." Plus Math. Plus Magazine, 1 Dec.
2001. Web. 7 Dec. 2015.
- Sullivan, Brendan. "The Basel Problem: Numerous Proofs." Carnegie Melon
University, 11 Apr. 2013. Web. 7 Dec. 2015.

More Related Content

PDF
Numerical solutions for linear system of equations
DOCX
Btech_II_ engineering mathematics_unit3
DOCX
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
PPTX
Plane in 3 dimensional geometry
PPTX
Ordinary Differential Equations: Variable separation method
PPTX
Homogeneous Linear Differential Equations
PPTX
Numerical solution of system of linear equations
PDF
A05330107
Numerical solutions for linear system of equations
Btech_II_ engineering mathematics_unit3
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Plane in 3 dimensional geometry
Ordinary Differential Equations: Variable separation method
Homogeneous Linear Differential Equations
Numerical solution of system of linear equations
A05330107

What's hot (16)

DOCX
Btech_II_ engineering mathematics_unit5
PDF
Latihan soal (vektor)
PPTX
Z transforms
PPTX
Differential equations
PDF
Periodic Solutions for Non-Linear Systems of Integral Equations
DOCX
BSC_Computer Science_Discrete Mathematics_Unit-I
DOCX
capstone magic squares
PPTX
HERMITE SERIES
DOCX
Latihan 8.3 Thomas (Kalkulus Integral)
PPTX
GAUSS ELIMINATION METHOD
PPTX
Vector calculus
PDF
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
PPTX
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
DOCX
Tugas 2 turunan
DOCX
B.tech ii unit-3 material multiple integration
DOCX
Fismat chapter 4
Btech_II_ engineering mathematics_unit5
Latihan soal (vektor)
Z transforms
Differential equations
Periodic Solutions for Non-Linear Systems of Integral Equations
BSC_Computer Science_Discrete Mathematics_Unit-I
capstone magic squares
HERMITE SERIES
Latihan 8.3 Thomas (Kalkulus Integral)
GAUSS ELIMINATION METHOD
Vector calculus
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
Tugas 2 turunan
B.tech ii unit-3 material multiple integration
Fismat chapter 4
Ad

Viewers also liked (13)

PPTX
Procesos de La Lectura y la Escritura
PPTX
Presentacion aprendizaje autonomo.
PPTX
I phone mainstream product
DOCX
Evaluacion de actitudes
PDF
2016 membership letter-final
PDF
Projecto gestao de pequenas e medias empresas
PPT
Conceito Sobre a Seguranca Alimentar e Nutricional (SAN)
PDF
El Islamismo
PPT
Los medios de comunicación ii (franquismo)
PDF
04 clean techalps
PPTX
Evangelización española de américa
PPTX
Open a Pre School
PPT
Хімічна формула
Procesos de La Lectura y la Escritura
Presentacion aprendizaje autonomo.
I phone mainstream product
Evaluacion de actitudes
2016 membership letter-final
Projecto gestao de pequenas e medias empresas
Conceito Sobre a Seguranca Alimentar e Nutricional (SAN)
El Islamismo
Los medios de comunicación ii (franquismo)
04 clean techalps
Evangelización española de américa
Open a Pre School
Хімічна формула
Ad

Similar to Paul Bleau Calc III Project 2 - Basel Problem (20)

PDF
Maths-MS_Term2 (1).pdf
PPTX
formulanonekjdhdihddhkdddnfdbfdjfkddk.pptx
PDF
On Bernstein Polynomials
PDF
Lecture5_Laplace_ODE.pdf
DOCX
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
PPTX
Комплекс тоо цуврал хичээл-2
PDF
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
PPTX
FOURIER SERIES Presentation of given functions.pptx
PDF
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
DOCX
B.tech ii unit-5 material vector integration
PPTX
Functions of severable variables
PPTX
nth Derivatives.pptx
PDF
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
PDF
Study Material Numerical Differentiation and Integration
PDF
Semana 10 numeros complejos i álgebra-uni ccesa007
PPTX
Interpolation
PPTX
Lecture 3 - Series Expansion III.pptx
PPTX
Integral calculus
PDF
Taller 1 parcial 3
PDF
Integrales solucionario
Maths-MS_Term2 (1).pdf
formulanonekjdhdihddhkdddnfdbfdjfkddk.pptx
On Bernstein Polynomials
Lecture5_Laplace_ODE.pdf
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
Комплекс тоо цуврал хичээл-2
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
FOURIER SERIES Presentation of given functions.pptx
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
B.tech ii unit-5 material vector integration
Functions of severable variables
nth Derivatives.pptx
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
Study Material Numerical Differentiation and Integration
Semana 10 numeros complejos i álgebra-uni ccesa007
Interpolation
Lecture 3 - Series Expansion III.pptx
Integral calculus
Taller 1 parcial 3
Integrales solucionario

Paul Bleau Calc III Project 2 - Basel Problem

  • 1. Paul J. Bleau Dr. Brendan Sullivan MATH 2103*01 12/13/15 1. History of the Basel Problem a. 1644: Pietro Mengoli puts forth the challenge of finding the exact value (not simply an estimate) of the precise summation of the reciprocals of the squares of the natural numbers. b. 1689: The Bernoulli Brothers, Jakob and Johann, face the infinite series. Jakob particularly was interested in the divergence of infinite series (and of infinite series in general) and coins the phrase “Basel Problem” in reference to their hometown, which was also the home town of the problem’s eventual solver. c. 1734: Leonhard Euler gains immediate fame by solving the Basel Problem at the age of 28 and presenting it in The Saint Petersburg Academy of Science. Euler’s proof uses Trigonometry and Factorials to find the exact sum to be 𝜋2 6 . d. 2015: Paul Bleau aces his 2nd Calc III Project by following Euler’s discovery using multivariable Calculus 2. 𝐼 = ∬ 1 1−𝑥𝑦𝑅 𝑑𝐴 = ∬ 1 + (𝑥𝑦)1 + (𝑥𝑦)2 + (𝑥𝑦)3 + (𝑥𝑦)4 + ⋯ 𝑑𝐴𝑅 = ∬ 1 + 𝑥𝑦 + 𝑥2 𝑦2 + 𝑥3 𝑦3 + 𝑥4 𝑦4 + ⋯ 𝑑𝐴 𝑅 3. ∫ ∫ 1 + 𝑥𝑦 + 𝑥2 𝑦2 + 𝑥3 𝑦3 + 𝑥4 𝑦4 + ⋯ 𝑑𝑥𝑑𝑦 1 0 1 0
  • 2. = ∫(𝑥 + 𝑦𝑥2 2 + 𝑦2 𝑥3 3 1 0 + 𝑦3 𝑥4 4 + 𝑦4 𝑥5 5 + ⋯ | 1 0 𝑑𝑦 = ∫((1+ 𝑦 2 + 𝑦2 3 + 𝑦3 4 + 𝑦4 5 1 0 + ⋯ ) − (0 + 0 + 0 + 0 + 0 + ⋯))𝑑𝑦 = ∫1 + 𝑦 2 + 𝑦2 3 + 𝑦3 4 + 𝑦4 5 + ⋯ 𝑑𝑦 = (𝑦 + 𝑦2 4 + 𝑦3 9 + 𝑦4 16 + 𝑦5 25 + ⋯ | 1 0 1 0 = ((1 + 1 4 + 1 9 + 1 16 + 1 25 + ⋯ )− (0 + 0 + 0 + 0 + 0 + ⋯ )) = 1 + 1 4 + 1 9 + 1 16 + 1 25 + ⋯ We know that ∑ 1 𝑛2 = 1 12 + 1 22 + 1 32 + 1 42 + 1 52 + ⋯ =∞ 𝑛=1 1 + 1 4 + 1 9 + 1 16 + 1 25 + ⋯ ∴ 𝐼 = ∑ 1 𝑛2 ∞ 𝑛=1 4. X vs. Y U vs. V A: x = 0 v = u B: y = 1 v = 1 - u C: x = 1 v = u - 1 D: y = 0 v = -u
  • 3. 𝑥 = 𝑢 − 𝑣 𝑦 = 𝑢 + 𝑣 𝑑𝑥 𝑑𝑢 = 1 𝑑𝑥 𝑑𝑣 = −1 𝑑𝑦 𝑑𝑢 = 1 𝑑𝑦 𝑑𝑣 = 1 𝑦 − 𝑥 = ( 𝑢 + 𝑣) − ( 𝑢 − 𝑣) = 2𝑣 𝑣 = 𝑦 − 𝑥 2 𝑦 + 𝑥 = ( 𝑢 + 𝑣) + ( 𝑢 − 𝑣) = 2𝑢 𝑢 = 𝑦 + 𝑥 2 ∬ 1 1 − 𝑥𝑦 𝑅 𝑑𝑥𝑑𝑦 = ∬ 1 1 − ( 𝑢2 − 𝑣2) 𝐽𝑑𝑣𝑑𝑢 𝐷 5. 𝐽 = | 𝑑𝑥 𝑑𝑢 𝑑𝑥 𝑑𝑣 𝑑𝑦 𝑑𝑢 𝑑𝑦 𝑑𝑣 | = (( 𝑑𝑥 𝑑𝑢 ) ( 𝑑𝑦 𝑑𝑣 )− ( 𝑑𝑥 𝑑𝑣 ) ( 𝑑𝑦 𝑑𝑢 )) | 1 −1 1 1 | = (1𝑥1)− (−1𝑥1) = 1 − (−1) = 2 ∴ ∬ 1 1 − ( 𝑢2 − 𝑣2) 𝐽𝑑𝑣𝑑𝑢 𝑑 = ∬ 1 1 − ( 𝑢2 − 𝑣2) (2) 𝑑𝑣𝑑𝑢 𝑑 Due to the nature of our diamond, we have the ability to integrate the top half of the domain, then multiply that value by 2 to find the area of the whole diamond. Also, since our Jacobian is a constant, this can be pulled out of the integral. Due to this, our final value will be multiplied by 4. These next steps will integrate the top half of the diamond using two integrals. ∫ ∫ 1 1 − ( 𝑢2 − 𝑣2) (2) 𝑑𝑣𝑑𝑢 𝐷 = (2) ∫ ∫ 1 1 − ( 𝑢2 − 𝑣2) 𝑑𝑣𝑑𝑢 𝐷 𝐼1 = ∫ ∫ 1 (1 − 𝑢2) + 𝑣2 𝑢 0 𝑑𝑣𝑑𝑢 1 2⁄ 0 , 𝐼2 = ∫ ∫ 1 (1 − 𝑢2) + 𝑣2 1−𝑢 0 𝑑𝑣𝑑𝑢 1 1 2⁄ 𝑠𝑜 𝑡ℎ𝑎𝑡 𝐼 = 4(𝐼1 + 𝐼2)
  • 4. 𝐼1 = ∫ ( 1 √1− 𝑢2 tan−1 ( 𝑣 √1− 𝑢2 )| 𝑢 0 𝑑𝑢 1 2⁄ 0 = ∫ (((1 − 𝑢2)−1 2⁄ tan−1 (𝑢(1 − 𝑢2 )−1 2⁄ )) 1 2⁄ 0 − ((1 − 𝑢2)−1 2⁄ tan−1 (0(1 − 𝑢2)−1 2⁄ )))𝑑𝑢 = ∫ (((1− 𝑢2)−1 2⁄ tan−1 (𝑢(1 − 𝑢2)−1 2⁄ )) − (0)) 1 2⁄ 0 𝑑𝑢 = ∫ (1 − 𝑢2)−1 2⁄ tan−1 (𝑢(1 − 𝑢2)−1 2⁄ ) 𝑑𝑢 1 2⁄ 0 = ∫ 𝑡𝑎𝑛−1 ( 𝑢 √1 − 𝑢2 ) ∙ 𝑑𝑢 √1 − 𝑢2 1 2⁄ 0 Let’s use substitution to make this integrand more cooperative. Let 𝑢 = 𝑠𝑖𝑛𝜃 𝑎𝑛𝑑 ∴ 𝑑𝑢 = 𝑐𝑜𝑠𝜃𝑑𝜃 However, we must also adjust our bounds to account for the substitution. Whereas 𝑢1 = 0 𝑎𝑛𝑑 𝑢2 = 1 2⁄ , 𝜃1 = 0 𝑎𝑛𝑑 𝜃2 = 𝜋 6 Now, we can substitute ∫ 𝑡𝑎𝑛−1 ( 𝑢 √1−𝑢2 ) ∙ 𝑑𝑢 √1−𝑢2 1 2⁄ 0 with ∫ 𝑡𝑎𝑛−1 ( 𝑠𝑖𝑛𝜃 √1−𝑠𝑖𝑛2 𝜃 )∙ 𝑐𝑜𝑠𝜃 √1−𝑠𝑖𝑛2 𝜃 𝑑𝜃 𝜋 6⁄ 0 Using trigonometric identities, we know that 𝑠𝑖𝑛2 𝜃 + 𝑐𝑜𝑠2 𝜃 = 1 𝑎𝑛𝑑 ∴ √1 − 𝑠𝑖𝑛2 𝜃 = 𝑐𝑜𝑠𝜃 We can now substitute further to find that
  • 5. ∫ 𝑡𝑎𝑛−1 ( 𝑠𝑖𝑛𝜃 √1− 𝑠𝑖𝑛2 𝜃 ) ∙ 𝑐𝑜𝑠𝜃 √1 − 𝑠𝑖𝑛2 𝜃 𝑑𝜃 𝜋 6⁄ 0 = ∫ 𝑡𝑎𝑛−1 ( 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 ) ∙ 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃 𝜋 6⁄ 0 = ∫ 𝑡𝑎𝑛−1( 𝑡𝑎𝑛𝜃) ∙ 1𝑑𝜃 𝜋 6⁄ 0 = ∫ 𝜃𝑑𝜃 𝜋 6⁄ 0 = ( 𝜃2 2 | 𝜋 6⁄ 0 = ( ( 𝜋 6 )2 2 − 02 2 ) = ( 𝜋2 36 2 ) = ( 𝜋2) 72 𝐼1 = 𝜋2 72 𝐼2 = ∫ ∫ 1 (1 − 𝑢2 ) + 𝑣2 1−𝑢 0 𝑑𝑣𝑑𝑢 1 1 2⁄ = ∫( 1 √1− 𝑢2 tan−1 ( 𝑣 √1− 𝑢2 )| 1 − 𝑢 0 𝑑𝑢 1 1 2⁄ = ∫(((1 − 𝑢2)−1 2⁄ tan−1 ((1 − 𝑢)(1 − 𝑢2)−1 2⁄ )) 1 1 2⁄ − ((1 − 𝑢2)−1 2⁄ tan−1 (0(1 − 𝑢2)−1 2⁄ )))𝑑𝑢 = ∫(((1 − 𝑢2)−1 2⁄ tan−1 ((1 − 𝑢)(1 − 𝑢2)−1 2⁄ )) − (0)) 1 1 2⁄ 𝑑𝑢 = ∫(1 − 𝑢2)−1 2⁄ tan−1 ((1 − 𝑢)(1− 𝑢2 )−1 2⁄ )𝑑𝑢 1 1 2⁄ = ∫ 𝑡𝑎𝑛−1 ( 1 − 𝑢 √1 − 𝑢2 ) ∙ 𝑑𝑢 √1 − 𝑢2 1 1 2⁄ Let’s again use substitution to make this integrand more cooperative as well. Let 𝑢 = cos(2𝜃) 𝑎𝑛𝑑 ∴ 𝑑𝑢 = 2sin(2𝜃)𝑑𝜃
  • 6. However, we must also adjust our bounds to account for the substitution. Whereas 𝑢1 = 1 2⁄ 𝑎𝑛𝑑 𝑢2 = 1, 𝜃1 = 0 𝑎𝑛𝑑 𝜃2 = 𝜋 6 Now, we can substitute ∫ 𝑡𝑎𝑛−1 ( 1−𝑢 √1−𝑢2 ) ∙ 𝑑𝑢 √1−𝑢2 1 1 2⁄ with ∫ 𝑡𝑎𝑛−1 ( 1−cos(2𝜃) √1−𝑐𝑜𝑠2 (2𝜃) ) ∙ 2sin(2𝜃) √1−𝑐𝑜𝑠2 (2𝜃) 𝑑𝜃 𝜋 6⁄ 0 Using trigonometric identities, we know that 𝑠𝑖𝑛2 𝜃 + 𝑐𝑜𝑠2 𝜃 = 1 𝑎𝑛𝑑 ∴ √1 − 𝑐𝑜𝑠2(2𝜃) = sin(2𝜃) We can now substitute further to find that ∫ 𝑡𝑎𝑛−1 ( 1 − cos(2𝜃) √1 − 𝑐𝑜𝑠2(2𝜃) ) ∙ 2sin(2𝜃) √1 − 𝑐𝑜𝑠2(2𝜃) 𝑑𝜃 𝜋 6⁄ 0 = ∫ 𝑡𝑎𝑛−1 ( 1 − cos(2𝜃) √1 − 𝑐𝑜𝑠2(2𝜃) ) ∙ 2sin(2𝜃) sin(2𝜃) 𝑑𝜃 𝜋 6⁄ 0 We can move the constant 2 out of the integral, then multiply top and bottom by 1 √1−cos(2𝜃) to find = 2 ∫ 𝑡𝑎𝑛−1 ( 1 − cos(2𝜃) √1 − 𝑐𝑜𝑠2(2𝜃) ) ∙ 1 √1 − cos(2𝜃) 1 √1 − cos(2𝜃) 𝑑𝜃 𝜋 6⁄ 0 = 2∫ 𝑡𝑎𝑛−1 (√ 1 − cos(2𝜃) 1 + cos(2𝜃) )𝑑𝜃 𝜋 6⁄ 0 = 2 ∫ 𝑡𝑎𝑛−1 𝜋 6⁄ 0 (√ 2𝑠𝑖𝑛2 𝜃 2𝑐𝑜𝑠2 𝜃 ) 𝑑𝜃 = 2 ∫ 𝑡𝑎𝑛−1 (√ 𝑡𝑎𝑛2 𝜃 𝜋 6⁄ 0 )𝑑𝜃 = 2 ∫ 𝜃𝑑𝜃 𝜋 6⁄ 0 = 2( 𝜃2 2 | 𝜋 6⁄ 0 = 2( ( 𝜋 6 )2 2 − 02 2 )
  • 7. = 2( 𝜋2 36 2 ) = 2( 𝜋2) 72 = 𝜋2 36 𝐼2 = 𝜋2 36 Recall that 𝐼 = 4( 𝐼1 + 𝐼2) 𝑎𝑛𝑑 ∴ 𝐼 = 4 ( 𝜋2 72 + 𝜋2 36 ) = 4( 𝜋2 24 ) = 𝜋2 6 Extra Credit a. 𝑇 = ∫ ∫ ∫ 1 1−𝑥𝑦𝑧 𝑑𝑥𝑑𝑦𝑑𝑧 1 0 1 0 1 0 = ∭ 1 + (𝑥𝑦𝑧)1 + (𝑥𝑦𝑧)2 + (𝑥𝑦𝑧)3 + (𝑥𝑦𝑧)4 + ⋯ 𝑑𝑉𝐸 = ∭1 𝐸 + 𝑥𝑦𝑧 + 𝑥2 𝑦2 𝑧2 + 𝑥3 𝑦3 𝑧3 + 𝑥4 𝑦4 𝑧4 + ⋯ 𝑑𝑉 = ∫∫ ∫1 1 0 + 𝑥𝑦 1 0 1 0 + 𝑥2 𝑦2 + 𝑥3 𝑦3 + 𝑥4 𝑦4 + ⋯ 𝑑𝑥𝑑𝑦𝑑𝑧 = ∫∫(𝑥 + 𝑦𝑧𝑥2 2 + 1 0 1 0 𝑦2 𝑧2 𝑥3 3 + 𝑦3 𝑧3 𝑥4 4 + 𝑦4 𝑧4 𝑥5 5 + ⋯ | 1 0 𝑑𝑦𝑑𝑧 = ∫ ∫((1 + 𝑦𝑧 2 + 1 0 1 0 𝑦2 𝑧2 3 + 𝑦3 𝑧3 4 + 𝑦4 𝑧4 5 + ⋯ ) − (0 + 0 + 0 + 0 + 0 + ⋯))𝑑𝑦𝑑𝑧 = ∫∫ 1 + 𝑦𝑧 2 + 1 0 1 0 𝑦2 𝑧2 3 + 𝑦3 𝑧3 4 + 𝑦4 𝑧4 5 + ⋯ 𝑑𝑦𝑑𝑧 = ∫(𝑦 + 1 0 𝑧𝑦2 4 + 𝑧2 𝑦3 9 + 𝑧3 𝑦4 16 + 𝑧4 𝑦5 25 + … | 1 0 𝑑𝑧 = ∫((1 + 𝑧 4 1 0 + 𝑧2 9 + 𝑧3 16 + 𝑧4 25 + ⋯) − (0 + 0 + 0 + 0 + 0 + ⋯))𝑑𝑧 = ∫ 1 + 𝑧 4 1 0 + 𝑧2 9 + 𝑧3 16 + 𝑧4 25 + ⋯ 𝑑𝑧
  • 8. = (𝑧 + 𝑧2 8 + 𝑧3 27 + 𝑧4 64 + 𝑧5 125 + … | 1 0 = ((1 + 1 8 + 1 27 + 1 64 + 1 125 + ⋯ ) − (0 + 0 + 0 + 0 + 0 + ⋯ )) = 1 + 1 8 + 1 27 + 1 64 + 1 125 + ⋯ We know that ∑ 1 𝑛3 = 1 13 + 1 23 + 1 33 + 1 43 + 1 53 + ⋯ =∞ 𝑛=1 1 + 1 8 + 1 27 + 1 64 + 1 125 + ⋯ ∴ 𝑇 = ∑ 1 𝑛3 ∞ 𝑛=1 Unfortunately, this value is not yet known. Leonhard Euler made an attempt but the closest he got was determining ∑ (−1) 𝑘 (2𝑘+1)3 ∞ 𝑛=1 = 𝜋3 32 . b. However, the value of ∑ 1 𝑛 𝑘 ∞ 𝑛=1 can be determined for all real, even k values, thanks to Euler and methods used in this project. The value of ∑ 1 𝑛 𝑘 ∞ 𝑛=1 is given by 2(𝑘−2) 𝜋 𝑘 3(2𝑘−2)! for all real, even values of k. c. Not a problem on the Project Page but I noticed that the amount of projects done in our Calc classes is relative to n – 1 for all Calculus n…Def Eq’s doesn’t have 3, does it?!
  • 9. Bibliography - Bhand, Ajit. "The Basel Problem and Euler's Triumph." Talk Math. Wordpress, 8 Nov. 2010. Web. 7 Dec. 2015. - Sangwin, C. J. "An Infinite Series of Surprises." Plus Math. Plus Magazine, 1 Dec. 2001. Web. 7 Dec. 2015. - Sullivan, Brendan. "The Basel Problem: Numerous Proofs." Carnegie Melon University, 11 Apr. 2013. Web. 7 Dec. 2015.