2
Most read
3
Most read
14
Most read
1
Radialflowfantest
Objective:
The main objectives of this lab>
 To measure the total pressure drop with respect to flow rate
 To measure static pressure drop with respect to flow rate.
 To know the parameters that affects the operation capacity and efficiency of
the fan.
 And determine which parameters are the most determinant for the flow fan.
Theory
A radial flow fan comprising an impeller where the direction of the entry air flow is vertical
to the direction of the exit air flow
A centrifugal fan is a mechanical device for moving air or other gases. These fans increase
the speed of air stream with the rotating impellers. They use the kinetic energy of the
impellers or the rotating blade to increase the pressure of the air/gas stream which in turn
moves them against the resistance caused by ducts, dampers and other components.
Centrifugal fans accelerate air radially, changing the direction (typically by 90°) of the
airflow. They are sturdy, quiet, reliable, and capable of operating over a wide range of
conditions.
Centrifugal fans are constant displacement devices or constant volume devices, meaning
that, at a constant fan speed, a centrifugal fan will pump a constant volume of air rather
than a constant mass. This means that the air velocity in a system is fixed even though mass
flow rate through the fan is not.
The centrifugal fan is one of the most widely used fans. Centrifugal fans are by far the most
prevalent type of fan used in the HVAC industry today. They are usually cheaper than axial
fans and simpler in construction. It is used in transporting gas or materials and in
ventilation system for buildings. They are also used commonly in central heating/cooling
systems. They are also well-suited for industrial processes and air pollution control
systems.
It has a fan wheel composed of a number of fan blades, or ribs, mounted around a hub. As
shown in the figure, the hub turns on a driveshaft that passes through the fan housing. The
gas enters from the side of the fan wheel, turns 90 degrees and accelerates due to
centrifugal force as it flows over the fan blades and exits the fan housing.
2
Main parts of a centrifugal fan are:
 Fan housing
 Impellers
 Inlet and outlet ducts
 Drive shaft
 Drive mechanism
Principles of operation
The centrifugal fan uses the centrifugal power generated from the rotation of impellers to
increase the kinetic energy of air/gases. When the impellers rotate, the gas near the
impellers is thrown-off from the impellers due to the centrifugal force and then moves into
the fan casing. As a result, the kinetic energy of gas is converted to pressure because of
system resistance offered by the casing and duct. The gas is then guided to the exit via
outlet ducts. After the gas is thrown-off, the gas pressure in the middle region of the
impellers decreases. The gas from the impeller eye rushes in to normalize this pressure.
This cycle repeats and therefore the gas can be continuously transferred.
Apparatus andmaterialsused
Data
Dim
Nozzle
position
Turn 1 3 5 7 9 11 13 15 17 19
wattmete
r
𝛼 25 27 28 31.5 35 39 41 43 46 48
Voltage V 450 450 450 450 450 450 450 450 450 450
current A 2.7 2.8 2.9 3 3.05 3.12 3.15 3.20 3.25 3.3
Speed n rpm 280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
∆𝑝vent mmw 40 130 270 410 610 830 103 120 138 151
3
Bf=603mmHg
T=210C
B =Bf-T/8
C =20;
Power=C/2*𝛼w
SFven=1
SFfav= (808.3/0.787)*(inch/250)
AD=0.1452m
A0=34.77m
1, Calculation
c 0 0 0 0
∆𝑝fan mmw
c
930 890 885 880 860 840 790 740 680 610
value Di
m
1 Nozzle
position
Tur
n
1 3 5 7 9 11 13 15 17 19
2 wattmeter 𝛼 25 27 28 31.5 35 39 41 43 46 48
3 Voltage V 450 450 450 450 450 450 450 450 450 450
4 current A 2.7 2.8 2.9 3 3.05 3.12 3.15 3.2 3.25 3.3
5 Speed n rp
m
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
6 ∆𝑝vent m
m
wc
40 130 270 410 610 830 103
0
120
0
138
0
151
0
7 ∆𝑝fan m
m
wc
930 890 885 880 860 840 790 740 680 610
8 Nactive=(C/
2)*
𝛼
W 250 270 280 315 350 390 410 430 460 480
9 Napparent=V*
A
VA 121
5
126
0
130
5
135
0
137
2.5
140
4
141
7.5
144
0
146
2.5
148
5
4
1
0
cos𝜑=Nacti
ve/Napparant
- 0.20
6
0.21
43
0.21
46
0.23 0.25
5
0.27
8
0.28
92
0.29
9
0.31
5
0.32
3
1
1
n=n(rpm)
/60
1/s 46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
1
2
𝜔=2𝜋n 1/s 293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
1
3
U1=r1*𝜔 m/
s
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
1
4
U2=r2*𝜔 m/
s
23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6
1
5
U22=(r2 𝜔)
2
m2
/s2
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
1
6
A0u1=34.7
7*(r1 𝜔)
m3
/s
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
1
7
U13=(r1 𝜔)
3
m3
/s3
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
1
8
A0u13=34.
77*(r1 𝜔)3
m5
/s3
305
372
305
372
305
372
305
372
305
372
305
372
305
372
305
372
305
372
305
372
1
9
(𝜌/2)*
A0u13=0.4
5* A0u13
Kg
/m.
s3
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
2
0
∆pven/20*
0.8*0.5
m
m
wc
0.8 2.6 5.4 8.2 12.2 16.6 20.6 24 27.6 30.2
2
1
∆pven=g*pv
ent=9.81*’2
0’
Kg
/m
s2
7.85 25.5
06
52.9
74
80.4
42
119.
88
162.
85
202.
09
235.
44
270.
76
296.
3
2
2
∆pven/(𝜌/
2)
m2
/s2
17.4
4
56.6
8
117.
708
2
178.
76
266.
4
361.
89
449.
09
523.
2
601.
63
658.
44
2
3
√∆pven/𝜌 m/
s
4.17
7
7.52
9
10.8
52
13.3
7
16.3
22
19.0
23
21.2 22.9 24.5
3
25.6
6
2
4
𝛼A0√∆pve
n/𝜌=V
m/
s
0.02
756
4
0.04
97
0.07
161
0.08
823
0.10
771
0.12
553
3
0.13
49
0.15
114
0.16
2
0.16
93
2
5
∆Pfan=sʄfan
*∆P*
fan
m
m
wc
18.6 17.8 17.7 17.6 17.2 16.8 15.8 14.8 13.6 12.2
2
6
∆Pfan=g∆Pf
an
Kg
/m
s2
182.
47
174.
62
173.
64
172.
66
168.
723
164.
81
155 145.
19
133.
42
119.
682
2
7
Ystat=∆Pfan
/ 𝜌
m2
/s2
202.
744
194.
02
192.
93
191.
84
187.
5
183.
122
172.
22
161.
32
148.
244
133
5
2,plots
A, calculationandgraph
𝜑 10^
-5
3.842
3
6.93 9.983 11.472
4
15.014
5
17.5 18.80
5
21.0
7
22.58
2
23.6
cos
𝜑
0.206 0.214
3
0.214
6
0.23 0.255 0.27
8
0.289
2
0.29
9
0.315 0.32
3
Nacti w 250 270 280 315 350 390 410 430 460 480
Cos𝝋Vs Nactive graph
2
8
CD=V/AD m/
s
1.89
81
3.42
3
4.93
2
6.07
645
7.41
804
8.64
55
9.63
5
10.4
091
11.1
57
11.6
6
2
9
Ydyn=CD2/
2
m2
/s2
1.80
14
5.86 12.1
62
18.4
62
27.5
14
37.2
82
46.4
2
54.1
75
62.2
4
67.9
8
3
0
Y= Ydyn+
Ystat
m2
/s2
204.
55
199.
88
205.
092
210.
302
215.
014
220.
404
218.
64
215.
5
210.
5
201
3
1
Neff=VY𝜌 w 5.07
44
8.94
063
13.2
2
16.7 20.8
43
24.9
012
27.5
3
29.3
14
30.6
91
30.6
3
3
2
Ƞtot= Neff/
Nactive
- 0.02
03
0.03
31
0.04
721
0.05
302
0.06 0.06
4
0.06
715
0.06
82
0.06
672
0.06
4
3
3
𝜑=V/
A0u1
10
^-5
3.84
23
6.93 9.98
2
11.4
724
00
15.0
145
17.5 18.8
05
21.0
7
22.5
82
23.6
3
4
Ψ=2Y/u22 - 0.36
76
0.35
93
0.36
9
0.37
8
0.38
65
0.39
614
0.93 0.38
733
0.37
834
0.36
13
3
5 𝜇tot=2Nact/
𝜌 A0u13
10
^-3
1.82 1.96
5
2.04 2.3 2.54
7
2.84 2.98
4
3.13 3.35 3.5
6
B
𝜑 10^
-5
3.8423 6.93 9.983 11.47
24
15.01
45
17.5 18.80
5
21.07 22.
582
23.6
V m/
s
0.0275
64
0.04
97
0.071
61
0.088
23
0.107
71
0.1255
33
0.134
9
0.1511
4
0.1
62
0.16
93
x m
m
1 3 5 7 9 11 13 15 17 19
cos
𝜑
- 0.206 0.214
3
0.214
6
0.23 0.255 0.27
8
0.28
92
0.2
99
0.315 0.3
23
V
x
m/
s
0.0056
8
0.01
07
0.015
4
0.020
3
0.027
5
0.035 0.039 0.0452 0.0
51
0.05
5
0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
250
300
350
400
450
500
cos@
Nactive
7
C
𝜑 10^
-5
3.8423 6.93 9.983 11.47
24
15.01
45
17.5 18.80
5
21.07 22.
58
2
23.6
V m/s 0.0275
64
0.049
7
0.071
61
0.088
23
0.107
71
0.1255
33
0.134
9
0.1511
4
0.1
62
0.16
93
x mm 1 3 5 7 9 11 13 15 17 19
cos
𝜑
- 0.206 0.214
3
0.214
6
0.23 0.255 0.27
8
0.28
92
0.2
99
0.315 0.3
23
V
x
m/s 0.0056
8
0.010
7
0.015
4
0.020
3
0.027
5
0.035 0.039 0.0452 0.0
51
0.05
5
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0
2
4
6
8
10
12
14
16
18
20
Vx(m/s)
x(mm)
Vx Vs x graph
8
Y
x
m2/
s2
42.14 42.83
43
44.01
3
48.37 54.83 61.3 63.23
07
64.435 66.
30
8
64.9
23
Y m2/
s2
204.55 199.8
8
205.0
92
210.3
02
215.0
14
220.40
4
218.6
4
215.5 21
0.5
201
D
Vx m/
s
0.0056
8
0.010
7
0.015
4
0.020
3
0.027
5
0.03
5
0.03
9
0.045
2
0.05
1
0.05
5
Nactiv
e
w 250 270 280 315 350 390 410 430 460 480
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
40
45
50
55
60
65
70
Vx(m/s)
Yx
Vx Vs Yx graph
9
E
Vx m/
s
0.005
68
0.010
7
0.015
4
0.020
3
0.027
5
0.03
5
0.039 0.045
2
0.051 0.05
5
Ƞt
ot
- 0.020
3
0.033
1
0.047
21
0.053
02
0.06 0.06
4
0.067
15
0.068
2
0.066
72
0.06
4
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
250
300
350
400
450
500
Vx(m/s)
Nactive(w)
Vx Vs Nctv graph
10
V x v s Ƞtot graph
F
𝝋 vs. 𝚿graph
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0.02
0.025
0.03
0.035
0.04
0.045
0.05
0.055
0.06
0.065
0.07
Vx
totalefficiency
11
G
𝝋 vs. v graph
0 5 10 15 20 25
0.355
0.36
0.365
0.37
0.375
0.38
0.385
0.39
0.395
0.4
12
H
𝝋 vs. Ƞtot graph
0 5 10 15 20 25
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
13
Conclusion and discussion
The centrifugal fan performance tables provide the fan RPM and power requirements for the
given CFM and static pressure at standard air density. When the centrifugal fan performance is
not at standard conditions, the performance must be converted to standard conditions before
entering the performance tables. Centrifugal fans rated by the Air Movement and Control
0 5 10 15 20 25
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
14
Association are tested in laboratories with test setups that simulate installations that are typical
for that type of fan. Usually they are tested and rated as one of four standard installation types as
designated in AMCA Standard 210.
AMCA Standard 210 defines uniform methods for conducting laboratory tests on housed fans to
determine airflow rate, pressure, power and efficiency, at a given speed of rotation. The purpose
of AMCA Standard 210 is to define exact procedures and conditions of fan testing so that ratings
provided by various manufacturers are on the same basis and may be compared. For this reason,
fans must be rated in standardized SCFM.
Generally from calculation and graphs we observed the fooling points:
 From graph A, the cosine of the Angele and Native slightly has direct relation (.i.e.
when cosine of the angle increases and also power requirement also increases.). In
our design of the fan we must consider this relation,(we should compromise the
speed and power requirement).
 From graph B, the nozzle position and the speed of the motor has direct relation.
 From graph C, at lower speed there is low amount of specific energy is needed, and
then sharply increases and at higher speed the specific energy start to decrease.
 From graph D, Nactive and the speed of the motor has direct relation. As the speed
increases and also the power requirement increase.
 From graph E, generally as speed increases efficiency increases and after reaching
maximum efficiency point it start to decrease as speed increases.
 From graph H, at very low angle the total efficiency also low, but a little increscent of
the angle increase the total efficiency very sharply and then a little incensement of
angle decreases the total efficiency very sharply. Here we observed that the angle of
rotation is the greater factor that affects the total efficiency of our flow fan, so when
we design the fan we must consider the angle of rotation greatly.

More Related Content

PDF
Dilute Phase Conveying
PPTX
Surge in compressor
PPT
HVAC Cooling Load Calculation
PPT
COMPRESSORS-FINAL.ppt
PPT
Forced convection
PPT
Compressors
PDF
friction loss along a pipe
PDF
Performance Enhancement of a simple VCR Cycle
Dilute Phase Conveying
Surge in compressor
HVAC Cooling Load Calculation
COMPRESSORS-FINAL.ppt
Forced convection
Compressors
friction loss along a pipe
Performance Enhancement of a simple VCR Cycle

What's hot (20)

PDF
Chapter 3 Properties of Pure Substances
DOCX
Cooling tower full report
PPTX
Formation and properties of steam
PPTX
Section 6 multistage separation processes
PDF
High pressure boilers (1)
DOCX
To investigate Fourier’s Law for the linear conduction of heat along a homoge...
PPT
Thermodynamics and Heat Transfer
ODP
What is the function of desuperheater??
PPTX
Nucleate Boiling simulation
PPTX
Calculation Of Pump Head
PDF
Heat Exchanger
PPTX
Comparison Centrifugal and axial compessor
PPT
AIR COMPRESSOR.ppt
PPTX
Mechanics of machines 1
PPTX
Screw Air Compressors
PPTX
Brayton cycle for gas turbine
PPTX
Chapter 7: Heat Exchanger
PPTX
Distillation Column-Pohnchon savrit method.pptx
PPTX
Heat transfer efficiency
PPTX
Velocity Triangle for Moving Blade of an impulse Turbine
Chapter 3 Properties of Pure Substances
Cooling tower full report
Formation and properties of steam
Section 6 multistage separation processes
High pressure boilers (1)
To investigate Fourier’s Law for the linear conduction of heat along a homoge...
Thermodynamics and Heat Transfer
What is the function of desuperheater??
Nucleate Boiling simulation
Calculation Of Pump Head
Heat Exchanger
Comparison Centrifugal and axial compessor
AIR COMPRESSOR.ppt
Mechanics of machines 1
Screw Air Compressors
Brayton cycle for gas turbine
Chapter 7: Heat Exchanger
Distillation Column-Pohnchon savrit method.pptx
Heat transfer efficiency
Velocity Triangle for Moving Blade of an impulse Turbine
Ad

Similar to Radial flow fan test (20)

DOCX
Radial flow fan test
DOCX
Radial flow fan test
PPT
Introduction المقدمة.ppt
PPTX
Proposal Wide Blower No.1 & 2 with inverter
PDF
MANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdf
PPTX
Waterfall Turbine Development Primer - Updated
PPTX
Lucrare de licență - Inginerie Mecanică
PPT
Energy efficiency in pumps and fans ppt
PDF
Rosenberg's OEM Fans for transformer cooling.
DOC
thermal project # 2
PDF
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
PDF
Chapter 3 centrifugal comp
PDF
Internship Report
PDF
391861703-Mod-5-Fan-Measurement-and-Testing.pdf
PDF
Static, Thermal and CFD Analysis of Bleeder in Steam Turbine Casing Using Ansys
PPTX
Automotive Electronics Sensors and Actuators
PDF
Bombas de Refrigeração Hermetic
PPT
Energy Saving fan .ppt
PPTX
Diganosis of pulley belt system faults using vibrations analysis
PDF
PDXE_PX3_SS6 8-22-14
Radial flow fan test
Radial flow fan test
Introduction المقدمة.ppt
Proposal Wide Blower No.1 & 2 with inverter
MANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdf
Waterfall Turbine Development Primer - Updated
Lucrare de licență - Inginerie Mecanică
Energy efficiency in pumps and fans ppt
Rosenberg's OEM Fans for transformer cooling.
thermal project # 2
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
Chapter 3 centrifugal comp
Internship Report
391861703-Mod-5-Fan-Measurement-and-Testing.pdf
Static, Thermal and CFD Analysis of Bleeder in Steam Turbine Casing Using Ansys
Automotive Electronics Sensors and Actuators
Bombas de Refrigeração Hermetic
Energy Saving fan .ppt
Diganosis of pulley belt system faults using vibrations analysis
PDXE_PX3_SS6 8-22-14
Ad

More from Wolkite University (11)

PPTX
Chemical engineering.pptx
PDF
Apparatus design project on heat exchanger
DOCX
PDF
Material balance 2017
DOCX
Final report 2017
PPTX
Energy from water
RTF
Metal extraction
DOCX
Flow visualization
DOCX
Radial flow fan test
DOCX
Preparetion of asprine
DOCX
Complexometric titration
Chemical engineering.pptx
Apparatus design project on heat exchanger
Material balance 2017
Final report 2017
Energy from water
Metal extraction
Flow visualization
Radial flow fan test
Preparetion of asprine
Complexometric titration

Recently uploaded (20)

PPTX
Management Information system : MIS-e-Business Systems.pptx
PPTX
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PPTX
mechattonicsand iotwith sensor and actuator
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PDF
Applications of Equal_Area_Criterion.pdf
PPTX
Measurement Uncertainty and Measurement System analysis
PDF
First part_B-Image Processing - 1 of 2).pdf
PPTX
Amdahl’s law is explained in the above power point presentations
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
PDF
Soil Improvement Techniques Note - Rabbi
PPT
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PPTX
Information Storage and Retrieval Techniques Unit III
PPTX
Petroleum Refining & Petrochemicals.pptx
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PDF
Unit1 - AIML Chapter 1 concept and ethics
PDF
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
Management Information system : MIS-e-Business Systems.pptx
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
MLpara ingenieira CIVIL, meca Y AMBIENTAL
mechattonicsand iotwith sensor and actuator
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
Applications of Equal_Area_Criterion.pdf
Measurement Uncertainty and Measurement System analysis
First part_B-Image Processing - 1 of 2).pdf
Amdahl’s law is explained in the above power point presentations
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
Soil Improvement Techniques Note - Rabbi
Chapter 1 - Introduction to Manufacturing Technology_2.ppt
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
Information Storage and Retrieval Techniques Unit III
Petroleum Refining & Petrochemicals.pptx
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
Unit1 - AIML Chapter 1 concept and ethics
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf

Radial flow fan test

  • 1. 1 Radialflowfantest Objective: The main objectives of this lab>  To measure the total pressure drop with respect to flow rate  To measure static pressure drop with respect to flow rate.  To know the parameters that affects the operation capacity and efficiency of the fan.  And determine which parameters are the most determinant for the flow fan. Theory A radial flow fan comprising an impeller where the direction of the entry air flow is vertical to the direction of the exit air flow A centrifugal fan is a mechanical device for moving air or other gases. These fans increase the speed of air stream with the rotating impellers. They use the kinetic energy of the impellers or the rotating blade to increase the pressure of the air/gas stream which in turn moves them against the resistance caused by ducts, dampers and other components. Centrifugal fans accelerate air radially, changing the direction (typically by 90°) of the airflow. They are sturdy, quiet, reliable, and capable of operating over a wide range of conditions. Centrifugal fans are constant displacement devices or constant volume devices, meaning that, at a constant fan speed, a centrifugal fan will pump a constant volume of air rather than a constant mass. This means that the air velocity in a system is fixed even though mass flow rate through the fan is not. The centrifugal fan is one of the most widely used fans. Centrifugal fans are by far the most prevalent type of fan used in the HVAC industry today. They are usually cheaper than axial fans and simpler in construction. It is used in transporting gas or materials and in ventilation system for buildings. They are also used commonly in central heating/cooling systems. They are also well-suited for industrial processes and air pollution control systems. It has a fan wheel composed of a number of fan blades, or ribs, mounted around a hub. As shown in the figure, the hub turns on a driveshaft that passes through the fan housing. The gas enters from the side of the fan wheel, turns 90 degrees and accelerates due to centrifugal force as it flows over the fan blades and exits the fan housing.
  • 2. 2 Main parts of a centrifugal fan are:  Fan housing  Impellers  Inlet and outlet ducts  Drive shaft  Drive mechanism Principles of operation The centrifugal fan uses the centrifugal power generated from the rotation of impellers to increase the kinetic energy of air/gases. When the impellers rotate, the gas near the impellers is thrown-off from the impellers due to the centrifugal force and then moves into the fan casing. As a result, the kinetic energy of gas is converted to pressure because of system resistance offered by the casing and duct. The gas is then guided to the exit via outlet ducts. After the gas is thrown-off, the gas pressure in the middle region of the impellers decreases. The gas from the impeller eye rushes in to normalize this pressure. This cycle repeats and therefore the gas can be continuously transferred. Apparatus andmaterialsused Data Dim Nozzle position Turn 1 3 5 7 9 11 13 15 17 19 wattmete r 𝛼 25 27 28 31.5 35 39 41 43 46 48 Voltage V 450 450 450 450 450 450 450 450 450 450 current A 2.7 2.8 2.9 3 3.05 3.12 3.15 3.20 3.25 3.3 Speed n rpm 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 ∆𝑝vent mmw 40 130 270 410 610 830 103 120 138 151
  • 3. 3 Bf=603mmHg T=210C B =Bf-T/8 C =20; Power=C/2*𝛼w SFven=1 SFfav= (808.3/0.787)*(inch/250) AD=0.1452m A0=34.77m 1, Calculation c 0 0 0 0 ∆𝑝fan mmw c 930 890 885 880 860 840 790 740 680 610 value Di m 1 Nozzle position Tur n 1 3 5 7 9 11 13 15 17 19 2 wattmeter 𝛼 25 27 28 31.5 35 39 41 43 46 48 3 Voltage V 450 450 450 450 450 450 450 450 450 450 4 current A 2.7 2.8 2.9 3 3.05 3.12 3.15 3.2 3.25 3.3 5 Speed n rp m 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 6 ∆𝑝vent m m wc 40 130 270 410 610 830 103 0 120 0 138 0 151 0 7 ∆𝑝fan m m wc 930 890 885 880 860 840 790 740 680 610 8 Nactive=(C/ 2)* 𝛼 W 250 270 280 315 350 390 410 430 460 480 9 Napparent=V* A VA 121 5 126 0 130 5 135 0 137 2.5 140 4 141 7.5 144 0 146 2.5 148 5
  • 4. 4 1 0 cos𝜑=Nacti ve/Napparant - 0.20 6 0.21 43 0.21 46 0.23 0.25 5 0.27 8 0.28 92 0.29 9 0.31 5 0.32 3 1 1 n=n(rpm) /60 1/s 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 1 2 𝜔=2𝜋n 1/s 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 1 3 U1=r1*𝜔 m/ s 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 1 4 U2=r2*𝜔 m/ s 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 1 5 U22=(r2 𝜔) 2 m2 /s2 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 1 6 A0u1=34.7 7*(r1 𝜔) m3 /s 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 1 7 U13=(r1 𝜔) 3 m3 /s3 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 1 8 A0u13=34. 77*(r1 𝜔)3 m5 /s3 305 372 305 372 305 372 305 372 305 372 305 372 305 372 305 372 305 372 305 372 1 9 (𝜌/2)* A0u13=0.4 5* A0u13 Kg /m. s3 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 2 0 ∆pven/20* 0.8*0.5 m m wc 0.8 2.6 5.4 8.2 12.2 16.6 20.6 24 27.6 30.2 2 1 ∆pven=g*pv ent=9.81*’2 0’ Kg /m s2 7.85 25.5 06 52.9 74 80.4 42 119. 88 162. 85 202. 09 235. 44 270. 76 296. 3 2 2 ∆pven/(𝜌/ 2) m2 /s2 17.4 4 56.6 8 117. 708 2 178. 76 266. 4 361. 89 449. 09 523. 2 601. 63 658. 44 2 3 √∆pven/𝜌 m/ s 4.17 7 7.52 9 10.8 52 13.3 7 16.3 22 19.0 23 21.2 22.9 24.5 3 25.6 6 2 4 𝛼A0√∆pve n/𝜌=V m/ s 0.02 756 4 0.04 97 0.07 161 0.08 823 0.10 771 0.12 553 3 0.13 49 0.15 114 0.16 2 0.16 93 2 5 ∆Pfan=sʄfan *∆P* fan m m wc 18.6 17.8 17.7 17.6 17.2 16.8 15.8 14.8 13.6 12.2 2 6 ∆Pfan=g∆Pf an Kg /m s2 182. 47 174. 62 173. 64 172. 66 168. 723 164. 81 155 145. 19 133. 42 119. 682 2 7 Ystat=∆Pfan / 𝜌 m2 /s2 202. 744 194. 02 192. 93 191. 84 187. 5 183. 122 172. 22 161. 32 148. 244 133
  • 5. 5 2,plots A, calculationandgraph 𝜑 10^ -5 3.842 3 6.93 9.983 11.472 4 15.014 5 17.5 18.80 5 21.0 7 22.58 2 23.6 cos 𝜑 0.206 0.214 3 0.214 6 0.23 0.255 0.27 8 0.289 2 0.29 9 0.315 0.32 3 Nacti w 250 270 280 315 350 390 410 430 460 480 Cos𝝋Vs Nactive graph 2 8 CD=V/AD m/ s 1.89 81 3.42 3 4.93 2 6.07 645 7.41 804 8.64 55 9.63 5 10.4 091 11.1 57 11.6 6 2 9 Ydyn=CD2/ 2 m2 /s2 1.80 14 5.86 12.1 62 18.4 62 27.5 14 37.2 82 46.4 2 54.1 75 62.2 4 67.9 8 3 0 Y= Ydyn+ Ystat m2 /s2 204. 55 199. 88 205. 092 210. 302 215. 014 220. 404 218. 64 215. 5 210. 5 201 3 1 Neff=VY𝜌 w 5.07 44 8.94 063 13.2 2 16.7 20.8 43 24.9 012 27.5 3 29.3 14 30.6 91 30.6 3 3 2 Ƞtot= Neff/ Nactive - 0.02 03 0.03 31 0.04 721 0.05 302 0.06 0.06 4 0.06 715 0.06 82 0.06 672 0.06 4 3 3 𝜑=V/ A0u1 10 ^-5 3.84 23 6.93 9.98 2 11.4 724 00 15.0 145 17.5 18.8 05 21.0 7 22.5 82 23.6 3 4 Ψ=2Y/u22 - 0.36 76 0.35 93 0.36 9 0.37 8 0.38 65 0.39 614 0.93 0.38 733 0.37 834 0.36 13 3 5 𝜇tot=2Nact/ 𝜌 A0u13 10 ^-3 1.82 1.96 5 2.04 2.3 2.54 7 2.84 2.98 4 3.13 3.35 3.5
  • 6. 6 B 𝜑 10^ -5 3.8423 6.93 9.983 11.47 24 15.01 45 17.5 18.80 5 21.07 22. 582 23.6 V m/ s 0.0275 64 0.04 97 0.071 61 0.088 23 0.107 71 0.1255 33 0.134 9 0.1511 4 0.1 62 0.16 93 x m m 1 3 5 7 9 11 13 15 17 19 cos 𝜑 - 0.206 0.214 3 0.214 6 0.23 0.255 0.27 8 0.28 92 0.2 99 0.315 0.3 23 V x m/ s 0.0056 8 0.01 07 0.015 4 0.020 3 0.027 5 0.035 0.039 0.0452 0.0 51 0.05 5 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 250 300 350 400 450 500 cos@ Nactive
  • 7. 7 C 𝜑 10^ -5 3.8423 6.93 9.983 11.47 24 15.01 45 17.5 18.80 5 21.07 22. 58 2 23.6 V m/s 0.0275 64 0.049 7 0.071 61 0.088 23 0.107 71 0.1255 33 0.134 9 0.1511 4 0.1 62 0.16 93 x mm 1 3 5 7 9 11 13 15 17 19 cos 𝜑 - 0.206 0.214 3 0.214 6 0.23 0.255 0.27 8 0.28 92 0.2 99 0.315 0.3 23 V x m/s 0.0056 8 0.010 7 0.015 4 0.020 3 0.027 5 0.035 0.039 0.0452 0.0 51 0.05 5 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0 2 4 6 8 10 12 14 16 18 20 Vx(m/s) x(mm) Vx Vs x graph
  • 8. 8 Y x m2/ s2 42.14 42.83 43 44.01 3 48.37 54.83 61.3 63.23 07 64.435 66. 30 8 64.9 23 Y m2/ s2 204.55 199.8 8 205.0 92 210.3 02 215.0 14 220.40 4 218.6 4 215.5 21 0.5 201 D Vx m/ s 0.0056 8 0.010 7 0.015 4 0.020 3 0.027 5 0.03 5 0.03 9 0.045 2 0.05 1 0.05 5 Nactiv e w 250 270 280 315 350 390 410 430 460 480 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 40 45 50 55 60 65 70 Vx(m/s) Yx Vx Vs Yx graph
  • 9. 9 E Vx m/ s 0.005 68 0.010 7 0.015 4 0.020 3 0.027 5 0.03 5 0.039 0.045 2 0.051 0.05 5 Ƞt ot - 0.020 3 0.033 1 0.047 21 0.053 02 0.06 0.06 4 0.067 15 0.068 2 0.066 72 0.06 4 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 250 300 350 400 450 500 Vx(m/s) Nactive(w) Vx Vs Nctv graph
  • 10. 10 V x v s Ƞtot graph F 𝝋 vs. 𝚿graph 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 Vx totalefficiency
  • 11. 11 G 𝝋 vs. v graph 0 5 10 15 20 25 0.355 0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4
  • 12. 12 H 𝝋 vs. Ƞtot graph 0 5 10 15 20 25 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
  • 13. 13 Conclusion and discussion The centrifugal fan performance tables provide the fan RPM and power requirements for the given CFM and static pressure at standard air density. When the centrifugal fan performance is not at standard conditions, the performance must be converted to standard conditions before entering the performance tables. Centrifugal fans rated by the Air Movement and Control 0 5 10 15 20 25 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
  • 14. 14 Association are tested in laboratories with test setups that simulate installations that are typical for that type of fan. Usually they are tested and rated as one of four standard installation types as designated in AMCA Standard 210. AMCA Standard 210 defines uniform methods for conducting laboratory tests on housed fans to determine airflow rate, pressure, power and efficiency, at a given speed of rotation. The purpose of AMCA Standard 210 is to define exact procedures and conditions of fan testing so that ratings provided by various manufacturers are on the same basis and may be compared. For this reason, fans must be rated in standardized SCFM. Generally from calculation and graphs we observed the fooling points:  From graph A, the cosine of the Angele and Native slightly has direct relation (.i.e. when cosine of the angle increases and also power requirement also increases.). In our design of the fan we must consider this relation,(we should compromise the speed and power requirement).  From graph B, the nozzle position and the speed of the motor has direct relation.  From graph C, at lower speed there is low amount of specific energy is needed, and then sharply increases and at higher speed the specific energy start to decrease.  From graph D, Nactive and the speed of the motor has direct relation. As the speed increases and also the power requirement increase.  From graph E, generally as speed increases efficiency increases and after reaching maximum efficiency point it start to decrease as speed increases.  From graph H, at very low angle the total efficiency also low, but a little increscent of the angle increase the total efficiency very sharply and then a little incensement of angle decreases the total efficiency very sharply. Here we observed that the angle of rotation is the greater factor that affects the total efficiency of our flow fan, so when we design the fan we must consider the angle of rotation greatly.