SlideShare a Scribd company logo
Block 3
Solving Trig Equations
and Compound Angle Formulas
What is to be learned?
• How to use compound angle formulas to
solve more difficult trig equations
a0180 – a
180 + a 360 - a
iii
iii iv
CT
ASsin2x+ cosx = 0
2sinxcosx + cosx = 0
(2sinx + 1) = 0
cosx = 0 2sinx + 1 = 0
2sinx = -1
sinx = - ½
sin-1
( ½ ) = 300
x = 180+30 or 360 – 30
x = 900
or
2700
cosx
x = 2100
or 3300
x = 900
, 2100
, 2700
, 3300
a0180 – a
180 + a 360 - a
iii
iii iv
CT
ASsin2x + sinx = 0
2sinxcosx + sinx = 0
(2cosx + 1) = 0
sinx = 0 2cosx + 1 = 0
2cosx = -1
cosx = - ½
cos-1
( ½ ) = 600
x = 180 – 60 or 180 + 60
x = 00
, 1800
or 3600
sinx
x = 1200
or 2400
x = 00
, 1200
, 1800
, 2400
, 3600
Trig Equations and Double Angles
• Use double angle formula
• Get one side to zero
• Factorise
• Solve mini trig equations
(exact angles and wee trig graphs handy)
a0180 – a
180 + a 360 - a
iii
iii iv
CT
ASsin2x = sinx
2sinxcosx – sinx = 0
(2cosx – 1) = 0
sinx = 0 2cosx – 1 = 0
2cosx = 1
cosx = ½
cos-1
( ½ ) = 600
x = 600
or 360 – 60
x = 00,
1800
or 3600
sinx
2sinxcosx = sinx
x = 00
, 600
, 1800
, 3000
, 3600
x = 600
or 3000
a0180 – a
180 + a 360 - a
iii
iii iv
CT
ASsin2x+ cosx = 0
2sinxcosx + cosx = 0
(2sinx + 1) = 0
cosx = 0 2sinx + 1 = 0
2sinx = -1
sinx = - ½
sin-1
( ½ ) = 300
x = 180+30 or 360 – 30
x = 900
or
2700
cosx
x = 2100
or 3300
x = 900
, 2100
, 2700
, 3300
Key Question
cos2x + cosx = 0 Three choices!!!!
Cos2A = 1 – 2Sin2
A
= 2Cos= 2Cos22
A – 1A – 1Cos2A
Cos2A = Cos2
A – Sin2
A
cos2x + cosx = 0
2cos2
x – 1 + cosx = 0
2cos2
x + cosx – 1 = 0 2a2
+ a – 1
(2a – 1)(a + 1)(2cosx – 1)(cosx + 1) = 0
2cosx–1 = 0 cosx + 1 = 0
cosx = ½ cosx = -1
cos-1
( ½ ) = 600
x = 1800
x = 60 or 300
x = 600
, 1800
or 3000
Three choices!!!!
Cos2A = 1 – 2Sin2
A
= 2Cos= 2Cos22
A – 1A – 1Cos2A
Cos2A = Cos2
A – Sin2
A
cos2x – cosx = 0
2cos2
x – 1 – cosx = 0
2cos2
x – cosx – 1 = 0 2a2
– a – 1
(2a + 1)(a – 1)(2cosx + 1)(cosx – 1) = 0
2cosx+1 = 0 cosx – 1 = 0
cosx = -½ cosx = 1
cos-1
( ½ ) = 600
x = 0 ,3600
x = 120 or 240
x = 00
, 1200
, 2400
or 3600
For cos2x substitute the formula
that will leave equation all sine or all cos.
cos2x – sinx = 0
1 – 2sin2
x – sinx = 0
2sin2
x + sinx – 1 = 0 2a2
+ a – 1
(2a – 1)(a + 1)(2sinx – 1) (sinx + 1) = 0
2sinx – 1 = 0 Sinx + 1 = 0
sinx = ½ sinx = -1
sin-1
( ½ ) = 300
x = 2700
x = 300
or 1500
x = 300
, 1500
or 2700
rearrange and
multiply by -1
cos2x + sinx + 2 = 0
1 – 2sin2
x + sinx + 2 = 0
2sin2
x – sinx – 3 = 0 2a2
– a – 3
(2a – 3)(a + 1)(2sinx – 3) (sinx + 1) = 0
2sinx – 3 = 0 Sinx + 1 = 0
sinx = 3
/2 sinx = -1
No solutions
x = 2700
x = 2700
rearrange and
multiply by -1
Key Question

More Related Content

PPT
Radian and degree measure.
PPTX
Matrices ppt
PDF
2.8.3 Special Parallelograms
PPTX
VECTOR CALCULUS
PPTX
Vcla ppt ch=vector space
PPT
Geometric Progressions
PDF
Lesson 17: Inverse Trigonometric Functions
PPTX
8.1 intro to functions
Radian and degree measure.
Matrices ppt
2.8.3 Special Parallelograms
VECTOR CALCULUS
Vcla ppt ch=vector space
Geometric Progressions
Lesson 17: Inverse Trigonometric Functions
8.1 intro to functions

What's hot (20)

PPT
Linear Systems - Domain & Range
PPTX
5.2.1 trigonometric functions
PPT
Graphs of trigonometry functions
PPTX
Gradient , Directional Derivative , Divergence , Curl
PPTX
SURFACE INTEGRAL
PPT
complex numbers
PDF
Introduction to Vectors
PDF
Complex numbers 2
PPT
Ch05 4
PPT
16.2 Solving by Factoring
PPTX
Exponential and logarithmic functions
PPTX
system linear equations and matrices
ODP
Analysis sequences and bounded sequences
PPT
PPT
19 min max-saddle-points
PPTX
Vector space
PDF
3.8.4 Triangle Similarity
PPTX
Matrix
PPTX
10-Sequences and summation.pptx
PPT
Partial Differentiation & Application
Linear Systems - Domain & Range
5.2.1 trigonometric functions
Graphs of trigonometry functions
Gradient , Directional Derivative , Divergence , Curl
SURFACE INTEGRAL
complex numbers
Introduction to Vectors
Complex numbers 2
Ch05 4
16.2 Solving by Factoring
Exponential and logarithmic functions
system linear equations and matrices
Analysis sequences and bounded sequences
19 min max-saddle-points
Vector space
3.8.4 Triangle Similarity
Matrix
10-Sequences and summation.pptx
Partial Differentiation & Application
Ad

Viewers also liked (7)

DOCX
Trigonometric equations
PDF
Solving trignometric equations
PPTX
05 variabel acak
PPT
Solving trig equations higher
PPT
Section 7.3 trigonometric equations
PPTX
Statistika Konsep Variabel Acak & Distribusi Peluang
PDF
Solucionario de trigonometría de granville
Trigonometric equations
Solving trignometric equations
05 variabel acak
Solving trig equations higher
Section 7.3 trigonometric equations
Statistika Konsep Variabel Acak & Distribusi Peluang
Solucionario de trigonometría de granville
Ad

Similar to Solving trig equations + double angle formulae (20)

KEY
0706 ch 7 day 6
PPT
Trigonometry
PDF
Correlation: Powerpoint 2- Trigonometry (1).pdf
PPT
Advanced Trigonometry
PDF
51556 0131469657 ism-15
PPTX
Trigonometric (hayati pravita)
PPT
11 X1 T04 14 Products To Sums Etc
PPT
Compound angle formulae intro
DOCX
TRIGONOMETRY
PPTX
Solving trigonometric equations 1
PDF
PDF
DOC
mathematics formulas
PDF
Identities
PDF
Plugin identities
PDF
Identidades
PDF
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
PDF
11 x1 t08 07 asinx + bcosx = c (2013)
PPTX
Analytic Trigonometry: Odd and Even Identities, Sum and Difference Formula,Do...
PPT
Trig Angle mmmmmmkkkkkkkkkjjjformulas.ppt
0706 ch 7 day 6
Trigonometry
Correlation: Powerpoint 2- Trigonometry (1).pdf
Advanced Trigonometry
51556 0131469657 ism-15
Trigonometric (hayati pravita)
11 X1 T04 14 Products To Sums Etc
Compound angle formulae intro
TRIGONOMETRY
Solving trigonometric equations 1
mathematics formulas
Identities
Plugin identities
Identidades
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
11 x1 t08 07 asinx + bcosx = c (2013)
Analytic Trigonometry: Odd and Even Identities, Sum and Difference Formula,Do...
Trig Angle mmmmmmkkkkkkkkkjjjformulas.ppt

More from Shaun Wilson (20)

PPTX
Troubleshooting Computing Problems
PPTX
Professionalism and Ethics
PPTX
Software Development (Mobile Technology)
PPTX
Computer Systems Fundamentals
PPTX
Introduction to Project Management Assessment Notes
PPTX
SQL Assessment Command Statements
PPT
The Rise and Fall of the Roman Empire
ODP
National 5 Graphic Communication
PPT
Vector journeys!
PPT
Vector multiplication dot product
PPT
Dot product calc angle to finish!
PPT
Unit vectors 14
PPT
Vector bits and pieces
PPT
Vectors intro
PPT
Ratios
PPT
Parallel + collinear vectors
PPT
Position and 3 d vectors amended
PPT
Solving exponential equations
PPT
Logarithms intro
PPT
The log rules
Troubleshooting Computing Problems
Professionalism and Ethics
Software Development (Mobile Technology)
Computer Systems Fundamentals
Introduction to Project Management Assessment Notes
SQL Assessment Command Statements
The Rise and Fall of the Roman Empire
National 5 Graphic Communication
Vector journeys!
Vector multiplication dot product
Dot product calc angle to finish!
Unit vectors 14
Vector bits and pieces
Vectors intro
Ratios
Parallel + collinear vectors
Position and 3 d vectors amended
Solving exponential equations
Logarithms intro
The log rules

Recently uploaded (20)

PPTX
Pharma ospi slides which help in ospi learning
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
01-Introduction-to-Information-Management.pdf
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Yogi Goddess Pres Conference Studio Updates
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Trump Administration's workforce development strategy
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Pharma ospi slides which help in ospi learning
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
01-Introduction-to-Information-Management.pdf
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Final Presentation General Medicine 03-08-2024.pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Yogi Goddess Pres Conference Studio Updates
GDM (1) (1).pptx small presentation for students
Anesthesia in Laparoscopic Surgery in India
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Trump Administration's workforce development strategy
Computing-Curriculum for Schools in Ghana
Final Presentation General Medicine 03-08-2024.pptx
Supply Chain Operations Speaking Notes -ICLT Program
human mycosis Human fungal infections are called human mycosis..pptx
Pharmacology of Heart Failure /Pharmacotherapy of CHF
A systematic review of self-coping strategies used by university students to ...
O7-L3 Supply Chain Operations - ICLT Program
202450812 BayCHI UCSC-SV 20250812 v17.pptx

Solving trig equations + double angle formulae

  • 1. Block 3 Solving Trig Equations and Compound Angle Formulas
  • 2. What is to be learned? • How to use compound angle formulas to solve more difficult trig equations
  • 3. a0180 – a 180 + a 360 - a iii iii iv CT ASsin2x+ cosx = 0 2sinxcosx + cosx = 0 (2sinx + 1) = 0 cosx = 0 2sinx + 1 = 0 2sinx = -1 sinx = - ½ sin-1 ( ½ ) = 300 x = 180+30 or 360 – 30 x = 900 or 2700 cosx x = 2100 or 3300 x = 900 , 2100 , 2700 , 3300
  • 4. a0180 – a 180 + a 360 - a iii iii iv CT ASsin2x + sinx = 0 2sinxcosx + sinx = 0 (2cosx + 1) = 0 sinx = 0 2cosx + 1 = 0 2cosx = -1 cosx = - ½ cos-1 ( ½ ) = 600 x = 180 – 60 or 180 + 60 x = 00 , 1800 or 3600 sinx x = 1200 or 2400 x = 00 , 1200 , 1800 , 2400 , 3600
  • 5. Trig Equations and Double Angles • Use double angle formula • Get one side to zero • Factorise • Solve mini trig equations (exact angles and wee trig graphs handy)
  • 6. a0180 – a 180 + a 360 - a iii iii iv CT ASsin2x = sinx 2sinxcosx – sinx = 0 (2cosx – 1) = 0 sinx = 0 2cosx – 1 = 0 2cosx = 1 cosx = ½ cos-1 ( ½ ) = 600 x = 600 or 360 – 60 x = 00, 1800 or 3600 sinx 2sinxcosx = sinx x = 00 , 600 , 1800 , 3000 , 3600 x = 600 or 3000
  • 7. a0180 – a 180 + a 360 - a iii iii iv CT ASsin2x+ cosx = 0 2sinxcosx + cosx = 0 (2sinx + 1) = 0 cosx = 0 2sinx + 1 = 0 2sinx = -1 sinx = - ½ sin-1 ( ½ ) = 300 x = 180+30 or 360 – 30 x = 900 or 2700 cosx x = 2100 or 3300 x = 900 , 2100 , 2700 , 3300 Key Question
  • 8. cos2x + cosx = 0 Three choices!!!! Cos2A = 1 – 2Sin2 A = 2Cos= 2Cos22 A – 1A – 1Cos2A Cos2A = Cos2 A – Sin2 A
  • 9. cos2x + cosx = 0 2cos2 x – 1 + cosx = 0 2cos2 x + cosx – 1 = 0 2a2 + a – 1 (2a – 1)(a + 1)(2cosx – 1)(cosx + 1) = 0 2cosx–1 = 0 cosx + 1 = 0 cosx = ½ cosx = -1 cos-1 ( ½ ) = 600 x = 1800 x = 60 or 300 x = 600 , 1800 or 3000 Three choices!!!! Cos2A = 1 – 2Sin2 A = 2Cos= 2Cos22 A – 1A – 1Cos2A Cos2A = Cos2 A – Sin2 A
  • 10. cos2x – cosx = 0 2cos2 x – 1 – cosx = 0 2cos2 x – cosx – 1 = 0 2a2 – a – 1 (2a + 1)(a – 1)(2cosx + 1)(cosx – 1) = 0 2cosx+1 = 0 cosx – 1 = 0 cosx = -½ cosx = 1 cos-1 ( ½ ) = 600 x = 0 ,3600 x = 120 or 240 x = 00 , 1200 , 2400 or 3600
  • 11. For cos2x substitute the formula that will leave equation all sine or all cos.
  • 12. cos2x – sinx = 0 1 – 2sin2 x – sinx = 0 2sin2 x + sinx – 1 = 0 2a2 + a – 1 (2a – 1)(a + 1)(2sinx – 1) (sinx + 1) = 0 2sinx – 1 = 0 Sinx + 1 = 0 sinx = ½ sinx = -1 sin-1 ( ½ ) = 300 x = 2700 x = 300 or 1500 x = 300 , 1500 or 2700 rearrange and multiply by -1
  • 13. cos2x + sinx + 2 = 0 1 – 2sin2 x + sinx + 2 = 0 2sin2 x – sinx – 3 = 0 2a2 – a – 3 (2a – 3)(a + 1)(2sinx – 3) (sinx + 1) = 0 2sinx – 3 = 0 Sinx + 1 = 0 sinx = 3 /2 sinx = -1 No solutions x = 2700 x = 2700 rearrange and multiply by -1 Key Question