SlideShare a Scribd company logo
Robust 3D gravity gradient inversion
 by planting anomalous densities
             Leonardo Uieda
           Valéria C. F. Barbosa

            Observatório Nacional


             September, 2011
                       
Outline




        
Outline
    Forward Problem




                          
Outline
    Forward Problem   Inverse Problem




                              
Outline
    Forward Problem   Inverse Problem   Planting Algorithm




                                        Inspired by René (1986)




                              
Outline
    Forward Problem      Inverse Problem   Planting Algorithm




                                           Inspired by René (1986)

        Synthetic Data




                                 
Outline
    Forward Problem      Inverse Problem     Planting Algorithm




                                              Inspired by René (1986)

        Synthetic Data                      Real Data




                                      Quadrilátero Ferrífero, Brazil
                                 
Forward problem


            
Observed g αβ
                αβ
            g




     
Observed g αβ
                αβ
            g




     
Observed g αβ
                αβ
            g




        Anomalous density




     
Observed g αβ
                                     αβ
                                 g




    Want to model this       Anomalous density




                          
Interpretative model




     
Interpretative model




        Right rectangular prism


                          Δ ρ= p j

     
 
    Prisms with  p j =0    
    not shown
[]
                                 p1
                              p= p 2
                                 ⋮
                                 pM
 
    Prisms with  p j =0    
    not shown
Predicted g αβ
                                       αβ
                                   d




                                   []
                                  p1
                               p= p 2
                                  ⋮
                                  pM
 
    Prisms with  p j =0    
    not shown
Predicted g αβ
                                               αβ
                                           d

                                       M
                              d =∑ p j a
                               αβ                   αβ
                                                    j
                                      j=1




                                           []
                                        p1
                                     p= p 2
                                        ⋮
                                        pM
 
    Prisms with  p j =0    
    not shown
Predicted g αβ
                                               αβ
                                           d

                                       M
                              d =∑ p j a
                               αβ                   αβ
                                                    j
                                      j=1


                                    Contribution of jth prism




                                           []
                                         p1
                                      p= p 2
                                         ⋮
                                         pM
 
    Prisms with  p j =0    
    not shown
More components:
          xx
        d
          xy
        d
          xz
        d
          yy
        d
          yz
        d
          zz
        d

                        
More components:
          xx
        d
          xy
        d
          xz
        d
          yy
                  d
        d
          yz
        d
          zz
        d

                        
More components:
          xx
        d
          xy
        d
                       M
          xz
        d
          yy
                  d =∑ p j a j
        d              j=1
          yz
        d
          zz
        d

                         
More components:
          xx
        d
          xy
        d
                       M
          xz
        d
          yy
                  d =∑ p j a j = A p
        d              j=1
          yz
        d
          zz
        d

                         
More components:
          xx
        d
          xy
        d
                       M
          xz
        d
          yy
                  d =∑ p j a j = A p
        d              j=1
          yz
        d                    Jacobian (sensitivity) matrix
          zz
        d

                         
More components:
          xx
        d
          xy
        d
                       M
          xz
        d
          yy
                  d =∑ p j a j = A p
        d              j=1
          yz
        d               Column vector of   A
          zz
        d

                         
Forward problem:
                       M

         p         d=∑ p j a j   d
                      j=1




                        
Inverse problem:

         p
         ̂         ?   g




                    
Inverse problem


            
Minimize difference between   g   and   d
       Residual vector   r= g−d




                             
Minimize difference between            g   and   d
        Residual vector        r= g−d
    Data­misfit function:

                     N           1

    ϕ( p)=∥r∥2 =
                 (             2 2
                     ∑ (gi−d i )
                     i=1
                                   )

                                        
Minimize difference between              g   and   d
        Residual vector          r= g−d
    Data­misfit function:

                       N           1

    ϕ( p)=∥r∥2 =
                  (              2 2
                       ∑ (gi−d i )
                       i=1
                                     )
        ℓ2­norm of r




                                          
Minimize difference between              g   and   d
        Residual vector          r= g−d
    Data­misfit function:

                       N           1

    ϕ( p)=∥r∥2 =
                  (              2 2
                       ∑ (gi−d i )
                       i=1
                                     )
        ℓ2­norm of r

         Least­squares fit

                                          
Minimize difference between              g   and   d
        Residual vector          r= g−d
    Data­misfit function:

                       N           1                             N

    ϕ( p)=∥r∥2 =
                  (              2 2
                       ∑ (gi−d i )
                       i=1
                                     )       ϕ( p)=∥r∥1=∑ ∣gi −d i∣
                                                             i=1


        ℓ2­norm of r                              ℓ1­norm of r

         Least­squares fit

                                          
Minimize difference between              g   and   d
        Residual vector          r= g−d
    Data­misfit function:

                       N           1                             N

    ϕ( p)=∥r∥2 =
                  (              2 2
                       ∑ (gi−d i )
                       i=1
                                     )       ϕ( p)=∥r∥1=∑ ∣gi −d i∣
                                                             i=1


        ℓ2­norm of r                              ℓ1­norm of r

         Least­squares fit                          Robust fit

                                          
ill­posed problem

    non­existent
    non­unique
    non­stable



                     
constraints
ill­posed problem

    non­existent
    non­unique
    non­stable



                          
constraints
ill­posed problem            well­posed problem

    non­existent                 exist
    non­unique                   unique
    non­stable                   stable



                          
Constraints:
    1. Compact




                  
Constraints:
    1. Compact   no holes inside




                          
Constraints:
    1. Compact      no holes inside

    2. Concentrated around “seeds”




                             
Constraints:
    1. Compact          no holes inside

    2. Concentrated around “seeds”
          ● User­specified prisms
          ●    Given density contrasts ρs
          ●    Any # of ≠ density contrasts




                                  
Constraints:
    1. Compact           no holes inside

    2. Concentrated around “seeds”
           ● User­specified prisms
           ●    Given density contrasts ρs
           ●    Any # of ≠ density contrasts

    3. Only  p j =0 or p j =ρs


                                   
Constraints:
    1. Compact           no holes inside

    2. Concentrated around “seeds”
           ● User­specified prisms
           ●    Given density contrasts ρs
           ●    Any # of ≠ density contrasts

    3. Only  p j =0 or p j =ρs

    4.  p j =ρs of closest seed 
                                    
Well­posed problem: Minimize goal function

              Γ( p)=ϕ( p)+μ θ( p)




                        
Well­posed problem: Minimize goal function

              Γ( p)=ϕ( p)+μ θ( p)

              Data­misfit function




                         
Well­posed problem: Minimize goal function

              Γ( p)=ϕ( p)+μ θ( p)

                   Regularizing parameter
            (Tradeoff between fit and regularization)




                           
Well­posed problem: Minimize goal function

              Γ( p)=ϕ( p)+μ θ( p)

                     Regularizing function
                            M
                                   pj
                    θ( p)=∑                l   β
                                               j
                            j=1   p j +ϵ




                        
Well­posed problem: Minimize goal function

                           Γ( p)=ϕ( p)+μ θ( p)

                                  Regularizing function
                                         M
                                                pj
           Similar to            θ( p)=∑                l   β
                                                            j
    Silva Dias et al. (2009)             j=1   p j +ϵ




                                     
Well­posed problem: Minimize goal function

                           Γ( p)=ϕ( p)+μ θ( p)

                                  Regularizing function
                                         M
                                                pj
           Similar to            θ( p)=∑                l   β
                                                            j
    Silva Dias et al. (2009)             j=1   p j +ϵ
                                                            Distance between 
                                                            jth prism and seed




                                     
Well­posed problem: Minimize goal function

                           Γ( p)=ϕ( p)+μ θ( p)

                                     Regularizing function
                                            M
                                                   pj
           Similar to            θ( p)=∑                   l   β
                                                               j
    Silva Dias et al. (2009)                j=1   p j +ϵ
                                                               Distance between 
                                                               jth prism and seed
     Imposes:
         ● Compactness            Concentration around seeds
                                 ●

                                        
Constraints:
    1. Compact
                                       Regularization
    2. Concentrated around “seeds”




    3. Only  p j =0 or p j =ρs

    4.  p j =ρs of closest seed 
                                    
Constraints:
    1. Compact
                                         Regularization
    2. Concentrated around “seeds”




    3. Only  p j =0 or p j =ρs
                                         Algorithm
    4.  p j =ρs of closest seed        Based on René (1986)

                                    
Planting Algorithm


             
Setup:       g = observed data




          
Setup:                                    g = observed data
Define interpretative model




                       Interpretative model




                                  
Setup:                                    g = observed data
Define interpretative model

All parameters zero


                       Interpretative model




                                  
Setup:                                    g = observed data
Define interpretative model

All parameters zero

N S seeds
                       Interpretative model




                                  
Setup:                            g = observed data
Define interpretative model

All parameters zero

N S seeds
Include seeds




                                               Prisms with  p j =0
                                               not shown
Setup:                            g = observed data
Define interpretative model

All parameters zero

N S seeds
                                  d = predicted data
Include seeds

Compute initial residuals

    (0)        (0)
    r = g− d




                                                Prisms with  p j =0
                                                not shown
Setup:                            g = observed data
Define interpretative model

All parameters zero

N S seeds
                                  d = predicted data
Include seeds

Compute initial residuals

     (0)       (0)
    r = g− d

    Predicted by seeds


                                                Prisms with  p j =0
                                                not shown
Setup:                                 g = observed data
Define interpretative model

All parameters zero

N S seeds
                                       d = predicted data
Include seeds

Compute initial residuals
                NS


            (∑ )
    r (0)= g−
                s=1
                      ρs a j   S




                                                     Prisms with  p j =0
                                                     not shown
Setup:                                 g = observed data
Define interpretative model

All parameters zero

N S seeds
                                       d = predicted data
Include seeds

Compute initial residuals
                NS


            (∑ )
    r (0)= g−
                s=1
                      ρs a j   S



                                             Neighbors
Find neighbors of seeds

                                                     Prisms with  p j =0
                                                     not shown
Growth:
    Try accretion to sth seed:




                                     Prisms with  p j =0
                                     not shown
Growth:
    Try accretion to sth seed:
       Choose neighbor:

          1. Reduce data misfit

          2. Smallest goal function




                                          Prisms with  p j =0
                                          not shown
Growth:
    Try accretion to sth seed:
       Choose neighbor:

          1. Reduce data misfit

          2. Smallest goal function

        j = chosen       p j =ρs (New elements)



                                                  j




                                                      Prisms with  p j =0
                                                      not shown
Growth:
    Try accretion to sth seed:
       Choose neighbor:

          1. Reduce data misfit

          2. Smallest goal function

        j = chosen                       p j =ρs (New elements)
       Update residuals
               ( new)        (old )
           r            =r            − pj aj
                                                                  j




                                                                      Prisms with  p j =0
                                                                      not shown
Growth:
    Try accretion to sth seed:
       Choose neighbor:

          1. Reduce data misfit

          2. Smallest goal function

        j = chosen                       p j =ρs (New elements)
       Update residuals
               ( new)        (old )
           r            =r            − pj aj
                                                                  j

                         Contribution of j




                                                                      Prisms with  p j =0
                                                                      not shown
Growth:
    Try accretion to sth seed:
       Choose neighbor:

          1. Reduce data misfit

          2. Smallest goal function

        j = chosen                       p j =ρs (New elements)
       Update residuals
               ( new)        (old )
           r            =r            − pj aj
        None found = no accretion                                 j



                 Variable sizes


                                                                      Prisms with  p j =0
                                                                      not shown
Growth:
    Try accretion to sth seed:
         Choose neighbor:

           1. Reduce data misfit

    NS     2. Smallest goal function

         j = chosen                      p j =ρs (New elements)
         Update residuals
               ( new)        (old )
           r            =r            − pj aj
         None found = no accretion




                                                                  Prisms with  p j =0
                                                                  not shown
Growth:
    Try accretion to sth seed:
         Choose neighbor:

           1. Reduce data misfit

    NS     2. Smallest goal function

         j = chosen                      p j =ρs (New elements)
         Update residuals
               ( new)        (old )
           r            =r            − pj aj
         None found = no accretion
                                                                  j




                                                                      Prisms with  p j =0
                                                                      not shown
Growth:
    Try accretion to sth seed:
         Choose neighbor:

           1. Reduce data misfit

    NS     2. Smallest goal function

         j = chosen                      p j =ρs (New elements)
         Update residuals
               ( new)        (old )
           r            =r            − pj aj
         None found = no accretion
                                                                  j
     At least one seed grow?




                                                                      Prisms with  p j =0
                                                                      not shown
Growth:
    Try accretion to sth seed:
         Choose neighbor:

           1. Reduce data misfit

    NS     2. Smallest goal function

         j = chosen                      p j =ρs (New elements)
         Update residuals
               ( new)        (old )
           r            =r            − pj aj
         None found = no accretion
                                                                  j
     At least one seed grow?
     Yes


                                                                      Prisms with  p j =0
                                                                      not shown
Growth:
    Try accretion to sth seed:
         Choose neighbor:

           1. Reduce data misfit

    NS     2. Smallest goal function

         j = chosen                      p j =ρs (New elements)
         Update residuals
               ( new)        (old )
           r            =r            − pj aj
         None found = no accretion
                                                                  j
     At least one seed grow?
     Yes                 No

                                                                      Prisms with  p j =0
                        Done!                                         not shown
Advantages:
      Compact & non­smooth
      Any number of sources
      Any number of different density contrasts
      No large equation system
      Search limited to neighbors




                             
Remember equations:
          Initial residual                  Update residual vector
                     NS
        (0)
       r = g−    (   ∑ ρs a j
                     s=1
                                S   )        r   (new)
                                                         =r   (old )
                                                                   − pj aj




                                         
Remember equations:
            Initial residual                  Update residual vector
                       NS
          (0)
         r = g−
                   (   ∑ ρs a j
                       s=1
                                  S   )        r
                                                   (new)
                                                       =r
                                                            (old )
                                                                 − pj aj

    No matrix multiplication (only vector +)




                                           
Remember equations:
            Initial residual                  Update residual vector
                       NS
          (0)
         r = g−
                   (   ∑ ρs a j
                       s=1
                                  S   )        r
                                                   (new)
                                                       =r
                                                            (old )
                                                                 − pj aj

    No matrix multiplication (only vector +)

                               Only need some columns of A




                                           
Remember equations:
            Initial residual                  Update residual vector
                       NS
          (0)
         r = g−
                   (   ∑ ρs a j
                       s=1
                                  S   )        r
                                                   (new)
                                                       =r
                                                            (old )
                                                                 − pj aj

    No matrix multiplication (only vector +)

                               Only need some columns of A

     Calculate only when needed



                                           
Remember equations:
            Initial residual                  Update residual vector
                       NS
          (0)
         r = g−
                   (   ∑ ρs a j
                       s=1
                                  S   )        r
                                                   (new)
                                                       =r
                                                            (old )
                                                                 − pj aj

    No matrix multiplication (only vector +)

                               Only need some columns of A

     Calculate only when needed & delete after update



                                           
Remember equations:
            Initial residual                  Update residual vector
                       NS
          (0)
         r = g−
                   (   ∑ ρs a j
                       s=1
                                  S   )        r
                                                   (new)
                                                       =r
                                                            (old )
                                                                 − pj aj

    No matrix multiplication (only vector +)

                               Only need some columns of A

     Calculate only when needed & delete after update


                               Lazy evaluation
                                           
Advantages:
      Compact & non­smooth
      Any number of sources
      Any number of different density contrasts
      No large equation system
      Search limited to neighbors




                             
Advantages:
      Compact & non­smooth
      Any number of sources
      Any number of different density contrasts
      No large equation system
      Search limited to neighbors
      No matrix multiplication (only vector +)
      Lazy evaluation of Jacobian


                              
Advantages:
      Compact & non­smooth
      Any number of sources
      Any number of different density contrasts
      No large equation system
      Search limited to neighbors
      No matrix multiplication (only vector +)
      Lazy evaluation of Jacobian

      Fast inversion + low memory usage
                              
Synthetic Data


           
Data set:
        3 components
       ●



        51 x 51 points
       ●



        2601 points/component
       ●



        7803 measurements
       ●



        5 Eötvös noise
       ●




            
Model:




              
Model:    11 prisms
             ●




                           
Model:    11 prisms
             ●             4 outcropping
                          ●




                               
Model:    11 prisms
             ●             4 outcropping
                          ●




                               
Model:    11 prisms
             ●             4 outcropping
                          ●




                               
 Strongly interfering effects
    ●




              
 Strongly interfering effects
    ●



     What if only interested in these?
    ●




              
 Common scenario
    ●




            
 Common scenario
    ●



     May not have prior information
    ●



         Density contrast
        ●



         Approximate depth
        ●




                
 Common scenario
    ●



     May not have prior information
    ●



         Density contrast
        ●



         Approximate depth
        ●




     No way to provide seeds
    ●




                
 Common scenario
    ●



     May not have prior information
    ●



         Density contrast
        ●



         Approximate depth
        ●




     No way to provide seeds
    ●



     Difficult to isolate effect of targets
    ●




                
Robust procedure:




              
Robust procedure:
     ● Seeds only for targets




                
Robust procedure:
     ● Seeds only for targets




                
Robust procedure:
     ● Seeds only for targets
     ●  ℓ1­norm to “ignore” non­targeted




                
Robust procedure:
     ● Seeds only for targets
     ●  ℓ1­norm to “ignore” non­targeted




                
Inversion: ● 13 seeds ● 7,803 data




                          
Inversion: ● 13 seeds ● 7,803 data




                          
Inversion: ● 13 seeds ● 7,803 data




                          
Inversion: ● 13 seeds ● 7,803 data




                          
Inversion: ● 13 seeds ● 7,803 data




                          
Inversion: ● 13 seeds ● 7,803 data    37,500 prisms
                                     ●




                          
Inversion: ● 13 seeds ● 7,803 data    37,500 prisms
                                     ●




                                         Only prisms with zero
                                         density contrast not shown
Inversion: ● 13 seeds ● 7,803 data    37,500 prisms
                                     ●




                                         Only prisms with zero
                                         density contrast not shown
Inversion: ● 13 seeds ● 7,803 data    37,500 prisms
                                     ●




                                         Only prisms with zero
                                         density contrast not shown
Inversion: ● 13 seeds ● 7,803 data    37,500 prisms
                                     ●




                                         Only prisms with zero
                                         density contrast not shown
Inversion: ● 13 seeds ● 7,803 data    37,500 prisms
                                     ●




                                         Only prisms with zero
                                         density contrast not shown
Inversion: ● 13 seeds ● 7,803 data    37,500 prisms
                                     ●




●    Recover shape of targets
                                         Only prisms with zero
                                         density contrast not shown
Inversion: ● 13 seeds ● 7,803 data           37,500 prisms
                                            ●




●    Recover shape of targets
●    Total time = 2.2 minutes (on laptop)       Only prisms with zero
                                                density contrast not shown
Inversion: ● 13 seeds ● 7,803 data     37,500 prisms
                                      ●



                 Predicted data in contours




                           
Inversion: ● 13 seeds ● 7,803 data     ● 37,500 prisms
                 Predicted data in contours
                 Effect of true targeted sources




                            
Real Data


         
Data:




     3 components
    ●



     FTG survey
    ●



     Quadrilátero Ferrífero, Brazil
    ●


                                  
Data:




     3 components
    ●                                 Targets:
     FTG survey
    ●                                  Iron ore bodies
                                      ●



     Quadrilátero Ferrífero, Brazil
    ●                                  BIFs of Cauê Formation
                                      ●


                                  
Data:




     3 components
    ●                                 Targets:
     FTG survey
    ●                                  Iron ore bodies
                                      ●



     Quadrilátero Ferrífero, Brazil
    ●                                  BIFs of Cauê Formation
                                      ●


                                  
Data:




    Seeds for iron ore:
     Density contrast 1.0 g/cm3
    ●



     Depth 200 m
    ●



                                   
Inversion:  46 seeds  13,746 data
    Observed
    Predicted   ●    ●




                           
Inversion:  46 seeds  13,746 data
           ●         ●               164,892 prisms
                                    ●




                           
Inversion:  46 seeds  13,746 data
           ●         ●               164,892 prisms
                                    ●




                           
Inversion:  46 seeds  13,746 data
           ●         ●               164,892 prisms
                                    ●




                           
Inversion:  46 seeds  13,746 data
           ●         ●               164,892 prisms
                                    ●




                           
Inversion:  46 seeds  13,746 data
           ●         ●               164,892 prisms
                                    ●




                           
Inversion:  46 seeds  13,746 data
           ●         ●               164,892 prisms
                                    ●




                           
Inversion:  46 seeds  13,746 data
           ●         ●               164,892 prisms
                                    ●




                                        Only prisms with zero
                           
                                        density contrast not shown
Inversion:  46 seeds  13,746 data
           ●         ●               164,892 prisms
                                    ●




                                        Only prisms with zero
                           
                                        density contrast not shown
Inversion:  46 seeds  13,746 data
           ●         ●               164,892 prisms
                                    ●




                                        Only prisms with zero
                           
                                        density contrast not shown
Inversion:  46 seeds  13,746 data
           ●         ●               164,892 prisms
                                    ●




                           
Inversion:  46 seeds  13,746 data
           ●         ●               164,892 prisms
                                    ●




                           
Inversion:  46 seeds  13,746 data
           ●         ●                  ● 164,892 prisms

                         ●    Agree with previous interpretations
                                   (Martinez et al., 2010)




                              
Inversion:  46 seeds  13,746 data
           ●         ●                     ● 164,892 prisms

                         ●    Agree with previous interpretations
                                      (Martinez et al., 2010)

                                 ●    Total time = 14 minutes
                                           (on laptop)




                              
Conclusions


          
Conclusions
    ●   New 3D gravity gradient inversion
    ●   Multiple sources
    ●   Interfering gravitational effects
    ●   Non­targeted sources
    ●   No matrix multiplications
    ●   No linear systems
    ●   Lazy evaluation of Jacobian matrix

                                 
Conclusions
    ●   Estimates geometry
    ●   Given density contrasts
    ●   Ideal for:
        ●   Sharp contacts
        ●   Well­constrained physical properties
            –   Ore bodies
            –   Intrusive rocks
            –   Salt domes


                                        
Thank you


         

More Related Content

PDF
PDF
A Review of Proximal Methods, with a New One
PDF
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
PDF
Matlab
PDF
Bayesian Methods for Machine Learning
KEY
Reasoning over the evolution of source code using QRPE
PPTX
PDF
Lesson 25: The Definite Integral
A Review of Proximal Methods, with a New One
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
Matlab
Bayesian Methods for Machine Learning
Reasoning over the evolution of source code using QRPE
Lesson 25: The Definite Integral

What's hot (18)

PDF
Mesh Processing Course : Geodesic Sampling
PDF
Lesson 13: Derivatives of Logarithmic and Exponential Functions
PDF
TABLA DE DERIVADAS
PPT
PDF
A current perspectives of corrected operator splitting (os) for systems
PDF
Lesson 14: Exponential Functions
PDF
rinko2010
PDF
Lesson 14: Exponential Functions
PDF
rinko2011-agh
PDF
05 history of cv a machine learning (theory) perspective on computer vision
ODP
Derivative Free Optimization
PDF
Lesson 12: Linear Approximation
PDF
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
PDF
Lesson 15: Inverse Functions and Logarithms
PDF
Bouguet's MatLab Camera Calibration Toolbox
PDF
Lesson 15: Inverse Functions and Logarithms
KEY
Tprimal agh
PDF
4th Semester Mechanincal Engineering (2012-December) Question Papers
Mesh Processing Course : Geodesic Sampling
Lesson 13: Derivatives of Logarithmic and Exponential Functions
TABLA DE DERIVADAS
A current perspectives of corrected operator splitting (os) for systems
Lesson 14: Exponential Functions
rinko2010
Lesson 14: Exponential Functions
rinko2011-agh
05 history of cv a machine learning (theory) perspective on computer vision
Derivative Free Optimization
Lesson 12: Linear Approximation
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Lesson 15: Inverse Functions and Logarithms
Bouguet's MatLab Camera Calibration Toolbox
Lesson 15: Inverse Functions and Logarithms
Tprimal agh
4th Semester Mechanincal Engineering (2012-December) Question Papers
Ad

Similar to Robust 3D gravity gradient inversion by planting anomalous densities (20)

PDF
3D gravity inversion by planting anomalous densities
PDF
2 senarai rumus add maths k1 trial spm sbp 2010
PDF
2 senarai rumus add maths k2 trial spm sbp 2010
PDF
Normal
DOC
2 senarai rumus add maths k1 trial spm sbp 2010
DOC
2 senarai rumus add maths k2 trial spm sbp 2010
PDF
Jyokyo-kai-20120605
PPT
Basic differential equations in fluid mechanics
PDF
Figures
PDF
Figures
PDF
Lista exercintegrais
PDF
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
PDF
Example triple integral
PDF
icml2004 tutorial on bayesian methods for machine learning
PDF
Beam theory
PDF
Seismic
PDF
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
PDF
R. Jimenez - Fundamental Physics from Astronomical Observations
PDF
Common derivatives integrals_reduced
PDF
Nonconvex Compressed Sensing with the Sum-of-Squares Method
3D gravity inversion by planting anomalous densities
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
Normal
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
Jyokyo-kai-20120605
Basic differential equations in fluid mechanics
Figures
Figures
Lista exercintegrais
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Example triple integral
icml2004 tutorial on bayesian methods for machine learning
Beam theory
Seismic
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
R. Jimenez - Fundamental Physics from Astronomical Observations
Common derivatives integrals_reduced
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Ad

More from Leonardo Uieda (7)

PDF
Modelagem e inversão em coordenadas esféricas na gravimetria
PDF
Gravity inversion in spherical coordinates using tesseroids
PDF
3D magnetic inversion by planting anomalous densities
PDF
Iron ore interpretation using gravity-gradient inversions in the Carajás, Br...
PDF
Rapid 3D inversion of gravity and gravity gradient data to test geologic hypo...
PDF
Use of the 'shape-of-anomaly' data misfit in 3D inversion by planting anomalo...
PDF
Computation of the gravity gradient tensor due to topographic masses using te...
Modelagem e inversão em coordenadas esféricas na gravimetria
Gravity inversion in spherical coordinates using tesseroids
3D magnetic inversion by planting anomalous densities
Iron ore interpretation using gravity-gradient inversions in the Carajás, Br...
Rapid 3D inversion of gravity and gravity gradient data to test geologic hypo...
Use of the 'shape-of-anomaly' data misfit in 3D inversion by planting anomalo...
Computation of the gravity gradient tensor due to topographic masses using te...

Recently uploaded (20)

PDF
Machine learning based COVID-19 study performance prediction
PDF
Approach and Philosophy of On baking technology
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Encapsulation theory and applications.pdf
PPT
Teaching material agriculture food technology
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PPTX
1. Introduction to Computer Programming.pptx
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Unlocking AI with Model Context Protocol (MCP)
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
Tartificialntelligence_presentation.pptx
PPTX
MYSQL Presentation for SQL database connectivity
Machine learning based COVID-19 study performance prediction
Approach and Philosophy of On baking technology
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Network Security Unit 5.pdf for BCA BBA.
A comparative analysis of optical character recognition models for extracting...
Dropbox Q2 2025 Financial Results & Investor Presentation
SOPHOS-XG Firewall Administrator PPT.pptx
Encapsulation theory and applications.pdf
Teaching material agriculture food technology
Programs and apps: productivity, graphics, security and other tools
NewMind AI Weekly Chronicles - August'25-Week II
MIND Revenue Release Quarter 2 2025 Press Release
1. Introduction to Computer Programming.pptx
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
Unlocking AI with Model Context Protocol (MCP)
“AI and Expert System Decision Support & Business Intelligence Systems”
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Tartificialntelligence_presentation.pptx
MYSQL Presentation for SQL database connectivity

Robust 3D gravity gradient inversion by planting anomalous densities

  • 1. Robust 3D gravity gradient inversion by planting anomalous densities Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional September, 2011    
  • 3. Outline Forward Problem    
  • 4. Outline Forward Problem Inverse Problem    
  • 5. Outline Forward Problem Inverse Problem Planting Algorithm Inspired by René (1986)    
  • 6. Outline Forward Problem Inverse Problem Planting Algorithm Inspired by René (1986) Synthetic Data    
  • 7. Outline Forward Problem Inverse Problem Planting Algorithm Inspired by René (1986) Synthetic Data Real Data Quadrilátero Ferrífero, Brazil    
  • 9. Observed g αβ αβ g    
  • 10. Observed g αβ αβ g    
  • 11. Observed g αβ αβ g Anomalous density    
  • 12. Observed g αβ αβ g Want to model this Anomalous density    
  • 14. Interpretative model Right rectangular prism Δ ρ= p j    
  • 15.   Prisms with  p j =0   not shown
  • 16. [] p1 p= p 2 ⋮ pM   Prisms with  p j =0   not shown
  • 17. Predicted g αβ αβ d [] p1 p= p 2 ⋮ pM   Prisms with  p j =0   not shown
  • 18. Predicted g αβ αβ d M d =∑ p j a αβ αβ j j=1 [] p1 p= p 2 ⋮ pM   Prisms with  p j =0   not shown
  • 19. Predicted g αβ αβ d M d =∑ p j a αβ αβ j j=1 Contribution of jth prism [] p1 p= p 2 ⋮ pM   Prisms with  p j =0   not shown
  • 20. More components: xx d xy d xz d yy d yz d zz d    
  • 21. More components: xx d xy d xz d yy d d yz d zz d    
  • 22. More components: xx d xy d M xz d yy d =∑ p j a j d j=1 yz d zz d    
  • 23. More components: xx d xy d M xz d yy d =∑ p j a j = A p d j=1 yz d zz d    
  • 24. More components: xx d xy d M xz d yy d =∑ p j a j = A p d j=1 yz d Jacobian (sensitivity) matrix zz d    
  • 25. More components: xx d xy d M xz d yy d =∑ p j a j = A p d j=1 yz d Column vector of A zz d    
  • 26. Forward problem: M p d=∑ p j a j d j=1    
  • 27. Inverse problem: p ̂ ? g    
  • 29. Minimize difference between g and d Residual vector r= g−d    
  • 30. Minimize difference between g and d Residual vector r= g−d Data­misfit function: N 1 ϕ( p)=∥r∥2 = ( 2 2 ∑ (gi−d i ) i=1 )    
  • 31. Minimize difference between g and d Residual vector r= g−d Data­misfit function: N 1 ϕ( p)=∥r∥2 = ( 2 2 ∑ (gi−d i ) i=1 )  ℓ2­norm of r    
  • 32. Minimize difference between g and d Residual vector r= g−d Data­misfit function: N 1 ϕ( p)=∥r∥2 = ( 2 2 ∑ (gi−d i ) i=1 )  ℓ2­norm of r Least­squares fit    
  • 33. Minimize difference between g and d Residual vector r= g−d Data­misfit function: N 1 N ϕ( p)=∥r∥2 = ( 2 2 ∑ (gi−d i ) i=1 ) ϕ( p)=∥r∥1=∑ ∣gi −d i∣ i=1  ℓ2­norm of r  ℓ1­norm of r Least­squares fit    
  • 34. Minimize difference between g and d Residual vector r= g−d Data­misfit function: N 1 N ϕ( p)=∥r∥2 = ( 2 2 ∑ (gi−d i ) i=1 ) ϕ( p)=∥r∥1=∑ ∣gi −d i∣ i=1  ℓ2­norm of r  ℓ1­norm of r Least­squares fit Robust fit    
  • 35. ill­posed problem non­existent non­unique non­stable    
  • 36. constraints ill­posed problem non­existent non­unique non­stable    
  • 37. constraints ill­posed problem well­posed problem non­existent exist non­unique unique non­stable stable    
  • 38. Constraints: 1. Compact    
  • 39. Constraints: 1. Compact no holes inside    
  • 40. Constraints: 1. Compact no holes inside 2. Concentrated around “seeds”    
  • 41. Constraints: 1. Compact no holes inside 2. Concentrated around “seeds” ● User­specified prisms ●  Given density contrasts ρs ●  Any # of ≠ density contrasts    
  • 42. Constraints: 1. Compact no holes inside 2. Concentrated around “seeds” ● User­specified prisms ●  Given density contrasts ρs ●  Any # of ≠ density contrasts 3. Only  p j =0 or p j =ρs    
  • 43. Constraints: 1. Compact no holes inside 2. Concentrated around “seeds” ● User­specified prisms ●  Given density contrasts ρs ●  Any # of ≠ density contrasts 3. Only  p j =0 or p j =ρs 4.  p j =ρs of closest seed     
  • 44. Well­posed problem: Minimize goal function Γ( p)=ϕ( p)+μ θ( p)    
  • 45. Well­posed problem: Minimize goal function Γ( p)=ϕ( p)+μ θ( p) Data­misfit function    
  • 46. Well­posed problem: Minimize goal function Γ( p)=ϕ( p)+μ θ( p) Regularizing parameter (Tradeoff between fit and regularization)    
  • 47. Well­posed problem: Minimize goal function Γ( p)=ϕ( p)+μ θ( p) Regularizing function M pj θ( p)=∑ l β j j=1 p j +ϵ    
  • 48. Well­posed problem: Minimize goal function Γ( p)=ϕ( p)+μ θ( p) Regularizing function M pj Similar to  θ( p)=∑ l β j Silva Dias et al. (2009) j=1 p j +ϵ    
  • 49. Well­posed problem: Minimize goal function Γ( p)=ϕ( p)+μ θ( p) Regularizing function M pj Similar to  θ( p)=∑ l β j Silva Dias et al. (2009) j=1 p j +ϵ Distance between  jth prism and seed    
  • 50. Well­posed problem: Minimize goal function Γ( p)=ϕ( p)+μ θ( p) Regularizing function M pj Similar to  θ( p)=∑ l β j Silva Dias et al. (2009) j=1 p j +ϵ Distance between  jth prism and seed Imposes: ● Compactness  Concentration around seeds ●    
  • 51. Constraints: 1. Compact Regularization 2. Concentrated around “seeds” 3. Only  p j =0 or p j =ρs 4.  p j =ρs of closest seed     
  • 52. Constraints: 1. Compact Regularization 2. Concentrated around “seeds” 3. Only  p j =0 or p j =ρs Algorithm 4.  p j =ρs of closest seed  Based on René (1986)    
  • 54. Setup: g = observed data    
  • 55. Setup: g = observed data Define interpretative model Interpretative model    
  • 56. Setup: g = observed data Define interpretative model All parameters zero Interpretative model    
  • 57. Setup: g = observed data Define interpretative model All parameters zero N S seeds Interpretative model    
  • 58. Setup: g = observed data Define interpretative model All parameters zero N S seeds Include seeds     Prisms with  p j =0 not shown
  • 59. Setup: g = observed data Define interpretative model All parameters zero N S seeds d = predicted data Include seeds Compute initial residuals (0) (0) r = g− d     Prisms with  p j =0 not shown
  • 60. Setup: g = observed data Define interpretative model All parameters zero N S seeds d = predicted data Include seeds Compute initial residuals (0) (0) r = g− d Predicted by seeds     Prisms with  p j =0 not shown
  • 61. Setup: g = observed data Define interpretative model All parameters zero N S seeds d = predicted data Include seeds Compute initial residuals NS (∑ ) r (0)= g− s=1 ρs a j S     Prisms with  p j =0 not shown
  • 62. Setup: g = observed data Define interpretative model All parameters zero N S seeds d = predicted data Include seeds Compute initial residuals NS (∑ ) r (0)= g− s=1 ρs a j S Neighbors Find neighbors of seeds     Prisms with  p j =0 not shown
  • 63. Growth: Try accretion to sth seed:     Prisms with  p j =0 not shown
  • 64. Growth: Try accretion to sth seed: Choose neighbor: 1. Reduce data misfit 2. Smallest goal function     Prisms with  p j =0 not shown
  • 65. Growth: Try accretion to sth seed: Choose neighbor: 1. Reduce data misfit 2. Smallest goal function j = chosen p j =ρs (New elements) j     Prisms with  p j =0 not shown
  • 66. Growth: Try accretion to sth seed: Choose neighbor: 1. Reduce data misfit 2. Smallest goal function j = chosen p j =ρs (New elements) Update residuals ( new) (old ) r =r − pj aj j     Prisms with  p j =0 not shown
  • 67. Growth: Try accretion to sth seed: Choose neighbor: 1. Reduce data misfit 2. Smallest goal function j = chosen p j =ρs (New elements) Update residuals ( new) (old ) r =r − pj aj j Contribution of j     Prisms with  p j =0 not shown
  • 68. Growth: Try accretion to sth seed: Choose neighbor: 1. Reduce data misfit 2. Smallest goal function j = chosen p j =ρs (New elements) Update residuals ( new) (old ) r =r − pj aj None found = no accretion j Variable sizes     Prisms with  p j =0 not shown
  • 69. Growth: Try accretion to sth seed: Choose neighbor: 1. Reduce data misfit NS 2. Smallest goal function j = chosen p j =ρs (New elements) Update residuals ( new) (old ) r =r − pj aj None found = no accretion     Prisms with  p j =0 not shown
  • 70. Growth: Try accretion to sth seed: Choose neighbor: 1. Reduce data misfit NS 2. Smallest goal function j = chosen p j =ρs (New elements) Update residuals ( new) (old ) r =r − pj aj None found = no accretion j     Prisms with  p j =0 not shown
  • 71. Growth: Try accretion to sth seed: Choose neighbor: 1. Reduce data misfit NS 2. Smallest goal function j = chosen p j =ρs (New elements) Update residuals ( new) (old ) r =r − pj aj None found = no accretion j At least one seed grow?     Prisms with  p j =0 not shown
  • 72. Growth: Try accretion to sth seed: Choose neighbor: 1. Reduce data misfit NS 2. Smallest goal function j = chosen p j =ρs (New elements) Update residuals ( new) (old ) r =r − pj aj None found = no accretion j At least one seed grow? Yes     Prisms with  p j =0 not shown
  • 73. Growth: Try accretion to sth seed: Choose neighbor: 1. Reduce data misfit NS 2. Smallest goal function j = chosen p j =ρs (New elements) Update residuals ( new) (old ) r =r − pj aj None found = no accretion j At least one seed grow? Yes No     Prisms with  p j =0 Done! not shown
  • 74. Advantages: Compact & non­smooth Any number of sources Any number of different density contrasts No large equation system Search limited to neighbors    
  • 75. Remember equations: Initial residual Update residual vector NS (0) r = g− ( ∑ ρs a j s=1 S ) r (new) =r (old ) − pj aj    
  • 76. Remember equations: Initial residual Update residual vector NS (0) r = g− ( ∑ ρs a j s=1 S ) r (new) =r (old ) − pj aj No matrix multiplication (only vector +)    
  • 77. Remember equations: Initial residual Update residual vector NS (0) r = g− ( ∑ ρs a j s=1 S ) r (new) =r (old ) − pj aj No matrix multiplication (only vector +) Only need some columns of A    
  • 78. Remember equations: Initial residual Update residual vector NS (0) r = g− ( ∑ ρs a j s=1 S ) r (new) =r (old ) − pj aj No matrix multiplication (only vector +) Only need some columns of A Calculate only when needed    
  • 79. Remember equations: Initial residual Update residual vector NS (0) r = g− ( ∑ ρs a j s=1 S ) r (new) =r (old ) − pj aj No matrix multiplication (only vector +) Only need some columns of A Calculate only when needed & delete after update    
  • 80. Remember equations: Initial residual Update residual vector NS (0) r = g− ( ∑ ρs a j s=1 S ) r (new) =r (old ) − pj aj No matrix multiplication (only vector +) Only need some columns of A Calculate only when needed & delete after update Lazy evaluation    
  • 81. Advantages: Compact & non­smooth Any number of sources Any number of different density contrasts No large equation system Search limited to neighbors    
  • 82. Advantages: Compact & non­smooth Any number of sources Any number of different density contrasts No large equation system Search limited to neighbors No matrix multiplication (only vector +) Lazy evaluation of Jacobian    
  • 83. Advantages: Compact & non­smooth Any number of sources Any number of different density contrasts No large equation system Search limited to neighbors No matrix multiplication (only vector +) Lazy evaluation of Jacobian Fast inversion + low memory usage    
  • 85. Data set:  3 components ●  51 x 51 points ●  2601 points/component ●  7803 measurements ●  5 Eötvös noise ●    
  • 86. Model:    
  • 87. Model:  11 prisms ●    
  • 88. Model:  11 prisms ●  4 outcropping ●    
  • 89. Model:  11 prisms ●  4 outcropping ●    
  • 90. Model:  11 prisms ●  4 outcropping ●    
  • 92.  Strongly interfering effects ●  What if only interested in these? ●    
  • 93.  Common scenario ●    
  • 94.  Common scenario ●  May not have prior information ●  Density contrast ●  Approximate depth ●    
  • 95.  Common scenario ●  May not have prior information ●  Density contrast ●  Approximate depth ●  No way to provide seeds ●    
  • 96.  Common scenario ●  May not have prior information ●  Density contrast ●  Approximate depth ●  No way to provide seeds ●  Difficult to isolate effect of targets ●    
  • 98. Robust procedure: ● Seeds only for targets    
  • 99. Robust procedure: ● Seeds only for targets    
  • 100. Robust procedure: ● Seeds only for targets ●  ℓ1­norm to “ignore” non­targeted    
  • 101. Robust procedure: ● Seeds only for targets ●  ℓ1­norm to “ignore” non­targeted    
  • 107. Inversion: ● 13 seeds ● 7,803 data  37,500 prisms ●    
  • 108. Inversion: ● 13 seeds ● 7,803 data  37,500 prisms ● Only prisms with zero     density contrast not shown
  • 109. Inversion: ● 13 seeds ● 7,803 data  37,500 prisms ● Only prisms with zero     density contrast not shown
  • 110. Inversion: ● 13 seeds ● 7,803 data  37,500 prisms ● Only prisms with zero     density contrast not shown
  • 111. Inversion: ● 13 seeds ● 7,803 data  37,500 prisms ● Only prisms with zero     density contrast not shown
  • 112. Inversion: ● 13 seeds ● 7,803 data  37,500 prisms ● Only prisms with zero     density contrast not shown
  • 113. Inversion: ● 13 seeds ● 7,803 data  37,500 prisms ● ●  Recover shape of targets Only prisms with zero     density contrast not shown
  • 114. Inversion: ● 13 seeds ● 7,803 data  37,500 prisms ● ●  Recover shape of targets ●  Total time = 2.2 minutes (on laptop) Only prisms with zero     density contrast not shown
  • 115. Inversion: ● 13 seeds ● 7,803 data  37,500 prisms ● Predicted data in contours    
  • 116. Inversion: ● 13 seeds ● 7,803 data ● 37,500 prisms Predicted data in contours Effect of true targeted sources    
  • 118. Data:  3 components ●  FTG survey ●  Quadrilátero Ferrífero, Brazil ●    
  • 119. Data:  3 components ● Targets:  FTG survey ●  Iron ore bodies ●  Quadrilátero Ferrífero, Brazil ●  BIFs of Cauê Formation ●    
  • 120. Data:  3 components ● Targets:  FTG survey ●  Iron ore bodies ●  Quadrilátero Ferrífero, Brazil ●  BIFs of Cauê Formation ●    
  • 121. Data: Seeds for iron ore:  Density contrast 1.0 g/cm3 ●  Depth 200 m ●    
  • 122. Inversion:  46 seeds  13,746 data Observed Predicted ● ●    
  • 123. Inversion:  46 seeds  13,746 data ● ●  164,892 prisms ●    
  • 124. Inversion:  46 seeds  13,746 data ● ●  164,892 prisms ●    
  • 125. Inversion:  46 seeds  13,746 data ● ●  164,892 prisms ●    
  • 126. Inversion:  46 seeds  13,746 data ● ●  164,892 prisms ●    
  • 127. Inversion:  46 seeds  13,746 data ● ●  164,892 prisms ●    
  • 128. Inversion:  46 seeds  13,746 data ● ●  164,892 prisms ●    
  • 129. Inversion:  46 seeds  13,746 data ● ●  164,892 prisms ● Only prisms with zero     density contrast not shown
  • 130. Inversion:  46 seeds  13,746 data ● ●  164,892 prisms ● Only prisms with zero     density contrast not shown
  • 131. Inversion:  46 seeds  13,746 data ● ●  164,892 prisms ● Only prisms with zero     density contrast not shown
  • 132. Inversion:  46 seeds  13,746 data ● ●  164,892 prisms ●    
  • 133. Inversion:  46 seeds  13,746 data ● ●  164,892 prisms ●    
  • 134. Inversion:  46 seeds  13,746 data ● ● ● 164,892 prisms ●  Agree with previous interpretations (Martinez et al., 2010)    
  • 135. Inversion:  46 seeds  13,746 data ● ● ● 164,892 prisms ●  Agree with previous interpretations (Martinez et al., 2010) ●  Total time = 14 minutes (on laptop)    
  • 137. Conclusions ● New 3D gravity gradient inversion ● Multiple sources ● Interfering gravitational effects ● Non­targeted sources ● No matrix multiplications ● No linear systems ● Lazy evaluation of Jacobian matrix    
  • 138. Conclusions ● Estimates geometry ● Given density contrasts ● Ideal for: ● Sharp contacts ● Well­constrained physical properties – Ore bodies – Intrusive rocks – Salt domes