SlideShare a Scribd company logo
Production Scheduling P.C. Chang, IEM, YZU.
1
Flow Shop Scheduling
Production Scheduling P.C. Chang, IEM, YZU.
2
Definitions
• Contains m different machines.
• Each job consists m operators in different machine.
• The flow of work is unidirectional.
• Machines in a flow shop = 1,2,…….,m
• The operations of job i , (i,1) (i,2) (i ,3)…..(i, m)
• Not processed by machine k , P( i , k) = 0
Production Scheduling P.C. Chang, IEM, YZU.
3
Flow Shop Scheduling
Baker p.136
The processing sequence on each machine are all the same.
1
2
.
.
.
.
.
M
2 3 1 5 4
2 3 1 5 4
 Flow shop
 Job shop
n! - flow shop permutation schedule
n!.n! …….n! - Job shop
m
)
!
n
(
k
)
!
n
( m
k : constraint
(∵ routing problem)
1 3 2 4 5
or
Production Scheduling P.C. Chang, IEM, YZU.
4
Workflow in a flow shop
Machine
1
Machine
2
Machine
3
Machine
M-1
Machine
M
….
Input
output
Machine
1
Machine
2
Machine
3
Machine
M-1
Machine
M
….
Input
output
output
output
output
output
Input Input Input Input
Type 1.
Type 2.
Baker p.137
Production Scheduling P.C. Chang, IEM, YZU.
5
Johnson’s Rule
Note:
Johnson’s rule can find an optimum with two machines
Flow shop problem for makespan problem.
Baker p.142
.
filled
are
sequence
in
positions
all
until
1
step
to
return
and
ion
considerat
from
job
assigned
the
Remove
:
3
Step
.
3
step
to
go
.
sequence
in
position
available
first
the
in
job
the
place
,
2
machine
requires
min
the
If
:
2
Step
.
3
step
to
go
.
sequence
in
position
available
first
the
in
job
the
place
,
1
machine
requires
min
the
If
:
2
Step
Find
:
1
Step
t
b
t
a
}
t
,
{t
min i2
i1
i
Production Scheduling P.C. Chang, IEM, YZU.
6
Ex.
j 1 2 3 4 5
tj1 3 5 1 6 7
tj2 6 2 2 6 5
Stage U Min tjk Assignment Partial Schedule
1 1,2,3,4,5 t31 3=[1] 3 x x x x
2 1,2,4,5 t22 2=[5] 3 x x x 2
3 1,4,5 t11 1=[2] 3 1 x x 2
4 4,5 t52 5=[4] 3 1 x 5 2
5 4 t11 4=[3] 3 1 4 5 2
Production Scheduling P.C. Chang, IEM, YZU.
7
Ex.
3 1 4 5 2
3 1 4 5
24
M1
M2
The makespan is 24
2
Production Scheduling P.C. Chang, IEM, YZU.
8
The B&B for Makespan Problem
The Ignall-Schrage Algorithm (Baker p.149)
- A lower bound on the makespan associated with any
completion of the corresponding partial sequence σ is
obtained by considering the work remaining on each
machine. To illustrate the procedure for m=3.
For a given partial sequence σ, let
q1= the latest completion time on machine 1 among jobs in σ.
q2= the latest completion time on machine 2 among jobs in σ.
q3= the latest completion time on machine 3 among jobs in σ.
The amount of processing yet required of machine 1 is 

 '
j
1
j
t
Production Scheduling P.C. Chang, IEM, YZU.
9
The Ignall-Schrage Algorithm
In the most favorable situation, the last job
1) Encounters no delay between the completion of one operation
and the start of its direct successor, and
2) Has the minimal sum (tj2+tj3) among jobs j belongs to σ’
Hence one lower bound on the makespan is
A second lower bound on machine 2 is
A lower bound on machine 3 is
The lower bound proposed by Ignall and Schrage is
}
t
t
{
min
t
q
b 3
j
2
j
'
j
'
j
1
j
1
1 








}
t
{
min
t
q
b 3
j
'
j
'
j
2
j
2
2












 '
j
3
j
3
3 t
q
b
}
b
,
b
,
b
max{
B 3
2
1

Production Scheduling P.C. Chang, IEM, YZU.
10
The Ignall-Schrage Algorithm
M1
M2
M3
tk1
tk2
tk3
……..
……..
……..
q1
q2
q3 b1
M2
M3
tk2
tk3
……..
……..
q2
q3 b2
Job in σ’
Production Scheduling P.C. Chang, IEM, YZU.
11
Ex. B&B
j 1 2 3 4
tj1 3 11 7 10
tj2 4 1 9 12
tj3 10 5 13 2
m=3
For the first node: σ =1
37
)
37
,
31
,
37
max(
B
37
20
17
b
31
2
22
7
b
37
6
28
3
b
bound
lower
The
17
t
t
t
q
7
t
t
q
3
t
q
3
2
1
13
12
11
3
12
11
2
11
1





































2
12
13
9
5
1
min
6
Production Scheduling P.C. Chang, IEM, YZU.
12
Ex. Partial Sequence ( q1 , q2 , q3 ) (b1,b2,b3) B
1xxx ( 3 , 7 , 17 ) ( 37 , 31 , 37 ) 37
2xxx ( 11 , 12 , 17 ) ( 45 , 39 , 42 ) 45
3xxx ( 7 , 16 , 29 ) ( 37 , 35 , 46 ) 46
4xxx ( 10 , 22 , 24 ) ( 37 , 41 , 52 ) 52
12xx ( 14 , 15 , 22 ) ( 45 , 38 , 37 ) 45
13xx ( 10 , 19 , 32 ) ( 37 , 34 , 39 ) 39
14xx ( 13 , 25 , 27 ) ( 37 , 40 , 45 ) 45
132x ( 21 , 22 , 37 ) ( 45 , 36 , 39 ) 45
134x ( 20 , 32 , 34 ) ( 37 , 38 , 39 ) 39
1 2
1 2
1 2
0 3 14
7 15
17 22 45
2
12
13
9
min
)
10
7
(
14
}
t
t
{
min
t
q
b 3
j
2
j
'
j
'
j
1
j
1
1






















Production Scheduling P.C. Chang, IEM, YZU.
13
Ex. B&B
P0
1xxx 2xxx 3xxx 4xxx
B=
37
B=4
5
B=4
6
B=5
2
12xx 13xx 14xx
B=4
5
B=4
5
B=3
9
132x 134x
B=4
5
B=3
9
Production Scheduling P.C. Chang, IEM, YZU.
14
Refined Bounds













 '
j
1
j
1
2
2 ]
t
min[
q
,
q
max
'
q
Modification1:

















 '
j
2
j
1
j
1
'
j
2
j
2
3
3 ]
t
t
min[
q
,
]
t
min[
q
,
q
max
'
q
The use of q2 in the calculation of b2 ignores the possibility that
the starting time of job j on the machine 2 may be constrained
by commitments on machine1. Hence:
consider idle time
Production Scheduling P.C. Chang, IEM, YZU.
15
Refined Bounds
Previous : Machine-based bound
Modification2 : Job-based bound
 
 
}
b
,
b
,
B
max{
'
B
t
,
t
min
t
t
max
'
q
b
t
,
t
min
t
t
t
max
q
b
5
4
k
j
'
j
3
j
2
j
3
k
2
k
'
k
2
5
k
j
'
j
3
j
1
j
3
k
2
k
1
k
'
k
1
4










































Modification2: (McMahon and Burton)
Production Scheduling P.C. Chang, IEM, YZU.
16
Refined Bounds
Obviously, B’>=B, This means that the combination
of machine-based and job-based bounds represented
by B’ will lead to a more efficient search of the
branching tree in the sense that fewer nodes will be
created.
Production Scheduling P.C. Chang, IEM, YZU.
17
Hw.
a. Find the min makespan using the basic Ignall-Schrage
algorithm. Count the nodes generated by the branching
process.
b. Find the min makespan using the modified algorithm.
j 1 2 3 4
tj1 13 7 26 2
tj2 3 12 9 6
tj3 12 16 7 1
Consider the following four-job three-machine problem
Production Scheduling P.C. Chang, IEM, YZU.
18
Heuristic Approaches
Traditional B&B:
• The computational requirements will be severe for large
problems
• Even for relatively small problems, there is no guarantee
that the solution can be obtained quickly,
Heuristic Approaches
• can obtain solutions to large problems with limited
computational effort.
• Computational requirements are predictable for problem of
a given size.
Production Scheduling P.C. Chang, IEM, YZU.
19
Palmer
Palmer proposed the calculation of a slope index, sj, for
each job.
1
,
j
2
,
j
2
m
,
j
1
m
,
j
m
,
j
j t
)
1
m
(
t
)
3
m
(
t
)
5
m
(
t
)
3
m
(
t
)
1
m
(
s 









 
 
Then a permutation schedule is constructed using the
job ordering
]
n
[
]
2
[
]
1
[ s
s
s 

 
Production Scheduling P.C. Chang, IEM, YZU.
20
Gupta
Gupta thought a transitive job ordering in the form of follows
that would produce good schedules. Where
}
t
t
,
t
t
min{
e
s
3
j
2
j
2
j
1
j
j
j



Where







3
j
1
j
3
j
1
j
j
t
t
if
1
t
t
if
1
e
Production Scheduling P.C. Chang, IEM, YZU.
21
Gupta
Generalizing from this structure, Gupta proposed that for m>3,
the job index to be calculated is
}
t
t
{
min
e
s
1
k
,
j
jk
1
m
k
1
j
j






Where







jm
1
j
jm
1
j
j
t
t
if
1
t
t
if
1
e
Production Scheduling P.C. Chang, IEM, YZU.
22
CDS
Its strength lies in two properties:
1.It use Johnson’s rule in a heuristic fashion
2.It generally creates several schedules from which a “best”
schedule can be chosen.
The CDS algorithm corresponds to a multistage use if
Johnson’s rule applied to a new problem, derived from the
original, with processing times and . At stage 1,
1
j
'
t 2
j
'
t
jm
2
j
1
j
1
j t
'
t
and
t
'
t 

Production Scheduling P.C. Chang, IEM, YZU.
23
CDS
In other words, Johnson’s rule is applied to the first and mth
operations and intermediate operations are ignored. At stage 2,
1
m
,
j
jm
2
j
2
j
1
j
1
j t
t
'
t
and
t
t
'
t 




That is, Johnson’s rule is applied to the sums of the first two
and last two operation processing times. In general at stage i,








i
1
k
1
k
m
,
j
2
j
i
1
k
jk
1
j t
'
t
and
t
'
t
Production Scheduling P.C. Chang, IEM, YZU.
24
Ex.
Palmer:
j 1 2 3 4 5
tj1 6 4 3 9 5
tj2 8 1 9 5 6
tj3 2 1 5 8 6
   
37
1
2
4
5
3
2
2
4
6
8
2
2
1
1
5
4
3
2
1
1
3
1
3




















M
s
s
s
s
s
t
t
t
m
t
m
s j
j
j
j
j
Gupta:
36
M
2
1
4
3
5
11
1
s
13
1
s
12
1
s
2
1
s
10
1
s 5
4
3
2
1














CDS: 3-5-4-1-2 M=35
Production Scheduling P.C. Chang, IEM, YZU.
25
HW.
Let
1. Use Ignall-Schrage & McMahon-Burton
to solve
2. Use Palmer, Gupta, CDS to solve this
problem.
j 1 2 3 4 5
tj1 8 11 7 6 9
tj2 3 2 5 7 11
tj3 6 5 7 13 10
}
3
,
1
{


2 2
1 2 3 4 5 13 31
, , , , ,
xxx xxx
b b b b b of P P

More Related Content

PPTX
MATERIAL MANAGEMENT Job Shop Scheduling.pptx
PPTX
Job Shop Scheduling.pptx
PDF
Job shop scheduling
PPTX
SCHEDULING RULES DONE.pptx
PPTX
Flowshop scheduling
PDF
Sequencing model
PDF
Branch and bound technique for three stage flow shop scheduling problem inclu...
PDF
11.branch and bound technique for three stage flow shop scheduling problem in...
MATERIAL MANAGEMENT Job Shop Scheduling.pptx
Job Shop Scheduling.pptx
Job shop scheduling
SCHEDULING RULES DONE.pptx
Flowshop scheduling
Sequencing model
Branch and bound technique for three stage flow shop scheduling problem inclu...
11.branch and bound technique for three stage flow shop scheduling problem in...

Similar to Power Point Presentation on Flow Shop Scheduling (20)

PDF
Modified heuristic time deviation Technique for job sequencing and Computatio...
PPT
Production Management and Scheduling
PDF
Chapter 6 Job Scheduling in Production Planning.pdf
PDF
A case study on Machine scheduling and sequencing using Meta heuristics
PDF
A case study on Machine scheduling and sequencing using Meta heuristics
PDF
Application of branch and bound method for optimal two stage flow shop schedu...
PDF
11.application of branch and bound method for optimal two stage flow shop sch...
PDF
Application of branch and bound technique for nx3 flow shop scheduling, in wh...
PDF
R0260950100
PPT
scheduling_1.ppt
PPT
Scheduling(production and operations management systems).ppt
PPT
Ch 6 Scheduling.ppt
PPT
Ch 6 Scheduling.ppt
PPTX
Ch 6 Schedhhhhhhhhgjbfhgffihgguiihhhuling.pptx
PPTX
Sequencing and shedulding problems for Operations management
PPTX
Operation engine ii session iv operations scheduling
DOC
Parallel machines
PDF
Optimal three stage flow shop scheduling in which processing time, set up tim...
PDF
11.optimal three stage flow shop scheduling in which processing time, set up ...
PPTX
Devansh
Modified heuristic time deviation Technique for job sequencing and Computatio...
Production Management and Scheduling
Chapter 6 Job Scheduling in Production Planning.pdf
A case study on Machine scheduling and sequencing using Meta heuristics
A case study on Machine scheduling and sequencing using Meta heuristics
Application of branch and bound method for optimal two stage flow shop schedu...
11.application of branch and bound method for optimal two stage flow shop sch...
Application of branch and bound technique for nx3 flow shop scheduling, in wh...
R0260950100
scheduling_1.ppt
Scheduling(production and operations management systems).ppt
Ch 6 Scheduling.ppt
Ch 6 Scheduling.ppt
Ch 6 Schedhhhhhhhhgjbfhgffihgguiihhhuling.pptx
Sequencing and shedulding problems for Operations management
Operation engine ii session iv operations scheduling
Parallel machines
Optimal three stage flow shop scheduling in which processing time, set up tim...
11.optimal three stage flow shop scheduling in which processing time, set up ...
Devansh
Ad

Recently uploaded (20)

PPTX
Welding lecture in detail for understanding
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
Construction Project Organization Group 2.pptx
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
PPT on Performance Review to get promotions
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPT
Mechanical Engineering MATERIALS Selection
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
UNIT 4 Total Quality Management .pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Welding lecture in detail for understanding
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
CH1 Production IntroductoryConcepts.pptx
Construction Project Organization Group 2.pptx
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPT on Performance Review to get promotions
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Mechanical Engineering MATERIALS Selection
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
UNIT 4 Total Quality Management .pptx
R24 SURVEYING LAB MANUAL for civil enggi
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Internet of Things (IOT) - A guide to understanding
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Ad

Power Point Presentation on Flow Shop Scheduling

  • 1. Production Scheduling P.C. Chang, IEM, YZU. 1 Flow Shop Scheduling
  • 2. Production Scheduling P.C. Chang, IEM, YZU. 2 Definitions • Contains m different machines. • Each job consists m operators in different machine. • The flow of work is unidirectional. • Machines in a flow shop = 1,2,…….,m • The operations of job i , (i,1) (i,2) (i ,3)…..(i, m) • Not processed by machine k , P( i , k) = 0
  • 3. Production Scheduling P.C. Chang, IEM, YZU. 3 Flow Shop Scheduling Baker p.136 The processing sequence on each machine are all the same. 1 2 . . . . . M 2 3 1 5 4 2 3 1 5 4  Flow shop  Job shop n! - flow shop permutation schedule n!.n! …….n! - Job shop m ) ! n ( k ) ! n ( m k : constraint (∵ routing problem) 1 3 2 4 5 or
  • 4. Production Scheduling P.C. Chang, IEM, YZU. 4 Workflow in a flow shop Machine 1 Machine 2 Machine 3 Machine M-1 Machine M …. Input output Machine 1 Machine 2 Machine 3 Machine M-1 Machine M …. Input output output output output output Input Input Input Input Type 1. Type 2. Baker p.137
  • 5. Production Scheduling P.C. Chang, IEM, YZU. 5 Johnson’s Rule Note: Johnson’s rule can find an optimum with two machines Flow shop problem for makespan problem. Baker p.142 . filled are sequence in positions all until 1 step to return and ion considerat from job assigned the Remove : 3 Step . 3 step to go . sequence in position available first the in job the place , 2 machine requires min the If : 2 Step . 3 step to go . sequence in position available first the in job the place , 1 machine requires min the If : 2 Step Find : 1 Step t b t a } t , {t min i2 i1 i
  • 6. Production Scheduling P.C. Chang, IEM, YZU. 6 Ex. j 1 2 3 4 5 tj1 3 5 1 6 7 tj2 6 2 2 6 5 Stage U Min tjk Assignment Partial Schedule 1 1,2,3,4,5 t31 3=[1] 3 x x x x 2 1,2,4,5 t22 2=[5] 3 x x x 2 3 1,4,5 t11 1=[2] 3 1 x x 2 4 4,5 t52 5=[4] 3 1 x 5 2 5 4 t11 4=[3] 3 1 4 5 2
  • 7. Production Scheduling P.C. Chang, IEM, YZU. 7 Ex. 3 1 4 5 2 3 1 4 5 24 M1 M2 The makespan is 24 2
  • 8. Production Scheduling P.C. Chang, IEM, YZU. 8 The B&B for Makespan Problem The Ignall-Schrage Algorithm (Baker p.149) - A lower bound on the makespan associated with any completion of the corresponding partial sequence σ is obtained by considering the work remaining on each machine. To illustrate the procedure for m=3. For a given partial sequence σ, let q1= the latest completion time on machine 1 among jobs in σ. q2= the latest completion time on machine 2 among jobs in σ. q3= the latest completion time on machine 3 among jobs in σ. The amount of processing yet required of machine 1 is    ' j 1 j t
  • 9. Production Scheduling P.C. Chang, IEM, YZU. 9 The Ignall-Schrage Algorithm In the most favorable situation, the last job 1) Encounters no delay between the completion of one operation and the start of its direct successor, and 2) Has the minimal sum (tj2+tj3) among jobs j belongs to σ’ Hence one lower bound on the makespan is A second lower bound on machine 2 is A lower bound on machine 3 is The lower bound proposed by Ignall and Schrage is } t t { min t q b 3 j 2 j ' j ' j 1 j 1 1          } t { min t q b 3 j ' j ' j 2 j 2 2              ' j 3 j 3 3 t q b } b , b , b max{ B 3 2 1 
  • 10. Production Scheduling P.C. Chang, IEM, YZU. 10 The Ignall-Schrage Algorithm M1 M2 M3 tk1 tk2 tk3 …….. …….. …….. q1 q2 q3 b1 M2 M3 tk2 tk3 …….. …….. q2 q3 b2 Job in σ’
  • 11. Production Scheduling P.C. Chang, IEM, YZU. 11 Ex. B&B j 1 2 3 4 tj1 3 11 7 10 tj2 4 1 9 12 tj3 10 5 13 2 m=3 For the first node: σ =1 37 ) 37 , 31 , 37 max( B 37 20 17 b 31 2 22 7 b 37 6 28 3 b bound lower The 17 t t t q 7 t t q 3 t q 3 2 1 13 12 11 3 12 11 2 11 1                                      2 12 13 9 5 1 min 6
  • 12. Production Scheduling P.C. Chang, IEM, YZU. 12 Ex. Partial Sequence ( q1 , q2 , q3 ) (b1,b2,b3) B 1xxx ( 3 , 7 , 17 ) ( 37 , 31 , 37 ) 37 2xxx ( 11 , 12 , 17 ) ( 45 , 39 , 42 ) 45 3xxx ( 7 , 16 , 29 ) ( 37 , 35 , 46 ) 46 4xxx ( 10 , 22 , 24 ) ( 37 , 41 , 52 ) 52 12xx ( 14 , 15 , 22 ) ( 45 , 38 , 37 ) 45 13xx ( 10 , 19 , 32 ) ( 37 , 34 , 39 ) 39 14xx ( 13 , 25 , 27 ) ( 37 , 40 , 45 ) 45 132x ( 21 , 22 , 37 ) ( 45 , 36 , 39 ) 45 134x ( 20 , 32 , 34 ) ( 37 , 38 , 39 ) 39 1 2 1 2 1 2 0 3 14 7 15 17 22 45 2 12 13 9 min ) 10 7 ( 14 } t t { min t q b 3 j 2 j ' j ' j 1 j 1 1                      
  • 13. Production Scheduling P.C. Chang, IEM, YZU. 13 Ex. B&B P0 1xxx 2xxx 3xxx 4xxx B= 37 B=4 5 B=4 6 B=5 2 12xx 13xx 14xx B=4 5 B=4 5 B=3 9 132x 134x B=4 5 B=3 9
  • 14. Production Scheduling P.C. Chang, IEM, YZU. 14 Refined Bounds               ' j 1 j 1 2 2 ] t min[ q , q max ' q Modification1:                   ' j 2 j 1 j 1 ' j 2 j 2 3 3 ] t t min[ q , ] t min[ q , q max ' q The use of q2 in the calculation of b2 ignores the possibility that the starting time of job j on the machine 2 may be constrained by commitments on machine1. Hence: consider idle time
  • 15. Production Scheduling P.C. Chang, IEM, YZU. 15 Refined Bounds Previous : Machine-based bound Modification2 : Job-based bound     } b , b , B max{ ' B t , t min t t max ' q b t , t min t t t max q b 5 4 k j ' j 3 j 2 j 3 k 2 k ' k 2 5 k j ' j 3 j 1 j 3 k 2 k 1 k ' k 1 4                                           Modification2: (McMahon and Burton)
  • 16. Production Scheduling P.C. Chang, IEM, YZU. 16 Refined Bounds Obviously, B’>=B, This means that the combination of machine-based and job-based bounds represented by B’ will lead to a more efficient search of the branching tree in the sense that fewer nodes will be created.
  • 17. Production Scheduling P.C. Chang, IEM, YZU. 17 Hw. a. Find the min makespan using the basic Ignall-Schrage algorithm. Count the nodes generated by the branching process. b. Find the min makespan using the modified algorithm. j 1 2 3 4 tj1 13 7 26 2 tj2 3 12 9 6 tj3 12 16 7 1 Consider the following four-job three-machine problem
  • 18. Production Scheduling P.C. Chang, IEM, YZU. 18 Heuristic Approaches Traditional B&B: • The computational requirements will be severe for large problems • Even for relatively small problems, there is no guarantee that the solution can be obtained quickly, Heuristic Approaches • can obtain solutions to large problems with limited computational effort. • Computational requirements are predictable for problem of a given size.
  • 19. Production Scheduling P.C. Chang, IEM, YZU. 19 Palmer Palmer proposed the calculation of a slope index, sj, for each job. 1 , j 2 , j 2 m , j 1 m , j m , j j t ) 1 m ( t ) 3 m ( t ) 5 m ( t ) 3 m ( t ) 1 m ( s               Then a permutation schedule is constructed using the job ordering ] n [ ] 2 [ ] 1 [ s s s    
  • 20. Production Scheduling P.C. Chang, IEM, YZU. 20 Gupta Gupta thought a transitive job ordering in the form of follows that would produce good schedules. Where } t t , t t min{ e s 3 j 2 j 2 j 1 j j j    Where        3 j 1 j 3 j 1 j j t t if 1 t t if 1 e
  • 21. Production Scheduling P.C. Chang, IEM, YZU. 21 Gupta Generalizing from this structure, Gupta proposed that for m>3, the job index to be calculated is } t t { min e s 1 k , j jk 1 m k 1 j j       Where        jm 1 j jm 1 j j t t if 1 t t if 1 e
  • 22. Production Scheduling P.C. Chang, IEM, YZU. 22 CDS Its strength lies in two properties: 1.It use Johnson’s rule in a heuristic fashion 2.It generally creates several schedules from which a “best” schedule can be chosen. The CDS algorithm corresponds to a multistage use if Johnson’s rule applied to a new problem, derived from the original, with processing times and . At stage 1, 1 j ' t 2 j ' t jm 2 j 1 j 1 j t ' t and t ' t  
  • 23. Production Scheduling P.C. Chang, IEM, YZU. 23 CDS In other words, Johnson’s rule is applied to the first and mth operations and intermediate operations are ignored. At stage 2, 1 m , j jm 2 j 2 j 1 j 1 j t t ' t and t t ' t      That is, Johnson’s rule is applied to the sums of the first two and last two operation processing times. In general at stage i,         i 1 k 1 k m , j 2 j i 1 k jk 1 j t ' t and t ' t
  • 24. Production Scheduling P.C. Chang, IEM, YZU. 24 Ex. Palmer: j 1 2 3 4 5 tj1 6 4 3 9 5 tj2 8 1 9 5 6 tj3 2 1 5 8 6     37 1 2 4 5 3 2 2 4 6 8 2 2 1 1 5 4 3 2 1 1 3 1 3                     M s s s s s t t t m t m s j j j j j Gupta: 36 M 2 1 4 3 5 11 1 s 13 1 s 12 1 s 2 1 s 10 1 s 5 4 3 2 1               CDS: 3-5-4-1-2 M=35
  • 25. Production Scheduling P.C. Chang, IEM, YZU. 25 HW. Let 1. Use Ignall-Schrage & McMahon-Burton to solve 2. Use Palmer, Gupta, CDS to solve this problem. j 1 2 3 4 5 tj1 8 11 7 6 9 tj2 3 2 5 7 11 tj3 6 5 7 13 10 } 3 , 1 {   2 2 1 2 3 4 5 13 31 , , , , , xxx xxx b b b b b of P P