1
OPTICS
Part I
SOLO HERMELIN
Updated: 16.01.10http://www.solohermelin.com
2
Table of Content
SOLO OPTICS
Maxwell’s Equations
Boundary Conditions
Electromagnatic Wave Equations
Monochromatic Planar Wave Equations
Spherical Waveforms
Cylindrical Waveforms
Energy and Momentum
Electrical Dipole (Hertzian Dipole) Radiation
Reflections and Refractions Laws Development
Using the Electromagnetic Approach
IR Radiometric Quantities
Physical Laws of Radiometry
Geometrical Optics
Foundation of Geometrical Optics – Derivation of Eikonal Equation
The Light Rays and the Intensity Law of Geometrical Optics
The Three Laws of Geometrical Optics
Fermat’s Principle (1657)
3
Table of Content (continue)
SOLO OPTICS
Plane-Parallel Plate
Prisms
Lens Definitions
Derivation of Gaussian Formula for a Single Spherical Surface Lens
Using Fermat’s Principle
Derivation of Gaussian Formula for a Single Spherical Surface Lens
Using Snell’s Law
Derivation of Lens Makers’ Formula
First Order, Paraxial or Gaussian Optics
Ray Tracing
Matrix Formulation
4
Table of Content (continue)
SOLO OPTICS
Optical Diffraction
Fresnel – Huygens’ Diffraction Theory
Complementary Apertures. Babinet Principle
Rayleigh-Sommerfeld Diffraction Formula
Extensions of Fresnel-Kirchhoff Diffraction Theory
Phase Approximations – Fresnel (Near-Field) Approximation
Phase Approximations – Fraunhofer (Near-Field) Approximation
Fresnel and Fraunhofer Diffraction Approximations
Fraunhofer Diffraction and the Fourier Transform
Fraunhofer Diffraction Approximations Examples
Resolution of Optical Systems
Optical Transfer Function (OTF)
Point Spread Function (PSF)
Modulation Transfer Function (MTF)
Phase Transfer Function (PTF)
Relations between Wave Aberration, Point Spread Function
and Modulation Transfer Function
Other Metrics that define Image Quality – Srahl Ratio
Other Metrics that define Image Quality - Pickering Scale
Other Metrics that define Image Quality – Atmospheric Turbulence
Fresnel Diffraction Approximations Examples
O
P
T
I
C
S
P
a
r
t
I
I
5
Table of Content (continue)
SOLO OPTICS
References
Optical Aberration
Monochromatic Seidel Aberrations
Chromatic Aberration
Interference
O
p
t
i
c
s
P
a
r
t
I
I
6
OpticsSOLO
Hierarchy of Optical Theories
• Quantum Light as particle (photon)
Emission, absorption, interaction of light and matter
• Electromagnetic Maxwell’s Equations
Reflection/Transmission, polarization
• Scalar Wave Light as wave
Interference and Diffraction
• Geometrical Light as ray
Image-forming optical systems
λ → 0
7
OpticsSOLO
Hierarchy of Optical Theories
8
MAXWELL’s EQUATIONSSOLO
SYMMETRIC MAXWELL’s EQUATIONS
Magnetic Field IntensityH

 1
 mA
Electric DisplacementD

 2
 msA
Electric Field IntensityE

 1
 mV
Magnetic InductionB

 2
 msV
Electric Current DensityeJ

 2
mA
Free Electric Charge Distributione  3
 msA
Fictious Magnetic Current DensitymJ

 2
mV
Fictious Free Magnetic Charge Distributionm
 3
 msV
1. AMPÈRE’S CIRCUIT LW (A)
eJ
t
D
H







2. FARADAY’S INDUCTION LAW (F)
mJ
t
B
E







3. GAUSS’ LAW – ELECTRIC (GE)
eD 

4. GAUSS’ LAW – MAGNETIC (GM) mB 

Although magnetic sources are not physical they are often introduced as electrical
equivalents to facilitate solutions of physical boundary-value problems.
André-Marie Ampère
1775-1836
Michael Faraday
1791-1867
Karl Friederich Gauss
1777-1855
James Clerk Maxwell
(1831-1879)
9
SOLO
The Electromagnetic Spectrum
10
SOLO
Visible Spectrum
11
SOLO
The Infrared (IR) Spectrum of Interest
Return to TOC
12
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Boundary Conditions
2
ˆt
1
ˆt
h
2H

1H

1
2
C
CS1P
2P
3P
4P
bˆ
21
ˆ n
ek

    ldtHtHhldtHldtHldH
h
C
2211
0
2211
ˆˆˆˆ 



where are unit vectors along C in region (1) and (2), respectively, and21
ˆ,ˆ tt
2121
ˆˆˆˆ  nbtt
- a unit vector normal to the boundary between region (1) and (2)21
ˆ n
- a unit vector on the boundary and normal to the plane of curve Cbˆ
Using we obtainbaccba


       ldbkldbHHnldnbHHldtHH e
ˆˆˆˆˆˆ 21212121121  

Since this must be true for any vector that lies on the boundary between
regions (1) and (2) we must have:
bˆ
  ekHHn

 2121
ˆ
 











S
e
C
Sd
t
D
JdlH



  dlbkbdlh
t
D
JSd
t
D
J e
h
e
S
e
ˆˆ
0




























AMPÈRE’S LAW
 1
0
lim: 











 mAh
t
D
Jk e
h
e


13
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Boundary Conditions (continue – 1)
2
ˆt
1
ˆt
h
2E

1E

1
2
C
CS1P
2P
3P
4P
bˆ
21
ˆ n
mk

    ldtEtEhldtEldtEldE
h
C
2211
0
2211
ˆˆˆˆ 



where are unit vectors along C in region (1) and (2), respectively, and21
ˆ,ˆ tt
2121
ˆˆˆˆ  nbtt
- a unit vector normal to the boundary between region (1) and (2)21
ˆ n
- a unit vector on the boundary and normal to the plane of curve Cbˆ
Using we obtainbaccba


       ldbkldbEEnldnbEEldtEE m
ˆˆˆˆˆˆ 21212121121  

Since this must be true for any vector that lies on the boundary between
regions (1) and (2) we must have:
bˆ
  mkEEn

 2121
ˆ
 











S
m
C
Sd
t
B
JdlE



  dlbkbdlh
t
B
JSd
t
B
J m
h
m
S
m
ˆˆ
0




























FARADAY’S LAW
 1
0
lim: 











 mVh
t
B
Jk m
h
m


14
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Boundary Conditions (continue – 2)
h
2D

1D

1
2
21
ˆ n
dS
1
ˆn
2
ˆn
e
    SdnDnDhSdnDSdnDSdD
h
S
2211
0
2211
ˆˆˆˆ 



where are unit vectors normal to boundary pointing in region (1) and (2),
respectively, and
21
ˆ,ˆ nn
2121
ˆˆˆ  nnn
- a unit vector normal to the boundary between region (1) and (2)21
ˆ n
    SdSdnDDSdnDD e 2121121
ˆˆ

Since this must be true for any dS on the boundary between regions (1) and (2)
we must have:
  eDDn  2121
ˆ

  dSdShdv e
h
e
V
e 
0

GAUSS’ LAW - ELECTRIC
 1
0
lim: 

 msAhe
h
e 
 
V
e
S
dvSdD 

15
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Boundary Conditions (continue – 3)
h
2B

1B

1
2
21
ˆ n
dS
1
ˆn
2
ˆn
m
    SdnBnBhSdnBSdnBSdB
h
S
2211
0
2211
ˆˆˆˆ 



where are unit vectors normal to boundary pointing in region (1) and (2),
respectively, and
21
ˆ,ˆ nn
2121
ˆˆˆ  nnn
- a unit vector normal to the boundary between region (1) and (2)21
ˆ n
    SdSdnBBSdnBB m 2121121
ˆˆ

Since this must be true for any dS on the boundary between regions (1) and (2)
we must have:
  mBBn  2121
ˆ

  dSdShdv m
h
m
V
m 
0

GAUSS’ LAW – MAGNETIC
 1
0
lim: 

 msVhm
h
m 
 
V
m
S
dvSdB 

16
SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS
Boundary Conditions (summary)
2
ˆt
1
ˆt
h
22 ,HE

11,HE

1
2
C
CS1P
2P
3P
4P
bˆ
21
ˆ n
me kk

,
21
ˆ n
dS
11,BD

22,BD

me
,
  mkEEn

 2121
ˆ FARADAY’S LAW
  ekHHn

 2121
ˆ AMPÈRE’S LAW  1
0
lim: 











 mAh
t
D
Jk e
h
e


 1
0
lim: 











 mVh
t
B
Jk m
h
m


  eDDn  2121
ˆ
 GAUSS’ LAW
ELECTRIC
 1
0
lim: 

 msAhe
h
e 
  mBBn  2121
ˆ
 GAUSS’ LAW
MAGNETIC
 1
0
lim: 

 msVhm
h
m 
Return to TOC
17
ELECTROMAGNETICSSOLO
ELECTROMGNETIC WAVE EQUATIONS
For Homogeneous, Linear and Isotropic Medium
ED


HB


where are constant scalars, we have,
J
t
E
J
t
D
H
t
t
H
t
B
E
ED
HB






























Since we have also
tt 




 
    t
J
t
E
E
DED
EEE
t
J
t
E
E














































2
2
22
2
2
&
18
ELECTROMAGNETICSSOLO
ELECTROMGNETIC WAVE EQUATIONS (continue 1)
Define
meme KK
c
KK
v 

00
11

where
 
smc /103
10
36
1
104
11 8
9700














is the velocity of light in free space.
The absolute index of refraction n is
me KK
v
c
n 



0
The Inhomogeneous Wave (Helmholtz) Differential Equation for the
Electric Field Intensity is
t
J
t
E
v
E













2
2
2
2 1
19
ELECTROMAGNETICSSOLO
ELECTROMGNETIC WAVE EQUATIONS (continue 2)
In the same way
The Inhomogeneous Wave (Helmholtz) Differential Equation for the
Magnetic Field Intensity is
J
t
E
J
t
D
H
t
H
t
B
E
t
ED
HB






























Since are constant and
tt 




,
 
    J
t
H
H
HHB
HHH
J
t
H
H




































2
2
22
2
2
0&



J
t
H
v
H






 2
2
2
2 1
Return to TOC
20
ELECTROMAGNETICSSOLO
Monochromatic Planar Wave Equations
Let assume that can be written as:   trHtrE ,,,

           tjrHtrHtjrEtrE 00 exp,,exp, 


where are phasor (complex)
vectors.
               rHjrHrHrEjrErE

ImRe,ImRe 
We have          tjrEjtj
t
rEtrE
t
00 expexp, 







Hence
 
 
 








































m
e
m
e
j
t
m
e
m
e
B
D
JBjE
JDjH
BGM
DGE
J
t
B
EF
J
t
D
HA















)(
21
ELECTROMAGNETICSSOLO
Fourier Transform
The Fourier transform of can be written as:   trHtrE ,,,

           
           











dttjtrHrHdtjrHtrH
dttjtrErEdtjrEtrE




exp,,&exp,
2
1
,
exp,,&exp,
2
1
,


This is possible if:
   
    















drHdttrH
drEdttrE
22
22
,
2
1
,
,
2
1
,


JEAN FOURIER
1768-1830
22
ELECTROMAGNETICSSOLO
Note
The assumption that can be written as:   trHtrE ,,,

           tjrHtrHtjrEtrE 00 exp,,exp, 


is equivalent to saying that has a Fourier transform; i.e.:   trHtrE ,,,

           
           

















dtjrHtrHdttjtrHrH
dtjrEtrEdttjtrErE
exp,
2
1
,&exp,,
exp,
2
1
,&exp,,


This is possible if:
   
    















drHdttrH
drEdttrE
22
22
,
2
1
,
,
2
1
,


            
        











00
0
exp
expexpexp,,
rEdttjrE
dttjtjrEdttjtrErE


End Note
23
ELECTROMAGNETICSSOLO
 
 
















 

m
e
m
e
ED
HB
m
e
JHjE
JEjH
JHjE
JEjH
JBjE
JDjH





 

  me JJjEkE

 2
  em JJjHkH

 2 



22 f
c
c
f
k



Using the vector identity      AAA


For a Homogeneous, Linear and Isotropic Media:













 






 

m
e
ED
HB
m
e
H
E
B
D


 e
me JJjEkE


22


 m
em JJjHkH


22
and
we obtain
Monochromatic Planar Wave Equations (continue)
24
ELECTROMAGNETICSSOLO
Assume no sources:
we have
Monochromatic Planar Wave Equations (continue)
0,0,0,0  meme JJ 

022
 EkE
022
 HkH
nkk
n
k
0
00
00
0












 


     
     







rktjtj
rktjtj
eHerHtrH
eEerEtrE








0
0
,,
,,
  022




rkj
rkjrkjrkjrkj
ek
ekkeekje

 
Helmholtz Wave Equations
satisfy the Helmholtz wave equations    ,,, rHrE

 
 







rkj
rkj
eHrH
eErE




0
0
,
,


Assume a progressive wave of phase  rkt

 (a regressive wave has the phase ) rkt


For a Homogeneous, Linear and Isotropic Media
k

0E
0H
r
 t
k

Planes for which
constrkt 


25
ELECTROMAGNETICSSOLO
To satisfy the Maxwell equations for a source free media we must have:
Monochromatic Planar Wave Equations (continue)
we haveUsing: 1ˆˆ&ˆˆ  sss
c
n
sk 












0
0
H
E
HjE
EjH
















0ˆ
0ˆ
ˆ
ˆ
0
0
00
00
Hs
Es
HEs
EHs




sˆ
Planar Wave
0E
0H
r

















 
0
0
0
0
00
00
rkj
rkj
rkjrkj
rkjrkj
ekje
eHkj
eEkj
eHjeEkj
eEjeHkj
rkjrkj























0
0
0
0
00
00
Hk
Ek
HEk
EHk






For a Homogeneous, Linear and Isotropic Media:
Return to TOC
26
ELECTROMAGNETICSSOLO
ELECTROMGNETIC WAVE EQUATIONS
Spherical Waveforms z
x
y

r
cosr
 ,,rP

 sinsinr
 cossinr
The Inhomogeneous Wave (Helmholtz) Differential
Equation for the Electric Field Intensity is
t
J
t
E
v
E













2
2
2
2 1
In spherical coordinates:



cos
sinsin
cossin
rz
ry
rx



2
2
222
2
2
2
sin
1
sin
sin
11


 






















rrr
r
rr
For a spherical symmetric wave:    rErE

,,
 Er
rrr
E
rr
E
r
E
r
rr
E



2
2
2
2
2
2
2 121





















27
ELECTROMAGNETICSSOLO
ELECTROMGNETIC WAVE EQUATIONS
SourceSourceSource
Spherical Waveforms z
x
y

r
cosr
 ,,rP

 sinsinr
 cossinr
The Inhomogeneous Wave (Helmholtz)
Differential Equation for the
Electric Field Intensity is assuming no sources
  0
11
2
2
22
2 








t
E
v
Er
rr
In spherical coordinates:



cos
sinsin
cossin
rz
ry
rx



    0
1
2
2
22
2 






Er
tv
Er
r
or:
A general solution is:    



wave
regressive
wave
eprogressiv
tvrFtvrFEr  21
0,0,0,0  meme JJ 

   
 
r
e
EerEtrE
rktj
tj

 



 0,,
Assume a progressive monochromatic wave of phase
 rkt

 (a regressive wave has the phase ) rkt


 
r
e
ErE
rkj

 
 0, Return to TOC
28
ELECTROMAGNETICSSOLO
ELECTROMGNETIC WAVE EQUATIONS
Cylindrical Waveforms
z
x
y
r
 zrP ,,

sinr
cosr
In cylindrical coordinates:
zz
ry
rx





sin
cos
2
2
2
2
2
2 11
zrr
r
rr 
















For a cylindrical symmetric wave:    rEzrE

,,













r
E
r
rr
E

 12
The Inhomogeneous Wave (Helmholtz) Differential Equation for the Electric Field
Intensity is assuming no sources
0
11
2
2
2

















t
E
vr
E
r
rr
0,0,0,0  meme JJ 

29
ELECTROMAGNETICSSOLO
ELECTROMGNETIC WAVE EQUATIONS
Source
Cylindrical Waveforms
z
x
y
r
 zrP ,,

sinr
cosr
SourceSource
In cylindrical coordinates:
zz
ry
rx





sin
cos
The Inhomogeneous Wave (Helmholtz)
Differential Equation for the
Electric Field Intensity is assuming no sources
0
11
2
2
2

















t
E
vr
E
r
rr
0,0,0,0  meme JJ 

Assume a progressive monochromatic wave of phase
 rkt

 (a regressive wave has the phase ) rkt


    tj
erEtrE 
,,



0
1
2
2
2 












E
vr
E
rr
E
k

The solutions are Bessel functions which for large
r approach asymptotically to:   rkj
e
r
E
rE 
 0
,

Return to TOC
30
SOLO
Energy and Momentum
Let start from Ampère and Faraday Laws





















t
B
EH
J
t
D
HE e





EJ
t
D
E
t
B
HHEEH e












 HEHEEH

But
Therefore we obtain
  EJ
t
D
E
t
B
HHE e












First way
This theorem was discovered by Poynting in 1884 and later in the same year by Heaviside.
ELECTROMAGNETICS
John Henry Poynting
1852-1914
Oliver Heaviside
1850-1925
31
SOLO
Energy and Momentum (continue -1)
We identify the following quantities
- Power density of the current densityEJe


 HEDE
t
BH
t
EJe




















2
1
2
1









 BH
t
pBHw mm

2
1
,
2
1









 DE
t
pDEw ee

2
1
,
2
1
 HEpR


eJ

- Magnetic energy and power densities, respectively
- Electric energy and power densities, respectively
- Radiation power density
For linear, isotropic electro-magnetic materials we can write HBED

00 ,  
 DE
tt
D
E
ED 











2
10
 BH
tt
B
H
HB 











2
10
ELECTROMAGNETICS
32
SOLO
Energy and Momentum (continue – 3)
Let start from the Lorentz Force Equation (1892) on the free charge
 BvEF e

 
Free Electric Chargee  3
 msA
Velocity of the chargev

 1
 sm
Electric Field IntensityE

 1
 mV
Magnetic InductionB

 2
 msV
Hendrik Antoon Lorentz
1853-1928
e
Force on the free chargeF

 Ne
Second way
ELECTROMAGNETICS
33
SOLO
Energy and Momentum (continue – 4)
The power density of the Lorentz Force the charge
 
 
EJBvEvp e
Bvv
Jv
e
ee


 


0


or
     
    
 HE
t
B
HE
t
D
E
t
D
HEEH
E
t
D
HEJp
t
B
E
HEHEEH
J
t
D
H
e
e





















































e
ELECTROMAGNETICS
34
SOLO
Energy and Momentum (continue – 5)
 HEDE
t
BH
t
EJe




















2
1
2
1
dve
E

B

eJv

,
V
 FdF

Fd

Let integrate this equation over a constant volume V
 












VVVV
e dvSdvDE
td
d
dvBH
td
d
dvEJ

2
1
2
1
If we have sources in V then instead of
we must use
E

source
EE


Use Ohm Law (1826)
 source
ee EEJ













 VV
td
d
t
Georg Simon Ohm
1789-1854
source
e
e
EJE



1
For linear, isotropic electro-magnetic materials  HBED

00 ,  
ELECTROMAGNETICS
35
SOLO
Energy and Momentum (continue – 6)
 












VVVR
n
V
source
e dvSdvDE
td
d
dvBH
td
d
dRIdvEJ

2
1
2
12
 






V
FieldMagnetic dvBH
td
d
P

2
1
 






V
FieldElectric dvDE
td
d
P

2
1
 
SV
Radiation SdSdvSP

 
V
source
eSource dvEJP

   




V
source
e
R
n
V
source
e
L S e
ee
V
source
e
L S e
ee
V
e
dvEJdRI
dvEJ
dS
dl
dSJdSJdvEJldSdJJdvEJ


2
11


R
nJoule dRIP
2
RadiationFieldMagneticFieldElectricJouleSource PPPPP 
For linear, isotropic electro-magnetic materials  HBED

00 ,  
R – Electric Resistance
Define the Umov-Poynting vector:  2
/ mwattHES


The Umov-Poynting vector was discovered by Umov in 1873, and rediscovered by
Poynting in 1884 and later in the same year by Heaviside.
ELECTROMAGNETICS
John Henry Poynting
1852-1914
36
ElectromagnetismSOLO
EM People
John Henry Poynting
1852-1914
Oliver Heaviside
1850-1925
Nikolay Umov
1846-1915
1873
“Theory of interaction on final
distances and its exhibit to
conclusion of electrostatic and
electrodynamic laws”
1884 1884
Umov-Poynting vector
HES


The Umov-Poynting vector was discovered by Umov in 1873, and rediscovered by
Poynting in 1884 and later in the same year by Heaviside.
1873 - 1884
Return to TOC
37
Note:
Since there are not
magnetic sources the
Magnetic Hertz’s
Vector Potential is :
0

m
Electrical Dipole (Hertzian Dipole) RadiationSOLO
Given a dipole monochromatic of electric charges defined by the Polarization Vector Intensity
 tq
 tq
d

r

dqP


dr 
     tdqdeqaltP tj
e

cosRe 00


we want to find the radiation properties.
We start with the Helmholtz Non-homogeneous
Differential Equation of the Electric Hertz’s
Vector Potential : te

     trPtr
tc
tr eee ,
1
,
1
,
0
2
2
2
2 





Heinrich Rudolf Hertz
1857-1894
- speed of propagation of the EM wave [m/s]
00
1

c
- Polarization Vector IntensityeP

 2
 msA
- Permitivity of space  2122 
 mNsA
- Electric Hertz’s Vector Potential (1888)e

 NsA   11
t
A e





000  eV 

0
Using the Electric Hertz’s
Vector Potential we obtain :
The field vectors are given by  e
e
tc
V
t
A
E 









2
2
20
0 1
t
AH e





00
0
1


38
SOLO Electric Dipole Radiation
 tq
 tq
d

r

  zSS rrdqP 10




dr 


sinr
cosr










zyx
r
r
rr
111
1
cossinsincossin 

r1

1

1

x1

y1

z1

Compute (continue-3)  e
e
tc
E 






2
2
2
1
We have
                
32
0
4
0
2
5
0
2
2
2
2
44
3
4
31
rc
rpr
rc
rprpr
r
rprrp
tc
E ee
e











   
230
44 rc
rp
r
rp
t
H e


 






   
r
p
tre
0
4
,



     krtjkrtj
epedqp 
 
00

Let use spherical coordinates 







zyxr rrr 1111 cossinsincossin 

     





 





111 sincos00 rz
krtjkrtj
epepp
              
 krtj
ep
rccr
j
r
rc
rprrp
rc
rprrp
r
rprrp
E
rr 































02
0
2
2
0
3
0
32
0
2
4
0
2
5
0
2
4
sin
4
sincos2
4
sincos2
44
3
4
3
11111

r1

1

1

     
     pckpp
pckjpjp
222






39
SOLO Electric Dipole Radiation
 tq
 tq
d

r

  zSS rrdqP 10




dr 


sinr
cosr










zyx
r
r
rr
111
1
cossinsincossin 

r1

1

1

x1

y1

z1

Using we can write
   
 







11 0
2
0
2
2
sin1
4
sin
44
















 krtjkrtj
ep
rk
j
r
kc
ep
rcr
j
H
 krtj
ep
r
k
r
kj
r
rccr
j
r
E
r
rr














 
































0
2
23
0
2
0
2
2
0
3
0
111
11111
sinsincos2
1
4
1
4
sin
4
sincos2
4
sincos2
We can divide the zones around the source, as function of the relation between
dipole size d and wavelength λ, in three zones:
Near, Intermediate and Far Fields

 22
: 
c
f
c
k
The Magnetic Field Intensity is transverse to the propagation direction at all ranges,
but the Electric Field Intensity has components parallel and perpendicular to .r1

r1

E

However and are perpendicular to each other.H

• Near (static) zone: rd
• Intermediate (induction) zone: ~rd 
• Far (radiation) zone: rd 
40
SOLO Electric Dipole Radiation
 tq
 tq
d

r

  zSS rrdqP 10




dr 


sinr
cosr










zyx
r
r
rr
111
1
cossinsincossin 

r1

1

1

x1

y1

z1




102
sin
4

 tj
FieldNear
ep
r
kc
jH
tj
FieldNear
ep
r
E r



03
0
11 sincos2
4
1





 

Near, Intermediate and Far Fields (continue – 1)
• Near (static) zone: rd
In the near zone the fields have the character of the static fields. The near fields are
quasi-stationary, oscillating harmonically as , but otherwise static in character.tj
e 
0
2


 r
rk
41
SOLO Electric Dipole Radiation
 tq
 tq
d

r

  zSS rrdqP 10




dr 


sinr
cosr










zyx
r
r
rr
111
1
cossinsincossin 

r1

1

1

x1

y1

z1

 



102
sin
4


 krtj
FieldteIntermedia
ep
r
kc
jH
 krtj
FieldteIntermedia
ep
r
kj
r
E r







 





 


023
0
11 sincos2
1
4
1
Near, Intermediate and Far Fields
• Intermediate (induction) zone: ~rd 
• Far (radiation) zone: rd 
 



10
2
sin
4


 krtj
FieldFar
ep
r
kc
H
 




10
0
2
sin
4


 krtj
FieldFar
ep
r
k
E
r1

FieldFarE
FieldFarH
At Far ranges are orthogonal; i.e. we have
a transversal wave.
rHE 1,,

In the Radiation Zone the Field Intensities behave like a spherical wave (amplitude
falls off as r-1)
1
2


 r
rk
 
 









120
10
36
1
1041
:
9
7
0
0
1
0
00



c
FieldFar
FieldFar
cH
E
Z
42
SOLO Electric Dipole Radiation
http://dept.physics.upenn.edu/courses/gladney/phys151/lectures/lecture_apr_07_2003.shtml#tth_sEc12.1 http://www.falstad.com/mathphysics.html
Electric Field Lines of Force
43
SOLO Electric Dipole Radiation
 tq
 tq
d

r

  zSS rrdqP 10




dr 


sinr
cosr










zyx
r
r
rr
111
1
cossinsincossin 

r1

1

1

x1

y1

z1

The phasors of the Magnetic and Electric Field
Intensities are:
 




10
2
sin
4
1 







 krtj
ep
cr
j
r
H
 krtj
ep
crc
j
rc
j
rrr
E r




















 





02
2
2
0
11 sin
11
cos
12
4
1
Poynting Vector of the Electric Dipole Field
The Poynting Vector of the Electric Dipole Field is
The Magnetic and Electric Field Intensities are:
      




1sincossin
4
2
0







 krt
c
krt
rr
p
HrealH

         






































11 sinsin
1
cos
1
cossincos
12
4 2
2
2
0
0
krt
rc
krt
cr
krt
c
krt
rrr
p
ErealE r

 
       
 
        
















1
1
cossincossinsincos
1
4
2
sincossinsincos
1
4
2
0
32
2
0
2
2
2
2
2
0
22
2
0


































krt
c
krt
r
krt
c
krt
rr
p
krt
c
krt
r
krt
rc
krt
crr
p
HES r

The Poynting Vector of the Electric Dipole Field is given by:
44
SOLO Electric Dipole Radiation
 tq
 tq
d

r

  zSS rrdqP 10




dr 


sinr
cosr










zyx
r
r
rr
111
1
cossinsincossin 

r1

1

1

x1

y1

z1

Let compute the time average < > of the Poynting vector:
Poynting Vector of the Electric Dipole Field
Using the fact that:
 
       
 
        
















1
1
cossincossinsincos
1
4
2
sincossinsincos
1
4
2
0
32
2
0
2
2
2
2
2
0
22
2
0


































krt
c
krt
r
krt
c
krt
rr
p
krt
c
krt
r
krt
rc
krt
crr
p
HES r

 

T
T
dttS
T
S
0
1
lim

     
2
1
2cos
1
lim
2
11
lim
2
1
cos
1
limcos
0
0
1
00
22
  
  
T
T
T
T
T
T
dtrkt
T
dt
T
dtrkt
T
rkt 
     
2
1
2cos
1
lim
2
11
lim
2
1
sin
1
limsin
0
0
1
00
22
  
  
T
T
T
T
T
T
dtrkt
T
dt
T
dtrkt
T
rkt 
          02sin
1
lim
2
1
cossin
1
limcossin
0
00
  
  
T
T
T
T
dtrkt
T
dtrktrkt
T
rktrkt 
  r
rc
p
S 1
2
23
0
2
42
0
sin
42

 


    





11 cossin
4
sin
1
42
22
0
32
2
02
2
2
2
2
2
2
0
22
2
0




















rcrcr
p
rccrcr
p
S r

we obtain:
or: Radar Equation
Irradiance
45
SOLO Electric Dipole Radiation
 tq
 tq
d

r

  zSS rrdqP 10




dr 


sinr
cosr










zyx
r
r
rr
111
1
cossinsincossin 

r1

1

1

x1

y1

z1

Poynting Vector of the Electric Dipole Field
  r
rc
p
S 1
2
23
0
2
42
0
sin
42

 


Radar Equation
45 90 135 1800
0
5
10
15
20
25
30

0

45

90

135

180

225

270

315
z
y
5.0 0.1
Polar Angle , in degrees
RelativePower,indb
The Total Average Radiant Power is:
  












0
22
23
0
2
42
0
sin2sin
42
dr
rc
p
dSSP
A
rad

22
0
22
120
123
0
42
0
3/4
0
3
23
0
42
0
40
12
sin
16 0







 




p
rc
p
d
rc
p
P
c
c
rad 










   
3
4
3
2
3
2
cos
3
1
coscoscos1sin
0
3
0
2
0
3












 


 dd
Return to TOC
46
ELECTROMAGNETICSSOLO
To satisfy the Maxwell equations for a source free media we must have:
Monochromatic Planar Wave Equations
we haveUsing: 1ˆˆ&ˆˆ
0  kkknkkk 












0
0
H
E
HjE
EjH

















0ˆ
0ˆ
ˆ
ˆ
0
0
00
00
Hk
Ek
HEk
EHk




kˆ
Planar Wave
0E
0H
r

















 
0
0
0
0
00
00
rkj
rkj
rkjrkj
rkjrkj
ekje
eHkj
eEkj
eHjeEkj
eEjeHkj
rkjrkj












  22
22
&
2
ˆ
2
ˆ
HwEwwcn
k
wwcn
k
S meme



Time Average
Poynting Vector of
the Planar Wave
Reflections and Refractions Laws Development Using the Electromagnetic Approach
47
SOLO REFLECTION & REFRACTION
iE

iH

rE

rH

ik
 rk

tH

tE

tk

Boundary
21
ˆ n
z
x y
i
r
t
Plan of
incidence
Consider an incident
monochromatic planar
wave
 
 
c
n
k
eEkH
eEE
iiii
rktj
iii
rktj
ii
ii
ii
1
00
11
0011
0
0





 










The monochromatic planar
reflected wave from the boundary is
 
 
1
1
1
1
0
0
&
n
c
v
vc
n
k
eEkH
eEE
r
rr
rktj
rrr
rktj
rr
rr
rr








 





The monochromatic planar
refracted wave from the boundary is
 
 
2
2
2
2
0
0
&
n
c
v
vc
n
k
eEkH
eEE
t
tt
rktj
ttt
rktj
tt
tt
tt








 





Reflections and Refractions Laws Development Using the Electromagnetic Approach
48
SOLO REFLECTION & REFRACTION
The Boundary Conditions at
z=0 must be satisfied at all points
on the plane at all times, implies
that the spatial and time
variations of
This implies that
iE

iH

rE

rH

ik
 rk

tH

tE

tk

Boundary
21
ˆ n
z
x y
i
r
t
Plan of
incidence
Phase-Matching Conditions
      yxteEeEeE
z
rktj
t
z
rktj
r
z
rktj
i
ttrrii
,,,,
0
0
0
0
0
0 






  
      yxtrktrktrkt
z
tt
z
rr
z
ii ,,
000




ttri  
      yxrkrkrk
z
t
z
r
z
i ,
000



must be the same
Reflections and Refractions Laws Development Using the Electromagnetic Approach
49
SOLO REFLECTION & REFRACTION
tri nnn  sinsinsin 211 
iE

iH

rE

rH

ik
 rk

tH

tE

tk

Boundary
21
ˆ n
z
x y
i
r
t
Plan of
incidence
Phase-Matching Conditions
 
 







zyx
c
n
k
zyx
c
n
k
ttttttt
irirrrr
ˆcossinˆsinsinˆcos
ˆcossinˆsinsinˆcos
2
1




 
 














yyx
c
n
rk
yx
c
n
rk
y
c
n
rk
ttt
z
t
irr
z
r
i
z
i
ˆsinsincos
sinsincos
sin
2
0
1
0
1
0






      yxrkrkrk
z
t
z
r
z
i ,
000



2

  tr
ttri  
x
y
Coplanar
Snell’s Law
 






zzyyxxr
zy
c
n
k iiii
ˆˆˆ
ˆcosˆsin1



Given:
Let find:
Reflections and Refractions Laws Development Using the Electromagnetic Approach
50
SOLO REFLECTION & REFRACTION
Second way of writing phase-matching equations
ri  
11
22
2
1
1
2
sin
sin





v
v
n
n
t
iRefraction
Law
Reflection
Law
Phase-Matching Conditions
 






zzyyxxr
zy
c
n
k iiii
ˆˆˆ
ˆcosˆsin1



 
 







zyx
c
n
k
zyx
c
n
k
ttttttt
irirrrr
ˆcossinˆsinsinˆcos
ˆcossinˆsinsinˆcos
2
1




    
    







ynnyn
c
kkz
ynnyn
c
kkz
ittrti
irrrri
ˆsinsinsinˆcosˆ
ˆsinsinsinˆcosˆ
122
111






ttri  
We can see that
   










 tri
tiri kkzkkz 0ˆˆ

















tri
tri
tr
nnn sinsinsin
2/
211
iE

iH

rE

rH

ik
 rk

tH

tE

tk

Boundary
21
ˆ n
z
x y
i
r
t
Plan of
incidence
Reflections and Refractions Laws Development Using the Electromagnetic Approach
51
SOLO REFLECTION & REFRACTION
ri  
11
22
2
1
1
2
sin
sin





v
v
n
n
t
iRefraction
Law
Reflection
Law
Phase-Matching Conditions (Summary)
ttri  
   










 tri
tiri kkzkkz 0ˆˆ

















tri
tri
tr
nnn sinsinsin
2/
211
iE

iH

rE

rH

ik
 rk

tH

tE

tk

Boundary
21
ˆ n
z
x y
i
r
t
Plan of
incidence
      yxrkrkrk
z
t
z
r
z
i ,
000



      yxtrktrktrkt
z
tt
z
rr
z
ii ,,
000




Vector
Notation
Scalar
Notation
Reflections and Refractions Laws Development Using the Electromagnetic Approach
52
SOLO REFLECTION & REFRACTION
iE

iH

rE
rH

ik
 rk

tH

tE

tk

Boundary
21
ˆ n
z
x y
i
r
t
i r
t
tH

tE

tk

rH

rk

rE

iH

iE

ik

21
ˆ n
Boundary
Plan of
incidence
ti
ti
i
r
nn
nn
E
E
r








coscos
coscos
2
2
1
1
2
2
1
1
0
0











ti
i
i
t
nn
n
E
E
t






coscos
cos2
2
2
1
1
1
1
0
0










For most of media μ1= μ2 ,
and using refraction law: 1
2
sin
sin
n
n
t
i



 
 ti
ti
i
r
E
E
r














sin
sin21
0
0
 ti
it
i
t
E
E
t













sin
cossin221
0
0
Assume is normal to plan of incidence
(normal polarization)
E

xEExEExEE ttrrii
ˆ&ˆ&ˆ 000000  

Reflections and Refractions Laws Development Using the Electromagnetic Approach
Fresnel Equations
See full development in P.P.
“Reflection & Refractions”
53
SOLO REFLECTION & REFRACTION
iE

iH

rE

rH

ik
 rk

tH

tE

tk

Boundary
21
ˆ n
z
x y
i
r
t
i r
t
tH

tE

tk

rH

rk

rE

iH

iE

ik

21
ˆ n
Boundary
Plan of
incidence
Assume is parallel to plan of incidence
(parallel polarization)
E

 
 
 zyEE
zyEE
zyEE
tttt
rrrr
iiii
ˆsinˆcos
ˆsinˆcos
ˆsinˆcos
0||0
0||0
0||0









ti
ti
i
r
nn
nn
E
E
r








coscos
coscos
1
1
2
2
1
1
2
2
||0
0
||









ti
i
i
t
nn
n
E
E
t






coscos
cos2
1
1
2
2
1
1
||0
0
||








For most of media μ1= μ2 ,
and using refraction law: 1
2
sin
sin
n
n
t
i



 
 ti
ti
i
r
E
E
r












tan
tan21
||0
0
||
   titi
it
i
t
E
E
t











cossin
cossin221
||0
0
||
Reflections and Refractions Laws Development Using the Electromagnetic Approach
Fresnel Equations
See full development in P.P.
“Reflection & Refractions”
54
SOLO REFLECTION & REFRACTION
ti
ti
i
r
nn
nn
E
E
r








coscos
coscos
1
1
2
2
1
1
2
2
||0
0
||









ti
i
i
t
nn
n
E
E
t






coscos
cos2
1
1
2
2
1
1
||0
0
||








ti
ti
i
r
nn
nn
E
E
r








coscos
coscos
2
2
1
1
2
2
1
1
0
0











ti
i
i
t
nn
n
E
E
t






coscos
cos2
2
2
1
1
1
1
0
0










The equations of reflection and refraction ratio
are called Fresnel Equations, that first
developed them in a slightly less general form in
1823, using the elastic theory of light.
Augustin Jean Fresnel
1788-1827
The use of electromagnetic approach to
prove those relations, as described above, is
due to H.A. Lorentz (1875)
Reflections and Refractions Laws Development Using the Electromagnetic Approach
Hendrik Antoon Lorentz
1853-1928
See full development in P.P.
“Reflection & Refractions”
Return to TOC
55
IR Radiometric QuantitiesSOLO
 RTA DA
 2
cm  2
cm
TARGET
SOURCE
DETECTOR
RECEIVER
Radiation Flux Power  W
Spectral Radial Power 








m
W


Irradiance 







 2
mc
W
A
E
Spectral Radiant
Emittance 








mmc
WM
M

 2
Radiant Intensity









str
W
I
Spectral Radiant
Intensity









mstr
WI
I


Radiance 








strmc
W
A
I
L 2
cos
Spectral Radiance 








mstrmc
WL
L

 2
Radiant Emittance








 2
mc
W
A
M
Spectral
Irradiance 








mmc
WE
E

 2
 

T
T
dttS
T
S
0
1
lim

Irradiance is the time-
average of the Poynting
vector
Return to TOC
56
Physical Laws of RadiometrySOLO
Plank’s Law
  1/exp
1
2
5
1


Tc
c
M
BB


Plank 1900
Plank’s Law applies to blackbodies; i.e. perfect radiators.
The spectral radial emittance of a blackbody is given by:
 
KT
KWk
Wh
kmc
Kmkhcc
mcmWchc



ineTemperaturAbsolute-
constantBoltzmannsec/103806.1
constantPlanksec106260.6
lightofspeedsec/458.299792
10439.1/
107418.32
23
234
4
2
4242
1










MAX
PLANCK
(1858 - 1947)
Plank’s Law
57
Physical Laws of RadiometrySOLO
Plank’s Law
  1/exp
1
2
5
1


Tc
c
M
BB


Plank 1900
Plank’s Law applies to blackbodies; i.e. perfect radiators.
The spectral radial emittance of a blackbody is given by:
MAX
PLANCK
(1858 - 1947)
Plank’s Law
58
Physical Laws of Radiometry (Continue -1)SOLO
Wien’s Displacement Law
0


d
Md
BB
Wien 1893
from which:
The wavelength for which the spectral emittance of a blackbody reaches the maximum
is given by:
m
KmTm

  2898 Wien’s Displacement Law
Stefan-Boltzmann Law
Stefan – 1879 Empirical - fourth power law
Boltzmann – 1884 Theoretical - fourth power law
For a blackbody:
   
    



















42
12
32
45
2
4
0 2
5
1
0
10670.5
15
2
:
1/exp
1
Kcm
W
hc
k
cm
W
Td
Tc
c
dMM
BBBB






LUDWIG
BOLTZMANN
(1844 - 1906)
WILHELM
WIEN
(1864 - 1928)
Stefan-Boltzmann Law
JOSEF
STEFAN
(1835 – 1893)
59
Physical Laws of Radiometry (Continue -1a)SOLO
Black Body Emittance M [W/m2]
M (300ºK) 5.86 121
M (301ºK) - M (300ºK) 0.22 2
M (600ºK) 1,719 1,555
M (601ºK) - M (600ºK) 17 7
3 – 5 µm 8 - 12 µm
60
Physical Laws of Radiometry (Continue -2)SOLO
Emittance of Real Bodies (Gray Bodies)
For real (gray) bodies:
BB
MM  
- Directional spectral emissivity is a measure of how closely the flux
radiated from a given temperature radiator approaches that from a
blackbody at the same temperature
  ,


BB
M
M
61
Physical Laws of Radiometry (Continue -3)SOLO
Kirchhoff’s Law
rM
iE aE
tM
Gustav Robert
Kirchhoff
1824-1887
- Incident IrradianceiE
- Absorbed IrradianceaE
- Reflected Radiant ExcitancerM
- Transmitted Radiant ExcitancetM
Law of Conservation of Energy: trai MMEE 
  

i
t
i
r
i
a
E
M
E
M
E
E
11 
i
a
E
E
: - fraction of absorbed energy (absorptivity)
i
r
E
M
: - fraction of reflected energy (reflectivity)
i
t
E
M
: - fraction of transmitted energy (transmissivity)
Opaque body (no transmission): 01  
Blackbody (no reflection or transmission): 0&01  
Sharp boundary (no absorption): 01  
62
Physical Laws of Radiometry (Continue -4)SOLO
Kirchhoff’s Law (Continue – 1)
Gustav Robert
Kirchhoff
1824-1887
Kirchhoff’s Law (1860) states that, for any temperature and any
wavelength, the emissivity of an opaque body in an isothermal
enclosure is equal to it’s absorptivity.
This is because if the body will radiate to the surrounding less than it absorbs it’s
temperature will rise above the surrounding and will be a transfer of energy from a
cold surrounding to a hot body contradicting the second law of thermodynamics.
   TT   
222
,, T
2A
111
,, T
1A
63
Physical Laws of Radiometry (Continue -5)SOLO
Lambert’s Law
Johann Heinrich
Lambert
1728 - 1777
http://www-groups.dcs.st-andrews.ac.uk/~history/Biographies/Lambert.html
A Lambertian Surface is defined as a surface from which the radiance
L [W/(cm2 str)] is independent of the direction of radiation.

dr



d
rsin
  
2
sin
r
drdr
d


A
cosAAn 

z
x
y
  0
2
cos
, L
A
L 





   coscos, 00 IALI 


 Lambert’s Law
0
2
0
2/
0
00 sincoscos LddLdL
A
M 




  
The Radiant Intensity from a Lambertian Surface is
The Radiant Emittance (Exitance) from
a Lambertian Surface is
64
Physical Laws of Radiometry (Continue -6)SOLO
Transfer of Radiant Energy
We have two bodies 1 and 2.
The radiant power (radiance) transmitted from 1 to 2 is:
2
12
22
22
211
12
2
1
cos
&
cos R
Ad
d
strcm
W
A
L











1A
1dA
1 12R
Radiating
(Source)
Surface
2A
2dA
Receiving
Surface
2
2d
  
2
12
22111
12
coscos
R
AdAdL
d


The total radiant power (radiance) received at surface A2 from A1 is:
 
2 1
212
12
211
12
coscos
A A
AdAd
R
L 
65
Physical Laws of Radiometry (Continue -7)SOLO
Transfer of Radiant Energy (Continue – 1)
Define the projected areas:
and the solid angles:
222111 cos&cos AdAdAdAd nn  
1A
1dA
1 12R
Radiating
(Source)
Surface
2A
2dA
Receiving
Surface
2
2d
2
12
22
22
12
11
1
cos
&
cos
R
Ad
d
R
Ad
d

 1A
1dA
1 12R
Radiating
(Source)
Surface
2A
2dA
Receiving
Surface
2
1d
then:
  
2
12
211
2
12
22111
12
coscos
R
AdAdL
R
AdAdL
d nn


12121112  dAdLdAdLd nn
The Power is the product of the Radiance, the projected Area, and the Solid Angle
using the other area.
66
Physical Laws of Radiometry (Continue -8)SOLO
Transfer of Radiant Energy (Continue – 2)
Optics
R f
ATARGET
ADETECTOR
AOPTICS
TO, OD,OT , DO,
For an Optical System define:
ATARGET – Target Area
ADETECTOR – Detector Area
AOPTICS – Optics Area
R – Range from Target to Optics
f – Focal Length (from Optics to Detector)
ΩO,T – solid angle of Optics as seen from the Target
2,
R
AOPTICS
TO 
ωT,O – solid angle of Target as seen from the Optics
2,
R
ATARGET
OT 
ΩD,O – solid angle of Detector as seen from the Optics 2,
f
ADETECTOR
OD 
ωO,D – solid angle of Optics as seen from the Detector 2,
f
ADETECTOR
DO 
67
Physical Laws of Radiometry (Continue -9)SOLO
Transfer of Radiant Energy (Continue – 3)
Optics (continue – 1)
R f
ATARGET
ADETECTOR
AOPTICS
TO, OD,OT , DO,
For the Figure we can see that:
ODOT ,, 
22
f
A
R
A DETECTORTARGET

Also we found that:
DODETECTOROTOPTICS
ODOPTICSTOTARGET
ALAL
ALAL
OTOD
,,
,,
,,





68
Physical Laws of Radiometry (Continue -10)SOLO
Transfer of Radiant Energy (Continue – 4)
Optics (continue – 2)
R f
ATARGET
ADETECTOR
AOPTICS
TO, OD,OT , DO,
R f
ATARGET
ADETECTOR
AOPTICS
TO, OD,OT , DO,
R f
ATARGET
ADETECTOR
AOPTICS
TO, OD,OT , DO,
R f
ATARGET
ADETECTOR
AOPTICS
TO, OD,OT , DO,
TOTARGETAL ,
ODOPTICSAL ,
OTOPTICSAL ,
DODETECTORAL ,
69
Physical Laws of Radiometry (Continue -11)SOLO
Transfer of Radiant Energy (Continue – 5)
Optics (continue – 3)
  2
,
R
A
AL
AL
TARGET
DETECTOR
DTDETECTOROpticsNo

 
2
,
f
A
AL
AL
OPTICS
DETECTOR
DODETECTOROpticsWith

 
R f
ATARGET
ADETECTOR
AOPTICS
TO, OD,OT , DO,
R
ATARGET
ADETECTOR
TD,
DT ,
• IR Detector without Optics
• IR Detector with Optics
    2
#
/
2
4
0
4
4 0#
f
AL
f
D
AL DETECTOR
Dff
DETECTOR




The Optics increases the energy collected by the Detector
since DTDO ,,  
22
#
2
4 R
A
ff
A TARGETOPTICS


OpticsNoOpticsWith 
70
Physical Laws of Radiometry (Continue -12)SOLO
Targets
The parts of the aircraft that are especially hot are:
• The exhaust nozzle of the jet engine
• The hot exhaust gas area, or the plume
• The areas in which aerodynamic heating is the highest
71
Physical Laws of Radiometry (Continue -13)SOLO
Targets
72
Physical Laws of Radiometry (Continue -14)SOLO
Targets
73
Physical Laws of Radiometry (Continue -15)SOLO
Targets
74
Physical Laws of Radiometry (Continue -16)
75
Physical Laws of Radiometry (Continue -17)SOLO
Targets (continue – 1)
• The exhaust nozzle of the jet engine
The exhaust nozzle can be regarded as a gray body with ε = 0.9.
Example: Turbojet Engine 4-P&W JT4A-9
2
3660 cmANOZZLE 
rafterburnewithCT 
538
  24124
207.22735381067.59.0 
 cmWTM 
We are interested only in the band 3 μm ≤ λ ≤ 5 μm.
By numerically integration or using infrared radiation
calculators we obtain: 397.0
811
4
5
3



KT
BB
T
dM



Hence:
  2
876.0207.2397.053 
 cmWmmM 
In a tail-on situation the radiant intensity is:
  1
1020
3660876.0
53 








 strWA
M
mmI NOZZLE
Lambertian


76
Physical Laws of Radiometry (Continue -18)SOLO
Targets (continue – 2)
• The plume
The plume is characterized by the radiant emittance of the hot gases that are expanding
into the atmosphere after passing through the exhaust nozzle.
The products of combustion are H2O, CO2, some times CO (incomplete combustion),
OH, HF, HCl.
The infrared emission is produced by changes in the energy contained in the molecular
vibrations and rotations, only at certain frequencies..
77
Physical Laws of Radiometry (Continue -19)SOLO
Targets (continue – 3)
• The plume (continue – 1)
78
Physical Laws of Radiometry (Continue -20)SOLO
Targets (continue – 4)
• The plume (continue – 2)
Breathing engines have exhaust plume temperatures of
K
600450  Cruise flight
K
800600  Maximum Un-augmented Thrust
K
15001000  Augmented (After burner) Thrust
Rockets have exhaust plume temperatures of
K
75002500  Liquid propellant
K
35001700  Solid propellant
Example
Assume:
  mm  55.433.45.0 
KCCTPLUME

643273370 
then:
  2222
55.4
33.4
1075.1105.35.0 


  cmWcmWdMM


 
For a plume surface of APLUME = 10000 cm2 = 1 m2 the Radiant Intensity is:
  1
42
8.27
101075.1
55.433.4 









 strWA
M
mmI PLUME
Lambertian


79
Physical Laws of Radiometry (Continue -21)SOLO
Targets (continue – 5)
• Aerodynamic Heating
The Target body is heated by the compression and friction of the air against it’s
surface and by friction. Assuming a negligible friction effect and an adiabatic
compression the Target skin temperature is given by:
  


 
 2
0
2
1
1, MachrMachHTT

- air temperature at altitude HTARGET and mach number Mach MachHT ,0
- recovery factorr
vp CC / - specific heat ratio = 1.4 for air
Example
Mach = 2.0, HTARGET = 5000 m
  27.0,250.2,50000  KMachmHT 
then KT 
4142
2
14.1
82.01250 2





 

    23
5
3
1066.1414 


  cmWdKTMM


  
assume 2
15mATARGET 
  1
43
3.79
10151066.1
53 









 strWA
M
mmI TARGET
Lambertian


80
Physical Laws of Radiometry (Continue -22)
81
Physical Laws of Radiometry (Continue -23)
82
Physical Laws of Radiometry (Continue -24)SOLO
Targets (continue – 6)
• Aerodynamic Heating (continue – 1)
EmissivityReflectanceAbsorptanceMaterial
.04.81.19Polished
Aluminium
.04.63.37Unpolished
Aluminium
.18.43.57Titanium
.05.60.40Polished Stainless
Steel
.88.79.21White Paint
.92.05.95Black Paint
.27.71.29Aluminum Paint
83
Physical Laws of Radiometry (Continue -25)SOLO
Sun, Background and Atmosphere
84
Physical Laws of Radiometry (Continue -26)SOLO
Sun, Background and Atmosphere (continue – 1)
The spectrum distribution of the sun radiation is like a black body with a temperature of
T = 5900 °K
From Wien’s Law the maximum of Mλ is at
m
T
m  49.0
5900
28982898

This is almost at the middle of the visible spectrum mm  75.040.0 
Loss by Scattering
85
Physical Laws of Radiometry (Continue -27)SOLO
Sun, Background and Atmosphere (continue – 2)
Atmosphere
Atmosphere affects electromagnetic radiation by
   
3.2
1
1 






R
kmRR 
• Absorption
• Scattering
• Emission
• Turbulence
Atmospheric Windows:
Window # 2: 1.5 μm ≤ λ < 1.8 μm
Window # 4 (MWIR): 3 μm ≤ λ < 5 μm
Window # 5 (LWIR): 8 μm ≤ λ < 14 μm
For fast computations we may use the transmittance equation:
R in kilometers.
Window # 1: 0.2 μm ≤ λ < 1.4 μm
includes VIS: 0.4 μm ≤ λ < 0.7 μm
Window # 3 (SWIR): 2.0 μm ≤ λ < 2.5 μm
86
Physical Laws of Radiometry (Continue -28)SOLO
Sun, Background and Atmosphere (continue – 3)
Atmosphere Absorption over Electromagnetic Spectrum
87
Physical Laws of Radiometry (Continue -29)SOLO
Sun, Background and Atmosphere (continue – 4)
Rain Attenuation over Electromagnetic Spectrum
FREQUENCY GHz
ONE-WAYATTENUATION-Db/KILOMETER
WAVELENGTH
88
Physical Laws of Radiometry (Continue -30)SOLO
Sun, Background and Atmosphere (continue – 3)
Add scanned Figure from McKenzie
Atmosphere (continue – 1)
89
GEOMETRICAL OPTICSSOLO
http://en.wikipedia.org/wiki/Optics
From “Cyclopaedia” or
“An Universal Dictionary
of Art and Science”
Published by Ephraim Chambers
In London in 1728
Return to TOC
90
SOLO
DERIVATION OF EIKONAL EQUATION
Foundation of Geometrical Optics
Derivation from Maxwell Equations
Consider a general time-harmonic field:
               
               tjrHtjrHtjrHaltrH
tjrEtjrEtjrEaltrE




exp,exp,
2
1
exp,Re,
exp,exp,
2
1
exp,Re,
*
*


in a non-conducting, far-away from the sources  0,0  eeJ 

No assumption of isotropy of the medium are made; i.e.:     rr   ,
Far from sources, in the High Frequencies we can write using the phasor notation:
     
     
00000 &,&, 00



 kerHrHerErE rSjkrSjk
Note
The minus sign was chosen to get a progressive wave:
End Note
     
       
 SktjSktj
erHaltrHerEaltrE 00
00 Re,&Re, 
 

James Clerk Maxwell
(1831-1879)
See full development in P.P.
“Foundation of Geometrical Optics”
91
SOLO
From those equations we have
Foundation of Geometrical Optics
       
  Sjktj
SjkSjktjSjktjtj
eeESjkE
EeeEeeEeerE
0
000
000
000,







      
Sjk
SjktjSjktjtj
eHjk
eHejeHejerH
t
0
00
0
00
0
0
00
000
1
1
,








 
from which
  0
00
0000 HjkESjkEF



and
0
1 0
0
0
0
00
0


k
E
jk
HES


DERIVATION OF EIKONAL EQUATION (continue – 2)
Derivation from Maxwell Equations (continue – 2)
92
SOLO
From Maxwell equations we also have
Foundation of Geometrical Optics
from which
and
DERIVATION OF EIKONAL EQUATION (continue – 3)
Derivation from Maxwell Equations (continue – 3)
       
  Sjktj
SjkSjktjSjktjtj
eeHSjkH
HeeHeeHeerH
0
000
000
000,







      
Sjk
SjktjSjktjtj
eEjk
eEejeEejerE
t
0
00
0
00
0
0
00
000
1
1
,








 
  0
00
0000 EjkHSjkHA



0
1 0
0
0
0
00
0


k
H
jk
EHS


93
SOLO
DERIVATION OF EIKONAL EQUATION (continue – 4)
Foundation of Geometrical Optics
Derivation from Maxwell Equations (continue – 4)
We have Faradey (F), Ampére (A), Gauss Electric (GE), Gauss Magnetic (GM)
equations:
 
 
   
   










0
0
HGM
EGE
EjHA
HjEF







 
 
 
 









































0&0
2
0 0
0
ee
e
e
J
c
k
j
t
HB
ED
BGM
DGE
J
t
D
HA
t
B
EF

















André-Marie Ampère
1775-1836
Michael Faraday
1791-1867
Karl Friederich Gauss
1777-1855
94
SOLO
From Maxwell equations we also have
Foundation of Geometrical Optics
from which
and
DERIVATION OF EIKONAL EQUATION (continue – 4)
Derivation from Maxwell Equations (continue – 4)
         
  0
,
0
000
0000
000




Sjktj
SjkSjktjSjktjtj
eeESjkEE
EeeEeeEeerE




  00000  ESjkEEGE 
0
1 0
00
0
0










k
EE
jk
ES


We also have
from which
and
         
  0
,
0
000
0000
000




Sjktj
SjkSjktjSjktjtj
eeHSjkHH
HeeHeeHeerH




  00000  HSjkHHGM 
0
1 0
00
0
0










k
HH
jk
HS


95
SOLO
To summarize, from k0 → ∞ we have
Foundation of Geometrical Optics
DERIVATION OF EIKONAL EQUATION (continue – 5)
Derivation from Maxwell Equations (continue – 5)
  00
00
0  HESF


  00
00
0  EHSA


  00  ESGE
  00  HSGM
We will use only the first two equations, because the last two may be obtained from
the previous two by multiplying them (scalar product) by .S
96
SOLO Foundation of Geometrical Optics
DERIVATION OF EIKONAL EQUATION (continue – 6)
Derivation from Maxwell Equations (continue – 6)
  00
00
0  HESF


  00
00
0  EHSA


From the second equation we obtain
0
00
0 HSE 


And by substituting this in the first equation
  00 0
00
00
00
0
00









 HHSSHHSS






But        
2
00
0
2
0
0
00
n
HSHSSSHSHSS





97
SOLO Foundation of Geometrical Optics
DERIVATION OF EIKONAL EQUATION (continue – 7)
Derivation from Maxwell Equations (continue – 7)
Finally we obtain
   00
22
 HnS
or
   zyxn
z
S
y
S
x
S
ornS ,,0 2
222
22

























S is called the eikonal (from Greek έίκων = eikon → image) and the equation is
called Eikonal Equation.
Return to TOC
98
SOLO Foundation of Geometrical Optics
THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS
From Max Born & Emil Wolf, “Principles of Optics”, 6th Ed., Ch. 3
     
     
00000 &,&, 00



 kerHrHerErE rSjkrSjk
We found the following relations
  00
00
0  HESF


  00
00
0  EHSA


  00  ESGE
  00  HSGM
We can see that the vectors are perpendicular in the same way as the
vectors for the planar waves (where is the Poynting vector).
SHE ,, 00
SHE

,, 00 00 HES


S
0E
0H
99
SOLO Foundation of Geometrical Optics
THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS
(continue – 1)
       
     
                 
            







T
T
T
TT
e
dttjrErErEtjrE
T
dttjrEtjrEtjrEtjrE
T
dttjrEal
T
dttrEtrE
T
dttrDtrE
T
w
0
2**2
0
**
0
2
00
2exp,,,22exp,
4
1
exp,exp,exp,exp,
4
1
exp,Re
1
,,
1
,,
1










But
      
       0
2
2exp
2exp
2
1
2exp
1
0
2
2exp
2exp
2
1
2exp
1
0
0
0
0








T
T
T
T
T
T
Tj
Tj
tj
Tj
dttj
T
Tj
Tj
tj
Tj
dttj
T










Therefore
       
   
   rErEerEerEdt
T
rErEw rSjkrSjk
T
e
 *
00
*
00
0
*
22
1
,,
2
00



 
Let compute the time averages of the electric and magnetic energy densities
100
SOLO Foundation of Geometrical Optics
THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS
(continue – 2)
In the same way
       
   
   rErEerEerEdt
T
rErEw rSjkrSjk
T
e
 *
00
*
00
0
*
22
1
,,
2
00



 
           rHrHdttrHtrH
T
dttrBtrH
T
w
TT
m
*
00
00
2
,,
1
,,
1 
  

Using the relations
  0
00
0 HSEA 


  0
00
0 ESHF 


since and are real values , where * is the
complex conjugate, we obtain
S )**,( SS 
             
             
                e
m
e
wrHSrErHSrErHSrE
rESrHrESrHrHrHw
rHSrErHSrErErEw



*
00
*
0
*
00
**
0
*
00
*
0
00
0
*
00
*
00
*
0
00
0
*
00
2
1
2
1
2
1
2
1
22
2
1
22







S
0E
0H
101
SOLO Foundation of Geometrical Optics
THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS
(continue – 3)
Therefore
    *
00
2
1
rHSrEww me


Within the accuracy of Geometrical Optics, the time-averaged electric and
magnetic energy densities are equal.
            *
0000
*
00
22
rHSrErHrHrErEwww me



The total energy will be:
The Poynting vector is defined as:      trHtrEtrS ,,:,


            
          
  

T
tjtjtjtj
T
tjtj
T
dterHerHerEerE
T
dterHerEal
T
dttrHtrE
T
trHtrES
0
**
00
,,
2
1
,,
2
11
,,Re
1
,,
1
,,





                
        
 
,,,,
4
1
,,,,,,,,
4
11
**
0
2****2
rHrErHrE
dterHrErHrErHrEerHrE
T
T
tjtj

  
        
        rHrErHrE
erHerEerHerE rSjkrSjkrSjkrSjk
0
*
0
*
00
)(
0
)(*
0
)(*
0
)(
0
4
1
4
1 0000

 
The time average of the Poynting vector is:
John Henry Poynting
1852-1914
102
SOLO Foundation of Geometrical Optics
THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS
(continue – 3)
Using the relations
  0
00
0 HSEA 


  0
00
0 ESHF 


                  



 rHrHSrESrErHrErHrES 0
*
0
*
00
00
0
*
0
*
00
222
1
4
1 


we obtain
       









*
00
0
0
*
0
0
0
*
0
*
00
00
22222
1
HHSHSHESEEES




            *
0000
*
00
22
rHSrErHrHrErEwww me



we obtain
Using
  wS
n
c
wwSS me  2
00
00
22
1




00
2
00
&
1



 nc
103
SOLO Foundation of Geometrical Optics
THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS
(continue – 4)
Using   22
nS  Eikonal Equation
we obtain nS 
Define snS
n
S
S
S
s ˆ:ˆ 





We have swvwS
n
c
S
n
c
v
ˆ
2
1
2 2



sˆ
constS 
constdSS 
sˆ
r

0
ˆs
0r

A Bundle of Light Rays
104
SOLO Foundation of Geometrical Optics
THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS
(continue – 5)
swvwS
n
c
S
n
c
v
ˆ
2
1
2 2



sˆ
constS 
constdSS 
sˆ
r

0
ˆs
0r

From this equation we can see that average Poynting vector is the direction of
the normal to the geometrical wave-front , and its magnitude is proportional to the
product of light velocity v and the average energy density, therefore we say that
defines the direction of the light ray.
S
sˆ
sˆ
Suppose that the vector describes the light path, then the unit vector
is given by
r

sˆ
sd
rd
rd
rd
s
ray
ray
ray



ˆ
where is the differential of an arc length along the ray pathrayrdsd


105
SOLO Foundation of Geometrical Optics
THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS
(continue – 6)
Let substitute in and differentiate it with respect to s.
sd
rd
rd
rd
s
ray
ray
ray



ˆ rayrdsd


 S
sd
d
sd
rd
n
sd
d





 ray

 S
sd
rd

ray

 
sd
rd
f
sd
zd
zd
fd
sd
yd
yd
fd
sd
xd
xd
fd
sd
zyxfd


,,
  SS
n

1 S
sd
rd
n 
ray

         ABBAABBABA


AB


     AAAAAA


2
1
SA 

        SSSSSSSS 
 
0
2
1 SS
n

2
1
2
nSS  2
2
1
n
n

n
106
SOLO Foundation of Geometrical Optics
THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS
(continue – 7)
Therefore we obtained
  nS
sd
d

and
n
sd
rd
n
sd
d







 ray

We obtained a ordinary differential equation of 2nd order that enables to find the
trajectory of an optical ray , giving the relative index and the initial
position and direction of the desired ray.
 srray

 zyxn ,,
  00 rrray

 0
ˆs
sˆ
constS 
constdSS 
sˆ
r

0
ˆs
0r

We can transform the 2nd order differential equation in two 1st order
differential equations by the following procedure. Define
Ssn
sd
rd
np  ˆ:
ray


We obtain
  0
ˆ0 snpnp
sd
d


  0
ˆ0 snpnp
sd
d


Return to TOC
107
SOLO
The Three Laws of Geometrical Optics
1. Law of Rectilinear Propagation
In an uniform homogeneous medium the propagation of an optical disturbance is in
straight lines.
2. Law of Reflection
An optical disturbance reflected by a surface has the
property that the incident ray, the surface normal,
and the reflected ray all lie in a plane,
and the angle between the incident ray and the
surface normal is equal to the angle between the
reflected ray and the surface normal:
2v
1v
Refracted Ray
21
ˆ n
2n
1n
i
t
Reflected Ray
21
ˆ n
2n
1n
i r
3. Law of Refraction
An optical disturbance moving from a medium of
refractive index n1 into a medium of refractive index
n2 will have its incident ray, the surface normal between
the media , and the reflected ray in a plane,
and the relationship between angle between the incident
ray and the surface normal θi and the angle between the
reflected ray and the surface normal θt given by
Snell’s Law: ti nn  sinsin 21 
ri  
“The branch of optics that addresses the limiting case λ0 → 0, is known as Geometrical Optics, since in
this approximation the optical laws may be formulated in the language of geometry.”
Max Born & Emil Wolf, “Principles of Optics”, 6th Ed., Ch. 3
Foundation of Geometrical Optics
Return to TOC
108
SOLO Foundation of Geometrical Optics
Fermat’s Principle (1657)
1Q
1P
2P
2Q
1Q
2Q
1S
SdSS  12
 2PS
 1PS
2'Q
rd

sˆ
sˆ
The Principle of Fermat (principle of the shortest optical path) asserts that the optical
length
of an actual ray between any two points is shorter than the optical ray of any other
curve that joints these two points and which is in a certai neighborhood of it.
An other formulation of the Fermat’s Principle requires only Stationarity (instead of
minimal length).

2
1
P
P
dsn
An other form of the Fermat’s Principle is:
Princple of Least Time
The path following by a ray in going from one point in
space to another is the path that makes the time of transit of
the associated wave stationary (usually a minimum).
The idea that the light travels in the shortest path was first put
forward by Hero of Alexandria in his work “Catoptrics”,
cc 100B.C.-150 A.C. Hero showed by a geometrical method
that the actual path taken by a ray of light reflected from plane
mirror is shorter than any other reflected path that might be
drawn between the source and point of observation.
109
SOLO
1. The optical path is reflected at the boundary between two regions
   
0
21
21 







 rd
sd
rd
n
sd
rd
n
rayray 

In this case we have and21 nn 
   
  0ˆˆ
21
21 







 rdssrd
sd
rd
sd
rd rayray 

We can write the previous equation as:
i.e. is normal to , i.e. to the
boundary where the reflection occurs.
21
ˆˆ ss  rd

  0ˆˆˆ 2121  ssn
11
ˆsn
21
ˆsn
1121
ˆˆˆ snsn 
rd
   0ˆˆ 121  rdssn

Reflected Ray
21
ˆ n
1n
i r
REFLECTION & REFRACTION
Reflection Laws Development Using Fermat Principle
ri   Incident ray and Reflected ray are in the
same plane normal to the boundary.
This is equivalent with:
&
110
SOLO
2. The optical path passes between two regions with different refractive indexes
n1 to n2. (continue – 1)
   
0
21
21 







 rd
sd
rd
n
sd
rd
n
rayray 

where is on the boundary between the two regions andrd
    
sd
rd
s
sd
rd
s
rayray 2
:ˆ,
1
:ˆ 21


rd

22
ˆsn
11
ˆsn
1122
ˆˆˆ snsn 
  0ˆˆˆ 1122  rdsnsn

Refracted Ray
21
ˆ n
2n
1n i
t
Therefore is normal to .2211
ˆˆ snsn  rd

Since can be in any direction on the
boundary between the two regions
is parallel to the unit
vector normal to the boundary surface,
and we have
rd

2211
ˆˆ snsn  21
ˆ n
  0ˆˆˆ 221121  snsnn
We recovered the Snell’s Law from
Geometrical Optics
REFLECTION & REFRACTION
Refraction Laws Development Using Fermat Principle
ti nn  sinsin 21 
Incident ray and Refracted ray are in the
same plane normal to the boundary.
&
Return to TOC
111
SOLO
Plane-Parallel Plate
i
r
ri   r
t l
d
i
A
C
B
E
2n
1n
A single ray traverses a glass plate with parallel surfaces and emerges parallel to its
original direction but with a lateral displacement d.
Optics
   irriri lld  cossincossinsin 
r
t
l
cos








r
i
ritd



cos
cos
sinsin
ir nn  sinsin 0Snell’s Law







n
n
td
r
i
i
0
cos
cos
1sin



For small anglesi 






n
n
td i
0
1
112
SOLO
Plane-Parallel Plate (continue – 1)
t







r
i
i
n
n
td



cos
cos
1sin
1
2
1n

2n
i
r







r
i
i n
n
t
d
l


 cos
cos
1
sin 1
2
l
Two rays traverse a glass plate with parallel surfaces and emerge parallel to their
original direction but with a lateral displacement l.
Optics
   irriri lld  cossincossinsin 
r
t
l
cos








r
i
ritd



cos
cos
sinsin
ir nn  sinsin 0Snell’s Law







n
n
td
r
i
i
0
cos
cos
1sin










r
i
i n
n
t
d
l


 cos
cos
1
sin
0
For small anglesi 






n
n
tl 0
1
Return to TOC
113
SOLO
Prisms


2i1i
1t


 11 ti  
2t
 22 it  
Type of prisms:
A prism is an optical device that refract, reflect or disperse light into its spectral
components. They are also used to polarize light by prisms from birefringent media.
Optics - Prisms
2. Reflective
1. Dispersive
3. Polarizing
114
OpticsSOLO
Dispersive Prisms


2i1i
1t


 11 ti  
2t
 22 it  
   2211 itti  
21 it  
  21 ti
202 sinsin ti nn  Snell’s Law
10 n
    1
1
2
1
2
sinsinsinsin tit
nn   
     11
21
11
1
2 sincossin1sinsinsincoscossinsin ttttt nn   
Snell’s Law 110 sinsin ti nn  
11 sin
1
sin it
n
 
  1
2/1
1
221
2
sincossinsinsin iit
n   
     
1
2/1
1
221
1
sincossinsinsin iii
n
The ray deviation angle is
10 n
115
OpticsSOLO
Prisms


2i1i
1t


 11 ti  
2t
 22 it  
     
1
2/1
1
221
1
sincossinsinsin iii
n
116
OpticsSOLO
Prisms


2i1i
1t


 11 ti  
2t
 22 it  
     
1
2/1
1
221
1
sincossinsinsin iii
n
  21 ti
Let find the angle θi1 for which the deviation angle δ is minimal; i.e. δm.
This happens when

01
0
11
2
1

ii
t
i d
d
d
d
d
d






Taking the differentials
of Snell’s Law equations
22 sinsin tin  
11 sinsin ti n  
2222 coscos iitt dnd  
1111 coscos ttii dnd  
Dividing the equations

1
2
1
2
1
1
2
1
2
1
cos
cos
cos
cos


i
t
i
t
t
i
t
i
d
d
d
d








2
22
1
22
2
2
2
2
1
2
2
2
1
2
2
2
1
2
sin
sin
/sin1
/sin1
sin1
sin1
sin1
sin1
t
i
t
i
i
t
t
i
n
n
n
n



















1
1
2

i
t
d
d


21 it  
1
2
1

i
t
d
d


2
2
1
2
2
2
1
2
cos
cos
cos
cos
i
t
t
i




 21 ti  
1n
117
OpticsSOLO
Prisms


2i1i
1t


 11 ti  
2t
 22 it  
     
1
2/1
1
221
1
sincossinsinsin iii
n
We found that if the angle θi1 = θt2 the deviation angle δ is minimal; i.e. δm.
Using the Snell’s Law
equations
22 sinsin tin  
11 sinsin ti n   21 ti  
21 it  
This means that the ray for which the deviation angle δ is minimum passes through
the prism parallel to it’s base.


2i
1i
1t

m
 11 ti
 
2t
 22 it
 
21 ti   21 it  
Find the angle θi1 for
which the deviation
angle δ is minimal; i.e.
δm (continue – 1).
118
OpticsSOLO
Prisms
     
1
2/1
1
221
1
sincossinsinsin iii
n
Using the Snell’s Law 11 sinsin ti n  
21 it  
This equation is used for determining the refractive index of transparent substances.


2i
1i
1t

m
 11 ti
 
2t
 22 it
 
21 ti   21 it  
21 it  
  21 ti
21 ti  
m 
2/1  t
  12 im
  2/1   mi
  
2/sin
2/sin

 
 m
n
Find the angle θi1 for
which the deviation
angle δ is minimal; i.e.
δm (continue – 2).
119
OpticsSOLO
Prisms
The refractive index of transparent substances varies with the wavelength λ.
      
1
2/1
1
221
1
sincossinsinsin iii
n


2i1i
1t


 11 ti  
2t
 22 it  
120
OpticsSOLO
http://physics.nad.ru/Physics/English/index.htm
Prisms
υ [THz]λ0 (nm)Color
384 – 482
482 – 503
503 – 520
520 – 610
610 – 659
659 - 769
780 - 622
622 - 597
597 - 577
577 - 492
492 - 455
455 - 390
Red
Orange
Yellow
Green
Blue
Violet
1 nm = 10-9m, 1 THz = 1012 Hz
      
1
2/1
1
221
1
sincossinsinsin iii
n
In 1672 Newton wrote “A New Theory about Light and Colors” in which he said that
the white light consisted of a mixture of various colors and the diffraction was color
dependent.
Isaac Newton
1542 - 1727
121
SOLO
Dispersing Prisms
Pellin-Broca Prism
Abbe Prism
Ernst Karl
Abbe
1840-1905
At Pellin-Broca Prism an
incident ray of wavelength
λ passes the prism at a
dispersing angle of 90°.
Because the dispersing angle
is a function of wavelength
the ray at other wavelengths
exit at different angles.
By rotating the prism around
an axis normal to the page
different rays will exit at
the 90°.
At Abbe Prism the dispersing
angle is 60°.
Optics - Prisms
122
SOLO
Dispersing Prisms (continue – 1)
Amici Prism
Optics - Prisms
123
SOLO
Reflecting Prisms

2i
1i
1t

2t
E
B D
G
A
F C
BED 
180

360 ABEBEDADE
1
90 i
ABE  
2
90 t
ADE  

3609090 12
 it
BED 
12
180 it
BED   
  21
180 ti
BED
The bottom of the prism is a reflecting mirror
Since the ray BC is reflected to CD
DCGBCF 
Also
CGDBFC 
CDGFBC 
FBCt
 
901

CDGi
 
902
21 it  
202 sinsin ti nn  Snell’s Law
Snell’s Law 110 sinsin ti nn   21 ti     12 i
CDGFBC  ~
Optics - Prisms
124
SOLO
Reflecting Prisms
Porro Prism Porro-Abbe Prism
Schmidt-Pechan Prism
Penta Prism
Optics - Prisms
Roof Penta Prism
125
SOLO
Reflecting Prisms
Abbe-Koenig Prism
Dove Prism
Amici-roof Prism
Optics - Prisms
126
SOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Polarization can be achieved with crystalline materials which have a different index of
refraction in different planes. Such materials are said to be birefringent or doubly refracting.
Nicol Prism
The Nicol Prism is made up from
two prisms of calcite cemented
with Canada balsam. The
ordinary ray can be made to
totally reflect off the prism
boundary, leving only the
extraordinary ray..
Polarizing Prisms
Optics - Prisms
127
SOLO
Polarizing Prisms
A Glan-Foucault prism deflects polarized light
transmitting the s-polarized component.
The optical axis of the prism material is
perpendicular to the plane of the diagram.
A Glan-Taylor prism reflects polarized light
at an internal air-gap, transmitting only
the p-polarized component.
The optical axes are vertical in the plane of
the diagram.
A Glan-Thompson prism deflects the p-polarized
ordinary ray whilst transmitting the s-polarized
extraordinary ray.
The two halves of the prism are joined with
Optical cement, and the crystal axis are
perpendicular to the plane of the diagram.
Optics - Prisms
Return to TOC
128
OpticsSOLO
Lens Definitions
Optical Axis: the common axis of symmetry of an optical system; a line that connects all
centers of curvature of the optical surfaces.
FFL
First Focal
Point
Second Focal
Point
Principal Planes
Second Principal Point
First Principal Point
Light Rays from Left
EFL
BFL
Optical System
Optical Axis
Lateral Magnification: the ratio between the size of an image measured perpendicular
to the optical axis and the size of the conjugate object.
Longitudinal Magnification: the ratio between the lengthof an image measured along
the optical axis and the length of the conjugate object.
First (Front) Focal Point: the point on the optical axis on the left of the optical system
(FFP) to which parallel rays on it’s right converge.
Second (Back) Focal Point: the point on the optical axis on the right of the optical system
(BFP) to which parallel rays on it’s left converge.
129
OpticsSOLO
Definitions (continue – 1)
Aperture Stop (AS): the physical diameter which limits the size of the cone of radiation
which the optical system will accept from an axial point on the object.
Field Stop (FS): the physical diameter which limits the angular field of view of an
optical system. The Field Stop limit the size of the object that can be
seen by the optical system in order to control the quality of the image.
Entrance Pupil: the image of the Aperture Stop as seen from the object through the
elements preceding the Aperture Stop.
Exit Pupil: the image of the Aperture Stop as seen from an axial point on the
image plane.
A.S. F.S.
I
Aperture and Field Stops
Entrance
pupil
Exit
pupil
A.S.
I
xpE
npE
Chief
Ray
Entrance and Exit pupils
Entrance
pupilExit
pupil
A.S. I
xpE
npE
Chief
Ray
130
OpticsSOLO
Definitions (continue – 2)
Aperture Stop (AS): the physical diameter which limits the size of the cone of radiation
which the optical system will accept from an axial point on the object.
Field Stop (FS): the physical diameter which limits the angular field of view of an
optical system. The Field Stop limit the size of the object that can be
seen by the optical system in order to control the quality of the image.
Entrance Pupil: the image of the Aperture Stop as seen from the object through the
elements preceding the Aperture Stop.
Exit Pupil: the image of the Aperture Stop as seen from an axial point on the
image plane.
Entrance
pupil
Exit
pupil
A.S.
I
Chief
Ray
Marginal
Ray
Exp Enp
131
OpticsSOLO
Definitions (continue – 3)
Principal Planes: the two planes defined by the intersection of the parallel incident rays
entering an optical system with the rays converging to the focal points
after passing through the optical system.
FFL
First Focal
Point
Second Focal
Point
Principal Planes
Second Principal Point
First Principal Point
Light Rays from Left
EFL
BFL
Optical System
Optical Axis
Principal Points: the intersection of the principal planes with the optical axes.
Nodal Points: two axial points of an optical system, so located that an oblique ray
directed toward the first appears to emerge from the second, parallel
to the original direction. For systems in air, the Nodal Points coincide
with the Principal Points.
Cardinal Points: the Focal Points, Principal Points and the Nodal Points.
132
OpticsSOLO
Definitions (continue – 4)
Relative Aperture (f# ): the ratio between the effective focal length (EFL) f to Entrance
Pupil diameter D.
Numerical Aperture (NA): sine of the half cone angle u of the image forming ray bundles
multiplied by the final index n of the optical system.
If the object is at infinity and assuming n = 1 (air):
Dff /:# 
unNA sin: 
#
1
2
1
2
1
sin
ff
D
uNA 






EFL
EFL
D
u
Last Principal Plane of the
Optical System (Spherical)
133
OpticsSOLO
Perfect Imaging System
• All rays originating at one object point reconverge to one image point after passing
through the optical system.
• All of the objects points lying on one plane normal to the optical axis are imaging
onto one plane normal to the axis.
• The image is geometrically similar to the object.
Object Image
SystemOptical
Object Image
SystemOptical
Object Image
SystemOptical
134
OpticsSOLO
Lens
Convention of Signs
1. All Figures are drawn with the light traveling from left to right.
2. All object distances are considered positive when they are measured to the left of the
vertex and negative when they are measured to the right.
3. All image distances are considered positive when they are measured to the right of the
vertex and negative when they are measured to the left.
4. Both focal length are positive for a converging system and negative for a diverging
system.
5. Object and Image dimensions are positive when measured upward from the axis and
negative when measured downward.
6. All convex surfaces are taken as having a positive radius, and all concave surfaces
are taken as having a negative radius.
Return to TOC
135
OpticsSOLO
Derivation of Gaussian Formula for a Single Spherical Surface Lens Using Fermat’s Principle
Karl Friederich Gauss
1777-1855

s 's
n 'n
h
l 'l
 

'
M
T
CA
M’
R
The optical path connecting points M, T, M’ is
''lnlnpathOptical 
Applying cosine theorem in triangles MTC and M’TC
we obtain:
     2/122
cos2 RsRRsRl 
     2/122
cos'2'' RsRRsRl 
          2/1222/122
cos'2''cos2  RsRRsRnRsRRsRnpathOptical 
Therefore
According to Fermat’s Principle when the point T
moves on the spherical surface we must have   0
d
pathOpticald
      0
'
sin''sin





l
RsRn
l
RsRn
d
pathOpticald 

from which we obtain 




 



l
sn
l
sn
Rl
n
l
n
'
''1
'
'
For small α and β we have ''& slsl 
and we obtain
R
nn
s
n
s
n 

'
'
'
Gaussian Formula for a Single Spherical Surface
Return to TOC
136
OpticsSOLO
Derivation of Gaussian Formula for a Single Spherical Surface Lens Using Snell’s Law
Apply Snell’s Law: 'sin'sin  nn 
If the incident and refracted rays
MT and TM’ are paraxial the
angles and are small and we can
write Snell’s Law:
 '
From the Figure    '
'' nn 
      nnnnnn  '''
For paraxial rays α, β, γ are small angles, therefore '/// shrhsh  
 
r
h
nn
s
h
n
s
h
n  '
'
'
or
 
r
nn
s
n
s
n 

'
'
'
Gaussian Formula for a Single Spherical Surface
Karl Friederich Gauss
1777-1855
Willebrord van Roijen
Snell
1580-1626

s 's
n 'n
h
l 'l
 

'
M
T
CA
M’
r
137
OpticsSOLO
Derivation of Gaussian Formula for a Single Spherical Surface Lens Using Snell’s Law
for s → ∞ the incoming rays are parallel to optical
axis and they will refract passing trough a common
point called the focus F’.
 
r
nn
s
n
s
n 

'
'
'
s '' fs 
n 'n
h
'l
 

'
T
C
A
F’
R

fs  's
n 'n
h
l


F
T
CA
R
'
 
r
nn
f
nn 


'
'
'
r
nn
n
f


'
'
'
for s’ → ∞ the refracting rays are parallel to optical
axis and therefore the incoming rays passes trough
a common point called the focus F.
 
r
nnn
f
n 



'' r
nn
n
f


'
'' n
n
f
f

Return to TOC
138
OpticsSOLO
Derivation of Lens Makers’ Formula
We have a lens made of two
spherical surfaces of radiuses r1
and r2 and a refractive index n’,
separating two media having
refraction indices n a and n”.
Ray MT1 is refracted by the first
spherical surface (if no second
surface exists) to T1M’.
 
111
'
'
'
r
nn
s
n
s
n 

11111 ''& sMAsTA 
Ray T1T2 is refracted by the second spherical surface to T2M”. 2222 ""&'' sMAsMA 
 
222
'"
"
"
'
'
r
nn
s
n
s
n 

Assuming negligible lens thickness we have , and since M’ is a virtual object
for the second surface (negative sign) we have
21 '' ss 
21 '' ss 
 
221
'"
"
"
'
'
r
nn
s
n
s
n 

M’
M
'1f1f
1s
Axis
T1 T2
A1
A2
C1
1rC2 F’1F’’2
M’’
F’2F1
''2f'2f
'1s
'2s
''2s
2r
n 'n ''n
139
OpticsSOLO
Derivation of Lens Makers’ Formula (continue – 1)
M”
M
f
s
Axis
A1
A2
C1
1rC2
F”
F
''f
''s
2r
n 'n ''n
 
111
'
'
'
r
nn
s
n
s
n 

Add those equations
 
221
'"
"
"
'
'
r
nn
s
n
s
n 

   
2121
'"'
"
"
r
nn
r
nn
s
n
s
n 



M’
M
'1f1f
1s
Axis
T1 T2
A1
A2
C1
1rC2 F’1F’’2
M’’
F’2F1
''2f'2f
'1s
'2s
''2s
2r
n 'n ''n
The focal lengths are defined by
tacking s1 → ∞ to obtain f” and
s”2 → ∞ to obtain f
   
f
n
r
nn
r
nn
f
n





212
'"'
"
"
Let define s1 as s and s”2 as s”
to obtain
   
21
'"'
"
"
r
nn
r
nn
s
n
s
n 



   
f
n
r
nn
r
nn
f
n





21
'"'
"
"
140
OpticsSOLO
Derivation of Lens Makers’ Formula (continue – 2)
M”
M
f
s
Axis
A1
A2
C1
1rC2
F”
F
''f
''s
2r
n 'n n
If the media on both sides of
the lens is the same n = n”.













21
11
1
'
"
11
rrn
n
ss













21
11
1
'1
"
1
rrn
n
ff
Therefore
"
11
"
11
ffss

Lens Makers’ Formula
141
OpticsSOLO
First Order, Paraxial or Gaussian Optics
In 1841 Gauss gave an exposition in “Dioptrische Untersuchungen”
for thin lenses, for the rays arriving at shallow angles with respect to
Optical axis (paraxial).
Karl Friederich Gauss
1777-1855
Derivation of Lens Formula
'y
s 's
M’A F’
M
T
F
'ffx 'x
Q
Q’
'y
y
S
Axis
yFrom the similarity of the triangles
and using the convention:
 
''
'
'~'
f
y
s
yy
TAFTSQ 


Lens Formula in Gaussian form
   
f
y
s
yy
FASQTS
''
~




  0'  y
Sum of the
equations:      
'
'
'
''
f
y
f
y
s
yy
s
yy






since f = f’
fss
1
'
11

Return to TOC
142
OpticsSOLO
First Order, Paraxial or Gaussian Optics (continue – 1)
Gauss explanation can be extended to the first order approximation
to any optical system.
Karl Friederich Gauss
1777-1855
'y
s 's
M’P1 F’
M
T
F
'ffx 'x
Q
Q’
'y
y
Axis
y
P2
First Focal
Point
First Principal
Point
Second Focal
PointSecond Principal
Point
Optical System
Object
Image
Lens Formula in Gaussian form
'y
s 's
M’A F’
M
T
F
'ffx 'x
Q
Q’
'y
y
S
Axis
y
fss
1
'
11

s – object distance (from the first principal point to the object).
s’ – image distance (from the second principal point to the image).
f – EFL (distance between a focal point to the closest principal plane).
143
OpticsSOLO
Derivation of Lens Formula (continue)
'y
s 's
M’A F’
M
T
F
'ffx 'x
Q
Q’
'y
y
S
Axis
y
From the similarity of the triangles
and using the convention:
 
f
y
x
y
FASQMF
'
~


Lens Formula in Newton’s form
 
f
y
x
y
QMFTAF 


'
'
'''~'
  0'  y
Multiplication
of the equations:    
2
'
'
'
f
yy
xx
yy 



or 2
' fxx 
Isaac Newton
1643-1727
First Order, Paraxial or Gaussian Optics (continue – 2)
Published by Newton in “Opticks” 1710
144
OpticsSOLO
Derivation of Lens Formula (continue)
'h
s 's
M’A F’
M
T
F
'ffx 'x
Q
Q’
'h
h
S
Axis
h
First Order, Paraxial or Gaussian Optics (continue – 3)
Lateral or Transverse Magnification
f
x
x
f
s
s
h
h
mT
'''

(-) sign(+) signQuantity
virtual objectreal objects
virtual imagereal images’
diverging lensconverging lensf
inverted objecterect objecth
inverted imageerect imageh’
inverted imageerect imagemT
145
OpticsSOLO
Concave
Spherical
Convex
Spherical
Paraboloidal
Conic
Ellipsoidal
General
Aspherical
Plane
Converging : General use
Diverging : General use
Accurately focuses a parallel beam
or produces a parallel beam from
a point source
Refocuses a diverging bundle at
another point (P) displaced from
the point of origin (O)
Change the direction of beam
Used mostly in combination systems of two
or more components
BASIC MIRRORS FORMS
146
OpticsSOLO
Convex
Plano
Convex
Meniscus
Concave
Plano
Concave
Meniscus
Doublet
Multi-
Element
Aspheric
Converging: General Use, Magnification
Converging: Used often in opposed doubles
to reduce spherical aberration
Converging: reduced spherical aberration
Diverging: General Use, Demagnification
Diverging: Used in multi-element
combinations
Diverging: reduced spherical aberration
Corrected for chromatic aberration
High order of aberration correction used in
complex systems
Corrected for spherical aberration
used in condenser systems
BASIC LENS FORMS
Return to TOC
147
OpticsSOLO
Ray Tracing
F C
O
I
Object Virtual
Image
Convex
Mirror
R/2 R/2
R
F
F’C
O
I
Object
Real
Image
Converging
Lens
FC
O
I
Object
Real
Image
Concave
Mirror
F
F’C
O I
Object
Virtual
Image
Diverging
Lens
Ray Tracing is a graphically implementation of paralax ray analysis. The construction
doesn’t take into consideration the nonideal behavior, or aberration of real lens.
The image of an off-axis point can be located by the intersection of any two of the
following three rays:
1. A ray parallel to the axis that is
reflected through F’.
2. A ray through F that is reflected
parallel to the axis.
3. A ray through the center C of the
lens that remains undeviated and
undisplaced (for thin lens).
148
OpticsSOLO
Infinity
Principal
focus
SUMMARY OF SIMPLE IMAGING LENSES
f f2f2 f 0
's
'ss
fs 2 fsf 2'
fs 2 fs 2'
fsf 2 fs 2'
's
's
s
s
fs  's
s
s
's
fs  fs '
s
's
fsf 2 fs '
Real, inverted
small
Telescope
Real, inverted
smaller
Camera
Real, inverted
same size
Photocopier
Real, inverted
larger
Projector
No image Searchlight
Virtual, erect
larger
Microscope
Virtual, erect
smaller
Various
Figure Object
Location
Image
Location
Image
Properties Example
L.J. Pinson, “Electro-Optics”, John Wiley & Sons, 1985, pg.54
Return to TOC
149
OpticsSOLO
Matrix Formulation
The Matrix Formulation of the Ray Tracing method for the paraxial assumption
was proposed at the beginning of nineteen-thirties by T.Smith.
Assuming a paraxial ray entering at some input plane of an optical system at the distance
r1 from the symmetry axis and with a slope r1’ and exiting at some output plane at the distance
r2 from the symmetry axis and with a slope r2’, than the following linear (matrix) relation
applies:
Principal
PlanesInput
plane
Output
plane
Ray path
1h 2h
1r
2r
'1r
'2r
Symmetry
axis
























''' 1
1
1
1
2
2
r
r
M
r
r
DC
BA
r
r







DC
BA
Mwhere ray transfer matrix
When the media to the left of the input plane
and to the right of the output plane have the
same refractive index, we have:
1det  CBDAM
150
OpticsSOLO
Matrix Formulation (continue -1)
Uniform Optical Medium
In an Uniform Optical Medium of length d no change in ray angles occurs:
Ray path
d
1r
2r
'1r
'2r
Symmetry
axis
1 2
''
'
12
112
rr
rdrr









10
1 d
M
Medium
Optical
Uniform
Planar Interface Between Two Different Media
Ray path
1r 2r
'1r '2r
Symmetry
axis
1 2
1n 2n
12 rr 
'' 1
2
1
2
12
r
n
n
r
rr


Apply Snell’s Law: 2211 sinsin  nn 
paraxial assumption:   tan'sin r
From Snell’s Law: '' 1
2
1
2 r
n
n
r 







21 /0
01
nn
M
Interface
Planar
1det
2
1

n
n
M
Interface
Planar
1det 
Medium
Optical
UniformM
The focal length of this system is infinite and it has
not specific principal planes.
151
OpticsSOLO
Matrix Formulation (continue -2)
A Parallel-Sided Slab of refractive index n bounded on both sides with media of
refractive index n1 = 1
Ray path
d
21 rr 
43 rr 
'1r '4r
Symmetry
axis
'2r
'3r
nn 211 n 11 n
We have three regions:
• on the right of the slab (exit of ray): 

















'/0
01
' 3
3
124
4
r
r
nnr
r
• in the slab:


















'10
1
' 2
2
3
3
r
rd
r
r
• on the left of the slab (entrance of ray):


















'/0
01
' 1
1
212
2
r
r
nnr
r
Therefore:






























'/0
01
10
1
/0
01
' 1
1
21124
4
r
r
nn
d
nnr
r































21
21
122112 /0
/1
/0
01
/0
01
10
1
/0
01
nn
nnd
nnnn
d
nn
M
mediaentranceslabmediaexit
Slab
Sided
Parallel








10
/1 21
nnd
M
Slab
Sided
Parallel
1det 
Slab
Sided
ParallelM
152
OpticsSOLO
Matrix Formulation (continue -3)
Spherical Interface Between Two Different Media
Ray path
21 rr 
'1r
'2r
Symmetry axis
1n 2n
i r
1
12 rr 
Apply Snell’s Law: rnin sinsin 21 
paraxial assumption: rrii  sin&sin
From Snell’s Law: rnin 21 
 























2
1
2
1
2
1
12
21
0101
n
n
n
D
n
n
Rn
nnM
Interface
Spherical 1det
2
1

n
n
M
Interface
Spherical
12
11
'
'




rr
ri
From the Figure:
   122111 ''   rnrn
111 / Rr
 
12
121
2
11
2
'
'
Rn
rnn
n
rn
r


 
1
12
11
112
2
12
'
'
n
rn
Rn
rnn
r
rr




 
1
12
1
:
R
nn
D

where: Power of the surface If R1 is given in meters D1 gives diopters
153
OpticsSOLO
Matrix Formulation (continue -4)
Thick Lens
21 rr 
43 rr 
'1r
i
2 1
'2r '3r
r
2R
1R
f
'4r1C 2F IO 1F
2C
Principal planes
2n
1n
s 's
d
We have three regions:
• on the right of the
slab (exit of ray):























'
01
' 3
3
1
2
1
2
4
4
r
r
n
n
n
D
r
r
• in the slab:


















'10
1
' 2
2
3
3
r
rd
r
r
• on the left of the
slab (entrance of ray): 






















'
01
' 1
1
2
1
2
1
2
2
r
r
n
n
n
D
r
r
Therefore:






































































'
101
'
01
10
1
01
' 1
1
2
1
2
1
2
1
2
1
1
2
1
2
1
1
2
1
2
1
1
2
1
2
4
4
r
r
n
n
n
D
n
n
d
n
D
d
n
n
n
D
r
r
n
n
n
D
d
n
n
n
D
r
r

























2
2
21
21
1
21
2
1
2
1
1
1
n
D
d
nn
DD
d
n
DD
n
n
d
n
D
d
M
Lens
Thick
 
2
21
2
R
nn
D


 
1
12
1
:
R
nn
D



























2
1
21
21
1
21
2
1
2
2
1
1
1
n
D
d
nn
DD
d
n
DD
n
n
d
n
D
d
M
Lens
Thick
1det 
Lens
Thick
M
or
21 DD 
154
OpticsSOLO
Matrix Formulation (continue -5)
Thick Lens (continue -1)
21 rr 
43 rr 
'1r
i
2 1
'2r '3r
r
2R
1R
f
'4r1C 2F IO 1F
2C
Principal planes
2n
1n
2R
1R
2f
1C 2F I
O
1F
2C
Principal planes
2n
1n
1h 2h
s
s 's
's
d
Ray 2
Ray 1
1f
Let use the second Figure where Ray 2 is parallel
to Symmetry Axis of the Optical System that is refracted
trough the Second Focal Point.













































'1
1
' 1
1
2
2
21
21
1
21
2
1
2
1
4
4
r
r
n
D
d
nn
DD
d
n
DD
n
n
d
n
D
d
r
r
We found:
2141 /'&0' frrr Ray 2:
By substituting Ray2 parameters we obtain:
1
2
1
21
21
1
21
4
1
' r
f
r
nn
DD
d
n
DD
r 








1
21
21
1
21
2










nn
DD
d
n
DD
f
frrr /'&0' 414 Ray 1:
We found:












































'1
1
' 4
4
2
1
21
21
1
21
2
1
2
2
1
1
r
r
n
D
d
nn
DD
d
n
DD
n
n
d
n
D
d
r
r
4
1
4
21
21
1
21
1
1
' r
f
r
nn
DD
d
n
DD
r 







 2
1
21
21
1
21
1 f
nn
DD
d
n
DD
f 









155
OpticsSOLO
Matrix Formulation (continue -6)
Thin Lens
21 rr 
43 rr 
'1r
i
2 1
'2r '3r
r
2R
1R
f
'4r1C 2F IO 1F
2C
Principal planes
2n
1n
s 's
d
For thick lens we found

























2
2
21
21
1
21
2
1
2
1
1
1
n
D
d
nn
DD
d
n
DD
n
n
d
n
D
d
M
Lens
Thick









21
21
1
211
nn
DD
d
n
DD
f
For thin lens we can assume d = 0 and obtain












1
1
01
f
M
Lens
Thin
1
211
n
DD
f

  
2
21
2
R
nn
D


 
1
12
1
:
R
nn
D

















211
2
1
21 11
1
1
RRn
n
n
DD
f
21 rr 
43 rr 
2R
1R
f
'4r1C 2F IO 1F
2C
Principal planes
2n
1n
s 's
'1r
156
OpticsSOLO
Matrix Formulation (continue -7)
Thin Lens (continue – 1)
For a biconvex lens we have R2 negative















211
2 11
1
1
RRn
n
f
For a biconcave lens we have R1 negative















211
2 11
1
1
RRn
n
f












1
1
01
f
M
Lens
Thin
157
OpticsSOLO
Matrix Formulation (continue -8)
A Length of Uniform Medium Plus a Thin Lens






























f
d
f
d
d
f
MMM
Medium
Uniform
Lens
Thin
Lens
Thin
Medium
Uniform
1
1
1
10
1
1
1
01
21 rr 
43 rr 
2R
1R
f
'4r1C 2F IO 1F
2C
Principal planes
2n
1n
s 's
'1r
d
Combination of Two Thin Lenses
2n
1d
1f
2d
2f
2n





































21
21
2
2
2
1
1
1
21
2
21
1
21
21
2
2
1
1
1
1
22
2
1
11
1
1
1
1
1
1
1
1122
ff
dd
f
d
f
d
f
d
ff
d
ff
f
dd
dd
f
d
f
d
f
d
f
d
f
d
MMMMM
dMedium
Uniform
fLens
Thin
dMedium
Uniform
fLens
Thin
Lenses
Thin
Two
The Focal Length of the Combination of
Two Thin Lenses is:
21
2
21
111
ff
d
fff

158
OpticsSOLO
Matrix Formulation (continue -9)
Mirrors r
Spherical Mirror
i
i
ii  i
i
iy
RSpherical Mirror
Center of Curvature
r
  Ryiii /tan 
Consider a Spherical Mirror of radius R.
From the geometry:
For small angles:
Ryiii /
also: iri  2   2/rii   Ryiri /2
Define by n the index of reflexion of the medium:
Rynnn
yy
iir
ir
/2

 


















i
i
r
r
n
y
Rnn
y
 1/2
01
Therefore:















1/
01
1/2
01
fnRn
M
Mirror
Spherical
159
OpticsSOLO
Matrix Formulation (continue -10)
Cavity of two Mirrors
d
12M
21M
2MirrorM
1MirrorM
Spherical Mirror M1
Radius R1
Spherical Mirror M2
Radius R2
O

















 







 
10
1
1/2
01
10
1
1/2
01
12
1221
12
d
Rn
d
Rn
MMMMM
MMirror
Spherical
MMirror
SphericalCavity
Figure shows two spherical mirrors
facing each other forming an optical
cavity.
Light leaves point O, traverse the gap
in the positive direction, is reflected by
Mirror M1, retraces the gap in the
negative direction, and is reflected by
Mirror M2. The System Matrix is:
  
























21221
2
21
1
2
1
1122 /21/21/2/4/2/2
/22/21
/21/2
1
/21/2
1
RdnRdnRdnRRdnRnRn
RdndRdn
RdnRn
d
RdnRn
d











21
22
2121
2
21
1
2
1
/4/4/21/4/2/2
/22/21
RRdnRdnRdnRRdnRnRn
RdndRdn
MCavity
160
Go to OPTICS Part II
OpticsSOLO
January 5, 2015 161
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA

More Related Content

PPT
Optical aberrations
PPT
PPTX
Optics timeline (1851 2000)
PPT
Spherical lens
PPTX
Chapter 5 diffraction
PPTX
Optics of eyes
PPT
Foundation of geometrical optics
Optical aberrations
Optics timeline (1851 2000)
Spherical lens
Chapter 5 diffraction
Optics of eyes
Foundation of geometrical optics

What's hot (20)

PPTX
PPS
Glaucoma hemifield test
PPTX
Polarization of Light and its Application (healthkura.com)
PDF
Physical Optics
PPS
coherence of light
PPTX
Fundamentals of Laser( Laser physics).pptx
PPS
Radiometry and Photometry by Sumayya Naseem
PPTX
Lenses in Optics
PPTX
Corneal topography final
PPT
Telescopes
PPTX
Ms 39 lp
PPT
Prisms
PPT
Geometric optics
PPTX
Lecture 2: Co-axial optical system and six cardinal points
PPTX
Metamaterials
PPTX
Oct introduction
PPT
Absorptive lens, transmission standards
PPT
Electrodiagnostic Tests in Ophthalmology
PPT
9.3 interference
PPTX
Laser in ophthalmology
Glaucoma hemifield test
Polarization of Light and its Application (healthkura.com)
Physical Optics
coherence of light
Fundamentals of Laser( Laser physics).pptx
Radiometry and Photometry by Sumayya Naseem
Lenses in Optics
Corneal topography final
Telescopes
Ms 39 lp
Prisms
Geometric optics
Lecture 2: Co-axial optical system and six cardinal points
Metamaterials
Oct introduction
Absorptive lens, transmission standards
Electrodiagnostic Tests in Ophthalmology
9.3 interference
Laser in ophthalmology
Ad

Similar to Optics part i (20)

PDF
Mitres 6 002_s08_part1
PPTX
Electromagnetic fields_ Presentation.pptx
PPTX
Electromagnetic fields_ Presentation.pptx
PPT
Unit22 maxwells equation
PPT
maxwells equation
PPT
Electromagnetic Waves presentation
PDF
Em theory lecture
PPTX
Maxwell's Equations: Derivatian and implementation
PDF
Maxwells Equations Of Electrodynamics An Explanation David W Ball
PPTX
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
PPTX
On the Possibility of Manipulating Lightwaves via Active Electric Charges
PDF
Lecture2
PPT
Lecture 31 maxwell's equations. em waves.
PDF
WaveEquationDerivation.pdf
PDF
Fitzpatrick.r.@.classical.electromagnetism
PPT
Electromagnetism.ppt
PPTX
Electromagnetic waves
PPTX
Electromagnetism.pptx
PDF
FDTD Presentation
PDF
Radar 2009 a 2 review of electromagnetism3
Mitres 6 002_s08_part1
Electromagnetic fields_ Presentation.pptx
Electromagnetic fields_ Presentation.pptx
Unit22 maxwells equation
maxwells equation
Electromagnetic Waves presentation
Em theory lecture
Maxwell's Equations: Derivatian and implementation
Maxwells Equations Of Electrodynamics An Explanation David W Ball
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
On the Possibility of Manipulating Lightwaves via Active Electric Charges
Lecture2
Lecture 31 maxwell's equations. em waves.
WaveEquationDerivation.pdf
Fitzpatrick.r.@.classical.electromagnetism
Electromagnetism.ppt
Electromagnetic waves
Electromagnetism.pptx
FDTD Presentation
Radar 2009 a 2 review of electromagnetism3
Ad

More from Solo Hermelin (20)

PPT
5 introduction to quantum mechanics
PPT
Stabilization of linear time invariant systems, Factorization Approach
PPT
Slide Mode Control (S.M.C.)
PPT
Sliding Mode Observers
PPT
Reduced order observers
PPT
Inner outer and spectral factorizations
PPT
Keplerian trajectories
PPT
Anti ballistic missiles ii
PPT
Anti ballistic missiles i
PPT
Analytic dynamics
PPT
12 performance of an aircraft with parabolic polar
PPT
11 fighter aircraft avionics - part iv
PPT
10 fighter aircraft avionics - part iii
PPT
9 fighter aircraft avionics-part ii
PPT
8 fighter aircraft avionics-part i
PPT
6 computing gunsight, hud and hms
PPT
4 navigation systems
PPT
3 earth atmosphere
PPT
2 aircraft flight instruments
PPT
3 modern aircraft cutaway
5 introduction to quantum mechanics
Stabilization of linear time invariant systems, Factorization Approach
Slide Mode Control (S.M.C.)
Sliding Mode Observers
Reduced order observers
Inner outer and spectral factorizations
Keplerian trajectories
Anti ballistic missiles ii
Anti ballistic missiles i
Analytic dynamics
12 performance of an aircraft with parabolic polar
11 fighter aircraft avionics - part iv
10 fighter aircraft avionics - part iii
9 fighter aircraft avionics-part ii
8 fighter aircraft avionics-part i
6 computing gunsight, hud and hms
4 navigation systems
3 earth atmosphere
2 aircraft flight instruments
3 modern aircraft cutaway

Recently uploaded (20)

PPTX
PMR- PPT.pptx for students and doctors tt
PPTX
HAEMATOLOGICAL DISEASES lack of red blood cells, which carry oxygen throughou...
PDF
7.Physics_8_WBS_Electricity.pdfXFGXFDHFHG
PDF
The Future of Telehealth: Engineering New Platforms for Care (www.kiu.ac.ug)
PPT
Mutation in dna of bacteria and repairss
PDF
Communicating Health Policies to Diverse Populations (www.kiu.ac.ug)
PPTX
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
PDF
Packaging materials of fruits and vegetables
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PPTX
Cells and Organs of the Immune System (Unit-2) - Majesh Sir.pptx
PDF
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
PPTX
endocrine - management of adrenal incidentaloma.pptx
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PDF
5.Physics 8-WBS_Light.pdfFHDGJDJHFGHJHFTY
PPT
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
PDF
Cosmology using numerical relativity - what hapenned before big bang?
PPT
Cell Structure Description and Functions
PPTX
AP CHEM 1.2 Mass spectroscopy of elements
PPTX
limit test definition and all limit tests
PPTX
LIPID & AMINO ACID METABOLISM UNIT-III, B PHARM II SEMESTER
PMR- PPT.pptx for students and doctors tt
HAEMATOLOGICAL DISEASES lack of red blood cells, which carry oxygen throughou...
7.Physics_8_WBS_Electricity.pdfXFGXFDHFHG
The Future of Telehealth: Engineering New Platforms for Care (www.kiu.ac.ug)
Mutation in dna of bacteria and repairss
Communicating Health Policies to Diverse Populations (www.kiu.ac.ug)
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
Packaging materials of fruits and vegetables
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
Cells and Organs of the Immune System (Unit-2) - Majesh Sir.pptx
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
endocrine - management of adrenal incidentaloma.pptx
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
5.Physics 8-WBS_Light.pdfFHDGJDJHFGHJHFTY
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
Cosmology using numerical relativity - what hapenned before big bang?
Cell Structure Description and Functions
AP CHEM 1.2 Mass spectroscopy of elements
limit test definition and all limit tests
LIPID & AMINO ACID METABOLISM UNIT-III, B PHARM II SEMESTER

Optics part i

  • 1. 1 OPTICS Part I SOLO HERMELIN Updated: 16.01.10http://www.solohermelin.com
  • 2. 2 Table of Content SOLO OPTICS Maxwell’s Equations Boundary Conditions Electromagnatic Wave Equations Monochromatic Planar Wave Equations Spherical Waveforms Cylindrical Waveforms Energy and Momentum Electrical Dipole (Hertzian Dipole) Radiation Reflections and Refractions Laws Development Using the Electromagnetic Approach IR Radiometric Quantities Physical Laws of Radiometry Geometrical Optics Foundation of Geometrical Optics – Derivation of Eikonal Equation The Light Rays and the Intensity Law of Geometrical Optics The Three Laws of Geometrical Optics Fermat’s Principle (1657)
  • 3. 3 Table of Content (continue) SOLO OPTICS Plane-Parallel Plate Prisms Lens Definitions Derivation of Gaussian Formula for a Single Spherical Surface Lens Using Fermat’s Principle Derivation of Gaussian Formula for a Single Spherical Surface Lens Using Snell’s Law Derivation of Lens Makers’ Formula First Order, Paraxial or Gaussian Optics Ray Tracing Matrix Formulation
  • 4. 4 Table of Content (continue) SOLO OPTICS Optical Diffraction Fresnel – Huygens’ Diffraction Theory Complementary Apertures. Babinet Principle Rayleigh-Sommerfeld Diffraction Formula Extensions of Fresnel-Kirchhoff Diffraction Theory Phase Approximations – Fresnel (Near-Field) Approximation Phase Approximations – Fraunhofer (Near-Field) Approximation Fresnel and Fraunhofer Diffraction Approximations Fraunhofer Diffraction and the Fourier Transform Fraunhofer Diffraction Approximations Examples Resolution of Optical Systems Optical Transfer Function (OTF) Point Spread Function (PSF) Modulation Transfer Function (MTF) Phase Transfer Function (PTF) Relations between Wave Aberration, Point Spread Function and Modulation Transfer Function Other Metrics that define Image Quality – Srahl Ratio Other Metrics that define Image Quality - Pickering Scale Other Metrics that define Image Quality – Atmospheric Turbulence Fresnel Diffraction Approximations Examples O P T I C S P a r t I I
  • 5. 5 Table of Content (continue) SOLO OPTICS References Optical Aberration Monochromatic Seidel Aberrations Chromatic Aberration Interference O p t i c s P a r t I I
  • 6. 6 OpticsSOLO Hierarchy of Optical Theories • Quantum Light as particle (photon) Emission, absorption, interaction of light and matter • Electromagnetic Maxwell’s Equations Reflection/Transmission, polarization • Scalar Wave Light as wave Interference and Diffraction • Geometrical Light as ray Image-forming optical systems λ → 0
  • 8. 8 MAXWELL’s EQUATIONSSOLO SYMMETRIC MAXWELL’s EQUATIONS Magnetic Field IntensityH   1  mA Electric DisplacementD   2  msA Electric Field IntensityE   1  mV Magnetic InductionB   2  msV Electric Current DensityeJ   2 mA Free Electric Charge Distributione  3  msA Fictious Magnetic Current DensitymJ   2 mV Fictious Free Magnetic Charge Distributionm  3  msV 1. AMPÈRE’S CIRCUIT LW (A) eJ t D H        2. FARADAY’S INDUCTION LAW (F) mJ t B E        3. GAUSS’ LAW – ELECTRIC (GE) eD   4. GAUSS’ LAW – MAGNETIC (GM) mB   Although magnetic sources are not physical they are often introduced as electrical equivalents to facilitate solutions of physical boundary-value problems. André-Marie Ampère 1775-1836 Michael Faraday 1791-1867 Karl Friederich Gauss 1777-1855 James Clerk Maxwell (1831-1879)
  • 11. 11 SOLO The Infrared (IR) Spectrum of Interest Return to TOC
  • 12. 12 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Boundary Conditions 2 ˆt 1 ˆt h 2H  1H  1 2 C CS1P 2P 3P 4P bˆ 21 ˆ n ek      ldtHtHhldtHldtHldH h C 2211 0 2211 ˆˆˆˆ     where are unit vectors along C in region (1) and (2), respectively, and21 ˆ,ˆ tt 2121 ˆˆˆˆ  nbtt - a unit vector normal to the boundary between region (1) and (2)21 ˆ n - a unit vector on the boundary and normal to the plane of curve Cbˆ Using we obtainbaccba          ldbkldbHHnldnbHHldtHH e ˆˆˆˆˆˆ 21212121121    Since this must be true for any vector that lies on the boundary between regions (1) and (2) we must have: bˆ   ekHHn   2121 ˆ              S e C Sd t D JdlH      dlbkbdlh t D JSd t D J e h e S e ˆˆ 0                             AMPÈRE’S LAW  1 0 lim:              mAh t D Jk e h e  
  • 13. 13 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Boundary Conditions (continue – 1) 2 ˆt 1 ˆt h 2E  1E  1 2 C CS1P 2P 3P 4P bˆ 21 ˆ n mk      ldtEtEhldtEldtEldE h C 2211 0 2211 ˆˆˆˆ     where are unit vectors along C in region (1) and (2), respectively, and21 ˆ,ˆ tt 2121 ˆˆˆˆ  nbtt - a unit vector normal to the boundary between region (1) and (2)21 ˆ n - a unit vector on the boundary and normal to the plane of curve Cbˆ Using we obtainbaccba          ldbkldbEEnldnbEEldtEE m ˆˆˆˆˆˆ 21212121121    Since this must be true for any vector that lies on the boundary between regions (1) and (2) we must have: bˆ   mkEEn   2121 ˆ              S m C Sd t B JdlE      dlbkbdlh t B JSd t B J m h m S m ˆˆ 0                             FARADAY’S LAW  1 0 lim:              mVh t B Jk m h m  
  • 14. 14 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Boundary Conditions (continue – 2) h 2D  1D  1 2 21 ˆ n dS 1 ˆn 2 ˆn e     SdnDnDhSdnDSdnDSdD h S 2211 0 2211 ˆˆˆˆ     where are unit vectors normal to boundary pointing in region (1) and (2), respectively, and 21 ˆ,ˆ nn 2121 ˆˆˆ  nnn - a unit vector normal to the boundary between region (1) and (2)21 ˆ n     SdSdnDDSdnDD e 2121121 ˆˆ  Since this must be true for any dS on the boundary between regions (1) and (2) we must have:   eDDn  2121 ˆ    dSdShdv e h e V e  0  GAUSS’ LAW - ELECTRIC  1 0 lim:    msAhe h e    V e S dvSdD  
  • 15. 15 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Boundary Conditions (continue – 3) h 2B  1B  1 2 21 ˆ n dS 1 ˆn 2 ˆn m     SdnBnBhSdnBSdnBSdB h S 2211 0 2211 ˆˆˆˆ     where are unit vectors normal to boundary pointing in region (1) and (2), respectively, and 21 ˆ,ˆ nn 2121 ˆˆˆ  nnn - a unit vector normal to the boundary between region (1) and (2)21 ˆ n     SdSdnBBSdnBB m 2121121 ˆˆ  Since this must be true for any dS on the boundary between regions (1) and (2) we must have:   mBBn  2121 ˆ    dSdShdv m h m V m  0  GAUSS’ LAW – MAGNETIC  1 0 lim:    msVhm h m    V m S dvSdB  
  • 16. 16 SOLO ELECTROMAGNETICS BOUNDARY CONDITIONS Boundary Conditions (summary) 2 ˆt 1 ˆt h 22 ,HE  11,HE  1 2 C CS1P 2P 3P 4P bˆ 21 ˆ n me kk  , 21 ˆ n dS 11,BD  22,BD  me ,   mkEEn   2121 ˆ FARADAY’S LAW   ekHHn   2121 ˆ AMPÈRE’S LAW  1 0 lim:              mAh t D Jk e h e    1 0 lim:              mVh t B Jk m h m     eDDn  2121 ˆ  GAUSS’ LAW ELECTRIC  1 0 lim:    msAhe h e    mBBn  2121 ˆ  GAUSS’ LAW MAGNETIC  1 0 lim:    msVhm h m  Return to TOC
  • 17. 17 ELECTROMAGNETICSSOLO ELECTROMGNETIC WAVE EQUATIONS For Homogeneous, Linear and Isotropic Medium ED   HB   where are constant scalars, we have, J t E J t D H t t H t B E ED HB                               Since we have also tt            t J t E E DED EEE t J t E E                                               2 2 22 2 2 &
  • 18. 18 ELECTROMAGNETICSSOLO ELECTROMGNETIC WAVE EQUATIONS (continue 1) Define meme KK c KK v   00 11  where   smc /103 10 36 1 104 11 8 9700               is the velocity of light in free space. The absolute index of refraction n is me KK v c n     0 The Inhomogeneous Wave (Helmholtz) Differential Equation for the Electric Field Intensity is t J t E v E              2 2 2 2 1
  • 19. 19 ELECTROMAGNETICSSOLO ELECTROMGNETIC WAVE EQUATIONS (continue 2) In the same way The Inhomogeneous Wave (Helmholtz) Differential Equation for the Magnetic Field Intensity is J t E J t D H t H t B E t ED HB                               Since are constant and tt      ,       J t H H HHB HHH J t H H                                     2 2 22 2 2 0&    J t H v H        2 2 2 2 1 Return to TOC
  • 20. 20 ELECTROMAGNETICSSOLO Monochromatic Planar Wave Equations Let assume that can be written as:   trHtrE ,,,             tjrHtrHtjrEtrE 00 exp,,exp,    where are phasor (complex) vectors.                rHjrHrHrEjrErE  ImRe,ImRe  We have          tjrEjtj t rEtrE t 00 expexp,         Hence                                               m e m e j t m e m e B D JBjE JDjH BGM DGE J t B EF J t D HA                )(
  • 21. 21 ELECTROMAGNETICSSOLO Fourier Transform The Fourier transform of can be written as:   trHtrE ,,,                                     dttjtrHrHdtjrHtrH dttjtrErEdtjrEtrE     exp,,&exp, 2 1 , exp,,&exp, 2 1 ,   This is possible if:                         drHdttrH drEdttrE 22 22 , 2 1 , , 2 1 ,   JEAN FOURIER 1768-1830
  • 22. 22 ELECTROMAGNETICSSOLO Note The assumption that can be written as:   trHtrE ,,,             tjrHtrHtjrEtrE 00 exp,,exp,    is equivalent to saying that has a Fourier transform; i.e.:   trHtrE ,,,                                           dtjrHtrHdttjtrHrH dtjrEtrEdttjtrErE exp, 2 1 ,&exp,, exp, 2 1 ,&exp,,   This is possible if:                         drHdttrH drEdttrE 22 22 , 2 1 , , 2 1 ,                                    00 0 exp expexpexp,, rEdttjrE dttjtjrEdttjtrErE   End Note
  • 23. 23 ELECTROMAGNETICSSOLO                        m e m e ED HB m e JHjE JEjH JHjE JEjH JBjE JDjH           me JJjEkE   2   em JJjHkH   2     22 f c c f k    Using the vector identity      AAA   For a Homogeneous, Linear and Isotropic Media:                         m e ED HB m e H E B D    e me JJjEkE   22    m em JJjHkH   22 and we obtain Monochromatic Planar Wave Equations (continue)
  • 24. 24 ELECTROMAGNETICSSOLO Assume no sources: we have Monochromatic Planar Wave Equations (continue) 0,0,0,0  meme JJ   022  EkE 022  HkH nkk n k 0 00 00 0                                    rktjtj rktjtj eHerHtrH eEerEtrE         0 0 ,, ,,   022     rkj rkjrkjrkjrkj ek ekkeekje    Helmholtz Wave Equations satisfy the Helmholtz wave equations    ,,, rHrE             rkj rkj eHrH eErE     0 0 , ,   Assume a progressive wave of phase  rkt   (a regressive wave has the phase ) rkt   For a Homogeneous, Linear and Isotropic Media k  0E 0H r  t k  Planes for which constrkt   
  • 25. 25 ELECTROMAGNETICSSOLO To satisfy the Maxwell equations for a source free media we must have: Monochromatic Planar Wave Equations (continue) we haveUsing: 1ˆˆ&ˆˆ  sss c n sk              0 0 H E HjE EjH                 0ˆ 0ˆ ˆ ˆ 0 0 00 00 Hs Es HEs EHs     sˆ Planar Wave 0E 0H r                    0 0 0 0 00 00 rkj rkj rkjrkj rkjrkj ekje eHkj eEkj eHjeEkj eEjeHkj rkjrkj                        0 0 0 0 00 00 Hk Ek HEk EHk       For a Homogeneous, Linear and Isotropic Media: Return to TOC
  • 26. 26 ELECTROMAGNETICSSOLO ELECTROMGNETIC WAVE EQUATIONS Spherical Waveforms z x y  r cosr  ,,rP   sinsinr  cossinr The Inhomogeneous Wave (Helmholtz) Differential Equation for the Electric Field Intensity is t J t E v E              2 2 2 2 1 In spherical coordinates:    cos sinsin cossin rz ry rx    2 2 222 2 2 2 sin 1 sin sin 11                           rrr r rr For a spherical symmetric wave:    rErE  ,,  Er rrr E rr E r E r rr E    2 2 2 2 2 2 2 121                     
  • 27. 27 ELECTROMAGNETICSSOLO ELECTROMGNETIC WAVE EQUATIONS SourceSourceSource Spherical Waveforms z x y  r cosr  ,,rP   sinsinr  cossinr The Inhomogeneous Wave (Helmholtz) Differential Equation for the Electric Field Intensity is assuming no sources   0 11 2 2 22 2          t E v Er rr In spherical coordinates:    cos sinsin cossin rz ry rx        0 1 2 2 22 2        Er tv Er r or: A general solution is:        wave regressive wave eprogressiv tvrFtvrFEr  21 0,0,0,0  meme JJ         r e EerEtrE rktj tj        0,, Assume a progressive monochromatic wave of phase  rkt   (a regressive wave has the phase ) rkt     r e ErE rkj     0, Return to TOC
  • 28. 28 ELECTROMAGNETICSSOLO ELECTROMGNETIC WAVE EQUATIONS Cylindrical Waveforms z x y r  zrP ,,  sinr cosr In cylindrical coordinates: zz ry rx      sin cos 2 2 2 2 2 2 11 zrr r rr                  For a cylindrical symmetric wave:    rEzrE  ,,              r E r rr E   12 The Inhomogeneous Wave (Helmholtz) Differential Equation for the Electric Field Intensity is assuming no sources 0 11 2 2 2                  t E vr E r rr 0,0,0,0  meme JJ  
  • 29. 29 ELECTROMAGNETICSSOLO ELECTROMGNETIC WAVE EQUATIONS Source Cylindrical Waveforms z x y r  zrP ,,  sinr cosr SourceSource In cylindrical coordinates: zz ry rx      sin cos The Inhomogeneous Wave (Helmholtz) Differential Equation for the Electric Field Intensity is assuming no sources 0 11 2 2 2                  t E vr E r rr 0,0,0,0  meme JJ   Assume a progressive monochromatic wave of phase  rkt   (a regressive wave has the phase ) rkt       tj erEtrE  ,,    0 1 2 2 2              E vr E rr E k  The solutions are Bessel functions which for large r approach asymptotically to:   rkj e r E rE   0 ,  Return to TOC
  • 30. 30 SOLO Energy and Momentum Let start from Ampère and Faraday Laws                      t B EH J t D HE e      EJ t D E t B HHEEH e              HEHEEH  But Therefore we obtain   EJ t D E t B HHE e             First way This theorem was discovered by Poynting in 1884 and later in the same year by Heaviside. ELECTROMAGNETICS John Henry Poynting 1852-1914 Oliver Heaviside 1850-1925
  • 31. 31 SOLO Energy and Momentum (continue -1) We identify the following quantities - Power density of the current densityEJe    HEDE t BH t EJe                     2 1 2 1           BH t pBHw mm  2 1 , 2 1           DE t pDEw ee  2 1 , 2 1  HEpR   eJ  - Magnetic energy and power densities, respectively - Electric energy and power densities, respectively - Radiation power density For linear, isotropic electro-magnetic materials we can write HBED  00 ,    DE tt D E ED             2 10  BH tt B H HB             2 10 ELECTROMAGNETICS
  • 32. 32 SOLO Energy and Momentum (continue – 3) Let start from the Lorentz Force Equation (1892) on the free charge  BvEF e    Free Electric Chargee  3  msA Velocity of the chargev   1  sm Electric Field IntensityE   1  mV Magnetic InductionB   2  msV Hendrik Antoon Lorentz 1853-1928 e Force on the free chargeF   Ne Second way ELECTROMAGNETICS
  • 33. 33 SOLO Energy and Momentum (continue – 4) The power density of the Lorentz Force the charge     EJBvEvp e Bvv Jv e ee       0   or             HE t B HE t D E t D HEEH E t D HEJp t B E HEHEEH J t D H e e                                                      e ELECTROMAGNETICS
  • 34. 34 SOLO Energy and Momentum (continue – 5)  HEDE t BH t EJe                     2 1 2 1 dve E  B  eJv  , V  FdF  Fd  Let integrate this equation over a constant volume V               VVVV e dvSdvDE td d dvBH td d dvEJ  2 1 2 1 If we have sources in V then instead of we must use E  source EE   Use Ohm Law (1826)  source ee EEJ               VV td d t Georg Simon Ohm 1789-1854 source e e EJE    1 For linear, isotropic electro-magnetic materials  HBED  00 ,   ELECTROMAGNETICS
  • 35. 35 SOLO Energy and Momentum (continue – 6)               VVVR n V source e dvSdvDE td d dvBH td d dRIdvEJ  2 1 2 12         V FieldMagnetic dvBH td d P  2 1         V FieldElectric dvDE td d P  2 1   SV Radiation SdSdvSP    V source eSource dvEJP          V source e R n V source e L S e ee V source e L S e ee V e dvEJdRI dvEJ dS dl dSJdSJdvEJldSdJJdvEJ   2 11   R nJoule dRIP 2 RadiationFieldMagneticFieldElectricJouleSource PPPPP  For linear, isotropic electro-magnetic materials  HBED  00 ,   R – Electric Resistance Define the Umov-Poynting vector:  2 / mwattHES   The Umov-Poynting vector was discovered by Umov in 1873, and rediscovered by Poynting in 1884 and later in the same year by Heaviside. ELECTROMAGNETICS John Henry Poynting 1852-1914
  • 36. 36 ElectromagnetismSOLO EM People John Henry Poynting 1852-1914 Oliver Heaviside 1850-1925 Nikolay Umov 1846-1915 1873 “Theory of interaction on final distances and its exhibit to conclusion of electrostatic and electrodynamic laws” 1884 1884 Umov-Poynting vector HES   The Umov-Poynting vector was discovered by Umov in 1873, and rediscovered by Poynting in 1884 and later in the same year by Heaviside. 1873 - 1884 Return to TOC
  • 37. 37 Note: Since there are not magnetic sources the Magnetic Hertz’s Vector Potential is : 0  m Electrical Dipole (Hertzian Dipole) RadiationSOLO Given a dipole monochromatic of electric charges defined by the Polarization Vector Intensity  tq  tq d  r  dqP   dr       tdqdeqaltP tj e  cosRe 00   we want to find the radiation properties. We start with the Helmholtz Non-homogeneous Differential Equation of the Electric Hertz’s Vector Potential : te       trPtr tc tr eee , 1 , 1 , 0 2 2 2 2       Heinrich Rudolf Hertz 1857-1894 - speed of propagation of the EM wave [m/s] 00 1  c - Polarization Vector IntensityeP   2  msA - Permitivity of space  2122   mNsA - Electric Hertz’s Vector Potential (1888)e   NsA   11 t A e      000  eV   0 Using the Electric Hertz’s Vector Potential we obtain : The field vectors are given by  e e tc V t A E           2 2 20 0 1 t AH e      00 0 1  
  • 38. 38 SOLO Electric Dipole Radiation  tq  tq d  r    zSS rrdqP 10     dr    sinr cosr           zyx r r rr 111 1 cossinsincossin   r1  1  1  x1  y1  z1  Compute (continue-3)  e e tc E        2 2 2 1 We have                  32 0 4 0 2 5 0 2 2 2 2 44 3 4 31 rc rpr rc rprpr r rprrp tc E ee e                230 44 rc rp r rp t H e               r p tre 0 4 ,         krtjkrtj epedqp    00  Let use spherical coordinates         zyxr rrr 1111 cossinsincossin                     111 sincos00 rz krtjkrtj epepp                 krtj ep rccr j r rc rprrp rc rprrp r rprrp E rr                                 02 0 2 2 0 3 0 32 0 2 4 0 2 5 0 2 4 sin 4 sincos2 4 sincos2 44 3 4 3 11111  r1  1  1             pckpp pckjpjp 222      
  • 39. 39 SOLO Electric Dipole Radiation  tq  tq d  r    zSS rrdqP 10     dr    sinr cosr           zyx r r rr 111 1 cossinsincossin   r1  1  1  x1  y1  z1  Using we can write              11 0 2 0 2 2 sin1 4 sin 44                  krtjkrtj ep rk j r kc ep rcr j H  krtj ep r k r kj r rccr j r E r rr                                                 0 2 23 0 2 0 2 2 0 3 0 111 11111 sinsincos2 1 4 1 4 sin 4 sincos2 4 sincos2 We can divide the zones around the source, as function of the relation between dipole size d and wavelength λ, in three zones: Near, Intermediate and Far Fields   22 :  c f c k The Magnetic Field Intensity is transverse to the propagation direction at all ranges, but the Electric Field Intensity has components parallel and perpendicular to .r1  r1  E  However and are perpendicular to each other.H  • Near (static) zone: rd • Intermediate (induction) zone: ~rd  • Far (radiation) zone: rd 
  • 40. 40 SOLO Electric Dipole Radiation  tq  tq d  r    zSS rrdqP 10     dr    sinr cosr           zyx r r rr 111 1 cossinsincossin   r1  1  1  x1  y1  z1     102 sin 4   tj FieldNear ep r kc jH tj FieldNear ep r E r    03 0 11 sincos2 4 1         Near, Intermediate and Far Fields (continue – 1) • Near (static) zone: rd In the near zone the fields have the character of the static fields. The near fields are quasi-stationary, oscillating harmonically as , but otherwise static in character.tj e  0 2    r rk
  • 41. 41 SOLO Electric Dipole Radiation  tq  tq d  r    zSS rrdqP 10     dr    sinr cosr           zyx r r rr 111 1 cossinsincossin   r1  1  1  x1  y1  z1       102 sin 4    krtj FieldteIntermedia ep r kc jH  krtj FieldteIntermedia ep r kj r E r                   023 0 11 sincos2 1 4 1 Near, Intermediate and Far Fields • Intermediate (induction) zone: ~rd  • Far (radiation) zone: rd       10 2 sin 4    krtj FieldFar ep r kc H       10 0 2 sin 4    krtj FieldFar ep r k E r1  FieldFarE FieldFarH At Far ranges are orthogonal; i.e. we have a transversal wave. rHE 1,,  In the Radiation Zone the Field Intensities behave like a spherical wave (amplitude falls off as r-1) 1 2    r rk              120 10 36 1 1041 : 9 7 0 0 1 0 00    c FieldFar FieldFar cH E Z
  • 42. 42 SOLO Electric Dipole Radiation http://dept.physics.upenn.edu/courses/gladney/phys151/lectures/lecture_apr_07_2003.shtml#tth_sEc12.1 http://www.falstad.com/mathphysics.html Electric Field Lines of Force
  • 43. 43 SOLO Electric Dipole Radiation  tq  tq d  r    zSS rrdqP 10     dr    sinr cosr           zyx r r rr 111 1 cossinsincossin   r1  1  1  x1  y1  z1  The phasors of the Magnetic and Electric Field Intensities are:       10 2 sin 4 1          krtj ep cr j r H  krtj ep crc j rc j rrr E r                            02 2 2 0 11 sin 11 cos 12 4 1 Poynting Vector of the Electric Dipole Field The Poynting Vector of the Electric Dipole Field is The Magnetic and Electric Field Intensities are:            1sincossin 4 2 0         krt c krt rr p HrealH                                                  11 sinsin 1 cos 1 cossincos 12 4 2 2 2 0 0 krt rc krt cr krt c krt rrr p ErealE r                                       1 1 cossincossinsincos 1 4 2 sincossinsincos 1 4 2 0 32 2 0 2 2 2 2 2 0 22 2 0                                   krt c krt r krt c krt rr p krt c krt r krt rc krt crr p HES r  The Poynting Vector of the Electric Dipole Field is given by:
  • 44. 44 SOLO Electric Dipole Radiation  tq  tq d  r    zSS rrdqP 10     dr    sinr cosr           zyx r r rr 111 1 cossinsincossin   r1  1  1  x1  y1  z1  Let compute the time average < > of the Poynting vector: Poynting Vector of the Electric Dipole Field Using the fact that:                                      1 1 cossincossinsincos 1 4 2 sincossinsincos 1 4 2 0 32 2 0 2 2 2 2 2 0 22 2 0                                   krt c krt r krt c krt rr p krt c krt r krt rc krt crr p HES r     T T dttS T S 0 1 lim        2 1 2cos 1 lim 2 11 lim 2 1 cos 1 limcos 0 0 1 00 22       T T T T T T dtrkt T dt T dtrkt T rkt        2 1 2cos 1 lim 2 11 lim 2 1 sin 1 limsin 0 0 1 00 22       T T T T T T dtrkt T dt T dtrkt T rkt            02sin 1 lim 2 1 cossin 1 limcossin 0 00       T T T T dtrkt T dtrktrkt T rktrkt    r rc p S 1 2 23 0 2 42 0 sin 42                11 cossin 4 sin 1 42 22 0 32 2 02 2 2 2 2 2 2 0 22 2 0                     rcrcr p rccrcr p S r  we obtain: or: Radar Equation Irradiance
  • 45. 45 SOLO Electric Dipole Radiation  tq  tq d  r    zSS rrdqP 10     dr    sinr cosr           zyx r r rr 111 1 cossinsincossin   r1  1  1  x1  y1  z1  Poynting Vector of the Electric Dipole Field   r rc p S 1 2 23 0 2 42 0 sin 42      Radar Equation 45 90 135 1800 0 5 10 15 20 25 30  0  45  90  135  180  225  270  315 z y 5.0 0.1 Polar Angle , in degrees RelativePower,indb The Total Average Radiant Power is:                0 22 23 0 2 42 0 sin2sin 42 dr rc p dSSP A rad  22 0 22 120 123 0 42 0 3/4 0 3 23 0 42 0 40 12 sin 16 0              p rc p d rc p P c c rad                3 4 3 2 3 2 cos 3 1 coscoscos1sin 0 3 0 2 0 3                  dd Return to TOC
  • 46. 46 ELECTROMAGNETICSSOLO To satisfy the Maxwell equations for a source free media we must have: Monochromatic Planar Wave Equations we haveUsing: 1ˆˆ&ˆˆ 0  kkknkkk              0 0 H E HjE EjH                  0ˆ 0ˆ ˆ ˆ 0 0 00 00 Hk Ek HEk EHk     kˆ Planar Wave 0E 0H r                    0 0 0 0 00 00 rkj rkj rkjrkj rkjrkj ekje eHkj eEkj eHjeEkj eEjeHkj rkjrkj               22 22 & 2 ˆ 2 ˆ HwEwwcn k wwcn k S meme    Time Average Poynting Vector of the Planar Wave Reflections and Refractions Laws Development Using the Electromagnetic Approach
  • 47. 47 SOLO REFLECTION & REFRACTION iE  iH  rE  rH  ik  rk  tH  tE  tk  Boundary 21 ˆ n z x y i r t Plan of incidence Consider an incident monochromatic planar wave     c n k eEkH eEE iiii rktj iii rktj ii ii ii 1 00 11 0011 0 0                  The monochromatic planar reflected wave from the boundary is     1 1 1 1 0 0 & n c v vc n k eEkH eEE r rr rktj rrr rktj rr rr rr                The monochromatic planar refracted wave from the boundary is     2 2 2 2 0 0 & n c v vc n k eEkH eEE t tt rktj ttt rktj tt tt tt                Reflections and Refractions Laws Development Using the Electromagnetic Approach
  • 48. 48 SOLO REFLECTION & REFRACTION The Boundary Conditions at z=0 must be satisfied at all points on the plane at all times, implies that the spatial and time variations of This implies that iE  iH  rE  rH  ik  rk  tH  tE  tk  Boundary 21 ˆ n z x y i r t Plan of incidence Phase-Matching Conditions       yxteEeEeE z rktj t z rktj r z rktj i ttrrii ,,,, 0 0 0 0 0 0                 yxtrktrktrkt z tt z rr z ii ,, 000     ttri         yxrkrkrk z t z r z i , 000    must be the same Reflections and Refractions Laws Development Using the Electromagnetic Approach
  • 49. 49 SOLO REFLECTION & REFRACTION tri nnn  sinsinsin 211  iE  iH  rE  rH  ik  rk  tH  tE  tk  Boundary 21 ˆ n z x y i r t Plan of incidence Phase-Matching Conditions            zyx c n k zyx c n k ttttttt irirrrr ˆcossinˆsinsinˆcos ˆcossinˆsinsinˆcos 2 1                       yyx c n rk yx c n rk y c n rk ttt z t irr z r i z i ˆsinsincos sinsincos sin 2 0 1 0 1 0             yxrkrkrk z t z r z i , 000    2    tr ttri   x y Coplanar Snell’s Law         zzyyxxr zy c n k iiii ˆˆˆ ˆcosˆsin1    Given: Let find: Reflections and Refractions Laws Development Using the Electromagnetic Approach
  • 50. 50 SOLO REFLECTION & REFRACTION Second way of writing phase-matching equations ri   11 22 2 1 1 2 sin sin      v v n n t iRefraction Law Reflection Law Phase-Matching Conditions         zzyyxxr zy c n k iiii ˆˆˆ ˆcosˆsin1               zyx c n k zyx c n k ttttttt irirrrr ˆcossinˆsinsinˆcos ˆcossinˆsinsinˆcos 2 1                      ynnyn c kkz ynnyn c kkz ittrti irrrri ˆsinsinsinˆcosˆ ˆsinsinsinˆcosˆ 122 111       ttri   We can see that                tri tiri kkzkkz 0ˆˆ                  tri tri tr nnn sinsinsin 2/ 211 iE  iH  rE  rH  ik  rk  tH  tE  tk  Boundary 21 ˆ n z x y i r t Plan of incidence Reflections and Refractions Laws Development Using the Electromagnetic Approach
  • 51. 51 SOLO REFLECTION & REFRACTION ri   11 22 2 1 1 2 sin sin      v v n n t iRefraction Law Reflection Law Phase-Matching Conditions (Summary) ttri                  tri tiri kkzkkz 0ˆˆ                  tri tri tr nnn sinsinsin 2/ 211 iE  iH  rE  rH  ik  rk  tH  tE  tk  Boundary 21 ˆ n z x y i r t Plan of incidence       yxrkrkrk z t z r z i , 000          yxtrktrktrkt z tt z rr z ii ,, 000     Vector Notation Scalar Notation Reflections and Refractions Laws Development Using the Electromagnetic Approach
  • 52. 52 SOLO REFLECTION & REFRACTION iE  iH  rE rH  ik  rk  tH  tE  tk  Boundary 21 ˆ n z x y i r t i r t tH  tE  tk  rH  rk  rE  iH  iE  ik  21 ˆ n Boundary Plan of incidence ti ti i r nn nn E E r         coscos coscos 2 2 1 1 2 2 1 1 0 0            ti i i t nn n E E t       coscos cos2 2 2 1 1 1 1 0 0           For most of media μ1= μ2 , and using refraction law: 1 2 sin sin n n t i       ti ti i r E E r               sin sin21 0 0  ti it i t E E t              sin cossin221 0 0 Assume is normal to plan of incidence (normal polarization) E  xEExEExEE ttrrii ˆ&ˆ&ˆ 000000    Reflections and Refractions Laws Development Using the Electromagnetic Approach Fresnel Equations See full development in P.P. “Reflection & Refractions”
  • 53. 53 SOLO REFLECTION & REFRACTION iE  iH  rE  rH  ik  rk  tH  tE  tk  Boundary 21 ˆ n z x y i r t i r t tH  tE  tk  rH  rk  rE  iH  iE  ik  21 ˆ n Boundary Plan of incidence Assume is parallel to plan of incidence (parallel polarization) E       zyEE zyEE zyEE tttt rrrr iiii ˆsinˆcos ˆsinˆcos ˆsinˆcos 0||0 0||0 0||0          ti ti i r nn nn E E r         coscos coscos 1 1 2 2 1 1 2 2 ||0 0 ||          ti i i t nn n E E t       coscos cos2 1 1 2 2 1 1 ||0 0 ||         For most of media μ1= μ2 , and using refraction law: 1 2 sin sin n n t i       ti ti i r E E r             tan tan21 ||0 0 ||    titi it i t E E t            cossin cossin221 ||0 0 || Reflections and Refractions Laws Development Using the Electromagnetic Approach Fresnel Equations See full development in P.P. “Reflection & Refractions”
  • 54. 54 SOLO REFLECTION & REFRACTION ti ti i r nn nn E E r         coscos coscos 1 1 2 2 1 1 2 2 ||0 0 ||          ti i i t nn n E E t       coscos cos2 1 1 2 2 1 1 ||0 0 ||         ti ti i r nn nn E E r         coscos coscos 2 2 1 1 2 2 1 1 0 0            ti i i t nn n E E t       coscos cos2 2 2 1 1 1 1 0 0           The equations of reflection and refraction ratio are called Fresnel Equations, that first developed them in a slightly less general form in 1823, using the elastic theory of light. Augustin Jean Fresnel 1788-1827 The use of electromagnetic approach to prove those relations, as described above, is due to H.A. Lorentz (1875) Reflections and Refractions Laws Development Using the Electromagnetic Approach Hendrik Antoon Lorentz 1853-1928 See full development in P.P. “Reflection & Refractions” Return to TOC
  • 55. 55 IR Radiometric QuantitiesSOLO  RTA DA  2 cm  2 cm TARGET SOURCE DETECTOR RECEIVER Radiation Flux Power  W Spectral Radial Power          m W   Irradiance          2 mc W A E Spectral Radiant Emittance          mmc WM M   2 Radiant Intensity          str W I Spectral Radiant Intensity          mstr WI I   Radiance          strmc W A I L 2 cos Spectral Radiance          mstrmc WL L   2 Radiant Emittance          2 mc W A M Spectral Irradiance          mmc WE E   2    T T dttS T S 0 1 lim  Irradiance is the time- average of the Poynting vector Return to TOC
  • 56. 56 Physical Laws of RadiometrySOLO Plank’s Law   1/exp 1 2 5 1   Tc c M BB   Plank 1900 Plank’s Law applies to blackbodies; i.e. perfect radiators. The spectral radial emittance of a blackbody is given by:   KT KWk Wh kmc Kmkhcc mcmWchc    ineTemperaturAbsolute- constantBoltzmannsec/103806.1 constantPlanksec106260.6 lightofspeedsec/458.299792 10439.1/ 107418.32 23 234 4 2 4242 1           MAX PLANCK (1858 - 1947) Plank’s Law
  • 57. 57 Physical Laws of RadiometrySOLO Plank’s Law   1/exp 1 2 5 1   Tc c M BB   Plank 1900 Plank’s Law applies to blackbodies; i.e. perfect radiators. The spectral radial emittance of a blackbody is given by: MAX PLANCK (1858 - 1947) Plank’s Law
  • 58. 58 Physical Laws of Radiometry (Continue -1)SOLO Wien’s Displacement Law 0   d Md BB Wien 1893 from which: The wavelength for which the spectral emittance of a blackbody reaches the maximum is given by: m KmTm    2898 Wien’s Displacement Law Stefan-Boltzmann Law Stefan – 1879 Empirical - fourth power law Boltzmann – 1884 Theoretical - fourth power law For a blackbody:                             42 12 32 45 2 4 0 2 5 1 0 10670.5 15 2 : 1/exp 1 Kcm W hc k cm W Td Tc c dMM BBBB       LUDWIG BOLTZMANN (1844 - 1906) WILHELM WIEN (1864 - 1928) Stefan-Boltzmann Law JOSEF STEFAN (1835 – 1893)
  • 59. 59 Physical Laws of Radiometry (Continue -1a)SOLO Black Body Emittance M [W/m2] M (300ºK) 5.86 121 M (301ºK) - M (300ºK) 0.22 2 M (600ºK) 1,719 1,555 M (601ºK) - M (600ºK) 17 7 3 – 5 µm 8 - 12 µm
  • 60. 60 Physical Laws of Radiometry (Continue -2)SOLO Emittance of Real Bodies (Gray Bodies) For real (gray) bodies: BB MM   - Directional spectral emissivity is a measure of how closely the flux radiated from a given temperature radiator approaches that from a blackbody at the same temperature   ,   BB M M
  • 61. 61 Physical Laws of Radiometry (Continue -3)SOLO Kirchhoff’s Law rM iE aE tM Gustav Robert Kirchhoff 1824-1887 - Incident IrradianceiE - Absorbed IrradianceaE - Reflected Radiant ExcitancerM - Transmitted Radiant ExcitancetM Law of Conservation of Energy: trai MMEE      i t i r i a E M E M E E 11  i a E E : - fraction of absorbed energy (absorptivity) i r E M : - fraction of reflected energy (reflectivity) i t E M : - fraction of transmitted energy (transmissivity) Opaque body (no transmission): 01   Blackbody (no reflection or transmission): 0&01   Sharp boundary (no absorption): 01  
  • 62. 62 Physical Laws of Radiometry (Continue -4)SOLO Kirchhoff’s Law (Continue – 1) Gustav Robert Kirchhoff 1824-1887 Kirchhoff’s Law (1860) states that, for any temperature and any wavelength, the emissivity of an opaque body in an isothermal enclosure is equal to it’s absorptivity. This is because if the body will radiate to the surrounding less than it absorbs it’s temperature will rise above the surrounding and will be a transfer of energy from a cold surrounding to a hot body contradicting the second law of thermodynamics.    TT    222 ,, T 2A 111 ,, T 1A
  • 63. 63 Physical Laws of Radiometry (Continue -5)SOLO Lambert’s Law Johann Heinrich Lambert 1728 - 1777 http://www-groups.dcs.st-andrews.ac.uk/~history/Biographies/Lambert.html A Lambertian Surface is defined as a surface from which the radiance L [W/(cm2 str)] is independent of the direction of radiation.  dr    d rsin    2 sin r drdr d   A cosAAn   z x y   0 2 cos , L A L          coscos, 00 IALI     Lambert’s Law 0 2 0 2/ 0 00 sincoscos LddLdL A M         The Radiant Intensity from a Lambertian Surface is The Radiant Emittance (Exitance) from a Lambertian Surface is
  • 64. 64 Physical Laws of Radiometry (Continue -6)SOLO Transfer of Radiant Energy We have two bodies 1 and 2. The radiant power (radiance) transmitted from 1 to 2 is: 2 12 22 22 211 12 2 1 cos & cos R Ad d strcm W A L            1A 1dA 1 12R Radiating (Source) Surface 2A 2dA Receiving Surface 2 2d    2 12 22111 12 coscos R AdAdL d   The total radiant power (radiance) received at surface A2 from A1 is:   2 1 212 12 211 12 coscos A A AdAd R L 
  • 65. 65 Physical Laws of Radiometry (Continue -7)SOLO Transfer of Radiant Energy (Continue – 1) Define the projected areas: and the solid angles: 222111 cos&cos AdAdAdAd nn   1A 1dA 1 12R Radiating (Source) Surface 2A 2dA Receiving Surface 2 2d 2 12 22 22 12 11 1 cos & cos R Ad d R Ad d   1A 1dA 1 12R Radiating (Source) Surface 2A 2dA Receiving Surface 2 1d then:    2 12 211 2 12 22111 12 coscos R AdAdL R AdAdL d nn   12121112  dAdLdAdLd nn The Power is the product of the Radiance, the projected Area, and the Solid Angle using the other area.
  • 66. 66 Physical Laws of Radiometry (Continue -8)SOLO Transfer of Radiant Energy (Continue – 2) Optics R f ATARGET ADETECTOR AOPTICS TO, OD,OT , DO, For an Optical System define: ATARGET – Target Area ADETECTOR – Detector Area AOPTICS – Optics Area R – Range from Target to Optics f – Focal Length (from Optics to Detector) ΩO,T – solid angle of Optics as seen from the Target 2, R AOPTICS TO  ωT,O – solid angle of Target as seen from the Optics 2, R ATARGET OT  ΩD,O – solid angle of Detector as seen from the Optics 2, f ADETECTOR OD  ωO,D – solid angle of Optics as seen from the Detector 2, f ADETECTOR DO 
  • 67. 67 Physical Laws of Radiometry (Continue -9)SOLO Transfer of Radiant Energy (Continue – 3) Optics (continue – 1) R f ATARGET ADETECTOR AOPTICS TO, OD,OT , DO, For the Figure we can see that: ODOT ,,  22 f A R A DETECTORTARGET  Also we found that: DODETECTOROTOPTICS ODOPTICSTOTARGET ALAL ALAL OTOD ,, ,, ,,     
  • 68. 68 Physical Laws of Radiometry (Continue -10)SOLO Transfer of Radiant Energy (Continue – 4) Optics (continue – 2) R f ATARGET ADETECTOR AOPTICS TO, OD,OT , DO, R f ATARGET ADETECTOR AOPTICS TO, OD,OT , DO, R f ATARGET ADETECTOR AOPTICS TO, OD,OT , DO, R f ATARGET ADETECTOR AOPTICS TO, OD,OT , DO, TOTARGETAL , ODOPTICSAL , OTOPTICSAL , DODETECTORAL ,
  • 69. 69 Physical Laws of Radiometry (Continue -11)SOLO Transfer of Radiant Energy (Continue – 5) Optics (continue – 3)   2 , R A AL AL TARGET DETECTOR DTDETECTOROpticsNo    2 , f A AL AL OPTICS DETECTOR DODETECTOROpticsWith    R f ATARGET ADETECTOR AOPTICS TO, OD,OT , DO, R ATARGET ADETECTOR TD, DT , • IR Detector without Optics • IR Detector with Optics     2 # / 2 4 0 4 4 0# f AL f D AL DETECTOR Dff DETECTOR     The Optics increases the energy collected by the Detector since DTDO ,,   22 # 2 4 R A ff A TARGETOPTICS   OpticsNoOpticsWith 
  • 70. 70 Physical Laws of Radiometry (Continue -12)SOLO Targets The parts of the aircraft that are especially hot are: • The exhaust nozzle of the jet engine • The hot exhaust gas area, or the plume • The areas in which aerodynamic heating is the highest
  • 71. 71 Physical Laws of Radiometry (Continue -13)SOLO Targets
  • 72. 72 Physical Laws of Radiometry (Continue -14)SOLO Targets
  • 73. 73 Physical Laws of Radiometry (Continue -15)SOLO Targets
  • 74. 74 Physical Laws of Radiometry (Continue -16)
  • 75. 75 Physical Laws of Radiometry (Continue -17)SOLO Targets (continue – 1) • The exhaust nozzle of the jet engine The exhaust nozzle can be regarded as a gray body with ε = 0.9. Example: Turbojet Engine 4-P&W JT4A-9 2 3660 cmANOZZLE  rafterburnewithCT  538   24124 207.22735381067.59.0   cmWTM  We are interested only in the band 3 μm ≤ λ ≤ 5 μm. By numerically integration or using infrared radiation calculators we obtain: 397.0 811 4 5 3    KT BB T dM    Hence:   2 876.0207.2397.053   cmWmmM  In a tail-on situation the radiant intensity is:   1 1020 3660876.0 53           strWA M mmI NOZZLE Lambertian  
  • 76. 76 Physical Laws of Radiometry (Continue -18)SOLO Targets (continue – 2) • The plume The plume is characterized by the radiant emittance of the hot gases that are expanding into the atmosphere after passing through the exhaust nozzle. The products of combustion are H2O, CO2, some times CO (incomplete combustion), OH, HF, HCl. The infrared emission is produced by changes in the energy contained in the molecular vibrations and rotations, only at certain frequencies..
  • 77. 77 Physical Laws of Radiometry (Continue -19)SOLO Targets (continue – 3) • The plume (continue – 1)
  • 78. 78 Physical Laws of Radiometry (Continue -20)SOLO Targets (continue – 4) • The plume (continue – 2) Breathing engines have exhaust plume temperatures of K 600450  Cruise flight K 800600  Maximum Un-augmented Thrust K 15001000  Augmented (After burner) Thrust Rockets have exhaust plume temperatures of K 75002500  Liquid propellant K 35001700  Solid propellant Example Assume:   mm  55.433.45.0  KCCTPLUME  643273370  then:   2222 55.4 33.4 1075.1105.35.0      cmWcmWdMM     For a plume surface of APLUME = 10000 cm2 = 1 m2 the Radiant Intensity is:   1 42 8.27 101075.1 55.433.4            strWA M mmI PLUME Lambertian  
  • 79. 79 Physical Laws of Radiometry (Continue -21)SOLO Targets (continue – 5) • Aerodynamic Heating The Target body is heated by the compression and friction of the air against it’s surface and by friction. Assuming a negligible friction effect and an adiabatic compression the Target skin temperature is given by:         2 0 2 1 1, MachrMachHTT  - air temperature at altitude HTARGET and mach number Mach MachHT ,0 - recovery factorr vp CC / - specific heat ratio = 1.4 for air Example Mach = 2.0, HTARGET = 5000 m   27.0,250.2,50000  KMachmHT  then KT  4142 2 14.1 82.01250 2             23 5 3 1066.1414      cmWdKTMM      assume 2 15mATARGET    1 43 3.79 10151066.1 53            strWA M mmI TARGET Lambertian  
  • 80. 80 Physical Laws of Radiometry (Continue -22)
  • 81. 81 Physical Laws of Radiometry (Continue -23)
  • 82. 82 Physical Laws of Radiometry (Continue -24)SOLO Targets (continue – 6) • Aerodynamic Heating (continue – 1) EmissivityReflectanceAbsorptanceMaterial .04.81.19Polished Aluminium .04.63.37Unpolished Aluminium .18.43.57Titanium .05.60.40Polished Stainless Steel .88.79.21White Paint .92.05.95Black Paint .27.71.29Aluminum Paint
  • 83. 83 Physical Laws of Radiometry (Continue -25)SOLO Sun, Background and Atmosphere
  • 84. 84 Physical Laws of Radiometry (Continue -26)SOLO Sun, Background and Atmosphere (continue – 1) The spectrum distribution of the sun radiation is like a black body with a temperature of T = 5900 °K From Wien’s Law the maximum of Mλ is at m T m  49.0 5900 28982898  This is almost at the middle of the visible spectrum mm  75.040.0  Loss by Scattering
  • 85. 85 Physical Laws of Radiometry (Continue -27)SOLO Sun, Background and Atmosphere (continue – 2) Atmosphere Atmosphere affects electromagnetic radiation by     3.2 1 1        R kmRR  • Absorption • Scattering • Emission • Turbulence Atmospheric Windows: Window # 2: 1.5 μm ≤ λ < 1.8 μm Window # 4 (MWIR): 3 μm ≤ λ < 5 μm Window # 5 (LWIR): 8 μm ≤ λ < 14 μm For fast computations we may use the transmittance equation: R in kilometers. Window # 1: 0.2 μm ≤ λ < 1.4 μm includes VIS: 0.4 μm ≤ λ < 0.7 μm Window # 3 (SWIR): 2.0 μm ≤ λ < 2.5 μm
  • 86. 86 Physical Laws of Radiometry (Continue -28)SOLO Sun, Background and Atmosphere (continue – 3) Atmosphere Absorption over Electromagnetic Spectrum
  • 87. 87 Physical Laws of Radiometry (Continue -29)SOLO Sun, Background and Atmosphere (continue – 4) Rain Attenuation over Electromagnetic Spectrum FREQUENCY GHz ONE-WAYATTENUATION-Db/KILOMETER WAVELENGTH
  • 88. 88 Physical Laws of Radiometry (Continue -30)SOLO Sun, Background and Atmosphere (continue – 3) Add scanned Figure from McKenzie Atmosphere (continue – 1)
  • 89. 89 GEOMETRICAL OPTICSSOLO http://en.wikipedia.org/wiki/Optics From “Cyclopaedia” or “An Universal Dictionary of Art and Science” Published by Ephraim Chambers In London in 1728 Return to TOC
  • 90. 90 SOLO DERIVATION OF EIKONAL EQUATION Foundation of Geometrical Optics Derivation from Maxwell Equations Consider a general time-harmonic field:                                tjrHtjrHtjrHaltrH tjrEtjrEtjrEaltrE     exp,exp, 2 1 exp,Re, exp,exp, 2 1 exp,Re, * *   in a non-conducting, far-away from the sources  0,0  eeJ   No assumption of isotropy of the medium are made; i.e.:     rr   , Far from sources, in the High Frequencies we can write using the phasor notation:             00000 &,&, 00     kerHrHerErE rSjkrSjk Note The minus sign was chosen to get a progressive wave: End Note                SktjSktj erHaltrHerEaltrE 00 00 Re,&Re,     James Clerk Maxwell (1831-1879) See full development in P.P. “Foundation of Geometrical Optics”
  • 91. 91 SOLO From those equations we have Foundation of Geometrical Optics           Sjktj SjkSjktjSjktjtj eeESjkE EeeEeeEeerE 0 000 000 000,               Sjk SjktjSjktjtj eHjk eHejeHejerH t 0 00 0 00 0 0 00 000 1 1 ,           from which   0 00 0000 HjkESjkEF    and 0 1 0 0 0 0 00 0   k E jk HES   DERIVATION OF EIKONAL EQUATION (continue – 2) Derivation from Maxwell Equations (continue – 2)
  • 92. 92 SOLO From Maxwell equations we also have Foundation of Geometrical Optics from which and DERIVATION OF EIKONAL EQUATION (continue – 3) Derivation from Maxwell Equations (continue – 3)           Sjktj SjkSjktjSjktjtj eeHSjkH HeeHeeHeerH 0 000 000 000,               Sjk SjktjSjktjtj eEjk eEejeEejerE t 0 00 0 00 0 0 00 000 1 1 ,             0 00 0000 EjkHSjkHA    0 1 0 0 0 0 00 0   k H jk EHS  
  • 93. 93 SOLO DERIVATION OF EIKONAL EQUATION (continue – 4) Foundation of Geometrical Optics Derivation from Maxwell Equations (continue – 4) We have Faradey (F), Ampére (A), Gauss Electric (GE), Gauss Magnetic (GM) equations:                       0 0 HGM EGE EjHA HjEF                                                         0&0 2 0 0 0 ee e e J c k j t HB ED BGM DGE J t D HA t B EF                  André-Marie Ampère 1775-1836 Michael Faraday 1791-1867 Karl Friederich Gauss 1777-1855
  • 94. 94 SOLO From Maxwell equations we also have Foundation of Geometrical Optics from which and DERIVATION OF EIKONAL EQUATION (continue – 4) Derivation from Maxwell Equations (continue – 4)             0 , 0 000 0000 000     Sjktj SjkSjktjSjktjtj eeESjkEE EeeEeeEeerE       00000  ESjkEEGE  0 1 0 00 0 0           k EE jk ES   We also have from which and             0 , 0 000 0000 000     Sjktj SjkSjktjSjktjtj eeHSjkHH HeeHeeHeerH       00000  HSjkHHGM  0 1 0 00 0 0           k HH jk HS  
  • 95. 95 SOLO To summarize, from k0 → ∞ we have Foundation of Geometrical Optics DERIVATION OF EIKONAL EQUATION (continue – 5) Derivation from Maxwell Equations (continue – 5)   00 00 0  HESF     00 00 0  EHSA     00  ESGE   00  HSGM We will use only the first two equations, because the last two may be obtained from the previous two by multiplying them (scalar product) by .S
  • 96. 96 SOLO Foundation of Geometrical Optics DERIVATION OF EIKONAL EQUATION (continue – 6) Derivation from Maxwell Equations (continue – 6)   00 00 0  HESF     00 00 0  EHSA   From the second equation we obtain 0 00 0 HSE    And by substituting this in the first equation   00 0 00 00 00 0 00           HHSSHHSS       But         2 00 0 2 0 0 00 n HSHSSSHSHSS     
  • 97. 97 SOLO Foundation of Geometrical Optics DERIVATION OF EIKONAL EQUATION (continue – 7) Derivation from Maxwell Equations (continue – 7) Finally we obtain    00 22  HnS or    zyxn z S y S x S ornS ,,0 2 222 22                          S is called the eikonal (from Greek έίκων = eikon → image) and the equation is called Eikonal Equation. Return to TOC
  • 98. 98 SOLO Foundation of Geometrical Optics THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS From Max Born & Emil Wolf, “Principles of Optics”, 6th Ed., Ch. 3             00000 &,&, 00     kerHrHerErE rSjkrSjk We found the following relations   00 00 0  HESF     00 00 0  EHSA     00  ESGE   00  HSGM We can see that the vectors are perpendicular in the same way as the vectors for the planar waves (where is the Poynting vector). SHE ,, 00 SHE  ,, 00 00 HES   S 0E 0H
  • 99. 99 SOLO Foundation of Geometrical Optics THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS (continue – 1)                                                     T T T TT e dttjrErErEtjrE T dttjrEtjrEtjrEtjrE T dttjrEal T dttrEtrE T dttrDtrE T w 0 2**2 0 ** 0 2 00 2exp,,,22exp, 4 1 exp,exp,exp,exp, 4 1 exp,Re 1 ,, 1 ,, 1           But               0 2 2exp 2exp 2 1 2exp 1 0 2 2exp 2exp 2 1 2exp 1 0 0 0 0         T T T T T T Tj Tj tj Tj dttj T Tj Tj tj Tj dttj T           Therefore                rErEerEerEdt T rErEw rSjkrSjk T e  * 00 * 00 0 * 22 1 ,, 2 00      Let compute the time averages of the electric and magnetic energy densities
  • 100. 100 SOLO Foundation of Geometrical Optics THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS (continue – 2) In the same way                rErEerEerEdt T rErEw rSjkrSjk T e  * 00 * 00 0 * 22 1 ,, 2 00                 rHrHdttrHtrH T dttrBtrH T w TT m * 00 00 2 ,, 1 ,, 1      Using the relations   0 00 0 HSEA      0 00 0 ESHF    since and are real values , where * is the complex conjugate, we obtain S )**,( SS                                              e m e wrHSrErHSrErHSrE rESrHrESrHrHrHw rHSrErHSrErErEw    * 00 * 0 * 00 ** 0 * 00 * 0 00 0 * 00 * 00 * 0 00 0 * 00 2 1 2 1 2 1 2 1 22 2 1 22        S 0E 0H
  • 101. 101 SOLO Foundation of Geometrical Optics THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS (continue – 3) Therefore     * 00 2 1 rHSrEww me   Within the accuracy of Geometrical Optics, the time-averaged electric and magnetic energy densities are equal.             * 0000 * 00 22 rHSrErHrHrErEwww me    The total energy will be: The Poynting vector is defined as:      trHtrEtrS ,,:,                               T tjtjtjtj T tjtj T dterHerHerEerE T dterHerEal T dttrHtrE T trHtrES 0 ** 00 ,, 2 1 ,, 2 11 ,,Re 1 ,, 1 ,,                                  ,,,, 4 1 ,,,,,,,, 4 11 ** 0 2****2 rHrErHrE dterHrErHrErHrEerHrE T T tjtj                      rHrErHrE erHerEerHerE rSjkrSjkrSjkrSjk 0 * 0 * 00 )( 0 )(* 0 )(* 0 )( 0 4 1 4 1 0000    The time average of the Poynting vector is: John Henry Poynting 1852-1914
  • 102. 102 SOLO Foundation of Geometrical Optics THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS (continue – 3) Using the relations   0 00 0 HSEA      0 00 0 ESHF                           rHrHSrESrErHrErHrES 0 * 0 * 00 00 0 * 0 * 00 222 1 4 1    we obtain                  * 00 0 0 * 0 0 0 * 0 * 00 00 22222 1 HHSHSHESEEES                 * 0000 * 00 22 rHSrErHrHrErEwww me    we obtain Using   wS n c wwSS me  2 00 00 22 1     00 2 00 & 1     nc
  • 103. 103 SOLO Foundation of Geometrical Optics THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS (continue – 4) Using   22 nS  Eikonal Equation we obtain nS  Define snS n S S S s ˆ:ˆ       We have swvwS n c S n c v ˆ 2 1 2 2    sˆ constS  constdSS  sˆ r  0 ˆs 0r  A Bundle of Light Rays
  • 104. 104 SOLO Foundation of Geometrical Optics THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS (continue – 5) swvwS n c S n c v ˆ 2 1 2 2    sˆ constS  constdSS  sˆ r  0 ˆs 0r  From this equation we can see that average Poynting vector is the direction of the normal to the geometrical wave-front , and its magnitude is proportional to the product of light velocity v and the average energy density, therefore we say that defines the direction of the light ray. S sˆ sˆ Suppose that the vector describes the light path, then the unit vector is given by r  sˆ sd rd rd rd s ray ray ray    ˆ where is the differential of an arc length along the ray pathrayrdsd  
  • 105. 105 SOLO Foundation of Geometrical Optics THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS (continue – 6) Let substitute in and differentiate it with respect to s. sd rd rd rd s ray ray ray    ˆ rayrdsd    S sd d sd rd n sd d       ray   S sd rd  ray    sd rd f sd zd zd fd sd yd yd fd sd xd xd fd sd zyxfd   ,,   SS n  1 S sd rd n  ray           ABBAABBABA   AB        AAAAAA   2 1 SA           SSSSSSSS    0 2 1 SS n  2 1 2 nSS  2 2 1 n n  n
  • 106. 106 SOLO Foundation of Geometrical Optics THE LIGHT RAYS AND THE INTENSITY LAW OF GEOMETRICAL OPTICS (continue – 7) Therefore we obtained   nS sd d  and n sd rd n sd d         ray  We obtained a ordinary differential equation of 2nd order that enables to find the trajectory of an optical ray , giving the relative index and the initial position and direction of the desired ray.  srray   zyxn ,,   00 rrray   0 ˆs sˆ constS  constdSS  sˆ r  0 ˆs 0r  We can transform the 2nd order differential equation in two 1st order differential equations by the following procedure. Define Ssn sd rd np  ˆ: ray   We obtain   0 ˆ0 snpnp sd d     0 ˆ0 snpnp sd d   Return to TOC
  • 107. 107 SOLO The Three Laws of Geometrical Optics 1. Law of Rectilinear Propagation In an uniform homogeneous medium the propagation of an optical disturbance is in straight lines. 2. Law of Reflection An optical disturbance reflected by a surface has the property that the incident ray, the surface normal, and the reflected ray all lie in a plane, and the angle between the incident ray and the surface normal is equal to the angle between the reflected ray and the surface normal: 2v 1v Refracted Ray 21 ˆ n 2n 1n i t Reflected Ray 21 ˆ n 2n 1n i r 3. Law of Refraction An optical disturbance moving from a medium of refractive index n1 into a medium of refractive index n2 will have its incident ray, the surface normal between the media , and the reflected ray in a plane, and the relationship between angle between the incident ray and the surface normal θi and the angle between the reflected ray and the surface normal θt given by Snell’s Law: ti nn  sinsin 21  ri   “The branch of optics that addresses the limiting case λ0 → 0, is known as Geometrical Optics, since in this approximation the optical laws may be formulated in the language of geometry.” Max Born & Emil Wolf, “Principles of Optics”, 6th Ed., Ch. 3 Foundation of Geometrical Optics Return to TOC
  • 108. 108 SOLO Foundation of Geometrical Optics Fermat’s Principle (1657) 1Q 1P 2P 2Q 1Q 2Q 1S SdSS  12  2PS  1PS 2'Q rd  sˆ sˆ The Principle of Fermat (principle of the shortest optical path) asserts that the optical length of an actual ray between any two points is shorter than the optical ray of any other curve that joints these two points and which is in a certai neighborhood of it. An other formulation of the Fermat’s Principle requires only Stationarity (instead of minimal length).  2 1 P P dsn An other form of the Fermat’s Principle is: Princple of Least Time The path following by a ray in going from one point in space to another is the path that makes the time of transit of the associated wave stationary (usually a minimum). The idea that the light travels in the shortest path was first put forward by Hero of Alexandria in his work “Catoptrics”, cc 100B.C.-150 A.C. Hero showed by a geometrical method that the actual path taken by a ray of light reflected from plane mirror is shorter than any other reflected path that might be drawn between the source and point of observation.
  • 109. 109 SOLO 1. The optical path is reflected at the boundary between two regions     0 21 21          rd sd rd n sd rd n rayray   In this case we have and21 nn        0ˆˆ 21 21          rdssrd sd rd sd rd rayray   We can write the previous equation as: i.e. is normal to , i.e. to the boundary where the reflection occurs. 21 ˆˆ ss  rd    0ˆˆˆ 2121  ssn 11 ˆsn 21 ˆsn 1121 ˆˆˆ snsn  rd    0ˆˆ 121  rdssn  Reflected Ray 21 ˆ n 1n i r REFLECTION & REFRACTION Reflection Laws Development Using Fermat Principle ri   Incident ray and Reflected ray are in the same plane normal to the boundary. This is equivalent with: &
  • 110. 110 SOLO 2. The optical path passes between two regions with different refractive indexes n1 to n2. (continue – 1)     0 21 21          rd sd rd n sd rd n rayray   where is on the boundary between the two regions andrd      sd rd s sd rd s rayray 2 :ˆ, 1 :ˆ 21   rd  22 ˆsn 11 ˆsn 1122 ˆˆˆ snsn    0ˆˆˆ 1122  rdsnsn  Refracted Ray 21 ˆ n 2n 1n i t Therefore is normal to .2211 ˆˆ snsn  rd  Since can be in any direction on the boundary between the two regions is parallel to the unit vector normal to the boundary surface, and we have rd  2211 ˆˆ snsn  21 ˆ n   0ˆˆˆ 221121  snsnn We recovered the Snell’s Law from Geometrical Optics REFLECTION & REFRACTION Refraction Laws Development Using Fermat Principle ti nn  sinsin 21  Incident ray and Refracted ray are in the same plane normal to the boundary. & Return to TOC
  • 111. 111 SOLO Plane-Parallel Plate i r ri   r t l d i A C B E 2n 1n A single ray traverses a glass plate with parallel surfaces and emerges parallel to its original direction but with a lateral displacement d. Optics    irriri lld  cossincossinsin  r t l cos         r i ritd    cos cos sinsin ir nn  sinsin 0Snell’s Law        n n td r i i 0 cos cos 1sin    For small anglesi        n n td i 0 1
  • 112. 112 SOLO Plane-Parallel Plate (continue – 1) t        r i i n n td    cos cos 1sin 1 2 1n  2n i r        r i i n n t d l    cos cos 1 sin 1 2 l Two rays traverse a glass plate with parallel surfaces and emerge parallel to their original direction but with a lateral displacement l. Optics    irriri lld  cossincossinsin  r t l cos         r i ritd    cos cos sinsin ir nn  sinsin 0Snell’s Law        n n td r i i 0 cos cos 1sin           r i i n n t d l    cos cos 1 sin 0 For small anglesi        n n tl 0 1 Return to TOC
  • 113. 113 SOLO Prisms   2i1i 1t    11 ti   2t  22 it   Type of prisms: A prism is an optical device that refract, reflect or disperse light into its spectral components. They are also used to polarize light by prisms from birefringent media. Optics - Prisms 2. Reflective 1. Dispersive 3. Polarizing
  • 114. 114 OpticsSOLO Dispersive Prisms   2i1i 1t    11 ti   2t  22 it      2211 itti   21 it     21 ti 202 sinsin ti nn  Snell’s Law 10 n     1 1 2 1 2 sinsinsinsin tit nn         11 21 11 1 2 sincossin1sinsinsincoscossinsin ttttt nn    Snell’s Law 110 sinsin ti nn   11 sin 1 sin it n     1 2/1 1 221 2 sincossinsinsin iit n          1 2/1 1 221 1 sincossinsinsin iii n The ray deviation angle is 10 n
  • 115. 115 OpticsSOLO Prisms   2i1i 1t    11 ti   2t  22 it         1 2/1 1 221 1 sincossinsinsin iii n
  • 116. 116 OpticsSOLO Prisms   2i1i 1t    11 ti   2t  22 it         1 2/1 1 221 1 sincossinsinsin iii n   21 ti Let find the angle θi1 for which the deviation angle δ is minimal; i.e. δm. This happens when  01 0 11 2 1  ii t i d d d d d d       Taking the differentials of Snell’s Law equations 22 sinsin tin   11 sinsin ti n   2222 coscos iitt dnd   1111 coscos ttii dnd   Dividing the equations  1 2 1 2 1 1 2 1 2 1 cos cos cos cos   i t i t t i t i d d d d         2 22 1 22 2 2 2 2 1 2 2 2 1 2 2 2 1 2 sin sin /sin1 /sin1 sin1 sin1 sin1 sin1 t i t i i t t i n n n n                    1 1 2  i t d d   21 it   1 2 1  i t d d   2 2 1 2 2 2 1 2 cos cos cos cos i t t i      21 ti   1n
  • 117. 117 OpticsSOLO Prisms   2i1i 1t    11 ti   2t  22 it         1 2/1 1 221 1 sincossinsinsin iii n We found that if the angle θi1 = θt2 the deviation angle δ is minimal; i.e. δm. Using the Snell’s Law equations 22 sinsin tin   11 sinsin ti n   21 ti   21 it   This means that the ray for which the deviation angle δ is minimum passes through the prism parallel to it’s base.   2i 1i 1t  m  11 ti   2t  22 it   21 ti   21 it   Find the angle θi1 for which the deviation angle δ is minimal; i.e. δm (continue – 1).
  • 118. 118 OpticsSOLO Prisms       1 2/1 1 221 1 sincossinsinsin iii n Using the Snell’s Law 11 sinsin ti n   21 it   This equation is used for determining the refractive index of transparent substances.   2i 1i 1t  m  11 ti   2t  22 it   21 ti   21 it   21 it     21 ti 21 ti   m  2/1  t   12 im   2/1   mi    2/sin 2/sin     m n Find the angle θi1 for which the deviation angle δ is minimal; i.e. δm (continue – 2).
  • 119. 119 OpticsSOLO Prisms The refractive index of transparent substances varies with the wavelength λ.        1 2/1 1 221 1 sincossinsinsin iii n   2i1i 1t    11 ti   2t  22 it  
  • 120. 120 OpticsSOLO http://physics.nad.ru/Physics/English/index.htm Prisms υ [THz]λ0 (nm)Color 384 – 482 482 – 503 503 – 520 520 – 610 610 – 659 659 - 769 780 - 622 622 - 597 597 - 577 577 - 492 492 - 455 455 - 390 Red Orange Yellow Green Blue Violet 1 nm = 10-9m, 1 THz = 1012 Hz        1 2/1 1 221 1 sincossinsinsin iii n In 1672 Newton wrote “A New Theory about Light and Colors” in which he said that the white light consisted of a mixture of various colors and the diffraction was color dependent. Isaac Newton 1542 - 1727
  • 121. 121 SOLO Dispersing Prisms Pellin-Broca Prism Abbe Prism Ernst Karl Abbe 1840-1905 At Pellin-Broca Prism an incident ray of wavelength λ passes the prism at a dispersing angle of 90°. Because the dispersing angle is a function of wavelength the ray at other wavelengths exit at different angles. By rotating the prism around an axis normal to the page different rays will exit at the 90°. At Abbe Prism the dispersing angle is 60°. Optics - Prisms
  • 122. 122 SOLO Dispersing Prisms (continue – 1) Amici Prism Optics - Prisms
  • 123. 123 SOLO Reflecting Prisms  2i 1i 1t  2t E B D G A F C BED  180  360 ABEBEDADE 1 90 i ABE   2 90 t ADE    3609090 12  it BED  12 180 it BED      21 180 ti BED The bottom of the prism is a reflecting mirror Since the ray BC is reflected to CD DCGBCF  Also CGDBFC  CDGFBC  FBCt   901  CDGi   902 21 it   202 sinsin ti nn  Snell’s Law Snell’s Law 110 sinsin ti nn   21 ti     12 i CDGFBC  ~ Optics - Prisms
  • 124. 124 SOLO Reflecting Prisms Porro Prism Porro-Abbe Prism Schmidt-Pechan Prism Penta Prism Optics - Prisms Roof Penta Prism
  • 125. 125 SOLO Reflecting Prisms Abbe-Koenig Prism Dove Prism Amici-roof Prism Optics - Prisms
  • 126. 126 SOLO http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html Polarization can be achieved with crystalline materials which have a different index of refraction in different planes. Such materials are said to be birefringent or doubly refracting. Nicol Prism The Nicol Prism is made up from two prisms of calcite cemented with Canada balsam. The ordinary ray can be made to totally reflect off the prism boundary, leving only the extraordinary ray.. Polarizing Prisms Optics - Prisms
  • 127. 127 SOLO Polarizing Prisms A Glan-Foucault prism deflects polarized light transmitting the s-polarized component. The optical axis of the prism material is perpendicular to the plane of the diagram. A Glan-Taylor prism reflects polarized light at an internal air-gap, transmitting only the p-polarized component. The optical axes are vertical in the plane of the diagram. A Glan-Thompson prism deflects the p-polarized ordinary ray whilst transmitting the s-polarized extraordinary ray. The two halves of the prism are joined with Optical cement, and the crystal axis are perpendicular to the plane of the diagram. Optics - Prisms Return to TOC
  • 128. 128 OpticsSOLO Lens Definitions Optical Axis: the common axis of symmetry of an optical system; a line that connects all centers of curvature of the optical surfaces. FFL First Focal Point Second Focal Point Principal Planes Second Principal Point First Principal Point Light Rays from Left EFL BFL Optical System Optical Axis Lateral Magnification: the ratio between the size of an image measured perpendicular to the optical axis and the size of the conjugate object. Longitudinal Magnification: the ratio between the lengthof an image measured along the optical axis and the length of the conjugate object. First (Front) Focal Point: the point on the optical axis on the left of the optical system (FFP) to which parallel rays on it’s right converge. Second (Back) Focal Point: the point on the optical axis on the right of the optical system (BFP) to which parallel rays on it’s left converge.
  • 129. 129 OpticsSOLO Definitions (continue – 1) Aperture Stop (AS): the physical diameter which limits the size of the cone of radiation which the optical system will accept from an axial point on the object. Field Stop (FS): the physical diameter which limits the angular field of view of an optical system. The Field Stop limit the size of the object that can be seen by the optical system in order to control the quality of the image. Entrance Pupil: the image of the Aperture Stop as seen from the object through the elements preceding the Aperture Stop. Exit Pupil: the image of the Aperture Stop as seen from an axial point on the image plane. A.S. F.S. I Aperture and Field Stops Entrance pupil Exit pupil A.S. I xpE npE Chief Ray Entrance and Exit pupils Entrance pupilExit pupil A.S. I xpE npE Chief Ray
  • 130. 130 OpticsSOLO Definitions (continue – 2) Aperture Stop (AS): the physical diameter which limits the size of the cone of radiation which the optical system will accept from an axial point on the object. Field Stop (FS): the physical diameter which limits the angular field of view of an optical system. The Field Stop limit the size of the object that can be seen by the optical system in order to control the quality of the image. Entrance Pupil: the image of the Aperture Stop as seen from the object through the elements preceding the Aperture Stop. Exit Pupil: the image of the Aperture Stop as seen from an axial point on the image plane. Entrance pupil Exit pupil A.S. I Chief Ray Marginal Ray Exp Enp
  • 131. 131 OpticsSOLO Definitions (continue – 3) Principal Planes: the two planes defined by the intersection of the parallel incident rays entering an optical system with the rays converging to the focal points after passing through the optical system. FFL First Focal Point Second Focal Point Principal Planes Second Principal Point First Principal Point Light Rays from Left EFL BFL Optical System Optical Axis Principal Points: the intersection of the principal planes with the optical axes. Nodal Points: two axial points of an optical system, so located that an oblique ray directed toward the first appears to emerge from the second, parallel to the original direction. For systems in air, the Nodal Points coincide with the Principal Points. Cardinal Points: the Focal Points, Principal Points and the Nodal Points.
  • 132. 132 OpticsSOLO Definitions (continue – 4) Relative Aperture (f# ): the ratio between the effective focal length (EFL) f to Entrance Pupil diameter D. Numerical Aperture (NA): sine of the half cone angle u of the image forming ray bundles multiplied by the final index n of the optical system. If the object is at infinity and assuming n = 1 (air): Dff /:#  unNA sin:  # 1 2 1 2 1 sin ff D uNA        EFL EFL D u Last Principal Plane of the Optical System (Spherical)
  • 133. 133 OpticsSOLO Perfect Imaging System • All rays originating at one object point reconverge to one image point after passing through the optical system. • All of the objects points lying on one plane normal to the optical axis are imaging onto one plane normal to the axis. • The image is geometrically similar to the object. Object Image SystemOptical Object Image SystemOptical Object Image SystemOptical
  • 134. 134 OpticsSOLO Lens Convention of Signs 1. All Figures are drawn with the light traveling from left to right. 2. All object distances are considered positive when they are measured to the left of the vertex and negative when they are measured to the right. 3. All image distances are considered positive when they are measured to the right of the vertex and negative when they are measured to the left. 4. Both focal length are positive for a converging system and negative for a diverging system. 5. Object and Image dimensions are positive when measured upward from the axis and negative when measured downward. 6. All convex surfaces are taken as having a positive radius, and all concave surfaces are taken as having a negative radius. Return to TOC
  • 135. 135 OpticsSOLO Derivation of Gaussian Formula for a Single Spherical Surface Lens Using Fermat’s Principle Karl Friederich Gauss 1777-1855  s 's n 'n h l 'l    ' M T CA M’ R The optical path connecting points M, T, M’ is ''lnlnpathOptical  Applying cosine theorem in triangles MTC and M’TC we obtain:      2/122 cos2 RsRRsRl       2/122 cos'2'' RsRRsRl            2/1222/122 cos'2''cos2  RsRRsRnRsRRsRnpathOptical  Therefore According to Fermat’s Principle when the point T moves on the spherical surface we must have   0 d pathOpticald       0 ' sin''sin      l RsRn l RsRn d pathOpticald   from which we obtain           l sn l sn Rl n l n ' ''1 ' ' For small α and β we have ''& slsl  and we obtain R nn s n s n   ' ' ' Gaussian Formula for a Single Spherical Surface Return to TOC
  • 136. 136 OpticsSOLO Derivation of Gaussian Formula for a Single Spherical Surface Lens Using Snell’s Law Apply Snell’s Law: 'sin'sin  nn  If the incident and refracted rays MT and TM’ are paraxial the angles and are small and we can write Snell’s Law:  ' From the Figure    ' '' nn        nnnnnn  ''' For paraxial rays α, β, γ are small angles, therefore '/// shrhsh     r h nn s h n s h n  ' ' ' or   r nn s n s n   ' ' ' Gaussian Formula for a Single Spherical Surface Karl Friederich Gauss 1777-1855 Willebrord van Roijen Snell 1580-1626  s 's n 'n h l 'l    ' M T CA M’ r
  • 137. 137 OpticsSOLO Derivation of Gaussian Formula for a Single Spherical Surface Lens Using Snell’s Law for s → ∞ the incoming rays are parallel to optical axis and they will refract passing trough a common point called the focus F’.   r nn s n s n   ' ' ' s '' fs  n 'n h 'l    ' T C A F’ R  fs  's n 'n h l   F T CA R '   r nn f nn    ' ' ' r nn n f   ' ' ' for s’ → ∞ the refracting rays are parallel to optical axis and therefore the incoming rays passes trough a common point called the focus F.   r nnn f n     '' r nn n f   ' '' n n f f  Return to TOC
  • 138. 138 OpticsSOLO Derivation of Lens Makers’ Formula We have a lens made of two spherical surfaces of radiuses r1 and r2 and a refractive index n’, separating two media having refraction indices n a and n”. Ray MT1 is refracted by the first spherical surface (if no second surface exists) to T1M’.   111 ' ' ' r nn s n s n   11111 ''& sMAsTA  Ray T1T2 is refracted by the second spherical surface to T2M”. 2222 ""&'' sMAsMA    222 '" " " ' ' r nn s n s n   Assuming negligible lens thickness we have , and since M’ is a virtual object for the second surface (negative sign) we have 21 '' ss  21 '' ss    221 '" " " ' ' r nn s n s n   M’ M '1f1f 1s Axis T1 T2 A1 A2 C1 1rC2 F’1F’’2 M’’ F’2F1 ''2f'2f '1s '2s ''2s 2r n 'n ''n
  • 139. 139 OpticsSOLO Derivation of Lens Makers’ Formula (continue – 1) M” M f s Axis A1 A2 C1 1rC2 F” F ''f ''s 2r n 'n ''n   111 ' ' ' r nn s n s n   Add those equations   221 '" " " ' ' r nn s n s n       2121 '"' " " r nn r nn s n s n     M’ M '1f1f 1s Axis T1 T2 A1 A2 C1 1rC2 F’1F’’2 M’’ F’2F1 ''2f'2f '1s '2s ''2s 2r n 'n ''n The focal lengths are defined by tacking s1 → ∞ to obtain f” and s”2 → ∞ to obtain f     f n r nn r nn f n      212 '"' " " Let define s1 as s and s”2 as s” to obtain     21 '"' " " r nn r nn s n s n         f n r nn r nn f n      21 '"' " "
  • 140. 140 OpticsSOLO Derivation of Lens Makers’ Formula (continue – 2) M” M f s Axis A1 A2 C1 1rC2 F” F ''f ''s 2r n 'n n If the media on both sides of the lens is the same n = n”.              21 11 1 ' " 11 rrn n ss              21 11 1 '1 " 1 rrn n ff Therefore " 11 " 11 ffss  Lens Makers’ Formula
  • 141. 141 OpticsSOLO First Order, Paraxial or Gaussian Optics In 1841 Gauss gave an exposition in “Dioptrische Untersuchungen” for thin lenses, for the rays arriving at shallow angles with respect to Optical axis (paraxial). Karl Friederich Gauss 1777-1855 Derivation of Lens Formula 'y s 's M’A F’ M T F 'ffx 'x Q Q’ 'y y S Axis yFrom the similarity of the triangles and using the convention:   '' ' '~' f y s yy TAFTSQ    Lens Formula in Gaussian form     f y s yy FASQTS '' ~       0'  y Sum of the equations:       ' ' ' '' f y f y s yy s yy       since f = f’ fss 1 ' 11  Return to TOC
  • 142. 142 OpticsSOLO First Order, Paraxial or Gaussian Optics (continue – 1) Gauss explanation can be extended to the first order approximation to any optical system. Karl Friederich Gauss 1777-1855 'y s 's M’P1 F’ M T F 'ffx 'x Q Q’ 'y y Axis y P2 First Focal Point First Principal Point Second Focal PointSecond Principal Point Optical System Object Image Lens Formula in Gaussian form 'y s 's M’A F’ M T F 'ffx 'x Q Q’ 'y y S Axis y fss 1 ' 11  s – object distance (from the first principal point to the object). s’ – image distance (from the second principal point to the image). f – EFL (distance between a focal point to the closest principal plane).
  • 143. 143 OpticsSOLO Derivation of Lens Formula (continue) 'y s 's M’A F’ M T F 'ffx 'x Q Q’ 'y y S Axis y From the similarity of the triangles and using the convention:   f y x y FASQMF ' ~   Lens Formula in Newton’s form   f y x y QMFTAF    ' ' '''~'   0'  y Multiplication of the equations:     2 ' ' ' f yy xx yy     or 2 ' fxx  Isaac Newton 1643-1727 First Order, Paraxial or Gaussian Optics (continue – 2) Published by Newton in “Opticks” 1710
  • 144. 144 OpticsSOLO Derivation of Lens Formula (continue) 'h s 's M’A F’ M T F 'ffx 'x Q Q’ 'h h S Axis h First Order, Paraxial or Gaussian Optics (continue – 3) Lateral or Transverse Magnification f x x f s s h h mT '''  (-) sign(+) signQuantity virtual objectreal objects virtual imagereal images’ diverging lensconverging lensf inverted objecterect objecth inverted imageerect imageh’ inverted imageerect imagemT
  • 145. 145 OpticsSOLO Concave Spherical Convex Spherical Paraboloidal Conic Ellipsoidal General Aspherical Plane Converging : General use Diverging : General use Accurately focuses a parallel beam or produces a parallel beam from a point source Refocuses a diverging bundle at another point (P) displaced from the point of origin (O) Change the direction of beam Used mostly in combination systems of two or more components BASIC MIRRORS FORMS
  • 146. 146 OpticsSOLO Convex Plano Convex Meniscus Concave Plano Concave Meniscus Doublet Multi- Element Aspheric Converging: General Use, Magnification Converging: Used often in opposed doubles to reduce spherical aberration Converging: reduced spherical aberration Diverging: General Use, Demagnification Diverging: Used in multi-element combinations Diverging: reduced spherical aberration Corrected for chromatic aberration High order of aberration correction used in complex systems Corrected for spherical aberration used in condenser systems BASIC LENS FORMS Return to TOC
  • 147. 147 OpticsSOLO Ray Tracing F C O I Object Virtual Image Convex Mirror R/2 R/2 R F F’C O I Object Real Image Converging Lens FC O I Object Real Image Concave Mirror F F’C O I Object Virtual Image Diverging Lens Ray Tracing is a graphically implementation of paralax ray analysis. The construction doesn’t take into consideration the nonideal behavior, or aberration of real lens. The image of an off-axis point can be located by the intersection of any two of the following three rays: 1. A ray parallel to the axis that is reflected through F’. 2. A ray through F that is reflected parallel to the axis. 3. A ray through the center C of the lens that remains undeviated and undisplaced (for thin lens).
  • 148. 148 OpticsSOLO Infinity Principal focus SUMMARY OF SIMPLE IMAGING LENSES f f2f2 f 0 's 'ss fs 2 fsf 2' fs 2 fs 2' fsf 2 fs 2' 's 's s s fs  's s s 's fs  fs ' s 's fsf 2 fs ' Real, inverted small Telescope Real, inverted smaller Camera Real, inverted same size Photocopier Real, inverted larger Projector No image Searchlight Virtual, erect larger Microscope Virtual, erect smaller Various Figure Object Location Image Location Image Properties Example L.J. Pinson, “Electro-Optics”, John Wiley & Sons, 1985, pg.54 Return to TOC
  • 149. 149 OpticsSOLO Matrix Formulation The Matrix Formulation of the Ray Tracing method for the paraxial assumption was proposed at the beginning of nineteen-thirties by T.Smith. Assuming a paraxial ray entering at some input plane of an optical system at the distance r1 from the symmetry axis and with a slope r1’ and exiting at some output plane at the distance r2 from the symmetry axis and with a slope r2’, than the following linear (matrix) relation applies: Principal PlanesInput plane Output plane Ray path 1h 2h 1r 2r '1r '2r Symmetry axis                         ''' 1 1 1 1 2 2 r r M r r DC BA r r        DC BA Mwhere ray transfer matrix When the media to the left of the input plane and to the right of the output plane have the same refractive index, we have: 1det  CBDAM
  • 150. 150 OpticsSOLO Matrix Formulation (continue -1) Uniform Optical Medium In an Uniform Optical Medium of length d no change in ray angles occurs: Ray path d 1r 2r '1r '2r Symmetry axis 1 2 '' ' 12 112 rr rdrr          10 1 d M Medium Optical Uniform Planar Interface Between Two Different Media Ray path 1r 2r '1r '2r Symmetry axis 1 2 1n 2n 12 rr  '' 1 2 1 2 12 r n n r rr   Apply Snell’s Law: 2211 sinsin  nn  paraxial assumption:   tan'sin r From Snell’s Law: '' 1 2 1 2 r n n r         21 /0 01 nn M Interface Planar 1det 2 1  n n M Interface Planar 1det  Medium Optical UniformM The focal length of this system is infinite and it has not specific principal planes.
  • 151. 151 OpticsSOLO Matrix Formulation (continue -2) A Parallel-Sided Slab of refractive index n bounded on both sides with media of refractive index n1 = 1 Ray path d 21 rr  43 rr  '1r '4r Symmetry axis '2r '3r nn 211 n 11 n We have three regions: • on the right of the slab (exit of ray):                   '/0 01 ' 3 3 124 4 r r nnr r • in the slab:                   '10 1 ' 2 2 3 3 r rd r r • on the left of the slab (entrance of ray):                   '/0 01 ' 1 1 212 2 r r nnr r Therefore:                               '/0 01 10 1 /0 01 ' 1 1 21124 4 r r nn d nnr r                                21 21 122112 /0 /1 /0 01 /0 01 10 1 /0 01 nn nnd nnnn d nn M mediaentranceslabmediaexit Slab Sided Parallel         10 /1 21 nnd M Slab Sided Parallel 1det  Slab Sided ParallelM
  • 152. 152 OpticsSOLO Matrix Formulation (continue -3) Spherical Interface Between Two Different Media Ray path 21 rr  '1r '2r Symmetry axis 1n 2n i r 1 12 rr  Apply Snell’s Law: rnin sinsin 21  paraxial assumption: rrii  sin&sin From Snell’s Law: rnin 21                           2 1 2 1 2 1 12 21 0101 n n n D n n Rn nnM Interface Spherical 1det 2 1  n n M Interface Spherical 12 11 ' '     rr ri From the Figure:    122111 ''   rnrn 111 / Rr   12 121 2 11 2 ' ' Rn rnn n rn r     1 12 11 112 2 12 ' ' n rn Rn rnn r rr       1 12 1 : R nn D  where: Power of the surface If R1 is given in meters D1 gives diopters
  • 153. 153 OpticsSOLO Matrix Formulation (continue -4) Thick Lens 21 rr  43 rr  '1r i 2 1 '2r '3r r 2R 1R f '4r1C 2F IO 1F 2C Principal planes 2n 1n s 's d We have three regions: • on the right of the slab (exit of ray):                        ' 01 ' 3 3 1 2 1 2 4 4 r r n n n D r r • in the slab:                   '10 1 ' 2 2 3 3 r rd r r • on the left of the slab (entrance of ray):                        ' 01 ' 1 1 2 1 2 1 2 2 r r n n n D r r Therefore:                                                                       ' 101 ' 01 10 1 01 ' 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 4 4 r r n n n D n n d n D d n n n D r r n n n D d n n n D r r                          2 2 21 21 1 21 2 1 2 1 1 1 n D d nn DD d n DD n n d n D d M Lens Thick   2 21 2 R nn D     1 12 1 : R nn D                            2 1 21 21 1 21 2 1 2 2 1 1 1 n D d nn DD d n DD n n d n D d M Lens Thick 1det  Lens Thick M or 21 DD 
  • 154. 154 OpticsSOLO Matrix Formulation (continue -5) Thick Lens (continue -1) 21 rr  43 rr  '1r i 2 1 '2r '3r r 2R 1R f '4r1C 2F IO 1F 2C Principal planes 2n 1n 2R 1R 2f 1C 2F I O 1F 2C Principal planes 2n 1n 1h 2h s s 's 's d Ray 2 Ray 1 1f Let use the second Figure where Ray 2 is parallel to Symmetry Axis of the Optical System that is refracted trough the Second Focal Point.                                              '1 1 ' 1 1 2 2 21 21 1 21 2 1 2 1 4 4 r r n D d nn DD d n DD n n d n D d r r We found: 2141 /'&0' frrr Ray 2: By substituting Ray2 parameters we obtain: 1 2 1 21 21 1 21 4 1 ' r f r nn DD d n DD r          1 21 21 1 21 2           nn DD d n DD f frrr /'&0' 414 Ray 1: We found:                                             '1 1 ' 4 4 2 1 21 21 1 21 2 1 2 2 1 1 r r n D d nn DD d n DD n n d n D d r r 4 1 4 21 21 1 21 1 1 ' r f r nn DD d n DD r          2 1 21 21 1 21 1 f nn DD d n DD f          
  • 155. 155 OpticsSOLO Matrix Formulation (continue -6) Thin Lens 21 rr  43 rr  '1r i 2 1 '2r '3r r 2R 1R f '4r1C 2F IO 1F 2C Principal planes 2n 1n s 's d For thick lens we found                          2 2 21 21 1 21 2 1 2 1 1 1 n D d nn DD d n DD n n d n D d M Lens Thick          21 21 1 211 nn DD d n DD f For thin lens we can assume d = 0 and obtain             1 1 01 f M Lens Thin 1 211 n DD f     2 21 2 R nn D     1 12 1 : R nn D                  211 2 1 21 11 1 1 RRn n n DD f 21 rr  43 rr  2R 1R f '4r1C 2F IO 1F 2C Principal planes 2n 1n s 's '1r
  • 156. 156 OpticsSOLO Matrix Formulation (continue -7) Thin Lens (continue – 1) For a biconvex lens we have R2 negative                211 2 11 1 1 RRn n f For a biconcave lens we have R1 negative                211 2 11 1 1 RRn n f             1 1 01 f M Lens Thin
  • 157. 157 OpticsSOLO Matrix Formulation (continue -8) A Length of Uniform Medium Plus a Thin Lens                               f d f d d f MMM Medium Uniform Lens Thin Lens Thin Medium Uniform 1 1 1 10 1 1 1 01 21 rr  43 rr  2R 1R f '4r1C 2F IO 1F 2C Principal planes 2n 1n s 's '1r d Combination of Two Thin Lenses 2n 1d 1f 2d 2f 2n                                      21 21 2 2 2 1 1 1 21 2 21 1 21 21 2 2 1 1 1 1 22 2 1 11 1 1 1 1 1 1 1 1122 ff dd f d f d f d ff d ff f dd dd f d f d f d f d f d MMMMM dMedium Uniform fLens Thin dMedium Uniform fLens Thin Lenses Thin Two The Focal Length of the Combination of Two Thin Lenses is: 21 2 21 111 ff d fff 
  • 158. 158 OpticsSOLO Matrix Formulation (continue -9) Mirrors r Spherical Mirror i i ii  i i iy RSpherical Mirror Center of Curvature r   Ryiii /tan  Consider a Spherical Mirror of radius R. From the geometry: For small angles: Ryiii / also: iri  2   2/rii   Ryiri /2 Define by n the index of reflexion of the medium: Rynnn yy iir ir /2                      i i r r n y Rnn y  1/2 01 Therefore:                1/ 01 1/2 01 fnRn M Mirror Spherical
  • 159. 159 OpticsSOLO Matrix Formulation (continue -10) Cavity of two Mirrors d 12M 21M 2MirrorM 1MirrorM Spherical Mirror M1 Radius R1 Spherical Mirror M2 Radius R2 O                             10 1 1/2 01 10 1 1/2 01 12 1221 12 d Rn d Rn MMMMM MMirror Spherical MMirror SphericalCavity Figure shows two spherical mirrors facing each other forming an optical cavity. Light leaves point O, traverse the gap in the positive direction, is reflected by Mirror M1, retraces the gap in the negative direction, and is reflected by Mirror M2. The System Matrix is:                            21221 2 21 1 2 1 1122 /21/21/2/4/2/2 /22/21 /21/2 1 /21/2 1 RdnRdnRdnRRdnRnRn RdndRdn RdnRn d RdnRn d            21 22 2121 2 21 1 2 1 /4/4/21/4/2/2 /22/21 RRdnRdnRdnRRdnRnRn RdndRdn MCavity
  • 160. 160 Go to OPTICS Part II OpticsSOLO
  • 161. January 5, 2015 161 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA