Reinforcement learning is a computational approach for learning through interaction without an explicit teacher. An agent takes actions in various states and receives rewards, allowing it to learn relationships between situations and optimal actions. The goal is to learn a policy that maximizes long-term rewards by balancing exploitation of current knowledge with exploration of new actions. Methods like Q-learning use value function approximation and experience replay in deep neural networks to scale to complex problems with large state spaces like video games. Temporal difference learning combines the advantages of Monte Carlo and dynamic programming by bootstrapping values from current estimates rather than waiting for full episodes.