SlideShare a Scribd company logo
Minimización de funciones
Booleanas
• Métodos algebraicos
F1 (B,C)= 1+B’+C
F1 (B,C)=
1
1.-Identidades
2.- Factorización
AB’ + AB = A(B’+B)= A
3.- Propiedad Distributiva
X+YZ = (X+Y) (X+Z)
X (Y+Z) = XY +XZ
4.-Teorema del consenso
AB+A’C+BC = AB+A’C
5.-Teorema de Dmorgan
(AB)’=A’+ B’ (A+B)’=A’ B’
A+B =(A’ B’)’ AB =(A’+B’)’
AND OR
A A=A A + A=A
A 0 =0 A + 0 = A
A 1 =A A + 1 =1
A A’ =0 A+A’ =1
F2 (D,C)= DC’(0)
F2 (D,C)= 0
1.-Identidades
2.- Factorización
AB’ + AB = A(B’+B)= A
3.- Propiedad Distributiva
X+YZ = (X+Y) (X+Z)
X (Y+Z) = XY +XZ
4.-Teorema del consenso
AB+A’C+BC = AB+A’C
5.-Teorema de Dmorgan
(AB)’=A’+ B’ (A+B)’=A’ B’
A+B =(A’ B’)’ AB =(A’+B’)’
AND OR
A A=A A + A=A
A 0 =0 A + 0 = A
A 1 =A A + 1 =1
A A’ =0 A+A’ =1
F3 (A, B) = A’+B+A
F3 (A, B) =
1
1.-Identidades
2.- Factorización
AB’ + AB = A(B’+B)= A
3.- Propiedad Distributiva
X+YZ = (X+Y) (X+Z)
X (Y+Z) = XY +XZ
4.-Teorema del consenso
AB+A’C+BC = AB+A’C
5.-Teorema de Dmorgan
(AB)’=A’+ B’ (A+B)’=A’ B’
A+B =(A’ B’)’ AB =(A’+B’)’
AND OR
A A=A A + A=A
A 0 =0 A + 0 = A
A 1 =A A + 1 =1
A A’ =0 A+A’ =1
F4 (A,,B,C) = A+A’BC
F4
(A,,B,C)=(A+A’)(A+BC)
F4
(A,,B,C)=A+BC
1.-Identidades
2.- Factorización
AB’ + AB = A(B’+B)= A
3.- Propiedad Distributiva
X+YZ = (X+Y) (X+Z)
X (Y+Z) = XY +XZ
4.-Teorema del consenso
AB+A’C+BC = AB+A’C
5.-Teorema de Dmorgan
(AB)’=A’+ B’ (A+B)’=A’ B’
A+B =(A’ B’)’ AB =(A’+B’)’
AND OR
A A=A A + A=A
A 0 =0 A + 0 = A
A 1 =A A + 1 =1
A A’ =0 A+A’ =1
F4 (A,,B,C) = A+A’BC
F4
(A,,B,C)=(A+A’)(A+BC)
F4
(A,,B,C)=A+BC
1.-Identidades
2.- Factorización
AB’ + AB = A(B’+B)= A
3.- Propiedad Distributiva
X+YZ = (X+Y) (X+Z)
X (Y+Z) = XY +XZ
4.-Teorema del consenso
AB+A’C+BC = AB+A’C
5.-Teorema de Dmorgan
(AB)’=A’+ B’ (A+B)’=A’ B’
A+B =(A’ B’)’ AB =(A’+B’)’
AND OR
A A=A A + A=A
A 0 =0 A + 0 = A
A 1 =A A + 1 =1
A A’ =0 A+A’ =1
1.-Identidades
2.- Factorización
AB’ + AB = A(B’+B)= A
3.- Propiedad Distributiva
X+YZ = (X+Y) (X+Z)
X (Y+Z) = XY +XZ
4.-Teorema del consenso
AB+A’C+BC = AB+A’C
5.-Teorema de Dmorgan
(AB)’=A’+ B’ (A+B)’=A’ B’
A+B =(A’ B’)’ AB =(A’+B’)’
AND OR
A A=A A + A=A
A 0 =0 A + 0 = A
A 1 =A A + 1 =1
A A’ =0 A+A’ =1

More Related Content

PPT
16. simplificar funciones
PPTX
How to graph quadratic function
PDF
Expresiones algebraicas pdf
DOCX
Funciones booleanas
PPTX
10.2
PPTX
Algebra lesson 4.2 zeroes of quadratic functions
PPTX
GTA Noveno Teorema de Pitágoras.
 
DOC
Multiplicacion de polinomios 1ro
16. simplificar funciones
How to graph quadratic function
Expresiones algebraicas pdf
Funciones booleanas
10.2
Algebra lesson 4.2 zeroes of quadratic functions
GTA Noveno Teorema de Pitágoras.
 
Multiplicacion de polinomios 1ro

What's hot (11)

PPT
Math project
PPT
5.1 analysis of function i
PPSX
Quadratic Function by Jasmine & Cristina
PDF
Função quadrática resumo teórico e exercícios - celso brasil
PDF
Ejercicios radhames ultima unidad
ODP
Quadratic functions
PPTX
Writing quadratic equation
PPT
Quadratic function and its graph using geogebra
PPSX
Ch11.2&3(1)
PPTX
Quadratic function
PPTX
Alg2 lesson 8-2
Math project
5.1 analysis of function i
Quadratic Function by Jasmine & Cristina
Função quadrática resumo teórico e exercícios - celso brasil
Ejercicios radhames ultima unidad
Quadratic functions
Writing quadratic equation
Quadratic function and its graph using geogebra
Ch11.2&3(1)
Quadratic function
Alg2 lesson 8-2
Ad

Similar to Simplificar funciones.ppt (20)

PDF
Adbequipo6
PPTX
Kuliah 3 Sistem Digital.pptx
PDF
Answers homework2
PPT
18. simpl met-algebraicos
PPT
simplificacion metodos-algebraicos
PPT
18. simpl met-algebraicos
PPT
18. simpl met-algebraicos
PPT
Métodos de simplificación
PPT
Simplificación funciones Booleanas
PPTX
simplificacion sistemas algebraicos
PPTX
18. simpl met-algebraicos.ppt
PPTX
11. simpl met algebraicos
PPTX
11. simpl met-algebraicos
PDF
Digital Electronics
PPT
Boolean algebra
PDF
boolean algebra exercises
 
PDF
Boolean Algebra SOP POS_Computer Architecture.pdf
PDF
Abdequipo1
PPTX
session 3 - Boolean Functions Minimization.pptx
PDF
Adbequipo2
Adbequipo6
Kuliah 3 Sistem Digital.pptx
Answers homework2
18. simpl met-algebraicos
simplificacion metodos-algebraicos
18. simpl met-algebraicos
18. simpl met-algebraicos
Métodos de simplificación
Simplificación funciones Booleanas
simplificacion sistemas algebraicos
18. simpl met-algebraicos.ppt
11. simpl met algebraicos
11. simpl met-algebraicos
Digital Electronics
Boolean algebra
boolean algebra exercises
 
Boolean Algebra SOP POS_Computer Architecture.pdf
Abdequipo1
session 3 - Boolean Functions Minimization.pptx
Adbequipo2
Ad

More from Marcos Rdguez (20)

PDF
5. actividades elect-digital
PDF
4. electronica digital
PDF
6. electro digital
PDF
7. sistemas digitales
PDF
7. sistemas digitales
PPTX
24. problema aviones.ppt
PPTX
23. c comb-ascensor_monedas.ppt
PPTX
22. c combin-ovejas.ppt
PPTX
21. representacion de funciones semaforo.ppt
PPTX
20. leyes morgan.ppt
PPTX
Mapas karnaught.ppt
PPTX
19. control semaforico
PPTX
Algebra Boole.ppt
PPTX
Puertas lógicas.ppt
PPTX
14. elect digital.ppt
PPTX
13. conversion sistemas numericos.ppt
PPTX
12. cambiosdebase1.ppt
PPTX
Cambios de base.ppt
PPTX
Sistemas numéricos.ppt
PPTX
Sistemas de numeración.ppt
5. actividades elect-digital
4. electronica digital
6. electro digital
7. sistemas digitales
7. sistemas digitales
24. problema aviones.ppt
23. c comb-ascensor_monedas.ppt
22. c combin-ovejas.ppt
21. representacion de funciones semaforo.ppt
20. leyes morgan.ppt
Mapas karnaught.ppt
19. control semaforico
Algebra Boole.ppt
Puertas lógicas.ppt
14. elect digital.ppt
13. conversion sistemas numericos.ppt
12. cambiosdebase1.ppt
Cambios de base.ppt
Sistemas numéricos.ppt
Sistemas de numeración.ppt

Recently uploaded (20)

PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
KodekX | Application Modernization Development
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Encapsulation theory and applications.pdf
PDF
Approach and Philosophy of On baking technology
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
Cloud computing and distributed systems.
PPT
Teaching material agriculture food technology
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Big Data Technologies - Introduction.pptx
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
20250228 LYD VKU AI Blended-Learning.pptx
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
KodekX | Application Modernization Development
Diabetes mellitus diagnosis method based random forest with bat algorithm
NewMind AI Weekly Chronicles - August'25 Week I
Encapsulation theory and applications.pdf
Approach and Philosophy of On baking technology
Network Security Unit 5.pdf for BCA BBA.
Cloud computing and distributed systems.
Teaching material agriculture food technology
Building Integrated photovoltaic BIPV_UPV.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Chapter 3 Spatial Domain Image Processing.pdf
Big Data Technologies - Introduction.pptx
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Profit Center Accounting in SAP S/4HANA, S4F28 Col11

Simplificar funciones.ppt

  • 2. F1 (B,C)= 1+B’+C F1 (B,C)= 1 1.-Identidades 2.- Factorización AB’ + AB = A(B’+B)= A 3.- Propiedad Distributiva X+YZ = (X+Y) (X+Z) X (Y+Z) = XY +XZ 4.-Teorema del consenso AB+A’C+BC = AB+A’C 5.-Teorema de Dmorgan (AB)’=A’+ B’ (A+B)’=A’ B’ A+B =(A’ B’)’ AB =(A’+B’)’ AND OR A A=A A + A=A A 0 =0 A + 0 = A A 1 =A A + 1 =1 A A’ =0 A+A’ =1
  • 3. F2 (D,C)= DC’(0) F2 (D,C)= 0 1.-Identidades 2.- Factorización AB’ + AB = A(B’+B)= A 3.- Propiedad Distributiva X+YZ = (X+Y) (X+Z) X (Y+Z) = XY +XZ 4.-Teorema del consenso AB+A’C+BC = AB+A’C 5.-Teorema de Dmorgan (AB)’=A’+ B’ (A+B)’=A’ B’ A+B =(A’ B’)’ AB =(A’+B’)’ AND OR A A=A A + A=A A 0 =0 A + 0 = A A 1 =A A + 1 =1 A A’ =0 A+A’ =1
  • 4. F3 (A, B) = A’+B+A F3 (A, B) = 1 1.-Identidades 2.- Factorización AB’ + AB = A(B’+B)= A 3.- Propiedad Distributiva X+YZ = (X+Y) (X+Z) X (Y+Z) = XY +XZ 4.-Teorema del consenso AB+A’C+BC = AB+A’C 5.-Teorema de Dmorgan (AB)’=A’+ B’ (A+B)’=A’ B’ A+B =(A’ B’)’ AB =(A’+B’)’ AND OR A A=A A + A=A A 0 =0 A + 0 = A A 1 =A A + 1 =1 A A’ =0 A+A’ =1
  • 5. F4 (A,,B,C) = A+A’BC F4 (A,,B,C)=(A+A’)(A+BC) F4 (A,,B,C)=A+BC 1.-Identidades 2.- Factorización AB’ + AB = A(B’+B)= A 3.- Propiedad Distributiva X+YZ = (X+Y) (X+Z) X (Y+Z) = XY +XZ 4.-Teorema del consenso AB+A’C+BC = AB+A’C 5.-Teorema de Dmorgan (AB)’=A’+ B’ (A+B)’=A’ B’ A+B =(A’ B’)’ AB =(A’+B’)’ AND OR A A=A A + A=A A 0 =0 A + 0 = A A 1 =A A + 1 =1 A A’ =0 A+A’ =1
  • 6. F4 (A,,B,C) = A+A’BC F4 (A,,B,C)=(A+A’)(A+BC) F4 (A,,B,C)=A+BC 1.-Identidades 2.- Factorización AB’ + AB = A(B’+B)= A 3.- Propiedad Distributiva X+YZ = (X+Y) (X+Z) X (Y+Z) = XY +XZ 4.-Teorema del consenso AB+A’C+BC = AB+A’C 5.-Teorema de Dmorgan (AB)’=A’+ B’ (A+B)’=A’ B’ A+B =(A’ B’)’ AB =(A’+B’)’ AND OR A A=A A + A=A A 0 =0 A + 0 = A A 1 =A A + 1 =1 A A’ =0 A+A’ =1
  • 7. 1.-Identidades 2.- Factorización AB’ + AB = A(B’+B)= A 3.- Propiedad Distributiva X+YZ = (X+Y) (X+Z) X (Y+Z) = XY +XZ 4.-Teorema del consenso AB+A’C+BC = AB+A’C 5.-Teorema de Dmorgan (AB)’=A’+ B’ (A+B)’=A’ B’ A+B =(A’ B’)’ AB =(A’+B’)’ AND OR A A=A A + A=A A 0 =0 A + 0 = A A 1 =A A + 1 =1 A A’ =0 A+A’ =1