Non-equilibrium phases of coupled matter-light
systems
Jonathan Keeling
University of
St Andrews
600YEARS
Southhampton, May 2013
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 1 / 36
Coupling many atoms to light
Old question: What happens to radiation when many atoms interact
“collectively” with light.
Superradiance — dynamical and steady state.
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 2 / 36
Coupling many atoms to light
Old question: What happens to radiation when many atoms interact
“collectively” with light.
Superradiance — dynamical and steady state.
New relevance
Superconducting qubits
Quantum dots & NV centres
Ultra-cold atoms
κ
Pump
κ
Cavity
Pump
Rydberg atoms/polaritons
Microcavity Polaritons
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 2 / 36
Dicke effect: Enhanced emission
Hint =
k,i
gk ψ†
k S−
i e−ik·ri + H.c.
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 3 / 36
Dicke effect: Enhanced emission
Hint =
k,i
gk ψ†
k S−
i e−ik·ri + H.c.
If |ri − rj| λ, use i Si → S
Collective decay:
dρ
dt
= −
Γ
2
S+
S−
ρ − S−
ρS+
+ ρS+
S−
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 3 / 36
Dicke effect: Enhanced emission
Hint =
k,i
gk ψ†
k S−
i e−ik·ri + H.c.
If |ri − rj| λ, use i Si → S
Collective decay:
dρ
dt
= −
Γ
2
S+
S−
ρ − S−
ρS+
+ ρS+
S−
If Sz = |S| = N/2 initially:
I ∝ −Γ
d Sz
dt
=
ΓN2
4
sech2 ΓN
2
t
-N/2
0
N/2
tD
〈S
z
〉
tD
0
ΓN2
/2
I=-Γd〈S
z
〉/dt
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 3 / 36
Dicke effect: Enhanced emission
Hint =
k,i
gk ψ†
k S−
i e−ik·ri + H.c.
If |ri − rj| λ, use i Si → S
Collective decay:
dρ
dt
= −
Γ
2
S+
S−
ρ − S−
ρS+
+ ρS+
S−
If Sz = |S| = N/2 initially:
I ∝ −Γ
d Sz
dt
=
ΓN2
4
sech2 ΓN
2
t
-N/2
0
N/2
tD
〈S
z
〉
tD
0
ΓN2
/2
I=-Γd〈S
z
〉/dt
Problem: dipole interactions dephase. [Friedberg et al, Phys. Lett. 1972]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 3 / 36
Collective radiation with a cavity: Dynamics
Hint =
i
ψ†
S−
i + ψS+
i
Single cavity mode: oscillations
[Bonifacio and Preparata PRA ’70]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 4 / 36
Collective radiation with a cavity: Dynamics
Hint =
i
ψ†
S−
i + ψS+
i
0
200
400
600
800
1000
1200
1400
1600
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
|ψ(t)|
2
Time
T=2ln(√N
__
)/√N
__
1/√N
__
Single cavity mode: oscillations
If Sz = |S| = N/2 initially
[Bonifacio and Preparata PRA ’70]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 4 / 36
Dicke model: Equilibrium superradiance transition
H = ωψ†
ψ + ω0Sz
+ g ψ†
S−
+ ψS+
.
Coherent state: |Ψ → eλψ†+ηS+
|Ω
Small g, min at λ, η = 0
[Hepp, Lieb, Ann. Phys. ’73]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 5 / 36
Dicke model: Equilibrium superradiance transition
H = ωψ†
ψ + ω0Sz
+ g ψ†
S−
+ ψS+
.
Coherent state: |Ψ → eλψ†+ηS+
|Ω
Small g, min at λ, η = 0
[Hepp, Lieb, Ann. Phys. ’73]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 5 / 36
Dicke model: Equilibrium superradiance transition
H = ωψ†
ψ + ω0Sz
+ g ψ†
S−
+ ψS+
.
Coherent state: |Ψ → eλψ†+ηS+
|Ω
Small g, min at λ, η = 0
Spontaneous polarisation if: Ng2 > ωω0
[Hepp, Lieb, Ann. Phys. ’73]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 5 / 36
Dicke model: Equilibrium superradiance transition
H = ωψ†
ψ + ω0Sz
+ g ψ†
S−
+ ψS+
.
Coherent state: |Ψ → eλψ†+ηS+
|Ω
Small g, min at λ, η = 0
Spontaneous polarisation if: Ng2 > ωω0
0
0
ω
g-√N
⇓ SR
[Hepp, Lieb, Ann. Phys. ’73]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 5 / 36
No go theorem and transition
Spontaneous polarisation if: Ng2 > ωω0
[Rzazewski et al PRL ’75]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 6 / 36
No go theorem and transition
Spontaneous polarisation if: Ng2 > ωω0
No go theorem:. Minimal coupling (p − eA)2/2m
−
i
e
m
A · pi ⇔ g(ψ†
S−
+ ψS+
),
i
A2
2m
⇔ Nζ(ψ + ψ†
)2
[Rzazewski et al PRL ’75]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 6 / 36
No go theorem and transition
Spontaneous polarisation if: Ng2 > ωω0
No go theorem:. Minimal coupling (p − eA)2/2m
−
i
e
m
A · pi ⇔ g(ψ†
S−
+ ψS+
),
i
A2
2m
⇔ Nζ(ψ + ψ†
)2
For large N, ω → ω + 2Nζ. (RWA)
[Rzazewski et al PRL ’75]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 6 / 36
No go theorem and transition
Spontaneous polarisation if: Ng2 > ωω0
No go theorem:. Minimal coupling (p − eA)2/2m
−
i
e
m
A · pi ⇔ g(ψ†
S−
+ ψS+
),
i
A2
2m
⇔ Nζ(ψ + ψ†
)2
For large N, ω → ω + 2Nζ. (RWA)
Need Ng2 > ω0(ω + 2Nζ).
[Rzazewski et al PRL ’75]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 6 / 36
No go theorem and transition
Spontaneous polarisation if: Ng2 > ωω0
No go theorem:. Minimal coupling (p − eA)2/2m
−
i
e
m
A · pi ⇔ g(ψ†
S−
+ ψS+
),
i
A2
2m
⇔ Nζ(ψ + ψ†
)2
For large N, ω → ω + 2Nζ. (RWA)
Need Ng2 > ω0(ω + 2Nζ).
But Thomas-Reiche-Kuhn sum rule states: g2/ω0 < 2ζ. No transition
[Rzazewski et al PRL ’75]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 6 / 36
Dicke phase transition: ways out
Problem: g2/ω0 < 2ζ for intrinsic parameters. Solutions:
Interpretation
Ferroelectric transition in D · r gauge.
[JK JPCM ’07, Vukics & Domokos PRA 2012 ]
Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11]
Grand canonical ensemble:
If H → H − µ(Sz
+ ψ†
ψ), need only:
g2
N > (ω − µ)(ω0 − µ)
Incoherent pumping — polariton
condensation.
Dissociate g, ω0,
e.g. Raman scheme: ω0 ω.
[Dimer et al. PRA ’07; Baumann et al. Nature
’10. Also, Black et al. PRL ’03 ]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 7 / 36
Dicke phase transition: ways out
Problem: g2/ω0 < 2ζ for intrinsic parameters. Solutions:
Interpretation
Ferroelectric transition in D · r gauge.
[JK JPCM ’07, Vukics & Domokos PRA 2012 ]
Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11]
Grand canonical ensemble:
If H → H − µ(Sz
+ ψ†
ψ), need only:
g2
N > (ω − µ)(ω0 − µ)
Incoherent pumping — polariton
condensation.
Dissociate g, ω0,
e.g. Raman scheme: ω0 ω.
[Dimer et al. PRA ’07; Baumann et al. Nature
’10. Also, Black et al. PRL ’03 ]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 7 / 36
Dicke phase transition: ways out
Problem: g2/ω0 < 2ζ for intrinsic parameters. Solutions:
Interpretation
Ferroelectric transition in D · r gauge.
[JK JPCM ’07, Vukics & Domokos PRA 2012 ]
Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11]
Grand canonical ensemble:
If H → H − µ(Sz
+ ψ†
ψ), need only:
g2
N > (ω − µ)(ω0 − µ)
Incoherent pumping — polariton
condensation.
Dissociate g, ω0,
e.g. Raman scheme: ω0 ω.
[Dimer et al. PRA ’07; Baumann et al. Nature
’10. Also, Black et al. PRL ’03 ]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 7 / 36
Dicke phase transition: ways out
Problem: g2/ω0 < 2ζ for intrinsic parameters. Solutions:
Interpretation
Ferroelectric transition in D · r gauge.
[JK JPCM ’07, Vukics & Domokos PRA 2012 ]
Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11]
Grand canonical ensemble:
If H → H − µ(Sz
+ ψ†
ψ), need only:
g2
N > (ω − µ)(ω0 − µ)
Incoherent pumping — polariton
condensation.
Dissociate g, ω0,
e.g. Raman scheme: ω0 ω.
[Dimer et al. PRA ’07; Baumann et al. Nature
’10. Also, Black et al. PRL ’03 ]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 7 / 36
Dicke phase transition: ways out
Problem: g2/ω0 < 2ζ for intrinsic parameters. Solutions:
Interpretation
Ferroelectric transition in D · r gauge.
[JK JPCM ’07, Vukics & Domokos PRA 2012 ]
Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11]
Grand canonical ensemble:
If H → H − µ(Sz
+ ψ†
ψ), need only:
g2
N > (ω − µ)(ω0 − µ)
Incoherent pumping — polariton
condensation.
Dissociate g, ω0,
e.g. Raman scheme: ω0 ω.
[Dimer et al. PRA ’07; Baumann et al. Nature
’10. Also, Black et al. PRL ’03 ]
κ
Pump
κ
Cavity
Pump
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 7 / 36
Outline
1 Introduction: Dicke model and superradiance
2 Dynamics of generalized Dicke model
Summary of experiment and classical dynamcs
Fixed points and dynamical phases
Timescales and consequences for experiment
Persistent oscillating phases
3 Jaynes Cummings Hubbard model
JCHM vv Dicke
Coherently driven array
Disorder
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 8 / 36
Acknowledgements
GROUP:
COLLABORATORS: Simons, Bhaseen, Schmidt, Blatter, T¨ureci, Kr¨uger
EXPERIMENT: Houck, Wallraff, Fink, Mylnek
FUNDING:
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 9 / 36
Dynamics of generalized Dicke model
1 Introduction: Dicke model and superradiance
2 Dynamics of generalized Dicke model
Summary of experiment and classical dynamcs
Fixed points and dynamical phases
Timescales and consequences for experiment
Persistent oscillating phases
3 Jaynes Cummings Hubbard model
JCHM vv Dicke
Coherently driven array
Disorder
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 10 / 36
Reminder of cold-atom extended Dicke model
κ
Pump
κ
2 Level System
x
z
Ω
gψ
0
2 Level system, | ⇓ , | ⇑ :
⇓: Ψ(x, z) = 1
⇑: Ψ(x, z) =
σ,σ =±
eik(σx+σ z)
H = ωψ†
ψ + ω0Sz
+ g(ψ + ψ†
)(S−
+ S+
)+USzψ†
ψ.
∂t ρ = −i[H, ρ]−κ(ψ†
ψρ − 2ψρψ†
+ ρψ†
ψ)
[Baumann et al Nature ’10 ]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 11 / 36
Reminder of cold-atom extended Dicke model
κ
Pump
κ
2 Level System
x
z
Ω
gψ
0
2 Level system, | ⇓ , | ⇑ :
⇓: Ψ(x, z) = 1
⇑: Ψ(x, z) =
σ,σ =±
eik(σx+σ z)
H = ωψ†
ψ + ω0Sz
+ g(ψ + ψ†
)(S−
+ S+
)+USzψ†
ψ.
∂t ρ = −i[H, ρ]−κ(ψ†
ψρ − 2ψρψ†
+ ρψ†
ψ)
[Baumann et al Nature ’10 ]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 11 / 36
Reminder of cold-atom extended Dicke model
κ
Pump
κ
2 Level System
x
z
Ω
gψ
0
2 Level system, | ⇓ , | ⇑ :
⇓: Ψ(x, z) = 1
⇑: Ψ(x, z) =
σ,σ =±
eik(σx+σ z)
Feedback: U ∝
g2
0
ωc − ωa
H = ωψ†
ψ + ω0Sz
+ g(ψ + ψ†
)(S−
+ S+
)+USzψ†
ψ.
∂t ρ = −i[H, ρ]−κ(ψ†
ψρ − 2ψρψ†
+ ρψ†
ψ)
[Baumann et al Nature ’10 ]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 11 / 36
Reminder of cold-atom extended Dicke model
κ
Pump
κ
2 Level System
x
z
Ω
gψ
0
2 Level system, | ⇓ , | ⇑ :
⇓: Ψ(x, z) = 1
⇑: Ψ(x, z) =
σ,σ =±
eik(σx+σ z)
Feedback: U ∝
g2
0
ωc − ωa
H = ωψ†
ψ + ω0Sz
+ g(ψ + ψ†
)(S−
+ S+
)+USzψ†
ψ.
∂t ρ = −i[H, ρ]−κ(ψ†
ψρ − 2ψρψ†
+ ρψ†
ψ)
ω0 ∼ kHz ω, κ, g
√
N ∼ MHz. [Baumann et al Nature ’10 ]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 11 / 36
Reminder of cold-atom extended Dicke model
κ
Pump
κ
2 Level System
x
z
Ω
gψ
0
2 Level system, | ⇓ , | ⇑ :
⇓: Ψ(x, z) = 1
⇑: Ψ(x, z) =
σ,σ =±
eik(σx+σ z)
Feedback: U ∝
g2
0
ωc − ωa
H = ωψ†
ψ + ω0Sz
+ g(ψ + ψ†
)(S−
+ S+
)+USzψ†
ψ.
∂t ρ = −i[H, ρ]−κ(ψ†
ψρ − 2ψρψ†
+ ρψ†
ψ)
ω0 ∼ kHz ω, κ, g
√
N ∼ MHz. [Baumann et al Nature ’10 ]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 11 / 36
Classical dynamics of the extended Dicke model
Open dynamical system:
H = ωψ†
ψ + ω0Sz
+ g(ψ + ψ†
)(S−
+ S+
)+USzψ†
ψ.
∂t ρ = −i[H, ρ]−κ(ψ†
ψρ − 2ψρψ†
+ ρψ†
ψ)
Neglects quantum fluctuations — restore via Wigner distributed
initial conditions.
Linearisation about fixed point:
Recover Retarded Green’s function (spectrum)
Cannot recover occupations
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 12 / 36
Classical dynamics of the extended Dicke model
Open dynamical system:
H = ωψ†
ψ + ω0Sz
+ g(ψ + ψ†
)(S−
+ S+
)+USzψ†
ψ.
∂t ρ = −i[H, ρ]−κ(ψ†
ψρ − 2ψρψ†
+ ρψ†
ψ)
Classical EOM
(|S| = N/2 1)
˙S−
= −i(ω0+U|ψ|2
)S−
+ 2ig(ψ + ψ∗
)Sz
˙Sz
= ig(ψ + ψ∗
)(S−
− S+
)
˙ψ = − [κ + i(ω+USz
)] ψ − ig(S−
+ S+
)
Neglects quantum fluctuations — restore via Wigner distributed
initial conditions.
Linearisation about fixed point:
Recover Retarded Green’s function (spectrum)
Cannot recover occupations
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 12 / 36
Classical dynamics of the extended Dicke model
Open dynamical system:
H = ωψ†
ψ + ω0Sz
+ g(ψ + ψ†
)(S−
+ S+
)+USzψ†
ψ.
∂t ρ = −i[H, ρ]−κ(ψ†
ψρ − 2ψρψ†
+ ρψ†
ψ)
Classical EOM
(|S| = N/2 1)
˙S−
= −i(ω0+U|ψ|2
)S−
+ 2ig(ψ + ψ∗
)Sz
˙Sz
= ig(ψ + ψ∗
)(S−
− S+
)
˙ψ = − [κ + i(ω+USz
)] ψ − ig(S−
+ S+
)
Neglects quantum fluctuations — restore via Wigner distributed
initial conditions.
Linearisation about fixed point:
Recover Retarded Green’s function (spectrum)
Cannot recover occupations
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 12 / 36
Classical dynamics of the extended Dicke model
Open dynamical system:
H = ωψ†
ψ + ω0Sz
+ g(ψ + ψ†
)(S−
+ S+
)+USzψ†
ψ.
∂t ρ = −i[H, ρ]−κ(ψ†
ψρ − 2ψρψ†
+ ρψ†
ψ)
Classical EOM
(|S| = N/2 1)
˙S−
= −i(ω0+U|ψ|2
)S−
+ 2ig(ψ + ψ∗
)Sz
˙Sz
= ig(ψ + ψ∗
)(S−
− S+
)
˙ψ = − [κ + i(ω+USz
)] ψ − ig(S−
+ S+
)
Neglects quantum fluctuations — restore via Wigner distributed
initial conditions.
Linearisation about fixed point:
Recover Retarded Green’s function (spectrum)
Cannot recover occupations
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 12 / 36
Fixed points (steady states)
0 = i(ω0+U|ψ|2
)S−
+ 2ig(ψ + ψ∗
)Sz
0 = ig(ψ + ψ∗
)(S−
− S+
)
0 = − [κ + i(ω+USz
)] ψ − ig(S−
+ S+
)
ψ = 0, S = (0, 0, ±N/2)
always a solution.
If g > gc, ψ = 0 too
A Sy
= − [S−
] = 0
B ψ = [ψ] = 0
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 13 / 36
Fixed points (steady states)
0 = i(ω0+U|ψ|2
)S−
+ 2ig(ψ + ψ∗
)Sz
0 = ig(ψ + ψ∗
)(S−
− S+
)
0 = − [κ + i(ω+USz
)] ψ − ig(S−
+ S+
)
ψ = 0, S = (0, 0, ±N/2)
always a solution.
If g > gc, ψ = 0 too
A Sy
= − [S−
] = 0
B ψ = [ψ] = 0
x
Sy
Sz
S
Small g: ⇑, ⇓ only.
(ω = 30MHz, UN = −40MHz)
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 13 / 36
Fixed points (steady states)
0 = i(ω0+U|ψ|2
)S−
+ 2ig(ψ + ψ∗
)Sz
0 = ig(ψ + ψ∗
)(S−
− S+
)
0 = − [κ + i(ω+USz
)] ψ − ig(S−
+ S+
)
ψ = 0, S = (0, 0, ±N/2)
always a solution.
If g > gc, ψ = 0 too
A Sy
= − [S−
] = 0
B ψ = [ψ] = 0
x
Sy
Sz
S
Small g: ⇑, ⇓ only. Larger g: SR too.
(ω = 30MHz, UN = −40MHz)
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 13 / 36
Steady state phase diagram
0 = i(ω0+U|ψ|2
)S−
+ 2ig(ψ + ψ∗
)Sz
0 = ig(ψ + ψ∗
)(S−
− S+
)
0 = − [κ + i(ω+USz
)] ψ − ig(S−
+ S+
) 0
0
ω
g-√N
UN=0, κ=0
⇓ SR
See also Domokos and Ritsch PRL ’02, Domokos et al. PRL ’10
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 14 / 36
Steady state phase diagram
0 = i(ω0+U|ψ|2
)S−
+ 2ig(ψ + ψ∗
)Sz
0 = ig(ψ + ψ∗
)(S−
− S+
)
0 = − [κ + i(ω+USz
)] ψ − ig(S−
+ S+
) 0
0
ω
g-√N
UN=0, κ=0
⇓ SR
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
SR
SR
UN=0
⇓ SR(A): Sy = 0
See also Domokos and Ritsch PRL ’02, Domokos et al. PRL ’10
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 14 / 36
Steady state phase diagram
0 = i(ω0+U|ψ|2
)S−
+ 2ig(ψ + ψ∗
)Sz
0 = ig(ψ + ψ∗
)(S−
− S+
)
0 = − [κ + i(ω+USz
)] ψ − ig(S−
+ S+
) 0
0
ω
g-√N
UN=0, κ=0
⇓ SR
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
SRA
SRA
⇓+⇑ SRB
UN=-20
⇓ SR(A): Sy = 0
⇓ + ⇑ SR(B): ψ = 0
See also Domokos and Ritsch PRL ’02, Domokos et al. PRL ’10
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 14 / 36
Steady state phase diagram
0 = i(ω0+U|ψ|2
)S−
+ 2ig(ψ + ψ∗
)Sz
0 = ig(ψ + ψ∗
)(S−
− S+
)
0 = − [κ + i(ω+USz
)] ψ − ig(S−
+ S+
) 0
0
ω
g-√N
UN=0, κ=0
⇓ SR
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
⇓+⇑
SRA
SRA
SRB
UN=-40
⇓ SR(A): Sy = 0
⇓ + ⇑ SR(B): ψ = 0
See also Domokos and Ritsch PRL ’02, Domokos et al. PRL ’10
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 14 / 36
Steady state phase diagram
0 = i(ω0+U|ψ|2
)S−
+ 2ig(ψ + ψ∗
)Sz
0 = ig(ψ + ψ∗
)(S−
− S+
)
0 = − [κ + i(ω+USz
)] ψ − ig(S−
+ S+
) 0
0
ω
g-√N
UN=0, κ=0
⇓ SR
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
SRA
SRA
⇓+⇑ SRB
SRB+⇑
SRB+⇑
SRA+⇑
SRA+⇓
SRB
+⇓+⇑
UN=-40
⇓ SR(A): Sy = 0
⇓ + ⇑ SR(B): ψ = 0
See also Domokos and Ritsch PRL ’02, Domokos et al. PRL ’10
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 14 / 36
Comparison to experiment
-40
-30
-20
-10
0
0 0.5 1 1.5 2 2.5
(ωp-ωc)(2πMHz)
g2
N (MHz)2
UN = −10MHz
Adapted from: [Bhaseen et al. PRA ’12]
[Baumann et al Nature ’10 ]
ω = ωc − ωp +
5
2
UN, UN = −
g2
0
4(ωa − ωc)
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 15 / 36
Dynamics of generalized Dicke model
1 Introduction: Dicke model and superradiance
2 Dynamics of generalized Dicke model
Summary of experiment and classical dynamcs
Fixed points and dynamical phases
Timescales and consequences for experiment
Persistent oscillating phases
3 Jaynes Cummings Hubbard model
JCHM vv Dicke
Coherently driven array
Disorder
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 16 / 36
Dynamics: Evolution from normal state
Gray: S = (
√
N,
√
N, −N/2)
Black: Wigner distribution of S, ψ
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
(i)
(ii)
(iii)
⇓
⇑
⇓+⇑
SRA
SRA
SRB
UN=-40
Oscillations: ∼ 0.1ms
Decay: 20ms, 0.1ms, 20ms
(i) SR(A)
0 20 40 60 80
t (ms)
0
40
80
|ψ|2
0 1 2
0
100
(ii) SR(B)
0 0.1 0.2 0.3 0.4
t (ms)
0
100
200
|ψ|
2
(iii) SR(A)
0 100 200
t (ms)
0
40
80
120
|ψ|
2
150 151
40
50
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 17 / 36
Asymptotic state: Evolution from normal state
(Near to experimental UN = −13MHz).
All stable attractors:
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓ SRA
SRA
⇓+⇑ SRB
UN=-10
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 18 / 36
Asymptotic state: Evolution from normal state
(Near to experimental UN = −13MHz).
All stable attractors:
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓ SRA
SRA
⇓+⇑ SRB
UN=-10
Starting from ⇓
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓
SRA
SRB
SRA
10-1
10
0
10
1
102
103
|ψ|
2
Asymptotic state
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 18 / 36
Timescales for dynamics: Consequences for
experiment
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓
SRA
SRB
SRA
10-1
10
0
10
1
102
10
3
|ψ|2
Asymptotic state
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 19 / 36
Timescales for dynamics: Consequences for
experiment
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓
SRA
SRB
SRA
10-1
10
0
10
1
102
10
3
|ψ|2
Asymptotic state
-40
-20
0
20
40
60
0.0 0.5 1.0 1.5 2.0 2.5
ω(MHz)
g
2
N (MHz
2
)
10
-1
100
10
1
10
2
10310ms sweep
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 19 / 36
Timescales for dynamics: Consequences for
experiment
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓
SRA
SRB
SRA
10-1
10
0
10
1
102
10
3
|ψ|2
Asymptotic state
-40
-20
0
20
40
60
0.0 0.5 1.0 1.5 2.0 2.5
ω(MHz)
g
2
N (MHz
2
)
10
-1
100
10
1
10
2
10310ms sweep
-40
-20
0
20
40
60
0.0 0.5 1.0 1.5 2.0 2.5
ω(MHz)
g
2
N (MHz
2
)
10
-1
10
0
10
1
10
2
10
3200ms sweep
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 19 / 36
Timescales for dynamics: What are they?
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓
SRA
SRB
SRA
10
-1
10
0
10
1
10
2
103
|ψ|
2
Asymptotic state
Growth Most unstable eigenvalues
near S = (0, 0, −N/2)
Decay Slowest stable eigenvalues
near final state
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
No unstable
directions
Two unstable directions
One unstable direction
10µs
100µs
1ms
10ms
100ms
1s
10s
Initial growth time
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 20 / 36
Timescales for dynamics: What are they?
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓
SRA
SRB
SRA
10
-1
10
0
10
1
10
2
103
|ψ|
2
Asymptotic state
Growth Most unstable eigenvalues
near S = (0, 0, −N/2)
Decay Slowest stable eigenvalues
near final state
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
No unstable
directions
Two unstable directions
One unstable direction
10µs
100µs
1ms
10ms
100ms
1s
10s
Initial growth time
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓
SRA
SRB
SRA
10µs
100µs
1ms
10ms
100ms
1s
10s
Asymptotic decay time
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 20 / 36
Timescales for dynamics: Why so slow and varied?
Suppose co- and counter-rotating terms differ
2 Level System
Ω
∆
Ω
ψ
b
a b
a
∆
ψg0
g0
H = . . . + g(ψ†
S−
+ ψS+
) + g (ψ†
S+
+ ψS−
) + . . .
SR(A) near phase boundary at small δg → Critical slowing down
SR(A), SR(B) continuously connect
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 21 / 36
Timescales for dynamics: Why so slow and varied?
Suppose co- and counter-rotating terms differ
2 Level System
Ω
∆
Ω
ψ
b
a b
a
∆
ψg0
g0
H = . . . + g(ψ†
S−
+ ψS+
) + g (ψ†
S+
+ ψS−
) + . . .
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓ SRA
SRA
⇓+⇑ SRB
UN=-10
SR(A) near phase boundary at small δg → Critical slowing down
SR(A), SR(B) continuously connect
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 21 / 36
Timescales for dynamics: Why so slow and varied?
Suppose co- and counter-rotating terms differ
2 Level System
Ω
∆
Ω
ψ
b
a b
a
∆
ψg0
g0
H = . . . + g(ψ†
S−
+ ψS+
) + g (ψ†
S+
+ ψS−
) + . . .
δg = g − g, 2¯g = g + g
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓ SRA
SRA
⇓+⇑ SRB
UN=-10
-40
-20
0
20
40
-0.01 -0.005 0 0.005 0.01
ω(MHz)
δg/g-
g-√N=1
SR(A) near phase boundary at small δg → Critical slowing down
SR(A), SR(B) continuously connect
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 21 / 36
Timescales for dynamics: Why so slow and varied?
Suppose co- and counter-rotating terms differ
2 Level System
Ω
∆
Ω
ψ
b
a b
a
∆
ψg0
g0
H = . . . + g(ψ†
S−
+ ψS+
) + g (ψ†
S+
+ ψS−
) + . . .
δg = g − g, 2¯g = g + g
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓ SRA
SRA
⇓+⇑ SRB
UN=-10
-40
-20
0
20
40
-0.01 -0.005 0 0.005 0.01
ω(MHz)
δg/g-
g-√N=1
SR(A) near phase boundary at small δg → Critical slowing down
SR(A), SR(B) continuously connect
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 21 / 36
Dynamics of generalized Dicke model
1 Introduction: Dicke model and superradiance
2 Dynamics of generalized Dicke model
Summary of experiment and classical dynamcs
Fixed points and dynamical phases
Timescales and consequences for experiment
Persistent oscillating phases
3 Jaynes Cummings Hubbard model
JCHM vv Dicke
Coherently driven array
Disorder
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 22 / 36
Regions without fixed points
Changing U:
2 Level System
Ω
gψ
0
U ∝
g2
0
ωc − ωa
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
⇓+⇑
SRA
SRA
SRB
UN=-40
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 23 / 36
Regions without fixed points
Changing U:
2 Level System
Ω
ψg0
U ∝
g2
0
ωc − ωa
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
⇓+⇑
SRA
SRA
SRB
UN=-40
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 23 / 36
Regions without fixed points
Changing U:
2 Level System
Ω
ψg0
U ∝
g2
0
ωc − ωa
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
SR
SR
UN=0
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 23 / 36
Regions without fixed points
Changing U:
2 Level System
Ω
ψg0
U ∝
g2
0
ωc − ωa
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
SRA
SRA
UN=20
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 23 / 36
Regions without fixed points
Changing U:
2 Level System
Ω
ψg0
U ∝
g2
0
ωc − ωa
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
SRA
SRA
UN=40
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 23 / 36
Regions without fixed points
Changing U:
2 Level System
Ω
ψg0
U ∝
g2
0
ωc − ωa
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
SRA
SRA
Persistent Oscillations
UN=40
0 2 4 6 8 10 12 14 16 18
t (ms)
0
200
400
600
800
1000
1200
|ψ|
2
0 5 10 15
0
400
800
1200
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 23 / 36
Persistent (optomechanical) oscillations
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
SRA
SRA
Persistent Oscillations
UN=40
0 2 4 6 8 10 12 14 16 18
t (ms)
0
200
400
600
800
1000
1200
|ψ|
2
0 5 10 15
0
400
800
1200
0
200
400
600
800
1000
1200
18.00 18.02 18.04 18.06 18.08
-0.4
-0.2
0
0.2
0.4
|ψ|
2
Sx,Sy,Sz
t(ms)
|ψ|2
Sx
Sy
Sz
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 24 / 36
Jaynes Cummings Hubbard model
1 Introduction: Dicke model and superradiance
2 Dynamics of generalized Dicke model
Summary of experiment and classical dynamcs
Fixed points and dynamical phases
Timescales and consequences for experiment
Persistent oscillating phases
3 Jaynes Cummings Hubbard model
JCHM vv Dicke
Coherently driven array
Disorder
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 25 / 36
Equilibrium: Dicke model with chemical potential
H − µN = (ω − µ)ψ†
ψ + (ω0 − µ)Sz
+ g ψ†
S−
+ ψS+
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
SR
Transition at:
g2N > (ω − µ)|ω0 − µ|
Reduce critical g
Unstable if µ > ω
Inverted if µ > ω0
[Eastham and Littlewood, PRB ’01]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 26 / 36
Equilibrium: Dicke model with chemical potential
H − µN = (ω − µ)ψ†
ψ + (ω0 − µ)Sz
+ g ψ†
S−
+ ψS+
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
unstable
SR
Transition at:
g2N > (ω − µ)|ω0 − µ|
Reduce critical g
Unstable if µ > ω
Inverted if µ > ω0
[Eastham and Littlewood, PRB ’01]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 26 / 36
Equilibrium: Dicke model with chemical potential
H − µN = (ω − µ)ψ†
ψ + (ω0 − µ)Sz
+ g ψ†
S−
+ ψS+
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
⇑
⇓
unstable
SR
Transition at:
g2N > (ω − µ)|ω0 − µ|
Reduce critical g
Unstable if µ > ω
Inverted if µ > ω0
[Eastham and Littlewood, PRB ’01]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 26 / 36
Jaynes-Cummings Hubbard model
H = −
J
z
ij
ψ†
i ψj +
i
∆
2
σz
i + g(ψ†
i σ−
i + H.c.)
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 27 / 36
Jaynes-Cummings Hubbard model
H = −
J
z
ij
ψ†
i ψj +
i
∆
2
σz
i + g(ψ†
i σ−
i + H.c.)
-2
-1
0
0.001 0.01 0.1 1
µ/g
J/g
Unstable
Normal
∆/g=1
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 27 / 36
Jaynes-Cummings Hubbard model
H = −
J
z
ij
ψ†
i ψj +
i
∆
2
σz
i + g(ψ†
i σ−
i + H.c.)
-2
-1
0
0.001 0.01 0.1 1
µ/g
J/g
Unstable
Normal
∆/g=1
-10
-8
-6
-4
-2
0
0 1 2 3 4 5 6 7 8 9 10
µ/g
J/g
Unstable
Normal
∆/g=-6
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 27 / 36
Dicke vs JCHM
JCHM
-10
-8
-6
-4
-2
0
0 1 2 3 4 5 6 7 8 9 10
µ/g
J/g
Unstable
Normal
∆/g=-6
Dicke
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
⇑
⇓
unstable
SR
k = 0 mode of JCHM ↔ Dicke photon mode
⇑ ↔ n = 1 Mott lobe
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 28 / 36
Dicke vs JCHM
JCHM
-10
-8
-6
-4
-2
0
0 1 2 3 4 5 6 7 8 9 10
µ/g
J/g
Unstable
Normal
∆/g=-6
Dicke
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
⇑
⇓
unstable
SR
k = 0 mode of JCHM ↔ Dicke photon mode
⇑ ↔ n = 1 Mott lobe
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 28 / 36
Dicke vs JCHM
JCHM
-10
-8
-6
-4
-2
0
0 1 2 3 4 5 6 7 8 9 10
µ/g
J/g
Unstable
Normal
∆/g=-6
Dicke
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
⇑
⇓
unstable
SR
k = 0 mode of JCHM ↔ Dicke photon mode
⇑ ↔ n = 1 Mott lobe
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 28 / 36
Dicke vs JCHM
JCHM
-10
-8
-6
-4
-2
0
0 1 2 3 4 5 6 7 8 9 10
µ/g
J/g
Unstable
Normal
∆/g=-6 E
k
UP
Photon
LP
2LS
∆JCHM
∆Dicke
Dicke
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
⇑
⇓
unstable
SR
k = 0 mode of JCHM ↔ Dicke photon mode
⇑ ↔ n = 1 Mott lobe
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 28 / 36
Jaynes Cummings Hubbard model
1 Introduction: Dicke model and superradiance
2 Dynamics of generalized Dicke model
Summary of experiment and classical dynamcs
Fixed points and dynamical phases
Timescales and consequences for experiment
Persistent oscillating phases
3 Jaynes Cummings Hubbard model
JCHM vv Dicke
Coherently driven array
Disorder
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 29 / 36
Coherently pumped JCHM
H = −
J
z
ij
ψ†
i ψj +
i
∆
2
σz
i + g(ψ†
i σ−
i + H.c.)+f(ψieiωLt
+ H.c.)
∂t ρ = −i[H, ρ]−
κ
2
Lψ[ρ] −
γ
2
Lσ− [ρ]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 30 / 36
Coherently pumped single cavity [Bishop et al. Nat. Phys ’09]
g H =
∆
2
σz
+ g(ψ†
σ−
+ H.c.)+f(ψeiωpumpt
+ H.c.)
∂t ρ = −i[H, ρ]−
κ
2
Lψ[ρ] −
γ
2
Lσ− [ρ]
Anti-resonance in | ψ |.
Effective 2LS:
|Empty , |1 polariton
IncreasingPumping
Mollow triplet fluorescence
[Lang et al. PRL ’11]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 31 / 36
Coherently pumped single cavity [Bishop et al. Nat. Phys ’09]
g H =
∆
2
σz
+ g(ψ†
σ−
+ H.c.)+f(ψeiωpumpt
+ H.c.)
∂t ρ = −i[H, ρ]−
κ
2
Lψ[ρ] −
γ
2
Lσ− [ρ]
Anti-resonance in | ψ |.
Effective 2LS:
|Empty , |1 polariton
IncreasingPumping
Mollow triplet fluorescence
[Lang et al. PRL ’11]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 31 / 36
Coherently pumped single cavity [Bishop et al. Nat. Phys ’09]
g H =
∆
2
σz
+ g(ψ†
σ−
+ H.c.)+f(ψeiωpumpt
+ H.c.)
∂t ρ = −i[H, ρ]−
κ
2
Lψ[ρ] −
γ
2
Lσ− [ρ]
Anti-resonance in | ψ |.
Effective 2LS:
|Empty , |1 polariton
IncreasingPumping
Mollow triplet fluorescence
[Lang et al. PRL ’11]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 31 / 36
Coherently pumped dimer & array
Chose detuning a la Dicke model
ωpump
ωpump
LP
UP
2g
CavityQubit
Single cavity
2J
LP
LP
UP
E
k
Photon
Qubit
Array
2g
Bistability at intermediate J
More/less localised states
Connects to Dicke limit
[Nissen et al. PRL ’12]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 32 / 36
Coherently pumped dimer & array
Chose detuning a la Dicke model
ωpump
ωpump
LP
UP
2g
CavityQubit
Single cavity
2J
LP
LP
UP
E
k
Photon
Qubit
Array
2g
Evolution of anti-resonance vs J.
0
0.1
0.2
-1.06 -1.04 -1.02 -1
|<a>|
ωpump/g
Bistability at intermediate J
More/less localised states
Connects to Dicke limit
[Nissen et al. PRL ’12]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 32 / 36
Coherently pumped dimer & array
Chose detuning a la Dicke model
ωpump
ωpump
LP
UP
2g
CavityQubit
Single cavity
2J
LP
LP
UP
E
k
Photon
Qubit
Array
2g
Evolution of anti-resonance vs J.
0
0.1
0.2
-1.06 -1.04 -1.02 -1
|<a>|
ωpump/g
Bistability at intermediate J
More/less localised states
Connects to Dicke limit
[Nissen et al. PRL ’12]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 32 / 36
Coherently pumped dimer & array
Chose detuning a la Dicke model
ωpump
ωpump
LP
UP
2g
CavityQubit
Single cavity
2J
LP
LP
UP
E
k
Photon
Qubit
Array
2g
Evolution of anti-resonance vs J.
0
0.1
0.2
-1.06 -1.04 -1.02 -1
|<a>|
ωpump/g
Bistability at intermediate J
More/less localised states
Connects to Dicke limit
[Nissen et al. PRL ’12]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 32 / 36
Coherently pumped dimer & array
Chose detuning a la Dicke model
ωpump
ωpump
LP
UP
2g
CavityQubit
Single cavity
2J
LP
LP
UP
E
k
Photon
Qubit
Array
2g
Evolution of anti-resonance vs J.
0
0.1
0.2
-1.06 -1.04 -1.02 -1
|<a>|
ωpump/g
Bistability at intermediate J
More/less localised states
Connects to Dicke limit
[Nissen et al. PRL ’12]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 32 / 36
Photon blockade picture J g
Polariton basis
Nonlinearity | 2 − 2 1| ∝ g.
H =
i
2
τz
i + ˜fτx
i
Decouple hopping:
τ+
i τ−
j → ψτ+ + ψ∗τ−
Bistability for
J > Jc =
4
˜f2
2˜f2 + (˜κ/2)2
3
3/2
0
0.1
0.2
-1.06 -1.04 -1.02 -1
|<a>|
ωpump/g
[Nissen et al. PRL ’12]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 33 / 36
Photon blockade picture J g
Polariton basis
Nonlinearity | 2 − 2 1| ∝ g.
H =
i
2
τz
i + ˜fτx
i −
˜J
z
ij
τ+
i τ−
j
Decouple hopping:
τ+
i τ−
j → ψτ+ + ψ∗τ−
Bistability for
J > Jc =
4
˜f2
2˜f2 + (˜κ/2)2
3
3/2
0
0.1
0.2
-1.06 -1.04 -1.02 -1
|<a>|
ωpump/g
[Nissen et al. PRL ’12]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 33 / 36
Photon blockade picture J g
Polariton basis
Nonlinearity | 2 − 2 1| ∝ g.
H =
i
2
τz
i + ˜fτx
i −
˜J
z
ij
τ+
i τ−
j
Decouple hopping:
τ+
i τ−
j → ψτ+ + ψ∗τ−
Bistability for
J > Jc =
4
˜f2
2˜f2 + (˜κ/2)2
3
3/2
0
0.1
0.2
-1.06 -1.04 -1.02 -1
|<a>|
ωpump/g
[Nissen et al. PRL ’12]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 33 / 36
Photon blockade picture J g
Polariton basis
Nonlinearity | 2 − 2 1| ∝ g.
H =
i
2
τz
i + ˜fτx
i −
˜J
z
ij
τ+
i τ−
j
Decouple hopping:
τ+
i τ−
j → ψτ+ + ψ∗τ−
Bistability for
J > Jc =
4
˜f2
2˜f2 + (˜κ/2)2
3
3/2
0
0.1
0.2
-1.06 -1.04 -1.02 -1
|<a>|
ωpump/g
[Nissen et al. PRL ’12]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 33 / 36
Coherently pumped array: correlations & fluorescence
0
0.5
1
g2(t=0)
0.1
0.2
0.3
0.001 0.01 0.1 1 10
|〈a〉|
Hopping zJ/g
Correlations
g2 : 0 → 1 crossover.
Small J: Mollow triplet
Large J: Off resonance
fluorescence
Pump at collective
resonance
Mismatch if J = 0.
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 34 / 36
Coherently pumped array: correlations & fluorescence
0
0.5
1
g2(t=0)
0.1
0.2
0.3
0.001 0.01 0.1 1 10
|〈a〉|
Hopping zJ/g
Correlations
g2 : 0 → 1 crossover.
Small J: Mollow triplet
Large J: Off resonance
fluorescence
Pump at collective
resonance
Mismatch if J = 0.
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 34 / 36
Coherently pumped array: correlations & fluorescence
0
0.5
1
g2(t=0)
0.1
0.2
0.3
0.001 0.01 0.1 1 10
|〈a〉|
Hopping zJ/g
Correlations
g2 : 0 → 1 crossover.
Fluorescence
Small J: Mollow triplet
Large J: Off resonance
fluorescence
Pump at collective
resonance
Mismatch if J = 0.
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 34 / 36
Coherently pumped array: correlations & fluorescence
0
0.5
1
g2(t=0)
0.1
0.2
0.3
0.001 0.01 0.1 1 10
|〈a〉|
Hopping zJ/g
Correlations
g2 : 0 → 1 crossover.
Fluorescence
Small J: Mollow triplet
Large J: Off resonance
fluorescence
Pump at collective
resonance
Mismatch if J = 0.
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 34 / 36
Coherently pumped array: correlations & fluorescence
0
0.5
1
g2(t=0)
0.1
0.2
0.3
0.001 0.01 0.1 1 10
|〈a〉|
Hopping zJ/g
Correlations
g2 : 0 → 1 crossover.
Fluorescence
Small J: Mollow triplet
Large J: Off resonance
fluorescence
Pump at collective
resonance
Mismatch if J = 0.
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 34 / 36
Coherently pumped array: correlations & fluorescence
0
0.5
1
g2(t=0)
0.1
0.2
0.3
0.001 0.01 0.1 1 10
|〈a〉|
Hopping zJ/g
Correlations
g2 : 0 → 1 crossover.
Fluorescence
Small J: Mollow triplet
Large J: Off resonance
fluorescence
Pump at collective
resonance
Mismatch if J = 0.
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 34 / 36
Coherent pumped array – disorder
Effect of disorder, ∆ → ∆i
Distribution of ψ – Washes out bistable jump
Bistability near resonance — phase of ψ depends on ∆i
Complex ψ distribution
Superfluid phases in driven system?
-1.02 -1.01 -1 -0.99 -0.98 -0.97 -0.96 -0.95
Pump frequency
0
0.1
0.2
0.3
ψ
0
20
40
60
80
100
||
[Kulaitis et al. PRA, ’13]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 35 / 36
Coherent pumped array – disorder
Effect of disorder, ∆ → ∆i
Distribution of ψ – Washes out bistable jump
Bistability near resonance — phase of ψ depends on ∆i
Complex ψ distribution
Superfluid phases in driven system?
-1.02 -1.01 -1 -0.99 -0.98 -0.97 -0.96 -0.95
Pump frequency
0
0.1
0.2
0.3
ψ
0
20
40
60
80
100
||
[Kulaitis et al. PRA, ’13]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 35 / 36
Coherent pumped array – disorder
Effect of disorder, ∆ → ∆i
Distribution of ψ – Washes out bistable jump
Bistability near resonance — phase of ψ depends on ∆i
Complex ψ distribution
Superfluid phases in driven system?
-1.02 -1.01 -1 -0.99 -0.98 -0.97 -0.96 -0.95
Pump frequency
0
0.1
0.2
0.3
ψ
0
20
40
60
80
100
||
-0.2
0
0.2
(a) ωp=-0.988 (b) ωp=-0.987 (c) ωp=-0.986
-0.2
0
0.2
(d) ωp=-0.985 (e) ωp=-0.982 (f) ωp=-0.978
-0.2 0 0.2
-0.2
0
0.2
0
20
40
60
80
100
(g) ωp=-0.975
-0.2 0 0.2
(h) ωp=-0.971
-0.2 0 0.2
(i) ωp=-0.968
Re( )
Im()
[Kulaitis et al. PRA, ’13]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 35 / 36
Coherent pumped array – disorder
Effect of disorder, ∆ → ∆i
Distribution of ψ – Washes out bistable jump
Bistability near resonance — phase of ψ depends on ∆i
Complex ψ distribution
Superfluid phases in driven system?
-1.02 -1.01 -1 -0.99 -0.98 -0.97 -0.96 -0.95
Pump frequency
0
0.1
0.2
0.3
ψ
0
20
40
60
80
100
||
-0.2
0
0.2
(a) ωp=-0.988 (b) ωp=-0.987 (c) ωp=-0.986
-0.2
0
0.2
(d) ωp=-0.985 (e) ωp=-0.982 (f) ωp=-0.978
-0.2 0 0.2
-0.2
0
0.2
0
20
40
60
80
100
(g) ωp=-0.975
-0.2 0 0.2
(h) ωp=-0.971
-0.2 0 0.2
(i) ωp=-0.968
Re( )
Im()
[Kulaitis et al. PRA, ’13]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 35 / 36
Summary
Wide variety of dynamical phases
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
SRA
SRA
UN=40
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
SR
SR
UN=0
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇓
⇑
⇓+⇑
SRA
SRA
SRB
UN=-40
-40
-20
0
20
40
-0.01 -0.005 0 0.005 0.01
ω(MHz)
δg/g-
g-√N=1
Slow dynamics for U < 0 & Persistent oscillations for U > 0
0 100 200
t (ms)
0
40
80
120
|ψ|
2
150 151
40
50
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
No unstable
directions
Two unstable directions
One unstable direction
10µs
100µs
1ms
10ms
100ms
1s
10s
Initial growth time
-40
-20
0
20
40
0 0.5 1 1.5
ω(MHz)
g√N (MHz)
⇑
⇓
SRA
SRB
SRA
10µs
100µs
1ms
10ms
100ms
1s
10s
Asymptotic decay time
0 2 4 6 8 10 12 14 16 18
t (ms)
0
200
400
600
800
1000
1200
|ψ|
2
0 5 10 15
0
400
800
1200
0
200
400
600
800
1000
1200
18.00 18.02 18.04 18.06 18.08
-0.4
-0.2
0
0.2
0.4
|ψ|2
Sx,Sy,Sz
t(ms)
|ψ|2
Sx
Sy
Sz
JK et al. PRL ’10, Bhaseen et al. PRA ’12
Dicke model and JCHM: connection at J → ∞E
k
UP
Photon
LP
2LS
∆JCHM
∆Dicke
-10
-8
-6
-4
-2
0
0 1 2 3 4 5 6 7 8 9 10
µ/g
J/g
Unstable
Normal
∆/g=-6
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
⇑
⇓
unstable
SR
Coherently pumped coupled cavity array
ωpump
ωpump
LP
UP
2g
CavityQubit
Single cavity
2J
LP
LP
UP
E
k
Photon
Qubit
Array
2g
0
0.1
0.2
-1.06 -1.04 -1.02 -1
|<a>|
ωpump/g
0
0.5
1
g2(t=0)
0.1
0.2
0.3
0.001 0.01 0.1 1 10
|〈a〉|
Hopping zJ/g
-1.02 -1.01 -1 -0.99 -0.98 -0.97 -0.96 -0.95
Pump frequency
0
0.1
0.2
0.3
ψ
0
20
40
60
80
100
||
-0.2
0
0.2
(a) ωp=-0.988 (b) ωp=-0.987 (c) ωp=-0.986
-0.2
0
0.2
(d) ωp=-0.985 (e) ωp=-0.982 (f) ωp=-0.978
-0.2 0 0.2
-0.2
0
0.2
0
20
40
60
80
100
(g) ωp=-0.975
-0.2 0 0.2
(h) ωp=-0.971
-0.2 0 0.2
(i) ωp=-0.968
Re( )
Im()
Nissen et al. PRL ’12, Kulaitis et al. PRA ’13
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 36 / 36
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 37 / 44
4 Ferroelectric transition
5 Dicke vs JCHM
6 Pumping without symmetry breaking
7 Collective dephasing
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 38 / 44
Ferroelectric transition
Atoms in Coulomb gauge
H = ωk a†
k ak +
i
[pi − eA(ri)]2
+ Vcoul
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 39 / 44
Ferroelectric transition
Atoms in Coulomb gauge
H = ωk a†
k ak +
i
[pi − eA(ri)]2
+ Vcoul
Two-level systems — dipole-dipole coupling
H = ω0Sz
+ ωψ†
ψ + g(S+
+ S−
)(ψ + ψ†
) + Nζ(ψ + ψ†
)2
−η(S+
− S−
)2
(nb g2, ζ, η ∝ 1/V).
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 39 / 44
Ferroelectric transition
Atoms in Coulomb gauge
H = ωk a†
k ak +
i
[pi − eA(ri)]2
+ Vcoul
Two-level systems — dipole-dipole coupling
H = ω0Sz
+ ωψ†
ψ + g(S+
+ S−
)(ψ + ψ†
) + Nζ(ψ + ψ†
)2
−η(S+
− S−
)2
(nb g2, ζ, η ∝ 1/V).
Ferroelectric polarisation if ω0 < 2ηN
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 39 / 44
Ferroelectric transition
Atoms in Coulomb gauge
H = ωk a†
k ak +
i
[pi − eA(ri)]2
+ Vcoul
Two-level systems — dipole-dipole coupling
H = ω0Sz
+ ωψ†
ψ + g(S+
+ S−
)(ψ + ψ†
) + Nζ(ψ + ψ†
)2
−η(S+
− S−
)2
(nb g2, ζ, η ∝ 1/V).
Ferroelectric polarisation if ω0 < 2ηN
Gauge transform to dipole gauge D · r
H = ω0Sz
+ ωψ†
ψ + ¯g(S+
− S−
)(ψ − ψ†
)
“Dicke” transition at ω0 < N¯g2/ω ≡ 2ηN
But, ψ describes electric displacement
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 39 / 44
Equilibrium: Dicke model with chemical potential
H − µN = (ω − µ)ψ†
ψ + (ω0 − µ)Sz
+ g ψ†
S−
+ ψS+
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
SR
Transition at:
g2N > (ω − µ)|ω0 − µ|
Reduce critical g
Unstable if µ > ω
Inverted if µ > ω0
[Eastham and Littlewood, PRB ’01]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 40 / 44
Equilibrium: Dicke model with chemical potential
H − µN = (ω − µ)ψ†
ψ + (ω0 − µ)Sz
+ g ψ†
S−
+ ψS+
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
unstable
SR
Transition at:
g2N > (ω − µ)|ω0 − µ|
Reduce critical g
Unstable if µ > ω
Inverted if µ > ω0
[Eastham and Littlewood, PRB ’01]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 40 / 44
Equilibrium: Dicke model with chemical potential
H − µN = (ω − µ)ψ†
ψ + (ω0 − µ)Sz
+ g ψ†
S−
+ ψS+
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
⇑
⇓
unstable
SR
Transition at:
g2N > (ω − µ)|ω0 − µ|
Reduce critical g
Unstable if µ > ω
Inverted if µ > ω0
[Eastham and Littlewood, PRB ’01]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 40 / 44
Jaynes-Cummings Hubbard model
H = −
J
z
ij
ψ†
i ψj +
i
∆
2
σz
i + g(ψ†
i σ−
i + H.c.)
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 41 / 44
Jaynes-Cummings Hubbard model
H = −
J
z
ij
ψ†
i ψj +
i
∆
2
σz
i + g(ψ†
i σ−
i + H.c.)
-2
-1
0
0.001 0.01 0.1 1
µ/g
J/g
Unstable
Normal
∆/g=1
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 41 / 44
Jaynes-Cummings Hubbard model
H = −
J
z
ij
ψ†
i ψj +
i
∆
2
σz
i + g(ψ†
i σ−
i + H.c.)
-2
-1
0
0.001 0.01 0.1 1
µ/g
J/g
Unstable
Normal
∆/g=1
-10
-8
-6
-4
-2
0
0 1 2 3 4 5 6 7 8 9 10
µ/g
J/g
Unstable
Normal
∆/g=-6
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 41 / 44
Dicke vs JCHM
JCHM
-10
-8
-6
-4
-2
0
0 1 2 3 4 5 6 7 8 9 10
µ/g
J/g
Unstable
Normal
∆/g=-6
Dicke
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
⇑
⇓
unstable
SR
k = 0 mode of JCHM ↔ Dicke photon mode
⇑ ↔ n = 1 Mott lobe
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 42 / 44
Dicke vs JCHM
JCHM
-10
-8
-6
-4
-2
0
0 1 2 3 4 5 6 7 8 9 10
µ/g
J/g
Unstable
Normal
∆/g=-6
Dicke
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
⇑
⇓
unstable
SR
k = 0 mode of JCHM ↔ Dicke photon mode
⇑ ↔ n = 1 Mott lobe
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 42 / 44
Dicke vs JCHM
JCHM
-10
-8
-6
-4
-2
0
0 1 2 3 4 5 6 7 8 9 10
µ/g
J/g
Unstable
Normal
∆/g=-6
Dicke
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
⇑
⇓
unstable
SR
k = 0 mode of JCHM ↔ Dicke photon mode
⇑ ↔ n = 1 Mott lobe
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 42 / 44
Dicke vs JCHM
JCHM
-10
-8
-6
-4
-2
0
0 1 2 3 4 5 6 7 8 9 10
µ/g
J/g
Unstable
Normal
∆/g=-6 E
k
UP
Photon
LP
2LS
∆JCHM
∆Dicke
Dicke
-5
-4
-3
-2
-1
0
1
2
-4 -3 -2 -1 0 1 2
(µ-ω)/g
(ω0 - ω)/g
⇑
⇓
unstable
SR
k = 0 mode of JCHM ↔ Dicke photon mode
⇑ ↔ n = 1 Mott lobe
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 42 / 44
Raman pumping
How to pump without breaking symmetry
Counter-rotating terms — Raman pumping
Atom proposal [Dimer et al. PRA ’07]
Atom experiment [Baumann et al. Nature ’10]
Qubit — allowed transitions ∆n = 1
Qubit dephasing much bigger than atom
JK, T¨ureci, Houck in progress
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 43 / 44
Raman pumping
How to pump without breaking symmetry
Counter-rotating terms — Raman pumping
Atom proposal [Dimer et al. PRA ’07]
Atom experiment [Baumann et al. Nature ’10]
Qubit — allowed transitions ∆n = 1
Qubit dephasing much bigger than atom
JK, T¨ureci, Houck in progress
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 43 / 44
Raman pumping
How to pump without breaking symmetry
Counter-rotating terms — Raman pumping
Atom proposal [Dimer et al. PRA ’07]
Atom experiment [Baumann et al. Nature ’10]
Qubit — allowed transitions ∆n = 1
Qubit dephasing much bigger than atom
Tunable-coupling-qubit
00
01
10
11
02
20
g
g
0
1
Ω
Ωa
b
Pump
Cavity
JK, T¨ureci, Houck in progress
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 43 / 44
Raman pumping
How to pump without breaking symmetry
Counter-rotating terms — Raman pumping
Atom proposal [Dimer et al. PRA ’07]
Atom experiment [Baumann et al. Nature ’10]
Qubit — allowed transitions ∆n = 1
Qubit dephasing much bigger than atom
Tunable-coupling-qubit
00
01
10
11
02
20
g
g
0
1
Ω
Ωa
b
Pump
Cavity
0 0.5 1
g0
0
1
2
3
4
Ωa=Ωb=Ω
⇓
SR?
JK, T¨ureci, Houck in progress
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 43 / 44
Raman pumping
How to pump without breaking symmetry
Counter-rotating terms — Raman pumping
Atom proposal [Dimer et al. PRA ’07]
Atom experiment [Baumann et al. Nature ’10]
Qubit — allowed transitions ∆n = 1
Qubit dephasing much bigger than atom
Tunable-coupling-qubit
00
01
10
11
02
20
g
g
0
1
Ω
Ωa
b
Pump
Cavity
0 0.5 1
g0
0
1
2
3
4
Ωa=Ωb=Ω
⇓
SR?
JK, T¨ureci, Houck in progress
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 43 / 44
Collective dephasing
Real environment is not Markovian
[Carmichael & Walls JPA ’73] Requirements for correct equilibrium
[Ciuti & Carusotto PRA ’09] Dicke SR and emission
Cannot assume fixed κ, γ
Phase transition → soft modes
Strong coupling → varying decay
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 44 / 44
Collective dephasing
Real environment is not Markovian
[Carmichael & Walls JPA ’73] Requirements for correct equilibrium
[Ciuti & Carusotto PRA ’09] Dicke SR and emission
Cannot assume fixed κ, γ
Phase transition → soft modes
Strong coupling → varying decay
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 44 / 44
Collective dephasing
Real environment is not Markovian
[Carmichael & Walls JPA ’73] Requirements for correct equilibrium
[Ciuti & Carusotto PRA ’09] Dicke SR and emission
Cannot assume fixed κ, γ
Phase transition → soft modes
Strong coupling → varying decay
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 44 / 44
Collective dephasing
Real environment is not Markovian
[Carmichael & Walls JPA ’73] Requirements for correct equilibrium
[Ciuti & Carusotto PRA ’09] Dicke SR and emission
Cannot assume fixed κ, γ
Phase transition → soft modes
Strong coupling → varying decay
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 44 / 44
Collective dephasing
Real environment is not Markovian
[Carmichael & Walls JPA ’73] Requirements for correct equilibrium
[Ciuti & Carusotto PRA ’09] Dicke SR and emission
Cannot assume fixed κ, γ
Phase transition → soft modes
Strong coupling → varying decay
Dicke model linewidth:
H = ωψ†
ψ+
N
i=1
i
2
σz
i +g σ+
i ψ + h.c.
+
i
σz
i
q
γq b†
q + bq +
q
βqb†
iqbq.
[Nissen, Fink et al. arXiv:1302.0665]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 44 / 44
Collective dephasing
Real environment is not Markovian
[Carmichael & Walls JPA ’73] Requirements for correct equilibrium
[Ciuti & Carusotto PRA ’09] Dicke SR and emission
Cannot assume fixed κ, γ
Phase transition → soft modes
Strong coupling → varying decay
Dicke model linewidth:
H = ωψ†
ψ+
N
i=1
i
2
σz
i +g σ+
i ψ + h.c.
+
i
σz
i
q
γq b†
q + bq +
q
βqb†
iqbq.
0.008
0.01
0.012
0.014
1 2 3 4 5
linewidth/g
number of qubits, N
experiment
theory
〈a〉
2
(a.u.)
frequency (a.u.)
1
2
3
[Nissen, Fink et al. arXiv:1302.0665]
Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 44 / 44

More Related Content

PDF
final_exam
PDF
Ab initio md
PDF
Magnetic Moment of Muons and New Physics
PDF
Simulation and Modeling of Gravitational Wave Sources
PDF
Effect of sodium doping on thermal properties of perovskite r mn o3 for poten...
PPTX
First and second law thermodynamics (sy p 8)
PPTX
Matter waves
PDF
Gnp ch103-lecture notes
final_exam
Ab initio md
Magnetic Moment of Muons and New Physics
Simulation and Modeling of Gravitational Wave Sources
Effect of sodium doping on thermal properties of perovskite r mn o3 for poten...
First and second law thermodynamics (sy p 8)
Matter waves
Gnp ch103-lecture notes

What's hot (20)

PDF
Neutron Skin Measurements at Mainz
PDF
Radiation of an Accelerated Charge
PDF
Radiation of an accelerated charge
PDF
Radiation of an Accelerated Charge
PDF
P05 Chemical Kinetics
PDF
Chemical kinetics
PPTX
Chemical Kinetics
PPT
D07 abbrev arrhenius and catalysts_alg
PDF
PDF
20140113 TNTL journal club, PRL 108, 187201 (2012)
PDF
DOC
Atoms and nuclei
PDF
Chemical Kinetics
PPT
Solving kinetics problems
DOC
E-book-phy1
PDF
Introduction to Electron Correlation
PDF
Insights into nanoscale phase stability and charging mechanisms in alkali o2 ...
PDF
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
PDF
A*STAR Webinar on The AI Revolution in Materials Science
PDF
AP Chemistry Study Guide- Kinetics
Neutron Skin Measurements at Mainz
Radiation of an Accelerated Charge
Radiation of an accelerated charge
Radiation of an Accelerated Charge
P05 Chemical Kinetics
Chemical kinetics
Chemical Kinetics
D07 abbrev arrhenius and catalysts_alg
20140113 TNTL journal club, PRL 108, 187201 (2012)
Atoms and nuclei
Chemical Kinetics
Solving kinetics problems
E-book-phy1
Introduction to Electron Correlation
Insights into nanoscale phase stability and charging mechanisms in alkali o2 ...
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
A*STAR Webinar on The AI Revolution in Materials Science
AP Chemistry Study Guide- Kinetics
Ad

Viewers also liked (20)

PDF
無題プレゼンテーション7
PDF
CII Economy Matters - July 2013 Issue
PPTX
Retail Career Guide
PDF
Неоконченная депортация турок-месхетинцев: 12 слайдов
PPT
Programa de tuberculosis
DOCX
Estadistica
PPT
Tasarim harikalari
PDF
Whitepaper: Guidelines to-set-up-a-mobile-based-solution-for-ecommerce-shoppi...
PPT
9 7 perimeters and similarity
PDF
Мониторинг патрульно-постовой службы в России в 2013г.
ODP
Turtle Graphics in Groovy
PPTX
CouchDb
PDF
Top 30 reasons to associate with RE/MAX
PPTX
Mulvey
PPT
PDF
30 ideas in 60 minutes
PPTX
Progressive downloads and rendering (Stoyan Stefanov)
PDF
Tipos de ram
PDF
無題プレゼンテーション8
PPTX
Cropping assignment
無題プレゼンテーション7
CII Economy Matters - July 2013 Issue
Retail Career Guide
Неоконченная депортация турок-месхетинцев: 12 слайдов
Programa de tuberculosis
Estadistica
Tasarim harikalari
Whitepaper: Guidelines to-set-up-a-mobile-based-solution-for-ecommerce-shoppi...
9 7 perimeters and similarity
Мониторинг патрульно-постовой службы в России в 2013г.
Turtle Graphics in Groovy
CouchDb
Top 30 reasons to associate with RE/MAX
Mulvey
30 ideas in 60 minutes
Progressive downloads and rendering (Stoyan Stefanov)
Tipos de ram
無題プレゼンテーション8
Cropping assignment
Ad

Similar to Soton (20)

PDF
Fluidi e superfluidi luminosi
PDF
What's So Interesting About AMO Phyiscs?
PDF
Gravity tests with neutrons
PDF
Manuscript 1334
PDF
Manuscript 1334-1
PDF
PDF
Extreme light research group overview
PDF
Ultracold atoms in superlattices as quantum simulators for a spin ordering mo...
PPT
PPTX
IIT JEE - Physics 2009 i
PDF
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
PDF
SoCal BSM Grad Student Gong Show
PPTX
IIT JEE Physics 1994
PDF
Strongly interacting fermions in optical lattices
PDF
Can Supercooled Phase Transitions Explain the Gravitational Wave Background O...
PDF
PH600 Project report
PDF
Modeling the coupling between cw lasers and a frequency comb in atomic samples
PDF
LENR Theory-Fleischmann et al-Nuovo Cimento 1994
PPT
Figotin Bath 2005
PPTX
IITJEE - Physics 2011-i
Fluidi e superfluidi luminosi
What's So Interesting About AMO Phyiscs?
Gravity tests with neutrons
Manuscript 1334
Manuscript 1334-1
Extreme light research group overview
Ultracold atoms in superlattices as quantum simulators for a spin ordering mo...
IIT JEE - Physics 2009 i
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
SoCal BSM Grad Student Gong Show
IIT JEE Physics 1994
Strongly interacting fermions in optical lattices
Can Supercooled Phase Transitions Explain the Gravitational Wave Background O...
PH600 Project report
Modeling the coupling between cw lasers and a frequency comb in atomic samples
LENR Theory-Fleischmann et al-Nuovo Cimento 1994
Figotin Bath 2005
IITJEE - Physics 2011-i

Recently uploaded (20)

PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPT
Module 1.ppt Iot fundamentals and Architecture
PPTX
Modernising the Digital Integration Hub
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
sustainability-14-14877-v2.pddhzftheheeeee
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PPTX
Tartificialntelligence_presentation.pptx
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
A novel scalable deep ensemble learning framework for big data classification...
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PPTX
Chapter 5: Probability Theory and Statistics
PDF
Hybrid model detection and classification of lung cancer
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Getting started with AI Agents and Multi-Agent Systems
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Module 1.ppt Iot fundamentals and Architecture
Modernising the Digital Integration Hub
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
sustainability-14-14877-v2.pddhzftheheeeee
Taming the Chaos: How to Turn Unstructured Data into Decisions
Tartificialntelligence_presentation.pptx
Group 1 Presentation -Planning and Decision Making .pptx
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
A novel scalable deep ensemble learning framework for big data classification...
WOOl fibre morphology and structure.pdf for textiles
Zenith AI: Advanced Artificial Intelligence
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Chapter 5: Probability Theory and Statistics
Hybrid model detection and classification of lung cancer

Soton

  • 1. Non-equilibrium phases of coupled matter-light systems Jonathan Keeling University of St Andrews 600YEARS Southhampton, May 2013 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 1 / 36
  • 2. Coupling many atoms to light Old question: What happens to radiation when many atoms interact “collectively” with light. Superradiance — dynamical and steady state. Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 2 / 36
  • 3. Coupling many atoms to light Old question: What happens to radiation when many atoms interact “collectively” with light. Superradiance — dynamical and steady state. New relevance Superconducting qubits Quantum dots & NV centres Ultra-cold atoms κ Pump κ Cavity Pump Rydberg atoms/polaritons Microcavity Polaritons Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 2 / 36
  • 4. Dicke effect: Enhanced emission Hint = k,i gk ψ† k S− i e−ik·ri + H.c. Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 3 / 36
  • 5. Dicke effect: Enhanced emission Hint = k,i gk ψ† k S− i e−ik·ri + H.c. If |ri − rj| λ, use i Si → S Collective decay: dρ dt = − Γ 2 S+ S− ρ − S− ρS+ + ρS+ S− Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 3 / 36
  • 6. Dicke effect: Enhanced emission Hint = k,i gk ψ† k S− i e−ik·ri + H.c. If |ri − rj| λ, use i Si → S Collective decay: dρ dt = − Γ 2 S+ S− ρ − S− ρS+ + ρS+ S− If Sz = |S| = N/2 initially: I ∝ −Γ d Sz dt = ΓN2 4 sech2 ΓN 2 t -N/2 0 N/2 tD 〈S z 〉 tD 0 ΓN2 /2 I=-Γd〈S z 〉/dt Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 3 / 36
  • 7. Dicke effect: Enhanced emission Hint = k,i gk ψ† k S− i e−ik·ri + H.c. If |ri − rj| λ, use i Si → S Collective decay: dρ dt = − Γ 2 S+ S− ρ − S− ρS+ + ρS+ S− If Sz = |S| = N/2 initially: I ∝ −Γ d Sz dt = ΓN2 4 sech2 ΓN 2 t -N/2 0 N/2 tD 〈S z 〉 tD 0 ΓN2 /2 I=-Γd〈S z 〉/dt Problem: dipole interactions dephase. [Friedberg et al, Phys. Lett. 1972] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 3 / 36
  • 8. Collective radiation with a cavity: Dynamics Hint = i ψ† S− i + ψS+ i Single cavity mode: oscillations [Bonifacio and Preparata PRA ’70] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 4 / 36
  • 9. Collective radiation with a cavity: Dynamics Hint = i ψ† S− i + ψS+ i 0 200 400 600 800 1000 1200 1400 1600 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 |ψ(t)| 2 Time T=2ln(√N __ )/√N __ 1/√N __ Single cavity mode: oscillations If Sz = |S| = N/2 initially [Bonifacio and Preparata PRA ’70] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 4 / 36
  • 10. Dicke model: Equilibrium superradiance transition H = ωψ† ψ + ω0Sz + g ψ† S− + ψS+ . Coherent state: |Ψ → eλψ†+ηS+ |Ω Small g, min at λ, η = 0 [Hepp, Lieb, Ann. Phys. ’73] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 5 / 36
  • 11. Dicke model: Equilibrium superradiance transition H = ωψ† ψ + ω0Sz + g ψ† S− + ψS+ . Coherent state: |Ψ → eλψ†+ηS+ |Ω Small g, min at λ, η = 0 [Hepp, Lieb, Ann. Phys. ’73] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 5 / 36
  • 12. Dicke model: Equilibrium superradiance transition H = ωψ† ψ + ω0Sz + g ψ† S− + ψS+ . Coherent state: |Ψ → eλψ†+ηS+ |Ω Small g, min at λ, η = 0 Spontaneous polarisation if: Ng2 > ωω0 [Hepp, Lieb, Ann. Phys. ’73] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 5 / 36
  • 13. Dicke model: Equilibrium superradiance transition H = ωψ† ψ + ω0Sz + g ψ† S− + ψS+ . Coherent state: |Ψ → eλψ†+ηS+ |Ω Small g, min at λ, η = 0 Spontaneous polarisation if: Ng2 > ωω0 0 0 ω g-√N ⇓ SR [Hepp, Lieb, Ann. Phys. ’73] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 5 / 36
  • 14. No go theorem and transition Spontaneous polarisation if: Ng2 > ωω0 [Rzazewski et al PRL ’75] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 6 / 36
  • 15. No go theorem and transition Spontaneous polarisation if: Ng2 > ωω0 No go theorem:. Minimal coupling (p − eA)2/2m − i e m A · pi ⇔ g(ψ† S− + ψS+ ), i A2 2m ⇔ Nζ(ψ + ψ† )2 [Rzazewski et al PRL ’75] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 6 / 36
  • 16. No go theorem and transition Spontaneous polarisation if: Ng2 > ωω0 No go theorem:. Minimal coupling (p − eA)2/2m − i e m A · pi ⇔ g(ψ† S− + ψS+ ), i A2 2m ⇔ Nζ(ψ + ψ† )2 For large N, ω → ω + 2Nζ. (RWA) [Rzazewski et al PRL ’75] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 6 / 36
  • 17. No go theorem and transition Spontaneous polarisation if: Ng2 > ωω0 No go theorem:. Minimal coupling (p − eA)2/2m − i e m A · pi ⇔ g(ψ† S− + ψS+ ), i A2 2m ⇔ Nζ(ψ + ψ† )2 For large N, ω → ω + 2Nζ. (RWA) Need Ng2 > ω0(ω + 2Nζ). [Rzazewski et al PRL ’75] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 6 / 36
  • 18. No go theorem and transition Spontaneous polarisation if: Ng2 > ωω0 No go theorem:. Minimal coupling (p − eA)2/2m − i e m A · pi ⇔ g(ψ† S− + ψS+ ), i A2 2m ⇔ Nζ(ψ + ψ† )2 For large N, ω → ω + 2Nζ. (RWA) Need Ng2 > ω0(ω + 2Nζ). But Thomas-Reiche-Kuhn sum rule states: g2/ω0 < 2ζ. No transition [Rzazewski et al PRL ’75] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 6 / 36
  • 19. Dicke phase transition: ways out Problem: g2/ω0 < 2ζ for intrinsic parameters. Solutions: Interpretation Ferroelectric transition in D · r gauge. [JK JPCM ’07, Vukics & Domokos PRA 2012 ] Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11] Grand canonical ensemble: If H → H − µ(Sz + ψ† ψ), need only: g2 N > (ω − µ)(ω0 − µ) Incoherent pumping — polariton condensation. Dissociate g, ω0, e.g. Raman scheme: ω0 ω. [Dimer et al. PRA ’07; Baumann et al. Nature ’10. Also, Black et al. PRL ’03 ] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 7 / 36
  • 20. Dicke phase transition: ways out Problem: g2/ω0 < 2ζ for intrinsic parameters. Solutions: Interpretation Ferroelectric transition in D · r gauge. [JK JPCM ’07, Vukics & Domokos PRA 2012 ] Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11] Grand canonical ensemble: If H → H − µ(Sz + ψ† ψ), need only: g2 N > (ω − µ)(ω0 − µ) Incoherent pumping — polariton condensation. Dissociate g, ω0, e.g. Raman scheme: ω0 ω. [Dimer et al. PRA ’07; Baumann et al. Nature ’10. Also, Black et al. PRL ’03 ] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 7 / 36
  • 21. Dicke phase transition: ways out Problem: g2/ω0 < 2ζ for intrinsic parameters. Solutions: Interpretation Ferroelectric transition in D · r gauge. [JK JPCM ’07, Vukics & Domokos PRA 2012 ] Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11] Grand canonical ensemble: If H → H − µ(Sz + ψ† ψ), need only: g2 N > (ω − µ)(ω0 − µ) Incoherent pumping — polariton condensation. Dissociate g, ω0, e.g. Raman scheme: ω0 ω. [Dimer et al. PRA ’07; Baumann et al. Nature ’10. Also, Black et al. PRL ’03 ] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 7 / 36
  • 22. Dicke phase transition: ways out Problem: g2/ω0 < 2ζ for intrinsic parameters. Solutions: Interpretation Ferroelectric transition in D · r gauge. [JK JPCM ’07, Vukics & Domokos PRA 2012 ] Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11] Grand canonical ensemble: If H → H − µ(Sz + ψ† ψ), need only: g2 N > (ω − µ)(ω0 − µ) Incoherent pumping — polariton condensation. Dissociate g, ω0, e.g. Raman scheme: ω0 ω. [Dimer et al. PRA ’07; Baumann et al. Nature ’10. Also, Black et al. PRL ’03 ] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 7 / 36
  • 23. Dicke phase transition: ways out Problem: g2/ω0 < 2ζ for intrinsic parameters. Solutions: Interpretation Ferroelectric transition in D · r gauge. [JK JPCM ’07, Vukics & Domokos PRA 2012 ] Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11] Grand canonical ensemble: If H → H − µ(Sz + ψ† ψ), need only: g2 N > (ω − µ)(ω0 − µ) Incoherent pumping — polariton condensation. Dissociate g, ω0, e.g. Raman scheme: ω0 ω. [Dimer et al. PRA ’07; Baumann et al. Nature ’10. Also, Black et al. PRL ’03 ] κ Pump κ Cavity Pump Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 7 / 36
  • 24. Outline 1 Introduction: Dicke model and superradiance 2 Dynamics of generalized Dicke model Summary of experiment and classical dynamcs Fixed points and dynamical phases Timescales and consequences for experiment Persistent oscillating phases 3 Jaynes Cummings Hubbard model JCHM vv Dicke Coherently driven array Disorder Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 8 / 36
  • 25. Acknowledgements GROUP: COLLABORATORS: Simons, Bhaseen, Schmidt, Blatter, T¨ureci, Kr¨uger EXPERIMENT: Houck, Wallraff, Fink, Mylnek FUNDING: Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 9 / 36
  • 26. Dynamics of generalized Dicke model 1 Introduction: Dicke model and superradiance 2 Dynamics of generalized Dicke model Summary of experiment and classical dynamcs Fixed points and dynamical phases Timescales and consequences for experiment Persistent oscillating phases 3 Jaynes Cummings Hubbard model JCHM vv Dicke Coherently driven array Disorder Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 10 / 36
  • 27. Reminder of cold-atom extended Dicke model κ Pump κ 2 Level System x z Ω gψ 0 2 Level system, | ⇓ , | ⇑ : ⇓: Ψ(x, z) = 1 ⇑: Ψ(x, z) = σ,σ =± eik(σx+σ z) H = ωψ† ψ + ω0Sz + g(ψ + ψ† )(S− + S+ )+USzψ† ψ. ∂t ρ = −i[H, ρ]−κ(ψ† ψρ − 2ψρψ† + ρψ† ψ) [Baumann et al Nature ’10 ] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 11 / 36
  • 28. Reminder of cold-atom extended Dicke model κ Pump κ 2 Level System x z Ω gψ 0 2 Level system, | ⇓ , | ⇑ : ⇓: Ψ(x, z) = 1 ⇑: Ψ(x, z) = σ,σ =± eik(σx+σ z) H = ωψ† ψ + ω0Sz + g(ψ + ψ† )(S− + S+ )+USzψ† ψ. ∂t ρ = −i[H, ρ]−κ(ψ† ψρ − 2ψρψ† + ρψ† ψ) [Baumann et al Nature ’10 ] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 11 / 36
  • 29. Reminder of cold-atom extended Dicke model κ Pump κ 2 Level System x z Ω gψ 0 2 Level system, | ⇓ , | ⇑ : ⇓: Ψ(x, z) = 1 ⇑: Ψ(x, z) = σ,σ =± eik(σx+σ z) Feedback: U ∝ g2 0 ωc − ωa H = ωψ† ψ + ω0Sz + g(ψ + ψ† )(S− + S+ )+USzψ† ψ. ∂t ρ = −i[H, ρ]−κ(ψ† ψρ − 2ψρψ† + ρψ† ψ) [Baumann et al Nature ’10 ] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 11 / 36
  • 30. Reminder of cold-atom extended Dicke model κ Pump κ 2 Level System x z Ω gψ 0 2 Level system, | ⇓ , | ⇑ : ⇓: Ψ(x, z) = 1 ⇑: Ψ(x, z) = σ,σ =± eik(σx+σ z) Feedback: U ∝ g2 0 ωc − ωa H = ωψ† ψ + ω0Sz + g(ψ + ψ† )(S− + S+ )+USzψ† ψ. ∂t ρ = −i[H, ρ]−κ(ψ† ψρ − 2ψρψ† + ρψ† ψ) ω0 ∼ kHz ω, κ, g √ N ∼ MHz. [Baumann et al Nature ’10 ] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 11 / 36
  • 31. Reminder of cold-atom extended Dicke model κ Pump κ 2 Level System x z Ω gψ 0 2 Level system, | ⇓ , | ⇑ : ⇓: Ψ(x, z) = 1 ⇑: Ψ(x, z) = σ,σ =± eik(σx+σ z) Feedback: U ∝ g2 0 ωc − ωa H = ωψ† ψ + ω0Sz + g(ψ + ψ† )(S− + S+ )+USzψ† ψ. ∂t ρ = −i[H, ρ]−κ(ψ† ψρ − 2ψρψ† + ρψ† ψ) ω0 ∼ kHz ω, κ, g √ N ∼ MHz. [Baumann et al Nature ’10 ] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 11 / 36
  • 32. Classical dynamics of the extended Dicke model Open dynamical system: H = ωψ† ψ + ω0Sz + g(ψ + ψ† )(S− + S+ )+USzψ† ψ. ∂t ρ = −i[H, ρ]−κ(ψ† ψρ − 2ψρψ† + ρψ† ψ) Neglects quantum fluctuations — restore via Wigner distributed initial conditions. Linearisation about fixed point: Recover Retarded Green’s function (spectrum) Cannot recover occupations Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 12 / 36
  • 33. Classical dynamics of the extended Dicke model Open dynamical system: H = ωψ† ψ + ω0Sz + g(ψ + ψ† )(S− + S+ )+USzψ† ψ. ∂t ρ = −i[H, ρ]−κ(ψ† ψρ − 2ψρψ† + ρψ† ψ) Classical EOM (|S| = N/2 1) ˙S− = −i(ω0+U|ψ|2 )S− + 2ig(ψ + ψ∗ )Sz ˙Sz = ig(ψ + ψ∗ )(S− − S+ ) ˙ψ = − [κ + i(ω+USz )] ψ − ig(S− + S+ ) Neglects quantum fluctuations — restore via Wigner distributed initial conditions. Linearisation about fixed point: Recover Retarded Green’s function (spectrum) Cannot recover occupations Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 12 / 36
  • 34. Classical dynamics of the extended Dicke model Open dynamical system: H = ωψ† ψ + ω0Sz + g(ψ + ψ† )(S− + S+ )+USzψ† ψ. ∂t ρ = −i[H, ρ]−κ(ψ† ψρ − 2ψρψ† + ρψ† ψ) Classical EOM (|S| = N/2 1) ˙S− = −i(ω0+U|ψ|2 )S− + 2ig(ψ + ψ∗ )Sz ˙Sz = ig(ψ + ψ∗ )(S− − S+ ) ˙ψ = − [κ + i(ω+USz )] ψ − ig(S− + S+ ) Neglects quantum fluctuations — restore via Wigner distributed initial conditions. Linearisation about fixed point: Recover Retarded Green’s function (spectrum) Cannot recover occupations Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 12 / 36
  • 35. Classical dynamics of the extended Dicke model Open dynamical system: H = ωψ† ψ + ω0Sz + g(ψ + ψ† )(S− + S+ )+USzψ† ψ. ∂t ρ = −i[H, ρ]−κ(ψ† ψρ − 2ψρψ† + ρψ† ψ) Classical EOM (|S| = N/2 1) ˙S− = −i(ω0+U|ψ|2 )S− + 2ig(ψ + ψ∗ )Sz ˙Sz = ig(ψ + ψ∗ )(S− − S+ ) ˙ψ = − [κ + i(ω+USz )] ψ − ig(S− + S+ ) Neglects quantum fluctuations — restore via Wigner distributed initial conditions. Linearisation about fixed point: Recover Retarded Green’s function (spectrum) Cannot recover occupations Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 12 / 36
  • 36. Fixed points (steady states) 0 = i(ω0+U|ψ|2 )S− + 2ig(ψ + ψ∗ )Sz 0 = ig(ψ + ψ∗ )(S− − S+ ) 0 = − [κ + i(ω+USz )] ψ − ig(S− + S+ ) ψ = 0, S = (0, 0, ±N/2) always a solution. If g > gc, ψ = 0 too A Sy = − [S− ] = 0 B ψ = [ψ] = 0 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 13 / 36
  • 37. Fixed points (steady states) 0 = i(ω0+U|ψ|2 )S− + 2ig(ψ + ψ∗ )Sz 0 = ig(ψ + ψ∗ )(S− − S+ ) 0 = − [κ + i(ω+USz )] ψ − ig(S− + S+ ) ψ = 0, S = (0, 0, ±N/2) always a solution. If g > gc, ψ = 0 too A Sy = − [S− ] = 0 B ψ = [ψ] = 0 x Sy Sz S Small g: ⇑, ⇓ only. (ω = 30MHz, UN = −40MHz) Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 13 / 36
  • 38. Fixed points (steady states) 0 = i(ω0+U|ψ|2 )S− + 2ig(ψ + ψ∗ )Sz 0 = ig(ψ + ψ∗ )(S− − S+ ) 0 = − [κ + i(ω+USz )] ψ − ig(S− + S+ ) ψ = 0, S = (0, 0, ±N/2) always a solution. If g > gc, ψ = 0 too A Sy = − [S− ] = 0 B ψ = [ψ] = 0 x Sy Sz S Small g: ⇑, ⇓ only. Larger g: SR too. (ω = 30MHz, UN = −40MHz) Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 13 / 36
  • 39. Steady state phase diagram 0 = i(ω0+U|ψ|2 )S− + 2ig(ψ + ψ∗ )Sz 0 = ig(ψ + ψ∗ )(S− − S+ ) 0 = − [κ + i(ω+USz )] ψ − ig(S− + S+ ) 0 0 ω g-√N UN=0, κ=0 ⇓ SR See also Domokos and Ritsch PRL ’02, Domokos et al. PRL ’10 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 14 / 36
  • 40. Steady state phase diagram 0 = i(ω0+U|ψ|2 )S− + 2ig(ψ + ψ∗ )Sz 0 = ig(ψ + ψ∗ )(S− − S+ ) 0 = − [κ + i(ω+USz )] ψ − ig(S− + S+ ) 0 0 ω g-√N UN=0, κ=0 ⇓ SR -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ SR SR UN=0 ⇓ SR(A): Sy = 0 See also Domokos and Ritsch PRL ’02, Domokos et al. PRL ’10 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 14 / 36
  • 41. Steady state phase diagram 0 = i(ω0+U|ψ|2 )S− + 2ig(ψ + ψ∗ )Sz 0 = ig(ψ + ψ∗ )(S− − S+ ) 0 = − [κ + i(ω+USz )] ψ − ig(S− + S+ ) 0 0 ω g-√N UN=0, κ=0 ⇓ SR -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ SRA SRA ⇓+⇑ SRB UN=-20 ⇓ SR(A): Sy = 0 ⇓ + ⇑ SR(B): ψ = 0 See also Domokos and Ritsch PRL ’02, Domokos et al. PRL ’10 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 14 / 36
  • 42. Steady state phase diagram 0 = i(ω0+U|ψ|2 )S− + 2ig(ψ + ψ∗ )Sz 0 = ig(ψ + ψ∗ )(S− − S+ ) 0 = − [κ + i(ω+USz )] ψ − ig(S− + S+ ) 0 0 ω g-√N UN=0, κ=0 ⇓ SR -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ ⇓+⇑ SRA SRA SRB UN=-40 ⇓ SR(A): Sy = 0 ⇓ + ⇑ SR(B): ψ = 0 See also Domokos and Ritsch PRL ’02, Domokos et al. PRL ’10 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 14 / 36
  • 43. Steady state phase diagram 0 = i(ω0+U|ψ|2 )S− + 2ig(ψ + ψ∗ )Sz 0 = ig(ψ + ψ∗ )(S− − S+ ) 0 = − [κ + i(ω+USz )] ψ − ig(S− + S+ ) 0 0 ω g-√N UN=0, κ=0 ⇓ SR -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ SRA SRA ⇓+⇑ SRB SRB+⇑ SRB+⇑ SRA+⇑ SRA+⇓ SRB +⇓+⇑ UN=-40 ⇓ SR(A): Sy = 0 ⇓ + ⇑ SR(B): ψ = 0 See also Domokos and Ritsch PRL ’02, Domokos et al. PRL ’10 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 14 / 36
  • 44. Comparison to experiment -40 -30 -20 -10 0 0 0.5 1 1.5 2 2.5 (ωp-ωc)(2πMHz) g2 N (MHz)2 UN = −10MHz Adapted from: [Bhaseen et al. PRA ’12] [Baumann et al Nature ’10 ] ω = ωc − ωp + 5 2 UN, UN = − g2 0 4(ωa − ωc) Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 15 / 36
  • 45. Dynamics of generalized Dicke model 1 Introduction: Dicke model and superradiance 2 Dynamics of generalized Dicke model Summary of experiment and classical dynamcs Fixed points and dynamical phases Timescales and consequences for experiment Persistent oscillating phases 3 Jaynes Cummings Hubbard model JCHM vv Dicke Coherently driven array Disorder Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 16 / 36
  • 46. Dynamics: Evolution from normal state Gray: S = ( √ N, √ N, −N/2) Black: Wigner distribution of S, ψ -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) (i) (ii) (iii) ⇓ ⇑ ⇓+⇑ SRA SRA SRB UN=-40 Oscillations: ∼ 0.1ms Decay: 20ms, 0.1ms, 20ms (i) SR(A) 0 20 40 60 80 t (ms) 0 40 80 |ψ|2 0 1 2 0 100 (ii) SR(B) 0 0.1 0.2 0.3 0.4 t (ms) 0 100 200 |ψ| 2 (iii) SR(A) 0 100 200 t (ms) 0 40 80 120 |ψ| 2 150 151 40 50 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 17 / 36
  • 47. Asymptotic state: Evolution from normal state (Near to experimental UN = −13MHz). All stable attractors: -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRA ⇓+⇑ SRB UN=-10 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 18 / 36
  • 48. Asymptotic state: Evolution from normal state (Near to experimental UN = −13MHz). All stable attractors: -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRA ⇓+⇑ SRB UN=-10 Starting from ⇓ -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRB SRA 10-1 10 0 10 1 102 103 |ψ| 2 Asymptotic state Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 18 / 36
  • 49. Timescales for dynamics: Consequences for experiment -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRB SRA 10-1 10 0 10 1 102 10 3 |ψ|2 Asymptotic state Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 19 / 36
  • 50. Timescales for dynamics: Consequences for experiment -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRB SRA 10-1 10 0 10 1 102 10 3 |ψ|2 Asymptotic state -40 -20 0 20 40 60 0.0 0.5 1.0 1.5 2.0 2.5 ω(MHz) g 2 N (MHz 2 ) 10 -1 100 10 1 10 2 10310ms sweep Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 19 / 36
  • 51. Timescales for dynamics: Consequences for experiment -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRB SRA 10-1 10 0 10 1 102 10 3 |ψ|2 Asymptotic state -40 -20 0 20 40 60 0.0 0.5 1.0 1.5 2.0 2.5 ω(MHz) g 2 N (MHz 2 ) 10 -1 100 10 1 10 2 10310ms sweep -40 -20 0 20 40 60 0.0 0.5 1.0 1.5 2.0 2.5 ω(MHz) g 2 N (MHz 2 ) 10 -1 10 0 10 1 10 2 10 3200ms sweep Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 19 / 36
  • 52. Timescales for dynamics: What are they? -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRB SRA 10 -1 10 0 10 1 10 2 103 |ψ| 2 Asymptotic state Growth Most unstable eigenvalues near S = (0, 0, −N/2) Decay Slowest stable eigenvalues near final state -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) No unstable directions Two unstable directions One unstable direction 10µs 100µs 1ms 10ms 100ms 1s 10s Initial growth time Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 20 / 36
  • 53. Timescales for dynamics: What are they? -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRB SRA 10 -1 10 0 10 1 10 2 103 |ψ| 2 Asymptotic state Growth Most unstable eigenvalues near S = (0, 0, −N/2) Decay Slowest stable eigenvalues near final state -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) No unstable directions Two unstable directions One unstable direction 10µs 100µs 1ms 10ms 100ms 1s 10s Initial growth time -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRB SRA 10µs 100µs 1ms 10ms 100ms 1s 10s Asymptotic decay time Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 20 / 36
  • 54. Timescales for dynamics: Why so slow and varied? Suppose co- and counter-rotating terms differ 2 Level System Ω ∆ Ω ψ b a b a ∆ ψg0 g0 H = . . . + g(ψ† S− + ψS+ ) + g (ψ† S+ + ψS− ) + . . . SR(A) near phase boundary at small δg → Critical slowing down SR(A), SR(B) continuously connect Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 21 / 36
  • 55. Timescales for dynamics: Why so slow and varied? Suppose co- and counter-rotating terms differ 2 Level System Ω ∆ Ω ψ b a b a ∆ ψg0 g0 H = . . . + g(ψ† S− + ψS+ ) + g (ψ† S+ + ψS− ) + . . . -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRA ⇓+⇑ SRB UN=-10 SR(A) near phase boundary at small δg → Critical slowing down SR(A), SR(B) continuously connect Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 21 / 36
  • 56. Timescales for dynamics: Why so slow and varied? Suppose co- and counter-rotating terms differ 2 Level System Ω ∆ Ω ψ b a b a ∆ ψg0 g0 H = . . . + g(ψ† S− + ψS+ ) + g (ψ† S+ + ψS− ) + . . . δg = g − g, 2¯g = g + g -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRA ⇓+⇑ SRB UN=-10 -40 -20 0 20 40 -0.01 -0.005 0 0.005 0.01 ω(MHz) δg/g- g-√N=1 SR(A) near phase boundary at small δg → Critical slowing down SR(A), SR(B) continuously connect Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 21 / 36
  • 57. Timescales for dynamics: Why so slow and varied? Suppose co- and counter-rotating terms differ 2 Level System Ω ∆ Ω ψ b a b a ∆ ψg0 g0 H = . . . + g(ψ† S− + ψS+ ) + g (ψ† S+ + ψS− ) + . . . δg = g − g, 2¯g = g + g -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRA ⇓+⇑ SRB UN=-10 -40 -20 0 20 40 -0.01 -0.005 0 0.005 0.01 ω(MHz) δg/g- g-√N=1 SR(A) near phase boundary at small δg → Critical slowing down SR(A), SR(B) continuously connect Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 21 / 36
  • 58. Dynamics of generalized Dicke model 1 Introduction: Dicke model and superradiance 2 Dynamics of generalized Dicke model Summary of experiment and classical dynamcs Fixed points and dynamical phases Timescales and consequences for experiment Persistent oscillating phases 3 Jaynes Cummings Hubbard model JCHM vv Dicke Coherently driven array Disorder Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 22 / 36
  • 59. Regions without fixed points Changing U: 2 Level System Ω gψ 0 U ∝ g2 0 ωc − ωa -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ ⇓+⇑ SRA SRA SRB UN=-40 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 23 / 36
  • 60. Regions without fixed points Changing U: 2 Level System Ω ψg0 U ∝ g2 0 ωc − ωa -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ ⇓+⇑ SRA SRA SRB UN=-40 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 23 / 36
  • 61. Regions without fixed points Changing U: 2 Level System Ω ψg0 U ∝ g2 0 ωc − ωa -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ SR SR UN=0 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 23 / 36
  • 62. Regions without fixed points Changing U: 2 Level System Ω ψg0 U ∝ g2 0 ωc − ωa -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ SRA SRA UN=20 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 23 / 36
  • 63. Regions without fixed points Changing U: 2 Level System Ω ψg0 U ∝ g2 0 ωc − ωa -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ SRA SRA UN=40 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 23 / 36
  • 64. Regions without fixed points Changing U: 2 Level System Ω ψg0 U ∝ g2 0 ωc − ωa -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ SRA SRA Persistent Oscillations UN=40 0 2 4 6 8 10 12 14 16 18 t (ms) 0 200 400 600 800 1000 1200 |ψ| 2 0 5 10 15 0 400 800 1200 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 23 / 36
  • 65. Persistent (optomechanical) oscillations -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ SRA SRA Persistent Oscillations UN=40 0 2 4 6 8 10 12 14 16 18 t (ms) 0 200 400 600 800 1000 1200 |ψ| 2 0 5 10 15 0 400 800 1200 0 200 400 600 800 1000 1200 18.00 18.02 18.04 18.06 18.08 -0.4 -0.2 0 0.2 0.4 |ψ| 2 Sx,Sy,Sz t(ms) |ψ|2 Sx Sy Sz Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 24 / 36
  • 66. Jaynes Cummings Hubbard model 1 Introduction: Dicke model and superradiance 2 Dynamics of generalized Dicke model Summary of experiment and classical dynamcs Fixed points and dynamical phases Timescales and consequences for experiment Persistent oscillating phases 3 Jaynes Cummings Hubbard model JCHM vv Dicke Coherently driven array Disorder Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 25 / 36
  • 67. Equilibrium: Dicke model with chemical potential H − µN = (ω − µ)ψ† ψ + (ω0 − µ)Sz + g ψ† S− + ψS+ -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g SR Transition at: g2N > (ω − µ)|ω0 − µ| Reduce critical g Unstable if µ > ω Inverted if µ > ω0 [Eastham and Littlewood, PRB ’01] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 26 / 36
  • 68. Equilibrium: Dicke model with chemical potential H − µN = (ω − µ)ψ† ψ + (ω0 − µ)Sz + g ψ† S− + ψS+ -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g unstable SR Transition at: g2N > (ω − µ)|ω0 − µ| Reduce critical g Unstable if µ > ω Inverted if µ > ω0 [Eastham and Littlewood, PRB ’01] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 26 / 36
  • 69. Equilibrium: Dicke model with chemical potential H − µN = (ω − µ)ψ† ψ + (ω0 − µ)Sz + g ψ† S− + ψS+ -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g ⇑ ⇓ unstable SR Transition at: g2N > (ω − µ)|ω0 − µ| Reduce critical g Unstable if µ > ω Inverted if µ > ω0 [Eastham and Littlewood, PRB ’01] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 26 / 36
  • 70. Jaynes-Cummings Hubbard model H = − J z ij ψ† i ψj + i ∆ 2 σz i + g(ψ† i σ− i + H.c.) Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 27 / 36
  • 71. Jaynes-Cummings Hubbard model H = − J z ij ψ† i ψj + i ∆ 2 σz i + g(ψ† i σ− i + H.c.) -2 -1 0 0.001 0.01 0.1 1 µ/g J/g Unstable Normal ∆/g=1 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 27 / 36
  • 72. Jaynes-Cummings Hubbard model H = − J z ij ψ† i ψj + i ∆ 2 σz i + g(ψ† i σ− i + H.c.) -2 -1 0 0.001 0.01 0.1 1 µ/g J/g Unstable Normal ∆/g=1 -10 -8 -6 -4 -2 0 0 1 2 3 4 5 6 7 8 9 10 µ/g J/g Unstable Normal ∆/g=-6 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 27 / 36
  • 73. Dicke vs JCHM JCHM -10 -8 -6 -4 -2 0 0 1 2 3 4 5 6 7 8 9 10 µ/g J/g Unstable Normal ∆/g=-6 Dicke -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g ⇑ ⇓ unstable SR k = 0 mode of JCHM ↔ Dicke photon mode ⇑ ↔ n = 1 Mott lobe Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 28 / 36
  • 74. Dicke vs JCHM JCHM -10 -8 -6 -4 -2 0 0 1 2 3 4 5 6 7 8 9 10 µ/g J/g Unstable Normal ∆/g=-6 Dicke -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g ⇑ ⇓ unstable SR k = 0 mode of JCHM ↔ Dicke photon mode ⇑ ↔ n = 1 Mott lobe Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 28 / 36
  • 75. Dicke vs JCHM JCHM -10 -8 -6 -4 -2 0 0 1 2 3 4 5 6 7 8 9 10 µ/g J/g Unstable Normal ∆/g=-6 Dicke -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g ⇑ ⇓ unstable SR k = 0 mode of JCHM ↔ Dicke photon mode ⇑ ↔ n = 1 Mott lobe Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 28 / 36
  • 76. Dicke vs JCHM JCHM -10 -8 -6 -4 -2 0 0 1 2 3 4 5 6 7 8 9 10 µ/g J/g Unstable Normal ∆/g=-6 E k UP Photon LP 2LS ∆JCHM ∆Dicke Dicke -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g ⇑ ⇓ unstable SR k = 0 mode of JCHM ↔ Dicke photon mode ⇑ ↔ n = 1 Mott lobe Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 28 / 36
  • 77. Jaynes Cummings Hubbard model 1 Introduction: Dicke model and superradiance 2 Dynamics of generalized Dicke model Summary of experiment and classical dynamcs Fixed points and dynamical phases Timescales and consequences for experiment Persistent oscillating phases 3 Jaynes Cummings Hubbard model JCHM vv Dicke Coherently driven array Disorder Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 29 / 36
  • 78. Coherently pumped JCHM H = − J z ij ψ† i ψj + i ∆ 2 σz i + g(ψ† i σ− i + H.c.)+f(ψieiωLt + H.c.) ∂t ρ = −i[H, ρ]− κ 2 Lψ[ρ] − γ 2 Lσ− [ρ] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 30 / 36
  • 79. Coherently pumped single cavity [Bishop et al. Nat. Phys ’09] g H = ∆ 2 σz + g(ψ† σ− + H.c.)+f(ψeiωpumpt + H.c.) ∂t ρ = −i[H, ρ]− κ 2 Lψ[ρ] − γ 2 Lσ− [ρ] Anti-resonance in | ψ |. Effective 2LS: |Empty , |1 polariton IncreasingPumping Mollow triplet fluorescence [Lang et al. PRL ’11] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 31 / 36
  • 80. Coherently pumped single cavity [Bishop et al. Nat. Phys ’09] g H = ∆ 2 σz + g(ψ† σ− + H.c.)+f(ψeiωpumpt + H.c.) ∂t ρ = −i[H, ρ]− κ 2 Lψ[ρ] − γ 2 Lσ− [ρ] Anti-resonance in | ψ |. Effective 2LS: |Empty , |1 polariton IncreasingPumping Mollow triplet fluorescence [Lang et al. PRL ’11] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 31 / 36
  • 81. Coherently pumped single cavity [Bishop et al. Nat. Phys ’09] g H = ∆ 2 σz + g(ψ† σ− + H.c.)+f(ψeiωpumpt + H.c.) ∂t ρ = −i[H, ρ]− κ 2 Lψ[ρ] − γ 2 Lσ− [ρ] Anti-resonance in | ψ |. Effective 2LS: |Empty , |1 polariton IncreasingPumping Mollow triplet fluorescence [Lang et al. PRL ’11] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 31 / 36
  • 82. Coherently pumped dimer & array Chose detuning a la Dicke model ωpump ωpump LP UP 2g CavityQubit Single cavity 2J LP LP UP E k Photon Qubit Array 2g Bistability at intermediate J More/less localised states Connects to Dicke limit [Nissen et al. PRL ’12] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 32 / 36
  • 83. Coherently pumped dimer & array Chose detuning a la Dicke model ωpump ωpump LP UP 2g CavityQubit Single cavity 2J LP LP UP E k Photon Qubit Array 2g Evolution of anti-resonance vs J. 0 0.1 0.2 -1.06 -1.04 -1.02 -1 |<a>| ωpump/g Bistability at intermediate J More/less localised states Connects to Dicke limit [Nissen et al. PRL ’12] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 32 / 36
  • 84. Coherently pumped dimer & array Chose detuning a la Dicke model ωpump ωpump LP UP 2g CavityQubit Single cavity 2J LP LP UP E k Photon Qubit Array 2g Evolution of anti-resonance vs J. 0 0.1 0.2 -1.06 -1.04 -1.02 -1 |<a>| ωpump/g Bistability at intermediate J More/less localised states Connects to Dicke limit [Nissen et al. PRL ’12] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 32 / 36
  • 85. Coherently pumped dimer & array Chose detuning a la Dicke model ωpump ωpump LP UP 2g CavityQubit Single cavity 2J LP LP UP E k Photon Qubit Array 2g Evolution of anti-resonance vs J. 0 0.1 0.2 -1.06 -1.04 -1.02 -1 |<a>| ωpump/g Bistability at intermediate J More/less localised states Connects to Dicke limit [Nissen et al. PRL ’12] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 32 / 36
  • 86. Coherently pumped dimer & array Chose detuning a la Dicke model ωpump ωpump LP UP 2g CavityQubit Single cavity 2J LP LP UP E k Photon Qubit Array 2g Evolution of anti-resonance vs J. 0 0.1 0.2 -1.06 -1.04 -1.02 -1 |<a>| ωpump/g Bistability at intermediate J More/less localised states Connects to Dicke limit [Nissen et al. PRL ’12] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 32 / 36
  • 87. Photon blockade picture J g Polariton basis Nonlinearity | 2 − 2 1| ∝ g. H = i 2 τz i + ˜fτx i Decouple hopping: τ+ i τ− j → ψτ+ + ψ∗τ− Bistability for J > Jc = 4 ˜f2 2˜f2 + (˜κ/2)2 3 3/2 0 0.1 0.2 -1.06 -1.04 -1.02 -1 |<a>| ωpump/g [Nissen et al. PRL ’12] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 33 / 36
  • 88. Photon blockade picture J g Polariton basis Nonlinearity | 2 − 2 1| ∝ g. H = i 2 τz i + ˜fτx i − ˜J z ij τ+ i τ− j Decouple hopping: τ+ i τ− j → ψτ+ + ψ∗τ− Bistability for J > Jc = 4 ˜f2 2˜f2 + (˜κ/2)2 3 3/2 0 0.1 0.2 -1.06 -1.04 -1.02 -1 |<a>| ωpump/g [Nissen et al. PRL ’12] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 33 / 36
  • 89. Photon blockade picture J g Polariton basis Nonlinearity | 2 − 2 1| ∝ g. H = i 2 τz i + ˜fτx i − ˜J z ij τ+ i τ− j Decouple hopping: τ+ i τ− j → ψτ+ + ψ∗τ− Bistability for J > Jc = 4 ˜f2 2˜f2 + (˜κ/2)2 3 3/2 0 0.1 0.2 -1.06 -1.04 -1.02 -1 |<a>| ωpump/g [Nissen et al. PRL ’12] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 33 / 36
  • 90. Photon blockade picture J g Polariton basis Nonlinearity | 2 − 2 1| ∝ g. H = i 2 τz i + ˜fτx i − ˜J z ij τ+ i τ− j Decouple hopping: τ+ i τ− j → ψτ+ + ψ∗τ− Bistability for J > Jc = 4 ˜f2 2˜f2 + (˜κ/2)2 3 3/2 0 0.1 0.2 -1.06 -1.04 -1.02 -1 |<a>| ωpump/g [Nissen et al. PRL ’12] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 33 / 36
  • 91. Coherently pumped array: correlations & fluorescence 0 0.5 1 g2(t=0) 0.1 0.2 0.3 0.001 0.01 0.1 1 10 |〈a〉| Hopping zJ/g Correlations g2 : 0 → 1 crossover. Small J: Mollow triplet Large J: Off resonance fluorescence Pump at collective resonance Mismatch if J = 0. Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 34 / 36
  • 92. Coherently pumped array: correlations & fluorescence 0 0.5 1 g2(t=0) 0.1 0.2 0.3 0.001 0.01 0.1 1 10 |〈a〉| Hopping zJ/g Correlations g2 : 0 → 1 crossover. Small J: Mollow triplet Large J: Off resonance fluorescence Pump at collective resonance Mismatch if J = 0. Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 34 / 36
  • 93. Coherently pumped array: correlations & fluorescence 0 0.5 1 g2(t=0) 0.1 0.2 0.3 0.001 0.01 0.1 1 10 |〈a〉| Hopping zJ/g Correlations g2 : 0 → 1 crossover. Fluorescence Small J: Mollow triplet Large J: Off resonance fluorescence Pump at collective resonance Mismatch if J = 0. Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 34 / 36
  • 94. Coherently pumped array: correlations & fluorescence 0 0.5 1 g2(t=0) 0.1 0.2 0.3 0.001 0.01 0.1 1 10 |〈a〉| Hopping zJ/g Correlations g2 : 0 → 1 crossover. Fluorescence Small J: Mollow triplet Large J: Off resonance fluorescence Pump at collective resonance Mismatch if J = 0. Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 34 / 36
  • 95. Coherently pumped array: correlations & fluorescence 0 0.5 1 g2(t=0) 0.1 0.2 0.3 0.001 0.01 0.1 1 10 |〈a〉| Hopping zJ/g Correlations g2 : 0 → 1 crossover. Fluorescence Small J: Mollow triplet Large J: Off resonance fluorescence Pump at collective resonance Mismatch if J = 0. Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 34 / 36
  • 96. Coherently pumped array: correlations & fluorescence 0 0.5 1 g2(t=0) 0.1 0.2 0.3 0.001 0.01 0.1 1 10 |〈a〉| Hopping zJ/g Correlations g2 : 0 → 1 crossover. Fluorescence Small J: Mollow triplet Large J: Off resonance fluorescence Pump at collective resonance Mismatch if J = 0. Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 34 / 36
  • 97. Coherent pumped array – disorder Effect of disorder, ∆ → ∆i Distribution of ψ – Washes out bistable jump Bistability near resonance — phase of ψ depends on ∆i Complex ψ distribution Superfluid phases in driven system? -1.02 -1.01 -1 -0.99 -0.98 -0.97 -0.96 -0.95 Pump frequency 0 0.1 0.2 0.3 ψ 0 20 40 60 80 100 || [Kulaitis et al. PRA, ’13] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 35 / 36
  • 98. Coherent pumped array – disorder Effect of disorder, ∆ → ∆i Distribution of ψ – Washes out bistable jump Bistability near resonance — phase of ψ depends on ∆i Complex ψ distribution Superfluid phases in driven system? -1.02 -1.01 -1 -0.99 -0.98 -0.97 -0.96 -0.95 Pump frequency 0 0.1 0.2 0.3 ψ 0 20 40 60 80 100 || [Kulaitis et al. PRA, ’13] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 35 / 36
  • 99. Coherent pumped array – disorder Effect of disorder, ∆ → ∆i Distribution of ψ – Washes out bistable jump Bistability near resonance — phase of ψ depends on ∆i Complex ψ distribution Superfluid phases in driven system? -1.02 -1.01 -1 -0.99 -0.98 -0.97 -0.96 -0.95 Pump frequency 0 0.1 0.2 0.3 ψ 0 20 40 60 80 100 || -0.2 0 0.2 (a) ωp=-0.988 (b) ωp=-0.987 (c) ωp=-0.986 -0.2 0 0.2 (d) ωp=-0.985 (e) ωp=-0.982 (f) ωp=-0.978 -0.2 0 0.2 -0.2 0 0.2 0 20 40 60 80 100 (g) ωp=-0.975 -0.2 0 0.2 (h) ωp=-0.971 -0.2 0 0.2 (i) ωp=-0.968 Re( ) Im() [Kulaitis et al. PRA, ’13] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 35 / 36
  • 100. Coherent pumped array – disorder Effect of disorder, ∆ → ∆i Distribution of ψ – Washes out bistable jump Bistability near resonance — phase of ψ depends on ∆i Complex ψ distribution Superfluid phases in driven system? -1.02 -1.01 -1 -0.99 -0.98 -0.97 -0.96 -0.95 Pump frequency 0 0.1 0.2 0.3 ψ 0 20 40 60 80 100 || -0.2 0 0.2 (a) ωp=-0.988 (b) ωp=-0.987 (c) ωp=-0.986 -0.2 0 0.2 (d) ωp=-0.985 (e) ωp=-0.982 (f) ωp=-0.978 -0.2 0 0.2 -0.2 0 0.2 0 20 40 60 80 100 (g) ωp=-0.975 -0.2 0 0.2 (h) ωp=-0.971 -0.2 0 0.2 (i) ωp=-0.968 Re( ) Im() [Kulaitis et al. PRA, ’13] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 35 / 36
  • 101. Summary Wide variety of dynamical phases -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ SRA SRA UN=40 -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ SR SR UN=0 -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇓ ⇑ ⇓+⇑ SRA SRA SRB UN=-40 -40 -20 0 20 40 -0.01 -0.005 0 0.005 0.01 ω(MHz) δg/g- g-√N=1 Slow dynamics for U < 0 & Persistent oscillations for U > 0 0 100 200 t (ms) 0 40 80 120 |ψ| 2 150 151 40 50 -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) No unstable directions Two unstable directions One unstable direction 10µs 100µs 1ms 10ms 100ms 1s 10s Initial growth time -40 -20 0 20 40 0 0.5 1 1.5 ω(MHz) g√N (MHz) ⇑ ⇓ SRA SRB SRA 10µs 100µs 1ms 10ms 100ms 1s 10s Asymptotic decay time 0 2 4 6 8 10 12 14 16 18 t (ms) 0 200 400 600 800 1000 1200 |ψ| 2 0 5 10 15 0 400 800 1200 0 200 400 600 800 1000 1200 18.00 18.02 18.04 18.06 18.08 -0.4 -0.2 0 0.2 0.4 |ψ|2 Sx,Sy,Sz t(ms) |ψ|2 Sx Sy Sz JK et al. PRL ’10, Bhaseen et al. PRA ’12 Dicke model and JCHM: connection at J → ∞E k UP Photon LP 2LS ∆JCHM ∆Dicke -10 -8 -6 -4 -2 0 0 1 2 3 4 5 6 7 8 9 10 µ/g J/g Unstable Normal ∆/g=-6 -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g ⇑ ⇓ unstable SR Coherently pumped coupled cavity array ωpump ωpump LP UP 2g CavityQubit Single cavity 2J LP LP UP E k Photon Qubit Array 2g 0 0.1 0.2 -1.06 -1.04 -1.02 -1 |<a>| ωpump/g 0 0.5 1 g2(t=0) 0.1 0.2 0.3 0.001 0.01 0.1 1 10 |〈a〉| Hopping zJ/g -1.02 -1.01 -1 -0.99 -0.98 -0.97 -0.96 -0.95 Pump frequency 0 0.1 0.2 0.3 ψ 0 20 40 60 80 100 || -0.2 0 0.2 (a) ωp=-0.988 (b) ωp=-0.987 (c) ωp=-0.986 -0.2 0 0.2 (d) ωp=-0.985 (e) ωp=-0.982 (f) ωp=-0.978 -0.2 0 0.2 -0.2 0 0.2 0 20 40 60 80 100 (g) ωp=-0.975 -0.2 0 0.2 (h) ωp=-0.971 -0.2 0 0.2 (i) ωp=-0.968 Re( ) Im() Nissen et al. PRL ’12, Kulaitis et al. PRA ’13 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 36 / 36
  • 102. Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 37 / 44
  • 103. 4 Ferroelectric transition 5 Dicke vs JCHM 6 Pumping without symmetry breaking 7 Collective dephasing Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 38 / 44
  • 104. Ferroelectric transition Atoms in Coulomb gauge H = ωk a† k ak + i [pi − eA(ri)]2 + Vcoul Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 39 / 44
  • 105. Ferroelectric transition Atoms in Coulomb gauge H = ωk a† k ak + i [pi − eA(ri)]2 + Vcoul Two-level systems — dipole-dipole coupling H = ω0Sz + ωψ† ψ + g(S+ + S− )(ψ + ψ† ) + Nζ(ψ + ψ† )2 −η(S+ − S− )2 (nb g2, ζ, η ∝ 1/V). Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 39 / 44
  • 106. Ferroelectric transition Atoms in Coulomb gauge H = ωk a† k ak + i [pi − eA(ri)]2 + Vcoul Two-level systems — dipole-dipole coupling H = ω0Sz + ωψ† ψ + g(S+ + S− )(ψ + ψ† ) + Nζ(ψ + ψ† )2 −η(S+ − S− )2 (nb g2, ζ, η ∝ 1/V). Ferroelectric polarisation if ω0 < 2ηN Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 39 / 44
  • 107. Ferroelectric transition Atoms in Coulomb gauge H = ωk a† k ak + i [pi − eA(ri)]2 + Vcoul Two-level systems — dipole-dipole coupling H = ω0Sz + ωψ† ψ + g(S+ + S− )(ψ + ψ† ) + Nζ(ψ + ψ† )2 −η(S+ − S− )2 (nb g2, ζ, η ∝ 1/V). Ferroelectric polarisation if ω0 < 2ηN Gauge transform to dipole gauge D · r H = ω0Sz + ωψ† ψ + ¯g(S+ − S− )(ψ − ψ† ) “Dicke” transition at ω0 < N¯g2/ω ≡ 2ηN But, ψ describes electric displacement Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 39 / 44
  • 108. Equilibrium: Dicke model with chemical potential H − µN = (ω − µ)ψ† ψ + (ω0 − µ)Sz + g ψ† S− + ψS+ -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g SR Transition at: g2N > (ω − µ)|ω0 − µ| Reduce critical g Unstable if µ > ω Inverted if µ > ω0 [Eastham and Littlewood, PRB ’01] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 40 / 44
  • 109. Equilibrium: Dicke model with chemical potential H − µN = (ω − µ)ψ† ψ + (ω0 − µ)Sz + g ψ† S− + ψS+ -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g unstable SR Transition at: g2N > (ω − µ)|ω0 − µ| Reduce critical g Unstable if µ > ω Inverted if µ > ω0 [Eastham and Littlewood, PRB ’01] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 40 / 44
  • 110. Equilibrium: Dicke model with chemical potential H − µN = (ω − µ)ψ† ψ + (ω0 − µ)Sz + g ψ† S− + ψS+ -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g ⇑ ⇓ unstable SR Transition at: g2N > (ω − µ)|ω0 − µ| Reduce critical g Unstable if µ > ω Inverted if µ > ω0 [Eastham and Littlewood, PRB ’01] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 40 / 44
  • 111. Jaynes-Cummings Hubbard model H = − J z ij ψ† i ψj + i ∆ 2 σz i + g(ψ† i σ− i + H.c.) Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 41 / 44
  • 112. Jaynes-Cummings Hubbard model H = − J z ij ψ† i ψj + i ∆ 2 σz i + g(ψ† i σ− i + H.c.) -2 -1 0 0.001 0.01 0.1 1 µ/g J/g Unstable Normal ∆/g=1 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 41 / 44
  • 113. Jaynes-Cummings Hubbard model H = − J z ij ψ† i ψj + i ∆ 2 σz i + g(ψ† i σ− i + H.c.) -2 -1 0 0.001 0.01 0.1 1 µ/g J/g Unstable Normal ∆/g=1 -10 -8 -6 -4 -2 0 0 1 2 3 4 5 6 7 8 9 10 µ/g J/g Unstable Normal ∆/g=-6 Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 41 / 44
  • 114. Dicke vs JCHM JCHM -10 -8 -6 -4 -2 0 0 1 2 3 4 5 6 7 8 9 10 µ/g J/g Unstable Normal ∆/g=-6 Dicke -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g ⇑ ⇓ unstable SR k = 0 mode of JCHM ↔ Dicke photon mode ⇑ ↔ n = 1 Mott lobe Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 42 / 44
  • 115. Dicke vs JCHM JCHM -10 -8 -6 -4 -2 0 0 1 2 3 4 5 6 7 8 9 10 µ/g J/g Unstable Normal ∆/g=-6 Dicke -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g ⇑ ⇓ unstable SR k = 0 mode of JCHM ↔ Dicke photon mode ⇑ ↔ n = 1 Mott lobe Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 42 / 44
  • 116. Dicke vs JCHM JCHM -10 -8 -6 -4 -2 0 0 1 2 3 4 5 6 7 8 9 10 µ/g J/g Unstable Normal ∆/g=-6 Dicke -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g ⇑ ⇓ unstable SR k = 0 mode of JCHM ↔ Dicke photon mode ⇑ ↔ n = 1 Mott lobe Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 42 / 44
  • 117. Dicke vs JCHM JCHM -10 -8 -6 -4 -2 0 0 1 2 3 4 5 6 7 8 9 10 µ/g J/g Unstable Normal ∆/g=-6 E k UP Photon LP 2LS ∆JCHM ∆Dicke Dicke -5 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 (µ-ω)/g (ω0 - ω)/g ⇑ ⇓ unstable SR k = 0 mode of JCHM ↔ Dicke photon mode ⇑ ↔ n = 1 Mott lobe Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 42 / 44
  • 118. Raman pumping How to pump without breaking symmetry Counter-rotating terms — Raman pumping Atom proposal [Dimer et al. PRA ’07] Atom experiment [Baumann et al. Nature ’10] Qubit — allowed transitions ∆n = 1 Qubit dephasing much bigger than atom JK, T¨ureci, Houck in progress Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 43 / 44
  • 119. Raman pumping How to pump without breaking symmetry Counter-rotating terms — Raman pumping Atom proposal [Dimer et al. PRA ’07] Atom experiment [Baumann et al. Nature ’10] Qubit — allowed transitions ∆n = 1 Qubit dephasing much bigger than atom JK, T¨ureci, Houck in progress Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 43 / 44
  • 120. Raman pumping How to pump without breaking symmetry Counter-rotating terms — Raman pumping Atom proposal [Dimer et al. PRA ’07] Atom experiment [Baumann et al. Nature ’10] Qubit — allowed transitions ∆n = 1 Qubit dephasing much bigger than atom Tunable-coupling-qubit 00 01 10 11 02 20 g g 0 1 Ω Ωa b Pump Cavity JK, T¨ureci, Houck in progress Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 43 / 44
  • 121. Raman pumping How to pump without breaking symmetry Counter-rotating terms — Raman pumping Atom proposal [Dimer et al. PRA ’07] Atom experiment [Baumann et al. Nature ’10] Qubit — allowed transitions ∆n = 1 Qubit dephasing much bigger than atom Tunable-coupling-qubit 00 01 10 11 02 20 g g 0 1 Ω Ωa b Pump Cavity 0 0.5 1 g0 0 1 2 3 4 Ωa=Ωb=Ω ⇓ SR? JK, T¨ureci, Houck in progress Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 43 / 44
  • 122. Raman pumping How to pump without breaking symmetry Counter-rotating terms — Raman pumping Atom proposal [Dimer et al. PRA ’07] Atom experiment [Baumann et al. Nature ’10] Qubit — allowed transitions ∆n = 1 Qubit dephasing much bigger than atom Tunable-coupling-qubit 00 01 10 11 02 20 g g 0 1 Ω Ωa b Pump Cavity 0 0.5 1 g0 0 1 2 3 4 Ωa=Ωb=Ω ⇓ SR? JK, T¨ureci, Houck in progress Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 43 / 44
  • 123. Collective dephasing Real environment is not Markovian [Carmichael & Walls JPA ’73] Requirements for correct equilibrium [Ciuti & Carusotto PRA ’09] Dicke SR and emission Cannot assume fixed κ, γ Phase transition → soft modes Strong coupling → varying decay Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 44 / 44
  • 124. Collective dephasing Real environment is not Markovian [Carmichael & Walls JPA ’73] Requirements for correct equilibrium [Ciuti & Carusotto PRA ’09] Dicke SR and emission Cannot assume fixed κ, γ Phase transition → soft modes Strong coupling → varying decay Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 44 / 44
  • 125. Collective dephasing Real environment is not Markovian [Carmichael & Walls JPA ’73] Requirements for correct equilibrium [Ciuti & Carusotto PRA ’09] Dicke SR and emission Cannot assume fixed κ, γ Phase transition → soft modes Strong coupling → varying decay Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 44 / 44
  • 126. Collective dephasing Real environment is not Markovian [Carmichael & Walls JPA ’73] Requirements for correct equilibrium [Ciuti & Carusotto PRA ’09] Dicke SR and emission Cannot assume fixed κ, γ Phase transition → soft modes Strong coupling → varying decay Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 44 / 44
  • 127. Collective dephasing Real environment is not Markovian [Carmichael & Walls JPA ’73] Requirements for correct equilibrium [Ciuti & Carusotto PRA ’09] Dicke SR and emission Cannot assume fixed κ, γ Phase transition → soft modes Strong coupling → varying decay Dicke model linewidth: H = ωψ† ψ+ N i=1 i 2 σz i +g σ+ i ψ + h.c. + i σz i q γq b† q + bq + q βqb† iqbq. [Nissen, Fink et al. arXiv:1302.0665] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 44 / 44
  • 128. Collective dephasing Real environment is not Markovian [Carmichael & Walls JPA ’73] Requirements for correct equilibrium [Ciuti & Carusotto PRA ’09] Dicke SR and emission Cannot assume fixed κ, γ Phase transition → soft modes Strong coupling → varying decay Dicke model linewidth: H = ωψ† ψ+ N i=1 i 2 σz i +g σ+ i ψ + h.c. + i σz i q γq b† q + bq + q βqb† iqbq. 0.008 0.01 0.012 0.014 1 2 3 4 5 linewidth/g number of qubits, N experiment theory 〈a〉 2 (a.u.) frequency (a.u.) 1 2 3 [Nissen, Fink et al. arXiv:1302.0665] Jonathan Keeling Non-eqbm. phases of matter-light systems Southhampton, May 2013 44 / 44