SlideShare a Scribd company logo
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Recent	Progress	on	
Single-Image	Super-
Resolution
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Self	Introduction
2
Hiroto Honda
@hirotomusiker
n Image sensor and low-level CV engineer (-2015)
n ETH Zurich CVL visiting researcher (2013-2014)
n DeNA AI R&D engineer (2017-)
mainly on object detection and recognition
(OSS: https://github.com/DeNA/Chainer_Mask_R-CNN )
n CVPR NTIRE Workshop Program Committee
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Contents
n Introduction to Single Image Super Resolution (SISR)
n Simple SISR Networks
⁃ SRCNN, ESPCN, VDSR
⁃ Upsampling methods – deconv or pixelshuffle
n The baseline: SRResNet
⁃ SRResNet, SRGAN, and EDSR
n Super Resolution and Perception
⁃ Restoration results and loss functions
⁃ Perception – Distortion Tradeoff
n Conclusion
3
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
What	can	Single-Image	Super-Resolution	do	?
n Low-Resolution Image
n High-Resolution Image
4
Restore
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
SISR	is	easy	to	try!
5
original(HR) LR
resize
train
No	manual	annotations	are	necessary	
(self-supervised	learning)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Progress	on	SISR
6
from:	https://github.com/jbhuang0604/SelfExSR
PSNR*	[dB]	(over	bicubic)
on	Set5	dataset,	x4
+1.86
+2.93
+2.06
+3.63
A+0.0
bicubic
2015 20172014 2016
+4.20
+2.48
PSNR	data	from:5)
SRCNN VDSR SRResNet EDSRESPCN
SISR	is	getting	more	&	more	accurate...
*	PSNR	=	10	log10	(2552 /	MSE	)	when	max	value	is	255
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Non-deep	method:	Dictionary-based	algorithm
7
=
optimize	coefficients
7
baseline	of	non-deep	methods	:	A+	(2014)
http://www.vision.ee.ethz.ch/~timofter/publications/Timofte-ACCV-2014.pdf
=
learnt	dictionary
x	0			+	
x	0			+	
x	0.8			+	
x	0.8			+	
x	0.05		+	
x	0.05		+	
LR
patch
HR
patch
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
How	to	train	a	deep	SISR	network
n Crop patches from the groundtruth images HR
n Down-sample them to generate input images LR = g(HR)
n Put them into a batch {LR}, {HR}
n Train the network f with pixel-wise loss func : MSE(HR, f(LR))
n ...thatʼs it!
8
LR=g(HR) f(LR) HR
f
MSE
e.g.	bicubic down-sampling
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
n Simple SISR networks
⁃ SRCNN, ESPCN, VDSR
⁃ Upsampling methods – deconv or pixelshuffle
9
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
The	first	CNN-based	SISR	– SRCNN
10
Kernel	size:	9	– 1	– 5	or		9	– 3	– 5	or	9	– 5	– 5
from:1)
pretty	simple	and	straightforward!
bicubic x2
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
VDSR:	Deeper	Version	of	SRCNN
11
from:3)
3x3,	64	ch D=	5	to	20
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Efficient	sub-pixel	CNN	(ESPCN)
12
CNN	deals	with	LR	feature	maps	->	minimum	operations
from:2)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Difference	between	SRCNN	/	VDSR	and	ESPCN
n Pre-upsampling: Costly, but flexible for different degradation types
n Post-upsampling: Efficient, magnitude fixed to integers (x2, x3, x4...)
13
SRCNN,
VDSR
ESPCN
bicubic x2 output
input
Pixel	shuffle	x2
ch
h
w
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Upscaling	methods	- Deconvolution	or	PixelShuffle?
n Deconvolution
14
https://distill.pub/2016/deconv-checkerboard/
Checkerboard	artifacts	<- number	of	pixels	
contributing	to	convolutions	varies	at	each	location
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Upscaling	methods	- Deconvolution	or	PixelShuffle?
n How about resize - convolution?
15
Resize	(bilinear	/	bicubic)	:	less	artifacts	
e.g.	Resize	->	Conv2D	(256ch	->	3ch)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Upscaling	methods	- Deconvolution	or	PixelShuffle?
n Sub-pixel convolution (aka. PixelShuffle)
16
Tile	the	channel	data	at	every	location	-
e.g.	9	channels	->	3x3	sub-pixels	at	one	location
Non-convolutional	upscaling	
from:2)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
n The baseline : SRResNet
⁃ SRResNet, SRGAN, and EDSR
17
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
SRResnet*	and	SRGAN	– the	new	standard
18
24 residual blocks, 64 ch
Skip connection
pixel
shuffle
x2
MSE
MSE
Discriminator
Trained VGG
Perceptual Loss
Discriminator
Loss
MSE Loss
from:4)
pixel
shuffle
x2
*	the	network	is	called	‘SRResNet’		when	only	MSE	loss	is	used.ch
h
w
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
SRResnet*	and	SRGAN	– the	network	details
19
・resblocks with	skip	connection
・pixel	shuffle	upsampling
・3	types	of	loss	functions
from:4)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Enhanced	Deep	Super	Resolution	(EDSR)	network
20
32 residual blocks, 256 ch
Skip connection x2
x2
l1
l1 Loss
from:5)
・more	resblocks
・no	BN	layers	in	resblocks
・l1	loss
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
PSNR and	appearances
21
from:5)
1dB	difference	matters	a	lot!
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
n Super Resolution and Perception
⁃ Restoration results and loss functions
⁃ Perception – Distortion Tradeoff
22
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Which	do	you	prefer?
23
Original
SRResNet
25.53dB
SRGAN
21.15dB
bicubic
21.59dB
Method→
PSNR	→
from:4)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
SRResnet	and	SRGAN	– comparison	of	restored	images	
24
MSE loss ● ●
Perceptual loss using VGG ●
Discriminator loss ● ●
from:4)
highest	PSNR
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
3	types	of	loss	functions
①l1/l2 loss
②perceptual loss
③GAN loss
25
generated
image
real	/	fake
ground	
truth
multi-scale
feature	
matching
VGG
discrimi-
nator
generated
image
ground	
truth
generated
image
ground	
truth
Low
Distortion
Good	
Perception
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Perception-Distortion	Tradeoff	
No	methods	can	achieve	low	distortion	and	good	perceptual	
quality	at	the	same	time!		
26
from:8)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
What	is	SISR	for?
27
Accurate Plausible
from:	4)
It	depends	on	your	application!
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
n summary
28
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Progress	on	SISR	– accuracy	and	runtime
29
PSNR	[dB]	(over	bicubic)
on	Set5	dataset,	x4
+1.86
+2.93
+2.06
+3.63
A+ SRCNN VDSR SRResNet EDSR0.0
bicubic
2015 20172014 2016
+4.20
ESPCN
+2.48
0.44
0.04
0.74
1.33
40.7
Mega-Multiplication
per	one	input	pixel
for	x2	restoration
PSNR	data	from:5)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Benchmark	Details	from	NTIRE	2017
30
EDSR
SRResNet
VDSR
ESPCN
SRCNN
A+
from:	9)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Summary
n Single-Image Super-Resolution is getting more accurate,
but more costly
n Resblocks with skip connections and pixel-shuffle upsampling are
the key components
n SRResNet-based network is the current baseline
n ʻAccurateʼ or ʻPlausibleʼ – what do you want?
31
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Appendix:	Residual	Dense	Network	for	Super-Resolution
32
DenseNet-based	SRResNet
from:	6)
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Appendix:	Deep	Back-Projection	Networks	For	Super-Resolution
(best	PSNR	in	NTIRE	ʼ18	x8	bicubic	downsampling track)
33
from:	7)
up	/	down	projection	with	dense	connection
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Datasets
n DIV2K dataset (train, val)
https://data.vision.ee.ethz.ch/cvl/DIV2K/
n Set5 dataset (test)
http://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html
n B100 dataset (test)
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
n Urban100 dataset (test)
https://sites.google.com/site/jbhuang0604/publications/struct_sr
34
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
Competitions
n NTIRE2017:
New Trends in Image Restoration and Enhancement workshop and challenge on image super-
resolution in conjunction with CVPR 2017
http://www.vision.ee.ethz.ch/ntire17/
report: http://www.vision.ee.ethz.ch/~timofter/publications/Timofte-CVPRW-2017.pdf
n NTIRE2018:
New Trends in Image Restoration and Enhancement workshop and challenge on super-resolution,
dehazing, and spectral reconstructionin conjunction with CVPR 2018
http://www.vision.ee.ethz.ch/ntire18/
report:
http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w13/Timofte_NTIRE_2018
_Challenge_CVPR_2018_paper.pdf
n PIRM2018:
Workshop and Challenge on Perceptual Image Restoration and Manipulation in conjunction with
ECCV 2018
https://www.pirm2018.org/
35
Copyright	©	DeNA	Co.,Ltd.	All	Rights	Reserved.
References
1) Dong et al., Image Super-Resolution Using Deep Convolutional Networks,
https://arxiv.org/abs/1501.00092
2) Shi et al., Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel
Convolutional Neural Network, https://arxiv.org/abs/1609.05158
3) Kim et al., Accurate Image Super-Resolution Using Very Deep Convolutional Networks,
https://arxiv.org/pdf/1511.04587
4) Ledig et al., Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network ,
https://arxiv.org/abs/1609.04802
5) Lim et al., Enhanced Deep Residual Networks for Single Image Super-Resolution,
https://arxiv.org/abs/1707.02921
6) Zhang et al., Residual Dense Network for Image Super-Resolution,
https://arxiv.org/abs/1802.08797
7) Haris et al., Deep Back-Projection Networks For Super-Resolution,
https://arxiv.org/pdf/1803.02735.pdf
8) Blau et al., Perception Distortion Tradeoff, https://arxiv.org/abs/1711.06077
9) Timofte et al., NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and
Results , http://www.vision.ee.ethz.ch/~timofter/publications/Timofte-CVPRW-2017.pdf
10) Super-Resolution.Benckmark, https://github.com/huangzehao/Super-Resolution.Benckmark
36

More Related Content

PPTX
Semi supervised, weakly-supervised, unsupervised, and active learning
PPTX
[DL輪読会]Revisiting Deep Learning Models for Tabular Data (NeurIPS 2021) 表形式デー...
PDF
Deep Learningによる超解像の進歩
PDF
動画認識サーベイv1(メタサーベイ )
PDF
Deep Learningと画像認識   ~歴史・理論・実践~
PDF
High-impact Papers in Computer Vision: 歴史を変えた/トレンドを創る論文
PDF
[DL輪読会]Transframer: Arbitrary Frame Prediction with Generative Models
PDF
Generative Models(メタサーベイ )
Semi supervised, weakly-supervised, unsupervised, and active learning
[DL輪読会]Revisiting Deep Learning Models for Tabular Data (NeurIPS 2021) 表形式デー...
Deep Learningによる超解像の進歩
動画認識サーベイv1(メタサーベイ )
Deep Learningと画像認識   ~歴史・理論・実践~
High-impact Papers in Computer Vision: 歴史を変えた/トレンドを創る論文
[DL輪読会]Transframer: Arbitrary Frame Prediction with Generative Models
Generative Models(メタサーベイ )

What's hot (20)

PPTX
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
PPTX
近年のHierarchical Vision Transformer
PPTX
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
PDF
Transformer 動向調査 in 画像認識(修正版)
PPTX
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
PDF
[DL輪読会]Deep Learning 第15章 表現学習
PDF
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
PPTX
【DL輪読会】ViT + Self Supervised Learningまとめ
PPTX
SfM Learner系単眼深度推定手法について
PDF
【メタサーベイ】Video Transformer
PDF
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
PPTX
DNNの曖昧性に関する研究動向
PDF
20181130 lidar object detection survey
PPTX
HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Est...
PPTX
[DLHacks]StyleGANとBigGANのStyle mixing, morphing
PDF
3D CNNによる人物行動認識の動向
PDF
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
PDF
画像生成・生成モデル メタサーベイ
PDF
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
PPTX
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
近年のHierarchical Vision Transformer
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Transformer 動向調査 in 画像認識(修正版)
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Deep Learning 第15章 表現学習
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【DL輪読会】ViT + Self Supervised Learningまとめ
SfM Learner系単眼深度推定手法について
【メタサーベイ】Video Transformer
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
DNNの曖昧性に関する研究動向
20181130 lidar object detection survey
HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Est...
[DLHacks]StyleGANとBigGANのStyle mixing, morphing
3D CNNによる人物行動認識の動向
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
画像生成・生成モデル メタサーベイ
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
Ad

Similar to Recent Progress on Single-Image Super-Resolution (20)

PDF
Single Image Super Resolution Overview
PDF
[OSGeo-KR Tech Workshop] Deep Learning for Single Image Super-Resolution
PDF
Seminarpaper
PDF
2018_Enhanced SRGAN.pdf
PDF
Enhancing image quality using super-resolution residual network for small, bl...
PDF
Enhanced Deep Residual Networks for Single Image Super-Resolution
PPTX
A Deep Journey into Super-resolution
PDF
Deep-Learning Based Stereo Super-Resolution
PDF
Super resolution in deep learning era - Jaejun Yoo
PPT
“zero-shot” super-resolution using deep internal learning [CVPR2018]
PDF
Multi-stage Progressive Image Restoration
PPTX
Single Image Super-Resolution from Transformed Self-Exemplars (CVPR 2015)
PDF
“Super Resolution on Resource Constrained Devices,” a Presentation from Colla...
PDF
DeepSR A deep learning tool for image super resolution. DOI-10.1016j.softx.20...
PPTX
A Fully Progressive approach to Single image super-resolution
PDF
An introduction to super resolution using deep learning
PDF
[딥논읽] Meta-Transfer Learning for Zero-Shot Super-Resolution paper review
PDF
Scaling up Deep Learning Based Super Resolution Algorithms
PDF
Image super resolution using Generative Adversarial Network.
Single Image Super Resolution Overview
[OSGeo-KR Tech Workshop] Deep Learning for Single Image Super-Resolution
Seminarpaper
2018_Enhanced SRGAN.pdf
Enhancing image quality using super-resolution residual network for small, bl...
Enhanced Deep Residual Networks for Single Image Super-Resolution
A Deep Journey into Super-resolution
Deep-Learning Based Stereo Super-Resolution
Super resolution in deep learning era - Jaejun Yoo
“zero-shot” super-resolution using deep internal learning [CVPR2018]
Multi-stage Progressive Image Restoration
Single Image Super-Resolution from Transformed Self-Exemplars (CVPR 2015)
“Super Resolution on Resource Constrained Devices,” a Presentation from Colla...
DeepSR A deep learning tool for image super resolution. DOI-10.1016j.softx.20...
A Fully Progressive approach to Single image super-resolution
An introduction to super resolution using deep learning
[딥논읽] Meta-Transfer Learning for Zero-Shot Super-Resolution paper review
Scaling up Deep Learning Based Super Resolution Algorithms
Image super resolution using Generative Adversarial Network.
Ad

Recently uploaded (20)

PDF
Review of recent advances in non-invasive hemoglobin estimation
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Encapsulation theory and applications.pdf
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Machine learning based COVID-19 study performance prediction
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Approach and Philosophy of On baking technology
PPTX
A Presentation on Artificial Intelligence
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
KodekX | Application Modernization Development
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Review of recent advances in non-invasive hemoglobin estimation
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Encapsulation theory and applications.pdf
The Rise and Fall of 3GPP – Time for a Sabbatical?
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
“AI and Expert System Decision Support & Business Intelligence Systems”
Machine learning based COVID-19 study performance prediction
CIFDAQ's Market Insight: SEC Turns Pro Crypto
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Approach and Philosophy of On baking technology
A Presentation on Artificial Intelligence
Reach Out and Touch Someone: Haptics and Empathic Computing
Unlocking AI with Model Context Protocol (MCP)
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
Understanding_Digital_Forensics_Presentation.pptx
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
NewMind AI Weekly Chronicles - August'25 Week I
Digital-Transformation-Roadmap-for-Companies.pptx
KodekX | Application Modernization Development
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy

Recent Progress on Single-Image Super-Resolution