SlideShare a Scribd company logo
International Journal of Modern Engineering Research (IJMER)
                www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645

                         On The Zeros of Certain Class of Polynomials
                                                            B.A. Zargar
                                     Post-Graduate Department of Mathematics, U.K, Srinagar.

Abstract: Let P(z) be a polynomial of degree n with real or complex coefficients . The aim
of this paper is to obtain a ring shaped region containing all the zeros of P(z). Our results not only generalize some known
results but also a variety of interesting results can be deduced from them.

                                          I.   Introduction and Statement of Results
The following beautiful result which is well-known in the theory of distribution of zeros of polynomials is due to Enestrom
and Kakeya [9].
         Theorem A.         If P(z) =∑ 𝑗𝑛=0 aj zj is a polynomial of degree n such that
(1)                             an ≥ an-1 ≥…..≥ a1 ≥ a0 ≥ 0,
then all the zeros of P(z) lie in 𝑧 ≤ 1.
          In the literature ([2] ,[5] –[6], [8]-[11]) there exists some extensions and generalizations of this famous result. Aziz
and Mohammad [1] provided the following generalization of Theorem A.
          Theorem B.             Let P(z) =∑ 𝑗𝑛=0 aj zj is a polynomial of degree n with real positive coefficients. If t1 ≥ 𝑡2 ≥ 0 can
be found such that
(2)        𝑎 𝐽 t1 t 2+ aj−1 t1 − t 2 a j−2 ≥ 0, j=1, 2, … ;n+1, 𝑎−1 = 𝑎 𝑛 +1 = 0 ,
then all the zeros of P(z) lie in 𝑧 ≤ 𝑡1 .
For 𝑡1 = 1, 𝑡2 = 0, this reduces to Enestrom-Kakeya Theorem (Theorem A).
          Recently Aziz and Shah [3] have proved the following more general result which includes Theorem A as a special
case.
                                           ------------------------------------------------------------------------------
Mathematics, subject, classification (2002). 30C10,30C15,
 Keywords and Phrases , Enestrom-Kakeya Theorem, Zeros ,bounds.

       Theorem C. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n. If for some t > 0.
(3)   𝑀𝑎𝑥 𝑧 =𝑅 𝑡𝑎0 𝑧 𝑛 + 𝑡𝑎1 − 𝑎0 𝑧 𝑛 −1 + ⋯ + 𝑡𝑎 𝑛 − 𝑎 𝑛−1 ≤ 𝑀3
Where R is any positive real number, then all the zeros of P(z) lie in
                                                    𝑀   1
(4)                                 𝑧 ≤ 𝑀𝑎𝑥 𝑎 3 , 𝑅
                                                        𝑛
          The aim of this paper is to apply Schwarz Lemma to prove a more general result which includes Theorems A, B
and C as special cases and yields a number of other interesting results for various choices of parameters 𝛼, 𝑟, 𝑡1 𝑎𝑛𝑑 𝑡2 . In
fact we start by proving the following result.
          Theorem 1. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n, If for some real numbers 𝑡1 , 𝑡2 with 𝒕 𝟏 ≠ 𝟎, 𝒕 𝟏 >
 𝒕𝟐 ≥ 𝟎
(5)        𝑀𝑎𝑥 𝑧 =𝑅
   𝑎 𝑛 𝑡1 − 𝑡2 + 𝛼 − 𝑎 𝑛−1 + ∑ 𝑗𝑛=0 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1 − 𝑡2 −                                                      𝑎𝑗 −2 𝑧 𝑛−𝑗 +1 ≤ 𝑀1


(6)
 𝑀𝑖𝑛 𝑧 =𝑅 𝑎0 𝑡1 − 𝑡2 + 𝑎1 𝑡1 𝑡2 + 𝛽 +
 ∑ 𝑗𝑛+2 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1 − 𝑡2 −
     =2                                                                                         (𝑎 𝑗 −2 𝑧 𝑗 ≤ 𝑀2

 Where R is a positive real number, then all the zeros of P(z) lie in the ring shaped region.


                       𝑡1 𝑡2 𝑎0                              𝑀1 +    𝛼       1
(7)       𝑀𝑖𝑛   𝑧 =R    𝛽 +𝑀2     , 𝑅 ≤    𝑧 ≤ 𝑀𝑎𝑥   𝑧 =R       𝑎𝑛
                                                                         ,   𝑅


Taking t2 =0, we get the following generalization and refinement of Theorem C.

   Corollary 1. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n. If for some t > 0.
         𝑀𝑎𝑥 𝑧 =𝑅     a n t + α − a n−1 + ∑n   j=0 a j−1 t − a j−2 z
                                                                     n−j+2
                                                                           ≤ M1
                                     n+2                   j
       𝑀𝑖𝑛 𝑧 =𝑅 a 0 t + β + ∑j=0 a j−1 t − a j−2 z ≤ M2
Where R is a real positive number then all the zeros of P(z) lie in

                                                     www.ijmer.com                                                        4363 | Page
International Journal of Modern Engineering Research (IJMER)
                  www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645


                                                               𝑀1 +      𝛼       1
                                     z ≤ 𝑀𝑎𝑥           𝑧 =𝑅         𝑎𝑛
                                                                             ,   𝑅


          In case we take t=1=R in corollary 1, we get the following interesting result.

Corollary 2. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n,
          𝑀𝑎𝑥 𝑧 =𝑅     𝑎 𝑛 + 𝛼 − 𝑎 𝑛−1 +
  𝑎 𝑛 −1 − 𝑎 𝑛 −2 𝑧 + ⋯ + 𝑎1 − 𝑎0 𝑧 𝑛−1 +                                                                                   𝑎𝑜 𝑧 𝑛       ≤ M,

                                                                                 M+ α
then all the zeros of P(z) lie in the circle z ≤ Max                                 an
                                                                                          ,1

If for some α > 0, 𝛼 + 𝑎 𝑛 ≥ 𝑎 𝑛 −1 ≥ ⋯ ≥ 𝑎1 ≥ 𝑎0 ≥ 0, then ,

           𝑀 ≤ 𝑎 𝑛 + 𝛼 + 𝑎 𝑛 −1 + 𝑎 𝑛 −1 − 𝑎 𝑛−2 + ⋯ + 𝑎1 − 𝑎0 + 𝑎0

          = 𝑎 𝑛 + 𝛼 − 𝑎 𝑛 −1 + 𝑎 𝑛−1 − 𝑎 𝑛−2 + ⋯ + 𝑎1 − 𝑎0 + 𝑎0

          = 𝑎𝑛 + 𝛼

Using this observation in Corollary 2, we get the following generalization of Enestrom-Kakeya Theorem.

          Corollary 3. If, P(z)= 𝑎 𝑛 𝑧 𝑛 + 𝑎 𝑛 −1 + 𝑧 𝑛 −1 + ⋯ + 𝑎1 𝑧 + 𝑎0 , is a polynomial of degree n, such that for some
𝛼 ≥ 0,
                                         𝛼 + 𝑎 𝑛 ≥ 𝑎−1 ≥ ⋯ . ≥ 𝑎0 ≥ 0,
then all the zeros of P(z) lie in the circle
                                                                                                2𝛼
                                                                                      𝑧 ≤ 1+         ,
                                                                                                𝑎𝑛


For 𝛼 = 0, 𝑡ℎ𝑖𝑠 𝑟𝑒𝑑𝑢𝑐𝑒𝑠 𝑡𝑜 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝐴. 𝐼𝑓 𝑤𝑒 𝑡𝑎𝑘𝑒 𝛼 = 𝑎 𝑛−1 − 𝑎 𝑛 ≥ 0, then we get Corollary 2, of ([4] Aziz and
Zarger).
           Next we present the following interesting result which includes Theorem A as a special case.
           Theorem 2. Let                  P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n, If for some real numbers with 𝒕 𝟏 ≠
 𝟎, 𝒕 𝟏 > 𝒕 𝟐 ≥ 𝟎
                          𝒏
(𝟖)           𝑴𝒂𝒙 𝒛 =𝑹 ∑ 𝒋=𝟎 𝒂 𝒋 𝒕 𝟏 𝒕 𝟐 + 𝒂 𝒋−𝟏 𝒕 𝟏 − 𝒕 𝟐 − 𝒂 𝒋−𝟐 𝒛 𝒏−𝒋 ≤ 𝑴3
then all the zeros of P(z) lie in the region
(9)                                                  𝑧 ≤ 𝑟1,

Where ,
                                                 2𝑀3
(10)       𝑟1 =
                   𝑎 𝑛 𝑡 1 −𝑡 2   𝑎 𝑛 −1 2 +4 𝑎 𝑛 𝑀3     1/2 − 𝑎
                                                                 𝑛 𝑡 1 −𝑡 2 − 𝑎 𝑛 −1


Taking 𝑡2 = 0, we get the following result

          Corollary 4. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n, If for some 𝑡 > 0,

                                                                                𝒏
                                                                             ∑ 𝒋=𝟎 𝒂 𝒋−𝟏 𝒕 − 𝒂 𝒋−𝟐 𝒛 𝒏−𝒋 ≤ 𝑴3,
                                                              𝑴𝒂𝒙    𝒛 =𝑹


then all the zeros of P(z) lie in the region

                                                                                          𝑧 ≤ 𝑟1,

 Where ,
                                                                                          2𝑀3
                                                              r=      𝑎 𝑛 𝑡− 𝑎 𝑛 −1 2 +4 𝑎 𝑛 𝑀3          1/2 − 𝑎 𝑡−𝑎
                                                                                                                𝑛    𝑛 −1


          Remark.          Suppose polynomial P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 , satisfies the conditions of

                                                                     www.ijmer.com                                                   4364 | Page
International Journal of Modern Engineering Research (IJMER)
                      www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
   Theorem A, then it can be easily verified that from Corollary 4.
                                                           M3 =an-1 ,
  then all the zeros of P(z) lie in

                                                                                                 2𝑎 𝑛 −1
                                                           𝑧 ≤
                                                                        𝑎 𝑛 − 𝑎 𝑛 −1       2   + 4𝑎 𝑛 𝑎 𝑛−1 − 𝑎 𝑛 − 𝑎 𝑛 −1

                                             2𝑎
                                          = 2𝑎 𝑛 −1 = 1,
                                                  𝑛 −1


 which is the conclusion of Enestrom-Kekaya Theorem.

          Finally , we prove the following generalization of Theorem 1 of ([2], Aziz and Shah).

          Theorem 3. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n, If𝛼, 𝛽 are complex numbers and with 𝑡1 ≠
 0, 𝑡2 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 𝑡1 ≥ 𝑡2 ≥ 0 and
 (11) 𝑀𝑎𝑥 𝑧 =𝑅 𝑎 𝑛 𝑡1 − 𝑡2 + 𝛼 − 𝑎 𝑛 −1 𝑧 + ∑ 𝑗𝑛=0 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1 −𝑡2 − 𝑎𝑗 −2 𝑧 𝑛 −𝑗 −2 ≤ 𝑀4

 and,

 (12) 𝑀𝑎𝑥      𝑧 =𝑅        𝑎 𝑛 𝑡1 − 𝑡2 + 𝛽 − 𝑎 𝑛 −1 𝑧 + ∑ 𝑗𝑛+2 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1 −𝑡2 − 𝑎𝑗 −2 𝑧 𝑗 ≤ 𝑀5
                                                            =2


 Where 𝑎−2= 𝑎−1 = 0 = 𝑎 𝑛+1 = 𝑎 𝑛+2 and R is any positive real number, then all the zeros of P(z) lie in the ring shaped
 region.
                                                                                       1
 (13)                                      Min (r2 , R) ≤ 𝑧 ≤ max 𝑟1 ,
                                                                                       𝑅

 Where

                                                                                   2[ 𝑎 𝑅 2 𝑎 𝑛 𝑡 1− 𝑡 2 −𝑎 𝑛 −1 +𝛼 +𝑀4 ] 2
 (14)                             𝑟1 =                                                                                                   2
                                           𝛼 𝑅 2 𝑀4 +𝑅 2    𝑀4 − 𝑎 𝑛    𝑎 𝑛 𝑡 1− 𝑡 2 +𝛼−𝑎 𝑛 −1    2 +4 𝛼 𝑅 2 𝑎
                                                                                                                  𝑛 𝑡 1− 𝑡 2 +𝛼−𝑎 𝑛 −1 +𝑀4   𝑎 𝑛 𝑅 2 𝑀4   1/2 −



                                                                       𝛼 𝑅2 𝑀4 + 𝑅2 𝑀4 − 𝑎 𝑛                      𝑎 𝑛 𝑡1− 𝑡2 + 𝛼 − 𝑎 𝑛 −1

 and

          1                  2[𝑅 2 𝛽                                      2
                                           𝑎 1 𝑡 1 𝑡 2 +𝑎 0 𝑡 1− 𝑡 2 +𝛽 −𝑀5 ]
 (15)          =
          𝑟2       𝑅2      𝑎 1 𝑡 1 𝑡 2 +𝑎 0 𝑡 1− 𝑡 2 +𝛽 ( 𝑎 0 𝑡 1 𝑡 2 −𝑀5 )− 𝛽 𝑀5 +


                             𝑅4          𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1− 𝑡2 + 𝛽               𝑎0 𝑡1 𝑡2 − 𝑀5             2


                                                                                            2
                           +4       𝑎0        𝑀5 𝑡1 𝑡2 (𝑅 2 𝛽 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1− 𝑡2 ) + 𝛽 + 𝑀5                                    1/2


 Taking 𝛼 = 0, 𝛽 = 0, in Theorem 3, we get the following.

          Corollary 5. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n, If ,𝑡1 ≠ 0 𝑎𝑛𝑑 𝑡2 are real numbers with 𝑡1 ≥ 𝑡2 ≥
 0,
                             𝑀𝑎𝑥    𝑧 =𝑅    ∑ 𝑗𝑛+1 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1− 𝑡2 − 𝑎𝑗 −2 𝑧 𝑛−𝑗 +2 ≤ 𝑀4 ,
                                                =1


                                               𝐧+𝟐
                                            ∑ 𝐣=𝟏 𝐚 𝐣 𝐭 𝟏 𝐭 𝟐 + 𝐚 𝐣−𝟏 𝐭 𝟏− 𝐭 𝟐 − 𝐚 𝐣−𝟐 𝐳 𝐣 ≤ 𝐌 𝟓 ,
                             𝐌𝐚𝐱    𝐳 =𝐑


Where R is any positive real number . then all the zeros of P(z) lie in the ring shaped region
                                                                                                                       1
                                                                       min (r2,R) ≤ 𝑧 ≤ max 𝑟1 ,
                                                                                                                       𝑅

 Where
                                                                        2𝑀42
           𝑟1 =                                                                 3
                      𝑅4    𝑡 1− 𝑡 2 ) 𝑎 𝑛 −𝑎 𝑛 −1 2 𝑀4 − 𝑎 𝑛     2 +4 𝑎
                                                                         𝑛 𝑅 2 𝑀4 1/2 −        𝑡 1 −𝑡 2 )𝑎 𝑛 −𝑎 𝑛 −1       𝑀4 − 𝑎 𝑛    𝑅2


 𝑟2 =


                                                                         www.ijmer.com                                                                            4365 | Page
International Journal of Modern Engineering Research (IJMER)
                www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
                                                                                                   1
           1                                                                      3
            2
          2𝑀5
                𝑅4 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1 − 𝑡2          2
                                                          𝑀5 − 𝑎0 𝑡1 𝑡2   2
                                                                              + 4𝑀5 𝑅 2 𝑎0 𝑡1 𝑡2   2   −
                                                  𝑅 2 𝑀5 − 𝑎0 𝑡1 𝑡2       𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1 − 𝑡2

The result was also proved by Shah and Liman [12].



                                                               II.        LEMMAS
       For the proof of these Theorems, we need the following Lemmas. The first Lemma is due to Govil, Rahman and
Schmesser [7].
LEMMA. 1.       If 𝑓(z) is analytic in 𝑧 ≤ 1, 𝑓 𝑜 = 𝑎 𝑤ℎ𝑒𝑟𝑒 𝑎 < 1, 𝑓′ 𝑜 = 𝑏, 𝑓(𝑧) ≤ 1, 𝑜𝑛 𝑧 = 1, 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 𝑧 ≤
1.
                              1− 𝑎     𝑧 2 + 𝑏 𝑧 + 𝑎 1− 𝑎
                    𝑓(𝑧) ≤     𝑎 1− 𝑎        𝑧 2 + 𝑏 𝑧 + 1− 𝑎

The example
                                            𝑏
                                        𝑎+     𝑧−𝑧 2
                                         1+𝑎
                             𝑓 (z)=       𝑏
                                      1−      𝑧−𝑎𝑧 2
                                        1+𝑎


          Shows that the estimate is sharp.

form Lemma 1, one can easily deduce the following:

LEMMA. 2.          If 𝑓 (z) is analytic in 𝑧 ≤ 𝑅, 𝑓 0 = 0, 𝑓 ′                 0
                                                                                   = 𝑏 𝑎𝑛𝑑 𝑓(𝑧) ≤ 𝑀,

                   𝑓𝑜𝑟 𝑧 = 𝑅, 𝑡ℎ𝑒𝑛
                              𝑀 𝑧    𝑀 𝑧 +𝑅 2 𝑏
                    𝑓(𝑧) ≤                         for 𝑧 ≤ 𝑅
                               𝑅2     𝑀+ 𝑏 𝑧




                                         III.             PROOFS OF THE THEOREMS.
Proof of Theorem . 1         Consider
(16)                                     F(z) = 𝑡2 + 𝑧            𝑡1 − 𝑧 𝑃(𝑧)

                                         = −𝑎 𝑛 𝑧 𝑛+2 + 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛−1 𝑧 𝑛+1

                                         + 𝑎 𝑛 𝑡1 𝑡2 + 𝑎 𝑛 −1 𝑡1 − 𝑡2 − 𝑎 𝑛−2               𝑧𝑛

                                         +….+ 𝑎 𝑛 𝑡1 𝑡2+ 𝑎0 𝑡1 − 𝑡2                𝑧 + 𝑎0 𝑡1 𝑡2

Let
                                                   1
                             G(z) + 𝑧 𝑛+2 𝐹
                                                      𝑧

= −𝑎 𝑛 + 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛−1 𝑧 + 𝑎 𝑛 𝑡1 𝑡2 + 𝑎 𝑛 −1 𝑡1 − 𝑡2 − 𝑎 𝑛 −2 𝑧 2 + ⋯

                             …+ 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1 − 𝑡2 𝑧 𝑛 +1 + 𝑎0 𝑡1 𝑡2 𝑧 𝑛+2

                             = −𝑎 𝑛 − 𝛼𝑧 + 𝑎 𝑛 𝑡1 − 𝑡2 + 𝛼 − 𝑎 𝑛−1 𝑧

                             + 𝑎 𝑛 𝑡1 𝑡2 + 𝑎 𝑛−1 𝑡1 − 𝑡2 − 𝑎 𝑛 −2 𝑧 2 + ⋯

                             … + (𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1 − 𝑡2 𝑧 𝑛+1 + 𝑎0 𝑡1 𝑡2 ) 𝑧 𝑛+2

                             = − 𝑎 𝑛 + 𝛼𝑧 + 𝐻(𝑧)

          Where,

H(z)= 𝑧     𝑎 𝑛 𝑡1 − 𝑡2 + 𝛼 − 𝑎 𝑛 −1 + ∑ 𝑗𝑛=0 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1 − 𝑡2 − 𝑎𝑗 −2 𝑧 𝑛−𝑗

                                                             www.ijmer.com                                 4366 | Page
International Journal of Modern Engineering Research (IJMER)
                 www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
Clearly H(o)=0 and 𝑀𝑎𝑥          𝑧 =𝑅    𝐻(𝑧) ≤ 𝑅𝑀1,

           We first assume that 𝑎 𝑛 ≤ 𝑅 𝑀1 + 𝛼

Now for 𝑧 ≤ 𝑅, by using Schwarz Lemma, we have

(17)    G(z) = − a n + αz + H(z)

                    ≥ a n − 𝛼 𝑧 − 𝐻(𝑧)

                    ≥ a n − 𝛼 𝑧 − |𝑀1 𝑧|

                    = an −             𝑀1 + 𝛼     𝑧|

                    > 𝑜, 𝑖𝑓
                                𝑎𝑛
                      𝑧 <   𝑀1 + 𝛼
                                         ≤ 𝑅

                                                                                        𝑎𝑛
           This shows that all the zeros of G(z) lie in 𝑧 ≥
                                                                                      𝑀1 + 𝛼

                            1                                                 1
           Replacing z by 𝑧 and noting that F(z) = 𝑧 𝑛+2 𝐺                        𝑧
                                                                                       , it follows that all the zeros of F(z) lie in

                            𝑀1 + 𝛼
                      𝑧 ≤       𝑎𝑛
                                        if , 𝑎 𝑛 ≤ 𝑅 (𝑀1 + 𝛼 )

           Since all the zeros of P(z) are also the zeros of F(z), we conclude that all the zeros of P(z) lie in
                                                                        𝑎𝑛
(18)                                                          𝑧 ≤
                                                                      𝑀1 + 𝛼


           Now assume 𝑎 𝑛 > 𝑅 (𝑀1 + 𝛼 ), then for 𝑧 ≤ 𝑅, we have from (17).


           G z ≥ a n − 𝛼 𝑧 − 𝐻(𝑍)

                   ≥ 𝑎 𝑛 − 𝛼 𝑅 − 𝑀1 𝑅

                     = 𝑎𝑛 −             𝛼 + 𝑀 𝑅 > 0,

           Thus G(z) ≠ 0 𝑓𝑜𝑟 𝑧 < 𝑅, 𝑓𝑟𝑜𝑚 𝑤ℎ𝑖𝑐ℎ it follows as before that all the zeros of F(z) and hence all the zeros of P(z) lie
                  1,
           in 𝑧 ≤ 𝑅 Combining this with (18), we infer that all the zeros of P(z) lie in

                                                                 𝐚𝐧          𝟏,
19.                                             𝐳 ≤ 𝐦𝐚𝐱        𝐌 𝟏+ 𝛂
                                                                         ,   𝐑

           Now to prove the second part of the Theorem, from (16) we can write F(z) as

                     F(z)= t 2 + z t1 − z P(z)

                            =

            a 0 t1 t 2 + a1 t1 t 2 + a 0 t1 − t 2 z + ⋯ + a n t1 − t 2 − a n−1 z n+1 − a n z n+2

=a 0 t1 t2 − βz + a1 t1 t 2 + a 0 t1 − t 2 + β z + ⋯ + a n t1 − t 2 − a n−1 z n+1 − a n z n+2

                  = a 0 t1 t 2 − βz + T(z)

Where

T(z) = z    𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1 −𝑡2 + 𝛽 + ∑n+2 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1 −𝑡2 𝑎𝑗 −2 𝑧 𝑗 −1
                                        j=2


           Clearly T(o)=0, and                  𝑀𝑎𝑥    𝑧 =𝑅   𝑇(𝑧) ≤ 𝑅𝑀2

           We first assume that 𝑎0 𝑡1 𝑡2 ≤ β + M2

                                                              www.ijmer.com                                                             4367 | Page
International Journal of Modern Engineering Research (IJMER)
             www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
       Now for z ≤ R, by using Schwasr lemma, we have

        F(z) ≥ 𝑎0 𝑡1 𝑡2 − β z − T(z)

                           ≥ 𝑎0 𝑡1 𝑡2 − β z − M2 Z

                             >0, if,
                        𝑎0 𝑡1 𝑡2
                 z <                                                       ≤R
                        β +M 2

                                                           𝑎0 𝑡1 𝑡2
       This shows that F(z) ≠0, for z <                                 , hence all the zeros of F(z) lie in
                                                           β +M 2

                                       𝑎0 𝑡1 𝑡2
                             z ≥       β +M 2


       But all the zeros of P(z) are also the zeros of F(z), we conclude that all the zeros of P(z) lie in


                                                      𝑎0 𝑡1 𝑡2
20.                                       z ≥         β +M 2


       Now we assume 𝑎0 𝑡1 𝑡2 > β + M2 , then for z ≤ R, we have

       `         F(z) ≥ 𝑎0 𝑡1 𝑡2 − β z − T(z)

                           ≥ 𝑎0 𝑡1 𝑡2 − β R − M2 R

                           > 𝑡1 𝑡2 𝑎0 −              β + M2 R

                             >0,

       This shows that all the zeros of F(z) and hence that of P(z) lie in

                             z ≥R

       Combining this with (20) , it follows that all the zeros of P(z) lie in
                                                                𝑎0 𝑡1 𝑡2
21                                        z ≥ min               β +M 2
                                                                           ,R

       Combining (19) and (20), the desired result follows.

Proof of Theorem 2:-       Consider

22.                                      F(z) = 𝑡2 + 𝑧                𝑡1 − 𝑧 𝑃(𝑧)

                           = 𝑡2 + 𝑧               𝑡1 − 𝑧        𝑎 𝑛 𝑧 𝑛 + 𝑎 𝑛−1 𝑧 𝑛−1 + ⋯ + 𝑎1 𝑧 + 𝑎0

                           = −𝑎 𝑛 𝑧 𝑛+2 +             𝑎𝑛       𝑡1− 𝑡2      − 𝑎 𝑛−1   𝑧 𝑛 +1 + ⋯ + 𝑎0 𝑡1 𝑡2

Let
                                                                                1
23.                                                     G(z) = 𝑧 𝑛+2 𝐹( 𝑧 )

                           = −𝑎 𝑛 + 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛−1 𝑧 +

                             𝑎 𝑛 𝑡1 𝑡2 − 𝑎 𝑛 −1 𝑡1 − 𝑡2 𝑎 𝑛 −2 𝑧 2 + 𝐻(𝑧)

       Where

                H(z) = 𝑧 2         𝑎 𝑛 𝑡1 𝑡2 − 𝑎 𝑛−1 𝑡1 − 𝑡2 − 𝑎 𝑛 −2 + ⋯ + 𝑎0 𝑡1 𝑡2 𝑧 𝑛



       Clearly H(o)=0 = H(o), since H(z) ≤ M3 R2 for z = R
                                                               www.ijmer.com                                   4368 | Page
International Journal of Modern Engineering Research (IJMER)
                   www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
          We first assume,



24            a n ≤ MR2 + R 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1

          Then by using Lemma 2. To H(z), it follows that
                                 M3 z M3 z
                       𝐻z ≤       R2       M3
                                                  𝑀𝑎𝑥        𝑧 =𝑅   H(z)

          Hence from(23) we have
                                                                                   z 2M3
                       G(z) ≥ a n − 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1 z −                                 𝑅2
                                                                                     R2

                       >0, if


                                            2
                                 M3 z           + 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛−1 z − a n < 0

That is if,
                                                                1/2
                                𝑎 𝑛 𝑡 1 −𝑡 2 −𝑎 𝑛 −1 2 +4 a n M     − 𝑎 𝑛 𝑡 1 −𝑡 2 −𝑎 𝑛 −1
25.                    z <                                2M 3

                        1
                       =r ≤ R

If
                                       2                                                              2
              𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1         + 4 a n M3 ≤ 2M3 R + 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛−1

Which implies

                       a n ≤ M3 R2 + R 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1

          Which is true by (24)..Hence all the zeros of G(z) lie in Z ≥ r. since

                                                                           F z = z n+2 G z ,

          It follows that all the zeros of F(z) and hence that of P(z) lie in z ≤ r. We now assume.

26.                             a n ≤ M3 R2 + R 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1 ,

then for z ≤ R, from (23) it follows that

              G(z) ≥ a n −        𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1 z − H(z)

                       ≥ 𝑎 𝑛 − 𝑅 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛−1 − R2 M3

                       >0, by (26).
                                                                                                                                          1
                       This shows that all the zeros of G(z) lie in Z > 𝑅, and hence all the zeros of F(z) = z n+2 G(z ) lie in
                   1
              z ≤ , but all the zeros of P(z) are also the zeros of                   F(z) , therefore it follows that all the zeros of P(z) lie in
                   R

                                                         1
                                                 Z ≤R

27.    From (25) amd (27) , we conclude that all the zeros of P(z) lie in
                                                     1
                                  Z ≤ max(𝑟, )
                                                     R

          Which completes the proof of Theorem 2.

28. PROOF OF THEOREM 3. Consider the polynomial
                                                                    www.ijmer.com                                                             4369 | Page
International Journal of Modern Engineering Research (IJMER)
               www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
                   F(z) = 𝑡2 + 𝑧            𝑡1 − 𝑧 𝑃(𝑧)

          = 𝑡1 𝑡2 +    𝑡1 − 𝑡2 𝑧 − 𝑧 2 )         𝑎 𝑛 𝑧 𝑛 + 𝑎 𝑛−1 𝑧 𝑛 −1 + ⋯ + 𝑎1 𝑧 + 𝑎0

          = −𝑎 𝑛 𝑧 𝑛+2 +      𝑎𝑛    𝑡1− 𝑡2    − 𝑎 𝑛−1       𝑧 𝑛 +1 + ⋯ +       𝑎 𝑛 𝑡1 𝑡2

                   + 𝑎 𝑛−1         𝑡1− 𝑡2    − 𝑎 𝑛 −1     𝑧 𝑛+1 + ⋯ +


           a 2 t1 t 2 + a1 𝑡1− 𝑡2 − 𝑎0 z 2 + a1 t1 t 2 + a 0 𝑡1− 𝑡2 𝑧 +                                                    𝑎0 t1 t 2
         We have,
                                   1
                   G(z) = 𝑧 𝑛+2 𝐹( )
                                    𝑧
                       = 𝑟𝑎 𝑛 + 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1 𝑧 + 𝑎 𝑛 𝑡1 𝑡2 + 𝑎 𝑛 −1 𝑡1 − 𝑡2 − 𝑎 𝑛 −2 𝑧 2
                               +…+ 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1− 𝑡2       𝑧 𝑛 +1 + 𝑎0 𝑡1 𝑡2 𝑧 𝑛+2
                               = −𝑎 𝑛 − 𝛼𝑧 + 𝑎 𝑛 𝑡1 − 𝑡2 + 𝛼 − 𝑎 𝑛 −1 𝑧 +
                                 𝑎 𝑛 𝑡1 𝑡2 + 𝑎 𝑛 −1 𝑡1− 𝑡2 − 𝑎 𝑛 −2 z 2 +. . +
                                 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1− 𝑡2 z n+1 + 𝑎0 𝑡1 𝑡2 𝑧 𝑛+2
     29.                              = −𝑎 𝑛 − 𝛼𝑧 + 𝐻 𝑧
     Where
                       H(z) = 𝑎 𝑛 𝑡1 −𝑡2 + 𝛼 − 𝑎 𝑛 −1 𝑧 + ⋯ + 𝑎0 𝑡1 𝑡2 𝑧 𝑛+2
     We first assume that
     30. a n ≥ α R + M4
         Then for z < 𝑅, we have
     31. G(z) ≥ a n − α z − H(z)
         Since
          H(z) ≤ M4 𝑓𝑜𝑟 z ≤ R
Therefore for 𝑧 <R, from (31) with the help of (30), we have
  𝐺(𝑧) > 𝑎 𝑛 − ∝ 𝑅 − 𝑀4
                                                                                      1
therefore , all the zeros of G(z) lie in z ≥ R, in this case. Since F(z) = 𝑧 𝑛 +2 G 𝑧 therefore all the zeros of G(z) lie in
      1
Z ≤ R . As all the zeros of P(z) are the zeros of F(z), it follows that all the zeros of P(z) lie in
                                                    1
    32.                                z ≤R
                     Now we assume a n < α R + M4 , clearly H(o) = 0 and                                H(o) = (𝑎 𝑛   𝑡1 −𝑡2 −
           𝛼 − 𝑎 𝑛 −1 , Since by (11), H(z) ≤ M4 , for z = R,
          therefore it follows by Lemma2. that
                     M4 z M4 z + R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼
           H(z) ≤
                       R2      M4 + a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 z
          for z ≤ R
          Using this in (31), we get,
                                     M4 z M4 z + R2 a n       𝑡1 −𝑡2 − 𝑎 𝑛−1 + 𝛼
           G(z) ≥ 𝑎 𝑛 − 𝛼 𝑧 −           2
                                       R     M4 + a n    𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 z
          >0, if

                     𝑎 𝑛 R2 M4 + a n   𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 z − z α R2
                    M4 + a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 z + M4 M4 z + R2
                                               a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼      > 0,
          this implies,
            α R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛−1 + 𝛼 + M4 z 2 + α R2 M4 +
                                                2
             2                                2
            R M4 a n t1 − t 2 − a n−1 +∝ … R M4 an 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 }
                                                      z − a n R2 M4 < 0,
          This gives,
                             G(z) > 0, 𝑖𝑓
           z < [ α R2 M4 + R2 M4 − a n a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 2 +..
                   ….4 α R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 + M4 2        𝑎 𝑛 R2 M4 ]

                           𝛼 R 2 M 4 +R 2 M 4 − 𝑎 𝑛  a n 𝑡 1 −𝑡 2 −𝑎 𝑛 −1 +𝛼
                   −
                               2 α R 2 a n 𝑡 1 −𝑡 2 −𝑎 𝑛 −1 +𝛼 +M 4 2
                                      1
                                =r ,
                                     1
                            So, z < 𝑅, 𝑖𝑓
                      α R2 M4 + M4 − a n R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼                        2
                                                                                               +
                                             www.ijmer.com                                                               4370 | Page
International Journal of Modern Engineering Research (IJMER)
                 www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
                     4 α R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛−1 + 𝛼 + M4 2                               𝑎 𝑛 R2 M4

                     < 2 α a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 R + α R2 M4 + 2RM4 2

                     + M4 − a n R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼                          2


           That is if,

                         a n R2 M4 ≤ R2 α 𝑅2 an 𝑡1 −𝑡2 − 𝑎 𝑛−1 + 𝛼 + M4 2 +

                         α R2 M4 + M4 − a n R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 R

           Which gives

           a n M4 ≤ M4 α R + M4 − 𝑎 𝑛 + 𝑅 α R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 + M4 2

                                                                            α R2 + M4 − 𝑎 𝑛

           Which is true because 𝑎 𝑛 < α R + M4 ,
                                                                                            1                        1
                     Consequently , all the zeros of G(z) lie in z ≥ r , as F(z) = z n+1 G( z ), we conclude that all the zeros of
                                                                                            1
           F(z) lie z ≤ 𝑟1 , since every zero of P(z) is also a zero of F(z), it follows that all the zeros of P(z) lie in

     33.                                                 z ≤ 𝑟1

           Combining this with (32) it follows that all the zeros of P(z) lie in
                                                                              1
     34.                                               z ≤ 𝑚𝑎𝑥 𝑟1 ,            𝑅

           Again from (28) it follows that

           𝐹 𝑧 = 𝑎0 t1 t 2 − βz + a1 t1 t2               𝑡1− 𝑡2    + 𝛽 z + ⋯ + a n ( 𝑡1 −𝑡2

           −. 𝑎 𝑛−1 )z n+2 − a n 𝑧 𝑛+2

     35.                              ≥ 𝑎0 t1 t 2 − 𝛽 𝑧 − 𝑇(𝑧)

     Where,

                    T(z) = a n 𝑧 𝑛+2 + a n 𝑡1 −𝑡2 −. 𝑎 𝑛 −1 𝑧 𝑛 +1 +. . +
                                                𝑎0 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 z
           Clearly T(o)=0, and T(o) 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽
           Since by (12) , T(z) ≤ M5 for z = R
           using Lemma 2. To T(z), we have

                                              M5 z
           F(z) ≥ 𝑎0 t1 t 2 − β z −             R2
                                                       M5 z + R2 𝑎1 t1 t 2 + a 0                    𝑡1− 𝑡2   + 𝛽 z

                     = - R2 β 𝑎1 t1 t 2 + a 0             𝑡1− 𝑡2     + 𝛽 + 𝑀5 2 z 2 +

                            𝑎1 t1 t 2 + a 0     𝑡1− 𝑡2      + 𝛽 R2 𝑎0 t1 t 2 − R2 M5 − β R2 M5 z + M5 R2 𝑎1 t1 t2

             R2 M5 + 𝑎1 t1 t 2 + a 0          𝑡1− 𝑡2     + 𝛽 z

>0, if,

                                 R2 β 𝑎1 t1 t 2 + a 0              𝑡1− 𝑡2     + 𝛽 + 𝑀5 2 z 2 −                𝑎1 t1 t 2 + a 0   𝑡1− 𝑡2   + 𝛽

            R2 𝑎0 t1 t2 − R2 M5 − β R2 M5 z − R2 M5 𝑎0 t1 t 2 < 0,

Thus, F(z) > 0, 𝑖𝑓

  z < −R2       𝑎1 t1 t2 + a 0    𝑡1− 𝑡2      + 𝛽         𝑎0 t1 t 2 − M5           β M5

                                                                  www.ijmer.com                                                                4371 | Page
International Journal of Modern Engineering Research (IJMER)
                  www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372       ISSN: 2249-6645
 − R4       𝑎1 t1 t 2 + a 0   𝑡1− 𝑡2   + 𝛽     𝑎0 t1 t 2 − M5   β M5   2


                                       +4 R2 β 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 + M5 2 R2 M5 𝑎0 t1 t2      1/2
                                                                                                           𝑟𝑧
                                               2 R2 β 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 + M5 2

            Thus it follows by the same reasoning as in Theorem 1, that all the zeros of F(z) and hence that of P(z) lie in

      36.                                    z ≥ min(r2, R)

            Combining (34) and (36) , the desired result follows.



                                                                  REFERENCES
[1]  A. Aziz and Q.G Mohammad, On thr zeros of certain class of polynomials and related analytic functions, J. Math.
     Anal Appl. 75(1980), 495-502
[2] A.Aziz and W.M Shah, On the location of zeros of polynomials and related analytic functions, Non-linear studies,
     6(1999),97-104
[3] A.Aziz and W.M Shah, On the zeros of polynomials and related analytic functions, Glasnik, Matematicke, 33 (1998),
     173-184;
[4] A.Aziz and B.A. Zarger, Some extensions of Enestrem-Kakeya Theorem, Glasnik, Matematicke, 31 (1996), 239-244
[5] K.K.Dewan and M. Biakham,, On the Enestrom –Kakeya Theorem, J.Math.Anal.Appl.180 (1993), 29-36
[6] N.K, Govil and Q.I. Rahman, On the Enestrem-Kakeya Theorem, Tohoku Math.J. 20 (1968), 126-136.
[7] N.K, Govil , Q.I. Rahman and G. Schmeisser, on the derivative of polynomials, Illinois Math. Jour. 23 (1979), 319-
     329
[8] P.V. Krishnalah, On Kakeya Theorem , J.London. Math. Soc. 20 (1955), 314-319
[9] M. Marden, Geometry of polynomials, Mathematicial surveys No.3. Amer. Math. Soc. Providance , R.I. 1966
[10] G.V. Milovanovic, D.S. Mitrinovic, Th.M. Rassias Topics in polynomials, Extremal problems Inequalitics,
     Zeros(Singapore, World Scientific)1994.
[11] Q.I. Rahman and G.Schmessier, Analytic Theory of polynomials, (2002), Clarantone, Press Oxford.
[12] W.M. Shah and A. Liman, On the zeros of a class of polynomials, Mathematical inequalioties and Applications,
     10(2007), 793-799




                                                        www.ijmer.com                                                  4372 | Page

More Related Content

PDF
Legendre
PPTX
HERMITE SERIES
PDF
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
PDF
Some properties of two-fuzzy Nor med spaces
PDF
Legendre Function
DOCX
Btech_II_ engineering mathematics_unit5
PDF
Complex analysis notes
PDF
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Legendre
HERMITE SERIES
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Some properties of two-fuzzy Nor med spaces
Legendre Function
Btech_II_ engineering mathematics_unit5
Complex analysis notes
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...

What's hot (20)

PDF
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
DOCX
Btech_II_ engineering mathematics_unit4
PDF
Some Examples of Scaling Sets
PDF
On Certain Classess of Multivalent Functions
DOCX
B.tech ii unit-5 material vector integration
PDF
Boundedness of the Twisted Paraproduct
PPTX
Complex integration
PDF
On Twisted Paraproducts and some other Multilinear Singular Integrals
PDF
Mac331 complex analysis_mfa_week6_16-10-20 (1)
PDF
-contraction and some fixed point results via modified !-distance mappings in t...
PDF
A Szemerédi-type theorem for subsets of the unit cube
DOCX
B.tech ii unit-3 material multiple integration
DOCX
Btech_II_ engineering mathematics_unit3
PDF
Lectures4 8
DOCX
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
PDF
A sharp nonlinear Hausdorff-Young inequality for small potentials
PDF
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
DOCX
BSC_Computer Science_Discrete Mathematics_Unit-I
PDF
9 pd es
PDF
Density theorems for anisotropic point configurations
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
Btech_II_ engineering mathematics_unit4
Some Examples of Scaling Sets
On Certain Classess of Multivalent Functions
B.tech ii unit-5 material vector integration
Boundedness of the Twisted Paraproduct
Complex integration
On Twisted Paraproducts and some other Multilinear Singular Integrals
Mac331 complex analysis_mfa_week6_16-10-20 (1)
-contraction and some fixed point results via modified !-distance mappings in t...
A Szemerédi-type theorem for subsets of the unit cube
B.tech ii unit-3 material multiple integration
Btech_II_ engineering mathematics_unit3
Lectures4 8
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
A sharp nonlinear Hausdorff-Young inequality for small potentials
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
BSC_Computer Science_Discrete Mathematics_Unit-I
9 pd es
Density theorems for anisotropic point configurations
Ad

Viewers also liked (20)

PPT
Pacific Trails MICE Presentation 2013
PDF
La metodología de taguchi también llamada
PPTX
Genechi taguchi
PPTX
PDF
PPT
1ª practica mecanizado y afilado broca
PDF
Sga gurus, taguchi
PDF
Practica De Taguchi
PPT
Control de peridad de taguchi
PPTX
Material Unidad I
PPTX
Método taguchi y función perdida de la calidad
PPTX
Macario funcion de perdida
PPT
Método taguchi
PPTX
Ingeniería de calidad avanzada
PPT
3 gurus de calidad tello
PPT
Ingenieria de calidad
PPTX
Genichi Taguchi Padre de la CALIDAD
PDF
Marketing a small business
PDF
Bi31199203
Pacific Trails MICE Presentation 2013
La metodología de taguchi también llamada
Genechi taguchi
1ª practica mecanizado y afilado broca
Sga gurus, taguchi
Practica De Taguchi
Control de peridad de taguchi
Material Unidad I
Método taguchi y función perdida de la calidad
Macario funcion de perdida
Método taguchi
Ingeniería de calidad avanzada
3 gurus de calidad tello
Ingenieria de calidad
Genichi Taguchi Padre de la CALIDAD
Marketing a small business
Bi31199203
Ad

Similar to On The Zeros of Certain Class of Polynomials (20)

PDF
On The Zeros of Polynomials
PDF
Ak03102250234
PDF
J1066069
PDF
International Journal of Engineering Research and Development
PDF
Research Inventy : International Journal of Engineering and Science
PDF
International Journal of Computational Engineering Research(IJCER)
PDF
International Journal of Engineering Research and Development (IJERD)
PDF
International Journal of Engineering Research and Development (IJERD)
PDF
Research Inventy : International Journal of Engineering and Science
PDF
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
PDF
L Inequalities Concerning Polynomials Having Zeros in Closed Interior of A Ci...
PDF
Location of Zeros of Polynomials
PDF
International Journal of Engineering Research and Development (IJERD)
PDF
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
PDF
Ae03401720180
PDF
Bo31240249
PDF
On approximate bounds of zeros of polynomials within
PDF
On the Zeros of A Polynomial Inside the Unit Disc
PDF
C04502009018
On The Zeros of Polynomials
Ak03102250234
J1066069
International Journal of Engineering Research and Development
Research Inventy : International Journal of Engineering and Science
International Journal of Computational Engineering Research(IJCER)
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
Research Inventy : International Journal of Engineering and Science
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
L Inequalities Concerning Polynomials Having Zeros in Closed Interior of A Ci...
Location of Zeros of Polynomials
International Journal of Engineering Research and Development (IJERD)
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
Ae03401720180
Bo31240249
On approximate bounds of zeros of polynomials within
On the Zeros of A Polynomial Inside the Unit Disc
C04502009018

More from IJMER (20)

PDF
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
PDF
Developing Cost Effective Automation for Cotton Seed Delinting
PDF
Study & Testing Of Bio-Composite Material Based On Munja Fibre
PDF
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
PDF
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
PDF
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
PDF
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
PDF
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
PDF
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
PDF
High Speed Effortless Bicycle
PDF
Integration of Struts & Spring & Hibernate for Enterprise Applications
PDF
Microcontroller Based Automatic Sprinkler Irrigation System
PDF
On some locally closed sets and spaces in Ideal Topological Spaces
PDF
Intrusion Detection and Forensics based on decision tree and Association rule...
PDF
Natural Language Ambiguity and its Effect on Machine Learning
PDF
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
PDF
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
PDF
Studies On Energy Conservation And Audit
PDF
An Implementation of I2C Slave Interface using Verilog HDL
PDF
Discrete Model of Two Predators competing for One Prey
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
Developing Cost Effective Automation for Cotton Seed Delinting
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
High Speed Effortless Bicycle
Integration of Struts & Spring & Hibernate for Enterprise Applications
Microcontroller Based Automatic Sprinkler Irrigation System
On some locally closed sets and spaces in Ideal Topological Spaces
Intrusion Detection and Forensics based on decision tree and Association rule...
Natural Language Ambiguity and its Effect on Machine Learning
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Studies On Energy Conservation And Audit
An Implementation of I2C Slave Interface using Verilog HDL
Discrete Model of Two Predators competing for One Prey

On The Zeros of Certain Class of Polynomials

  • 1. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 On The Zeros of Certain Class of Polynomials B.A. Zargar Post-Graduate Department of Mathematics, U.K, Srinagar. Abstract: Let P(z) be a polynomial of degree n with real or complex coefficients . The aim of this paper is to obtain a ring shaped region containing all the zeros of P(z). Our results not only generalize some known results but also a variety of interesting results can be deduced from them. I. Introduction and Statement of Results The following beautiful result which is well-known in the theory of distribution of zeros of polynomials is due to Enestrom and Kakeya [9]. Theorem A. If P(z) =∑ 𝑗𝑛=0 aj zj is a polynomial of degree n such that (1) an ≥ an-1 ≥…..≥ a1 ≥ a0 ≥ 0, then all the zeros of P(z) lie in 𝑧 ≤ 1. In the literature ([2] ,[5] –[6], [8]-[11]) there exists some extensions and generalizations of this famous result. Aziz and Mohammad [1] provided the following generalization of Theorem A. Theorem B. Let P(z) =∑ 𝑗𝑛=0 aj zj is a polynomial of degree n with real positive coefficients. If t1 ≥ 𝑡2 ≥ 0 can be found such that (2) 𝑎 𝐽 t1 t 2+ aj−1 t1 − t 2 a j−2 ≥ 0, j=1, 2, … ;n+1, 𝑎−1 = 𝑎 𝑛 +1 = 0 , then all the zeros of P(z) lie in 𝑧 ≤ 𝑡1 . For 𝑡1 = 1, 𝑡2 = 0, this reduces to Enestrom-Kakeya Theorem (Theorem A). Recently Aziz and Shah [3] have proved the following more general result which includes Theorem A as a special case. ------------------------------------------------------------------------------ Mathematics, subject, classification (2002). 30C10,30C15, Keywords and Phrases , Enestrom-Kakeya Theorem, Zeros ,bounds. Theorem C. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n. If for some t > 0. (3) 𝑀𝑎𝑥 𝑧 =𝑅 𝑡𝑎0 𝑧 𝑛 + 𝑡𝑎1 − 𝑎0 𝑧 𝑛 −1 + ⋯ + 𝑡𝑎 𝑛 − 𝑎 𝑛−1 ≤ 𝑀3 Where R is any positive real number, then all the zeros of P(z) lie in 𝑀 1 (4) 𝑧 ≤ 𝑀𝑎𝑥 𝑎 3 , 𝑅 𝑛 The aim of this paper is to apply Schwarz Lemma to prove a more general result which includes Theorems A, B and C as special cases and yields a number of other interesting results for various choices of parameters 𝛼, 𝑟, 𝑡1 𝑎𝑛𝑑 𝑡2 . In fact we start by proving the following result. Theorem 1. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n, If for some real numbers 𝑡1 , 𝑡2 with 𝒕 𝟏 ≠ 𝟎, 𝒕 𝟏 > 𝒕𝟐 ≥ 𝟎 (5) 𝑀𝑎𝑥 𝑧 =𝑅 𝑎 𝑛 𝑡1 − 𝑡2 + 𝛼 − 𝑎 𝑛−1 + ∑ 𝑗𝑛=0 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1 − 𝑡2 − 𝑎𝑗 −2 𝑧 𝑛−𝑗 +1 ≤ 𝑀1 (6) 𝑀𝑖𝑛 𝑧 =𝑅 𝑎0 𝑡1 − 𝑡2 + 𝑎1 𝑡1 𝑡2 + 𝛽 + ∑ 𝑗𝑛+2 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1 − 𝑡2 − =2 (𝑎 𝑗 −2 𝑧 𝑗 ≤ 𝑀2 Where R is a positive real number, then all the zeros of P(z) lie in the ring shaped region. 𝑡1 𝑡2 𝑎0 𝑀1 + 𝛼 1 (7) 𝑀𝑖𝑛 𝑧 =R 𝛽 +𝑀2 , 𝑅 ≤ 𝑧 ≤ 𝑀𝑎𝑥 𝑧 =R 𝑎𝑛 , 𝑅 Taking t2 =0, we get the following generalization and refinement of Theorem C. Corollary 1. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n. If for some t > 0. 𝑀𝑎𝑥 𝑧 =𝑅 a n t + α − a n−1 + ∑n j=0 a j−1 t − a j−2 z n−j+2 ≤ M1 n+2 j 𝑀𝑖𝑛 𝑧 =𝑅 a 0 t + β + ∑j=0 a j−1 t − a j−2 z ≤ M2 Where R is a real positive number then all the zeros of P(z) lie in www.ijmer.com 4363 | Page
  • 2. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 𝑀1 + 𝛼 1 z ≤ 𝑀𝑎𝑥 𝑧 =𝑅 𝑎𝑛 , 𝑅 In case we take t=1=R in corollary 1, we get the following interesting result. Corollary 2. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n, 𝑀𝑎𝑥 𝑧 =𝑅 𝑎 𝑛 + 𝛼 − 𝑎 𝑛−1 + 𝑎 𝑛 −1 − 𝑎 𝑛 −2 𝑧 + ⋯ + 𝑎1 − 𝑎0 𝑧 𝑛−1 + 𝑎𝑜 𝑧 𝑛 ≤ M, M+ α then all the zeros of P(z) lie in the circle z ≤ Max an ,1 If for some α > 0, 𝛼 + 𝑎 𝑛 ≥ 𝑎 𝑛 −1 ≥ ⋯ ≥ 𝑎1 ≥ 𝑎0 ≥ 0, then , 𝑀 ≤ 𝑎 𝑛 + 𝛼 + 𝑎 𝑛 −1 + 𝑎 𝑛 −1 − 𝑎 𝑛−2 + ⋯ + 𝑎1 − 𝑎0 + 𝑎0 = 𝑎 𝑛 + 𝛼 − 𝑎 𝑛 −1 + 𝑎 𝑛−1 − 𝑎 𝑛−2 + ⋯ + 𝑎1 − 𝑎0 + 𝑎0 = 𝑎𝑛 + 𝛼 Using this observation in Corollary 2, we get the following generalization of Enestrom-Kakeya Theorem. Corollary 3. If, P(z)= 𝑎 𝑛 𝑧 𝑛 + 𝑎 𝑛 −1 + 𝑧 𝑛 −1 + ⋯ + 𝑎1 𝑧 + 𝑎0 , is a polynomial of degree n, such that for some 𝛼 ≥ 0, 𝛼 + 𝑎 𝑛 ≥ 𝑎−1 ≥ ⋯ . ≥ 𝑎0 ≥ 0, then all the zeros of P(z) lie in the circle 2𝛼 𝑧 ≤ 1+ , 𝑎𝑛 For 𝛼 = 0, 𝑡ℎ𝑖𝑠 𝑟𝑒𝑑𝑢𝑐𝑒𝑠 𝑡𝑜 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝐴. 𝐼𝑓 𝑤𝑒 𝑡𝑎𝑘𝑒 𝛼 = 𝑎 𝑛−1 − 𝑎 𝑛 ≥ 0, then we get Corollary 2, of ([4] Aziz and Zarger). Next we present the following interesting result which includes Theorem A as a special case. Theorem 2. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n, If for some real numbers with 𝒕 𝟏 ≠ 𝟎, 𝒕 𝟏 > 𝒕 𝟐 ≥ 𝟎 𝒏 (𝟖) 𝑴𝒂𝒙 𝒛 =𝑹 ∑ 𝒋=𝟎 𝒂 𝒋 𝒕 𝟏 𝒕 𝟐 + 𝒂 𝒋−𝟏 𝒕 𝟏 − 𝒕 𝟐 − 𝒂 𝒋−𝟐 𝒛 𝒏−𝒋 ≤ 𝑴3 then all the zeros of P(z) lie in the region (9) 𝑧 ≤ 𝑟1, Where , 2𝑀3 (10) 𝑟1 = 𝑎 𝑛 𝑡 1 −𝑡 2 𝑎 𝑛 −1 2 +4 𝑎 𝑛 𝑀3 1/2 − 𝑎 𝑛 𝑡 1 −𝑡 2 − 𝑎 𝑛 −1 Taking 𝑡2 = 0, we get the following result Corollary 4. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n, If for some 𝑡 > 0, 𝒏 ∑ 𝒋=𝟎 𝒂 𝒋−𝟏 𝒕 − 𝒂 𝒋−𝟐 𝒛 𝒏−𝒋 ≤ 𝑴3, 𝑴𝒂𝒙 𝒛 =𝑹 then all the zeros of P(z) lie in the region 𝑧 ≤ 𝑟1, Where , 2𝑀3 r= 𝑎 𝑛 𝑡− 𝑎 𝑛 −1 2 +4 𝑎 𝑛 𝑀3 1/2 − 𝑎 𝑡−𝑎 𝑛 𝑛 −1 Remark. Suppose polynomial P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 , satisfies the conditions of www.ijmer.com 4364 | Page
  • 3. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 Theorem A, then it can be easily verified that from Corollary 4. M3 =an-1 , then all the zeros of P(z) lie in 2𝑎 𝑛 −1 𝑧 ≤ 𝑎 𝑛 − 𝑎 𝑛 −1 2 + 4𝑎 𝑛 𝑎 𝑛−1 − 𝑎 𝑛 − 𝑎 𝑛 −1 2𝑎 = 2𝑎 𝑛 −1 = 1, 𝑛 −1 which is the conclusion of Enestrom-Kekaya Theorem. Finally , we prove the following generalization of Theorem 1 of ([2], Aziz and Shah). Theorem 3. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n, If𝛼, 𝛽 are complex numbers and with 𝑡1 ≠ 0, 𝑡2 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 𝑡1 ≥ 𝑡2 ≥ 0 and (11) 𝑀𝑎𝑥 𝑧 =𝑅 𝑎 𝑛 𝑡1 − 𝑡2 + 𝛼 − 𝑎 𝑛 −1 𝑧 + ∑ 𝑗𝑛=0 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1 −𝑡2 − 𝑎𝑗 −2 𝑧 𝑛 −𝑗 −2 ≤ 𝑀4 and, (12) 𝑀𝑎𝑥 𝑧 =𝑅 𝑎 𝑛 𝑡1 − 𝑡2 + 𝛽 − 𝑎 𝑛 −1 𝑧 + ∑ 𝑗𝑛+2 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1 −𝑡2 − 𝑎𝑗 −2 𝑧 𝑗 ≤ 𝑀5 =2 Where 𝑎−2= 𝑎−1 = 0 = 𝑎 𝑛+1 = 𝑎 𝑛+2 and R is any positive real number, then all the zeros of P(z) lie in the ring shaped region. 1 (13) Min (r2 , R) ≤ 𝑧 ≤ max 𝑟1 , 𝑅 Where 2[ 𝑎 𝑅 2 𝑎 𝑛 𝑡 1− 𝑡 2 −𝑎 𝑛 −1 +𝛼 +𝑀4 ] 2 (14) 𝑟1 = 2 𝛼 𝑅 2 𝑀4 +𝑅 2 𝑀4 − 𝑎 𝑛 𝑎 𝑛 𝑡 1− 𝑡 2 +𝛼−𝑎 𝑛 −1 2 +4 𝛼 𝑅 2 𝑎 𝑛 𝑡 1− 𝑡 2 +𝛼−𝑎 𝑛 −1 +𝑀4 𝑎 𝑛 𝑅 2 𝑀4 1/2 − 𝛼 𝑅2 𝑀4 + 𝑅2 𝑀4 − 𝑎 𝑛 𝑎 𝑛 𝑡1− 𝑡2 + 𝛼 − 𝑎 𝑛 −1 and 1 2[𝑅 2 𝛽 2 𝑎 1 𝑡 1 𝑡 2 +𝑎 0 𝑡 1− 𝑡 2 +𝛽 −𝑀5 ] (15) = 𝑟2 𝑅2 𝑎 1 𝑡 1 𝑡 2 +𝑎 0 𝑡 1− 𝑡 2 +𝛽 ( 𝑎 0 𝑡 1 𝑡 2 −𝑀5 )− 𝛽 𝑀5 + 𝑅4 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1− 𝑡2 + 𝛽 𝑎0 𝑡1 𝑡2 − 𝑀5 2 2 +4 𝑎0 𝑀5 𝑡1 𝑡2 (𝑅 2 𝛽 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1− 𝑡2 ) + 𝛽 + 𝑀5 1/2 Taking 𝛼 = 0, 𝛽 = 0, in Theorem 3, we get the following. Corollary 5. Let P(z) = ∑ 𝑗𝑛=0 𝑎𝑗 𝑧 𝑗 be a polynomial of degree n, If ,𝑡1 ≠ 0 𝑎𝑛𝑑 𝑡2 are real numbers with 𝑡1 ≥ 𝑡2 ≥ 0, 𝑀𝑎𝑥 𝑧 =𝑅 ∑ 𝑗𝑛+1 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1− 𝑡2 − 𝑎𝑗 −2 𝑧 𝑛−𝑗 +2 ≤ 𝑀4 , =1 𝐧+𝟐 ∑ 𝐣=𝟏 𝐚 𝐣 𝐭 𝟏 𝐭 𝟐 + 𝐚 𝐣−𝟏 𝐭 𝟏− 𝐭 𝟐 − 𝐚 𝐣−𝟐 𝐳 𝐣 ≤ 𝐌 𝟓 , 𝐌𝐚𝐱 𝐳 =𝐑 Where R is any positive real number . then all the zeros of P(z) lie in the ring shaped region 1 min (r2,R) ≤ 𝑧 ≤ max 𝑟1 , 𝑅 Where 2𝑀42 𝑟1 = 3 𝑅4 𝑡 1− 𝑡 2 ) 𝑎 𝑛 −𝑎 𝑛 −1 2 𝑀4 − 𝑎 𝑛 2 +4 𝑎 𝑛 𝑅 2 𝑀4 1/2 − 𝑡 1 −𝑡 2 )𝑎 𝑛 −𝑎 𝑛 −1 𝑀4 − 𝑎 𝑛 𝑅2 𝑟2 = www.ijmer.com 4365 | Page
  • 4. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 1 1 3 2 2𝑀5 𝑅4 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1 − 𝑡2 2 𝑀5 − 𝑎0 𝑡1 𝑡2 2 + 4𝑀5 𝑅 2 𝑎0 𝑡1 𝑡2 2 − 𝑅 2 𝑀5 − 𝑎0 𝑡1 𝑡2 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1 − 𝑡2 The result was also proved by Shah and Liman [12]. II. LEMMAS For the proof of these Theorems, we need the following Lemmas. The first Lemma is due to Govil, Rahman and Schmesser [7]. LEMMA. 1. If 𝑓(z) is analytic in 𝑧 ≤ 1, 𝑓 𝑜 = 𝑎 𝑤ℎ𝑒𝑟𝑒 𝑎 < 1, 𝑓′ 𝑜 = 𝑏, 𝑓(𝑧) ≤ 1, 𝑜𝑛 𝑧 = 1, 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 𝑧 ≤ 1. 1− 𝑎 𝑧 2 + 𝑏 𝑧 + 𝑎 1− 𝑎 𝑓(𝑧) ≤ 𝑎 1− 𝑎 𝑧 2 + 𝑏 𝑧 + 1− 𝑎 The example 𝑏 𝑎+ 𝑧−𝑧 2 1+𝑎 𝑓 (z)= 𝑏 1− 𝑧−𝑎𝑧 2 1+𝑎 Shows that the estimate is sharp. form Lemma 1, one can easily deduce the following: LEMMA. 2. If 𝑓 (z) is analytic in 𝑧 ≤ 𝑅, 𝑓 0 = 0, 𝑓 ′ 0 = 𝑏 𝑎𝑛𝑑 𝑓(𝑧) ≤ 𝑀, 𝑓𝑜𝑟 𝑧 = 𝑅, 𝑡ℎ𝑒𝑛 𝑀 𝑧 𝑀 𝑧 +𝑅 2 𝑏 𝑓(𝑧) ≤ for 𝑧 ≤ 𝑅 𝑅2 𝑀+ 𝑏 𝑧 III. PROOFS OF THE THEOREMS. Proof of Theorem . 1 Consider (16) F(z) = 𝑡2 + 𝑧 𝑡1 − 𝑧 𝑃(𝑧) = −𝑎 𝑛 𝑧 𝑛+2 + 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛−1 𝑧 𝑛+1 + 𝑎 𝑛 𝑡1 𝑡2 + 𝑎 𝑛 −1 𝑡1 − 𝑡2 − 𝑎 𝑛−2 𝑧𝑛 +….+ 𝑎 𝑛 𝑡1 𝑡2+ 𝑎0 𝑡1 − 𝑡2 𝑧 + 𝑎0 𝑡1 𝑡2 Let 1 G(z) + 𝑧 𝑛+2 𝐹 𝑧 = −𝑎 𝑛 + 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛−1 𝑧 + 𝑎 𝑛 𝑡1 𝑡2 + 𝑎 𝑛 −1 𝑡1 − 𝑡2 − 𝑎 𝑛 −2 𝑧 2 + ⋯ …+ 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1 − 𝑡2 𝑧 𝑛 +1 + 𝑎0 𝑡1 𝑡2 𝑧 𝑛+2 = −𝑎 𝑛 − 𝛼𝑧 + 𝑎 𝑛 𝑡1 − 𝑡2 + 𝛼 − 𝑎 𝑛−1 𝑧 + 𝑎 𝑛 𝑡1 𝑡2 + 𝑎 𝑛−1 𝑡1 − 𝑡2 − 𝑎 𝑛 −2 𝑧 2 + ⋯ … + (𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1 − 𝑡2 𝑧 𝑛+1 + 𝑎0 𝑡1 𝑡2 ) 𝑧 𝑛+2 = − 𝑎 𝑛 + 𝛼𝑧 + 𝐻(𝑧) Where, H(z)= 𝑧 𝑎 𝑛 𝑡1 − 𝑡2 + 𝛼 − 𝑎 𝑛 −1 + ∑ 𝑗𝑛=0 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1 − 𝑡2 − 𝑎𝑗 −2 𝑧 𝑛−𝑗 www.ijmer.com 4366 | Page
  • 5. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 Clearly H(o)=0 and 𝑀𝑎𝑥 𝑧 =𝑅 𝐻(𝑧) ≤ 𝑅𝑀1, We first assume that 𝑎 𝑛 ≤ 𝑅 𝑀1 + 𝛼 Now for 𝑧 ≤ 𝑅, by using Schwarz Lemma, we have (17) G(z) = − a n + αz + H(z) ≥ a n − 𝛼 𝑧 − 𝐻(𝑧) ≥ a n − 𝛼 𝑧 − |𝑀1 𝑧| = an − 𝑀1 + 𝛼 𝑧| > 𝑜, 𝑖𝑓 𝑎𝑛 𝑧 < 𝑀1 + 𝛼 ≤ 𝑅 𝑎𝑛 This shows that all the zeros of G(z) lie in 𝑧 ≥ 𝑀1 + 𝛼 1 1 Replacing z by 𝑧 and noting that F(z) = 𝑧 𝑛+2 𝐺 𝑧 , it follows that all the zeros of F(z) lie in 𝑀1 + 𝛼 𝑧 ≤ 𝑎𝑛 if , 𝑎 𝑛 ≤ 𝑅 (𝑀1 + 𝛼 ) Since all the zeros of P(z) are also the zeros of F(z), we conclude that all the zeros of P(z) lie in 𝑎𝑛 (18) 𝑧 ≤ 𝑀1 + 𝛼 Now assume 𝑎 𝑛 > 𝑅 (𝑀1 + 𝛼 ), then for 𝑧 ≤ 𝑅, we have from (17). G z ≥ a n − 𝛼 𝑧 − 𝐻(𝑍) ≥ 𝑎 𝑛 − 𝛼 𝑅 − 𝑀1 𝑅 = 𝑎𝑛 − 𝛼 + 𝑀 𝑅 > 0, Thus G(z) ≠ 0 𝑓𝑜𝑟 𝑧 < 𝑅, 𝑓𝑟𝑜𝑚 𝑤ℎ𝑖𝑐ℎ it follows as before that all the zeros of F(z) and hence all the zeros of P(z) lie 1, in 𝑧 ≤ 𝑅 Combining this with (18), we infer that all the zeros of P(z) lie in 𝐚𝐧 𝟏, 19. 𝐳 ≤ 𝐦𝐚𝐱 𝐌 𝟏+ 𝛂 , 𝐑 Now to prove the second part of the Theorem, from (16) we can write F(z) as F(z)= t 2 + z t1 − z P(z) = a 0 t1 t 2 + a1 t1 t 2 + a 0 t1 − t 2 z + ⋯ + a n t1 − t 2 − a n−1 z n+1 − a n z n+2 =a 0 t1 t2 − βz + a1 t1 t 2 + a 0 t1 − t 2 + β z + ⋯ + a n t1 − t 2 − a n−1 z n+1 − a n z n+2 = a 0 t1 t 2 − βz + T(z) Where T(z) = z 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1 −𝑡2 + 𝛽 + ∑n+2 𝑎𝑗 𝑡1 𝑡2 + 𝑎𝑗 −1 𝑡1 −𝑡2 𝑎𝑗 −2 𝑧 𝑗 −1 j=2 Clearly T(o)=0, and 𝑀𝑎𝑥 𝑧 =𝑅 𝑇(𝑧) ≤ 𝑅𝑀2 We first assume that 𝑎0 𝑡1 𝑡2 ≤ β + M2 www.ijmer.com 4367 | Page
  • 6. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 Now for z ≤ R, by using Schwasr lemma, we have F(z) ≥ 𝑎0 𝑡1 𝑡2 − β z − T(z) ≥ 𝑎0 𝑡1 𝑡2 − β z − M2 Z >0, if, 𝑎0 𝑡1 𝑡2 z < ≤R β +M 2 𝑎0 𝑡1 𝑡2 This shows that F(z) ≠0, for z < , hence all the zeros of F(z) lie in β +M 2 𝑎0 𝑡1 𝑡2 z ≥ β +M 2 But all the zeros of P(z) are also the zeros of F(z), we conclude that all the zeros of P(z) lie in 𝑎0 𝑡1 𝑡2 20. z ≥ β +M 2 Now we assume 𝑎0 𝑡1 𝑡2 > β + M2 , then for z ≤ R, we have ` F(z) ≥ 𝑎0 𝑡1 𝑡2 − β z − T(z) ≥ 𝑎0 𝑡1 𝑡2 − β R − M2 R > 𝑡1 𝑡2 𝑎0 − β + M2 R >0, This shows that all the zeros of F(z) and hence that of P(z) lie in z ≥R Combining this with (20) , it follows that all the zeros of P(z) lie in 𝑎0 𝑡1 𝑡2 21 z ≥ min β +M 2 ,R Combining (19) and (20), the desired result follows. Proof of Theorem 2:- Consider 22. F(z) = 𝑡2 + 𝑧 𝑡1 − 𝑧 𝑃(𝑧) = 𝑡2 + 𝑧 𝑡1 − 𝑧 𝑎 𝑛 𝑧 𝑛 + 𝑎 𝑛−1 𝑧 𝑛−1 + ⋯ + 𝑎1 𝑧 + 𝑎0 = −𝑎 𝑛 𝑧 𝑛+2 + 𝑎𝑛 𝑡1− 𝑡2 − 𝑎 𝑛−1 𝑧 𝑛 +1 + ⋯ + 𝑎0 𝑡1 𝑡2 Let 1 23. G(z) = 𝑧 𝑛+2 𝐹( 𝑧 ) = −𝑎 𝑛 + 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛−1 𝑧 + 𝑎 𝑛 𝑡1 𝑡2 − 𝑎 𝑛 −1 𝑡1 − 𝑡2 𝑎 𝑛 −2 𝑧 2 + 𝐻(𝑧) Where H(z) = 𝑧 2 𝑎 𝑛 𝑡1 𝑡2 − 𝑎 𝑛−1 𝑡1 − 𝑡2 − 𝑎 𝑛 −2 + ⋯ + 𝑎0 𝑡1 𝑡2 𝑧 𝑛 Clearly H(o)=0 = H(o), since H(z) ≤ M3 R2 for z = R www.ijmer.com 4368 | Page
  • 7. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 We first assume, 24 a n ≤ MR2 + R 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1 Then by using Lemma 2. To H(z), it follows that M3 z M3 z 𝐻z ≤ R2 M3 𝑀𝑎𝑥 𝑧 =𝑅 H(z) Hence from(23) we have z 2M3 G(z) ≥ a n − 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1 z − 𝑅2 R2 >0, if 2 M3 z + 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛−1 z − a n < 0 That is if, 1/2 𝑎 𝑛 𝑡 1 −𝑡 2 −𝑎 𝑛 −1 2 +4 a n M − 𝑎 𝑛 𝑡 1 −𝑡 2 −𝑎 𝑛 −1 25. z < 2M 3 1 =r ≤ R If 2 2 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1 + 4 a n M3 ≤ 2M3 R + 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛−1 Which implies a n ≤ M3 R2 + R 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1 Which is true by (24)..Hence all the zeros of G(z) lie in Z ≥ r. since F z = z n+2 G z , It follows that all the zeros of F(z) and hence that of P(z) lie in z ≤ r. We now assume. 26. a n ≤ M3 R2 + R 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1 , then for z ≤ R, from (23) it follows that G(z) ≥ a n − 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1 z − H(z) ≥ 𝑎 𝑛 − 𝑅 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛−1 − R2 M3 >0, by (26). 1 This shows that all the zeros of G(z) lie in Z > 𝑅, and hence all the zeros of F(z) = z n+2 G(z ) lie in 1 z ≤ , but all the zeros of P(z) are also the zeros of F(z) , therefore it follows that all the zeros of P(z) lie in R 1 Z ≤R 27. From (25) amd (27) , we conclude that all the zeros of P(z) lie in 1 Z ≤ max(𝑟, ) R Which completes the proof of Theorem 2. 28. PROOF OF THEOREM 3. Consider the polynomial www.ijmer.com 4369 | Page
  • 8. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 F(z) = 𝑡2 + 𝑧 𝑡1 − 𝑧 𝑃(𝑧) = 𝑡1 𝑡2 + 𝑡1 − 𝑡2 𝑧 − 𝑧 2 ) 𝑎 𝑛 𝑧 𝑛 + 𝑎 𝑛−1 𝑧 𝑛 −1 + ⋯ + 𝑎1 𝑧 + 𝑎0 = −𝑎 𝑛 𝑧 𝑛+2 + 𝑎𝑛 𝑡1− 𝑡2 − 𝑎 𝑛−1 𝑧 𝑛 +1 + ⋯ + 𝑎 𝑛 𝑡1 𝑡2 + 𝑎 𝑛−1 𝑡1− 𝑡2 − 𝑎 𝑛 −1 𝑧 𝑛+1 + ⋯ + a 2 t1 t 2 + a1 𝑡1− 𝑡2 − 𝑎0 z 2 + a1 t1 t 2 + a 0 𝑡1− 𝑡2 𝑧 + 𝑎0 t1 t 2 We have, 1 G(z) = 𝑧 𝑛+2 𝐹( ) 𝑧 = 𝑟𝑎 𝑛 + 𝑎 𝑛 𝑡1 − 𝑡2 − 𝑎 𝑛 −1 𝑧 + 𝑎 𝑛 𝑡1 𝑡2 + 𝑎 𝑛 −1 𝑡1 − 𝑡2 − 𝑎 𝑛 −2 𝑧 2 +…+ 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1− 𝑡2 𝑧 𝑛 +1 + 𝑎0 𝑡1 𝑡2 𝑧 𝑛+2 = −𝑎 𝑛 − 𝛼𝑧 + 𝑎 𝑛 𝑡1 − 𝑡2 + 𝛼 − 𝑎 𝑛 −1 𝑧 + 𝑎 𝑛 𝑡1 𝑡2 + 𝑎 𝑛 −1 𝑡1− 𝑡2 − 𝑎 𝑛 −2 z 2 +. . + 𝑎1 𝑡1 𝑡2 + 𝑎0 𝑡1− 𝑡2 z n+1 + 𝑎0 𝑡1 𝑡2 𝑧 𝑛+2 29. = −𝑎 𝑛 − 𝛼𝑧 + 𝐻 𝑧 Where H(z) = 𝑎 𝑛 𝑡1 −𝑡2 + 𝛼 − 𝑎 𝑛 −1 𝑧 + ⋯ + 𝑎0 𝑡1 𝑡2 𝑧 𝑛+2 We first assume that 30. a n ≥ α R + M4 Then for z < 𝑅, we have 31. G(z) ≥ a n − α z − H(z) Since H(z) ≤ M4 𝑓𝑜𝑟 z ≤ R Therefore for 𝑧 <R, from (31) with the help of (30), we have 𝐺(𝑧) > 𝑎 𝑛 − ∝ 𝑅 − 𝑀4 1 therefore , all the zeros of G(z) lie in z ≥ R, in this case. Since F(z) = 𝑧 𝑛 +2 G 𝑧 therefore all the zeros of G(z) lie in 1 Z ≤ R . As all the zeros of P(z) are the zeros of F(z), it follows that all the zeros of P(z) lie in 1 32. z ≤R Now we assume a n < α R + M4 , clearly H(o) = 0 and H(o) = (𝑎 𝑛 𝑡1 −𝑡2 − 𝛼 − 𝑎 𝑛 −1 , Since by (11), H(z) ≤ M4 , for z = R, therefore it follows by Lemma2. that M4 z M4 z + R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 H(z) ≤ R2 M4 + a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 z for z ≤ R Using this in (31), we get, M4 z M4 z + R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛−1 + 𝛼 G(z) ≥ 𝑎 𝑛 − 𝛼 𝑧 − 2 R M4 + a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 z >0, if 𝑎 𝑛 R2 M4 + a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 z − z α R2 M4 + a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 z + M4 M4 z + R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 > 0, this implies, α R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛−1 + 𝛼 + M4 z 2 + α R2 M4 + 2 2 2 R M4 a n t1 − t 2 − a n−1 +∝ … R M4 an 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 } z − a n R2 M4 < 0, This gives, G(z) > 0, 𝑖𝑓 z < [ α R2 M4 + R2 M4 − a n a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 2 +.. ….4 α R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 + M4 2 𝑎 𝑛 R2 M4 ] 𝛼 R 2 M 4 +R 2 M 4 − 𝑎 𝑛 a n 𝑡 1 −𝑡 2 −𝑎 𝑛 −1 +𝛼 − 2 α R 2 a n 𝑡 1 −𝑡 2 −𝑎 𝑛 −1 +𝛼 +M 4 2 1 =r , 1 So, z < 𝑅, 𝑖𝑓 α R2 M4 + M4 − a n R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 2 + www.ijmer.com 4370 | Page
  • 9. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 4 α R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛−1 + 𝛼 + M4 2 𝑎 𝑛 R2 M4 < 2 α a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 R + α R2 M4 + 2RM4 2 + M4 − a n R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 2 That is if, a n R2 M4 ≤ R2 α 𝑅2 an 𝑡1 −𝑡2 − 𝑎 𝑛−1 + 𝛼 + M4 2 + α R2 M4 + M4 − a n R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 R Which gives a n M4 ≤ M4 α R + M4 − 𝑎 𝑛 + 𝑅 α R2 a n 𝑡1 −𝑡2 − 𝑎 𝑛 −1 + 𝛼 + M4 2 α R2 + M4 − 𝑎 𝑛 Which is true because 𝑎 𝑛 < α R + M4 , 1 1 Consequently , all the zeros of G(z) lie in z ≥ r , as F(z) = z n+1 G( z ), we conclude that all the zeros of 1 F(z) lie z ≤ 𝑟1 , since every zero of P(z) is also a zero of F(z), it follows that all the zeros of P(z) lie in 33. z ≤ 𝑟1 Combining this with (32) it follows that all the zeros of P(z) lie in 1 34. z ≤ 𝑚𝑎𝑥 𝑟1 , 𝑅 Again from (28) it follows that 𝐹 𝑧 = 𝑎0 t1 t 2 − βz + a1 t1 t2 𝑡1− 𝑡2 + 𝛽 z + ⋯ + a n ( 𝑡1 −𝑡2 −. 𝑎 𝑛−1 )z n+2 − a n 𝑧 𝑛+2 35. ≥ 𝑎0 t1 t 2 − 𝛽 𝑧 − 𝑇(𝑧) Where, T(z) = a n 𝑧 𝑛+2 + a n 𝑡1 −𝑡2 −. 𝑎 𝑛 −1 𝑧 𝑛 +1 +. . + 𝑎0 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 z Clearly T(o)=0, and T(o) 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 Since by (12) , T(z) ≤ M5 for z = R using Lemma 2. To T(z), we have M5 z F(z) ≥ 𝑎0 t1 t 2 − β z − R2 M5 z + R2 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 z = - R2 β 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 + 𝑀5 2 z 2 + 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 R2 𝑎0 t1 t 2 − R2 M5 − β R2 M5 z + M5 R2 𝑎1 t1 t2 R2 M5 + 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 z >0, if, R2 β 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 + 𝑀5 2 z 2 − 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 R2 𝑎0 t1 t2 − R2 M5 − β R2 M5 z − R2 M5 𝑎0 t1 t 2 < 0, Thus, F(z) > 0, 𝑖𝑓 z < −R2 𝑎1 t1 t2 + a 0 𝑡1− 𝑡2 + 𝛽 𝑎0 t1 t 2 − M5 β M5 www.ijmer.com 4371 | Page
  • 10. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4363-4372 ISSN: 2249-6645 − R4 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 𝑎0 t1 t 2 − M5 β M5 2 +4 R2 β 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 + M5 2 R2 M5 𝑎0 t1 t2 1/2 𝑟𝑧 2 R2 β 𝑎1 t1 t 2 + a 0 𝑡1− 𝑡2 + 𝛽 + M5 2 Thus it follows by the same reasoning as in Theorem 1, that all the zeros of F(z) and hence that of P(z) lie in 36. z ≥ min(r2, R) Combining (34) and (36) , the desired result follows. REFERENCES [1] A. Aziz and Q.G Mohammad, On thr zeros of certain class of polynomials and related analytic functions, J. Math. Anal Appl. 75(1980), 495-502 [2] A.Aziz and W.M Shah, On the location of zeros of polynomials and related analytic functions, Non-linear studies, 6(1999),97-104 [3] A.Aziz and W.M Shah, On the zeros of polynomials and related analytic functions, Glasnik, Matematicke, 33 (1998), 173-184; [4] A.Aziz and B.A. Zarger, Some extensions of Enestrem-Kakeya Theorem, Glasnik, Matematicke, 31 (1996), 239-244 [5] K.K.Dewan and M. Biakham,, On the Enestrom –Kakeya Theorem, J.Math.Anal.Appl.180 (1993), 29-36 [6] N.K, Govil and Q.I. Rahman, On the Enestrem-Kakeya Theorem, Tohoku Math.J. 20 (1968), 126-136. [7] N.K, Govil , Q.I. Rahman and G. Schmeisser, on the derivative of polynomials, Illinois Math. Jour. 23 (1979), 319- 329 [8] P.V. Krishnalah, On Kakeya Theorem , J.London. Math. Soc. 20 (1955), 314-319 [9] M. Marden, Geometry of polynomials, Mathematicial surveys No.3. Amer. Math. Soc. Providance , R.I. 1966 [10] G.V. Milovanovic, D.S. Mitrinovic, Th.M. Rassias Topics in polynomials, Extremal problems Inequalitics, Zeros(Singapore, World Scientific)1994. [11] Q.I. Rahman and G.Schmessier, Analytic Theory of polynomials, (2002), Clarantone, Press Oxford. [12] W.M. Shah and A. Liman, On the zeros of a class of polynomials, Mathematical inequalioties and Applications, 10(2007), 793-799 www.ijmer.com 4372 | Page