SlideShare a Scribd company logo
Complex Numbers - 2

          N. B. Vyas
    Department of Mathematics,
Atmiya Institute of Tech. and Science,
            Rajkot (Guj.)




      N. B. Vyas     Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ)




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 +




               N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)




                N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ




                N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)




                N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ




                N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .)




                    N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .)
  By comparing real and imaginary parts on both
  sides, we get


                    N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .)
  By comparing real and imaginary parts on both
  sides, we get
  cos nθ = n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .
                    N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sin nθ and Cos nθ in
  powers of sinθ cosθ, where n is a positive
  integer
  (cosnθ + isinnθ) = (cosθ + isinθ)n
  = n C0 cosn θ + n C1 cosn−1 θ (isinθ) +
  n
    C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n
  (Using Binomial theorem)
  = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .)
     + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .)
  By comparing real and imaginary parts on both
  sides, we get
  cos nθ = n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .
  sin nθ = n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .
                    N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ




                   N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then




                     N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1
  Also = cosθ − isinθ
       z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n =
       z                     z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
        1
  ∴z+ =
        z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
        1
  ∴ z + = 2cosθ ⇒ cosθ =
        z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
        1                    1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
        z                    2       z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
            1
  and z n + n =
           z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
            1
  and z n + n = 2cos nθ ⇒ cos nθ =
           z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
            1                         1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
           z                          2        z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
       1                      1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
       z                     z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
            1                         1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
           z                          2        z

  cosn θ =




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2        z
            1      1 n
  cosn θ = n z +
           2       z




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2        z
            1      1 n
  cosn θ = n z +
           2       z

  similarly sinθ =




                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1         1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2        z
            1       1 n
  cosn θ = n z +
           2        z
                   1       1
  similarly sinθ =     z−       and sin nθ =
                   2i      z



                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1          1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2         z
            1       1 n
  cosn θ = n z +
           2        z
                   1       1                   1        1
  similarly sinθ =     z−       and sin nθ =       zn − n
                   2i      z                  2i       z



                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
             1                        1          1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
            z                         2         z
            1       1 n
  cosn θ = n z +
           2        z
                   1       1                   1        1
  similarly sinθ =     z−       and sin nθ =       zn − n
                   2i      z                  2i       z

  sinn θ =

                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
              1                       1          1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
             z                        2         z
            1       1 n
  cosn θ = n z +
           2        z
                    1      1                   1        1
  similarly sinθ =     z−       and sin nθ =       zn − n
                   2i      z                  2i       z
               1      1 n
  sinn θ =         z−
            (2i)n     z
                      N. B. Vyas   Complex Numbers - 2
Expansion Using De Moivre’s Theorem

  Method of Expansion of Sinn θ and Cosn θ


  Let z = cosθ + isinθ then z n = cos nθ + i sin nθ
        1                     1
  Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ
        z                    z
         1                   1       1
  ∴ z + = 2cosθ ⇒ cosθ =         z+
         z                   2       z
              1                       1          1
  and z n + n = 2cos nθ ⇒ cos nθ =       zn + n
             z                        2         z
            1       1 n
  cosn θ = n z +
           2        z
                    1      1                   1        1
  similarly sinθ =     z−       and sin nθ =       zn − n
                   2i      z                  2i       z
               1      1 n
  sinn θ =         z−
            (2i)n     z
                      N. B. Vyas   Complex Numbers - 2
Examples




Ex. Prove that cos4θ = cos4 θ − 6cos2 θsin2 θ + sin4 θ




                        N. B. Vyas   Complex Numbers - 2
Examples




Ex. Using De Moivre’s theorem prove the following:




                       N. B. Vyas   Complex Numbers - 2
Examples




Ex. Using De Moivre’s theorem prove the following:
    (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1




                          N. B. Vyas   Complex Numbers - 2
Examples




Ex. Using De Moivre’s theorem prove the following:
    (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1
    (ii) sin6θ = 3 sin2θ − 4 sin3 2θ




                          N. B. Vyas   Complex Numbers - 2
Examples




Ex. Using De Moivre’s theorem prove the following:
    (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1
    (ii) sin6θ = 3 sin2θ − 4 sin3 2θ
                     6 tanθ − 20 tan3 θ + 6 tan5 θ
    (iii) tan6θ =
                  1 − 15 tan2 θ + 15 tan4 θ − tan6 θ




                          N. B. Vyas   Complex Numbers - 2
Examples




Ex. Prove that
             1
    cos8 θ = 7 (cos8θ +8cos6θ +28cos4θ +56cos2θ +35)
            2




                  N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,




                      N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,
                            8
           8        1
    (2cosθ) =    z+
                    z




                      N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,
                            8
           8          1
    (2cosθ) =      z+
                      z

    = 8 C0 z 8 +




                      N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,
                             8
            8          1
    (2cosθ) =       z+
                       z
                             1
    = 8 C 0 z 8 + 8 C1 z 7          +
                             z




                       N. B. Vyas   Complex Numbers - 2
Examples

Sol.: We know that,
                            8
           8           1
    (2cosθ) =       z+
                       z
                                                          2
       8    8   8      7    1         8        6     1
    = C 0 z + C1 z                 + C2 z                     +
                            z                        z




                      N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                        2
          8         8       8        7    1         8        6     1
    = C 0 z + C1 z                               + C2 z                     +
                                          z                        z
                            3
     8          5       1
         C3 z                   +
                        z




                                    N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                      2
          8         8       8         7   1        8       6     1
    = C 0 z + C1 z                             + C2 z                     +
                                          z                      z
                            3                      4
     8          5       1         8       4    1
         C3 z                   + C4 z                 +
                        z                      z




                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                          2
          8         8       8         7   1        8       6     1
    = C 0 z + C1 z                             + C2 z                         +
                                          z                      z
                            3                      4                              5
     8          5       1         8       4    1          8           3       1
         C3 z                   + C4 z                 + C5 z                         +
                        z                      z                              z




                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z



                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z
    = z8 +

                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z
    = z 8 + 8z 6 +

                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z
    = z 8 + 8z 6 + 28z 4 +

                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                             2
          8         8       8         7   1         8            6   1
    = C 0 z + C1 z                             + C2 z                            +
                                          z                          z
                            3                           4                            5
     8          5       1         8       4     1                8       3       1
         C3 z                   + C4 z                      + C5 z                       +
                        z                       z                                z
                            6                       7                            8
     8          2       1         8            1             8           1
         C6 z                   + C7 z                  + C8
                        z                      z                         z
    = z 8 + 8z 6 + 28z 4 + 56z 2 +

                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                              2
          8         8       8         7   1         8            6    1
    = C 0 z + C1 z                             + C2 z                             +
                                          z                           z
                            3                           4                             5
     8          5       1         8       4     1                8        3       1
         C3 z                   + C4 z                      + C5 z                        +
                        z                       z                                 z
                            6                       7                             8
     8          2       1         8            1             8            1
         C6 z                   + C7 z                  + C8
                        z                      z                          z
                                                                     56
    = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 +                                 +
                                                                     z2
                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                              2
          8         8       8         7   1         8            6    1
    = C 0 z + C1 z                             + C2 z                             +
                                          z                           z
                            3                           4                             5
     8          5       1         8       4     1                8        3       1
         C3 z                   + C4 z                      + C5 z                        +
                        z                       z                                 z
                            6                       7                             8
     8          2       1         8            1             8            1
         C6 z                   + C7 z                  + C8
                        z                      z                          z
                                                                     56 28
    = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 +                                +   +
                                                                     z2 z4
                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                              2
          8         8       8         7   1         8            6    1
    = C 0 z + C1 z                             + C2 z                             +
                                          z                           z
                            3                           4                             5
     8          5       1         8       4     1                8        3       1
         C3 z                   + C4 z                      + C5 z                        +
                        z                       z                                 z
                            6                       7                             8
     8          2       1         8            1             8            1
         C6 z                   + C7 z                  + C8
                        z                      z                          z
                                                                     56 28  8  1
    = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 +                                + 4+ 6+ 8
                                                                     z2 z  z  z
                                  N. B. Vyas    Complex Numbers - 2
Examples

Sol.: We know that,
                                          8
                    8              1
    (2cosθ) =                   z+
                                   z
                                                                              2
          8         8       8         7   1         8            6    1
    = C 0 z + C1 z                             + C2 z                             +
                                          z                           z
                            3                           4                             5
     8          5       1         8       4     1                8        3       1
         C3 z                   + C4 z                      + C5 z                        +
                        z                       z                                 z
                            6                       7                             8
     8          2       1         8            1             8            1
         C6 z                   + C7 z                  + C8
                        z                      z                          z
                                                                     56 28  8  1
    = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 +                                + 4+ 6+ 8
                                                                     z2 z  z  z
                                  N. B. Vyas    Complex Numbers - 2
Examples



             1
  =   z8 +        +
             z8




                      N. B. Vyas   Complex Numbers - 2
Examples



             1                  1
  =   z8 +        + 8 z6 +            +
             z8                 z6




                   N. B. Vyas   Complex Numbers - 2
Examples



             1                  1                     1
  =   z8 +        + 8 z6 +            + 28 z 4 +           +
             z8                 z6                    z4




                   N. B. Vyas   Complex Numbers - 2
Examples



          1           1                          1
  =   z8 +   + 8 z6 + 6          + 28 z 4 +           +
          z8         z                           z4
           1
  56 z 2 + 2 + 70
          z




              N. B. Vyas   Complex Numbers - 2
Examples



           1          1                          1
  =   z8 +   + 8 z6 + 6          + 28 z 4 +           +
          z8         z                           z4
           1
  56 z 2 + 2 + 70
           z
  = 2cos8θ +




              N. B. Vyas   Complex Numbers - 2
Examples



           1            1                         1
  =   z8 +     + 8 z6 + 6         + 28 z 4 +           +
          z8           z                          z4
           1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ +




               N. B. Vyas   Complex Numbers - 2
Examples



           1             1              1
  =   z8 +     + 8 z 6 + 6 + 28 z 4 + 4 +
          z8             z              z
           1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ +




               N. B. Vyas   Complex Numbers - 2
Examples



           1             1              1
  =   z8 +     + 8 z 6 + 6 + 28 z 4 + 4 +
          z8             z              z
           1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70




                N. B. Vyas   Complex Numbers - 2
Examples



            1            1              1
  =   z8 +     + 8 z 6 + 6 + 28 z 4 + 4 +
           z8            z              z
            1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70
           1
∴ cos8 θ = 7
          2




                N. B. Vyas   Complex Numbers - 2
Examples



            1             1              1
  =   z8 +      + 8 z 6 + 6 + 28 z 4 + 4 +
           z8             z             z
            1
  56 z 2 + 2 + 70
           z
  = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70
           1
∴ cos8 θ = 7 (cos8θ +8cos6θ +28cos4θ +56cos2θ +35)
          2




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get
          eix + e−ix
  cosx =
               2




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get
          eix + e−ix            eix − e−ix
  cosx =             and sinx =
               2                    2i




                 N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get
           eix + e−ix            eix − e−ix
  cosx =              and sinx =
                2                    2i
  are known as circular functions and are true for
  all real values of x.




                N. B. Vyas   Complex Numbers - 2
Circular Functions of a Complex Numbers


  eix = cosx + isinx and e−ix = cosx − isinx
  are known as Euler’s formula.
  By adding, we get them, we get
           eix + e−ix            eix − e−ix
  cosx =              and sinx =
                2                    2i
  are known as circular functions and are true for
  all real values of x.
  They are also known as Euler’s exponential
  form of cosines and sines.


                N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)
  and are defined respectively as




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)
  and are defined respectively as
            ex − e−x
  sinh(x) =
                2




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)
  and are defined respectively as
            ex − e−x
  sinh(x) =
                2
            ex + e−x
  cosh(x) =
                2




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions


  The hyperbolic sine of x is denoted by sinh(x),
  the hyperbolic cosine of x is defined by cosh(x)
  and hyperbolic tangent of x is defined by tanh(x)
  and are defined respectively as
            ex − e−x
  sinh(x) =
                2
            ex + e−x
  cosh(x) =
                2
                 ex − e−x
  and tanh(x) = x         ;x R
                  e + e−x


                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions



  The reciprocals of these functions are defined as
  below




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions



  The reciprocals of these functions are defined as
  below
                  2
  cosech(x) = x
              e − e−x




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions



  The reciprocals of these functions are defined as
  below
                  2
  cosech(x) = x
              e − e−x
                2
  sech(x) = x
            e − e−x




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic functions



  The reciprocals of these functions are defined as
  below
                  2
  cosech(x) = x
              e − e−x
                2
  sech(x) = x
            e − e−x
                 ex + e−x
  and coth(x) = x
                 e − e−x



                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                      eix − e−ix
  We know that sinx =
                          2i




                N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                      eix − e−ix
  We know that sinx =
                          2i
  replacing x by ix




                N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                           eix − e−ix
  We know that sinx =
                               2i
  replacing x by ix
            ei(ix) − e−i(ix)    e−x − ex
  sin(ix) =                  =
                   2i              2i




                   N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                            eix − e−ix
  We know that sinx =
                                2i
  replacing x by ix
             ei(ix) − e−i(ix)    e−x − ex
  sin(ix) =                   =
                    2i              2i
        x    −x         x      −x
       e −e            e −e
  =−             =i
          2i                2




                   N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


                            eix − e−ix
  We know that sinx =
                                2i
  replacing x by ix
             ei(ix) − e−i(ix)    e−x − ex
  sin(ix) =                   =
                    2i              2i
        x    −x         x      −x
       e −e            e −e
  =−             =i
          2i                2
  ∴ sin(ix) = isinh(x)



                   N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)
  tan(ix) = i tanh(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)
  tan(ix) = i tanh(x)
  cosec(ix) = −i cosech(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)
  tan(ix) = i tanh(x)
  cosec(ix) = −i cosech(x)
  sec(ix) = sech(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cos(ix) = cosh(x)
  tan(ix) = i tanh(x)
  cosec(ix) = −i cosech(x)
  sec(ix) = sech(x)
  cot(ix) = −i coth(x)



                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)
  ⇒ sin(−x) = isinh(ix)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)
  ⇒ sin(−x) = isinh(ix)
  ⇒ −sinx = isinh(ix)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)
  ⇒ sin(−x) = isinh(ix)
  ⇒ −sinx = isinh(ix)
  ⇒ i2 sinx = isinh(ix)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions


  Also we can replace x by ix in
  sin(ix) = isinh(x), we get
  sin i(ix) = isinh(ix)
  ⇒ sin(−x) = isinh(ix)
  ⇒ −sinx = isinh(ix)
  ⇒ i2 sinx = isinh(ix)
∴ sinh(ix) = isinx


                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)
  tanh(ix) = i tan(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)
  tanh(ix) = i tan(x)
  cosech(ix) = −i cosec(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)
  tanh(ix) = i tan(x)
  cosech(ix) = −i cosec(x)
  sech(ix) = sec(x)




                 N. B. Vyas   Complex Numbers - 2
Relation between Circular & Hyperbolic
functions



  Similarly, we can prove
  cosh(ix) = cos(x)
  tanh(ix) = i tan(x)
  cosech(ix) = −i cosec(x)
  sech(ix) = sec(x)
  coth(ix) = −i cot(x)



                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1
  ⇒ cosh2 (x) − sinh2 (x) = 1




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1
  ⇒ cosh2 (x) − sinh2 (x) = 1
  Similarly we can obtain




                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1
  ⇒ cosh2 (x) − sinh2 (x) = 1
  Similarly we can obtain
  sech2 (x) = 1 − tanh2 (x)


                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Identities of Hyperbolic functions can be derived
  from the identities of circular functions by
  replacing x by ix
  Now sin2 x + cos2 x = 1
  sin2 (ix) + cos2 (ix) = 1 ⇒
  [i sinh(x)]2 + [cosh(x)]2 = 1
  ⇒ cosh2 (x) − sinh2 (x) = 1
  Similarly we can obtain
  sech2 (x) = 1 − tanh2 (x)
  cosech2 (x) = coth2 (x) − 1

                 N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix




                     N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)




                     N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x)




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)

  tanh(3x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)

  sinh(x) =




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x
              2 tanh
  sinh(x) =            2
                     2
                         x
            1 − tanh
                         2




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x
              2 tanh
  sinh(x) =            2
                     2
                         x , cosh(x) =
            1 − tanh
                         2




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x                           x
              2 tanh                    1 + tanh2
  sinh(x) =            2                           2
                     2
                         x , cosh(x) =          2
                                                   x
            1 − tanh                    1 − tanh
                         2                         2




                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x                           x
              2 tanh                    1 + tanh2
  sinh(x) =            2                           2
                     2
                         x , cosh(x) =          2
                                                   x
            1 − tanh                    1 − tanh
                         2                         2

  tanh(x) =


                      N. B. Vyas   Complex Numbers - 2
Hyperbolic Identities

  Also sin2x = 2 sinx cosx
  by replacing x by ix
  we get sinh(2x) = 2 sinh(x) cosh(x)
  Similarly
  cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x)
  sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x)
             3tanh(x) + tanh3 (x)
  tanh(3x) =
                 1 + 3tanh2 (x)
                       x                           x
              2 tanh                    1 + tanh2
  sinh(x) =            2                           2
                     2
                         x , cosh(x) =          2
                                                   x
            1 − tanh                    1 − tanh
                         2                         2
                       x
              2tanh
  tanh(x) =            2
                         x
            1 + tanh2
                         2
                      N. B. Vyas   Complex Numbers - 2
Logarithm of a Complex Number




  If z = ew , then we write w = lnz, called the natural logarithm of
  z. Thus the natural logarithmic function is the inverse of the
  exponential function and can be defined by
  w = lnz = ln(rei(θ+2kπ) ) = lnr + i(θ + 2kπ)
  ∀z , logz = ln|z| + iarg(z)




                      N. B. Vyas   Complex Numbers - 2

More Related Content

PDF
Complex numbers 1
PPTX
First order linear differential equation
PPT
Riemann sumsdefiniteintegrals
PPT
INTEGRATION BY PARTS PPT
PDF
Gaussian quadratures
PDF
Properties of Caputo Operator and Its Applications to Linear Fractional Diffe...
PPT
Techniques of Integration ppt.ppt
PPTX
Jacobi method
Complex numbers 1
First order linear differential equation
Riemann sumsdefiniteintegrals
INTEGRATION BY PARTS PPT
Gaussian quadratures
Properties of Caputo Operator and Its Applications to Linear Fractional Diffe...
Techniques of Integration ppt.ppt
Jacobi method

What's hot (20)

PPTX
Ordinary differential equations
PPT
Numerical integration
PPTX
De Alembert’s Principle and Generalized Force, a technical discourse on Class...
PPTX
2 6 complex fractions
PPT
Differential equations
PPTX
Fundamental theorem of Line Integration
PDF
Integrals by Trigonometric Substitution
PPTX
Polynomials and Curve Fitting in MATLAB
PDF
Integration in the complex plane
PPT
Espacios L2
PPT
Application of definite integrals
PPTX
Numerical integration
PDF
Double integration
PDF
Power series
PPTX
Partial differential equations
PDF
Initial Value Problems
PDF
Lesson 11: Limits and Continuity
PPTX
formulation of first order linear and nonlinear 2nd order differential equation
Ordinary differential equations
Numerical integration
De Alembert’s Principle and Generalized Force, a technical discourse on Class...
2 6 complex fractions
Differential equations
Fundamental theorem of Line Integration
Integrals by Trigonometric Substitution
Polynomials and Curve Fitting in MATLAB
Integration in the complex plane
Espacios L2
Application of definite integrals
Numerical integration
Double integration
Power series
Partial differential equations
Initial Value Problems
Lesson 11: Limits and Continuity
formulation of first order linear and nonlinear 2nd order differential equation
Ad

Similar to Complex numbers 2 (10)

ZIP
02 taylor.key
DOCX
AM11 Trigonometry
KEY
0701 ch 7 day 1
KEY
0711 ch 7 day 11
PDF
Binomial
PDF
Xi maths ch3_trigo_func_formulae
PDF
PPTX
Proving-Trigonomddggjhgdsetric-Identities.pptx
KEY
Week 13 - Trigonometry
PDF
Lesson 10: Derivatives of Trigonometric Functions
02 taylor.key
AM11 Trigonometry
0701 ch 7 day 1
0711 ch 7 day 11
Binomial
Xi maths ch3_trigo_func_formulae
Proving-Trigonomddggjhgdsetric-Identities.pptx
Week 13 - Trigonometry
Lesson 10: Derivatives of Trigonometric Functions
Ad

More from Dr. Nirav Vyas (20)

PDF
Advance Topics in Latex - different packages
PPTX
Numerical Methods Algorithm and C Program
PDF
Reduction forumla
PPTX
Arithmetic Mean, Geometric Mean, Harmonic Mean
PPTX
Geometric progressions
PPTX
Arithmetic progressions
PPTX
Combinations
PPTX
Permutation
PPTX
Matrices and Determinants
PDF
Curve fitting - Lecture Notes
PDF
Trend analysis - Lecture Notes
PDF
Basic Concepts of Statistics - Lecture Notes
PDF
Numerical Methods - Power Method for Eigen values
PDF
Numerical Methods - Oridnary Differential Equations - 3
PDF
Numerical Methods - Oridnary Differential Equations - 2
PDF
Numerical Methods - Oridnary Differential Equations - 1
PDF
Partial Differential Equation - Notes
PDF
Special functions
PDF
Legendre Function
PDF
Laplace Transforms
Advance Topics in Latex - different packages
Numerical Methods Algorithm and C Program
Reduction forumla
Arithmetic Mean, Geometric Mean, Harmonic Mean
Geometric progressions
Arithmetic progressions
Combinations
Permutation
Matrices and Determinants
Curve fitting - Lecture Notes
Trend analysis - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
Numerical Methods - Power Method for Eigen values
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 1
Partial Differential Equation - Notes
Special functions
Legendre Function
Laplace Transforms

Recently uploaded (20)

PPTX
master seminar digital applications in india
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
A systematic review of self-coping strategies used by university students to ...
PPTX
Cell Structure & Organelles in detailed.
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Computing-Curriculum for Schools in Ghana
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
What if we spent less time fighting change, and more time building what’s rig...
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
RMMM.pdf make it easy to upload and study
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
01-Introduction-to-Information-Management.pdf
master seminar digital applications in india
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Final Presentation General Medicine 03-08-2024.pptx
A systematic review of self-coping strategies used by university students to ...
Cell Structure & Organelles in detailed.
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Computing-Curriculum for Schools in Ghana
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
History, Philosophy and sociology of education (1).pptx
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Microbial disease of the cardiovascular and lymphatic systems
What if we spent less time fighting change, and more time building what’s rig...
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
RMMM.pdf make it easy to upload and study
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Microbial diseases, their pathogenesis and prophylaxis
01-Introduction-to-Information-Management.pdf

Complex numbers 2

  • 1. Complex Numbers - 2 N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. and Science, Rajkot (Guj.) N. B. Vyas Complex Numbers - 2
  • 2. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ N. B. Vyas Complex Numbers - 2
  • 3. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer N. B. Vyas Complex Numbers - 2
  • 4. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n N. B. Vyas Complex Numbers - 2
  • 5. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ N. B. Vyas Complex Numbers - 2
  • 6. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) N. B. Vyas Complex Numbers - 2
  • 7. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + N. B. Vyas Complex Numbers - 2
  • 8. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) N. B. Vyas Complex Numbers - 2
  • 9. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ N. B. Vyas Complex Numbers - 2
  • 10. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) N. B. Vyas Complex Numbers - 2
  • 11. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ N. B. Vyas Complex Numbers - 2
  • 12. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .) N. B. Vyas Complex Numbers - 2
  • 13. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .) By comparing real and imaginary parts on both sides, we get N. B. Vyas Complex Numbers - 2
  • 14. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .) By comparing real and imaginary parts on both sides, we get cos nθ = n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . . N. B. Vyas Complex Numbers - 2
  • 15. Expansion Using De Moivre’s Theorem Method of Expansion of Sin nθ and Cos nθ in powers of sinθ cosθ, where n is a positive integer (cosnθ + isinnθ) = (cosθ + isinθ)n = n C0 cosn θ + n C1 cosn−1 θ (isinθ) + n C2 cosn−2 θ (isinθ)2 + . . . + n Cn (isinθ)n (Using Binomial theorem) = ( n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . .) + i ( n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . .) By comparing real and imaginary parts on both sides, we get cos nθ = n C0 cosn θ − n C2 cosn−2 θ sin2 θ + . . . sin nθ = n C1 cosn−1 θ sinθ − n C3 cosn−3 θ sin3 θ + . . . N. B. Vyas Complex Numbers - 2
  • 16. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ N. B. Vyas Complex Numbers - 2
  • 17. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then N. B. Vyas Complex Numbers - 2
  • 18. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 Also = cosθ − isinθ z N. B. Vyas Complex Numbers - 2
  • 19. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = z z N. B. Vyas Complex Numbers - 2
  • 20. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z N. B. Vyas Complex Numbers - 2
  • 21. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 ∴z+ = z N. B. Vyas Complex Numbers - 2
  • 22. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 ∴ z + = 2cosθ ⇒ cosθ = z N. B. Vyas Complex Numbers - 2
  • 23. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z N. B. Vyas Complex Numbers - 2
  • 24. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 and z n + n = z N. B. Vyas Complex Numbers - 2
  • 25. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 and z n + n = 2cos nθ ⇒ cos nθ = z N. B. Vyas Complex Numbers - 2
  • 26. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z N. B. Vyas Complex Numbers - 2
  • 27. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z cosn θ = N. B. Vyas Complex Numbers - 2
  • 28. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z N. B. Vyas Complex Numbers - 2
  • 29. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z similarly sinθ = N. B. Vyas Complex Numbers - 2
  • 30. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 similarly sinθ = z− and sin nθ = 2i z N. B. Vyas Complex Numbers - 2
  • 31. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 1 1 similarly sinθ = z− and sin nθ = zn − n 2i z 2i z N. B. Vyas Complex Numbers - 2
  • 32. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 1 1 similarly sinθ = z− and sin nθ = zn − n 2i z 2i z sinn θ = N. B. Vyas Complex Numbers - 2
  • 33. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 1 1 similarly sinθ = z− and sin nθ = zn − n 2i z 2i z 1 1 n sinn θ = z− (2i)n z N. B. Vyas Complex Numbers - 2
  • 34. Expansion Using De Moivre’s Theorem Method of Expansion of Sinn θ and Cosn θ Let z = cosθ + isinθ then z n = cos nθ + i sin nθ 1 1 Also = cosθ − isinθ ∴ n = cos nθ − i sin nθ z z 1 1 1 ∴ z + = 2cosθ ⇒ cosθ = z+ z 2 z 1 1 1 and z n + n = 2cos nθ ⇒ cos nθ = zn + n z 2 z 1 1 n cosn θ = n z + 2 z 1 1 1 1 similarly sinθ = z− and sin nθ = zn − n 2i z 2i z 1 1 n sinn θ = z− (2i)n z N. B. Vyas Complex Numbers - 2
  • 35. Examples Ex. Prove that cos4θ = cos4 θ − 6cos2 θsin2 θ + sin4 θ N. B. Vyas Complex Numbers - 2
  • 36. Examples Ex. Using De Moivre’s theorem prove the following: N. B. Vyas Complex Numbers - 2
  • 37. Examples Ex. Using De Moivre’s theorem prove the following: (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1 N. B. Vyas Complex Numbers - 2
  • 38. Examples Ex. Using De Moivre’s theorem prove the following: (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1 (ii) sin6θ = 3 sin2θ − 4 sin3 2θ N. B. Vyas Complex Numbers - 2
  • 39. Examples Ex. Using De Moivre’s theorem prove the following: (i) cos6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1 (ii) sin6θ = 3 sin2θ − 4 sin3 2θ 6 tanθ − 20 tan3 θ + 6 tan5 θ (iii) tan6θ = 1 − 15 tan2 θ + 15 tan4 θ − tan6 θ N. B. Vyas Complex Numbers - 2
  • 40. Examples Ex. Prove that 1 cos8 θ = 7 (cos8θ +8cos6θ +28cos4θ +56cos2θ +35) 2 N. B. Vyas Complex Numbers - 2
  • 41. Examples Sol.: We know that, N. B. Vyas Complex Numbers - 2
  • 42. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z N. B. Vyas Complex Numbers - 2
  • 43. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z = 8 C0 z 8 + N. B. Vyas Complex Numbers - 2
  • 44. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 1 = 8 C 0 z 8 + 8 C1 z 7 + z N. B. Vyas Complex Numbers - 2
  • 45. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z N. B. Vyas Complex Numbers - 2
  • 46. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 8 5 1 C3 z + z N. B. Vyas Complex Numbers - 2
  • 47. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 8 5 1 8 4 1 C3 z + C4 z + z z N. B. Vyas Complex Numbers - 2
  • 48. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z N. B. Vyas Complex Numbers - 2
  • 49. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z N. B. Vyas Complex Numbers - 2
  • 50. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z = z8 + N. B. Vyas Complex Numbers - 2
  • 51. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z = z 8 + 8z 6 + N. B. Vyas Complex Numbers - 2
  • 52. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z = z 8 + 8z 6 + 28z 4 + N. B. Vyas Complex Numbers - 2
  • 53. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z = z 8 + 8z 6 + 28z 4 + 56z 2 + N. B. Vyas Complex Numbers - 2
  • 54. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z 56 = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 + + z2 N. B. Vyas Complex Numbers - 2
  • 55. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z 56 28 = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 + + + z2 z4 N. B. Vyas Complex Numbers - 2
  • 56. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z 56 28 8 1 = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 + + 4+ 6+ 8 z2 z z z N. B. Vyas Complex Numbers - 2
  • 57. Examples Sol.: We know that, 8 8 1 (2cosθ) = z+ z 2 8 8 8 7 1 8 6 1 = C 0 z + C1 z + C2 z + z z 3 4 5 8 5 1 8 4 1 8 3 1 C3 z + C4 z + C5 z + z z z 6 7 8 8 2 1 8 1 8 1 C6 z + C7 z + C8 z z z 56 28 8 1 = z 8 + 8z 6 + 28z 4 + 56z 2 + 70 + + 4+ 6+ 8 z2 z z z N. B. Vyas Complex Numbers - 2
  • 58. Examples 1 = z8 + + z8 N. B. Vyas Complex Numbers - 2
  • 59. Examples 1 1 = z8 + + 8 z6 + + z8 z6 N. B. Vyas Complex Numbers - 2
  • 60. Examples 1 1 1 = z8 + + 8 z6 + + 28 z 4 + + z8 z6 z4 N. B. Vyas Complex Numbers - 2
  • 61. Examples 1 1 1 = z8 + + 8 z6 + 6 + 28 z 4 + + z8 z z4 1 56 z 2 + 2 + 70 z N. B. Vyas Complex Numbers - 2
  • 62. Examples 1 1 1 = z8 + + 8 z6 + 6 + 28 z 4 + + z8 z z4 1 56 z 2 + 2 + 70 z = 2cos8θ + N. B. Vyas Complex Numbers - 2
  • 63. Examples 1 1 1 = z8 + + 8 z6 + 6 + 28 z 4 + + z8 z z4 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + N. B. Vyas Complex Numbers - 2
  • 64. Examples 1 1 1 = z8 + + 8 z 6 + 6 + 28 z 4 + 4 + z8 z z 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + N. B. Vyas Complex Numbers - 2
  • 65. Examples 1 1 1 = z8 + + 8 z 6 + 6 + 28 z 4 + 4 + z8 z z 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70 N. B. Vyas Complex Numbers - 2
  • 66. Examples 1 1 1 = z8 + + 8 z 6 + 6 + 28 z 4 + 4 + z8 z z 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70 1 ∴ cos8 θ = 7 2 N. B. Vyas Complex Numbers - 2
  • 67. Examples 1 1 1 = z8 + + 8 z 6 + 6 + 28 z 4 + 4 + z8 z z 1 56 z 2 + 2 + 70 z = 2cos8θ + 16cos6θ + 56cos4θ + 112cos2θ + 70 1 ∴ cos8 θ = 7 (cos8θ +8cos6θ +28cos4θ +56cos2θ +35) 2 N. B. Vyas Complex Numbers - 2
  • 68. Circular Functions of a Complex Numbers eix = cosx + isinx N. B. Vyas Complex Numbers - 2
  • 69. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx N. B. Vyas Complex Numbers - 2
  • 70. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. N. B. Vyas Complex Numbers - 2
  • 71. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get N. B. Vyas Complex Numbers - 2
  • 72. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get eix + e−ix cosx = 2 N. B. Vyas Complex Numbers - 2
  • 73. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get eix + e−ix eix − e−ix cosx = and sinx = 2 2i N. B. Vyas Complex Numbers - 2
  • 74. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get eix + e−ix eix − e−ix cosx = and sinx = 2 2i are known as circular functions and are true for all real values of x. N. B. Vyas Complex Numbers - 2
  • 75. Circular Functions of a Complex Numbers eix = cosx + isinx and e−ix = cosx − isinx are known as Euler’s formula. By adding, we get them, we get eix + e−ix eix − e−ix cosx = and sinx = 2 2i are known as circular functions and are true for all real values of x. They are also known as Euler’s exponential form of cosines and sines. N. B. Vyas Complex Numbers - 2
  • 76. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), N. B. Vyas Complex Numbers - 2
  • 77. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) N. B. Vyas Complex Numbers - 2
  • 78. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) N. B. Vyas Complex Numbers - 2
  • 79. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) and are defined respectively as N. B. Vyas Complex Numbers - 2
  • 80. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) and are defined respectively as ex − e−x sinh(x) = 2 N. B. Vyas Complex Numbers - 2
  • 81. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) and are defined respectively as ex − e−x sinh(x) = 2 ex + e−x cosh(x) = 2 N. B. Vyas Complex Numbers - 2
  • 82. Hyperbolic functions The hyperbolic sine of x is denoted by sinh(x), the hyperbolic cosine of x is defined by cosh(x) and hyperbolic tangent of x is defined by tanh(x) and are defined respectively as ex − e−x sinh(x) = 2 ex + e−x cosh(x) = 2 ex − e−x and tanh(x) = x ;x R e + e−x N. B. Vyas Complex Numbers - 2
  • 83. Hyperbolic functions The reciprocals of these functions are defined as below N. B. Vyas Complex Numbers - 2
  • 84. Hyperbolic functions The reciprocals of these functions are defined as below 2 cosech(x) = x e − e−x N. B. Vyas Complex Numbers - 2
  • 85. Hyperbolic functions The reciprocals of these functions are defined as below 2 cosech(x) = x e − e−x 2 sech(x) = x e − e−x N. B. Vyas Complex Numbers - 2
  • 86. Hyperbolic functions The reciprocals of these functions are defined as below 2 cosech(x) = x e − e−x 2 sech(x) = x e − e−x ex + e−x and coth(x) = x e − e−x N. B. Vyas Complex Numbers - 2
  • 87. Relation between Circular & Hyperbolic functions eix − e−ix We know that sinx = 2i N. B. Vyas Complex Numbers - 2
  • 88. Relation between Circular & Hyperbolic functions eix − e−ix We know that sinx = 2i replacing x by ix N. B. Vyas Complex Numbers - 2
  • 89. Relation between Circular & Hyperbolic functions eix − e−ix We know that sinx = 2i replacing x by ix ei(ix) − e−i(ix) e−x − ex sin(ix) = = 2i 2i N. B. Vyas Complex Numbers - 2
  • 90. Relation between Circular & Hyperbolic functions eix − e−ix We know that sinx = 2i replacing x by ix ei(ix) − e−i(ix) e−x − ex sin(ix) = = 2i 2i x −x x −x e −e e −e =− =i 2i 2 N. B. Vyas Complex Numbers - 2
  • 91. Relation between Circular & Hyperbolic functions eix − e−ix We know that sinx = 2i replacing x by ix ei(ix) − e−i(ix) e−x − ex sin(ix) = = 2i 2i x −x x −x e −e e −e =− =i 2i 2 ∴ sin(ix) = isinh(x) N. B. Vyas Complex Numbers - 2
  • 92. Relation between Circular & Hyperbolic functions Similarly, we can prove N. B. Vyas Complex Numbers - 2
  • 93. Relation between Circular & Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) N. B. Vyas Complex Numbers - 2
  • 94. Relation between Circular & Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) tan(ix) = i tanh(x) N. B. Vyas Complex Numbers - 2
  • 95. Relation between Circular & Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) tan(ix) = i tanh(x) cosec(ix) = −i cosech(x) N. B. Vyas Complex Numbers - 2
  • 96. Relation between Circular & Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) tan(ix) = i tanh(x) cosec(ix) = −i cosech(x) sec(ix) = sech(x) N. B. Vyas Complex Numbers - 2
  • 97. Relation between Circular & Hyperbolic functions Similarly, we can prove cos(ix) = cosh(x) tan(ix) = i tanh(x) cosec(ix) = −i cosech(x) sec(ix) = sech(x) cot(ix) = −i coth(x) N. B. Vyas Complex Numbers - 2
  • 98. Relation between Circular & Hyperbolic functions Also we can replace x by ix in N. B. Vyas Complex Numbers - 2
  • 99. Relation between Circular & Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get N. B. Vyas Complex Numbers - 2
  • 100. Relation between Circular & Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) N. B. Vyas Complex Numbers - 2
  • 101. Relation between Circular & Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) ⇒ sin(−x) = isinh(ix) N. B. Vyas Complex Numbers - 2
  • 102. Relation between Circular & Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) ⇒ sin(−x) = isinh(ix) ⇒ −sinx = isinh(ix) N. B. Vyas Complex Numbers - 2
  • 103. Relation between Circular & Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) ⇒ sin(−x) = isinh(ix) ⇒ −sinx = isinh(ix) ⇒ i2 sinx = isinh(ix) N. B. Vyas Complex Numbers - 2
  • 104. Relation between Circular & Hyperbolic functions Also we can replace x by ix in sin(ix) = isinh(x), we get sin i(ix) = isinh(ix) ⇒ sin(−x) = isinh(ix) ⇒ −sinx = isinh(ix) ⇒ i2 sinx = isinh(ix) ∴ sinh(ix) = isinx N. B. Vyas Complex Numbers - 2
  • 105. Relation between Circular & Hyperbolic functions Similarly, we can prove N. B. Vyas Complex Numbers - 2
  • 106. Relation between Circular & Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) N. B. Vyas Complex Numbers - 2
  • 107. Relation between Circular & Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) tanh(ix) = i tan(x) N. B. Vyas Complex Numbers - 2
  • 108. Relation between Circular & Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) tanh(ix) = i tan(x) cosech(ix) = −i cosec(x) N. B. Vyas Complex Numbers - 2
  • 109. Relation between Circular & Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) tanh(ix) = i tan(x) cosech(ix) = −i cosec(x) sech(ix) = sec(x) N. B. Vyas Complex Numbers - 2
  • 110. Relation between Circular & Hyperbolic functions Similarly, we can prove cosh(ix) = cos(x) tanh(ix) = i tan(x) cosech(ix) = −i cosec(x) sech(ix) = sec(x) coth(ix) = −i cot(x) N. B. Vyas Complex Numbers - 2
  • 111. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix N. B. Vyas Complex Numbers - 2
  • 112. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 N. B. Vyas Complex Numbers - 2
  • 113. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 N. B. Vyas Complex Numbers - 2
  • 114. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 ⇒ cosh2 (x) − sinh2 (x) = 1 N. B. Vyas Complex Numbers - 2
  • 115. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 ⇒ cosh2 (x) − sinh2 (x) = 1 Similarly we can obtain N. B. Vyas Complex Numbers - 2
  • 116. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 ⇒ cosh2 (x) − sinh2 (x) = 1 Similarly we can obtain sech2 (x) = 1 − tanh2 (x) N. B. Vyas Complex Numbers - 2
  • 117. Hyperbolic Identities Identities of Hyperbolic functions can be derived from the identities of circular functions by replacing x by ix Now sin2 x + cos2 x = 1 sin2 (ix) + cos2 (ix) = 1 ⇒ [i sinh(x)]2 + [cosh(x)]2 = 1 ⇒ cosh2 (x) − sinh2 (x) = 1 Similarly we can obtain sech2 (x) = 1 − tanh2 (x) cosech2 (x) = coth2 (x) − 1 N. B. Vyas Complex Numbers - 2
  • 118. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix N. B. Vyas Complex Numbers - 2
  • 119. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = N. B. Vyas Complex Numbers - 2
  • 120. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) N. B. Vyas Complex Numbers - 2
  • 121. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = N. B. Vyas Complex Numbers - 2
  • 122. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = N. B. Vyas Complex Numbers - 2
  • 123. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) N. B. Vyas Complex Numbers - 2
  • 124. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = N. B. Vyas Complex Numbers - 2
  • 125. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) N. B. Vyas Complex Numbers - 2
  • 126. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = N. B. Vyas Complex Numbers - 2
  • 127. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) N. B. Vyas Complex Numbers - 2
  • 128. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) tanh(3x) = N. B. Vyas Complex Numbers - 2
  • 129. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) N. B. Vyas Complex Numbers - 2
  • 130. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) sinh(x) = N. B. Vyas Complex Numbers - 2
  • 131. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x 2 tanh sinh(x) = 2 2 x 1 − tanh 2 N. B. Vyas Complex Numbers - 2
  • 132. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x 2 tanh sinh(x) = 2 2 x , cosh(x) = 1 − tanh 2 N. B. Vyas Complex Numbers - 2
  • 133. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x x 2 tanh 1 + tanh2 sinh(x) = 2 2 2 x , cosh(x) = 2 x 1 − tanh 1 − tanh 2 2 N. B. Vyas Complex Numbers - 2
  • 134. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x x 2 tanh 1 + tanh2 sinh(x) = 2 2 2 x , cosh(x) = 2 x 1 − tanh 1 − tanh 2 2 tanh(x) = N. B. Vyas Complex Numbers - 2
  • 135. Hyperbolic Identities Also sin2x = 2 sinx cosx by replacing x by ix we get sinh(2x) = 2 sinh(x) cosh(x) Similarly cosh(2x) = cosh2 (x) + sinh2 (x) = 2cosh2 (x) − 1 = 1 + 2sinh2 (x) sinh(3x) = 3sinh(x)+4sinh3 (x) , cosh(3x) = 4cosh3 (x)−3cosh(x) 3tanh(x) + tanh3 (x) tanh(3x) = 1 + 3tanh2 (x) x x 2 tanh 1 + tanh2 sinh(x) = 2 2 2 x , cosh(x) = 2 x 1 − tanh 1 − tanh 2 2 x 2tanh tanh(x) = 2 x 1 + tanh2 2 N. B. Vyas Complex Numbers - 2
  • 136. Logarithm of a Complex Number If z = ew , then we write w = lnz, called the natural logarithm of z. Thus the natural logarithmic function is the inverse of the exponential function and can be defined by w = lnz = ln(rei(θ+2kπ) ) = lnr + i(θ + 2kπ) ∀z , logz = ln|z| + iarg(z) N. B. Vyas Complex Numbers - 2