SlideShare a Scribd company logo
Lecture 3 Oscillator 
• Introduction of Oscillator 
• Linear Oscillator 
– Wien Bridge Oscillator 
– RC Phase-Shift Oscillator 
– LC Oscillator 
• Stability 
Ref:06103104HKN EE3110 Oscillator 1
Oscillators 
Oscillation: an effect that repeatedly and 
regularly fluctuates about the mean value 
Oscillator: circuit that produces oscillation 
Characteristics: wave-shape, frequency, 
amplitude, distortion, stability 
Ref:06103104HKN EE3110 Oscillator 2
Application of Oscillators 
• Oscillators are used to generate signals, e.g. 
– Used as a local oscillator to transform the RF 
signals to IF signals in a receiver; 
– Used to generate RF carrier in a transmitter 
– Used to generate clocks in digital systems; 
– Used as sweep circuits in TV sets and CRO. 
Ref:06103104HKN EE3110 Oscillator 3
Linear Oscillators 
1. Wien Bridge Oscillators 
2. RC Phase-Shift Oscillators 
3. LC Oscillators 
4. Stability 
Ref:06103104HKN EE3110 Oscillator 4
Integrant of Linear Oscillators 
Ve 
+ Amplifier (A) 
Vs Vo 
S 
+ 
Frequency-Selective 
Feedback Network (b) 
Vf 
Positive 
Feedback 
For sinusoidal input is connected 
“Linear” because the output is approximately sinusoidal 
A linear oscillator contains: 
- a frequency selection feedback network 
- an amplifier to maintain the loop gain at unity 
Ref:06103104HKN EE3110 Oscillator 5
Basic Linear Oscillator 
+ 
Ve A(f) 
Vs Vo 
S 
+ 
SelectiveNetwork 
          b(f) 
Vf 
( ) o s f V = AV = A V +V e and f o V = bV 
A 
Ab 
V 
s 
Þ o 
= 
V 
- 
1 
If Vs = 0, the only way that Vo can be nonzero 
is that loop gain Ab=1 which implies that 
A (Barkhausen Criterion) 
b 
A 
= 
b 
| | 1 
Ð = 
0 
Ref:06103104HKN EE3110 Oscillator 6
Wien Bridge Oscillator 
1 
C 
1 
C 
Let Frequency Selection Network 
= and 
1 
XC 1 
w 
1 1 C1 Z = R - jX 
2 
X= 
C 2 
w 
C 
jR X 
2 2 
2 2 
1 
2 2 
ù 
é 
Vi Vo 
jR X R jX 
= - - 
( / ) 
C C 
2 2 2 2 
2 
V 
o 
Z 
C 
jR X 
2 2 
b = - 
R - jX R - jX - 
jR X 
( )( ) C C C 
Ref:06103104HKN EE3110 Oscillator 7 
2 
1 1 
C 
C R jX 
R jX 
Z 
- 
= - úû 
êë 
- 
= + 
- 
Therefore, the feedback factor, 
( ) ( / ) 
1 1 2 2 2 2 
1 2 
C C C 
i 
R jX jR X R jX 
Z Z 
V 
- + - - 
+ 
b = = 
1 1 2 2 2 2 
R1 C1 
C2 R2 
Z1 
Z2
b can be rewritten as: 
C 
R X 
2 2 
R X + R X + R X + j R R - 
X X 
( ) 1 C 2 2 C 1 2 C 2 1 2 C 1 C 
2 
b = 
For Barkhausen Criterion, imaginary part = 0, i.e., 
0 1 2 1 2 - = C C R R X X 
or 1 1 
C C 
w w 
1 2 
R R C C 
1 2 1 2 
R R 
1 2 
1/ 
Þ = 
= 
w 
Supposing, 
R1=R2=R and XC1= XC2=XC, 
RX 
C 
+ - 
3 RX j ( R 2 X 
2 ) 
C C 
b = 
0.34 b 
0.32 
factor 0.3 
0.28 
Feedback 0.26 
0.24 
0.22 
0.2 
1 
0.5 
0 
Phase 
-0.5 
-1 
f(R=Xc) 
Phase=0 
Frequency 
b=1/3 
Ref:06103104HKN EE3110 Oscillator 8
Example 
Rf 
- 
+ 
R 
R 
C 
R1 
C 
Z1 
Z2 
Vo 
w = 1 
By setting RC 
, we get 
b = 1 
Imaginary part = 0 and 
3 
Due to Barkhausen Criterion, 
Loop gain Avb=1 
where 
Av : Gain of the amplifier 
R 
A A f 
v v b = Þ = = + 
R 
1 
1 3 1 
RTherefore, f 2 
Wien Bridge Oscillator 
= 
R 
1 
Ref:06103104HKN EE3110 Oscillator 9
RC Phase-Shift Oscillator 
- 
+ 
Rf 
R1 
C C C 
R R R 
 Using an inverting amplifier 
 The additional 180o phase shift is provided by an RC 
phase-shift network 
Ref:06103104HKN EE3110 Oscillator 10
Applying KVL to the phase-shift network, we have 
C C C 
V1 Vo 
R R R 
V = I ( R - jX ) 
- 
I R 
C 
1 1 2 
I R I R jX I R 
= - + - - 
0 (2 ) 
C 
1 2 3 
I R I R jX 
= - + - 
0 (2 ) 
2 3 
C 
I1 I2 I3 Solve for I3, we get 
C 
R - jX - 
R 
0 
R R jX R 
- - - 
C 
C 
R jX R V 
1 
2 0 
C 
- - 
C 
R R jX 
R R jX 
R 
I 
- - 
- - 
- 
= 
2 
0 2 
0 0 
3 
2 
I V R 
1 
( )[(2 )2 2 ] 2 (2 ) 
Or = 
3 
R - jX R - jX - R - R R - 
jX 
C C C Ref:06103104HKN EE3110 Oscillator 11
The output voltage, 
3 
V = I R = 
V R 
1 
o R jX R jX R R R jX 
( )[(2 )2 2 ] 2 (2 ) 
3 
- - - - - 
C C C 
Hence the transfer function of the phase-shift network is given by, 
3 
R 
( 3 5 2 ) ( 3 6 2 ) 
V 
b = o 
= 
R RX j X R X 
V 
- + - 
1 C C C 
For 180o phase shift, the imaginary part = 0, i.e., 
3 2 
X R X XC C C 
- = = 
6 0 or 0 (Rejected) 
2C 
R 
2 1 
RC 
Þ = 
X 6 
6 
= 
w 
and, 
b = - 1 
29 
Note: The –ve sign mean the 
phase inversion from the 
voltage 
Ref:06103104HKN EE3110 Oscillator 12
LC Oscillators 
- 
~ 
Av Ro 
+ 
Z1 Z2 
2 1 
Z3 
Ref:06103104HKN EE3110 Oscillator 13 
Zp 
 The frequency selection 
network (Z1, Z2 and Z3) 
provides a phase shift of 
180o 
 The amplifier provides an 
addition shift of 180o 
Two well-known Oscillators: 
• Colpitts Oscillator 
• Harley Oscillator
Av Ro 
+ 
~ 
Z1 Z2 
Vf Vo 
Z3 
Zp 
V V Z 
f o o V 
1 
+ 
Z Z 
1 3 
= b = 
Z = Z Z + 
Z p 
//( ) 
2 1 3 
( ) 
Z Z Z 
= + 
2 1 3 
Z + Z + 
Z 
1 2 3 
For the equivalent circuit from the output 
A Z 
v p 
- 
R + 
Z 
o p 
V 
- or 
= o 
= 
V 
i 
V 
o 
p 
A V 
v i 
R + 
Z 
o p 
Z 
Ro 
Io 
-A Zp vVi 
+ 
- 
+ 
Vo 
- 
Therefore, the amplifier gain is obtained, 
A Z Z Z 
= = - + 
( ) 
2 1 3 
v 
R Z + Z + Z + Z Z + 
Z 
( ) ( ) 
1 2 3 2 1 3 
A V 
o 
V 
o 
i 
Ref:06103104HKN EE3110 Oscillator 14
The loop gain, 
A A Z Z 
1 2 
v 
b = - 
R Z + Z + Z + Z Z + 
Z 
( ) ( ) 1 2 3 2 1 3 
o 
If the impedance are all pure reactances, i.e., 
1 1 2 2 3 3 Z = jX , Z = jX and Z = jX 
The loop gain becomes, 
A A X X 
1 2 
v 
jR X + X + X - X X + 
X 
( ) ( ) 1 2 3 2 1 3 
o 
b = 
The imaginary part = 0 only when X1+ X2+ X3=0 
 It indicates that at least one reactance must be –ve (capacitor) 
 X1 and X2 must be of same type and X3 must be of opposite type 
A AvX = v 
A X 
2 
1 
1 
With imaginary part = 0, b = - 
X + 
X 
1 3 
X 
For Unit Gain & 180o Phase-shift, 
A A X v b = Þ = 
1 2 
1 
X 
Ref:06103104HKN EE3110 Oscillator 15
Hartley Oscillator Colpitts Oscillator 
R L1 
L2 
C 
R 
C1 
C2 
L 
w = 1 
1 
w = 
L L C = o ( ) 
o LC 
T 
g C m = 
2 
RC 
1 
C C C T + 
1 2 
C C 
1 2 
1 2 + 
g L m = 
1 
RL 
2 
Ref:06103104HKN EE3110 Oscillator 16
Colpitts Oscillator 
R 
C1 
C2 
L 
Equivalent circuit 
+ 
- 
Vp 
L 
C2 R C1 
gmVp 
In the equivalent circuit, it is assumed that: 
 Linear small signal model of transistor is used 
 The transistor capacitances are neglected 
 Input resistance of the transistor is large enough 
Ref:06103104HKN EE3110 Oscillator 17
At node 1, 
( ) 1 1 V V i jwL p = + 
where, 
p i jwC V 1 2 = 
2 
L 
node 1 
I1 
I2 I3 
V1 
C2 R C1 
Þ V = V (1 - 
w LC ) 1 p 2 
Apply KCL at node 1, we have 
j C V g V V m w w p p 
2 + + + j CV = 
Vp 
0 1 1 
1 
R 
+ 
- 
gmVp 
(1 ) 1 0 2 1 
+ + - 2 
æ + j C 
ö çè 
j C V g V V LC m w w w p p p 
2 R 
÷ø 
= For Oscillator Vp must not be zero, therefore it enforces, 
ö 
1 [ ( ) ] 0 
gm w w w 
= - + + ÷ ÷ø 
LC 
+ - j C C LC C 
1 2 
3 
1 2 
2 
2 
æ 
ç çè 
R 
R 
I4 
Ref:06103104HKN EE3110 Oscillator 18
ö 
1 [ ( ) ] 0 
gm w w w 
= - + + ÷ ÷ø 
LC 
+ - j C C LC C 
1 2 
2 
2 
æ 
ç çè 
R 
R 
Imaginary part = 0, we have 
1 2 
3 
w = 1 
o LC 
T 
Real part = 0, yields 
g C m = 
2 
RC 
1 
C C C T + 
1 2 
C C 
1 2 
= 
Ref:06103104HKN EE3110 Oscillator 19
Frequency Stability 
• The frequency stability of an oscillator is 
defined as 
o 
ppm/ C 
w 
1 ׿ 
ö çè 
÷ø 
w = 
T 
d 
w w 
o o d 
• Use high stability capacitors, e.g. silver 
mica, polystyrene, or teflon capacitors and 
low temperature coefficient inductors for 
high stable oscillators. 
Ref:06103104HKN EE3110 Oscillator 20
Amplitude Stability 
• In order to start the oscillation, the loop 
gain is usually slightly greater than unity. 
• LC oscillators in general do not require 
amplitude stabilization circuits because of 
the selectivity of the LC circuits. 
• In RC oscillators, some non-linear devices, 
e.g. NTC/PTC resistors, FET or zener 
diodes can be used to stabilized the 
amplitude 
Ref:06103104HKN EE3110 Oscillator 21
Wien-bridge oscillator with bulb stabilization 
Vrms 
irms 
Operating 
point 
+ 
- 
R 
R 
C 
C 
R2 
Blub 
Ref:06103104HKN EE3110 Oscillator 22
Wien-bridge oscillator with diode 
stabilization 
Rf 
- 
+ 
R 
R 
C 
R1 
C 
Vo 
Ref:06103104HKN EE3110 Oscillator 23
Twin-T Oscillator 
- 
+ 
low pass filter 
high pass filter 
Filter output 
low pass region high pass region 
fr f 
Ref:06103104HKN EE3110 Oscillator 24
Bistable Circuit 
+ 
- 
vo 
v1 
v+ 
Vth 
+Vcc 
-Vcc 
vo 
v1 
-Vth 
vo 
+Vcc 
-Vcc 
v1 
Vth 
+Vcc 
-Vth 
-Vcc 
vo 
v1 
Ref:06103104HKN EE3110 Oscillator 25
A Square-wave Oscillator 
- 
+ 
vo 
vc 
vf 
vc 
vo 
+vf 
¡Ðvf 
+vmax 
¡Ðvmax 
Ref:06103104HKN EE3110 Oscillator 26

More Related Content

PPT
Active filters
PDF
Positive feedback: Oscillators
PPT
Receivers
PPTX
Tuned amplifire
PPTX
Fm transmitter and receivers
PPTX
integrator and differentiator op-amp
PDF
7.Active Filters using Opamp
Active filters
Positive feedback: Oscillators
Receivers
Tuned amplifire
Fm transmitter and receivers
integrator and differentiator op-amp
7.Active Filters using Opamp

What's hot (20)

PPTX
Superhetrodyne receiver
PPTX
Butterworth filter
PPT
Power amplifiers
PPTX
Pll ppt
PPTX
Pre-emphasis and De-emphasis.pptx
PPT
Comparator
PPTX
3.4_OOK systems – ASK, FSK, PSK, BPSK, QPSK, applications of Data communicati...
PPTX
NYQUIST CRITERION FOR ZERO ISI
PPTX
1. elementary signals
PPTX
Active filter
DOCX
Electronic circuit design lab manual
PPTX
Logic families
PPT
Unit 1 graph theory
PPT
Am transmitter
PPTX
Gunn diode characteristics and conductivity
PPTX
Low pass filters
PPTX
Design of Filters PPT
PPTX
Phase Locked Loop (PLL)
PPTX
ADC and DAC Best Ever Pers
PPTX
Phase locked loop
Superhetrodyne receiver
Butterworth filter
Power amplifiers
Pll ppt
Pre-emphasis and De-emphasis.pptx
Comparator
3.4_OOK systems – ASK, FSK, PSK, BPSK, QPSK, applications of Data communicati...
NYQUIST CRITERION FOR ZERO ISI
1. elementary signals
Active filter
Electronic circuit design lab manual
Logic families
Unit 1 graph theory
Am transmitter
Gunn diode characteristics and conductivity
Low pass filters
Design of Filters PPT
Phase Locked Loop (PLL)
ADC and DAC Best Ever Pers
Phase locked loop
Ad

Similar to Oscillatorsppt (20)

PPT
Oscillators.ppt
PPT
Oscillators
PDF
Lecture 10 OSCILLATOR I Electronics Circuit design .PDF
PPT
oscillatorsFGJJOPJOPJGFPOJGPJPFJPJPOJPO.ppt
PDF
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
PDF
Two-stage CE amplifier
PDF
Bjt oscillators
PPT
Unit 5 inverters
PPTX
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
PPT
Resonant circuits
PPT
Sinusoidal oscillators
PPT
Power Electronics Unit 2 Notes for B.E (EEE)
PPT
4606
PPT
Commutation techniques in power electronics
PPT
6097856OIJOIOLNLKF;NGNHKGLMFHKL;MFGK;MK;;M;.ppt
PPTX
oscillators.pptx
PDF
File for basic electronics btech electrical
PPTX
ch2-BJTremaining.pptx
PPTX
Highpass RC circuit
PDF
Oscillators
Oscillators.ppt
Oscillators
Lecture 10 OSCILLATOR I Electronics Circuit design .PDF
oscillatorsFGJJOPJOPJGFPOJGPJPFJPJPOJPO.ppt
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
Two-stage CE amplifier
Bjt oscillators
Unit 5 inverters
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
Resonant circuits
Sinusoidal oscillators
Power Electronics Unit 2 Notes for B.E (EEE)
4606
Commutation techniques in power electronics
6097856OIJOIOLNLKF;NGNHKGLMFHKL;MFGK;MK;;M;.ppt
oscillators.pptx
File for basic electronics btech electrical
ch2-BJTremaining.pptx
Highpass RC circuit
Oscillators
Ad

Recently uploaded (20)

PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
Digital Logic Computer Design lecture notes
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
OOP with Java - Java Introduction (Basics)
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
web development for engineering and engineering
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
Construction Project Organization Group 2.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Digital Logic Computer Design lecture notes
bas. eng. economics group 4 presentation 1.pptx
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
OOP with Java - Java Introduction (Basics)
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
web development for engineering and engineering
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Construction Project Organization Group 2.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
Operating System & Kernel Study Guide-1 - converted.pdf
Lecture Notes Electrical Wiring System Components
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Model Code of Practice - Construction Work - 21102022 .pdf
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf

Oscillatorsppt

  • 1. Lecture 3 Oscillator • Introduction of Oscillator • Linear Oscillator – Wien Bridge Oscillator – RC Phase-Shift Oscillator – LC Oscillator • Stability Ref:06103104HKN EE3110 Oscillator 1
  • 2. Oscillators Oscillation: an effect that repeatedly and regularly fluctuates about the mean value Oscillator: circuit that produces oscillation Characteristics: wave-shape, frequency, amplitude, distortion, stability Ref:06103104HKN EE3110 Oscillator 2
  • 3. Application of Oscillators • Oscillators are used to generate signals, e.g. – Used as a local oscillator to transform the RF signals to IF signals in a receiver; – Used to generate RF carrier in a transmitter – Used to generate clocks in digital systems; – Used as sweep circuits in TV sets and CRO. Ref:06103104HKN EE3110 Oscillator 3
  • 4. Linear Oscillators 1. Wien Bridge Oscillators 2. RC Phase-Shift Oscillators 3. LC Oscillators 4. Stability Ref:06103104HKN EE3110 Oscillator 4
  • 5. Integrant of Linear Oscillators Ve + Amplifier (A) Vs Vo S + Frequency-Selective Feedback Network (b) Vf Positive Feedback For sinusoidal input is connected “Linear” because the output is approximately sinusoidal A linear oscillator contains: - a frequency selection feedback network - an amplifier to maintain the loop gain at unity Ref:06103104HKN EE3110 Oscillator 5
  • 6. Basic Linear Oscillator + Ve A(f) Vs Vo S + SelectiveNetwork b(f) Vf ( ) o s f V = AV = A V +V e and f o V = bV A Ab V s Þ o = V - 1 If Vs = 0, the only way that Vo can be nonzero is that loop gain Ab=1 which implies that A (Barkhausen Criterion) b A = b | | 1 Ð = 0 Ref:06103104HKN EE3110 Oscillator 6
  • 7. Wien Bridge Oscillator 1 C 1 C Let Frequency Selection Network = and 1 XC 1 w 1 1 C1 Z = R - jX 2 X= C 2 w C jR X 2 2 2 2 1 2 2 ù é Vi Vo jR X R jX = - - ( / ) C C 2 2 2 2 2 V o Z C jR X 2 2 b = - R - jX R - jX - jR X ( )( ) C C C Ref:06103104HKN EE3110 Oscillator 7 2 1 1 C C R jX R jX Z - = - úû êë - = + - Therefore, the feedback factor, ( ) ( / ) 1 1 2 2 2 2 1 2 C C C i R jX jR X R jX Z Z V - + - - + b = = 1 1 2 2 2 2 R1 C1 C2 R2 Z1 Z2
  • 8. b can be rewritten as: C R X 2 2 R X + R X + R X + j R R - X X ( ) 1 C 2 2 C 1 2 C 2 1 2 C 1 C 2 b = For Barkhausen Criterion, imaginary part = 0, i.e., 0 1 2 1 2 - = C C R R X X or 1 1 C C w w 1 2 R R C C 1 2 1 2 R R 1 2 1/ Þ = = w Supposing, R1=R2=R and XC1= XC2=XC, RX C + - 3 RX j ( R 2 X 2 ) C C b = 0.34 b 0.32 factor 0.3 0.28 Feedback 0.26 0.24 0.22 0.2 1 0.5 0 Phase -0.5 -1 f(R=Xc) Phase=0 Frequency b=1/3 Ref:06103104HKN EE3110 Oscillator 8
  • 9. Example Rf - + R R C R1 C Z1 Z2 Vo w = 1 By setting RC , we get b = 1 Imaginary part = 0 and 3 Due to Barkhausen Criterion, Loop gain Avb=1 where Av : Gain of the amplifier R A A f v v b = Þ = = + R 1 1 3 1 RTherefore, f 2 Wien Bridge Oscillator = R 1 Ref:06103104HKN EE3110 Oscillator 9
  • 10. RC Phase-Shift Oscillator - + Rf R1 C C C R R R  Using an inverting amplifier  The additional 180o phase shift is provided by an RC phase-shift network Ref:06103104HKN EE3110 Oscillator 10
  • 11. Applying KVL to the phase-shift network, we have C C C V1 Vo R R R V = I ( R - jX ) - I R C 1 1 2 I R I R jX I R = - + - - 0 (2 ) C 1 2 3 I R I R jX = - + - 0 (2 ) 2 3 C I1 I2 I3 Solve for I3, we get C R - jX - R 0 R R jX R - - - C C R jX R V 1 2 0 C - - C R R jX R R jX R I - - - - - = 2 0 2 0 0 3 2 I V R 1 ( )[(2 )2 2 ] 2 (2 ) Or = 3 R - jX R - jX - R - R R - jX C C C Ref:06103104HKN EE3110 Oscillator 11
  • 12. The output voltage, 3 V = I R = V R 1 o R jX R jX R R R jX ( )[(2 )2 2 ] 2 (2 ) 3 - - - - - C C C Hence the transfer function of the phase-shift network is given by, 3 R ( 3 5 2 ) ( 3 6 2 ) V b = o = R RX j X R X V - + - 1 C C C For 180o phase shift, the imaginary part = 0, i.e., 3 2 X R X XC C C - = = 6 0 or 0 (Rejected) 2C R 2 1 RC Þ = X 6 6 = w and, b = - 1 29 Note: The –ve sign mean the phase inversion from the voltage Ref:06103104HKN EE3110 Oscillator 12
  • 13. LC Oscillators - ~ Av Ro + Z1 Z2 2 1 Z3 Ref:06103104HKN EE3110 Oscillator 13 Zp  The frequency selection network (Z1, Z2 and Z3) provides a phase shift of 180o  The amplifier provides an addition shift of 180o Two well-known Oscillators: • Colpitts Oscillator • Harley Oscillator
  • 14. Av Ro + ~ Z1 Z2 Vf Vo Z3 Zp V V Z f o o V 1 + Z Z 1 3 = b = Z = Z Z + Z p //( ) 2 1 3 ( ) Z Z Z = + 2 1 3 Z + Z + Z 1 2 3 For the equivalent circuit from the output A Z v p - R + Z o p V - or = o = V i V o p A V v i R + Z o p Z Ro Io -A Zp vVi + - + Vo - Therefore, the amplifier gain is obtained, A Z Z Z = = - + ( ) 2 1 3 v R Z + Z + Z + Z Z + Z ( ) ( ) 1 2 3 2 1 3 A V o V o i Ref:06103104HKN EE3110 Oscillator 14
  • 15. The loop gain, A A Z Z 1 2 v b = - R Z + Z + Z + Z Z + Z ( ) ( ) 1 2 3 2 1 3 o If the impedance are all pure reactances, i.e., 1 1 2 2 3 3 Z = jX , Z = jX and Z = jX The loop gain becomes, A A X X 1 2 v jR X + X + X - X X + X ( ) ( ) 1 2 3 2 1 3 o b = The imaginary part = 0 only when X1+ X2+ X3=0  It indicates that at least one reactance must be –ve (capacitor)  X1 and X2 must be of same type and X3 must be of opposite type A AvX = v A X 2 1 1 With imaginary part = 0, b = - X + X 1 3 X For Unit Gain & 180o Phase-shift, A A X v b = Þ = 1 2 1 X Ref:06103104HKN EE3110 Oscillator 15
  • 16. Hartley Oscillator Colpitts Oscillator R L1 L2 C R C1 C2 L w = 1 1 w = L L C = o ( ) o LC T g C m = 2 RC 1 C C C T + 1 2 C C 1 2 1 2 + g L m = 1 RL 2 Ref:06103104HKN EE3110 Oscillator 16
  • 17. Colpitts Oscillator R C1 C2 L Equivalent circuit + - Vp L C2 R C1 gmVp In the equivalent circuit, it is assumed that:  Linear small signal model of transistor is used  The transistor capacitances are neglected  Input resistance of the transistor is large enough Ref:06103104HKN EE3110 Oscillator 17
  • 18. At node 1, ( ) 1 1 V V i jwL p = + where, p i jwC V 1 2 = 2 L node 1 I1 I2 I3 V1 C2 R C1 Þ V = V (1 - w LC ) 1 p 2 Apply KCL at node 1, we have j C V g V V m w w p p 2 + + + j CV = Vp 0 1 1 1 R + - gmVp (1 ) 1 0 2 1 + + - 2 æ + j C ö çè j C V g V V LC m w w w p p p 2 R ÷ø = For Oscillator Vp must not be zero, therefore it enforces, ö 1 [ ( ) ] 0 gm w w w = - + + ÷ ÷ø LC + - j C C LC C 1 2 3 1 2 2 2 æ ç çè R R I4 Ref:06103104HKN EE3110 Oscillator 18
  • 19. ö 1 [ ( ) ] 0 gm w w w = - + + ÷ ÷ø LC + - j C C LC C 1 2 2 2 æ ç çè R R Imaginary part = 0, we have 1 2 3 w = 1 o LC T Real part = 0, yields g C m = 2 RC 1 C C C T + 1 2 C C 1 2 = Ref:06103104HKN EE3110 Oscillator 19
  • 20. Frequency Stability • The frequency stability of an oscillator is defined as o ppm/ C w 1 ׿ ö çè ÷ø w = T d w w o o d • Use high stability capacitors, e.g. silver mica, polystyrene, or teflon capacitors and low temperature coefficient inductors for high stable oscillators. Ref:06103104HKN EE3110 Oscillator 20
  • 21. Amplitude Stability • In order to start the oscillation, the loop gain is usually slightly greater than unity. • LC oscillators in general do not require amplitude stabilization circuits because of the selectivity of the LC circuits. • In RC oscillators, some non-linear devices, e.g. NTC/PTC resistors, FET or zener diodes can be used to stabilized the amplitude Ref:06103104HKN EE3110 Oscillator 21
  • 22. Wien-bridge oscillator with bulb stabilization Vrms irms Operating point + - R R C C R2 Blub Ref:06103104HKN EE3110 Oscillator 22
  • 23. Wien-bridge oscillator with diode stabilization Rf - + R R C R1 C Vo Ref:06103104HKN EE3110 Oscillator 23
  • 24. Twin-T Oscillator - + low pass filter high pass filter Filter output low pass region high pass region fr f Ref:06103104HKN EE3110 Oscillator 24
  • 25. Bistable Circuit + - vo v1 v+ Vth +Vcc -Vcc vo v1 -Vth vo +Vcc -Vcc v1 Vth +Vcc -Vth -Vcc vo v1 Ref:06103104HKN EE3110 Oscillator 25
  • 26. A Square-wave Oscillator - + vo vc vf vc vo +vf ¡Ðvf +vmax ¡Ðvmax Ref:06103104HKN EE3110 Oscillator 26