SlideShare a Scribd company logo
The Spring Framework - Reference Documentation




                                              Version 2.5.6




Copyright © 2004-2008 Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu,
 Rob Harrop, Thomas Risberg, Darren Davison, Dmitriy Kopylenko, Mark Pollack, Thierry
Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer, John Lewis, Costin Leau,
             Mark Fisher, Sam Brannen, Ramnivas Laddad, Arjen Poutsma


Copies of this document may be made for your own use and for distribution to others, provided that you do not
 charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
                                    distributed in print or electronically.
Preface................................................................................................................................................ v
                                                                                                                                                      x
1.Introduction ...................................................................................................................................16
     1.1.Overview..............................................................................................................................16
     1.2.Usagescenarios ....................................................................................................................18
2. What's new in Spring 2.0 and 2.5? ................................................................................................. 21
     2.1.Introduction ..........................................................................................................................21
     2.2. The Inversion of Control (IoC) container ................................................................................ 21
            2.2.1.Newbeanscopes ........................................................................................................21
            2.2.2.EasierXMLconfiguration...........................................................................................22
            2.2.3.ExtensibleXMLauthoring ..........................................................................................22
            2.2.4.Annotation-drivenconfiguration..................................................................................22
            2.2.5. Autodetecting components in the classpath .................................................................. 22
     2.3. Aspect Oriented Programming (AOP) ....................................................................................23
            2.3.1. Easier AOP XML configuration ..................................................................................23
            2.3.2. Support for @AspectJ aspects .....................................................................................23
            2.3.3. Support for bean name pointcut element ...................................................................... 23
            2.3.4. Support for AspectJ load-time weaving ........................................................................ 23
     2.4.TheMiddleTier ....................................................................................................................23
            2.4.1. Easier configuration of declarative transactions in XML ............................................... 23
            2.4.2. Full WebSphere transaction management support ......................................................... 24
            2.4.3.JPA ...........................................................................................................................24
            2.4.4.AsynchronousJMS.....................................................................................................24
            2.4.5.JDBC ........................................................................................................................24
     2.5.TheWebTier ........................................................................................................................25
            2.5.1. Sensible defaulting in Spring MVC ............................................................................. 25
            2.5.2.Portletframework.......................................................................................................25
            2.5.3.Annotation-basedcontrollers .......................................................................................25
            2.5.4. A form tag library for Spring MVC ............................................................................. 25
            2.5.5.Tiles2support ...........................................................................................................25
            2.5.6.JSF1.2support ..........................................................................................................26
            2.5.7.JAX-WSsupport ........................................................................................................26
     2.6.Everythingelse .....................................................................................................................26
            2.6.1.Dynamiclanguagesupport ..........................................................................................26
            2.6.2.Enhancedtestingsupport ............................................................................................26
            2.6.3.JMXsupport ..............................................................................................................26
            2.6.4. Deploying a Spring application context as JCA adapter ................................................. 27
            2.6.5.Taskscheduling .........................................................................................................27
            2.6.6. Java 5 (Tiger) support .................................................................................................27
     2.7. Migrating to Spring 2.5 ..........................................................................................................27
            2.7.1.Changes.....................................................................................................................28
     2.8.Updatedsampleapplications ..................................................................................................30
     2.9.Improveddocumentation .......................................................................................................30
I.CoreTechnologies ............................................................................................................................31
     3.TheIoCcontainer ..................................................................................................................32
            3.1.Introduction ..................................................................................................................32
            3.2. Basics - containers and beans ......................................................................................... 32
                    3.2.1.Thecontainer .....................................................................................................33
                    3.2.2.Instantiatingacontainer ......................................................................................34
                    3.2.3.Thebeans ..........................................................................................................35
                    3.2.4.Usingthecontainer .............................................................................................39
            3.3.Dependencies................................................................................................................40
                    3.3.1.Injectingdependencies ........................................................................................40

                                                             Spring Framework (2.5.6)                                                                       ii
The Spring Framework - Reference Documentation

           3.3.2. Dependencies and configuration in detail ............................................................. 45
           3.3.3.Using depends-on ..............................................................................................54
           3.3.4.Lazily-instantiatedbeans.....................................................................................54
           3.3.5.Autowiringcollaborators ....................................................................................55
           3.3.6.Checkingfordependencies..................................................................................57
           3.3.7.MethodInjection ................................................................................................58
     3.4.Beanscopes ..................................................................................................................61
           3.4.1.Thesingletonscope ............................................................................................62
           3.4.2.Theprototypescope ...........................................................................................63
           3.4.3. Singleton beans with prototype-bean dependencies ............................................... 64
           3.4.4.Theotherscopes .................................................................................................64
           3.4.5.Customscopes ...................................................................................................68
     3.5. Customizing the nature of a bean .................................................................................... 70
           3.5.1.Lifecyclecallbacks .............................................................................................70
           3.5.2. Knowing who you are .........................................................................................74
     3.6.Beandefinitioninheritance ............................................................................................76
     3.7.Containerextensionpoints .............................................................................................77
           3.7.1. Customizing beans using BeanPostProcessors ....................................................78
           3.7.2. Customizing configuration metadata with BeanFactoryPostProcessors ............... 80
           3.7.3. Customizing instantiation logic using FactoryBeans ............................................ 83
     3.8.The ApplicationContext ..............................................................................................84
           3.8.1. BeanFactory or ApplicationContext? ................................................................84
           3.8.2.Internationalizationusing MessageSources ..........................................................85
           3.8.3.Events ...............................................................................................................88
           3.8.4. Convenient access to low-level resources ............................................................. 89
           3.8.5. Convenient ApplicationContext instantiation for web applications ...................... 90
     3.9. Glue code and the evil singleton ..................................................................................... 91
     3.10. Deploying a Spring ApplicationContext as a J2EE RAR file .......................................... 91
     3.11.Annotation-basedconfiguration....................................................................................92
           3.11.1.@Required ........................................................................................................93
           3.11.2.@Autowired ......................................................................................................93
           3.11.3. Fine-tuning annotation-based autowiring with qualifiers ..................................... 95
           3.11.4.CustomAutowireConfigurer .............................................................................99
           3.11.5.@Resource ........................................................................................................100
           3.11.6. @PostConstruct and @PreDestroy ....................................................................101
     3.12. Classpath scanning for managed components ................................................................ 102
           3.12.1. @Component and further stereotype annotations ................................................... 102
           3.12.2.Auto-detectingcomponents ...............................................................................102
           3.12.3. Using filters to customize scanning .................................................................... 103
           3.12.4.Namingautodetectedcomponents ......................................................................104
           3.12.5. Providing a scope for autodetected components .................................................. 105
           3.12.6. Providing qualifier metadata with annotations .................................................... 105
     3.13.Registeringa LoadTimeWeaver .....................................................................................106
4.Resources ...............................................................................................................................107
     4.1.Introduction ..................................................................................................................107
     4.2.The Resource interface ..................................................................................................107
     4.3.Built-in Resource implementations ................................................................................108
           4.3.1.UrlResource ......................................................................................................108
           4.3.2.ClassPathResource ...........................................................................................108
           4.3.3.FileSystemResource ..........................................................................................109
           4.3.4.ServletContextResource ...................................................................................109
           4.3.5.InputStreamResource ........................................................................................109


                                                   Spring Framework (2.5.6)                                                                      iii
The Spring Framework - Reference Documentation

           4.3.6.ByteArrayResource ...........................................................................................109
     4.4.The ResourceLoader .....................................................................................................109
     4.5.The ResourceLoaderAware interface ..............................................................................110
     4.6. Resources asdependencies ............................................................................................111
     4.7. Application contexts and Resource paths ........................................................................ 111
           4.7.1.Constructingapplicationcontexts ........................................................................111
           4.7.2. Wildcards in application context constructor resource paths .................................. 112
           4.7.3. FileSystemResource caveats ..............................................................................114
5. Validation, Data-binding, the BeanWrapper, and PropertyEditors .......................................... 116
     5.1.Introduction ..................................................................................................................116
     5.2. Validation using Spring's Validator interface ................................................................. 116
     5.3. Resolving codes to error messages ................................................................................. 118
     5.4. Bean manipulation and the BeanWrapper ........................................................................ 118
           5.4.1. Setting and getting basic and nested properties ..................................................... 118
           5.4.2.Built-inPropertyEditorimplementations ..............................................................120
6. Aspect Oriented Programming with Spring ........................................................................... 126
     6.1.Introduction ..................................................................................................................126
           6.1.1.AOPconcepts ....................................................................................................126
           6.1.2. Spring AOP capabilities and goals ....................................................................... 128
           6.1.3.AOPProxies ......................................................................................................129
     6.2.@AspectJsupport .........................................................................................................129
           6.2.1.Enabling@AspectJSupport ................................................................................129
           6.2.2.Declaringanaspect.............................................................................................130
           6.2.3.Declaringapointcut ...........................................................................................130
           6.2.4.Declaringadvice ................................................................................................136
           6.2.5.Introductions......................................................................................................142
           6.2.6.Aspectinstantiationmodels .................................................................................143
           6.2.7.Example ............................................................................................................143
     6.3.Schema-basedAOPsupport ...........................................................................................145
           6.3.1.Declaringanaspect.............................................................................................145
           6.3.2.Declaringapointcut ...........................................................................................145
           6.3.3.Declaringadvice ................................................................................................147
           6.3.4.Introductions......................................................................................................151
           6.3.5.Aspectinstantiationmodels .................................................................................152
           6.3.6.Advisors ............................................................................................................152
           6.3.7.Example ............................................................................................................153
     6.4. Choosing which AOP declaration style to use ................................................................. 154
           6.4.1. Spring AOP or full AspectJ? ............................................................................... 154
           6.4.2. @AspectJ or XML for Spring AOP? .................................................................... 155
     6.5.Mixingaspecttypes .......................................................................................................156
     6.6.Proxyingmechanisms....................................................................................................156
           6.6.1.UnderstandingAOPproxies ................................................................................157
     6.7. Programmatic creation of @AspectJ Proxies ................................................................... 159
     6.8. Using AspectJ with Spring applications .......................................................................... 159
           6.8.1. Using AspectJ to dependency inject domain objects with Spring ............................ 159
           6.8.2. Other Spring aspects for AspectJ ......................................................................... 162
           6.8.3. Configuring AspectJ aspects using Spring IoC ..................................................... 163
           6.8.4. Load-time weaving with AspectJ in the Spring Framework ................................... 163
     6.9.FurtherResources .........................................................................................................170
7.SpringAOPAPIs ...................................................................................................................171
     7.1.Introduction ..................................................................................................................171
     7.2. Pointcut API in Spring ...................................................................................................171


                                                  Spring Framework (2.5.6)                                                                    iv
The Spring Framework - Reference Documentation

                  7.2.1.Concepts............................................................................................................171
                  7.2.2.Operationsonpointcuts ......................................................................................172
                  7.2.3.AspectJexpressionpointcuts ...............................................................................172
                  7.2.4.Conveniencepointcutimplementations ................................................................172
                  7.2.5.Pointcutsuperclasses ..........................................................................................174
                  7.2.6.Custompointcuts................................................................................................174
            7.3. Advice API in Spring ....................................................................................................174
                  7.3.1.Advicelifecycles ................................................................................................174
                  7.3.2. Advice types in Spring ........................................................................................175
            7.4. Advisor API in Spring ...................................................................................................180
            7.5. Using the ProxyFactoryBean to create AOP proxies ........................................................ 180
                  7.5.1.Basics................................................................................................................180
                  7.5.2.JavaBeanproperties ............................................................................................181
                  7.5.3. JDK- and CGLIB-based proxies ..........................................................................182
                  7.5.4.Proxyinginterfaces .............................................................................................183
                  7.5.5.Proxyingclasses .................................................................................................184
                  7.5.6.Using'global'advisors ........................................................................................185
            7.6.Conciseproxydefinitions ..............................................................................................185
            7.7. Creating AOP proxies programmatically with the ProxyFactory ....................................... 186
            7.8.Manipulatingadvisedobjects .........................................................................................187
            7.9. Using the "autoproxy" facility ........................................................................................188
                  7.9.1.Autoproxybeandefinitions .................................................................................188
                  7.9.2.Usingmetadata-drivenauto-proxying ..................................................................190
            7.10.UsingTargetSources ...................................................................................................192
                  7.10.1. Hot swappable target sources .............................................................................192
                  7.10.2.Poolingtargetsources .......................................................................................193
                  7.10.3.Prototypetargetsources ....................................................................................194
                  7.10.4. ThreadLocal targetsources ...............................................................................194
            7.11. Defining new Advice types ..........................................................................................195
            7.12.Furtherresources .........................................................................................................195
      8.Testing ...................................................................................................................................196
            8.1.Introduction ..................................................................................................................196
            8.2.Unittesting ...................................................................................................................196
                  8.2.1.Mockobjects......................................................................................................196
                  8.2.2. Unit testing support classes .................................................................................197
            8.3.Integrationtesting .........................................................................................................197
                  8.3.1.Overview ...........................................................................................................197
                  8.3.2. Which support framework to use ......................................................................... 198
                  8.3.3.Commongoals ...................................................................................................198
                  8.3.4.JDBCtestingsupport ..........................................................................................200
                  8.3.5.Commonannotations ..........................................................................................200
                  8.3.6. JUnit 3.8 legacy support ......................................................................................202
                  8.3.7.SpringTestContextFramework ...........................................................................206
                  8.3.8.PetClinicexample ..............................................................................................216
            8.4.FurtherResources .........................................................................................................218
II. Middle Tier Data Access ..................................................................................................................219
      9.Transactionmanagement .......................................................................................................220
            9.1.Introduction ..................................................................................................................220
            9.2.Motivations ..................................................................................................................220
            9.3.Keyabstractions............................................................................................................222
            9.4. Resource synchronization with transactions ....................................................................224
                  9.4.1.High-levelapproach ...........................................................................................224


                                                           Spring Framework (2.5.6)                                                                      v
The Spring Framework - Reference Documentation

           9.4.2.Low-levelapproach ............................................................................................225
           9.4.3.TransactionAwareDataSourceProxy ...................................................................225
     9.5.Declarativetransactionmanagement ...............................................................................226
           9.5.1. Understanding the Spring Framework's declarative transaction implementation ...... 227
           9.5.2.Afirstexample ...................................................................................................227
           9.5.3.Rollingback.......................................................................................................230
           9.5.4. Configuring different transactional semantics for different beans ........................... 232
           9.5.5. <tx:advice/> settings ........................................................................................233
           9.5.6.Using @Transactional .......................................................................................234
           9.5.7.Transactionpropagation......................................................................................239
           9.5.8.Advisingtransactionaloperations ........................................................................240
           9.5.9. Using @Transactional with AspectJ ...................................................................243
     9.6.Programmatictransactionmanagement ...........................................................................243
           9.6.1.Usingthe TransactionTemplate .........................................................................244
           9.6.2.Usingthe PlatformTransactionManager .............................................................245
     9.7. Choosing between programmatic and declarative transaction management ........................ 246
     9.8.Applicationserver-specificintegration............................................................................246
           9.8.1.IBMWebSphere ................................................................................................247
           9.8.2.BEAWebLogic ..................................................................................................247
           9.8.3.OracleOC4J ......................................................................................................247
     9.9. Solutions to common problems ......................................................................................247
           9.9.1. Use of the wrong transaction manager for a specific DataSource ........................... 247
     9.10.FurtherResources........................................................................................................248
10.DAOsupport ........................................................................................................................249
     10.1.Introduction ................................................................................................................249
     10.2.Consistentexceptionhierarchy .....................................................................................249
     10.3. Consistent abstract classes for DAO support ................................................................. 250
11. Data access using JDBC .......................................................................................................251
     11.1.Introduction ................................................................................................................251
           11.1.1.Choosingastyle ...............................................................................................251
           11.1.2.Thepackagehierarchy ......................................................................................252
     11.2. Using the JDBC Core classes to control basic JDBC processing and error handling ......... 252
           11.2.1.JdbcTemplate ..................................................................................................252
           11.2.2.NamedParameterJdbcTemplate ..........................................................................255
           11.2.3.SimpleJdbcTemplate ........................................................................................257
           11.2.4.DataSource ......................................................................................................258
           11.2.5.SQLExceptionTranslator .................................................................................259
           11.2.6.Executingstatements ........................................................................................260
           11.2.7.RunningQueries...............................................................................................260
           11.2.8.Updatingthedatabase .......................................................................................261
           11.2.9.Retrievingauto-generatedkeys ..........................................................................261
     11.3.Controllingdatabaseconnections .................................................................................262
           11.3.1.DataSourceUtils .............................................................................................262
           11.3.2.SmartDataSource .............................................................................................262
           11.3.3.AbstractDataSource ........................................................................................262
           11.3.4.SingleConnectionDataSource ..........................................................................262
           11.3.5.DriverManagerDataSource ...............................................................................262
           11.3.6.TransactionAwareDataSourceProxy .................................................................263
           11.3.7.DataSourceTransactionManager ......................................................................263
           11.3.8.NativeJdbcExtractor .........................................................................................263
     11.4.JDBCbatchoperations ................................................................................................264
           11.4.1. Batch operations with the JdbcTemplate ............................................................. 264


                                                  Spring Framework (2.5.6)                                                                   vi
The Spring Framework - Reference Documentation

           11.4.2. Batch operations with the SimpleJdbcTemplate .................................................. 265
     11.5. Simplifying JDBC operations with the SimpleJdbc classes ............................................. 266
           11.5.1. Inserting data using SimpleJdbcInsert ................................................................266
           11.5.2. Retrieving auto-generated keys using SimpleJdbcInsert ....................................... 266
           11.5.3. Specifying the columns to use for a SimpleJdbcInsert ......................................... 267
           11.5.4. Using SqlParameterSource to provide parameter values ...................................... 267
           11.5.5. Calling a stored procedure using SimpleJdbcCall ................................................ 268
           11.5.6. Declaring parameters to use for a SimpleJdbcCall ............................................... 270
           11.5.7. How to define SqlParameters .............................................................................271
           11.5.8. Calling a stored function using SimpleJdbcCall .................................................. 271
           11.5.9. Returning ResultSet/REF Cursor from a SimpleJdbcCall ..................................... 272
     11.6. Modeling JDBC operations as Java objects ................................................................... 273
           11.6.1.SqlQuery..........................................................................................................273
           11.6.2.MappingSqlQuery .............................................................................................273
           11.6.3.SqlUpdate ........................................................................................................274
           11.6.4.StoredProcedure .............................................................................................275
           11.6.5.SqlFunction ....................................................................................................278
     11.7. Common issues with parameter and data value handling ................................................ 278
           11.7.1. Providing SQL type information for parameters .................................................. 278
           11.7.2. Handling BLOB and CLOB objects ................................................................... 278
           11.7.3. Passing in lists of values for IN clause ............................................................... 280
           11.7.4. Handling complex types for stored procedure calls ............................................. 280
12. Object Relational Mapping (ORM) data access .................................................................... 282
     12.1.Introduction ................................................................................................................282
     12.2.Hibernate ....................................................................................................................283
           12.2.1.Resourcemanagement ......................................................................................283
           12.2.2. SessionFactory setup in a Spring container ....................................................... 284
           12.2.3.The HibernateTemplate ...................................................................................284
           12.2.4. Implementing Spring-based DAOs without callbacks .......................................... 286
           12.2.5. Implementing DAOs based on plain Hibernate 3 API .......................................... 286
           12.2.6.Programmatictransactiondemarcation ...............................................................287
           12.2.7.Declarativetransactiondemarcation ...................................................................288
           12.2.8.Transactionmanagementstrategies ....................................................................289
           12.2.9. Container resources versus local resources ......................................................... 291
           12.2.10. Spurious application server warnings when using Hibernate .............................. 292
     12.3.JDO............................................................................................................................293
           12.3.1. PersistenceManagerFactory setup ...................................................................293
           12.3.2. JdoTemplate and JdoDaoSupport ......................................................................294
           12.3.3. Implementing DAOs based on the plain JDO API ............................................... 294
           12.3.4.Transactionmanagement...................................................................................296
           12.3.5.JdoDialect ......................................................................................................297
     12.4.OracleTopLink ...........................................................................................................297
           12.4.1. SessionFactory abstraction ..............................................................................298
           12.4.2. TopLinkTemplate and TopLinkDaoSupport ........................................................298
           12.4.3. Implementing DAOs based on plain TopLink API .............................................. 300
           12.4.4.Transactionmanagement...................................................................................301
     12.5.iBATISSQLMaps ......................................................................................................302
           12.5.1. Setting up the SqlMapClient .............................................................................302
           12.5.2. Using SqlMapClientTemplate and SqlMapClientDaoSupport .............................303
           12.5.3. Implementing DAOs based on plain iBATIS API ............................................... 304
     12.6.JPA ............................................................................................................................304
           12.6.1. JPA setup in a Spring environment .................................................................... 305


                                                   Spring Framework (2.5.6)                                                                     vii
The Spring Framework - Reference Documentation

                12.6.2. JpaTemplate and JpaDaoSupport ......................................................................310
                12.6.3. Implementing DAOs based on plain JPA ............................................................ 311
                12.6.4.ExceptionTranslation .......................................................................................313
          12.7.TransactionManagement .............................................................................................313
          12.8.JpaDialect .................................................................................................................314
III.TheWeb........................................................................................................................................315
      13.WebMVCframework ..........................................................................................................316
          13.1.Introduction ................................................................................................................316
                13.1.1. Pluggability of other MVC implementations ....................................................... 317
                13.1.2. Features of Spring Web MVC ........................................................................... 317
          13.2.The DispatcherServlet ..............................................................................................318
          13.3.Controllers..................................................................................................................322
                13.3.1. AbstractController and WebContentGenerator ...............................................323
                13.3.2.Othersimplecontrollers ....................................................................................324
                13.3.3.The MultiActionController ............................................................................324
                13.3.4.Commandcontrollers ........................................................................................327
          13.4.Handlermappings .......................................................................................................328
                13.4.1.BeanNameUrlHandlerMapping............................................................................328
                13.4.2.SimpleUrlHandlerMapping ...............................................................................329
                13.4.3. Intercepting requests - the HandlerInterceptor interface ................................... 330
          13.5. Views and resolving them ............................................................................................331
                13.5.1. Resolving views - the ViewResolver interface .................................................... 332
                13.5.2.ChainingViewResolvers ...................................................................................333
                13.5.3.Redirectingtoviews .........................................................................................334
          13.6.Usinglocales ..............................................................................................................335
                13.6.1.AcceptHeaderLocaleResolver ..........................................................................335
                13.6.2.CookieLocaleResolver ....................................................................................335
                13.6.3.SessionLocaleResolver ...................................................................................336
                13.6.4.LocaleChangeInterceptor ...............................................................................336
          13.7.Usingthemes ..............................................................................................................337
                13.7.1.Introduction .....................................................................................................337
                13.7.2.Definingthemes ...............................................................................................337
                13.7.3.Themeresolvers ...............................................................................................337
          13.8. Spring's multipart (fileupload) support ..........................................................................338
                13.8.1.Introduction .....................................................................................................338
                13.8.2.Usingthe MultipartResolver ...........................................................................338
                13.8.3. Handling a file upload in a form ........................................................................ 339
          13.9.Handlingexceptions ....................................................................................................341
          13.10.Conventionoverconfiguration ...................................................................................342
                13.10.1. The Controller - ControllerClassNameHandlerMapping ...................................342
                13.10.2. The Model - ModelMap (ModelAndView) ............................................................ 343
                13.10.3. The View - RequestToViewNameTranslator .....................................................344
          13.11.Annotation-basedcontrollerconfiguration ...................................................................345
                13.11.1. Setting up the dispatcher for annotation support ................................................ 346
                13.11.2. Defining a controller with @Controller ........................................................... 346
                13.11.3. Mapping requests with @RequestMapping .........................................................347
                13.11.4. Supported handler method arguments and return types ...................................... 349
                13.11.5. Binding request parameters to method parameters with @RequestParam .............. 350
                13.11.6. Providing a link to data from the model with @ModelAttribute ......................... 351
                13.11.7. Specifying attributes to store in a Session with @SessionAttributes ................. 351
                13.11.8.Customizing WebDataBinder initialization ........................................................352
          13.12.FurtherResources ......................................................................................................352


                                                           Spring Framework (2.5.6)                                                                     viii
The Spring Framework - Reference Documentation

14.Viewtechnologies .................................................................................................................354
      14.1.Introduction ................................................................................................................354
      14.2.JSP&JSTL ................................................................................................................354
            14.2.1.Viewresolvers .................................................................................................354
            14.2.2. 'Plain-old' JSPs versus JSTL ..............................................................................354
            14.2.3. Additional tags facilitating development ............................................................355
            14.2.4. Using Spring's form tag library .......................................................................... 355
      14.3.Tiles ...........................................................................................................................363
            14.3.1.Dependencies ...................................................................................................363
            14.3.2. How to integrate Tiles .......................................................................................363
      14.4.Velocity&FreeMarker ................................................................................................365
            14.4.1.Dependencies ...................................................................................................365
            14.4.2.Contextconfiguration .......................................................................................365
            14.4.3.Creatingtemplates ............................................................................................366
            14.4.4.Advancedconfiguration ....................................................................................366
            14.4.5. Bind support and form handling ......................................................................... 367
      14.5.XSLT .........................................................................................................................372
            14.5.1.MyFirstWords ................................................................................................373
            14.5.2.Summary .........................................................................................................375
      14.6.Documentviews(PDF/Excel) ......................................................................................375
            14.6.1.Introduction .....................................................................................................375
            14.6.2.Configurationandsetup ....................................................................................375
      14.7.JasperReports..............................................................................................................378
            14.7.1.Dependencies ...................................................................................................378
            14.7.2.Configuration ...................................................................................................378
            14.7.3.Populatingthe ModelAndView ............................................................................380
            14.7.4.WorkingwithSub-Reports ................................................................................381
            14.7.5.ConfiguringExporterParameters .......................................................................382
15. Integrating with other web frameworks ............................................................................... 383
      15.1.Introduction ................................................................................................................383
      15.2.Commonconfiguration ................................................................................................383
      15.3. JavaServer Faces 1.1 and 1.2 ........................................................................................ 385
            15.3.1.DelegatingVariableResolver(JSF1.1/1.2) ..........................................................385
            15.3.2.SpringBeanVariableResolver(JSF1.1/1.2) .........................................................386
            15.3.3.SpringBeanFacesELResolver(JSF1.2+) ............................................................386
            15.3.4.FacesContextUtils ............................................................................................386
      15.4. Apache Struts 1.x and 2.x ............................................................................................ 386
            15.4.1.ContextLoaderPlugin ........................................................................................387
            15.4.2.ActionSupportClasses ......................................................................................389
      15.5.WebWork2.x..............................................................................................................389
      15.6. Tapestry 3.x and 4.x ....................................................................................................390
            15.6.1.InjectingSpring-managedbeans ........................................................................390
      15.7.FurtherResources........................................................................................................396
16.PortletMVCFramework .....................................................................................................397
      16.1.Introduction ................................................................................................................397
            16.1.1. Controllers - The C in MVC .............................................................................. 398
            16.1.2. Views - The V in MVC ..................................................................................... 398
            16.1.3.Web-scopedbeans ............................................................................................398
      16.2.The DispatcherPortlet ..............................................................................................398
      16.3.The ViewRendererServlet ..........................................................................................400
      16.4.Controllers..................................................................................................................401
            16.4.1. AbstractController and PortletContentGenerator ........................................402


                                                    Spring Framework (2.5.6)                                                                      ix
The Spring Framework - Reference Documentation

                 16.4.2.Othersimplecontrollers ....................................................................................403
                 16.4.3.CommandControllers .......................................................................................403
                 16.4.4.PortletWrappingController............................................................................404
           16.5.Handlermappings .......................................................................................................404
                 16.5.1.PortletModeHandlerMapping............................................................................405
                 16.5.2.ParameterHandlerMapping ...............................................................................405
                 16.5.3.PortletModeParameterHandlerMapping ............................................................405
                 16.5.4.Adding HandlerInterceptors...........................................................................406
                 16.5.5.HandlerInterceptorAdapter............................................................................406
                 16.5.6.ParameterMappingInterceptor ........................................................................407
           16.6. Views and resolving them ............................................................................................407
           16.7. Multipart (file upload) support .....................................................................................407
                 16.7.1.Usingthe PortletMultipartResolver ..............................................................408
                 16.7.2. Handling a file upload in a form ........................................................................ 408
           16.8.Handlingexceptions ....................................................................................................411
           16.9.Annotation-basedcontrollerconfiguration ....................................................................411
                 16.9.1. Setting up the dispatcher for annotation support .................................................. 411
                 16.9.2. Defining a controller with @Controller ............................................................. 412
                 16.9.3. Mapping requests with @RequestMapping ...........................................................412
                 16.9.4. Supported handler method arguments ................................................................413
                 16.9.5. Binding request parameters to method parameters with @RequestParam ............... 415
                 16.9.6. Providing a link to data from the model with @ModelAttribute ........................... 415
                 16.9.7. Specifying attributes to store in a Session with @SessionAttributes ................... 416
                 16.9.8.Customizing WebDataBinder initialization ..........................................................416
           16.10.Portletapplicationdeployment ...................................................................................417
IV.Integration.....................................................................................................................................418
     17. Remoting and web services using Spring .............................................................................. 419
           17.1.Introduction ................................................................................................................419
           17.2. Exposing services using RMI .......................................................................................420
                 17.2.1. Exporting the service using the RmiServiceExporter ......................................... 420
                 17.2.2. Linking in the service at the client ..................................................................... 421
           17.3. Using Hessian or Burlap to remotely call services via HTTP .......................................... 421
                 17.3.1. Wiring up the DispatcherServlet for Hessian and co. ....................................... 421
                 17.3.2. Exposing your beans by using the HessianServiceExporter .............................. 422
                 17.3.3. Linking in the service on the client .................................................................... 422
                 17.3.4.UsingBurlap ....................................................................................................423
                 17.3.5. Applying HTTP basic authentication to a service exposed through Hessian or
                 Burlap......................................................................................................................... 234
           17.4. Exposing services using HTTP invokers ....................................................................... 423
                 17.4.1. Exposing the service object ...............................................................................424
                 17.4.2. Linking in the service at the client ..................................................................... 424
           17.5.Webservices ...............................................................................................................425
                 17.5.1. Exposing servlet-based web services using JAX-RPC ......................................... 425
                 17.5.2. Accessing web services using JAX-RPC ............................................................ 426
                 17.5.3. Registering JAX-RPC Bean Mappings ...............................................................427
                 17.5.4. Registering your own JAX-RPC Handler ........................................................... 428
                 17.5.5. Exposing servlet-based web services using JAX-WS .......................................... 428
                 17.5.6. Exporting standalone web services using JAX-WS ............................................. 429
                 17.5.7. Exporting web services using the JAX-WS RI's Spring support ........................... 430
                 17.5.8. Accessing web services using JAX-WS .............................................................. 430
                 17.5.9. Exposing web services using XFire .................................................................... 431
           17.6.JMS............................................................................................................................432


                                                           Spring Framework (2.5.6)                                                                      x
The Spring Framework - Reference Documentation

           17.6.1.Server-sideconfiguration ..................................................................................432
           17.6.2.Client-sideconfiguration ...................................................................................433
     17.7. Auto-detection is not implemented for remote interfaces ................................................ 434
     17.8. Considerations when choosing a technology .................................................................. 434
18. Enterprise Java Beans (EJB) integration .............................................................................. 435
     18.1.Introduction ................................................................................................................435
     18.2.AccessingEJBs ...........................................................................................................435
           18.2.1.Concepts ..........................................................................................................435
           18.2.2.AccessinglocalSLSBs .....................................................................................435
           18.2.3.AccessingremoteSLSBs ..................................................................................437
           18.2.4. Accessing EJB 2.x SLSBs versus EJB 3 SLSBs .................................................. 437
     18.3. Using Spring's EJB implementation support classes ....................................................... 438
           18.3.1. EJB 2.x base classes .........................................................................................438
           18.3.2. EJB 3 injection interceptor ................................................................................439
19. JMS (Java Message Service) .................................................................................................441
     19.1.Introduction ................................................................................................................441
     19.2.UsingSpringJMS .......................................................................................................442
           19.2.1.JmsTemplate ....................................................................................................442
           19.2.2.Connections .....................................................................................................442
           19.2.3.DestinationManagement...................................................................................443
           19.2.4.MessageListenerContainers .............................................................................443
           19.2.5.Transactionmanagement...................................................................................444
     19.3.Sendinga Message .......................................................................................................445
           19.3.1.UsingMessageConverters ................................................................................446
           19.3.2. SessionCallback and ProducerCallback ..........................................................446
     19.4.Receivingamessage ....................................................................................................447
           19.4.1.SynchronousReception.....................................................................................447
           19.4.2. Asynchronous Reception - Message-Driven POJOs ............................................ 447
           19.4.3.The SessionAwareMessageListener interface ....................................................448
           19.4.4.The MessageListenerAdapter ..........................................................................448
           19.4.5. Processing messages within transactions ............................................................450
     19.5. Support for JCA Message Endpoints ............................................................................. 450
     19.6.JMSNamespaceSupport .............................................................................................452
20.JMX .....................................................................................................................................456
     20.1.Introduction ................................................................................................................456
     20.2. Exporting your beans to JMX ....................................................................................... 456
           20.2.1.Creatingan MBeanServer ..................................................................................457
           20.2.2. Reusing an existing MBeanServer ......................................................................458
           20.2.3.Lazy-initializedMBeans ...................................................................................458
           20.2.4. Automatic registration of MBeans .....................................................................459
           20.2.5. Controlling the registration behavior ..................................................................459
     20.3. Controlling the management interface of your beans ...................................................... 460
           20.3.1.The MBeanInfoAssembler Interface ...................................................................460
           20.3.2.Usingsource-Levelmetadata .............................................................................460
           20.3.3. Using JDK 5.0 Annotations ...............................................................................462
           20.3.4.Source-LevelMetadataTypes ...........................................................................464
           20.3.5.The AutodetectCapableMBeanInfoAssembler interface ......................................465
           20.3.6. Defining management interfaces using Java interfaces ........................................ 466
           20.3.7.Using MethodNameBasedMBeanInfoAssembler ....................................................467
     20.4. Controlling the ObjectNames for your beans .................................................................. 467
           20.4.1. Reading ObjectNames from Properties .............................................................467
           20.4.2.Usingthe MetadataNamingStrategy ..................................................................468


                                                    Spring Framework (2.5.6)                                                                      xi
The Spring Framework - Reference Documentation

            20.4.3.The <context:mbean-export/> element ............................................................469
      20.5.JSR-160Connectors ....................................................................................................469
            20.5.1.Server-sideConnectors .....................................................................................469
            20.5.2.Client-sideConnectors ......................................................................................470
            20.5.3.JMXoverBurlap/Hessian/SOAP .......................................................................470
      20.6. Accessing MBeans via Proxies .....................................................................................471
      20.7.Notifications ...............................................................................................................471
            20.7.1. Registering Listeners for Notifications ...............................................................471
            20.7.2.PublishingNotifications ....................................................................................474
      20.8.FurtherResources........................................................................................................475
21.JCACCI ..............................................................................................................................477
      21.1.Introduction ................................................................................................................477
      21.2.ConfiguringCCI .........................................................................................................477
            21.2.1.Connectorconfiguration....................................................................................477
            21.2.2. ConnectionFactory configuration in Spring .......................................................478
            21.2.3.ConfiguringCCIconnections ............................................................................478
            21.2.4. Using a single CCI connection ........................................................................... 479
      21.3. Using Spring's CCI access support ................................................................................ 479
            21.3.1.Recordconversion ............................................................................................480
            21.3.2.The CciTemplate ..............................................................................................480
            21.3.3.DAOsupport ....................................................................................................482
            21.3.4. Automatic output record generation ...................................................................482
            21.3.5.Summary .........................................................................................................482
            21.3.6. Using a CCI Connection and Interaction directly ............................................ 483
            21.3.7. Example for CciTemplate usage ........................................................................484
      21.4. Modeling CCI access as operation objects ..................................................................... 486
            21.4.1.MappingRecordOperation .................................................................................486
            21.4.2.MappingCommAreaOperation .............................................................................486
            21.4.3. Automatic output record generation ...................................................................487
            21.4.4.Summary .........................................................................................................487
            21.4.5. Example for MappingRecordOperation usage ....................................................487
            21.4.6. Example for MappingCommAreaOperation usage .................................................489
      21.5.Transactions................................................................................................................490
22.Email....................................................................................................................................492
      22.1.Introduction ................................................................................................................492
      22.2.Usage .........................................................................................................................492
            22.2.1. Basic MailSender and SimpleMailMessage usage ............................................... 492
            22.2.2. Using the JavaMailSender and the MimeMessagePreparator .............................. 493
      22.3. Using the JavaMail MimeMessageHelper .......................................................................494
            22.3.1. Sending attachments and inline resources ........................................................... 495
            22.3.2. Creating email content using a templating library ............................................... 495
23. Scheduling and Thread Pooling ............................................................................................498
      23.1.Introduction ................................................................................................................498
      23.2. Using the OpenSymphony Quartz Scheduler ................................................................. 498
            23.2.1.UsingtheJobDetailBean ...................................................................................498
            23.2.2.Usingthe MethodInvokingJobDetailFactoryBean .............................................499
            23.2.3. Wiring up jobs using triggers and the SchedulerFactoryBean ............................. 499
      23.3. Using JDK Timer support ............................................................................................500
            23.3.1.Creatingcustomtimers .....................................................................................500
            23.3.2.Usingthe MethodInvokingTimerTaskFactoryBean .............................................501
            23.3.3. Wrapping up: setting up the tasks using the TimerFactoryBean ........................... 501
      23.4. The Spring TaskExecutor abstraction ...........................................................................501


                                                    Spring Framework (2.5.6)                                                                      xii
The Spring Framework - Reference Documentation

                23.4.1. TaskExecutor types ..........................................................................................502
                23.4.2.Usinga TaskExecutor ......................................................................................503
    24.Dynamiclanguagesupport ...................................................................................................505
          24.1.Introduction ................................................................................................................505
          24.2.Afirstexample............................................................................................................505
          24.3. Defining beans that are backed by dynamic languages ................................................... 507
                24.3.1.Commonconcepts ............................................................................................507
                24.3.2.JRubybeans .....................................................................................................511
                24.3.3.Groovybeans ...................................................................................................513
                24.3.4.BeanShellbeans ...............................................................................................515
          24.4.Scenarios ....................................................................................................................516
                24.4.1. Scripted Spring MVC Controllers ......................................................................516
                24.4.2.ScriptedValidators ...........................................................................................517
          24.5.Bitsandbobs ..............................................................................................................518
                24.5.1. AOP - advising scripted beans ........................................................................... 518
                24.5.2.Scoping............................................................................................................518
          24.6.FurtherResources........................................................................................................519
    25. Annotations and Source Level Metadata Support ................................................................ 520
          25.1.Introduction ................................................................................................................520
          25.2.Spring'smetadatasupport ............................................................................................521
          25.3.Annotations ................................................................................................................522
                25.3.1.@Required ........................................................................................................522
                25.3.2. Other @Annotations in Spring ...........................................................................523
          25.4. Integration with Jakarta Commons Attributes ................................................................ 523
          25.5. Metadata and Spring AOP autoproxying ....................................................................... 525
                25.5.1.Fundamentals ...................................................................................................525
                25.5.2.Declarativetransactionmanagement ..................................................................526
A.XMLSchema-basedconfiguration ...................................................................................................527
    A.1.Introduction .........................................................................................................................527
    A.2.XMLSchema-basedconfiguration ........................................................................................527
          A.2.1.Referencingtheschemas ............................................................................................527
          A.2.2.The util schema .......................................................................................................528
          A.2.3.The jee schema .........................................................................................................534
          A.2.4.The lang schema .......................................................................................................537
          A.2.5.The jms schema .........................................................................................................537
          A.2.6. The tx (transaction) schema .......................................................................................538
          A.2.7.The aop schema .........................................................................................................538
          A.2.8.The context schema ..................................................................................................539
          A.2.9.The tool schema .......................................................................................................540
          A.2.10.The beans schema ...................................................................................................540
    A.3. Setting up your IDE ..............................................................................................................541
          A.3.1.SettingupEclipse ......................................................................................................541
          A.3.2. Setting up IntelliJ IDEA .............................................................................................544
          A.3.3.Integrationissues .......................................................................................................547
B.ExtensibleXMLauthoring ...............................................................................................................548
    B.1.Introduction .........................................................................................................................548
    B.2.Authoringtheschema ...........................................................................................................548
    B.3.Codinga NamespaceHandler .................................................................................................549
    B.4.Codinga BeanDefinitionParser ..........................................................................................550
    B.5. Registering the handler and the schema .................................................................................. 551
          B.5.1.'META-INF/spring.handlers' ...................................................................................551
          B.5.2.'META-INF/spring.schemas' .....................................................................................551


                                                         Spring Framework (2.5.6)                                                                   xiii
The Spring Framework - Reference Documentation

     B.6. Using a custom extension in your Spring XML configuration .................................................. 551
     B.7.Meatierexamples .................................................................................................................552
           B.7.1. Nesting custom tags within custom tags ...................................................................... 552
           B.7.2. Custom attributes on 'normal' elements ........................................................................ 555
     B.8.FurtherResources .................................................................................................................556
C.spring-beans-2.0.dtd ...................................................................................................................558
D.spring.tld ........................................................................................................................................567
     D.1.Introduction .........................................................................................................................567
     D.2.The bind tag ........................................................................................................................567
     D.3.The escapeBody tag ..............................................................................................................567
     D.4.The hasBindErrors tag ........................................................................................................568
     D.5.The htmlEscape tag ..............................................................................................................568
     D.6.The message tag ...................................................................................................................568
     D.7.The nestedPath tag ..............................................................................................................569
     D.8.The theme tag.......................................................................................................................569
     D.9.The transform tag ...............................................................................................................570
E.spring-form.tld ................................................................................................................................571
     E.1.Introduction..........................................................................................................................571
     E.2.The checkbox tag ..................................................................................................................571
     E.3.The checkboxes tag ..............................................................................................................573
     E.4.The errors tag .....................................................................................................................574
     E.5.The form tag .........................................................................................................................576
     E.6.The hidden tag .....................................................................................................................577
     E.7.The input tag .......................................................................................................................577
     E.8.The label tag .......................................................................................................................579
     E.9.The option tag .....................................................................................................................580
     E.10.The options tag ..................................................................................................................581
     E.11.The password tag ................................................................................................................583
     E.12.The radiobutton tag...........................................................................................................584
     E.13.The radiobuttons tag .........................................................................................................586
     E.14.The select tag ...................................................................................................................587
     E.15.The textarea tag ................................................................................................................589




                                                            Spring Framework (2.5.6)                                                                       xiv
Preface
Developing software applications is hard enough even with good tools and technologies. Implementing
applications using platforms which promise everything but turn out to be heavy-weight, hard to control and not
very efficient during the development cycle makes it even harder. Spring provides a light-weight solution for
building enterprise-ready applications, while still supporting the possibility of using declarative transaction
management, remote access to your logic using RMI or web services, and various options for persisting your
data to a database. Spring provides a full-featured MVC framework, and transparent ways of integrating AOP
into your software.

Spring could potentially be a one-stop-shop for all your enterprise applications; however, Spring is modular,
allowing you to use just those parts of it that you need, without having to bring in the rest. You can use the IoC
container, with Struts on top, but you could also choose to use just the Hibernate integration code or the JDBC
abstraction layer. Spring has been (and continues to be) designed to be non-intrusive, meaning dependencies on
the framework itself are generally none (or absolutely minimal, depending on the area of use).

This document provides a reference guide to Spring's features. Since this document is still to be considered
very much work-in-progress, if you have any requests or comments, please post them on the user mailing list or
on the support forums at http://forum.springframework.org/.

Before we go on, a few words of gratitude are due to Christian Bauer (of the Hibernate team), who prepared
and adapted the DocBook-XSL software in order to be able to create Hibernate's reference guide, thus also
allowing us to create this one. Also thanks to Russell Healy for doing an extensive and valuable review of some
of the material.




                                           Spring Framework (2.5.6)                                            xv
Chapter 1. Introduction
   Background

   In early 2004, Martin Fowler asked the readers of his site: when talking about Inversion of Control: “the
   question is, what aspect of control are [they] inverting?”. Fowler then suggested renaming the principle
   (or at least giving it a more self-explanatory name), and started to use the term Dependency Injection. His
   article then continued to explain the ideas underpinning the Inversion of Control (IoC) and Dependency
   Injection (DI) principle.

   If you need a decent insight into IoC                and    DI,   please   do   refer   to   said   article   :
   http://martinfowler.com/articles/injection.html.


Java applications (a loose term which runs the gamut from constrained applets to full-fledged n-tier server-side
enterprise applications) typically are composed of a number of objects that collaborate with one another to form
the application proper. The objects in an application can thus be said to have dependencies between themselves.

The Java language and platform provides a wealth of functionality for architecting and building applications,
ranging all the way from the very basic building blocks of primitive types and classes (and the means to define
new classes), to rich full-featured application servers and web frameworks. One area that is decidedly
conspicuous by its absence is any means of taking the basic building blocks and composing them into a
coherent whole; this area has typically been left to the purvey of the architects and developers tasked with
building an application (or applications). Now to be fair, there are a number of design patterns devoted to the
business of composing the various classes and object instances that makeup an all-singing, all-dancing
application. Design patterns such as Factory, Abstract Factory, Builder, Decorator, and Service Locator (to
name but a few) have widespread recognition and acceptance within the software development industry
(presumably that is why these patterns have been formalized as patterns in the first place). This is all very well,
but these patterns are just that: best practices given a name, typically together with a description of what the
pattern does, where the pattern is typically best applied, the problems that the application of the pattern
addresses, and so forth. Notice that the last paragraph used the phrase “... a description of what the pattern
does...”; pattern books and wikis are typically listings of such formalized best practice that you can certainly
take away, mull over, and then implement yourself in your application.

The IoC component of the Spring Framework addresses the enterprise concern of taking the classes, objects,
and services that are to compose an application, by providing a formalized means of composing these various
disparate components into a fully working application ready for use. The Spring Framework takes best
practices that have been proven over the years in numerous applications and formalized as design patterns, and
actually codifies these patterns as first class objects that you as an architect and developer can take away and
integrate into your own application(s). This is a Very Good Thing Indeed as attested to by the numerous
organizations and institutions that have used the Spring Framework to engineer robust, maintainable
applications.


1.1. Overview
The Spring Framework contains a lot of features, which are well-organized in six modules shown in the
diagram below. This chapter discusses each of the modules in turn.




                                            Spring Framework (2.5.6)                                                 16
Introduction




Overview of the Spring Framework



                                   Spring Framework (2.5.6)   17
Introduction


The Core package is the most fundamental part of the framework and provides the IoC and Dependency
Injection features. The basic concept here is the BeanFactory, which provides a sophisticated implementation
of the factory pattern which removes the need for programmatic singletons and allows you to decouple the
configuration and specification of dependencies from your actual program logic.

The Context package build on the solid base provided by the Core package: it provides a way to access objects
in a framework-style manner in a fashion somewhat reminiscent of a JNDI-registry. The context package
inherits its features from the beans package and adds support for internationalization (I18N) (using for example
resource bundles), event-propagation, resource-loading, and the transparent creation of contexts by, for
example, a servlet container.

The DAO package provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding and
parsing of database-vendor specific error codes. Also, the JDBC package provides a way to do programmatic as
well as declarative transaction management, not only for classes implementing special interfaces, but for all
your POJOs (plain old Java objects).

The ORM package provides integration layers for popular object-relational mapping APIs, including JPA, JDO,
Hibernate, and iBatis. Using the ORM package you can use all those O/R-mappers in combination with all the
other features Spring offers, such as the simple declarative transaction management feature mentioned
previously.

Spring's AOP package provides an AOP Alliance-compliant aspect-oriented programming implementation
allowing you to define, for example, method-interceptors and pointcuts to cleanly decouple code implementing
functionality that should logically speaking be separated. Using source-level metadata functionality you can
also incorporate all kinds of behavioral information into your code, in a manner similar to that of .NET
attributes.

Spring's Web package provides basic web-oriented integration features, such as multipart file-upload
functionality, the initialization of the IoC container using servlet listeners and a web-oriented application
context. When using Spring together with WebWork or Struts, this is the package to integrate with.

Spring's MVC package provides a Model-View-Controller (MVC) implementation for web-applications.
Spring's MVC framework is not just any old implementation; it provides a clean separation between domain
model code and web forms, and allows you to use all the other features of the Spring Framework.


1.2. Usage scenarios
With the building blocks described above you can use Spring in all sorts of scenarios, from applets up to
fully-fledged enterprise applications using Spring's transaction management functionality and web framework
integration.




                                          Spring Framework (2.5.6)                                           18
Introduction




                                  Typical full-fledged Spring web application

By using Spring's declarative transaction management features the web application is fully transactional, just as
it would be when using container managed transactions as provided by Enterprise JavaBeans. All your custom
business logic can be implemented using simple POJOs, managed by Spring's IoC container. Additional
services include support for sending email, and validation that is independent of the web layer enabling you to
choose where to execute validation rules. Spring's ORM support is integrated with JPA, Hibernate, JDO and
iBatis; for example, when using Hibernate, you can continue to use your existing mapping files and standard
Hibernate SessionFactory configuration. Form controllers seamlessly integrate the web-layer with the domain
model, removing the need for ActionForms or other classes that transform HTTP parameters to values for your
domain model.




                             Spring middle-tier using a third-party web framework

Sometimes the current circumstances do not allow you to completely switch to a different framework. The


                                           Spring Framework (2.5.6)                                           19
Introduction


Spring Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing
front-ends built using WebWork, Struts, Tapestry, or other UI frameworks can be integrated perfectly well with
a Spring-based middle-tier, allowing you to use the transaction features that Spring offers. The only thing you
need to do is wire up your business logic using an ApplicationContext and integrate your web layer using a
WebApplicationContext.




                                           Remoting usage scenario

When you need to access existing code via web services, you can use Spring's Hessian-, Burlap-, Rmi- or
JaxRpcProxyFactory classes. Enabling remote access to existing applications suddenly is not that hard
anymore.




                                      EJBs - Wrapping existing POJOs

The Spring Framework also provides an access- and abstraction- layer for Enterprise JavaBeans, enabling you
to reuse your existing POJOs and wrap them in Stateless Session Beans, for use in scalable, failsafe web
applications that might need declarative security.




                                          Spring Framework (2.5.6)                                          20
Chapter 2. What's new in Spring 2.0 and 2.5?

2.1. Introduction
If you have been using the Spring Framework for some time, you will be aware that Spring has undergone two
major revisions: Spring 2.0, released in October 2006, and Spring 2.5, released in November 2007.

  Java SE and Java EE Support

  The Spring Framework continues to be compatible with all versions of Java since (and including) Java
  1.4.2. This means that Java 1.4.2, Java 5 and Java 6 are supported, although some advanced functionality
  of the Spring Framework will not be available to you if you are committed to using Java 1.4.2. Spring 2.5
  introduces dedicated support for Java 6, after Spring 2.0's in-depth support for Java 5 throughout the
  framework.

  Furthermore, Spring remains compatible with J2EE 1.3 and higher, while at the same time introducing
  dedicated support for Java EE 5. This means that Spring can be consistently used on application servers
  such as BEA WebLogic 8.1, 9.0, 9.2 and 10, IBM WebSphere 5.1, 6.0, 6.1 and 7, Oracle OC4J 10.1.3 and
  11, JBoss 3.2, 4.0, 4.2 and 5.0, as well as Tomcat 4.1, 5.0, 5.5 and 6.0, Jetty 4.2, 5.1 and 6.1, Resin 2.1,
  3.0 and 3.1 and GlassFish V1 and V2.

  NOTE: We generally recommend using the most recent version of each application server generation. In
  particular, make sure you are using BEA WebLogic 8.1 SP6 or higher and WebSphere 6.0.2.19 / 6.1.0.9
  or higher, respectively, when using those WebLogic and WebSphere generations with Spring 2.5.


This chapter is a guide to the new and improved features of Spring 2.0 and 2.5. It is intended to provide a
high-level summary so that seasoned Spring architects and developers can become immediately familiar with
the new Spring 2.x functionality. For more in-depth information on the features, please refer to the
corresponding sections hyperlinked from within this chapter.


2.2. The Inversion of Control (IoC) container
One of the areas that contains a considerable number of 2.0 and 2.5 improvements is Spring's IoC container.


2.2.1. New bean scopes

Previous versions of Spring had IoC container level support for exactly two distinct bean scopes (singleton and
prototype). Spring 2.0 improves on this by not only providing a number of additional scopes depending on the
environment in which Spring is being deployed (for example, request and session scoped beans in a web
environment), but also by providing integration points so that Spring users can create their own scopes.

It should be noted that although the underlying (and internal) implementation for singleton- and
prototype-scoped beans has been changed, this change is totally transparent to the end user... no existing
configuration needs to change, and no existing configuration will break.

Both the new and the original scopes are detailed in the section entitled Section 3.4, “Bean scopes”.




                                           Spring Framework (2.5.6)                                              21
What's new in Spring 2.0 and 2.5?


2.2.2. Easier XML configuration

Spring XML configuration is now even easier, thanks to the advent of the new XML configuration syntax
based on XML Schema. If you want to take advantage of the new tags that Spring provides (and the Spring
team certainly suggest that you do because they make configuration less verbose and easier to read), then do
read the section entitled Appendix A, XML Schema-based configuration.

On a related note, there is a new, updated DTD for Spring 2.0 that you may wish to reference if you cannot take
advantage of the XML Schema-based configuration. The DOCTYPE declaration is included below for your
convenience, but the interested reader should definitely read the 'spring-beans-2.0.dtd' DTD included in
the 'dist/resources' directory of the Spring 2.5 distribution.

 <!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"
                   "http://www.springframework.org/dtd/spring-beans-2.0.dtd">




2.2.3. Extensible XML authoring

Not only is XML configuration easier to write, it is now also extensible.

What 'extensible' means in this context is that you, as an application developer, or (more likely) as a third party
framework or product vendor, can write custom tags that other developers can then plug into their own Spring
configuration files. This allows you to have your own domain specific language (the term is used loosely here)
of sorts be reflected in the specific configuration of your own components.

Implementing custom Spring tags may not be of interest to every single application developer or enterprise
architect using Spring in their own projects. We expect third-party vendors to be highly interested in
developing custom configuration tags for use in Spring configuration files.

The extensible configuration mechanism is documented in Appendix B, Extensible XML authoring.


2.2.4. Annotation-driven configuration

Spring 2.0 introduced support for various annotations for configuration purposes, such as @Transactional,
@Required and @PersistenceContext /@PersistenceUnit.

Spring 2.5 introduces support for a complete set of configuration annotations: @Autowired in combination with
support for the JSR-250 annotations @Resource, @PostConstruct and @PreDestroy .

Annotation-driven bean configuration is discussed in Section 3.11, “Annotation-based configuration”. Check
out annotation support for Spring MVC as well: Section 2.5.3, “Annotation-based controllers”


2.2.5. Autodetecting components in the classpath

Spring 2.5 introduces support component scanning: autodetecting annotated components in the classpath.
Typically, such component classes will be annotated with stereotypes such as @Component, @Repository,
@Service, @Controller. Depending on the application context configuration, such component classes will be
autodetected and turned into Spring bean definitions, not requiring explicit configuration for each such bean.

Annotation-driven bean configuration is discussed in Section 3.12.1, “@Component and further stereotype
annotations”.




                                            Spring Framework (2.5.6)                                            22
What's new in Spring 2.0 and 2.5?



2.3. Aspect Oriented Programming (AOP)
Spring 2.0 has a much improved AOP offering. The Spring AOP framework itself is markedly easier to
configure in XML, and significantly less verbose as a result; and Spring 2.0 integrates with the AspectJ
pointcut language and @AspectJ aspect declaration style. The chapter entitled Chapter 6, Aspect Oriented
Programming with Spring is dedicated to describing this new support.


2.3.1. Easier AOP XML configuration

Spring 2.0 introduces new schema support for defining aspects backed by regular Java objects. This support
takes advantage of the AspectJ pointcut language and offers fully typed advice (i.e. no more casting and
Object[] argument manipulation). Details of this support can be found in the section entitled Section 6.3,
“Schema-based AOP support”.


2.3.2. Support for @AspectJ aspects

Spring 2.0 also supports aspects defined using the @AspectJ annotations. These aspects can be shared between
AspectJ and Spring AOP, and require (honestly!) only some simple configuration. Said support for @AspectJ
aspects is discussed in Section 6.2, “@AspectJ support”.


2.3.3. Support for bean name pointcut element

Spring 2.5 introduces support for the bean(...) pointcut element, matching specific named beans according to
Spring-defined bean names. See Section 6.2.3.1, “Supported Pointcut Designators” for details.


2.3.4. Support for AspectJ load-time weaving

Spring 2.5 introduces explicit support AspectJ load-time weaving, as alternative to the proxy-based AOP
framework. The new context:load-time-weaver configuration element automatically activates AspectJ
aspects as defined in AspectJ's META-INF/aop.xml descriptor, applying them to the current application context
through registering a transformer with the underlying ClassLoader. Note that this only works in environments
with class transformation support. Check out Section 6.8.4, “Load-time weaving with AspectJ in the Spring
Framework” for the capabilities and limitations.


2.4. The Middle Tier

2.4.1. Easier configuration of declarative transactions in XML

The way that transactions are configured in Spring 2.0 has been changed significantly. The previous 1.2.x style
of configuration continues to be valid (and supported), but the new style is markedly less verbose and is the
recommended style. Spring 2.0 also ships with an AspectJ aspects library that you can use to make pretty much
any object transactional - even objects not created by the Spring IoC container.

Spring 2.5 supports convenient annotation-driven transaction management in combination with load-time
weaving, through the use of context:load-time-weaver in combination with tx:annotation-driven
mode="aspectj".

The chapter entitled Chapter 9, Transaction management contains all of the details.


                                          Spring Framework (2.5.6)                                          23
What's new in Spring 2.0 and 2.5?


2.4.2. Full WebSphere transaction management support

Spring 2.5 explicitly supports IBM's WebSphere Application Server, in particular with respect to WebSphere's
transaction manager. Transaction suspension is now fully supported through the use of WebSphere's new
UOWManager API, which is available on WAS 6.0.2.19+ and 6.0.1.9+.

So if you run a Spring-based application on the WebSphere Application Server, we highly recommend to use
Spring 2.5's WebSphereUowTransactionManager as your PlatformTransactionManager of choice. This is also
IBM's official recommendation.

For automatic detection of the underlying JTA-based transaction platform, consider the use of Spring 2.5's new
tx:jta-transaction-manager configuration element. This will autodetect BEA WebLogic and IBM
WebSphere, registering the appropriate PlatformTransactionManager.


2.4.3. JPA

Spring 2.0 ships with a JPA abstraction layer that is similar in intent to Spring's JDBC abstraction layer in
terms of scope and general usage patterns.

If you are interested in using a JPA-implementation as the backbone of your persistence layer, the section
entitled Section 12.6, “JPA” is dedicated to detailing Spring's support and value-add in this area.

Spring 2.5 upgrades its OpenJPA support to OpenJPA 1.0, with support for advanced features such as
savepoints.


2.4.4. Asynchronous JMS

Prior to Spring 2.0, Spring's JMS offering was limited to sending messages and the synchronous receiving of
messages. This functionality (encapsulated in the JmsTemplate class) is great, but it doesn't address the
requirement for the asynchronous receiving of messages.

Spring 2.0 now ships with full support for the reception of messages in an asynchronous fashion, as detailed in
the section entitled Section 19.4.2, “Asynchronous Reception - Message-Driven POJOs”.

As of Spring 2.5, the JCA style of setting up asynchronous message listeners is supported as well, through the
GenericMessageEndpointManager facility. This is an alternative to the standard JMS listener facility, allowing
closer integration with message brokers such as ActiveMQ and JORAM. See Section 19.5, “Support for JCA
Message Endpoints”.

Spring 2.5 also introduces an XML namespace for simplifying JMS configuration, offering concise
configuration of a large numbers of listeners. This namespace supports both the standard JMS listener facility
as well as the JCA setup style, with minimal changes in the configuration. See Section 19.6, “JMS Namespace
Support”.


2.4.5. JDBC

There are some small (but nevertheless notable) new classes in the Spring Framework's JDBC support library.
The first, NamedParameterJdbcTemplate, provides support for programming JDBC statements using named
parameters (as opposed to programming JDBC statements using only classic placeholder ('?') arguments.

Another of the new classes, the SimpleJdbcTemplate, is aimed at making using the JdbcTemplate even easier
to use when you are developing against Java 5+ (Tiger).


                                          Spring Framework (2.5.6)                                          24
What's new in Spring 2.0 and 2.5?


Spring 2.5 significantly extends the functionality of SimpleJdbcTemplate and introduces SimpleJdbcCall and
SimpleJdbcInsert operation objects.



2.5. The Web Tier
The web tier support has been substantially improved and expanded in Spring 2.0, with annotation-based
controllers introduced in Spring 2.5.


2.5.1. Sensible defaulting in Spring MVC

For a lot of projects, sticking to established conventions and having reasonable defaults is just what the projects
need... this theme of convention-over-configuration now has explicit support in Spring MVC. What this means
is that if you establish a set of naming conventions for your Controllers and views, you can substantially cut
down on the amount of XML configuration that is required to setup handler mappings, view resolvers,
ModelAndView instances, etc. This is a great boon with regards to rapid prototyping, and can also lend a degree
of (always good-to-have) consistency across a codebase.

Spring MVC's convention-over-configuration support is detailed in the section entitled Section 13.10,
“Convention over configuration”


2.5.2. Portlet framework

Spring 2.0 ships with a Portlet framework that is conceptually similar to the Spring MVC framework. Detailed
coverage of the Spring Portlet framework can be found in the section entitled Chapter 16, Portlet MVC
Framework.


2.5.3. Annotation-based controllers

Spring 2.5 introduces an annotation-based programming model for MVC controllers, using annotations such as
@RequestMapping, @RequestParam, @ModelAttribute, etc. This annotation support is available for both Servlet
MVC and Portlet MVC. Controllers implemented in this style do not have to extend specific base classes or
implement specific interfaces. Furthermore, they do not usually have direct dependencies on Servlet or Portlet
API's, although they can easily get access to Servlet or Portlet facilities if desired. For further details, see
Section 13.11, “Annotation-based controller configuration”.


2.5.4. A form tag library for Spring MVC

A rich JSP tag library for Spring MVC was the JIRA issue that garnered the most votes from Spring users (by a
wide margin).

Spring 2.0 ships with a full featured JSP tag library that makes the job of authoring JSP pages much easier
when using Spring MVC; the Spring team is confident it will satisfy all of those developers who voted for the
issue on JIRA. The new tag library is itself covered in the section entitled Section 14.2.4, “Using Spring's form
tag library”, and a quick reference to all of the new tags can be found in the appendix entitled Appendix E,
spring-form.tld.


2.5.5. Tiles 2 support

Spring 2.5 ships support for Tiles 2, the next generation of the popular Tiles templating framework. This

                                            Spring Framework (2.5.6)                                            25
What's new in Spring 2.0 and 2.5?


supersedes Spring's former support for Tiles 1, as included in Struts 1.x. See Section 14.3, “Tiles” for details.


2.5.6. JSF 1.2 support

Spring 2.5 supports JSF 1.2, providing a JSF 1.2 variant of Spring's DelegatingVariableResolver in the form
of the new SpringBeanFacesELResolver.


2.5.7. JAX-WS support

Spring 2.5 fully supports JAX-WS 2.0/2.1, as included in Java 6 and Java EE 5. JAX-WS is the successor of
JAX-RPC, allowing access to WSDL/SOAP-based web services as well as JAX-WS style exposure of web
services.


2.6. Everything else
This final section outlines all of the other new and improved Spring 2.0/2.5 features and functionality.


2.6.1. Dynamic language support

Spring 2.0 introduced support for beans written in languages other than Java, with the currently supported
dynamic languages being JRuby, Groovy and BeanShell. This dynamic language support is comprehensively
detailed in the section entitled Chapter 24, Dynamic language support.

Spring 2.5 refines the dynamic languages support with autowiring and support for the recently released JRuby
1.0.


2.6.2. Enhanced testing support

Spring 2.5 introduces the Spring TestContext Framework which provides annotation-driven unit and integration
testing support that is agnostic of the actual testing framework in use. The same techniques and
annotation-based configuration used in, for example, a JUnit 3.8 environment can also be applied to tests
written with JUnit 4.4, TestNG, etc.

In addition to providing generic and extensible testing infrastructure, the Spring TestContext Framework
provides out-of-the-box support for Spring-specific integration testing functionality such as context
management and caching, dependency injection of test fixtures, and transactional test management with default
rollback semantics.

To discover how this new testing support can assist you with writing unit and integration tests, consult
Section 8.3.7, “Spring TestContext Framework” of the revised testing chapter.


2.6.3. JMX support

The Spring Framework 2.0 has support for Notifications; it is also possible to exercise declarative control
over the registration behavior of MBeans with an MBeanServer.


• Section 20.7, “Notifications”

• Section 20.2.5, “Controlling the registration behavior”

                                            Spring Framework (2.5.6)                                                26
What's new in Spring 2.0 and 2.5?


Furthermore, Spring 2.5 provides a context:mbean-export configuration element for convenient registration
of annotated bean classes, detecting Spring's @ManagedResource annotation.


2.6.4. Deploying a Spring application context as JCA adapter

Spring 2.5 supports the deployment of a Spring application context as JCA resource adapter, packaged as a
JCA RAR file. This allows headless application modules to be deployed into J2EE servers, getting access to all
the server's infrastructure e.g. for executing scheduled tasks, listening for incoming messages, etc.


2.6.5. Task scheduling

Spring 2.0 offers an abstraction around the scheduling of tasks. For the interested developer, the section entitled
Section 23.4, “The Spring TaskExecutor abstraction” contains all of the details.

The TaskExecutor abstraction is used throughout the framework itself as well, e.g. for the asynchronous JMS
support. In Spring 2.5, it is also used in the JCA environment support.


2.6.6. Java 5 (Tiger) support

Find below pointers to documentation describing some of the new Java 5 support in Spring 2.0 and 2.5.


• Section 3.11, “Annotation-based configuration”

• Section 25.3.1, “@Required”

• Section 9.5.6, “Using @Transactional”

• Section 11.2.3, “SimpleJdbcTemplate”

• Section 12.6, “JPA”

• Section 6.2, “@AspectJ support”

• Section 6.8.1, “Using AspectJ to dependency inject domain objects with Spring”



2.7. Migrating to Spring 2.5
This final section details issues that may arise during any migration from Spring 1.2/2.0 to Spring 2.5.

Upgrading to Spring 2.5 from a Spring 2.0.x application should simply be a matter of dropping the Spring 2.5
jar into the appropriate location in your application's directory structure. We highly recommend upgrading to
Spring 2.5 from any Spring 2.0 application that runs on JDK 1.4.2 or higher, in particular when running on Java
5 or higher, leveraging the significant configuration conveniences and performance improvements that Spring
2.5 has to offer.

Whether an upgrade from Spring 1.2.x will be as seamless depends on how much of the Spring APIs you are
using in your code. Spring 2.0 removed pretty much all of the classes and methods previously marked as
deprecated in the Spring 1.2.x codebase, so if you have been using such classes and methods, you will of course
have to use alternative classes and methods (some of which are summarized below).

With regards to configuration, Spring 1.2.x style XML configuration is 100%, satisfaction-guaranteed


                                            Spring Framework (2.5.6)                                            27
What's new in Spring 2.0 and 2.5?


compatible with the Spring 2.5 library. Of course if you are still using the Spring 1.2.x DTD, then you won't be
able to take advantage of some of the new Spring 2.0 functionality (such as scopes and easier AOP and
transaction configuration), but nothing will blow up.

The suggested migration strategy is to drop in the Spring 2.5 jar(s) to benefit from the improved code present in
the release (bug fixes, optimizations, etc.). You can then, on an incremental basis, choose to start using the new
Spring 2.5 features and configuration. For example, you could choose to start configuring just your aspects in
the new Spring 2 style; it is perfectly valid to have 90% of your configuration using the old-school Spring 1.2.x
configuration (which references the 1.2.x DTD), and have the other 10% using the new Spring 2 configuration
(which references the 2.0/2.5 DTD or XSD). Bear in mind that you are not forced to upgrade your XML
configuration should you choose to drop in the Spring 2.5 libraries.


2.7.1. Changes

For a comprehensive list of changes, consult the 'changelog.txt' file that is located in the top level directory
of the Spring Framework distribution.

2.7.1.1. Supported JDK versions

As of Spring 2.5, support for JDK 1.3 has been removed, following Sun's official deprecation of JDK 1.3 in late
2006. If you haven't done so already, upgrade to JDK 1.4.2 or higher.

If you need to stick with an application server that only supports JDK 1.3, such as WebSphere 4.0 or 5.0, we
recommend using the Spring Framework version 2.0.7/2.0.8 which still supports JDK 1.3.

2.7.1.2. Jar packaging in Spring 2.5

As of Spring 2.5, Spring Web MVC is no longer part of the 'spring.jar' file. Spring MVC can be found in
'spring-webmvc.jar' and 'spring-webmvc-portlet.jar' in the lib/modules directory of the distribution.
Furthermore, the Struts 1.x support has been factored out into 'spring-webmvc-struts.jar'.

Note: The commonly used Spring's DispatcherServlet is part of Spring's Web MVC framework. As a
consequence, you need to add 'spring-webmvc.jar' (or 'spring-webmvc-portlet/struts.jar') to a
'spring.jar' scenario, even if you are just using DispatcherServlet for remoting purposes (e.g. exporting
Hessian or HTTP invoker services).

Spring 2.0's 'spring-jmx.jar' and 'spring-remoting.jar' have been merged into Spring 2.5's
'spring-context.jar' (for the JMX and non-HTTP remoting support) and partly into 'spring-web.jar' (for
the HTTP remoting support).

Spring 2.0's 'spring-support.jar' has been renamed to 'spring-context-support.jar', expressing the
actual support relationship more closely. 'spring-portlet.jar' has been renamed to
'spring-webmvc-portlet.jar', since it is technically a submodule of Spring's Web MVC framework.
Analogously, 'spring-struts.jar' has been renamed to 'spring-webmvc-struts.jar'.

Spring 2.0's 'spring-jdo.jar', 'spring-jpa.jar', 'spring-hibernate3.jar', 'spring-toplink.jar' and
'spring-ibatis.jar' have been combined into Spring 2.5's coarse-granular 'spring-orm.jar'.

Spring 2.5's 'spring-test.jar' supersedes the previous 'spring-mock.jar', indicating the stronger focus on
the test context framework. Note that 'spring-test.jar' contains everything 'spring-mock.jar' contained
in previous Spring versions; hence it can be used as a straightforward replacement for unit and integration
testing purposes.



                                           Spring Framework (2.5.6)                                            28
What's new in Spring 2.0 and 2.5?


Spring 2.5's 'spring-tx.jar' supersedes the previous 'spring-dao.jar' and 'spring-jca.jar' files,
indicating the stronger focus on the transaction framework.

Spring 2.5 ships its framework jars as OSGi-compliant bundles out of the box. This facilitates use of Spring in
OSGi environments, not requiring custom packaging anymore.

2.7.1.3. XML configuration

Spring 2.0 ships with XSDs that describe Spring's XML metadata format in a much richer fashion than the
DTD that shipped with previous versions. The old DTD is still fully supported, but if possible you are
encouraged to reference the XSD files at the top of your bean definition files.

One thing that has changed in a (somewhat) breaking fashion is the way that bean scopes are defined. If you are
using the Spring 1.2 DTD you can continue to use the 'singleton' attribute. You can however choose to
reference the new Spring 2.0 DTD which does not permit the use of the 'singleton' attribute, but rather uses
the 'scope' attribute to define the bean lifecycle scope.

2.7.1.4. Deprecated classes and methods

A number of classes and methods that previously were marked as @deprecated have been removed from the
Spring 2.0 codebase. The Spring team decided that the 2.0 release marked a fresh start of sorts, and that any
deprecated 'cruft' was better excised now instead of continuing to haunt the codebase for the foreseeable future.

As mentioned previously, for a comprehensive list of changes, consult the 'changelog.txt' file that is located
in the top level directory of the Spring Framework distribution.

The following classes/interfaces have been removed as of Spring 2.0:


• ResultReader : Use the RowMapper interface instead.

• BeanFactoryBootstrap : Consider using a BeanFactoryLocator or a custom bootstrap class instead.

2.7.1.5. Apache OJB

As of Spring 2.0, support for Apache OJB was totally removed from the main Spring source tree. The Apache
OJB integration library is still available, but can be found in its new home in the Spring Modules project.

2.7.1.6. iBATIS

Please note that support for iBATIS SQL Maps 1.3 has been removed. If you haven't done so already, upgrade
to iBATIS SQL Maps 2.3.

2.7.1.7. Hibernate

As of Spring 2.5, support for Hibernate 2.1 and Hibernate 3.0 has been removed. If you haven't done so
already, upgrade to Hibernate 3.1 or higher.

If you need to stick with Hibernate 2.1 or 3.0 for the time being, we recommend to keep using the Spring
Framework version 2.0.7/2.0.8 which still supports those versions of Hibernate.

2.7.1.8. JDO

As of Spring 2.5, support for JDO 1.0 has been removed. If you haven't done so already, upgrade to JDO 2.0 or


                                           Spring Framework (2.5.6)                                           29
What's new in Spring 2.0 and 2.5?


higher.

If you need to stick with JDO 1.0 for the time being, we recommend to keep using the Spring Framework
version 2.0.7/2.0.8 which still supports that version of JDO.

2.7.1.9. UrlFilenameViewController

Since Spring 2.0, the view name that is determined by the UrlFilenameViewController now takes into account
the nested path of the request. This is a breaking change from the original contract of the
UrlFilenameViewController, and means that if you are upgrading from Spring 1.x to Spring 2.x and you are
using this class you might have to change your Spring Web MVC configuration slightly. Refer to the class level
Javadocs of the UrlFilenameViewController to see examples of the new contract for view name
determination.


2.8. Updated sample applications
A number of the sample applications have also been updated to showcase the new and improved features of
Spring 2.0. So do take the time to investigate them. The aforementioned sample applications can be found in
the 'samples' directory of the full Spring distribution ('spring-with-dependencies.[zip|tar.gz]').

Spring 2.5 features revised versions of the PetClinic and PetPortal sample applications, reengineered from the
ground up for leveraging Spring 2.5's annotation configuration features. It also uses Java 5 autoboxing,
generics, varargs and the enhanced for loop. A Java 5 or 6 SDK is now required to build and run the sample.
Check out PetClinic and PetPortal to get an impression of what Spring 2.5 has to offer!


2.9. Improved documentation
The Spring reference documentation has also substantially been updated to reflect all of the above features new
in Spring 2.0 and 2.5. While every effort has been made to ensure that there are no errors in this documentation,
some errors may nevertheless have crept in. If you do spot any typos or even more serious errors, and you can
spare a few cycles during lunch, please do bring the error to the attention of the Spring team by raising an issue.

Special thanks to Arthur Loder for his tireless proofreading of the Spring Framework reference documentation
and JavaDocs.




                                            Spring Framework (2.5.6)                                            30
Part I. Core Technologies
This initial part of the reference documentation covers all of those technologies that are absolutely integral to
the Spring Framework.

Foremost amongst these is the Spring Framework's Inversion of Control (IoC) container. A thorough treatment
of the Spring Framework's IoC container is closely followed by comprehensive coverage of Spring's
Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP framework,
which is conceptually easy to understand, and which successfully addresses the 80% sweet spot of AOP
requirements in Java enterprise programming.

Coverage of Spring's integration with AspectJ (currently the richest - in terms of features - and certainly most
mature AOP implementation in the Java enterprise space) is also provided.

Finally, the adoption of the test-driven-development (TDD) approach to software development is certainly
advocated by the Spring team, and so coverage of Spring's support for integration testing is covered (alongside
best practices for unit testing). The Spring team have found that the correct use of IoC certainly does make both
unit and integration testing easier (in that the presence of setter methods and appropriate constructors on classes
makes them easier to wire together on a test without having to set up service locator registries and suchlike)...
the chapter dedicated solely to testing will hopefully convince you of this as well.


• Chapter 3, The IoC container

• Chapter 4, Resources

• Chapter 5, Validation, Data-binding, the BeanWrapper, and PropertyEditors

• Chapter 6, Aspect Oriented Programming with Spring

• Chapter 7, Spring AOP APIs

• Chapter 8, Testing




                                            Spring Framework (2.5.6)                                            31
Chapter 3. The IoC container

3.1. Introduction
This chapter covers the Spring Framework's implementation of the Inversion of Control (IoC) 1 principle.

    BeanFactory     or ApplicationContext?

    Users are sometimes unsure whether a BeanFactory or an ApplicationContext is best suited for use in a
    particular situation. A BeanFactory pretty much just instantiates and configures beans. An
    ApplicationContext also does that, and it provides the supporting infrastructure to enable lots of
    enterprise-specific features such as transactions and AOP.

    In short, favor the use of an ApplicationContext.

    (For the specific details behind this recommendation, see this section.)


The org.springframework.beans and org.springframework.context packages provide the basis for the
Spring Framework's IoC container. The BeanFactory interface provides an advanced configuration mechanism
capable of managing objects of any nature. The ApplicationContext interface builds on top of the
BeanFactory (it is a sub-interface) and adds other functionality such as easier integration with Spring's AOP
features, message resource handling (for use in internationalization), event propagation, and application-layer
specific contexts such as the WebApplicationContext for use in web applications.

In short, the BeanFactory provides the configuration framework and basic functionality, while the
ApplicationContext adds more enterprise-centric functionality to it. The ApplicationContext is a complete
superset of the BeanFactory, and any description of BeanFactory capabilities and behavior is to be considered
to apply to the ApplicationContext as well.

This chapter is divided into two parts, with the first part covering the basic principles that apply to both the
BeanFactory and ApplicationContext, and with the second part covering those features that apply only to the
ApplicationContext interface.



3.2. Basics - containers and beans
In Spring, those objects that form the backbone of your application and that are managed by the Spring IoC
container are referred to as beans. A bean is simply an object that is instantiated, assembled and otherwise
managed by a Spring IoC container; other than that, there is nothing special about a bean (it is in all other
respects one of probably many objects in your application). These beans, and the dependencies between them,
are reflected in the configuration metadata used by a container.

    Why... bean?

    The motivation for using the name 'bean', as opposed to 'component' or 'object' is rooted in the origins of
    the Spring Framework itself (it arose partly as a response to the complexity of Enterprise JavaBeans).



1
 See the section entitled Background


                                            Spring Framework (2.5.6)                                              32
The IoC container


3.2.1. The container

The org.springframework.beans.factory.BeanFactory is the actual representation of the Spring IoC
container that is responsible for containing and otherwise managing the aforementioned beans.

The BeanFactory interface is the central IoC container interface in Spring. Its responsibilities include
instantiating or sourcing application objects, configuring such objects, and assembling the dependencies
between these objects.

There are a number of implementations of the BeanFactory interface that come supplied straight out-of-the-box
with Spring. The most commonly used BeanFactory implementation is the XmlBeanFactory class. This
implementation allows you to express the objects that compose your application, and the doubtless rich
interdependencies between such objects, in terms of XML. The XmlBeanFactory takes this XML configuration
metadata and uses it to create a fully configured system or application.




                                          The Spring IoC container

3.2.1.1. Configuration metadata

As can be seen in the above image, the Spring IoC container consumes some form of configuration metadata;
this configuration metadata is nothing more than how you (as an application developer) inform the Spring
container as to how to “instantiate, configure, and assemble [the objects in your application]”. This
configuration metadata is typically supplied in a simple and intuitive XML format. When using XML-based
configuration metadata, you write bean definitions for those beans that you want the Spring IoC container to
manage, and then let the container do its stuff.

           Note
           XML-based metadata is by far the most commonly used form of configuration metadata. It is not
           however the only form of configuration metadata that is allowed. The Spring IoC container itself is
           totally decoupled from the format in which this configuration metadata is actually written. The


                                         Spring Framework (2.5.6)                                          33
The IoC container


            XML-based configuration metadata format really is simple though, and so the majority of this
            chapter will use the XML format to convey key concepts and features of the Spring IoC container.

            You can find details of another form of metadata that the Spring container can consume in the
            section entitled Section 3.11, “Annotation-based configuration”


   Resources

   The location path or paths supplied to an ApplicationContext constructor are actually resource strings
   that allow the container to load configuration metadata from a variety of external resources such as the
   local file system, from the Java CLASSPATH, etc.

   Once you have learned about Spring's IoC container, you may wish to learn a little more about Spring's
   Resource abstraction, as described in the chapter entitled Chapter 4, Resources.



In the vast majority of application scenarios, explicit user code is not required to instantiate one or more
instances of a Spring IoC container. For example, in a web application scenario, a simple eight (or so) lines of
boilerplate J2EE web descriptor XML in the web.xml file of the application will typically suffice (see
Section 3.8.5, “Convenient ApplicationContext instantiation for web applications”).

Spring configuration consists of at least one bean definition that the container must manage, but typically there
will be more than one bean definition. When using XML-based configuration metadata, these beans are
configured as <bean/> elements inside a top-level <beans/> element.

These bean definitions correspond to the actual objects that make up your application. Typically you will have
bean definitions for your service layer objects, your data access objects (DAOs), presentation objects such as
Struts Action instances, infrastructure objects such as Hibernate SessionFactories, JMS Queues, and so forth.
Typically one does not configure fine-grained domain objects in the container, because it is usually the
responsibility of DAOs and business logic to create/load domain objects.

Find below an example of the basic structure of XML-based configuration metadata.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://www.springframework.org/schema/beans
            http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

    <bean id="..." class="...">
      <!-- collaborators and configuration for this bean go here -->
    </bean>

    <bean id="..." class="...">
      <!-- collaborators and configuration for this bean go here -->
    </bean>

    <!-- more bean definitions go here -->

 </beans>




3.2.2. Instantiating a container

Instantiating a Spring IoC container is straightforward.

 ApplicationContext context = new ClassPathXmlApplicationContext(
         new String[] {"services.xml", "daos.xml"});



                                           Spring Framework (2.5.6)                                           34
The IoC container


 // an ApplicationContext is also a BeanFactory (via inheritance)
 BeanFactory factory = context;




3.2.2.1. Composing XML-based configuration metadata

It can often be useful to split up container definitions into multiple XML files. One way to then load an
application context which is configured from all these XML fragments is to use the application context
constructor which takes multiple Resource locations. With a bean factory, a bean definition reader can be used
multiple times to read definitions from each file in turn.

Generally, the Spring team prefers the above approach, since it keeps container configuration files unaware of
the fact that they are being combined with others. An alternate approach is to use one or more occurrences of
the <import/> element to load bean definitions from another file (or files). Let's look at a sample:

 <beans>

      <import resource="services.xml"/>
      <import resource="resources/messageSource.xml"/>
      <import resource="/resources/themeSource.xml"/>

      <bean id="bean1" class="..."/>
      <bean id="bean2" class="..."/>

 </beans>



In this example, external bean definitions are being loaded from 3 files, services.xml, messageSource.xml,
and themeSource.xml. All location paths are considered relative to the definition file doing the importing, so
services.xml in this case must be in the same directory or classpath location as the file doing the importing,
while messageSource.xml and themeSource.xml must be in a resources location below the location of the
importing file. As you can see, a leading slash is actually ignored, but given that these are considered relative
paths, it is probably better form not to use the slash at all. The contents of the files being imported must be valid
XML bean definition files according to the Spring Schema or DTD, including the top level <beans/> element.

            Note
            It is possible to reference files in parent directories using a relative "../" path. However, this is not
            recommended because it creates a dependency on a file that is outside the current application. This
            is in particular not recommended for "classpath:" URLs (e.g. "classpath:../services.xml") where the
            runtime resolution process will pick the "nearest" classpath root and then look into its parent
            directory. This is fragile since classpath configuration changes may lead to a different directory
            being picked.

            Note that you can always use fully qualified resource locations instead of relative paths: e.g.
            "file:C:/config/services.xml" or "classpath:/config/services.xml". However, be aware that you are
            coupling your application's configuration to specific absolute locations then. It is generally
            preferable to keep an indirection for such absolute locations, e.g. through "${...}" placeholders that
            are resolved against JVM system properties at runtime.



3.2.3. The beans

A Spring IoC container manages one or more beans. These beans are created using the configuration metadata
that has been supplied to the container (typically in the form of XML <bean/> definitions).

Within the container itself, these bean definitions are represented as BeanDefinition objects, which contain


                                            Spring Framework (2.5.6)                                              35
The IoC container

(among other information) the following metadata:


• a package-qualified class name: typically this is the actual implementation class of the bean being defined.

• bean behavioral configuration elements, which state how the bean should behave in the container (scope,
  lifecycle callbacks, and so forth).

• references to other beans which are needed for the bean to do its work; these references are also called
  collaborators or dependencies.

• other configuration settings to set in the newly created object. An example would be the number of
  connections to use in a bean that manages a connection pool, or the size limit of the pool.

The concepts listed above directly translate to a set of properties that each bean definition consists of. Some of
these properties are listed below, along with a link to further documentation about each of them.


Table 3.1. The bean definition

Feature                               Explained in...

class
                                      Section 3.2.3.2, “Instantiating beans”

name
                                      Section 3.2.3.1, “Naming beans”

scope
                                      Section 3.4, “Bean scopes”

constructor arguments
                                      Section 3.3.1, “Injecting dependencies”

properties
                                      Section 3.3.1, “Injecting dependencies”

autowiring mode
                                      Section 3.3.5, “Autowiring collaborators”

dependency checking mode
                                      Section 3.3.6, “Checking for dependencies”

lazy-initialization mode
                                      Section 3.3.4, “Lazily-instantiated beans”

initialization method
                                      Section 3.5.1.1, “Initialization callbacks”

destruction method
                                      Section 3.5.1.2, “Destruction callbacks”


Besides bean definitions which contain information on how to create a specific bean, certain BeanFactory
implementations also permit the registration of existing objects that have been created outside the factory (by
user code). The DefaultListableBeanFactory class supports this through the registerSingleton(..)
method. (Typical applications solely work with beans defined through metadata bean definitions though.)

3.2.3.1. Naming beans




                                           Spring Framework (2.5.6)                                              36
The IoC container



   Bean naming conventions

   The convention (at least amongst the Spring development team) is to use the standard Java convention for
   instance field names when naming beans. That is, bean names start with a lowercase letter, and are
   camel-cased from then on. Examples of such names would be (without quotes) 'accountManager',
   'accountService', 'userDao', 'loginController', and so forth.

   Adopting a consistent way of naming your beans will go a long way towards making your configuration
   easier to read and understand; adopting such naming standards is not hard to do, and if you are using
   Spring AOP it can pay off handsomely when it comes to applying advice to a set of beans related by
   name.


Every bean has one or more ids (also called identifiers, or names; these terms refer to the same thing). These
ids must be unique within the container the bean is hosted in. A bean will almost always have only one id, but
if a bean has more than one id, the extra ones can essentially be considered aliases.

When using XML-based configuration metadata, you use the 'id' or 'name' attributes to specify the bean
identifier(s). The 'id' attribute allows you to specify exactly one id, and as it is a real XML element ID
attribute, the XML parser is able to do some extra validation when other elements reference the id; as such, it is
the preferred way to specify a bean id. However, the XML specification does limit the characters which are
legal in XML IDs. This is usually not a constraint, but if you have a need to use one of these special XML
characters, or want to introduce other aliases to the bean, you may also or instead specify one or more bean ids,
separated by a comma (,), semicolon (;), or whitespace in the 'name' attribute.

Please note that you are not required to supply a name for a bean. If no name is supplied explicitly, the
container will generate a unique name for that bean. The motivations for not supplying a name for a bean will
be discussed later (one use case is inner beans).

3.2.3.1.1. Aliasing beans
In a bean definition itself, you may supply more than one name for the bean, by using a combination of up to
one name specified via the id attribute, and any number of other names via the name attribute. All these names
can be considered equivalent aliases to the same bean, and are useful for some situations, such as allowing each
component used in an application to refer to a common dependency using a bean name that is specific to that
component itself.

Having to specify all aliases when the bean is actually defined is not always adequate however. It is sometimes
desirable to introduce an alias for a bean which is defined elsewhere. In XML-based configuration metadata
this may be accomplished via the use of the <alias/> element.

 <alias name="fromName" alias="toName"/>



In this case, a bean in the same container which is named 'fromName', may also after the use of this alias
definition, be referred to as 'toName'.

As a concrete example, consider the case where component A defines a DataSource bean called
componentA-dataSource, in its XML fragment. Component B would however like to refer to the DataSource as
componentB-dataSource in its XML fragment. And the main application, MyApp, defines its own XML
fragment and assembles the final application context from all three fragments, and would like to refer to the
DataSource as myApp-dataSource. This scenario can be easily handled by adding to the MyApp XML
fragment the following standalone aliases:



                                           Spring Framework (2.5.6)                                            37
The IoC container


 <alias name="componentA-dataSource" alias="componentB-dataSource"/>
 <alias name="componentA-dataSource" alias="myApp-dataSource" />



Now each component and the main application can refer to the dataSource via a name that is unique and
guaranteed not to clash with any other definition (effectively there is a namespace), yet they refer to the same
bean.

3.2.3.2. Instantiating beans


   Inner class names

   If for whatever reason you want to configure a bean definition for a static inner class, you have to use
   the binary name of the inner class.

   For example, if you have a class called Foo in the com.example package, and this Foo class has a static
   inner class called Bar, the value of the 'class' attribute on a bean definition would be...

   com.example.Foo$Bar

   Notice the use of the $ character in the name to separate the inner class name from the outer class name.


A bean definition essentially is a recipe for creating one or more objects. The container looks at the recipe for a
named bean when asked, and uses the configuration metadata encapsulated by that bean definition to create (or
acquire) an actual object.

If you are using XML-based configuration metadata, you can specify the type (or class) of object that is to be
instantiated using the 'class' attribute of the <bean/> element. This 'class' attribute (which internally
eventually boils down to being a Class property on a BeanDefinition instance) is normally mandatory (see
Section 3.2.3.2.3, “Instantiation using an instance factory method” and Section 3.6, “Bean definition
inheritance” for the two exceptions) and is used for one of two purposes. The class property specifies the class
of the bean to be constructed in the common case where the container itself directly creates the bean by calling
its constructor reflectively (somewhat equivalent to Java code using the 'new' operator). In the less common
case where the container invokes a static, factory method on a class to create the bean, the class property
specifies the actual class containing the static factory method that is to be invoked to create the object (the
type of the object returned from the invocation of the static factory method may be the same class or another
class entirely, it doesn't matter).

3.2.3.2.1. Instantiation using a constructor
When creating a bean using the constructor approach, all normal classes are usable by and compatible with
Spring. That is, the class being created does not need to implement any specific interfaces or be coded in a
specific fashion. Just specifying the bean class should be enough. However, depending on what type of IoC you
are going to use for that specific bean, you may need a default (empty) constructor.

Additionally, the Spring IoC container isn't limited to just managing true JavaBeans, it is also able to manage
virtually any class you want it to manage. Most people using Spring prefer to have actual JavaBeans (having
just a default (no-argument) constructor and appropriate setters and getters modeled after the properties) in the
container, but it is also possible to have more exotic non-bean-style classes in your container. If, for example,
you need to use a legacy connection pool that absolutely does not adhere to the JavaBean specification, Spring
can manage it as well.

When using XML-based configuration metadata you can specify your bean class like so:


                                            Spring Framework (2.5.6)                                            38
The IoC container


 <bean id="exampleBean" class="examples.ExampleBean"/>

 <bean name="anotherExample" class="examples.ExampleBeanTwo"/>



The mechanism for supplying arguments to the constructor (if required), or setting properties of the object
instance after it has been constructed, is described shortly.

3.2.3.2.2. Instantiation using a static factory method
When defining a bean which is to be created using a static factory method, along with the class attribute which
specifies the class containing the static factory method, another attribute named factory-method is needed to
specify the name of the factory method itself. Spring expects to be able to call this method (with an optional list
of arguments as described later) and get back a live object, which from that point on is treated as if it had been
created normally via a constructor. One use for such a bean definition is to call static factories in legacy code.

The following example shows a bean definition which specifies that the bean is to be created by calling a
factory-method. Note that the definition does not specify the type (class) of the returned object, only the class
containing the factory method. In this example, the createInstance() method must be a static method.

 <bean id="exampleBean"
       class="examples.ExampleBean2"
       factory-method="createInstance"/>



The mechanism for supplying (optional) arguments to the factory method, or setting properties of the object
instance after it has been returned from the factory, will be described shortly.

3.2.3.2.3. Instantiation using an instance factory method
In a fashion similar to instantiation via a static factory method, instantiation using an instance factory method is
where a non-static method of an existing bean from the container is invoked to create a new bean. To use this
mechanism, the 'class' attribute must be left empty, and the 'factory-bean' attribute must specify the name
of a bean in the current (or parent/ancestor) container that contains the instance method that is to be invoked to
create the object. The name of the factory method itself must be set using the 'factory-method' attribute.

 <!-- the factory bean, which contains a method called createInstance() -->
 <bean id="serviceLocator" class="com.foo.DefaultServiceLocator">
   <!-- inject any dependencies required by this locator bean -->
 </bean>

 <!-- the bean to be created via the factory bean -->
 <bean id="exampleBean"
       factory-bean="serviceLocator"
       factory-method="createInstance"/>



Although the mechanisms for setting bean properties are still to be discussed, one implication of this approach
is that the factory bean itself can be managed and configured via DI.

            Note
            When the Spring documentation makes mention of a 'factory bean', this will be a reference to a
            bean that is configured in the Spring container that will create objects via an instance or static
            factory method. When the documentation mentions a FactoryBean (notice the capitalization) this is
            a reference to a Spring-specific FactoryBean .



3.2.4. Using the container

                                            Spring Framework (2.5.6)                                             39
The IoC container


A BeanFactory is essentially nothing more than the interface for an advanced factory capable of maintaining a
registry of different beans and their dependencies. The BeanFactory enables you to read bean definitions and
access them using the bean factory. When using just the BeanFactory you would create one and read in some
bean definitions in the XML format as follows:

 Resource res = new FileSystemResource("beans.xml");
 BeanFactory factory = new XmlBeanFactory(res);



Basically that is all there is to it. Using getBean(String) you can retrieve instances of your beans; the
client-side view of the BeanFactory is simple. The BeanFactory interface has just a few other methods, but
ideally your application code should never use them... indeed, your application code should have no calls to the
getBean(String) method at all, and thus no dependency on Spring APIs at all.



3.3. Dependencies
Your typical enterprise application is not made up of a single object (or bean in the Spring parlance). Even the
simplest of applications will no doubt have at least a handful of objects that work together to present what the
end-user sees as a coherent application. This next section explains how you go from defining a number of bean
definitions that stand-alone, each to themselves, to a fully realized application where objects work (or
collaborate) together to achieve some goal (usually an application that does what the end-user wants).


3.3.1. Injecting dependencies

The basic principle behind Dependency Injection (DI) is that objects define their dependencies (that is to say
the other objects they work with) only through constructor arguments, arguments to a factory method, or
properties which are set on the object instance after it has been constructed or returned from a factory method.
Then, it is the job of the container to actually inject those dependencies when it creates the bean. This is
fundamentally the inverse, hence the name Inversion of Control (IoC), of the bean itself being in control of
instantiating or locating its dependencies on its own using direct construction of classes, or something like the
Service Locator pattern.

It becomes evident upon usage that code gets much cleaner when the DI principle is applied, and reaching a
higher grade of decoupling is much easier when objects do not look up their dependencies, but are provided
with them (and additionally do not even know where the dependencies are located and of what concrete class
they are). DI exists in two major variants, namely Constructor Injection and Setter Injection.

3.3.1.1. Constructor Injection

Constructor-based DI is effected by invoking a constructor with a number of arguments, each representing a
dependency. Additionally, calling a static factory method with specific arguments to construct the bean, can
be considered almost equivalent, and the rest of this text will consider arguments to a constructor and
arguments to a static factory method similarly. Find below an example of a class that could only be
dependency injected using constructor injection. Notice that there is nothing special about this class.

 public class SimpleMovieLister {

      // the SimpleMovieLister has a dependency on a MovieFinder
      private MovieFinder movieFinder;

      // a constructor so that the Spring container can 'inject' a MovieFinder
      public SimpleMovieLister(MovieFinder movieFinder) {
          this.movieFinder = movieFinder;
      }

      // business logic that actually 'uses' the injected MovieFinder is omitted...


                                           Spring Framework (2.5.6)                                           40
The IoC container

 }



3.3.1.1.1. Constructor Argument Resolution
Constructor argument resolution matching occurs using the argument's type. If there is no potential for
ambiguity in the constructor arguments of a bean definition, then the order in which the constructor arguments
are defined in a bean definition is the order in which those arguments will be supplied to the appropriate
constructor when it is being instantiated. Consider the following class:

 package x.y;

 public class Foo {

      public Foo(Bar bar, Baz baz) {
          // ...
      }
 }



There is no potential for ambiguity here (assuming of course that Bar and Baz classes are not related in an
inheritance hierarchy). Thus the following configuration will work just fine, and you do not need to specify the
constructor argument indexes and / or types explicitly.

 <beans>
     <bean name="foo" class="x.y.Foo">
          <constructor-arg>
              <bean class="x.y.Bar"/>
          </constructor-arg>
          <constructor-arg>
              <bean class="x.y.Baz"/>
          </constructor-arg>
     </bean>
 </beans>



When another bean is referenced, the type is known, and matching can occur (as was the case with the
preceding example). When a simple type is used, such as <value>true<value>, Spring cannot determine the
type of the value, and so cannot match by type without help. Consider the following class:

 package examples;

 public class ExampleBean {

      // No. of years to the calculate the Ultimate Answer
      private int years;

      // The Answer to Life, the Universe, and Everything
      private String ultimateAnswer;

      public ExampleBean(int years, String ultimateAnswer) {
          this.years = years;
          this.ultimateAnswer = ultimateAnswer;
      }
 }



3.3.1.1.1.1. Constructor Argument Type Matching

The above scenario can use type matching with simple types by explicitly specifying the type of the constructor
argument using the 'type' attribute. For example:

 <bean id="exampleBean" class="examples.ExampleBean">
   <constructor-arg type="int" value="7500000"/>
   <constructor-arg type="java.lang.String" value="42"/>
 </bean>




                                          Spring Framework (2.5.6)                                           41
The IoC container


3.3.1.1.1.2. Constructor Argument Index

Constructor arguments can have their index specified explicitly by use of the index attribute. For example:

 <bean id="exampleBean" class="examples.ExampleBean">
   <constructor-arg index="0" value="7500000"/>
   <constructor-arg index="1" value="42"/>
 </bean>



As well as solving the ambiguity problem of multiple simple values, specifying an index also solves the
problem of ambiguity where a constructor may have two arguments of the same type. Note that the index is 0
based.

3.3.1.2. Setter Injection

Setter-based DI is realized by calling setter methods on your beans after invoking a no-argument constructor or
no-argument static factory method to instantiate your bean.

Find below an example of a class that can only be dependency injected using pure setter injection. Note that
there is nothing special about this class... it is plain old Java.

 public class SimpleMovieLister {

        // the SimpleMovieLister has a dependency on the MovieFinder
        private MovieFinder movieFinder;

        // a setter method so that the Spring container can 'inject' a MovieFinder
        public void setMovieFinder(MovieFinder movieFinder) {
            this.movieFinder = movieFinder;
        }

        // business logic that actually 'uses' the injected MovieFinder is omitted...
 }




     Constructor- or Setter-based DI?

     The Spring team generally advocates the usage of setter injection, since a large number of constructor
     arguments can get unwieldy, especially when some properties are optional. The presence of setter
     methods also makes objects of that class amenable to being re-configured (or re-injected) at some later
     time (for management via JMX MBeans is a particularly compelling use case).

     Constructor-injection is favored by some purists though (and with good reason). Supplying all of an
     object's dependencies means that that object is never returned to client (calling) code in a less than totally
     initialized state. The flip side is that the object becomes less amenable to re-configuration (or
     re-injection).

     There is no hard and fast rule here. Use whatever type of DI makes the most sense for a particular class;
     sometimes, when dealing with third party classes to which you do not have the source, the choice will
     already have been made for you - a legacy class may not expose any setter methods, and so constructor
     injection will be the only type of DI available to you.


The BeanFactory supports both of these variants for injecting dependencies into beans it manages. (It in fact
also supports injecting setter-based dependencies after some dependencies have already been supplied via the
constructor approach.) The configuration for the dependencies comes in the form of a BeanDefinition, which
is used together with PropertyEditor instances to know how to convert properties from one format to another.
However, most users of Spring will not be dealing with these classes directly (that is programmatically), but

                                              Spring Framework (2.5.6)                                                42
The IoC container

rather with an XML definition file which will be converted internally into instances of these classes, and used
to load an entire Spring IoC container instance.

Bean dependency resolution generally happens as follows:


1. The BeanFactory is created and initialized with a configuration which describes all the beans. (Most Spring
   users use a BeanFactory or ApplicationContext implementation that supports XML format configuration
   files.)

2. Each bean has dependencies expressed in the form of properties, constructor arguments, or arguments to the
   static-factory method when that is used instead of a normal constructor. These dependencies will be
   provided to the bean, when the bean is actually created.

3. Each property or constructor argument is either an actual definition of the value to set, or a reference to
   another bean in the container.

4. Each property or constructor argument which is a value must be able to be converted from whatever format
   it was specified in, to the actual type of that property or constructor argument. By default Spring can convert
   a value supplied in string format to all built-in types, such as int, long, String, boolean, etc.

The Spring container validates the configuration of each bean as the container is created, including the
validation that properties which are bean references are actually referring to valid beans. However, the bean
properties themselves are not set until the bean is actually created. For those beans that are singleton-scoped
and set to be pre-instantiated (such as singleton beans in an ApplicationContext), creation happens at the time
that the container is created, but otherwise this is only when the bean is requested. When a bean actually has to
be created, this will potentially cause a graph of other beans to be created, as its dependencies and its
dependencies' dependencies (and so on) are created and assigned.

   Circular dependencies

   If you are using predominantly constructor injection it is possible to write and configure your classes and
   beans such that an unresolvable circular dependency scenario is created.

   Consider the scenario where you have class A, which requires an instance of class B to be provided via
   constructor injection, and class B, which requires an instance of class A to be provided via constructor
   injection. If you configure beans for classes A and B to be injected into each other, the Spring IoC
   container      will    detect    this   circular    reference     at     runtime,    and     throw     a
   BeanCurrentlyInCreationException.

   One possible solution to this issue is to edit the source code of some of your classes to be configured via
   setters instead of via constructors. Another solution is not to use constructor injection and stick to setter
   injection only. In other words, while it should generally be avoided in all but the rarest of circumstances,
   it is possible to configure circular dependencies with setter injection.

   Unlike the typical case (with no circular dependencies), a circular dependency between bean A and bean
   B will force one of the beans to be injected into the other prior to being fully initialized itself (a classic
   chicken/egg scenario).


You can generally trust Spring to do the right thing. It will detect misconfiguration issues, such as references to
non-existent beans and circular dependencies, at container load-time. It will actually set properties and resolve
dependencies as late as possible, which is when the bean is actually created. This means that a Spring container
which has loaded correctly can later generate an exception when you request a bean if there is a problem
creating that bean or one of its dependencies. This could happen if the bean throws an exception as a result of a

                                            Spring Framework (2.5.6)                                                43
The IoC container


missing or invalid property, for example. This potentially delayed visibility of some configuration issues is why
ApplicationContext implementations by default pre-instantiate singleton beans. At the cost of some upfront
time and memory to create these beans before they are actually needed, you find out about configuration issues
when the ApplicationContext is created, not later. If you wish, you can still override this default behavior and
set any of these singleton beans to lazy-initialize (that is not be pre-instantiated).

If no circular dependencies are involved (see sidebar for a discussion of circular dependencies), when one or
more collaborating beans are being injected into a dependent bean, each collaborating bean is totally configured
prior to being passed (via one of the DI flavors) to the dependent bean. This means that if bean A has a
dependency on bean B, the Spring IoC container will totally configure bean B prior to invoking the setter
method on bean A; you can read 'totally configure' to mean that the bean will be instantiated (if not a
pre-instantiated singleton), all of its dependencies will be set, and the relevant lifecycle methods (such as a
configured init method or the IntializingBean callback method) will all be invoked.

3.3.1.3. Some examples

First, an example of using XML-based configuration metadata for setter-based DI. Find below a small part of a
Spring XML configuration file specifying some bean definitions.

 <bean id="exampleBean" class="examples.ExampleBean">

     <!-- setter injection using the nested <ref/> element -->
     <property name="beanOne"><ref bean="anotherExampleBean"/></property>

   <!-- setter injection using the neater 'ref' attribute -->
   <property name="beanTwo" ref="yetAnotherBean"/>
   <property name="integerProperty" value="1"/>
 </bean>

 <bean id="anotherExampleBean" class="examples.AnotherBean"/>
 <bean id="yetAnotherBean" class="examples.YetAnotherBean"/>



 public class ExampleBean {

       private AnotherBean beanOne;
       private YetAnotherBean beanTwo;
       private int i;

       public void setBeanOne(AnotherBean beanOne) {
           this.beanOne = beanOne;
       }

       public void setBeanTwo(YetAnotherBean beanTwo) {
           this.beanTwo = beanTwo;
       }

       public void setIntegerProperty(int i) {
           this.i = i;
       }
 }



As you can see, setters have been declared to match against the properties specified in the XML file. Find
below an example of using constructor-based DI.

 <bean id="exampleBean" class="examples.ExampleBean">

     <!-- constructor injection using the nested <ref/> element -->
     <constructor-arg>
       <ref bean="anotherExampleBean"/>
     </constructor-arg>

     <!-- constructor injection using the neater 'ref' attribute -->
     <constructor-arg ref="yetAnotherBean"/>

     <constructor-arg type="int" value="1"/>


                                           Spring Framework (2.5.6)                                           44
The IoC container

 </bean>

 <bean id="anotherExampleBean" class="examples.AnotherBean"/>
 <bean id="yetAnotherBean" class="examples.YetAnotherBean"/>



 public class ExampleBean {

      private AnotherBean beanOne;
      private YetAnotherBean beanTwo;
      private int i;

      public ExampleBean(
          AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {
          this.beanOne = anotherBean;
          this.beanTwo = yetAnotherBean;
          this.i = i;
      }
 }



As you can see, the constructor arguments specified in the bean definition will be used to pass in as arguments
to the constructor of the ExampleBean.

Now consider a variant of this where instead of using a constructor, Spring is told to call a static factory
method to return an instance of the object:

 <bean id="exampleBean" class="examples.ExampleBean"
       factory-method="createInstance">
   <constructor-arg ref="anotherExampleBean"/>
   <constructor-arg ref="yetAnotherBean"/>
   <constructor-arg value="1"/>
 </bean>

 <bean id="anotherExampleBean" class="examples.AnotherBean"/>
 <bean id="yetAnotherBean" class="examples.YetAnotherBean"/>



 public class ExampleBean {

      // a private constructor
      private ExampleBean(...) {
        ...
      }

      // a static factory method; the arguments to this method can be
      // considered the dependencies of the bean that is returned,
      // regardless of how those arguments are actually used.
      public static ExampleBean createInstance (
              AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {

           ExampleBean eb = new ExampleBean (...);
           // some other operations...
           return eb;
      }
 }



Note that arguments to the static factory method are supplied via <constructor-arg/> elements, exactly the
same as if a constructor had actually been used. Also, it is important to realize that the type of the class being
returned by the factory method does not have to be of the same type as the class which contains the static
factory method, although in this example it is. An instance (non-static) factory method would be used in an
essentially identical fashion (aside from the use of the factory-bean attribute instead of the class attribute), so
details will not be discussed here.


3.3.2. Dependencies and configuration in detail

As mentioned in the previous section, bean properties and constructor arguments can be defined as either


                                            Spring Framework (2.5.6)                                            45
The IoC container


references to other managed beans (collaborators), or values defined inline. Spring's XML-based configuration
metadata supports a number of sub-element types within its <property/> and <constructor-arg/> elements
for just this purpose.

3.3.2.1. Straight values (primitives, Strings, etc.)

The <value/> element specifies a property or constructor argument as a human-readable string representation.
As mentioned previously, JavaBeans PropertyEditors are used to convert these string values from a String to
the actual type of the property or argument.

 <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">

   <!-- results in a setDriverClassName(String) call -->
   <property name="driverClassName">
     <value>com.mysql.jdbc.Driver</value>
   </property>
   <property name="url">
     <value>jdbc:mysql://localhost:3306/mydb</value>
   </property>
   <property name="username">
     <value>root</value>
   </property>
   <property name="password">
     <value>masterkaoli</value>
   </property>
 </bean>



The <property/> and <constructor-arg/> elements also support the use of the 'value' attribute, which can
lead to much more succinct configuration. When using the 'value' attribute, the above bean definition reads
like so:

 <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">

   <!-- results in a setDriverClassName(String) call -->
   <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
   <property name="url" value="jdbc:mysql://localhost:3306/mydb"/>
   <property name="username" value="root"/>
   <property name="password" value="masterkaoli"/>
 </bean>



The Spring team generally prefer the attribute style over the use of nested <value/> elements. If you are
reading this reference manual straight through from top to bottom (wow!) then we are getting slightly ahead of
ourselves here, but you can also configure a java.util.Properties instance like so:

 <bean id="mappings" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

    <!-- typed as a java.util.Properties -->
    <property name="properties">
       <value>
          jdbc.driver.className=com.mysql.jdbc.Driver
          jdbc.url=jdbc:mysql://localhost:3306/mydb
       </value>
    </property>
 </bean>



Can you see what is happening? The Spring container is converting the text inside the <value/> element into a
java.util.Properties instance using the JavaBeans PropertyEditor mechanism. This is a nice shortcut, and
is one of a few places where the Spring team do favor the use of the nested <value/> element over the 'value'
attribute style.

3.3.2.1.1. The idref element


                                          Spring Framework (2.5.6)                                         46
The IoC container


The idref element is simply an error-proof way to pass the id of another bean in the container (to a
<constructor-arg/> or <property/> element).

 <bean id="theTargetBean" class="..."/>

 <bean id="theClientBean" class="...">
     <property name="targetName">
         <idref bean="theTargetBean" />
     </property>
 </bean>



The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

 <bean id="theTargetBean" class="..." />

 <bean id="client" class="...">
     <property name="targetName" value="theTargetBean" />
 </bean>



The main reason the first form is preferable to the second is that using the idref tag allows the container to
validate at deployment time that the referenced, named bean actually exists. In the second variation, no
validation is performed on the value that is passed to the 'targetName' property of the 'client' bean. Any
typo will only be discovered (with most likely fatal results) when the 'client' bean is actually instantiated. If
the 'client' bean is a prototype bean, this typo (and the resulting exception) may only be discovered long
after the container is actually deployed.

Additionally, if the bean being referred to is in the same XML unit, and the bean name is the bean id, the
'local' attribute may be used, which allows the XML parser itself to validate the bean id even earlier, at XML
document parse time.

 <property name="targetName">
    <!-- a bean with an id of 'theTargetBean' must exist; otherwise an XML exception will be thrown -->
    <idref local="theTargetBean"/>
 </property>



By way of an example, one common place (at least in pre-Spring 2.0 configuration) where the <idref/> element
brings value is in the configuration of AOP interceptors in a ProxyFactoryBean bean definition. If you use
<idref/> elements when specifying the interceptor names, there is no chance of inadvertently misspelling an
interceptor id.

3.3.2.2. References to other beans (collaborators)

The ref element is the final element allowed inside a <constructor-arg/> or <property/> definition element.
It is used to set the value of the specified property to be a reference to another bean managed by the container (a
collaborator). As mentioned in a previous section, the referred-to bean is considered to be a dependency of the
bean who's property is being set, and will be initialized on demand as needed (if it is a singleton bean it may
have already been initialized by the container) before the property is set. All references are ultimately just a
reference to another object, but there are 3 variations on how the id/name of the other object may be specified,
which determines how scoping and validation is handled.

Specifying the target bean by using the bean attribute of the <ref/> tag is the most general form, and will allow
creating a reference to any bean in the same container (whether or not in the same XML file), or parent
container. The value of the 'bean' attribute may be the same as either the 'id' attribute of the target bean, or
one of the values in the 'name' attribute of the target bean.

 <ref bean="someBean"/>




                                            Spring Framework (2.5.6)                                            47
The IoC container


Specifying the target bean by using the local attribute leverages the ability of the XML parser to validate XML
id references within the same file. The value of the local attribute must be the same as the id attribute of the
target bean. The XML parser will issue an error if no matching element is found in the same file. As such, using
the local variant is the best choice (in order to know about errors as early as possible) if the target bean is in the
same XML file.

 <ref local="someBean"/>



Specifying the target bean by using the 'parent' attribute allows a reference to be created to a bean which is in
a parent container of the current container. The value of the 'parent' attribute may be the same as either the
'id' attribute of the target bean, or one of the values in the 'name' attribute of the target bean, and the target
bean must be in a parent container to the current one. The main use of this bean reference variant is when you
have a hierarchy of containers and you want to wrap an existing bean in a parent container with some sort of
proxy which will have the same name as the parent bean.

 <!-- in the parent context -->
 <bean id="accountService" class="com.foo.SimpleAccountService">
     <!-- insert dependencies as required as here -->
 </bean>



 <!-- in the child (descendant) context -->
 <bean id="accountService" <-- notice that the name of this bean is the same as the name of the 'parent' bean
       class="org.springframework.aop.framework.ProxyFactoryBean">
       <property name="target">
           <ref parent="accountService"/> <-- notice how we refer to the parent bean
       </property>
     <!-- insert other configuration and dependencies as required as here -->
 </bean>




3.3.2.3. Inner beans

A <bean/> element inside the <property/> or <constructor-arg/> elements is used to define a so-called
inner bean. An inner bean definition does not need to have any id or name defined, and it is best not to even
specify any id or name value because the id or name value simply will be ignored by the container.

 <bean id="outer" class="...">
   <!-- instead of using a reference to a target bean, simply define the target bean inline -->
   <property name="target">
     <bean class="com.example.Person"> <!-- this is the inner bean -->
       <property name="name" value="Fiona Apple"/>
       <property name="age" value="25"/>
     </bean>
   </property>
 </bean>



Note that in the specific case of inner beans, the 'scope' flag and any 'id' or 'name' attribute are effectively
ignored. Inner beans are always anonymous and they are always scoped as prototypes. Please also note that it is
not possible to inject inner beans into collaborating beans other than the enclosing bean.

3.3.2.4. Collections

The <list/>, <set/>, <map/>, and <props/> elements allow properties and arguments of the Java Collection
type List, Set, Map, and Properties, respectively, to be defined and set.

 <bean id="moreComplexObject" class="example.ComplexObject">
   <!-- results in a setAdminEmails(java.util.Properties) call -->
   <property name="adminEmails">
     <props>
         <prop key="administrator">administrator@example.org</prop>


                                             Spring Framework (2.5.6)                                              48
The IoC container

         <prop key="support">support@example.org</prop>
         <prop key="development">development@example.org</prop>
     </props>
   </property>
   <!-- results in a setSomeList(java.util.List) call -->
   <property name="someList">
     <list>
         <value>a list element followed by a reference</value>
         <ref bean="myDataSource" />
     </list>
   </property>
   <!-- results in a setSomeMap(java.util.Map) call -->
   <property name="someMap">
     <map>
         <entry>
              <key>
                  <value>an entry</value>
              </key>
              <value>just some string</value>
         </entry>
         <entry>
              <key>
                  <value>a ref</value>
              </key>
              <ref bean="myDataSource" />
         </entry>
     </map>
   </property>
   <!-- results in a setSomeSet(java.util.Set) call -->
   <property name="someSet">
     <set>
         <value>just some string</value>
         <ref bean="myDataSource" />
     </set>
   </property>
 </bean>



            Note
            The nested element style used this initial example tends to become quite verbose. Fortunately, there
            are attribute shortcuts for most elements, which you can read about in Section 3.3.2.6, “Shortcuts
            and other convenience options for XML-based configuration metadata”.


Note that the value of a map key or value, or a set value, can also again be any of the following elements:

 bean | ref | idref | list | set | map | props | value | null



3.3.2.4.1. Collection merging
As of Spring 2.0, the container also supports the merging of collections. This allows an application developer to
define a parent-style <list/>, <map/>, <set/> or <props/> element, and have child-style <list/>, <map/>,
<set/> or <props/> elements inherit and override values from the parent collection; that is to say the child
collection's values will be the result obtained from the merging of the elements of the parent and child
collections, with the child's collection elements overriding values specified in the parent collection.

Please note that this section on merging makes use of the parent-child bean mechanism. This concept has not
yet been introduced, so readers unfamiliar with the concept of parent and child bean definitions may wish to
read the relevant section before continuing.

Find below an example of the collection merging feature:

 <beans>
 <bean id="parent" abstract="true" class="example.ComplexObject">
     <property name="adminEmails">
         <props>



                                           Spring Framework (2.5.6)                                           49
The IoC container


             <prop key="administrator">administrator@example.com</prop>
             <prop key="support">support@example.com</prop>
         </props>
     </property>
 </bean>
 <bean id="child" parent="parent">
     <property name="adminEmails">
         <!-- the merge is specified on the *child* collection definition -->
         <props merge="true">
             <prop key="sales">sales@example.com</prop>
             <prop key="support">support@example.co.uk</prop>
         </props>
     </property>
 </bean>
 <beans>



Notice the use of the merge=true attribute on the <props/> element of the adminEmails property of the child
bean definition. When the child bean is actually resolved and instantiated by the container, the resulting
instance will have an adminEmails Properties collection that contains the result of the merging of the child's
adminEmails collection with the parent's adminEmails collection.

 administrator=administrator@example.com
 sales=sales@example.com
 support=support@example.co.uk



Notice how the child Properties collection's value set will have inherited all the property elements from the
parent <props/>. Notice also how the child's value for the support value overrides the value in the parent
collection.

This merging behavior applies similarly to the <list/>, <map/>, and <set/> collection types. In the specific
case of the <list/> element, the semantics associated with the List collection type, that is the notion of an
ordered collection of values, is maintained; the parent's values will precede all of the child list's values. In the
case of the Map, Set, and Properties collection types, there is no notion of ordering and hence no ordering
semantics are in effect for the collection types that underlie the associated Map, Set and Properties
implementation types used internally by the container.

Finally, some minor notes about the merging support are in order; you cannot merge different collection types
(e.g. a Map and a List), and if you do attempt to do so an appropriate Exception will be thrown; and in case it
is not immediately obvious, the 'merge' attribute must be specified on the lower level, inherited, child
definition; specifying the 'merge' attribute on a parent collection definition is redundant and will not result in
the desired merging; and (lastly), please note that this merging feature is only available in Spring 2.0 (and later
versions).

3.3.2.4.2. Strongly-typed collection (Java 5+ only)
If you are using Java 5 or Java 6, you will be aware that it is possible to have strongly typed collections (using
generic types). That is, it is possible to declare a Collection type such that it can only contain String elements
(for example). If you are using Spring to dependency inject a strongly-typed Collection into a bean, you can
take advantage of Spring's type-conversion support such that the elements of your strongly-typed Collection
instances will be converted to the appropriate type prior to being added to the Collection.

 public class Foo {

      private Map<String, Float> accounts;

      public void setAccounts(Map<String, Float> accounts) {
          this.accounts = accounts;
      }
 }




                                            Spring Framework (2.5.6)                                             50
The IoC container


 <beans>
     <bean id="foo" class="x.y.Foo">
          <property name="accounts">
              <map>
                  <entry key="one" value="9.99"/>
                  <entry key="two" value="2.75"/>
                  <entry key="six" value="3.99"/>
              </map>
          </property>
     </bean>
 </beans>



When the 'accounts' property of the 'foo' bean is being prepared for injection, the generics information
about the element type of the strongly-typed Map<String, Float> is actually available via reflection, and so
Spring's type conversion infrastructure will actually recognize the various value elements as being of type
Float and so the string values '9.99', '2.75', and '3.99' will be converted into an actual Float type.


3.3.2.5. Nulls

The <null/> element is used to handle null values. Spring treats empty arguments for properties and the like
as empty Strings. The following XML-based configuration metadata snippet results in the email property
being set to the empty String value ("")

 <bean class="ExampleBean">
   <property name="email"><value/></property>
 </bean>



This is equivalent to the following Java code: exampleBean.setEmail(""). The special <null> element may be
used to indicate a null value. For example:

 <bean class="ExampleBean">
   <property name="email"><null/></property>
 </bean>



The above configuration is equivalent to the following Java code: exampleBean.setEmail(null).

3.3.2.6. Shortcuts and other convenience options for XML-based configuration metadata

The configuration metadata shown so far is a tad verbose. That is why there are several options available for
you to limit the amount of XML you have to write to configure your components. The first is a shortcut to
define values and references to other beans as part of a <property/> definition. The second is slightly different
format of specifying properties altogether.

3.3.2.6.1. XML-based configuration metadata shortcuts
The <property/>, <constructor-arg/>, and <entry/> elements all support a 'value' attribute which may be
used instead of embedding a full <value/> element. Therefore, the following:

 <property name="myProperty">
   <value>hello</value>
 </property>



 <constructor-arg>
   <value>hello</value>
 </constructor-arg>



 <entry key="myKey">
   <value>hello</value>


                                           Spring Framework (2.5.6)                                           51
The IoC container


  </entry>



are equivalent to:

  <property name="myProperty" value="hello"/>



  <constructor-arg value="hello"/>



  <entry key="myKey" value="hello"/>



The <property/> and <constructor-arg/> elements support a similar shortcut 'ref' attribute which may be
used instead of a full nested <ref/> element. Therefore, the following:

  <property name="myProperty">
    <ref bean="myBean">
  </property>



  <constructor-arg>
    <ref bean="myBean">
  </constructor-arg>



... are equivalent to:

  <property name="myProperty" ref="myBean"/>



  <constructor-arg ref="myBean"/>



Note however that the shortcut form is equivalent to a <ref bean="xxx"> element; there is no shortcut for <ref
local="xxx">. To enforce a strict local reference, you must use the long form.

Finally, the entry element allows a shortcut form to specify the key and/or value of the map, in the form of the
'key' / 'key-ref' and 'value' / 'value-ref' attributes. Therefore, the following:

  <entry>
    <key>
      <ref bean="myKeyBean" />
    </key>
    <ref bean="myValueBean" />
  </entry>



is equivalent to:

  <entry key-ref="myKeyBean" value-ref="myValueBean"/>



Again, the shortcut form is equivalent to a <ref bean="xxx"> element; there is no shortcut for <ref
local="xxx">.


3.3.2.6.2. The p-namespace and how to use it to configure properties
The second option you have to limit the amount of XML you have to write to configure your components is to
use the special "p-namespace". Spring 2.0 and later features support for extensible configuration formats using
namespaces. Those namespaces are all based on an XML Schema definition. In fact, the beans configuration
format that you've been reading about is defined in an XML Schema document.

                                          Spring Framework (2.5.6)                                           52
The IoC container


One special namespace is not defined in an XSD file, and only exists in the core of Spring itself. The so-called
p-namespace doesn't need a schema definition and is an alternative way of configuring your properties
differently than the way you have seen so far. Instead of using nested <property/> elements, using the
p-namespace you can use attributes as part of the bean element that describe your property values. The values
of the attributes will be taken as the values for your properties.

The following two XML snippets boil down to the same thing in the end: the first is using the standard XML
format whereas the second example is using the p-namespace.

 <beans xmlns="http://www.springframework.org/schema/beans"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xmlns:p="http://www.springframework.org/schema/p"
     xsi:schemaLocation="http://www.springframework.org/schema/beans
         http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

      <bean name="classic" class="com.example.ExampleBean">
          <property name="email" value="foo@bar.com/>
      </bean>

     <bean name="p-namespace" class="com.example.ExampleBean"
           p:email="foo@bar.com"/>
 </beans>



As you can see, we are including an attribute in the p-namespace called email in the bean definition - this is
telling Spring that it should include a property declaration. As previously mentioned, the p-namespace doesn't
have a schema definition, so the name of the attribute can be set to whatever name your property has.

This next example includes two more bean definitions that both have a reference to another bean:

 <beans xmlns="http://www.springframework.org/schema/beans"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xmlns:p="http://www.springframework.org/schema/p"
     xsi:schemaLocation="http://www.springframework.org/schema/beans
         http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

      <bean name="john-classic" class="com.example.Person">
          <property name="name" value="John Doe"/>
          <property name="spouse" ref="jane"/>
      </bean>

      <bean name="john-modern"
          class="com.example.Person"
          p:name="John Doe"
          p:spouse-ref="jane"/>

     <bean name="jane" class="com.example.Person">
          <property name="name" value="Jane Doe"/>
     </bean>
 </beans>



As you can see, this example doesn't only include a property value using the p-namespace, but also uses a
special format to declare property references. Whereas the first bean definition uses <property name="spouse"
ref="jane"/> to create a reference from bean john to bean jane, the second bean definition uses
p:spouse-ref="jane" as an attribute to do the exact same thing. In this case 'spouse' is the property name
whereas the '-ref' part indicates that this is not a straight value but rather a reference to another bean.

            Note
            Please note that the p-namespace is not quite as flexible as the standard XML format - for example
            particular, the 'special' format used to declare property references will clash with properties that
            end in 'Ref', whereas the standard XML format would have no problem there. We recommend that
            you choose carefully which approach you are going to use in your projects. You should also


                                          Spring Framework (2.5.6)                                           53
The IoC container


            communicate this to your team members so you won't end up with XML documents using all three
            approaches at the same time. This will prevent people from not understanding the application
            because of different ways of configuring it, and will add to the overall consistency of your
            codebase.


3.3.2.7. Compound property names

Compound or nested property names are perfectly legal when setting bean properties, as long as all components
of the path except the final property name are not null. Consider the following bean definition...

 <bean id="foo" class="foo.Bar">
   <property name="fred.bob.sammy" value="123" />
 </bean>



The foo bean has a fred property which has a bob property, which has a sammy property, and that final sammy
property is being set to the value 123. In order for this to work, the fred property of foo, and the bob property
of fred must not be null be non-null after the bean is constructed, or a NullPointerException will be thrown.


3.3.3. Using depends-on

For most situations, the fact that a bean is a dependency of another is expressed by the fact that one bean is set
as a property of another. This is typically accomplished with the <ref/> element in XML-based configuration
metadata. For the relatively infrequent situations where dependencies between beans are less direct (for
example, when a static initializer in a class needs to be triggered, such as database driver registration), the
'depends-on' attribute may be used to explicitly force one or more beans to be initialized before the bean
using this element is initialized. Find below an example of using the 'depends-on' attribute to express a
dependency on a single bean.

 <bean id="beanOne" class="ExampleBean" depends-on="manager"/>

 <bean id="manager" class="ManagerBean" />



If you need to express a dependency on multiple beans, you can supply a list of bean names as the value of the
'depends-on' attribute, with commas, whitespace and semicolons all valid delimiters, like so:

 <bean id="beanOne" class="ExampleBean" depends-on="manager,accountDao">
   <property name="manager" ref="manager" />
 </bean>

 <bean id="manager" class="ManagerBean" />
 <bean id="accountDao" class="x.y.jdbc.JdbcAccountDao" />



            Note
            The 'depends-on' attribute at the bean definition level is used not only to specify an initialization
            time dependency, but also to specify the corresponding destroy time dependency (in the case of
            singleton beans only). Dependent beans that define a 'depends-on' relationship with a given bean
            will be destroyed first - prior to the given bean itself being destroyed. As a consequence,
            'depends-on' may be used to control shutdown order too.



3.3.4. Lazily-instantiated beans


                                           Spring Framework (2.5.6)                                            54
The IoC container


The default behavior for ApplicationContext implementations is to eagerly pre-instantiate all singleton
beans at startup. Pre-instantiation means that an ApplicationContext will eagerly create and configure all of
its singleton beans as part of its initialization process. Generally this is a good thing, because it means that any
errors in the configuration or in the surrounding environment will be discovered immediately (as opposed to
possibly hours or even days down the line).

However, there are times when this behavior is not what is wanted. If you do not want a singleton bean to be
pre-instantiated when using an ApplicationContext, you can selectively control this by marking a bean
definition as lazy-initialized. A lazily-initialized bean indicates to the IoC container whether or not a bean
instance should be created at startup or when it is first requested.

When configuring beans via XML, this lazy loading is controlled by the 'lazy-init' attribute on the <bean/>
element; for example:

    <bean id="lazy" class="com.foo.ExpensiveToCreateBean" lazy-init="true"/>

    <bean name="not.lazy" class="com.foo.AnotherBean"/>



When the above configuration is consumed by an ApplicationContext, the bean named 'lazy' will not be
eagerly pre-instantiated when the ApplicationContext is starting up, whereas the 'not.lazy' bean will be
eagerly pre-instantiated.

One thing to understand about lazy-initialization is that even though a bean definition may be marked up as
being lazy-initialized, if the lazy-initialized bean is the dependency of a singleton bean that is not
lazy-initialized, when the ApplicationContext is eagerly pre-instantiating the singleton, it will have to satisfy
all of the singletons dependencies, one of which will be the lazy-initialized bean! So don't be confused if the
IoC container creates one of the beans that you have explicitly configured as lazy-initialized at startup; all that
means is that the lazy-initialized bean is being injected into a non-lazy-initialized singleton bean elsewhere.

It is also possible to control lazy-initialization at the container level by using the 'default-lazy-init'
attribute on the <beans/> element; for example:

    <beans default-lazy-init="true">
        <!-- no beans will be pre-instantiated... -->
    </beans>




3.3.5. Autowiring collaborators

The Spring container is able to autowire relationships between collaborating beans. This means that it is
possible to automatically let Spring resolve collaborators (other beans) for your bean by inspecting the contents
of the BeanFactory. The autowiring functionality has five modes. Autowiring is specified per bean and can
thus be enabled for some beans, while other beans will not be autowired. Using autowiring, it is possible to
reduce or eliminate the need to specify properties or constructor arguments, thus saving a significant amount of
typing. 2 When using XML-based configuration metadata, the autowire mode for a bean definition is specified
by using the autowire attribute of the <bean/> element. The following values are allowed:


Table 3.2. Autowiring modes

    Mode                Explanation

    no
                        No autowiring at all. Bean references must be defined via a ref element. This is the
                        default, and changing this is discouraged for larger deployments, since explicitly
2
 See the section entitled Section 3.3.1, “Injecting dependencies”


                                                      Spring Framework (2.5.6)                                   55
The IoC container

Mode               Explanation

                   specifying collaborators gives greater control and clarity. To some extent, it is a form of
                   documentation about the structure of a system.

byName
                   Autowiring by property name. This option will inspect the container and look for a bean
                   named exactly the same as the property which needs to be autowired. For example, if you
                   have a bean definition which is set to autowire by name, and it contains a master property
                   (that is, it has a setMaster(..) method), Spring will look for a bean definition named
                   master, and use it to set the property.

byType
                   Allows a property to be autowired if there is exactly one bean of the property type in the
                   container. If there is more than one, a fatal exception is thrown, and this indicates that you
                   may not use byType autowiring for that bean. If there are no matching beans, nothing
                   happens; the property is not set. If this is not desirable, setting the
                   dependency-check="objects" attribute value specifies that an error should be thrown in
                   this case.

constructor
                   This is analogous to byType, but applies to constructor arguments. If there isn't exactly one
                   bean of the constructor argument type in the container, a fatal error is raised.

autodetect
                   Chooses constructor or byType through introspection of the bean class. If a default
                   constructor is found, the byType mode will be applied.


Note that explicit dependencies in property and constructor-arg settings always override autowiring. Please
also note that it is not currently possible to autowire so-called simple properties such as primitives, Strings,
and Classes (and arrays of such simple properties). (This is by-design and should be considered a feature.)
When using either the byType or constructor autowiring mode, it is possible to wire arrays and
typed-collections. In such cases all autowire candidates within the container that match the expected type will
be provided to satisfy the dependency. Strongly-typed Maps can even be autowired if the expected key type is
String. An autowired Map's values will consist of all bean instances that match the expected type, and the
Map's keys will contain the corresponding bean names.

Autowire behavior can be combined with dependency checking, which will be performed after all autowiring
has been completed.

It is important to understand the various advantages and disadvantages of autowiring. Some advantages of
autowiring include:


• Autowiring can significantly reduce the volume of configuration required. However, mechanisms such as the
  use of a bean template (discussed elsewhere in this chapter) are also valuable in this regard.

• Autowiring can cause configuration to keep itself up to date as your objects evolve. For example, if you need
  to add an additional dependency to a class, that dependency can be satisfied automatically without the need
  to modify configuration. Thus there may be a strong case for autowiring during development, without ruling
  out the option of switching to explicit wiring when the code base becomes more stable.

Some disadvantages of autowiring:


• Autowiring is more magical than explicit wiring. Although, as noted in the above table, Spring is careful to


                                           Spring Framework (2.5.6)                                            56
The IoC container


  avoid guessing in case of ambiguity which might have unexpected results, the relationships between your
  Spring-managed objects are no longer documented explicitly.

• Wiring information may not be available to tools that may generate documentation from a Spring container.

Another issue to consider when autowiring by type is that multiple bean definitions within the container may
match the type specified by the setter method or constructor argument to be autowired. For arrays, collections,
or Maps, this is not necessarily a problem. However for dependencies that expect a single value, this ambiguity
will not be arbitrarily resolved. Instead, if no unique bean definition is available, an Exception will be thrown.
You do have several options when confronted with this scenario. First, you may abandon autowiring in favor of
explicit wiring. Second, you may designate that certain bean definitions are never to be considered as
candidates by setting their 'autowire-candidate' attributes to 'false' as described in the next section. Third,
you may designate a single bean definition as the primary candidate by setting the 'primary' attribute of its
<bean/> element to 'true'. Finally, if you are using at least Java 5, you may be interested in exploring the
more fine-grained control available with annotation-based configuration as described in the section entitled
Section 3.11, “Annotation-based configuration”.

When deciding whether to use autowiring, there is no wrong or right answer in all cases. A degree of
consistency across a project is best though; for example, if autowiring is not used in general, it might be
confusing to developers to use it just to wire one or two bean definitions.

3.3.5.1. Excluding a bean from being available for autowiring

You can also (on a per-bean basis) totally exclude a bean from being an autowire candidate. When configuring
beans using Spring's XML format, the 'autowire-candidate' attribute of the <bean/> element can be set to
'false'; this has the effect of making the container totally exclude that specific bean definition from being
available to the autowiring infrastructure.

Another option is to limit autowire candidates based on pattern-matching against bean names. The top-level
<beans/> element accepts one or more patterns within its 'default-autowire-candidates' attribute. For
example, to limit autowire candidate status to any bean whose name ends with 'Repository', provide a value of
'*Repository'. To provide multiple patterns, define them in a comma-separated list. Note that an explicit value
of 'true' or 'false' for a bean definition's 'autowire-candidate' attribute always takes precedence, and for
such beans, the pattern matching rules will not apply.

These techniques can be useful when you have one or more beans that you absolutely never ever want to have
injected into other beans via autowiring. It does not mean that an excluded bean cannot itself be configured
using autowiring... it can, it is rather that it itself will not be considered as a candidate for autowiring other
beans.


3.3.6. Checking for dependencies

The Spring IoC container also has the ability to check for the existence of unresolved dependencies of a bean
deployed into the container. These are JavaBeans properties of the bean, which do not have actual values set for
them in the bean definition, or alternately provided automatically by the autowiring feature.

This feature is sometimes useful when you want to ensure that all properties (or all properties of a certain type)
are set on a bean. Of course, in many cases a bean class will have default values for many properties, or some
properties do not apply to all usage scenarios, so this feature is of limited use. Dependency checking can also
be enabled and disabled per bean, just as with the autowiring functionality. The default is to not check
dependencies. Dependency checking can be handled in several different modes. When using XML-based
configuration metadata, this is specified via the 'dependency-check' attribute in a bean definition, which may


                                           Spring Framework (2.5.6)                                            57
The IoC container

have the following values.


Table 3.3. Dependency checking modes

Mode               Explanation

none
                   No dependency checking. Properties of the bean which have no value specified for them
                   are simply not set.

simple
                   Dependency checking is performed for primitive types and collections (everything except
                   collaborators).

object
                   Dependency checking is performed for collaborators only.

all
                   Dependency checking is done for collaborators, primitive types and collections.


If you are using Java 5 and thus have access to source-level annotations, you may find the section entitled
Section 25.3.1, “@Required” to be of interest.


3.3.7. Method Injection

For most application scenarios, the majority of the beans in the container will be singletons. When a singleton
bean needs to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with
another non-singleton bean, the typical and common approach of handling this dependency by defining one
bean to be a property of the other is quite adequate. There is a problem when the bean lifecycles are different.
Consider a singleton bean A which needs to use a non-singleton (prototype) bean B, perhaps on each method
invocation on A. The container will only create the singleton bean A once, and thus only get the opportunity to
set the properties once. There is no opportunity for the container to provide bean A with a new instance of bean
B every time one is needed.

One solution to this issue is to forego some inversion of control. Bean A can be made aware of the container by
implementing the BeanFactoryAware interface, and use programmatic means to ask the container via a
getBean("B") call for (a typically new) bean B instance every time it needs it. Find below an admittedly
somewhat contrived example of this approach:

 // a class that uses a stateful Command-style class to perform some processing
 package fiona.apple;

 // lots of Spring-API imports
 import org.springframework.beans.BeansException;
 import org.springframework.beans.factory.BeanFactory;
 import org.springframework.beans.factory.BeanFactoryAware;

 public class CommandManager implements BeanFactoryAware {

      private BeanFactory beanFactory;

      public Object process(Map commandState) {
         // grab a new instance of the appropriate Command
         Command command = createCommand();
         // set the state on the (hopefully brand new) Command instance
         command.setState(commandState);
         return command.execute();
      }

      // the Command returned here could be an implementation that executes asynchronously, or whatever
      protected Command createCommand() {
         return (Command) this.beanFactory.getBean("command"); // notice the Spring API dependency


                                          Spring Framework (2.5.6)                                           58
The IoC container

       }

       public void setBeanFactory(BeanFactory beanFactory) throws BeansException {
          this.beanFactory = beanFactory;
       }
 }



The above example is generally not a desirable solution since the business code is then aware of and coupled to
the Spring Framework. Method Injection, a somewhat advanced feature of the Spring IoC container, allows this
use case to be handled in a clean fashion.

3.3.7.1. Lookup method injection


     Isn't this Method Injection...

     ... somewhat like Tapestry 4.0's pages, where folks wrote abstract properties that Tapestry would
     override at runtime with implementations that did stuff? It sure is (well, somewhat).

     You can read more about the motivation for Method Injection in this blog entry.


Lookup method injection refers to the ability of the container to override methods on container managed beans,
to return the result of looking up another named bean in the container. The lookup will typically be of a
prototype bean as in the scenario described above. The Spring Framework implements this method injection by
dynamically generating a subclass overriding the method, using bytecode generation via the CGLIB library.

So if you look at the code from previous code snippet (the CommandManager class), the Spring container is going
to dynamically override the implementation of the createCommand() method. Your CommandManager class is
not going to have any Spring dependencies, as can be seen in this reworked example below:

 package fiona.apple;

 // no more Spring imports!

 public abstract class CommandManager {

       public Object process(Object commandState) {
          // grab a new instance of the appropriate Command interface
          Command command = createCommand();
          // set the state on the (hopefully brand new) Command instance
          command.setState(commandState);
          return command.execute();
       }

        // okay... but where is the implementation of this method?
       protected abstract Command createCommand();
 }



In the client class containing the method to be injected (the CommandManager in this case), the method that is to
be 'injected' must have a signature of the following form:

 <public|protected> [abstract] <return-type> theMethodName(no-arguments);



If the method is abstract, the dynamically-generated subclass will implement the method. Otherwise, the
dynamically-generated subclass will override the concrete method defined in the original class. Let's look at an
example:

 <!-- a stateful bean deployed as a prototype (non-singleton) -->
 <bean id="command" class="fiona.apple.AsyncCommand" scope="prototype">
   <!-- inject dependencies here as required -->
 </bean>


                                            Spring Framework (2.5.6)                                          59
The IoC container


 <!-- commandProcessor uses statefulCommandHelper -->
 <bean id="commandManager" class="fiona.apple.CommandManager">
   <lookup-method name="createCommand" bean="command"/>
 </bean>



The bean identified as commandManager will call its own method createCommand() whenever it needs a new
instance of the command bean. It is important to note that the person deploying the beans must be careful to
deploy the command bean as a prototype (if that is actually what is needed). If it is deployed as a singleton, the
same instance of the command bean will be returned each time!

Please be aware that in order for this dynamic subclassing to work, you will need to have the CGLIB jar(s) on
your classpath. Additionally, the class that the Spring container is going to subclass cannot be final, and the
method that is being overridden cannot be final either. Also, testing a class that has an abstract method can
be somewhat odd in that you will have to subclass the class yourself and supply a stub implementation of the
abstract method. Finally, objects that have been the target of method injection cannot be serialized.


            Tip
            The    interested   reader    may     also   find    the ServiceLocatorFactoryBean (in the
            org.springframework.beans.factory.config package) to be of use; the approach is similar to
            that of the ObjectFactoryCreatingFactoryBean, but it allows you to specify your own lookup
            interface as opposed to having to use a Spring-specific lookup interface such as the
            ObjectFactory. Consult the (copious) Javadoc for the ServiceLocatorFactoryBean for a full
            treatment of this alternative approach (that does reduce the coupling to Spring).


3.3.7.2. Arbitrary method replacement

A less commonly useful form of method injection than Lookup Method Injection is the ability to replace
arbitrary methods in a managed bean with another method implementation. Users may safely skip the rest of
this section (which describes this somewhat advanced feature), until this functionality is actually needed.

When using XML-based configuration metadata, the replaced-method element may be used to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with a method
computeValue, which we want to override:

 public class MyValueCalculator {

     public String computeValue(String input) {
       // some real code...
     }

     // some other methods...

 }



A class implementing the org.springframework.beans.factory.support.MethodReplacer interface provides
the new method definition.

 /** meant to be used to override the existing computeValue(String)
      implementation in MyValueCalculator
   */
 public class ReplacementComputeValue implements MethodReplacer {

      public Object reimplement(Object o, Method m, Object[] args) throws Throwable {
          // get the input value, work with it, and return a computed result
          String input = (String) args[0];
          ...
          return ...;
      }


                                           Spring Framework (2.5.6)                                            60
The IoC container

 }



The bean definition to deploy the original class and specify the method override would look like this:

 <bean id="myValueCalculator class="x.y.z.MyValueCalculator">
   <!-- arbitrary method replacement -->
   <replaced-method name="computeValue" replacer="replacementComputeValue">
     <arg-type>String</arg-type>
   </replaced-method>
 </bean>

 <bean id="replacementComputeValue" class="a.b.c.ReplacementComputeValue"/>



One or more contained <arg-type/> elements within the <replaced-method/> element may be used to indicate
the method signature of the method being overridden. Note that the signature for the arguments is actually only
needed in the case that the method is actually overloaded and there are multiple variants within the class. For
convenience, the type string for an argument may be a substring of the fully qualified type name. For example,
all the following would match java.lang.String.

      java.lang.String
      String
      Str



Since the number of arguments is often enough to distinguish between each possible choice, this shortcut can
save a lot of typing, by allowing you to type just the shortest string that will match an argument type.


3.4. Bean scopes
When you create a bean definition what you are actually creating is a recipe for creating actual instances of the
class defined by that bean definition. The idea that a bean definition is a recipe is important, because it means
that, just like a class, you can potentially have many object instances created from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into an
object that is created from a particular bean definition, but also the scope of the objects created from a
particular bean definition. This approach is very powerful and gives you the flexibility to choose the scope of
the objects you create through configuration instead of having to 'bake in' the scope of an object at the Java
class level. Beans can be defined to be deployed in one of a number of scopes: out of the box, the Spring
Framework supports exactly five scopes (of which three are available only if you are using a web-aware
ApplicationContext).

The scopes supported out of the box are listed below:


Table 3.4. Bean scopes

                         Scope                                                Description


singleton                                                Scopes a single bean definition to a single object
                                                         instance per Spring IoC container.


prototype                                                Scopes a single bean definition to any number of
                                                         object instances.


request                                                  Scopes a single bean definition to the lifecycle of a

                                           Spring Framework (2.5.6)                                           61
The IoC container

                         Scope                                                 Description


                                                          single HTTP request; that is each and every HTTP
                                                          request will have its own instance of a bean created
                                                          off the back of a single bean definition. Only valid in
                                                          the     context     of     a    web-aware       Spring
                                                          ApplicationContext.


session                                                   Scopes a single bean definition to the lifecycle of a
                                                          HTTP Session. Only valid in the context of a
                                                          web-aware Spring ApplicationContext.


global session                                            Scopes a single bean definition to the lifecycle of a
                                                          global HTTP Session. Typically only valid when
                                                          used in a portlet context. Only valid in the context of
                                                          a web-aware Spring ApplicationContext.



3.4.1. The singleton scope

When a bean is a singleton, only one shared instance of the bean will be managed, and all requests for beans
with an id or ids matching that bean definition will result in that one specific bean instance being returned by
the Spring container.

To put it another way, when you define a bean definition and it is scoped as a singleton, then the Spring IoC
container will create exactly one instance of the object defined by that bean definition. This single instance will
be stored in a cache of such singleton beans, and all subsequent requests and references for that named bean
will result in the cached object being returned.




Please be aware that Spring's concept of a singleton bean is quite different from the Singleton pattern as defined
in the seminal Gang of Four (GoF) patterns book. The GoF Singleton hard codes the scope of an object such
that one and only one instance of a particular class will ever be created per ClassLoader. The scope of the
Spring singleton is best described as per container and per bean. This means that if you define one bean for a


                                            Spring Framework (2.5.6)                                            62
The IoC container

particular class in a single Spring container, then the Spring container will create one and only one instance of
the class defined by that bean definition. The singleton scope is the default scope in Spring. To define a bean as
a singleton in XML, you would write configuration like so:

 <bean id="accountService" class="com.foo.DefaultAccountService"/>

 <!-- the following is equivalent, though redundant (singleton scope is the default); using spring-beans-2.0.dtd -->
 <bean id="accountService" class="com.foo.DefaultAccountService" scope="singleton"/>

 <!-- the following is equivalent and preserved for backward compatibility in spring-beans.dtd -->
 <bean id="accountService" class="com.foo.DefaultAccountService" singleton="true"/>




3.4.2. The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance every
time a request for that specific bean is made (that is, it is injected into another bean or it is requested via a
programmatic getBean() method call on the container). As a rule of thumb, you should use the prototype scope
for all beans that are stateful, while the singleton scope should be used for stateless beans.

The following diagram illustrates the Spring prototype scope. Please note that a DAO would not typically be
configured as a prototype, since a typical DAO would not hold any conversational state; it was just easier for
this author to reuse the core of the singleton diagram.




To define a bean as a prototype in XML, you would write configuration like so:

 <!-- using spring-beans-2.0.dtd -->
 <bean id="accountService" class="com.foo.DefaultAccountService" scope="prototype"/>

 <!-- the following is equivalent and preserved for backward compatibility in spring-beans.dtd -->
 <bean id="accountService" class="com.foo.DefaultAccountService" singleton="false"/>



There is one quite important thing to be aware of when deploying a bean in the prototype scope, in that the
lifecycle of the bean changes slightly. Spring does not manage the complete lifecycle of a prototype bean: the
container instantiates, configures, decorates and otherwise assembles a prototype object, hands it to the client
and then has no further knowledge of that prototype instance. This means that while initialization lifecycle
callback methods will be called on all objects regardless of scope, in the case of prototypes, any configured
destruction lifecycle callbacks will not be called. It is the responsibility of the client code to clean up prototype


                                            Spring Framework (2.5.6)                                              63
The IoC container

scoped objects and release any expensive resources that the prototype bean(s) are holding onto. (One possible
way to get the Spring container to release resources used by prototype-scoped beans is through the use of a
custom bean post-processor which would hold a reference to the beans that need to be cleaned up.)

In some respects, you can think of the Spring containers role when talking about a prototype-scoped bean as
somewhat of a replacement for the Java 'new' operator. All lifecycle aspects past that point have to be handled
by the client. (The lifecycle of a bean in the Spring container is further described in the section entitled
Section 3.5.1, “Lifecycle callbacks”.)


3.4.3. Singleton beans with prototype-bean dependencies

When using singleton-scoped beans that have dependencies on beans that are scoped as prototypes, please be
aware that dependencies are resolved at instantiation time. This means that if you dependency inject a
prototype-scoped bean into a singleton-scoped bean, a brand new prototype bean will be instantiated and then
dependency injected into the singleton bean... but that is all. That exact same prototype instance will be the sole
instance that is ever supplied to the singleton-scoped bean, which is fine if that is what you want.

However, sometimes what you actually want is for the singleton-scoped bean to be able to acquire a brand new
instance of the prototype-scoped bean again and again and again at runtime. In that case it is no use just
dependency injecting a prototype-scoped bean into your singleton bean, because as explained above, that only
happens once when the Spring container is instantiating the singleton bean and resolving and injecting its
dependencies. If you are in the scenario where you need to get a brand new instance of a (prototype) bean again
and again and again at runtime, you are referred to the section entitled Section 3.3.7, “Method Injection”

            Backwards compatibility note: specifying the lifecycle scope in XML
            If you are referencing the 'spring-beans.dtd' DTD in a bean definition file(s), and you are being
            explicit about the lifecycle scope of your beans you must use the "singleton" attribute to express
            the lifecycle scope (remembering that the singleton lifecycle scope is the default). If you are
            referencing the 'spring-beans-2.0.dtd' DTD or the Spring 2.0 XSD schema, then you will need
            to use the "scope" attribute (because the "singleton" attribute was removed from the definition of
            the new DTD and XSD files in favor of the "scope" attribute).

            To be totally clear about this, this means that if you use the "singleton" attribute in an XML bean
            definition then you must be referencing the 'spring-beans.dtd' DTD in that file. If you are using
            the "scope" attribute then you must be referencing either the 'spring-beans-2.0.dtd' DTD or the
            'spring-beans-2.5.xsd' XSD in that file.




3.4.4. The other scopes

The other scopes, namely request, session, and global session are for use only in web-based applications
(and can be used irrespective of which particular web application framework you are using, if indeed any). In
the interest of keeping related concepts together in one place in the reference documentation, these scopes are
described here.

            Note
            The scopes that are described in the following paragraphs are only available if you are using a
            web-aware Spring ApplicationContext implementation (such as XmlWebApplicationContext). If
            you try using these next scopes with regular Spring IoC containers such as the XmlBeanFactory or
            ClassPathXmlApplicationContext, you will get an IllegalStateException complaining about
            an unknown bean scope.


                                            Spring Framework (2.5.6)                                            64
The IoC container



3.4.4.1. Initial web configuration

In order to support the scoping of beans at the request, session, and global session levels (web-scoped
beans), some minor initial configuration is required before you can set about defining your bean definitions.
Please note that this extra setup is not required if you just want to use the 'standard' scopes (namely singleton
and prototype).

Now as things stand, there are a couple of ways to effect this initial setup depending on your particular Servlet
environment...

If you are accessing scoped beans within Spring Web MVC, i.e. within a request that is processed by the Spring
DispatcherServlet, or DispatcherPortlet, then no special setup is necessary: DispatcherServlet and
DispatcherPortlet already expose all relevant state.

When using a Servlet 2.4+ web container, with requests processed outside of Spring's DispatcherServlet (e.g.
when using JSF or Struts), you need to add the following javax.servlet.ServletRequestListener to the
declarations in your web application's 'web.xml' file.

 <web-app>
   ...
   <listener>
     <listener-class>org.springframework.web.context.request.RequestContextListener</listener-class>
   </listener>
   ...
 </web-app>



If you are using an older web container (Servlet 2.3), you will need to use the provided javax.servlet.Filter
implementation. Find below a snippet of XML configuration that has to be included in the 'web.xml' file of
your web application if you want to have access to web-scoped beans in requests outside of Spring's
DispatcherServlet on a Servlet 2.3 container. (The filter mapping depends on the surrounding web application
configuration and so you will have to change it as appropriate.)

 <web-app>
   ..
   <filter>
      <filter-name>requestContextFilter</filter-name>
      <filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
   </filter>
   <filter-mapping>
      <filter-name>requestContextFilter</filter-name>
      <url-pattern>/*</url-pattern>
   </filter-mapping>
   ...
 </web-app>



That's it. DispatcherServlet, RequestContextListener and RequestContextFilter all do exactly the same
thing, namely bind the HTTP request object to the Thread that is servicing that request. This makes beans that
are request- and session-scoped available further down the call chain.

3.4.4.2. The request scope

Consider the following bean definition:

 <bean id="loginAction" class="com.foo.LoginAction" scope="request"/>



With the above bean definition in place, the Spring container will create a brand new instance of the
LoginAction bean using the 'loginAction' bean definition for each and every HTTP request. That is, the
'loginAction' bean will be effectively scoped at the HTTP request level. You can change or dirty the internal


                                           Spring Framework (2.5.6)                                           65
The IoC container

state of the instance that is created as much as you want, safe in the knowledge that other requests that are also
using instances created off the back of the same 'loginAction' bean definition will not be seeing these
changes in state since they are particular to an individual request. When the request is finished processing, the
bean that is scoped to the request will be discarded.

3.4.4.3. The session scope

Consider the following bean definition:

 <bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>



With the above bean definition in place, the Spring container will create a brand new instance of the
UserPreferences bean using the 'userPreferences' bean definition for the lifetime of a single HTTP
Session. In other words, the 'userPreferences' bean will be effectively scoped at the HTTP Session level.
Just like request-scoped beans, you can change the internal state of the instance that is created as much as you
want, safe in the knowledge that other HTTP Session instances that are also using instances created off the
back of the same 'userPreferences' bean definition will not be seeing these changes in state since they are
particular to an individual HTTP Session. When the HTTP Session is eventually discarded, the bean that is
scoped to that particular HTTP Session will also be discarded.

3.4.4.4. The global session scope

Consider the following bean definition:

 <bean id="userPreferences" class="com.foo.UserPreferences" scope="globalSession"/>



The global session scope is similar to the standard HTTP Session scope (described immediately above), and
really only makes sense in the context of portlet-based web applications. The portlet specification defines the
notion of a global Session that is shared amongst all of the various portlets that make up a single portlet web
application. Beans defined at the global session scope are scoped (or bound) to the lifetime of the global
portlet Session.

Please note that if you are writing a standard Servlet-based web application and you define one or more beans
as having global session scope, the standard HTTP Session scope will be used, and no error will be raised.

3.4.4.5. Scoped beans as dependencies

Being able to define a bean scoped to a HTTP request or Session (or indeed a custom scope of your own
devising) is all very well, but one of the main value-adds of the Spring IoC container is that it manages not only
the instantiation of your objects (beans), but also the wiring up of collaborators (or dependencies). If you want
to inject a (for example) HTTP request scoped bean into another bean, you will need to inject an AOP proxy in
place of the scoped bean. That is, you need to inject a proxy object that exposes the same public interface as the
scoped object, but that is smart enough to be able to retrieve the real, target object from the relevant scope (for
example a HTTP request) and delegate method calls onto the real object.

            Note
            You do not need to use the <aop:scoped-proxy/> in conjunction with beans that are scoped as
            singletons or prototypes. It is an error to try to create a scoped proxy for a singleton bean (and
            the resulting BeanCreationException will certainly set you straight in this regard).


Let's look at the configuration that is required to effect this; the configuration is not hugely complex (it takes


                                            Spring Framework (2.5.6)                                            66
The IoC container


just one line), but it is important to understand the “why” as well as the “how” behind it.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:aop="http://www.springframework.org/schema/aop"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

      <!-- a HTTP Session-scoped bean exposed as a proxy -->
      <bean id="userPreferences" class="com.foo.UserPreferences" scope="session">

            <!-- this next element effects the proxying of the surrounding bean -->
            <aop:scoped-proxy/>
      </bean>

      <!-- a singleton-scoped bean injected with a proxy to the above bean -->
      <bean id="userService" class="com.foo.SimpleUserService">

          <!-- a reference to the proxied 'userPreferences' bean -->
          <property name="userPreferences" ref="userPreferences"/>

     </bean>
 </beans>



To create such a proxy, you need only to insert a child <aop:scoped-proxy/> element into a scoped bean
definition (you may also need the CGLIB library on your classpath so that the container can effect class-based
proxying; you will also need to be using Appendix A, XML Schema-based configuration). So, just why do you
need this <aop:scoped-proxy/> element in the definition of beans scoped at the request, session,
globalSession and 'insert your custom scope here' level? The reason is best explained by picking apart the
following bean definition (please note that the following 'userPreferences' bean definition as it stands is
incomplete):

 <bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>

 <bean id="userManager" class="com.foo.UserManager">
     <property name="userPreferences" ref="userPreferences"/>
 </bean>



From the above configuration it is evident that the singleton bean 'userManager' is being injected with a
reference to the HTTP Session-scoped bean 'userPreferences'. The salient point here is that the
'userManager' bean is a singleton... it will be instantiated exactly once per container, and its dependencies (in
this case only one, the 'userPreferences' bean) will also only be injected (once!). This means that the
'userManager' will (conceptually) only ever operate on the exact same 'userPreferences' object, that is the
one that it was originally injected with. This is not what you want when you inject a HTTP Session-scoped
bean as a dependency into a collaborating object (typically). Rather, what we do want is a single
'userManager' object, and then, for the lifetime of a HTTP Session, we want to see and use a
'userPreferences' object that is specific to said HTTP Session.

Rather what you need then is to inject some sort of object that exposes the exact same public interface as the
UserPreferences class (ideally an object that is a UserPreferences instance) and that is smart enough to be
able to go off and fetch the real UserPreferences object from whatever underlying scoping mechanism we
have chosen (HTTP request, Session, etc.). We can then safely inject this proxy object into the 'userManager'
bean, which will be blissfully unaware that the UserPreferences reference that it is holding onto is a proxy. In
the case of this example, when a UserManager instance invokes a method on the dependency-injected
UserPreferences object, it is really invoking a method on the proxy... the proxy will then go off and fetch the
real UserPreferences object from (in this case) the HTTP Session, and delegate the method invocation onto
the retrieved real UserPreferences object.

That is why you need the following, correct and complete, configuration when injecting request-, session-,

                                            Spring Framework (2.5.6)                                          67
The IoC container

and globalSession-scoped beans into collaborating objects:

 <bean id="userPreferences" class="com.foo.UserPreferences" scope="session">
      <aop:scoped-proxy/>
 </bean>

 <bean id="userManager" class="com.foo.UserManager">
     <property name="userPreferences" ref="userPreferences"/>
 </bean>



3.4.4.5.1. Choosing the type of proxy created
By default, when the Spring container is creating a proxy for a bean that is marked up with the
<aop:scoped-proxy/> element, a CGLIB-based class proxy will be created. This means that you need to have
the CGLIB library on the classpath of your application.

Note: CGLIB proxies will only intercept public method calls! Do not call non-public methods on such a proxy;
they will not be delegated to the scoped target object.

You can choose to have the Spring container create 'standard' JDK interface-based proxies for such scoped
beans by specifying 'false' for the value of the 'proxy-target-class' attribute of the <aop:scoped-proxy/>
element. Using JDK interface-based proxies does mean that you don't need any additional libraries on your
application's classpath to effect such proxying, but it does mean that the class of the scoped bean must
implement at least one interface, and all of the collaborators into which the scoped bean is injected must be
referencing the bean via one of its interfaces.

 <!-- DefaultUserPreferences implements the UserPreferences interface -->
 <bean id="userPreferences" class="com.foo.DefaultUserPreferences" scope="session">
     <aop:scoped-proxy proxy-target-class="false"/>
 </bean>

 <bean id="userManager" class="com.foo.UserManager">
     <property name="userPreferences" ref="userPreferences"/>
 </bean>



The section entitled Section 6.6, “Proxying mechanisms” may also be of some interest with regard to
understanding the nuances of choosing whether class-based or interface-based proxying is right for you.


3.4.5. Custom scopes

As of Spring 2.0, the bean scoping mechanism in Spring is extensible. This means that you are not limited to
just the bean scopes that Spring provides out of the box; you can define your own scopes, or even redefine the
existing scopes (although that last one would probably be considered bad practice - please note that you cannot
override the built-in singleton and prototype scopes).

3.4.5.1. Creating your own custom scope

Scopes are defined by the org.springframework.beans.factory.config.Scope interface. This is the interface
that you will need to implement in order to integrate your own custom scope(s) into the Spring container, and is
described in detail below. You may wish to look at the Scope implementations that are supplied with the Spring
Framework itself for an idea of how to go about implementing your own. The Scope Javadoc explains the main
class to implement when you need your own scope in more detail too.

The Scope interface has four methods dealing with getting objects from the scope, removing them from the
scope and allowing them to be 'destroyed' if needed.

The first method should return the object from the underlying scope. The session scope implementation for


                                          Spring Framework (2.5.6)                                           68
The IoC container


example will return the session-scoped bean (and if it does not exist, return a new instance of the bean, after
having bound it to the session for future reference).

 Object get(String name, ObjectFactory objectFactory)



The second method should remove the object from the underlying scope. The session scope implementation for
example, removes the session-scoped bean from the underlying session. The object should be returned (you are
allowed to return null if the object with the specified name wasn't found)

 Object remove(String name)



The third method is used to register callbacks the scope should execute when it is destroyed or when the
specified object in the scope is destroyed. Please refer to the Javadoc or a Spring scope implementation for
more information on destruction callbacks.

 void registerDestructionCallback(String name, Runnable destructionCallback)



The last method deals with obtaining the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session for example, this can be the session identifier.

 String getConversationId()




3.4.5.2. Using a custom scope

After you have written and tested one or more custom Scope implementations, you then need to make the
Spring container aware of your new scope(s). The central method to register a new Scope with the Spring
container is declared on the ConfigurableBeanFactory interface (implemented by most of the concrete
BeanFactory implementations that ship with Spring); this central method is displayed below:

 void registerScope(String scopeName, Scope scope);



The first argument to the registerScope(..) method is the unique name associated with a scope; examples of
such names in the Spring container itself are 'singleton' and 'prototype'. The second argument to the
registerScope(..) method is an actual instance of the custom Scope implementation that you wish to register
and use.

Let's assume that you have written your own custom Scope implementation, and you have registered it like so:

 // note: the ThreadScope class does not ship with the Spring Framework
 Scope customScope = new ThreadScope();
 beanFactory.registerScope("thread", customScope);



You can then create bean definitions that adhere to the scoping rules of your custom Scope like so:

 <bean id="..." class="..." scope="thread"/>



If you have your own custom Scope implementation(s), you are not just limited to only programmatic
registration of the custom scope(s). You can also do the Scope registration declaratively, using the
CustomScopeConfigurer class.

The declarative registration of custom Scope implementations using the CustomScopeConfigurer class is
shown below:

                                           Spring Framework (2.5.6)                                         69
The IoC container


 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:aop="http://www.springframework.org/schema/aop"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

     <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
         <property name="scopes">
             <map>
                 <entry key="thread">
                     <bean class="com.foo.ThreadScope"/>
                 </entry>
             </map>
         </property>
     </bean>

     <bean id="bar" class="x.y.Bar" scope="thread">
         <property name="name" value="Rick"/>
         <aop:scoped-proxy/>
     </bean>

     <bean id="foo" class="x.y.Foo">
         <property name="bar" ref="bar"/>
     </bean>

 </beans>



            Note
            Note that, when placing a <aop:scoped-proxy/> in a FactoryBean implementation, it is the factory
            bean itself that is scoped, not the object returned from getObject().



3.5. Customizing the nature of a bean

3.5.1. Lifecycle callbacks

The Spring Framework provides several callback interfaces to change the behavior of your bean in the
container; they include InitializingBean and DisposableBean. Implementing these interfaces will result in
the container calling afterPropertiesSet() for the former and destroy() for the latter to allow the bean to
perform certain actions upon initialization and destruction.

Internally, the Spring Framework uses BeanPostProcessor implementations to process any callback interfaces
it can find and call the appropriate methods. If you need custom features or other lifecycle behavior Spring
doesn't offer out-of-the-box, you can implement a BeanPostProcessor yourself. More information about this
can be found in the section entitled Section 3.7, “Container extension points”.

All the different lifecycle callback interfaces are described below. In one of the appendices, you can find
diagrams that show how Spring manages beans, how those lifecycle features change the nature of your beans,
and how they are managed.

3.5.1.1. Initialization callbacks

Implementing the org.springframework.beans.factory.InitializingBean interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by the container. The
InitializingBean interface specifies exactly one method:

 void afterPropertiesSet() throws Exception;


                                         Spring Framework (2.5.6)                                        70
The IoC container


Generally, the use of the InitializingBean interface can be avoided and is actually discouraged since it
unnecessarily couples the code to Spring. As an alternative, bean definitions provide support for a generic
initialization method to be specified. In the case of XML-based configuration metadata, this is done using the
'init-method' attribute. For example, the following definition:

  <bean id="exampleInitBean" class="examples.ExampleBean" init-method="init"/>



  public class ExampleBean {

      public void init() {
          // do some initialization work
      }
  }



...is exactly the same as...

  <bean id="exampleInitBean" class="examples.AnotherExampleBean"/>



  public class AnotherExampleBean implements InitializingBean {

      public void afterPropertiesSet() {
          // do some initialization work
      }
  }



... but does not couple the code to Spring.

3.5.1.2. Destruction callbacks

Implementing the org.springframework.beans.factory.DisposableBean interface allows a bean to get a
callback when the container containing it is destroyed. The DisposableBean interface specifies a single
method:

  void destroy() throws Exception;



Generally, the use of the DisposableBean callback interface can be avoided and is actually discouraged since it
unnecessarily couples the code to Spring. As an alternative, bean definitions provide support for a generic
destroy method to be specified. When using XML-based configuration metadata this is done via the
'destroy-method' attribute on the <bean/>. For example, the following definition:

  <bean id="exampleInitBean" class="examples.ExampleBean" destroy-method="cleanup"/>



  public class ExampleBean {

      public void cleanup() {
          // do some destruction work (like releasing pooled connections)
      }
  }



...is exactly the same as...

  <bean id="exampleInitBean" class="examples.AnotherExampleBean"/>



  public class AnotherExampleBean implements DisposableBean {

      public void destroy() {
          // do some destruction work (like releasing pooled connections)


                                              Spring Framework (2.5.6)                                      71
The IoC container

      }
 }



... but does not couple the code to Spring.

3.5.1.3. Default initialization & destroy methods

When writing initialization and destroy method callbacks that do not use the Spring-specific InitializingBean
and DisposableBean callback interfaces, one typically finds oneself writing methods with names such as
init(), initialize(), dispose(), etc. The names of such lifecycle callback methods are (hopefully!)
standardized across a project so that all developers on a team use the same method names and thus ensure some
level of consistency.

The Spring container can be configured to 'look' for named initialization and destroy callback method names
on every bean. This means that you, as an application developer, can simply write your application classes, use
a convention of having an initialization callback called init(), and then (without having to configure each and
every bean with, in the case of XML-based configuration, an 'init-method="init"' attribute) be safe in the
knowledge that the Spring IoC container will call that method when the bean is being created (and in
accordance with the standard lifecycle callback contract described previously).

Let's look at an example to make the use of this feature completely clear. For the sake of the example, let us say
that one of the coding conventions on a project is that all initialization callback methods are to be named
init() and that destroy callback methods are to be called destroy(). This leads to classes like so...

 public class DefaultBlogService implements BlogService {

      private BlogDao blogDao;

      public void setBlogDao(BlogDao blogDao) {
          this.blogDao = blogDao;
      }

      // this is (unsurprisingly) the initialization callback method
      public void init() {
          if (this.blogDao == null) {
              throw new IllegalStateException("The [blogDao] property must be set.");
          }
      }
 }



 <beans default-init-method="init">

      <bean id="blogService" class="com.foo.DefaultBlogService">
          <property name="blogDao" ref="blogDao" />
      </bean>

 </beans>



Notice the use of the 'default-init-method' attribute on the top-level <beans/> element. The presence of this
attribute means that the Spring IoC container will recognize a method called 'init' on beans as being the
initialization method callback, and when a bean is being created and assembled, if the bean's class has such a
method, it will be invoked at the appropriate time.

Destroy method callbacks are configured similarly (in XML that is) using the 'default-destroy-method'
attribute on the top-level <beans/> element.

The use of this feature can save you the (small) housekeeping chore of specifying an initialization and destroy
method callback on each and every bean, and it is great for enforcing a consistent naming convention for
initialization and destroy method callbacks, as consistency is something that should always be aimed for.


                                              Spring Framework (2.5.6)                                         72
The IoC container


Consider the case where you have some existing beans where the underlying classes already have initialization
callback methods that are named at variance with the convention. You can always override the default by
specifying (in XML that is) the method name using the 'init-method' and 'destroy-method' attributes on the
<bean/> element itself.

Finally, please be aware that the Spring container guarantees that a configured initialization callback is called
immediately after a bean has been supplied with all of its dependencies. This means that the initialization
callback will be called on the raw bean reference, which means that any AOP interceptors or suchlike that will
ultimately be applied to the bean will not yet be in place. A target bean is fully created first, then an AOP proxy
(for example) with its interceptor chain is applied. Note that, if the target bean and the proxy are defined
separately, your code can even interact with the raw target bean, bypassing the proxy. Hence, it would be very
inconsistent to apply the interceptors to the init method, since that would couple the lifecycle of the target bean
with its proxy/interceptors and leave strange semantics when talking to the raw target bean directly.

3.5.1.4. Combining lifecycle mechanisms

As of Spring 2.5, there are three options for controlling bean lifecycle behavior: the InitializingBean and
DisposableBean callback interfaces; custom init() and destroy() methods; and the @PostConstruct and
@PreDestroy annotations.

When combining different lifecycle mechanisms - for example, in a class hierarchy in which various lifecycle
mechanisms are in use - developers should be aware of the order in which these mechanisms are applied. The
following is the ordering for initialization methods:


• Methods annotated with @PostConstruct

• afterPropertiesSet() as defined by the InitializingBean callback interface

• A custom configured init() method

Destroy methods are called in the same order:


• Methods annotated with @PreDestroy

• destroy() as defined by the DisposableBean callback interface

• A custom configured destroy() method

            Note
            If multiple lifecycle mechanisms are configured for a given bean, and each mechanism is
            configured with a different method name, then each configured method will be executed in the
            order listed above; however, if the same method name is configured - for example, init() for an
            initialization method - for more than one of the aforementioned lifecycle mechanisms, that method
            will only be executed once.


3.5.1.5. Shutting down the Spring IoC container gracefully in non-web applications

            Note
            This next section does not apply to web applications (in case the title of this section did not make
            that abundantly clear). Spring's web-based ApplicationContext implementations already have


                                            Spring Framework (2.5.6)                                            73
The IoC container


            code in place to handle shutting down the Spring IoC container gracefully when the relevant web
            application is being shutdown.


If you are using Spring's IoC container in a non-web application environment, for example in a rich client
desktop environment, and you want the container to shutdown gracefully and call the relevant destroy callbacks
on your singleton beans, you will need to register a shutdown hook with the JVM. This is quite easy to do (see
below), and will ensure that your Spring IoC container shuts down gracefully and that all resources held by
your singletons are released. Of course it is still up to you to both configure the destroy callbacks for your
singletons and implement such destroy callbacks correctly.

So to register a shutdown hook that enables the graceful shutdown of the relevant Spring IoC container, you
simply need to call the registerShutdownHook() method that is declared on the
AbstractApplicationContext class. To wit...

 import org.springframework.context.support.AbstractApplicationContext;
 import org.springframework.context.support.ClassPathXmlApplicationContext;

 public final class Boot {

      public static void main(final String[] args) throws Exception {
          AbstractApplicationContext ctx
              = new ClassPathXmlApplicationContext(new String []{"beans.xml"});

          // add a shutdown hook for the above context...
          ctx.registerShutdownHook();

          // app runs here...

          // main method exits, hook is called prior to the app shutting down...
      }
 }




3.5.2. Knowing who you are

3.5.2.1. BeanFactoryAware

A class which implements the org.springframework.beans.factory.BeanFactoryAware interface is provided
with a reference to the BeanFactory that created it, when it is created by that BeanFactory.

 public interface BeanFactoryAware {

      void setBeanFactory(BeanFactory beanFactory) throws BeansException;
 }



This allows beans to manipulate the BeanFactory that created them programmatically, through the
BeanFactory interface, or by casting the reference to a known subclass of this which exposes additional
functionality. Primarily this would consist of programmatic retrieval of other beans. While there are cases when
this capability is useful, it should generally be avoided, since it couples the code to Spring and does not follow
the Inversion of Control style, where collaborators are provided to beans as properties.

An alternative option that is equivalent in effect to the BeanFactoryAware-based approach is to use the
org.springframework.beans.factory.config.ObjectFactoryCreatingFactoryBean. (It should be noted that
this approach still does not reduce the coupling to Spring, but it does not violate the central principle of IoC as
much as the BeanFactoryAware-based approach.)

The ObjectFactoryCreatingFactoryBean is a FactoryBean implementation that returns a reference to an
object (factory) that can in turn be used to effect a bean lookup. The ObjectFactoryCreatingFactoryBean


                                            Spring Framework (2.5.6)                                            74
The IoC container

class does itself implement the BeanFactoryAware interface; what client beans are actually injected with is an
instance of the ObjectFactory interface. This is a Spring-specific interface (and hence there is still no total
decoupling from Spring), but clients can then use the ObjectFactory's getObject() method to effect the bean
lookup (under the hood the ObjectFactory implementation instance that is returned simply delegates down to a
BeanFactory to actually lookup a bean by name). All that you need to do is supply the
ObjectFactoryCreatingFactoryBean with the name of the bean that is to be looked up. Let's look at an
example:

 package x.y;

 public class NewsFeed {

       private String news;

       public void setNews(String news) {
           this.news = news;
       }

       public String getNews() {
           return this.toString() + ": '" + news + "'";
       }
 }



 package x.y;

 import org.springframework.beans.factory.ObjectFactory;

 public class NewsFeedManager {

       private ObjectFactory factory;

       public void setFactory(ObjectFactory factory) {
           this.factory = factory;
       }

       public void printNews() {
           // here is where the lookup is performed; note that there is no
           // need to hard code the name of the bean that is being looked up...
           NewsFeed news = (NewsFeed) factory.getObject();
           System.out.println(news.getNews());
       }
 }



Find    below    the   XML      configuration to      wire    together   the   above     classes   using   the
ObjectFactoryCreatingFactoryBean      approach.

 <beans>
     <bean id="newsFeedManager" class="x.y.NewsFeedManager">
          <property name="factory">
              <bean
 class="org.springframework.beans.factory.config.ObjectFactoryCreatingFactoryBean">
                  <property name="targetBeanName">
                      <idref local="newsFeed" />
                  </property>
              </bean>
          </property>
     </bean>
     <bean id="newsFeed" class="x.y.NewsFeed" scope="prototype">
          <property name="news" value="... that's fit to print!" />
     </bean>
 </beans>



And here is a small driver program to test the fact that new (prototype) instances of the newsFeed bean are
actually being returned for each call to the injected ObjectFactory inside the NewsFeedManager's printNews()
method.

 import org.springframework.context.ApplicationContext;
 import org.springframework.context.support.ClassPathXmlApplicationContext;


                                          Spring Framework (2.5.6)                                          75
The IoC container


 import x.y.NewsFeedManager;

 public class Main {

      public static void main(String[] args) throws Exception {

          ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml");
          NewsFeedManager manager = (NewsFeedManager) ctx.getBean("newsFeedManager");
          manager.printNews();
          manager.printNews();
      }
 }



The output from running the above program will look like so (results will of course vary on your machine).

 x.y.NewsFeed@1292d26: '... that's fit to print!'
 x.y.NewsFeed@5329c5: '... that's fit to print!'



As of Spring 2.5, you can rely upon autowiring of the BeanFactory as yet another alternative to implementing
the BeanFactoryAware interface. The "traditional" constructor and byType autowiring modes (as described in
the section entitled Section 3.3.5, “Autowiring collaborators”) are now capable of providing a dependency of
type BeanFactory for either a constructor argument or setter method parameter respectively. For more
flexibility (including the ability to autowire fields and multiple parameter methods), consider using the new
annotation-based autowiring features. In that case, the BeanFactory will be autowired into a field, constructor
argument, or method parameter that is expecting the BeanFactory type as long as the field, constructor, or
method in question carries the @Autowired annotation. For more information, see the section entitled
Section 3.11.2, “@Autowired”.

3.5.2.2. BeanNameAware

If a bean implements the org.springframework.beans.factory.BeanNameAware interface and is deployed in a
BeanFactory, the BeanFactory will call the bean through this interface to inform the bean of the name it was
deployed under. The callback will be invoked after population of normal bean properties but before an
initialization callback like InitializingBean's afterPropertiesSet or a custom init-method.


3.6. Bean definition inheritance
A bean definition potentially contains a large amount of configuration information, including container specific
information (for example initialization method, static factory method name, and so forth) and constructor
arguments and property values. A child bean definition is a bean definition that inherits configuration data from
a parent definition. It is then able to override some values, or add others, as needed. Using parent and child
bean definitions can potentially save a lot of typing. Effectively, this is a form of templating.

When working with a BeanFactory programmatically, child bean definitions are represented by the
ChildBeanDefinition class. Most users will never work with them on this level, instead configuring bean
definitions declaratively in something like the XmlBeanFactory. When using XML-based configuration
metadata a child bean definition is indicated simply by using the 'parent' attribute, specifying the parent bean
as the value of this attribute.

 <bean id="inheritedTestBean" abstract="true"
     class="org.springframework.beans.TestBean">
   <property name="name" value="parent"/>
   <property name="age" value="1"/>
 </bean>

 <bean id="inheritsWithDifferentClass"
       class="org.springframework.beans.DerivedTestBean"
       parent="inheritedTestBean" init-method="initialize">


                                           Spring Framework (2.5.6)                                           76
The IoC container


    <property name="name" value="override"/>
    <!-- the age property value of 1 will be inherited from         parent -->

 </bean>



A child bean definition will use the bean class from the parent definition if none is specified, but can also
override it. In the latter case, the child bean class must be compatible with the parent, that is it must accept the
parent's property values.

A child bean definition will inherit constructor argument values, property values and method overrides from the
parent, with the option to add new values. If any init-method, destroy-method and/or static factory method
settings are specified, they will override the corresponding parent settings.

The remaining settings will always be taken from the child definition: depends on, autowire mode, dependency
check, singleton, scope, lazy init.

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute. In the case that the parent definition does not specify a class, and so explicitly marking the
parent bean definition as abstract is required:

 <bean id="inheritedTestBeanWithoutClass" abstract="true">
     <property name="name" value="parent"/>
     <property name="age" value="1"/>
 </bean>

 <bean id="inheritsWithClass" class="org.springframework.beans.DerivedTestBean"
     parent="inheritedTestBeanWithoutClass" init-method="initialize">
   <property name="name" value="override"/>
   <!-- age will inherit the value of 1 from the parent bean definition-->
 </bean>



The parent bean cannot get instantiated on its own since it is incomplete, and it is also explicitly marked as
abstract. When a definition is defined to be abstract like this, it is usable only as a pure template bean
definition that will serve as a parent definition for child definitions. Trying to use such an abstract parent bean
on its own (by referring to it as a ref property of another bean, or doing an explicit getBean() call with the
parent bean id), will result in an error. Similarly, the container's internal preInstantiateSingletons() method
will completely ignore bean definitions which are defined as abstract.

            Note
            ApplicationContexts       (but not BeanFactories) will by default pre-instantiate all singletons.
            Therefore it is important (at least for singleton beans) that if you have a (parent) bean definition
            which you intend to use only as a template, and this definition specifies a class, you must make
            sure to set the 'abstract' attribute to 'true', otherwise the application context will actually (attempt
            to) pre-instantiate the abstract bean.



3.7. Container extension points
The IoC component of the Spring Framework has been designed for extension. There is typically no need for
an application developer to subclass any of the various BeanFactory or ApplicationContext implementation
classes. The Spring IoC container can be infinitely extended by plugging in implementations of special
integration interfaces. The next few sections are devoted to detailing all of these various integration interfaces.




                                            Spring Framework (2.5.6)                                             77
The IoC container


3.7.1. Customizing beans using BeanPostProcessors

The first extension point that we will look at is the BeanPostProcessor interface. This interface defines a
number of callback methods that you as an application developer can implement in order to provide your own
(or override the containers default) instantiation logic, dependency-resolution logic, and so forth. If you want to
do some custom logic after the Spring container has finished instantiating, configuring and otherwise
initializing a bean, you can plug in one or more BeanPostProcessor implementations.

You can configure multiple BeanPostProcessors if you wish. You can control the order in which these
BeanPostProcessors execute by setting the 'order' property (you can only set this property if the
BeanPostProcessor implements the Ordered interface; if you write your own BeanPostProcessor you should
consider implementing the Ordered interface too); consult the Javadoc for the BeanPostProcessor and
Ordered interfaces for more details.


            Note
            BeanPostProcessors    operate on bean (or object) instances; that is to say, the Spring IoC container
            will have instantiated a bean instance for you, and then BeanPostProcessors get a chance to do
            their stuff.

            If you want to change the actual bean definition (that is the recipe that defines the bean), then you
            rather need to use a BeanFactoryPostProcessor (described below in the section entitled
            Section 3.7.2, “Customizing configuration metadata with BeanFactoryPostProcessors”.

            Also, BeanPostProcessors are scoped per-container. This is only relevant if you are using
            container hierarchies. If you define a BeanPostProcessor in one container, it will only do its stuff
            on the beans in that container. Beans that are defined in another container will not be
            post-processed by BeanPostProcessors in another container, even if both containers are part of the
            same hierarchy.


The org.springframework.beans.factory.config.BeanPostProcessor interface consists of exactly two
callback methods. When such a class is registered as a post-processor with the container (see below for how
this registration is effected), for each bean instance that is created by the container, the post-processor will get a
callback from the container both before any container initialization methods (such as afterPropertiesSet and
any declared init method) are called, and also afterwards. The post-processor is free to do what it wishes with
the bean instance, including ignoring the callback completely. A bean post-processor will typically check for
callback interfaces, or do something such as wrap a bean with a proxy; some of the Spring AOP infrastructure
classes are implemented as bean post-processors and they do this proxy-wrapping logic.

It is important to know that a BeanFactory treats bean post-processors slightly differently than an
ApplicationContext. An ApplicationContext will automatically detect any beans which are defined in the
configuration metadata which is supplied to it that implement the BeanPostProcessor interface, and register
them as post-processors, to be then called appropriately by the container on bean creation. Nothing else needs
to be done other than deploying the post-processors in a similar fashion to any other bean. On the other hand,
when using a BeanFactory implementation, bean post-processors explicitly have to be registered, with code
like this:

 ConfigurableBeanFactory factory = new XmlBeanFactory(...);

 // now register any needed BeanPostProcessor instances
 MyBeanPostProcessor postProcessor = new MyBeanPostProcessor();
 factory.addBeanPostProcessor(postProcessor);

 // now start using the factory




                                             Spring Framework (2.5.6)                                              78
The IoC container


This explicit registration step is not convenient, and this is one of the reasons why the various
ApplicationContext implementations are preferred above plain BeanFactory implementations in the vast
majority of Spring-backed applications, especially when using BeanPostProcessors.

              BeanPostProcessors          and AOP auto-proxying
              Classes that implement the BeanPostProcessor interface are special, and so they are treated
              differently by the container. All BeanPostProcessors and their directly referenced beans will be
              instantiated on startup, as part of the special startup phase of the ApplicationContext, then all
              those BeanPostProcessors will be registered in a sorted fashion - and applied to all further beans.
              Since AOP auto-proxying is implemented as a BeanPostProcessor itself, no BeanPostProcessors
              or directly referenced beans are eligible for auto-proxying (and thus will not have aspects 'woven'
              into them.

              For any such bean, you should see an info log message: “Bean 'foo' is not eligible for getting
              processed by all BeanPostProcessors (for example: not eligible for auto-proxying)”.


Find below some examples of how to write, register, and use BeanPostProcessors in the context of an
ApplicationContext.


3.7.1.1. Example: Hello World, BeanPostProcessor-style

This first example is hardly compelling, but serves to illustrate basic usage. All we are going to do is code a
custom BeanPostProcessor implementation that simply invokes the toString() method of each bean as it is
created by the container and prints the resulting string to the system console. Yes, it is not hugely useful, but
serves to get the basic concepts across before we move into the second example which is actually useful.

Find below the custom BeanPostProcessor implementation class definition:

 package scripting;

 import org.springframework.beans.factory.config.BeanPostProcessor;
 import org.springframework.beans.BeansException;

 public class InstantiationTracingBeanPostProcessor implements BeanPostProcessor {

      // simply return the instantiated bean as-is
      public Object postProcessBeforeInitialization(Object bean, String beanName) throws BeansException {
          return bean; // we could potentially return any object reference here...
      }

      public Object postProcessAfterInitialization(Object bean, String beanName) throws BeansException {
          System.out.println("Bean '" + beanName + "' created : " + bean.toString());
          return bean;
      }
 }



 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:lang="http://www.springframework.org/schema/lang"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-2.5.xsd">

      <lang:groovy id="messenger"
            script-source="classpath:org/springframework/scripting/groovy/Messenger.groovy">
          <lang:property name="message" value="Fiona Apple Is Just So Dreamy."/>
      </lang:groovy>

      <!--
             when the above bean ('messenger') is instantiated, this custom
             BeanPostProcessor implementation will output the fact to the system console



                                            Spring Framework (2.5.6)                                          79
The IoC container

       -->
      <bean class="scripting.InstantiationTracingBeanPostProcessor"/>

 </beans>



Notice how the InstantiationTracingBeanPostProcessor is simply defined; it doesn't even have a name, and
because it is a bean it can be dependency injected just like any other bean. (The above configuration also just so
happens to define a bean that is backed by a Groovy script. The Spring 2.0 dynamic language support is
detailed in the chapter entitled Chapter 24, Dynamic language support.)

Find below a small driver script to exercise the above code and configuration;

 import org.springframework.context.ApplicationContext;
 import org.springframework.context.support.ClassPathXmlApplicationContext;
 import org.springframework.scripting.Messenger;

 public final class Boot {

      public static void main(final String[] args) throws Exception {
          ApplicationContext ctx = new ClassPathXmlApplicationContext("scripting/beans.xml");
          Messenger messenger = (Messenger) ctx.getBean("messenger");
          System.out.println(messenger);
      }
 }



The output of executing the above program will be (something like) this:

 Bean 'messenger' created : org.springframework.scripting.groovy.GroovyMessenger@272961
 org.springframework.scripting.groovy.GroovyMessenger@272961




3.7.1.2. Example: The RequiredAnnotationBeanPostProcessor

Using callback interfaces or annotations in conjunction with a custom BeanPostProcessor implementation is a
common means of extending the Spring IoC container. This next example is a bit of a cop-out, in that you are
directed to the section entitled Section 25.3.1, “@Required” which demonstrates the usage of a custom
BeanPostProcessor implementation that ships with the Spring distribution which ensures that JavaBean
properties on beans that are marked with an (arbitrary) annotation are actually (configured to be)
dependency-injected with a value.


3.7.2. Customizing configuration metadata with BeanFactoryPostProcessors

The         next      extension       point       that       we        will    look      at       is      the
org.springframework.beans.factory.config.BeanFactoryPostProcessor.            The semantics of this interface
are similar to the BeanPostProcessor, with one major difference: BeanFactoryPostProcessors operate on the
bean configuration metadata; that is, the Spring IoC container will allow BeanFactoryPostProcessors to read
the configuration metadata and potentially change it before the container has actually instantiated any other
beans.

You can configure multiple BeanFactoryPostProcessors if you wish. You can control the order in which these
BeanFactoryPostProcessors execute by setting the 'order' property (you can only set this property if the
BeanFactoryPostProcessor      implements the Ordered interface; if you write your own
BeanFactoryPostProcessor you should consider implementing the Ordered interface too); consult the Javadoc
for the BeanFactoryPostProcessor and Ordered interfaces for more details.

             Note
             If you want to change the actual bean instances (the objects that are created from the configuration

                                           Spring Framework (2.5.6)                                            80
The IoC container


            metadata), then you rather need to use a BeanPostProcessor (described above in the section
            entitled Section 3.7.1, “Customizing beans using BeanPostProcessors”.

            Also, BeanFactoryPostProcessors are scoped per-container. This is only relevant if you are using
            container hierarchies. If you define a BeanFactoryPostProcessor in one container, it will only do
            its stuff on the bean definitions in that container. Bean definitions in another container will not be
            post-processed by BeanFactoryPostProcessors in another container, even if both containers are
            part of the same hierarchy.


A bean factory post-processor is executed manually (in the case of a BeanFactory) or automatically (in the case
of an ApplicationContext) to apply changes of some sort to the configuration metadata that defines a
container. Spring includes a number of pre-existing bean factory post-processors, such as
PropertyOverrideConfigurer and PropertyPlaceholderConfigurer, both described below. A custom
BeanFactoryPostProcessor can also be used to register custom property editors, for example.

In a BeanFactory, the process of applying a BeanFactoryPostProcessor is manual, and will be similar to this:

 XmlBeanFactory factory = new XmlBeanFactory(new FileSystemResource("beans.xml"));

 // bring in some property values from a Properties file
 PropertyPlaceholderConfigurer cfg = new PropertyPlaceholderConfigurer();
 cfg.setLocation(new FileSystemResource("jdbc.properties"));

 // now actually do the replacement
 cfg.postProcessBeanFactory(factory);



This explicit registration step is not convenient, and this is one of the reasons why the various
ApplicationContext implementations are preferred above plain BeanFactory implementations in the vast
majority of Spring-backed applications, especially when using BeanFactoryPostProcessors.

An ApplicationContext will detect any beans which are deployed into it which implement the
BeanFactoryPostProcessor interface, and automatically use them as bean factory post-processors, at the
appropriate time. Nothing else needs to be done other than deploying these post-processor in a similar fashion
to any other bean.

            Note
            Just   as   in   the   case   of     BeanPostProcessors,you typically don't want to have
            BeanFactoryPostProcessors marked as being lazily-initialized. If they are marked as such, then
            the Spring container will never instantiate them, and thus they won't get a chance to apply their
            custom logic. If you are using the 'default-lazy-init' attribute on the declaration of your
            <beans/> element, be sure to mark your various BeanFactoryPostProcessor bean definitions with
            'lazy-init="false"'.



3.7.2.1. Example: the PropertyPlaceholderConfigurer

The PropertyPlaceholderConfigurer is used to externalize property values from a BeanFactory definition,
into another separate file in the standard Java Properties format. This is useful to allow the person deploying
an application to customize environment-specific properties (for example database URLs, usernames and
passwords), without the complexity or risk of modifying the main XML definition file or files for the container.

Consider the following XML-based configuration metadata fragment, where a DataSource with placeholder
values is defined. We will configure some properties from an external Properties file, and at runtime, we will
apply a PropertyPlaceholderConfigurer to the metadata which will replace some properties of the

                                               Spring Framework (2.5.6)                                        81
The IoC container

DataSource:

 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
     <property name="locations">
         <value>classpath:com/foo/jdbc.properties</value>
     </property>
 </bean>

 <bean id="dataSource" destroy-method="close"
       class="org.apache.commons.dbcp.BasicDataSource">
     <property name="driverClassName" value="${jdbc.driverClassName}"/>
     <property name="url" value="${jdbc.url}"/>
     <property name="username" value="${jdbc.username}"/>
     <property name="password" value="${jdbc.password}"/>
 </bean>



The actual values come from another file in the standard Java Properties format:

 jdbc.driverClassName=org.hsqldb.jdbcDriver
 jdbc.url=jdbc:hsqldb:hsql://production:9002
 jdbc.username=sa
 jdbc.password=root



With the context namespace introduced in Spring 2.5, it is possible to configure property placeholders with a
dedicated configuration element. Multiple locations may be provided as a comma-separated list for the
location attribute.

 <context:property-placeholder location="classpath:com/foo/jdbc.properties"/>



The PropertyPlaceholderConfigurer doesn't only look for properties in the Properties file you specify, but
also checks against the Java System properties if it cannot find a property you are trying to use. This behavior
can be customized by setting the systemPropertiesMode property of the configurer. It has three values, one to
tell the configurer to always override, one to let it never override and one to let it override only if the property
cannot be found in the properties file specified. Please consult the Javadoc for the
PropertyPlaceholderConfigurer for more information.


            Class name substitution
            The PropertyPlaceholderConfigurer can be used to substitute class names, which is sometimes
            useful when you have to pick a particular implementation class at runtime. For example:

 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
     <property name="locations">
         <value>classpath:com/foo/strategy.properties</value>
     </property>
     <property name="properties">
         <value>custom.strategy.class=com.foo.DefaultStrategy</value>
     </property>
 </bean>

 <bean id="serviceStrategy" class="${custom.strategy.class}"/>



            If the class is unable to be resolved at runtime to a valid class, resolution of the bean will fail once
            it is about to be created (which is during the preInstantiateSingletons() phase of an
            ApplicationContext for a non-lazy-init bean.)



3.7.2.2. Example: the PropertyOverrideConfigurer

The    PropertyOverrideConfigurer,         another    bean    factory    post-processor,    is   similar   to   the


                                            Spring Framework (2.5.6)                                             82
The IoC container

PropertyPlaceholderConfigurer,        but in contrast to the latter, the original definitions can have default values
or no values at all for bean properties. If an overriding Properties file does not have an entry for a certain bean
property, the default context definition is used.

Note that the bean factory definition is not aware of being overridden, so it is not immediately obvious when
looking at the XML definition file that the override configurer is being used. In case that there are multiple
PropertyOverrideConfigurer instances that define different values for the same bean property, the last one
will win (due to the overriding mechanism).

Properties file configuration lines are expected to be in the format:

 beanName.property=value



An example properties file might look like this:

 dataSource.driverClassName=com.mysql.jdbc.Driver
 dataSource.url=jdbc:mysql:mydb



This example file would be usable against a container definition which contains a bean called dataSource,
which has driver and url properties.

Note that compound property names are also supported, as long as every component of the path except the final
property being overridden is already non-null (presumably initialized by the constructors). In this example...

 foo.fred.bob.sammy=123



... the sammy property of the bob property of the fred property of the foo bean is being set to the scalar value
123.

Note: Specified override values are always literal values; they are not translated into bean references. This also
applies when the original value in the XML bean definition specifies a bean reference

With the context namespace introduced in Spring 2.5, it is possible to configure property overriding with a
dedicated configuration element:

 <context:property-override location="classpath:override.properties"/>




3.7.3. Customizing instantiation logic using FactoryBeans

The org.springframework.beans.factory.FactoryBean interface is to be implemented by objects that are
themselves factories.

The FactoryBean interface is a point of pluggability into the Spring IoC containers instantiation logic. If you
have some complex initialization code that is better expressed in Java as opposed to a (potentially) verbose
amount of XML, you can create your own FactoryBean, write the complex initialization inside that class, and
then plug your custom FactoryBean into the container.

The FactoryBean interface provides three methods:


• Object getObject(): has to return an instance of the object this factory creates. The instance can possibly
  be shared (depending on whether this factory returns singletons or prototypes).

• boolean isSingleton(): has to return true if this FactoryBean returns singletons, false otherwise


                                            Spring Framework (2.5.6)                                              83
The IoC container


• Class getObjectType(): has to return either the object type returned by the getObject() method or null if
  the type isn't known in advance

The FactoryBean concept and interface is used in a number of places within the Spring Framework; at the time
of writing there are over 50 implementations of the FactoryBean interface that ship with Spring itself.

Finally, there is sometimes a need to ask a container for an actual FactoryBean instance itself, not the bean it
produces. This may be achieved by prepending the bean id with '&' (sans quotes) when calling the getBean
method of the BeanFactory (including ApplicationContext). So for a given FactoryBean with an id of
myBean, invoking getBean("myBean") on the container will return the product of the FactoryBean, but
invoking getBean("&myBean") will return the FactoryBean instance itself.


3.8. The ApplicationContext
While the beans package provides basic functionality for managing and manipulating beans, including in a
programmatic way, the context package adds the ApplicationContext interface, which enhances
BeanFactory functionality in a more framework-oriented style. Many users will use ApplicationContext in a
completely declarative fashion, not even having to create it manually, but instead relying on support classes
such as ContextLoader to automatically instantiate an ApplicationContext as part of the normal startup
process of a J2EE web-app. (Of course, it is still possible to create an ApplicationContext programmatically.)

The   basis   for   the   context    package is the ApplicationContext interface, located in the
org.springframework.context package. Deriving from the BeanFactory interface, it provides all the
functionality of BeanFactory. To allow working in a more framework-oriented fashion, using layering and
hierarchical contexts, the context package also provides the following functionality:


• MessageSource, providing access to messages in i18n-style.

• Access to resources, such as URLs and files.

• Event propagation to beans implementing the ApplicationListener interface.

• Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, for example
  the web layer of an application.


3.8.1. BeanFactory or ApplicationContext?

Short version: use an ApplicationContext unless you have a really good reason for not doing so. For those of
you that are looking for slightly more depth as to the 'but why' of the above recommendation, keep reading.

As the ApplicationContext includes all functionality of the BeanFactory, it is generally recommended that it
be used in preference to the BeanFactory, except for a few limited situations such as in an Applet, where
memory consumption might be critical and a few extra kilobytes might make a difference. However, for most
'typical' enterprise applications and systems, the ApplicationContext is what you will want to use. Versions of
Spring 2.0 and above make heavy use of the BeanPostProcessor extension point (to effect proxying and
suchlike), and if you are using just a plain BeanFactory then a fair amount of support such as transactions and
AOP will not take effect (at least not without some extra steps on your part), which could be confusing because
nothing will actually be wrong with the configuration.

Find below a feature matrix that lists what features are provided by the BeanFactory and ApplicationContext
interfaces (and attendant implementations). (The following sections describe functionality that


                                          Spring Framework (2.5.6)                                           84
The IoC container

ApplicationContext    adds to the basic BeanFactory capabilities in a lot more depth than the said feature
matrix.)


Table 3.5. Feature Matrix

               Feature                          BeanFactory                      ApplicationContext


Bean instantiation/wiring                            Yes                                  Yes


Automatic BeanPostProcessor                          No                                   Yes
registration


Automatic                                            No                                   Yes
BeanFactoryPostProcessor
registration


Convenient MessageSource access                      No                                   Yes
(for i18n)


ApplicationEvent    publication                      No                                   Yes



3.8.2. Internationalization using MessageSources

The ApplicationContext interface extends an interface called MessageSource, and therefore provides
messaging (i18n or internationalization) functionality. Together with the HierarchicalMessageSource, capable
of resolving hierarchical messages, these are the basic interfaces Spring provides to do message resolution.
Let's quickly review the methods defined there:


• String getMessage(String code, Object[] args, String default, Locale loc): the basic method
  used to retrieve a message from the MessageSource. When no message is found for the specified locale, the
  default message is used. Any arguments passed in are used as replacement values, using the MessageFormat
  functionality provided by the standard library.

• String getMessage(String code, Object[] args, Locale loc): essentially the same as the previous
  method, but with one difference: no default message can be specified; if the message cannot be found, a
  NoSuchMessageException is thrown.

• String getMessage(MessageSourceResolvable resolvable, Locale locale): all properties used in the
  methods above are also wrapped in a class named MessageSourceResolvable, which you can use via this
  method.

When an ApplicationContext gets loaded, it automatically searches for a MessageSource bean defined in the
context. The bean has to have the name 'messageSource'. If such a bean is found, all calls to the methods
described above will be delegated to the message source that was found. If no message source was found, the
ApplicationContext attempts to see if it has a parent containing a bean with the same name. If so, it uses that
bean as the MessageSource. If it can't find any source for messages, an empty DelegatingMessageSource will
be instantiated in order to be able to accept calls to the methods defined above.

Spring currently provides two MessageSource implementations. These are the ResourceBundleMessageSource


                                          Spring Framework (2.5.6)                                          85
The IoC container

and the StaticMessageSource. Both implement HierarchicalMessageSource in order to do nested messaging.
The StaticMessageSource is hardly ever used but provides programmatic ways to add messages to the source.
The ResourceBundleMessageSource is more interesting and is the one we will provide an example for:

 <beans>
   <bean id="messageSource"
          class="org.springframework.context.support.ResourceBundleMessageSource">
     <property name="basenames">
       <list>
          <value>format</value>
          <value>exceptions</value>
          <value>windows</value>
       </list>
     </property>
   </bean>
 </beans>



This assumes you have three resource bundles defined on your classpath called format, exceptions and
windows. Using the JDK standard way of resolving messages through ResourceBundles, any request to resolve
a message will be handled. For the purposes of the example, lets assume the contents of two of the above
resource bundle files are...

 # in 'format.properties'
 message=Alligators rock!



 # in 'exceptions.properties'
 argument.required=The '{0}' argument is required.



Some (admittedly trivial) driver code to exercise the MessageSource functionality can be found below.
Remember that all ApplicationContext implementations are also MessageSource implementations and so can
be cast to the MessageSource interface.

 public static void main(String[] args) {
     MessageSource resources = new ClassPathXmlApplicationContext("beans.xml");
     String message = resources.getMessage("message", null, "Default", null);
     System.out.println(message);
 }



The resulting output from the above program will be...

 Alligators rock!



So to summarize, the MessageSource is defined in a file called 'beans.xml' (this file exists at the root of your
classpath). The 'messageSource' bean definition refers to a number of resource bundles via its basenames
property; the three files that are passed in the list to the basenames property exist as files at the root of your
classpath (and are called format.properties, exceptions.properties, and windows.properties
respectively).

Lets look at another example, and this time we will look at passing arguments to the message lookup; these
arguments will be converted into Strings and inserted into placeholders in the lookup message. This is perhaps
best explained with an example:

 <beans>

      <!-- this MessageSource is being used in a web application -->
      <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource">
          <property name="basename" value="test-messages"/>
      </bean>

      <!-- let's inject the above MessageSource into this POJO -->
      <bean id="example" class="com.foo.Example">


                                           Spring Framework (2.5.6)                                            86
The IoC container

            <property name="messages" ref="messageSource"/>
        </bean>

 </beans>



 public class Example {

        private MessageSource messages;

        public void setMessages(MessageSource messages) {
            this.messages = messages;
        }

        public void execute() {
            String message = this.messages.getMessage("argument.required",
                new Object [] {"userDao"}, "Required", null);
            System.out.println(message);
        }

 }



The resulting output from the invocation of the execute() method will be...

 The 'userDao' argument is required.



With regard to internationalization (i18n), Spring's various MessageResource implementations follow the same
locale resolution and fallback rules as the standard JDK ResourceBundle. In short, and continuing with the
example 'messageSource' defined previously, if you want to resolve messages against the British (en-GB)
locale, you would create files called format_en_GB.properties, exceptions_en_GB.properties, and
windows_en_GB.properties respectively.

Locale resolution is typically going to be managed by the surrounding environment of the application. For the
purpose of this example though, we'll just manually specify the locale that we want to resolve our (British)
messages against.

 # in 'exceptions_en_GB.properties'
 argument.required=Ebagum lad, the '{0}' argument is required, I say, required.



 public static void main(final String[] args) {
     MessageSource resources = new ClassPathXmlApplicationContext("beans.xml");
     String message = resources.getMessage("argument.required",
         new Object [] {"userDao"}, "Required", Locale.UK);
     System.out.println(message);
 }



The resulting output from the running of the above program will be...

 Ebagum lad, the 'userDao' argument is required, I say, required.



The MessageSourceAware interface can also be used to acquire a reference to any MessageSource that has been
defined. Any bean that is defined in an ApplicationContext that implements the MessageSourceAware
interface will be injected with the application context's MessageSource when it (the bean) is being created and
configured.

Note:     As    an    alternative   to    ResourceBundleMessageSource,     Spring    also   provides    a
ReloadableResourceBundleMessageSource class. This variant supports the same bundle file format but is
more flexible than the standard JDK based ResourceBundleMessageSource implementation. In particular, it
allows for reading files from any Spring resource location (not just from the classpath) and supports hot
reloading of bundle property files (while efficiently caching them in between). Check out the


                                          Spring Framework (2.5.6)                                          87
The IoC container

ReloadableResourceBundleMessageSource         javadoc for details.


3.8.3. Events

Event handling in the ApplicationContext is provided through the ApplicationEvent class and
ApplicationListener interface. If a bean which implements the ApplicationListener interface is deployed
into the context, every time an ApplicationEvent gets published to the ApplicationContext, that bean will be
notified. Essentially, this is the standard Observer design pattern. Spring provides the following standard
events:


Table 3.6. Built-in Events

Event                             Explanation

ContextRefreshedEvent             Published when the ApplicationContext is initialized or refreshed, e.g.
                                  using the refresh() method on the ConfigurableApplicationContext
                                  interface. "Initialized" here means that all beans are loaded, post-processor
                                  beans are detected and activated, singletons are pre-instantiated, and the
                                  ApplicationContext object is ready for use. A refresh may be triggered
                                  multiple times, as long as the context hasn't been closed - provided that the
                                  chosen ApplicationContext actually supports such "hot" refreshes (which
                                  e.g. XmlWebApplicationContext does but GenericApplicationContext
                                  doesn't).

ContextStartedEvent               Published when the ApplicationContext is started, using the start()
                                  method on the ConfigurableApplicationContext interface. "Started" here
                                  means that all Lifecycle beans will receive an explicit start signal. This will
                                  typically be used for restarting after an explicit stop, but may also be used for
                                  starting components that haven't been configured for autostart (e.g. haven't
                                  started on initialization already).

ContextStoppedEvent               Published when the ApplicationContext is stopped, using the stop()
                                  method on the ConfigurableApplicationContext interface. "Stopped" here
                                  means that all Lifecycle beans will receive an explicit stop signal. A stopped
                                  context may be restarted through a start() call.

ContextClosedEvent                Published when the ApplicationContext is closed, using the close()
                                  method on the ConfigurableApplicationContext interface. "Closed" here
                                  means that all singleton beans are destroyed. A closed context has reached its
                                  end of life; it cannot be refreshed or restarted.

RequestHandledEvent               A web-specific event telling all beans that an HTTP request has been serviced
                                  (this will be published after the request has been finished). Note that this
                                  event is only applicable for web applications using Spring's
                                  DispatcherServlet.



Implementing custom events can be done as well. Simply call the publishEvent() method on the
ApplicationContext, specifying a parameter which is an instance of your custom event class implementing
ApplicationEvent. Event listeners receive events synchronously. This means the publishEvent() method
blocks until all listeners have finished processing the event (it is possible to supply an alternate event
publishing strategy via a ApplicationEventMulticaster implementation). Furthermore, when a listener
receives an event it operates inside the transaction context of the publisher, if a transaction context is available.



                                            Spring Framework (2.5.6)                                              88
The IoC container


Let's look at an example. First, the ApplicationContext:

 <bean id="emailer" class="example.EmailBean">
   <property name="blackList">
     <list>
       <value>black@list.org</value>
       <value>white@list.org</value>
       <value>john@doe.org</value>
     </list>
   </property>
 </bean>

 <bean id="blackListListener" class="example.BlackListNotifier">
   <property name="notificationAddress" value="spam@list.org"/>
 </bean>



Now, let's look at the actual classes:

 public class EmailBean implements ApplicationContextAware {

      private List blackList;
      private ApplicationContext ctx;

      public void setBlackList(List blackList) {
          this.blackList = blackList;
      }

      public void setApplicationContext(ApplicationContext ctx) {
          this.ctx = ctx;
      }

      public void sendEmail(String address, String text) {
          if (blackList.contains(address)) {
              BlackListEvent event = new BlackListEvent(address, text);
              ctx.publishEvent(event);
              return;
          }
          // send email...
      }
 }



 public class BlackListNotifier implements ApplicationListener {

      private String notificationAddress;

      public void setNotificationAddress(String notificationAddress) {
          this.notificationAddress = notificationAddress;
      }

      public void onApplicationEvent(ApplicationEvent event) {
          if (event instanceof BlackListEvent) {
              // notify appropriate person...
          }
      }
 }



Of course, this particular example could probably be implemented in better ways (perhaps by using AOP
features), but it should be sufficient to illustrate the basic event mechanism.


3.8.4. Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generally familiarize themselves
with Spring's Resource abstraction, as described in the chapter entitled Chapter 4, Resources.

An application context is a ResourceLoader, able to be used to load Resources. A Resource is essentially a
java.net.URL on steroids (in fact, it just wraps and uses a URL where appropriate), which can be used to



                                         Spring Framework (2.5.6)                                      89
The IoC container

obtain low-level resources from almost any location in a transparent fashion, including from the classpath, a
filesystem location, anywhere describable with a standard URL, and some other variations. If the resource
location string is a simple path without any special prefixes, where those resources come from is specific and
appropriate to the actual application context type.

A bean deployed into the application context may implement the special callback interface,
ResourceLoaderAware, to be automatically called back at initialization time with the application context itself
passed in as the ResourceLoader. A bean may also expose properties of type Resource, to be used to access
static resources, and expect that they will be injected into it like any other properties. The person deploying the
bean may specify those Resource properties as simple String paths, and rely on a special JavaBean
PropertyEditor that is automatically registered by the context, to convert those text strings to actual Resource
objects.

The location path or paths supplied to an ApplicationContext constructor are actually resource strings, and in
simple     form    are     treated    appropriately   to   the    specific   context     implementation      (
ClassPathXmlApplicationContext treats a simple location path as a classpath location), but may also be used
with special prefixes to force loading of definitions from the classpath or a URL, regardless of the actual
context type.


3.8.5. Convenient ApplicationContext instantiation for web applications

As opposed to the BeanFactory, which will often be created programmatically, ApplicationContext instances
can be created declaratively using for example a ContextLoader. Of course you can also create
ApplicationContext instances programmatically using one of the ApplicationContext implementations.
First, let's examine the ContextLoader mechanism and its implementations.

The   ContextLoader       mechanism comes in two flavors: the ContextLoaderListener and the
ContextLoaderServlet.      They both have the same functionality but differ in that the listener version cannot be
reliably used in Servlet 2.3 containers. Since the Servlet 2.4 specification, servlet context listeners are required
to execute immediately after the servlet context for the web application has been created and is available to
service the first request (and also when the servlet context is about to be shut down): as such a servlet context
listener is an ideal place to initialize the Spring ApplicationContext. It is up to you as to which one you use,
but all things being equal you should probably prefer ContextLoaderListener; for more information on
compatibility, have a look at the Javadoc for the ContextLoaderServlet.

You can register an ApplicationContext using the ContextLoaderListener as follows:

 <context-param>
   <param-name>contextConfigLocation</param-name>
   <param-value>/WEB-INF/daoContext.xml /WEB-INF/applicationContext.xml</param-value>
 </context-param>

 <listener>
   <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
 </listener>

 <!-- or use the ContextLoaderServlet instead of the above listener
 <servlet>
   <servlet-name>context</servlet-name>
   <servlet-class>org.springframework.web.context.ContextLoaderServlet</servlet-class>
   <load-on-startup>1</load-on-startup>
 </servlet>
 -->



The listener inspects the 'contextConfigLocation' parameter. If the parameter does not exist, the listener will
use /WEB-INF/applicationContext.xml as a default. When it does exist, it will separate the String using
predefined delimiters (comma, semicolon and whitespace) and use the values as locations where application
contexts will be searched for. Ant-style path patterns are supported as well: e.g. /WEB-INF/*Context.xml (for


                                            Spring Framework (2.5.6)                                             90
The IoC container

all   files   whose   name    ends with "Context.xml", residing in the "WEB-INF"                    directory)   or
/WEB-INF/**/*Context.xml      (for all such files in any subdirectory of "WEB-INF").

The ContextLoaderServlet can be used instead of the ContextLoaderListener. The servlet will use the
'contextConfigLocation' parameter just as the listener does.



3.9. Glue code and the evil singleton
The majority of the code inside an application is best written in a DI style, where that code is served out of a
Spring IoC container, has its own dependencies supplied by the container when it is created, and is completely
unaware of the container. However, for the small glue layers of code that are sometimes needed to tie other
code together, there is sometimes a need for singleton (or quasi-singleton) style access to a Spring IoC
container. For example, third party code may try to construct new objects directly (Class.forName() style),
without the ability to force it to get these objects out of a Spring IoC container. If the object constructed by the
third party code is just a small stub or proxy, which then uses a singleton style access to a Spring IoC container
to get a real object to delegate to, then inversion of control has still been achieved for the majority of the code
(the object coming out of the container); thus most code is still unaware of the container or how it is accessed,
and remains decoupled from other code, with all ensuing benefits. EJBs may also use this stub/proxy approach
to delegate to a plain Java implementation object, coming out of a Spring IoC container. While the Spring IoC
container itself ideally does not have to be a singleton, it may be unrealistic in terms of memory usage or
initialization times (when using beans in the Spring IoC container such as a Hibernate SessionFactory) for
each bean to use its own, non-singleton Spring IoC container.

As another example, in complex J2EE applications with multiple layers (various JAR files, EJBs, and WAR
files packaged as an EAR), with each layer having its own Spring IoC container definition (effectively forming
a hierarchy), the preferred approach when there is only one web-app (WAR) in the top hierarchy is to simply
create one composite Spring IoC container from the multiple XML definition files from each layer. All of the
various Spring IoC container implementations may be constructed from multiple definition files in this fashion.
However, if there are multiple sibling web-applications at the root of the hierarchy, it is problematic to create a
Spring IoC container for each web-application which consists of mostly identical bean definitions from lower
layers, as there may be issues due to increased memory usage, issues with creating multiple copies of beans
which take a long time to initialize (for example a Hibernate SessionFactory), and possible issues due to
side-effects. As an alternative, classes such as ContextSingletonBeanFactoryLocator or
SingletonBeanFactoryLocator may be used to demand-load multiple hierarchical (that is one container is the
parent of another) Spring IoC container instances in a singleton fashion, which may then be used as the parents
of the web-application Spring IoC container instances. The result is that bean definitions for lower layers are
loaded only as needed, and loaded only once.

You can see a detailed example of the usage of these classes by viewing the Javadoc for the
SingletonBeanFactoryLocator and ContextSingletonBeanFactoryLocator classes. As mentioned in the chapter
on EJBs, the Spring convenience base classes for EJBs normally use a non-singleton BeanFactoryLocator
implementation, which is easily replaced by the use of SingletonBeanFactoryLocator and
ContextSingletonBeanFactoryLocator.



3.10. Deploying a Spring ApplicationContext as a J2EE RAR
file
Since Spring 2.5, it is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating the context
and all of its required bean classes and library JARs in a J2EE RAR deployment unit. This is the equivalent of
bootstrapping a standalone ApplicationContext, just hosted in J2EE environment, being able to access the J2EE


                                            Spring Framework (2.5.6)                                             91
The IoC container


server's facilities. RAR deployment is intended as a more 'natural' alternative to the not uncommon scenario of
deploying a headless WAR file - i.e. a WAR file without any HTTP entry points, just used for bootstrapping a
Spring ApplicationContext in a J2EE environment.

RAR deployment is ideal for application contexts that do not need any HTTP entry points but rather just consist
of message endpoints and scheduled jobs etc. Beans in such a context may use application server resources
such as the JTA transaction manager and JNDI-bound JDBC DataSources and JMS ConnectionFactory
instances, and may also register with the platform's JMX server - all through Spring's standard transaction
management and JNDI and JMX support facilities. Application components may also interact with the
application's server JCA WorkManager through Spring's TaskExecutor abstraction.

Check out the JavaDoc of the SpringContextResourceAdapter class for the configuration details involved in
RAR deployment.

For simple deployment needs, all you need to do is the following: Package all application classes into a RAR
file (which is just a standard JAR file with a different file extension), add all required library jars into the root
of the RAR archive, add a "META-INF/ra.xml" deployment descriptor (as shown in
SpringContextResourceAdapter's JavaDoc) as well as the corresponding Spring XML bean definition file(s)
(typically "META-INF/applicationContext.xml"), and drop the resulting RAR file into your application server's
deployment directory!

NOTE: Such RAR deployment units are usually self-contained; they do not expose components to the 'outside'
world, not even to other modules of the same application. Interaction with a RAR-based ApplicationContext
usually happens through JMS destinations that it shares with other modules. A RAR-based ApplicationContext
may also - for example - schedule some jobs, reacting to new files in the file system (or the like). If it actually
needs to allow for synchronous access from the outside, it could for example export RMI endpoints, which of
course may be used by other application modules on the same machine as well.


3.11. Annotation-based configuration
As      mentioned        in      the     section      entitled    Section     3.7.1.2,     “Example:        The
RequiredAnnotationBeanPostProcessor”, using a BeanPostProcessor in conjunction with annotations is a
common means of extending the Spring IoC container. For example, Spring 2.0 introduced the possibility of
enforcing required properties with the @Required annotation. As of Spring 2.5, it is now possible to follow that
same general approach to drive Spring's dependency injection. Essentially, the @Autowired annotation provides
the same capabilities as described in Section 3.3.5, “Autowiring collaborators” but with more fine-grained
control and wider applicability. Spring 2.5 also adds support for JSR-250 annotations such as @Resource,
@PostConstruct, and @PreDestroy. Of course, these options are only available if you are using at least Java 5
(Tiger) and thus have access to source level annotations. Use of these annotations also requires that certain
BeanPostProcessors be registered within the Spring container. As always, these can be registered as individual
bean definitions, but they can also be implicitly registered by including the following tag in an XML-based
Spring configuration (notice the inclusion of the 'context' namespace):

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:context="http://www.springframework.org/schema/context"
        xsi:schemaLocation="http://www.springframework.org/schema/beans
            http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
            http://www.springframework.org/schema/context
            http://www.springframework.org/schema/context/spring-context-2.5.xsd">

       <context:annotation-config/>

 </beans>




                                            Spring Framework (2.5.6)                                              92
The IoC container


(The     implicitly   registeredpost-processors  include AutowiredAnnotationBeanPostProcessor,
CommonAnnotationBeanPostProcessor, PersistenceAnnotationBeanPostProcessor, as well as the
aforementioned RequiredAnnotationBeanPostProcessor.)

            Note
            Note that <context:annotation-config/> only looks for annotations on beans in the same
            application context it is defined in. This means that, if you put <context:annotation-config/> in
            a WebApplicationContext for a DispatcherServlet, it only checks for @Autowired beans in your
            controllers, and not your services. See Section 13.2, “The DispatcherServlet” for more
            information.



3.11.1. @Required

The @Required annotation applies to bean property setter methods, as in the following example:

 public class SimpleMovieLister {

       private MovieFinder movieFinder;

       @Required
       public void setMovieFinder(MovieFinder movieFinder) {
           this.movieFinder = movieFinder;
       }

       // ...
 }



This annotation simply indicates that the affected bean property must be populated at configuration time: either
through an explicit property value in a bean definition or through autowiring. The container will throw an
exception if the affected bean property has not been populated; this allows for eager and explicit failure,
avoiding NullPointerExceptions or the like later on. Note that it is still recommended to put assertions into
the bean class itself (for example into an init method) in order to enforce those required references and values
even when using the class outside of a container.


3.11.2. @Autowired

As expected, the @Autowired annotation may be applied to "traditional" setter methods:

 public class SimpleMovieLister {

       private MovieFinder movieFinder;

       @Autowired
       public void setMovieFinder(MovieFinder movieFinder) {
           this.movieFinder = movieFinder;
       }

       // ...
 }



The annotation may also be applied to methods with arbitrary names and/or multiple arguments:

 public class MovieRecommender {

       private MovieCatalog movieCatalog;

       private CustomerPreferenceDao customerPreferenceDao;




                                          Spring Framework (2.5.6)                                           93
The IoC container


      @Autowired
      public void prepare(MovieCatalog movieCatalog, CustomerPreferenceDao customerPreferenceDao) {
          this.movieCatalog = movieCatalog;
          this.customerPreferenceDao = customerPreferenceDao;
      }

      // ...
 }



The @Autowired annotation may even be applied on constructors and fields:

 public class MovieRecommender {

      @Autowired
      private MovieCatalog movieCatalog;

      private CustomerPreferenceDao customerPreferenceDao;

      @Autowired
      public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) {
          this.customerPreferenceDao = customerPreferenceDao;
      }

      // ...
 }



It is also possible to provide all beans of a particular type from the ApplicationContext by adding the
annotation to a field or method that expects an array of that type:

 public class MovieRecommender {

      @Autowired
      private MovieCatalog[] movieCatalogs;

      // ...
 }



The same applies for typed collections:

 public class MovieRecommender {

      private Set<MovieCatalog> movieCatalogs;

      @Autowired
      public void setMovieCatalogs(Set<MovieCatalog> movieCatalogs) {
          this.movieCatalogs = movieCatalogs;
      }

      // ...
 }



Even typed Maps may be autowired as long as the expected key type is String. The Map values will contain all
beans of the expected type, and the keys will contain the corresponding bean names:

 public class MovieRecommender {

      private Map<String, MovieCatalog> movieCatalogs;

      @Autowired
      public void setMovieCatalogs(Map<String, MovieCatalog> movieCatalogs) {
          this.movieCatalogs = movieCatalogs;
      }

      // ...
 }




                                          Spring Framework (2.5.6)                                       94
The IoC container


By default, the autowiring will fail whenever zero candidate beans are available; the default behavior is to treat
annotated methods, constructors, and fields as indicating required dependencies. This behavior can be changed
as demonstrated below.

 public class SimpleMovieLister {

      private MovieFinder movieFinder;

      @Autowired(required=false)
      public void setMovieFinder(MovieFinder movieFinder) {
          this.movieFinder = movieFinder;
      }

      // ...
 }



             Note
             Only one annotated constructor per-class may be marked as required, but multiple non-required
             constructors can be annotated. In that case, each will be considered among the candidates and
             Spring will use the greediest constructor whose dependencies can be satisfied.

             Prefer the use of @Autowired's required attribute over the @Required annotation. The required
             attribute indicates that the property is not required for autowiring purposes, simply skipping it if it
             cannot be autowired. @Required, on the other hand, is stronger in that it enforces the property to
             have been set in any of the container's supported ways; if no value has been injected, a
             corresponding exception will be raised.


@Autowired    may also be used for well-known "resolvable dependencies": the BeanFactory interface, the
ApplicationContext interface, the ResourceLoader interface, the ApplicationEventPublisher interface and
the MessageSource interface. These interfaces (and their extended interfaces such as
ConfigurableApplicationContext or ResourcePatternResolver) will be automatically resolved, with no
special setup necessary.

 public class MovieRecommender {

      @Autowired
      private ApplicationContext context;

      public MovieRecommender() {
      }

      // ...
 }




3.11.3. Fine-tuning annotation-based autowiring with qualifiers

Since autowiring by type may lead to multiple candidates, it is often necessary to have more control over the
selection process. One way to accomplish this is with Spring's @Qualifier annotation. This allows for
associating qualifier values with specific arguments, narrowing the set of type matches so that a specific bean is
chosen for each argument. In the simplest case, this can be a plain descriptive value:

 public class MovieRecommender {

      @Autowired
      @Qualifier("main")
      private MovieCatalog movieCatalog;

      // ...
 }


                                            Spring Framework (2.5.6)                                             95
The IoC container


The @Qualifier annotation can also be specified on individual constructor arguments or method parameters:

 public class MovieRecommender {

      private MovieCatalog movieCatalog;

      private CustomerPreferenceDao customerPreferenceDao;

      @Autowired
      public void prepare(@Qualifier("main") MovieCatalog movieCatalog, CustomerPreferenceDao customerPreferenceDa
          this.movieCatalog = movieCatalog;
          this.customerPreferenceDao = customerPreferenceDao;
      }

      // ...
 }



The corresponding bean definitions would look like as follows. The bean with qualifier value "main" would be
wired with the constructor argument that has been qualified with the same value.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xmlns:context="http://www.springframework.org/schema/context"
     xsi:schemaLocation="
         http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5
         http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-conte

      <context:annotation-config/>

      <bean class="example.SimpleMovieCatalog">
          <qualifier value="main"/>
          <!-- inject any dependencies required by this bean -->
      </bean>

      <bean class="example.SimpleMovieCatalog">
          <qualifier value="action"/>
          <!-- inject any dependencies required by this bean -->
      </bean>

      <bean id="movieRecommender" class="example.MovieRecommender"/>

 </beans>



For a fallback match, the bean name is considered as a default qualifier value. This means that the bean may be
defined with an id "main" instead of the nested qualifier element, leading to the same matching result.
However, note that while this can be used to refer to specific beans by name, @Autowired is fundamentally
about type-driven injection with optional semantic qualifiers. This means that qualifier values, even when using
the bean name fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values would be "main" or "EMEA" or
"persistent", expressing characteristics of a specific component - independent from the bean id (which may be
auto-generated in case of an anonymous bean definition like the one above).

Qualifiers also apply to typed collections (as discussed above): e.g. to Set<MovieCatalog>. In such a case, all
matching beans according to the declared qualifiers are going to be injected as a collection. This implies that
qualifiers do not have to be unique; they rather simply constitute filtering criteria. For example, there could be
multiple MovieCatalog beans defined with the same qualifier value "action"; all of which would be injected
into a Set<MovieCatalog> annotated with @Qualifier("action").

            Tip
            If you intend to express annotation-driven injection by name, do not primarily use @Autowired -
            even if is technically capable of referring to a bean name through @Qualifier values. Instead,
            prefer the JSR-250 @Resource annotation which is semantically defined to identify a specific target

                                           Spring Framework (2.5.6)                                            96
The IoC container


           component by its unique name, with the declared type being irrelevant for the matching process.

           As a specific consequence of this semantic difference, beans which are themselves defined as a
           collection or map type cannot be injected via @Autowired since type matching is not properly
           applicable to them. Use @Resource for such beans, referring to the specific collection/map bean by
           unique name.

           Note: In contrast to @Autowired which is applicable to fields, constructors and multi-argument
           methods (allowing for narrowing through qualifier annotations at the parameter level), @Resource
           is only supported for fields and bean property setter methods with a single argument. As a
           consequence, stick with qualifiers if your injection target is a constructor or a multi-argument
           method.


You may create your own custom qualifier annotations as well. Simply define an annotation and provide the
@Qualifier annotation within your definition:

 @Target({ElementType.FIELD, ElementType.PARAMETER})
 @Retention(RetentionPolicy.RUNTIME)
 @Qualifier
 public @interface Genre {

      String value();
 }



Then you can provide the custom qualifier on autowired fields and parameters:

 public class MovieRecommender {

      @Autowired
      @Genre("Action")
      private MovieCatalog actionCatalog;

      private MovieCatalog comedyCatalog;

      @Autowired
      public void setComedyCatalog(@Genre("Comedy") MovieCatalog comedyCatalog) {
          this.comedyCatalog = comedyCatalog;
      }

      // ...
 }



The next step is to provide the information on the candidate bean definitions. You can add <qualifier/> tags
as sub-elements of the <bean/> tag and then specify the 'type' and 'value' to match your custom qualifier
annotations. The type will be matched against the fully-qualified class name of the annotation, or as a
convenience when there is no risk of conflicting names, you may use the 'short' class name. Both are
demonstrated in the following example.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xmlns:context="http://www.springframework.org/schema/context"
     xsi:schemaLocation="
         http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5
         http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-conte

      <context:annotation-config/>

      <bean class="example.SimpleMovieCatalog">
          <qualifier type="Genre" value="Action"/>
          <!-- inject any dependencies required by this bean -->
      </bean>

      <bean class="example.SimpleMovieCatalog">


                                         Spring Framework (2.5.6)                                            97
The IoC container

          <qualifier type="example.Genre" value="Comedy"/>
          <!-- inject any dependencies required by this bean -->
      </bean>

      <bean id="movieRecommender" class="example.MovieRecommender"/>

 </beans>



In the next section, entitled Section 3.12, “Classpath scanning for managed components”, you will see an
annotation-based alternative to providing the qualifier metadata in XML. Specifically, see: Section 3.12.6,
“Providing qualifier metadata with annotations”.

In some cases, it may be sufficient to use an annotation without a value. This may be useful when the
annotation serves a more generic purpose and could be applied across several different types of dependencies.
For example, you may provide an offline catalog that would be searched when no Internet connection is
available. First define the simple annotation:

 @Target({ElementType.FIELD, ElementType.PARAMETER})
 @Retention(RetentionPolicy.RUNTIME)
 @Qualifier
 public @interface Offline {

 }



Then add the annotation to the field or property to be autowired:

 public class MovieRecommender {

      @Autowired
      @Offline
      private MovieCatalog offlineCatalog;

      // ...
 }



Now the bean definition only needs a qualifier 'type':

 <bean class="example.SimpleMovieCatalog">
     <qualifier type="Offline"/>
     <!-- inject any dependencies required by this bean -->
 </bean>



It is also possible to define custom qualifier annotations that accept named attributes in addition to or instead of
the simple 'value' attribute. If multiple attribute values are then specified on a field or parameter to be
autowired, a bean definition must match all such attribute values to be considered an autowire candidate. As an
example, consider the following annotation definition:

 @Target({ElementType.FIELD, ElementType.PARAMETER})
 @Retention(RetentionPolicy.RUNTIME)
 @Qualifier
 public @interface MovieQualifier {

      String genre();

      Format format();
 }



In this case Format is an enum:

 public enum Format {

      VHS, DVD, BLURAY
 }



                                            Spring Framework (2.5.6)                                             98
The IoC container


The fields to be autowired are annotated with the custom qualifier and include values for both attributes:
'genre' and 'format'.

 public class MovieRecommender {

     @Autowired
     @MovieQualifier(format=Format.VHS, genre="Action")
     private MovieCatalog actionVhsCatalog;

     @Autowired
     @MovieQualifier(format=Format.VHS, genre="Comedy")
     private MovieCatalog comedyVhsCatalog;

     @Autowired
     @MovieQualifier(format=Format.DVD, genre="Action")
     private MovieCatalog actionDvdCatalog;

     @Autowired
     @MovieQualifier(format=Format.BLURAY, genre="Comedy")
     private MovieCatalog comedyBluRayCatalog;

     // ...
 }



Finally, the bean definitions should contain matching qualifier values. This example also demonstrates that
bean meta attributes may be used instead of the <qualifier/> sub-elements. If available, the <qualifier/>
and its attributes would take precedence, but the autowiring mechanism will fallback on the values provided
within the <meta/> tags if no such qualifier is present (see the last 2 bean definitions below).

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xmlns:context="http://www.springframework.org/schema/context"
     xsi:schemaLocation="
         http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5
         http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-conte

     <context:annotation-config/>

     <bean class="example.SimpleMovieCatalog">
         <qualifier type="MovieQualifier">
             <attribute key="format" value="VHS"/>
             <attribute key="genre" value="Action"/>
         </qualifier>
         <!-- inject any dependencies required by this bean -->
     </bean>

     <bean class="example.SimpleMovieCatalog">
         <qualifier type="MovieQualifier">
             <attribute key="format" value="VHS"/>
             <attribute key="genre" value="Comedy"/>
         </qualifier>
         <!-- inject any dependencies required by this bean -->
     </bean>

     <bean class="example.SimpleMovieCatalog">
         <meta key="format" value="DVD"/>
         <meta key="genre" value="Action"/>
         <!-- inject any dependencies required by this bean -->
     </bean>

     <bean class="example.SimpleMovieCatalog">
         <meta key="format" value="BLURAY"/>
         <meta key="genre" value="Comedy"/>
         <!-- inject any dependencies required by this bean -->
     </bean>

 </beans>




3.11.4. CustomAutowireConfigurer

                                         Spring Framework (2.5.6)                                       99
The IoC container


The CustomAutowireConfigurer is a BeanFactoryPostProcessor that enables further customization of the
autowiring process. Specifically, it allows you to register your own custom qualifier annotation types even if
they are not themselves annotated with Spring's @Qualifier annotation.

 <bean id="customAutowireConfigurer" class="org.springframework.beans.factory.annotation.CustomAutowireConfigurer
     <property name="customQualifierTypes">
         <set>
             <value>example.CustomQualifier</value>
         </set>
     </property>
 </bean>



Note that the particular implementation of AutowireCandidateResolver that will be activated for the
application context depends upon the Java version. If running on less than Java 5, the qualifier annotations are
not supported, and therefore autowire candidates are solely determined by the 'autowire-candidate' value of
each bean definition as well as any 'default-autowire-candidates' pattern(s) available on the <beans/>
element. If running on Java 5 or greater, the presence of @Qualifier annotations or any custom annotations
registered with the CustomAutowireConfigurer will also play a role.

Regardless of the Java version, the determination of a "primary" candidate (when multiple beans qualify as
autowire candidates) is the same: if exactly one bean definition among the candidates has a 'primary' attribute
set to 'true', it will be selected.


3.11.5. @Resource

Spring also supports injection using the JSR-250 @Resource annotation on fields or bean property setter
methods. This is a common pattern found in Java EE 5 and Java 6 (e.g. in JSF 1.2 managed beans or JAX-WS
2.0 endpoints), which Spring supports for Spring-managed objects as well.

@Resource    takes a 'name' attribute, and by default Spring will interpret that value as the bean name to be
injected. In other words, it follows by-name semantics as demonstrated in this example:

 public class SimpleMovieLister {

      private MovieFinder movieFinder;

      @Resource(name="myMovieFinder")
      public void setMovieFinder(MovieFinder movieFinder) {
          this.movieFinder = movieFinder;
      }
 }



If no name is specified explicitly, then the default name will be derived from the name of the field or setter
method: In case of a field, it will simply be equivalent to the field name; in case of a setter method, it will be
equivalent to the bean property name. So the following example is going to have the bean with name
"movieFinder" injected into its setter method:

 public class SimpleMovieLister {

      private MovieFinder movieFinder;

      @Resource
      public void setMovieFinder(MovieFinder movieFinder) {
          this.movieFinder = movieFinder;
      }
 }




                                           Spring Framework (2.5.6)                                           100
The IoC container


            Note
            The name provided with the annotation will be resolved as a bean name by the BeanFactory of
            which the CommonAnnotationBeanPostProcessor is aware. Note that the names may be resolved
            via JNDI if Spring's SimpleJndiBeanFactory is configured explicitly. However, it is recommended
            to rely on the default behavior and simply use Spring's JNDI lookup capabilities to preserve the
            level of indirection.


Similar to @Autowired, @Resource may fall back to standard bean type matches (i.e. find a primary type match
instead of a specific named bean) as well as resolve well-known "resolvable dependencies": the BeanFactory
interface, the ApplicationContext interface, the ResourceLoader interface, the ApplicationEventPublisher
interface and the MessageSource interface. Note that this only applies to @Resource usage with no explicit
name specified!

So the following example will have its customerPreferenceDao field looking for a bean with name
"customerPreferenceDao" first, then falling back to a primary type match for the type CustomerPreferenceDao.
The "context" field will simply be injected based on the known resolvable dependency type
ApplicationContext.

 public class MovieRecommender {

      @Resource
      private CustomerPreferenceDao customerPreferenceDao;

      @Resource
      private ApplicationContext context;

      public MovieRecommender() {
      }

      // ...
 }




3.11.6. @PostConstruct and @PreDestroy

The CommonAnnotationBeanPostProcessor not only recognizes the @Resource annotation but also the JSR-250
lifecycle annotations. Introduced in Spring 2.5, the support for these annotations offers yet another alternative to
those described in the sections on initialization callbacks and destruction callbacks. Provided that the
CommonAnnotationBeanPostProcessor is registered within the Spring ApplicationContext, a method carrying
one of these annotations will be invoked at the same point in the lifecycle as the corresponding Spring lifecycle
interface's method or explicitly declared callback method. In the example below, the cache will be
pre-populated upon initialization and cleared upon destruction.

 public class CachingMovieLister {

      @PostConstruct
      public void populateMovieCache() {
          // populates the movie cache upon initialization...
      }

      @PreDestroy
      public void clearMovieCache() {
          // clears the movie cache upon destruction...
      }
 }



            Note


                                            Spring Framework (2.5.6)                                            101
The IoC container



            For details regarding the effects of combining various lifecycle mechanisms, see Section 3.5.1.4,
            “Combining lifecycle mechanisms”.



3.12. Classpath scanning for managed components
Thus far most of the examples within this chapter have used XML for specifying the configuration metadata
that produces each BeanDefinition within the Spring container. The previous section (Section 3.11,
“Annotation-based configuration”) demonstrated the possibility of providing a considerable amount of the
configuration metadata using source-level annotations. Even in those examples however, the "base" bean
definitions were explicitly defined in the XML file while the annotations were driving the dependency injection
only. The current section introduces an option for implicitly detecting the candidate components by scanning
the classpath and matching against filters.


3.12.1. @Component and further stereotype annotations

Beginning with Spring 2.0, the @Repository annotation was introduced as a marker for any class that fulfills
the role or stereotype of a repository (a.k.a. Data Access Object or DAO). Among the possibilities for
leveraging such a marker is the automatic translation of exceptions as described in Section 12.6.4, “Exception
Translation”.

Spring 2.5 introduces further stereotype annotations: @Component, @Service and @Controller. @Component
serves as a generic stereotype for any Spring-managed component; whereas, @Repository, @Service, and
@Controller serve as specializations of @Component for more specific use cases (e.g., in the persistence,
service, and presentation layers, respectively). What this means is that you can annotate your component
classes with @Component, but by annotating them with @Repository, @Service, or @Controller instead, your
classes are more properly suited for processing by tools or associating with aspects. For example, these
stereotype annotations make ideal targets for pointcuts. Of course, it is also possible that @Repository,
@Service, and @Controller may carry additional semantics in future releases of the Spring Framework. Thus,
if you are making a decision between using @Component or @Service for your service layer, @Service is clearly
the better choice. Similarly, as stated above, @Repository is already supported as a marker for automatic
exception translation in your persistence layer.


3.12.2. Auto-detecting components

Spring provides the capability of automatically detecting 'stereotyped' classes and registering corresponding
BeanDefinitions with the ApplicationContext. For example, the following two classes are eligible for such
autodetection:

 @Service
 public class SimpleMovieLister {

      private MovieFinder movieFinder;

      @Autowired
      public SimpleMovieLister(MovieFinder movieFinder) {
          this.movieFinder = movieFinder;
      }
 }



 @Repository
 public class JpaMovieFinder implements MovieFinder {
     // implementation elided for clarity
 }


                                          Spring Framework (2.5.6)                                         102
The IoC container


To autodetect these classes and register the corresponding beans requires the inclusion of the following element
in XML where 'basePackage' would be a common parent package for the two classes (or alternatively a
comma-separated list could be specified that included the parent package of each class).

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:context="http://www.springframework.org/schema/context"
        xsi:schemaLocation="http://www.springframework.org/schema/beans
            http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
            http://www.springframework.org/schema/context
            http://www.springframework.org/schema/context/spring-context-2.5.xsd">

        <context:component-scan base-package="org.example"/>

 </beans>



             Note
             Note that the scanning of classpath packages requires the presence of corresponding directory
             entries in the classpath. When building jars with Ant, make sure to not activate the files-only
             switch of the jar task!


Furthermore, the AutowiredAnnotationBeanPostProcessor and CommonAnnotationBeanPostProcessor are
both included implicitly when using the component-scan element. That means that the two components are
autodetected and wired together - all without any bean configuration metadata provided in XML.

             Note
             The registration of those post-processors can be disabled by including the annotation-config
             attribute with a value of 'false'.



3.12.3. Using filters to customize scanning

By default, classes annotated with @Component, @Repository, @Service, or @Controller (or classes annotated
with a custom annotation that itself is annotated with @Component) are the only detected candidate components.
However it is simple to modify and extend this behavior by applying custom filters. These can be added as
either include-filter or exclude-filter sub-elements of the 'component-scan' element. Each filter element requires
the 'type' and 'expression' attributes. Five filtering options exist as described below.


Table 3.7. Filter Types

Filter Type Example Expression                           Description

annotation     org.example.SomeAnnotation                An annotation to be present at the type level in target
                                                         components.

assignable     org.example.SomeClass                     A class (or interface) that the target components are
                                                         assignable to (extend/implement).

aspectj        org.example..*Service+                    An AspectJ type expression to be matched by the
                                                         target components.

regex          org.example.Default.*                   A regex expression to be matched by the target
                                                         components' class names.


                                           Spring Framework (2.5.6)                                           103
The IoC container

Filter Type Example Expression                         Description

custom         org.example.MyCustomTypeFilter          A       custom       implementation        of      the
                                                       org.springframework.core.type.TypeFilter
                                                       interface.


Find below an example of the XML configuration for ignoring all @Repository annotations and using "stub"
repositories instead.

 <beans ...>

       <context:component-scan base-package="org.example">
          <context:include-filter type="regex" expression=".*Stub.*Repository"/>
          <context:exclude-filter type="annotation" expression="org.springframework.stereotype.Repository"/>
       </context:component-scan>

 </beans>



            Note
            It is also possible to disable the default filters by providing use-default-filters="false" as an
            attribute of the <component-scan/> element. This will in effect disable automatic detection of
            classes annotated with @Component, @Repository, @Service, or @Controller.



3.12.4. Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name will be generated by the
BeanNameGenerator strategy known to that scanner. By default, any Spring 'stereotype' annotation
(@Component, @Repository, @Service, and @Controller) that contains a name value will thereby provide that
name to the corresponding bean definition. If such an annotation contains no name value or for any other
detected component (such as those discovered due to custom filters), the default bean name generator will
return the uncapitalized non-qualified class name. For example, if the following two components were detected,
the names would be 'myMovieLister' and 'movieFinderImpl':

 @Service("myMovieLister")
 public class SimpleMovieLister {
     // ...
 }



 @Repository
 public class MovieFinderImpl implements MovieFinder {
     // ...
 }



            Note
            If you don't want to rely on the default bean-naming strategy, you may provide a custom
            bean-naming strategy. First, implement the BeanNameGenerator interface, and be sure to include a
            default no-arg constructor. Then, provide the fully-qualified class name when configuring the
            scanner:


 <beans ...>

       <context:component-scan base-package="org.example"
                               name-generator="org.example.MyNameGenerator" />



                                          Spring Framework (2.5.6)                                        104
The IoC container



 </beans>



As a general rule, consider specifying the name with the annotation whenever other components may be
making explicit references to it. On the other hand, the auto-generated names are adequate whenever the
container is responsible for wiring.


3.12.5. Providing a scope for autodetected components

As with Spring-managed components in general, the default and by far most common scope is 'singleton'.
However, there are times when other scopes are needed. Therefore Spring 2.5 introduces a new @Scope
annotation as well. Simply provide the name of the scope within the annotation, such as:

 @Scope("prototype")
 @Repository
 public class MovieFinderImpl implements MovieFinder {
     // ...
 }



            Note
            If you would like to provide a custom strategy for scope resolution rather than relying on the
            annotation-based approach, implement the ScopeMetadataResolver interface, and be sure to
            include a default no-arg constructor. Then, provide the fully-qualified class name when configuring
            the scanner:


 <beans ...>

       <context:component-scan base-package="org.example"
                               scope-resolver="org.example.MyScopeResolver" />

 </beans>



When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped objects. The
reasoning is described in detail within the section entitled Section 3.4.4.5, “Scoped beans as dependencies”. For
this purpose, a scoped-proxy attribute is available on the 'component-scan' element. The three possible values
are: 'no', 'interfaces', and 'targetClass'. For example, the following configuration will result in standard JDK
dynamic proxies:

 <beans ...>

       <context:component-scan base-package="org.example"
                               scoped-proxy="interfaces" />

 </beans>




3.12.6. Providing qualifier metadata with annotations

The @Qualifier annotation was introduced in the section above entitled Section 3.11.3, “Fine-tuning
annotation-based autowiring with qualifiers”. The examples in that section demonstrated use of the @Qualifier
annotation as well as custom qualifier annotations to provide fine-grained control when resolving autowire
candidates. Since those examples were based on XML bean definitions, the qualifier metadata was provided on
the candidate bean definitions using the 'qualifier' or 'meta' sub-elements of the 'bean' element in the XML.
When relying upon classpath scanning for autodetection of components, then the qualifier metadata may be


                                           Spring Framework (2.5.6)                                          105
The IoC container

provided with type-level annotations on the candidate class. The following three examples demonstrate this
technique.

 @Component
 @Qualifier("Action")
 public class ActionMovieCatalog implements MovieCatalog {
     // ...
 }



 @Component
 @Genre("Action")
 public class ActionMovieCatalog implements MovieCatalog {
     // ...
 }



 @Component
 @Offline
 public class CachingMovieCatalog implements MovieCatalog {
     // ...
 }



            Note
            As with most of the annotation-based alternatives, keep in mind that the annotation metadata is
            bound to the class definition itself, while the use of XML allows for multiple beans of the same
            type to provide variations in their qualifier metadata since that metadata is provided per-instance
            rather than per-class.



3.13. Registering a LoadTimeWeaver
The context namespace introduced in Spring 2.5 provides a load-time-weaver element.

 <beans ...>

       <context:load-time-weaver/>

 </beans>



Adding this element to an XML-based Spring configuration file activates a Spring LoadTimeWeaver for the
ApplicationContext. Any bean within that ApplicationContext may implement LoadTimeWeaverAware
thereby receiving a reference to the load-time weaver instance. This is particularly useful in combination with
Spring's JPA support where load-time weaving may be necessary for JPA class transformation. Consult the
LocalContainerEntityManagerFactoryBean Javadoc for more detail. For more on AspectJ load-time weaving,
see Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework”.




                                          Spring Framework (2.5.6)                                         106
Chapter 4. Resources

4.1. Introduction
Java's standard java.net.URL class and standard handlers for various URL prefixes unfortunately are not quite
adequate enough for all access to low-level resources. For example, there is no standardized URL
implementation that may be used to access a resource that needs to be obtained from the classpath, or relative to
a ServletContext. While it is possible to register new handlers for specialized URL prefixes (similar to existing
handlers for prefixes such as http:), this is generally quite complicated, and the URL interface still lacks some
desirable functionality, such as a method to check for the existence of the resource being pointed to.


4.2. The Resource interface
Spring's Resource interface is meant to be a more capable interface for abstracting access to low-level
resources.

 public interface Resource extends InputStreamSource {

      boolean exists();

      boolean isOpen();

      URL getURL() throws IOException;

      File getFile() throws IOException;

      Resource createRelative(String relativePath) throws IOException;

      String getFilename();

      String getDescription();
 }



 public interface InputStreamSource {

      InputStream getInputStream() throws IOException;
 }



Some of the most important methods from the Resource interface are:


• getInputStream(): locates and opens the resource, returning an InputStream for reading from the resource.
  It is expected that each invocation returns a fresh InputStream. It is the responsibility of the caller to close
  the stream.

• exists(): returns a boolean indicating whether this resource actually exists in physical form.

• isOpen(): returns a boolean indicating whether this resource represents a handle with an open stream. If
  true, the InputStream cannot be read multiple times, and must be read once only and then closed to avoid
  resource leaks. Will be false for all usual resource implementations, with the exception of
  InputStreamResource.

• getDescription(): returns a description for this resource, to be used for error output when working with the
  resource. This is often the fully qualified file name or the actual URL of the resource.

Other methods allow you to obtain an actual URL or File object representing the resource (if the underlying

                                           Spring Framework (2.5.6)                                           107
Resources

implementation is compatible, and supports that functionality).

The Resource abstraction is used extensively in Spring itself, as an argument type in many method signatures
when a resource is needed. Other methods in some Spring APIs (such as the constructors to various
ApplicationContext implementations), take a String which in unadorned or simple form is used to create a
Resource appropriate to that context implementation, or via special prefixes on the String path, allow the
caller to specify that a specific Resource implementation must be created and used.

While the Resource interface is used a lot with Spring and by Spring, it's actually very useful to use as a
general utility class by itself in your own code, for access to resources, even when your code doesn't know or
care about any other parts of Spring. While this couples your code to Spring, it really only couples it to this
small set of utility classes, which are serving as a more capable replacement for URL, and can be considered
equivalent to any other library you would use for this purpose.

It is important to note that the Resource abstraction does not replace functionality: it wraps it where possible.
For example, a UrlResource wraps a URL, and uses the wrapped URL to do its work.


4.3. Built-in Resource implementations
There are a number of Resource implementations that come supplied straight out of the box in Spring:


4.3.1. UrlResource

The UrlResource wraps a java.net.URL, and may be used to access any object that is normally accessible via a
URL, such as files, an HTTP target, an FTP target, etc. All URLs have a standardized String representation,
such that appropriate standardized prefixes are used to indicate one URL type from another. This includes
file: for accessing filesystem paths, http: for accessing resources via the HTTP protocol, ftp: for accessing
resources via FTP, etc.

A UrlResource is created by Java code explicitly using the UrlResource constructor, but will often be created
implicitly when you call an API method which takes a String argument which is meant to represent a path. For
the latter case, a JavaBeans PropertyEditor will ultimately decide which type of Resource to create. If the
path string contains a few well-known (to it, that is) prefixes such as classpath:, it will create an appropriate
specialized Resource for that prefix. However, if it doesn't recognize the prefix, it will assume the this is just a
standard URL string, and will create a UrlResource.


4.3.2. ClassPathResource

This class represents a resource which should be obtained from the classpath. This uses either the thread
context class loader, a given class loader, or a given class for loading resources.

This Resource implementation supports resolution as java.io.File if the class path resource resides in the file
system, but not for classpath resources which reside in a jar and have not been expanded (by the servlet engine,
or whatever the environment is) to the filesystem. To address this the various Resource implementations
always support resolution as a java.net.URL.

A ClassPathResource is created by Java code explicitly using the ClassPathResource constructor, but will
often be created implicitly when you call an API method which takes a String argument which is meant to
represent a path. For the latter case, a JavaBeans PropertyEditor will recognize the special prefix
classpath:on the string path, and create a ClassPathResource in that case.




                                            Spring Framework (2.5.6)                                            108
Resources


4.3.3. FileSystemResource

This is a Resource implementation for java.io.File handles. It obviously supports resolution as a File, and
as a URL.


4.3.4. ServletContextResource

This is a Resource implementation for ServletContext resources, interpreting relative paths within the
relevant web application's root directory.

This always supports stream access and URL access, but only allows java.io.File access when the web
application archive is expanded and the resource is physically on the filesystem. Whether or not it's expanded
and on the filesystem like this, or accessed directly from the JAR or somewhere else like a DB (it's
conceivable) is actually dependent on the Servlet container.


4.3.5. InputStreamResource

A Resource implementation for a given InputStream. This should only be used if no specific Resource
implementation is applicable. In particular, prefer ByteArrayResource or any of the file-based Resource
implementations where possible.

In contrast to other Resource implementations, this is a descriptor for an already opened resource - therefore
returning true from isOpen(). Do not use it if you need to keep the resource descriptor somewhere, or if you
need to read a stream multiple times.


4.3.6. ByteArrayResource

This is a Resource implementation for a given byte array. It creates a ByteArrayInputStream for the given
byte array.

It's useful for loading content from any given byte array, without having to resort to a single-use
InputStreamResource.



4.4. The ResourceLoader
The ResourceLoader interface is meant to be implemented by objects that can return (i.e. load) Resource
instances.

 public interface ResourceLoader {
     Resource getResource(String location);
 }



All application contexts implement the ResourceLoader interface, and therefore all application contexts may be
used to obtain Resource instances.

When you call getResource() on a specific application context, and the location path specified doesn't have a
specific prefix, you will get back a Resource type that is appropriate to that particular application context. For
example, assume the following snippet of code was executed against a ClassPathXmlApplicationContext
instance:

 Resource template = ctx.getResource("some/resource/path/myTemplate.txt);



                                           Spring Framework (2.5.6)                                           109
Resources


What would be returned would be a ClassPathResource; if the same method was executed against a
FileSystemXmlApplicationContext      instance, you'd get back a FileSystemResource. For a
WebApplicationContext, you'd get back a ServletContextResource, and so on.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force ClassPathResource to be used, regardless of the application context
type, by specifying the special classpath: prefix:

     Resource template = ctx.getResource("classpath:some/resource/path/myTemplate.txt);



Similarly, one can force a UrlResource to be used by specifying any of the standard java.net.URL prefixes:

     Resource template = ctx.getResource("file:/some/resource/path/myTemplate.txt);



     Resource template = ctx.getResource("http://myhost.com/resource/path/myTemplate.txt);



The following table summarizes the strategy for converting Strings to Resources:


Table 4.1. Resource strings

                     Prefix                                   Example                      Explanation


    classpath:                                classpath:com/myapp/config.xml     Loaded from the classpath.


    file:                                     file:/data/config.xml              Loaded as a        URL,   from   the
                                                                                 filesystem. a


    http:                                     http://myserver/logo.png           Loaded as a URL.


    (none)                                    /data/config.xml                   Depends    on      the    underlying
                                                                                 ApplicationContext.
a
But see also the section entitled Section 4.7.3, “FileSystemResource caveats”.




4.5. The ResourceLoaderAware interface
The ResourceLoaderAware interface is a special marker interface, identifying objects that expect to be provided
with a ResourceLoader reference.

     public interface ResourceLoaderAware {

            void setResourceLoader(ResourceLoader resourceLoader);
     }



When a class implements ResourceLoaderAware and is deployed into an application context (as a
Spring-managed bean), it is recognized as ResourceLoaderAware by the application context. The application
context will then invoke the setResourceLoader(ResourceLoader), supplying itself as the argument
(remember, all application contexts in Spring implement the ResourceLoader interface).



                                                    Spring Framework (2.5.6)                                      110
Resources


Of course, since an ApplicationContext is a ResourceLoader, the bean could also implement the
ApplicationContextAware interface and use the supplied application context directly to load resources, but in
general, it's better to use the specialized ResourceLoader interface if that's all that's needed. The code would
just be coupled to the resource loading interface, which can be considered a utility interface, and not the whole
Spring ApplicationContext interface.

As of Spring 2.5, you can rely upon autowiring of the ResourceLoader as an alternative to implementing the
ResourceLoaderAware interface. The "traditional" constructor and byType autowiring modes (as described in
the section entitled Section 3.3.5, “Autowiring collaborators”) are now capable of providing a dependency of
type ResourceLoader for either a constructor argument or setter method parameter respectively. For more
flexibility (including the ability to autowire fields and multiple parameter methods), consider using the new
annotation-based autowiring features. In that case, the ResourceLoader will be autowired into a field,
constructor argument, or method parameter that is expecting the ResourceLoader type as long as the field,
constructor, or method in question carries the @Autowired annotation. For more information, see the section
entitled Section 3.11.2, “@Autowired”.


4.6. Resources as dependencies
If the bean itself is going to determine and supply the resource path through some sort of dynamic process, it
probably makes sense for the bean to use the ResourceLoader interface to load resources. Consider as an
example the loading of a template of some sort, where the specific resource that is needed depends on the role
of the user. If the resources are static, it makes sense to eliminate the use of the ResourceLoader interface
completely, and just have the bean expose the Resource properties it needs, and expect that they will be
injected into it.

What makes it trivial to then inject these properties, is that all application contexts register and use a special
JavaBeans PropertyEditor which can convert String paths to Resource objects. So if myBean has a template
property of type Resource, it can be configured with a simple string for that resource, as follows:

 <bean id="myBean" class="...">
   <property name="template" value="some/resource/path/myTemplate.txt"/>
 </bean>



Note that the resource path has no prefix, so because the application context itself is going to be used as the
ResourceLoader, the resource itself will be loaded via a ClassPathResource, FileSystemResource, or
ServletContextResource (as appropriate) depending on the exact type of the context.

If there is a need to force a specific Resource type to be used, then a prefix may be used. The following two
examples show how to force a ClassPathResource and a UrlResource (the latter being used to access a
filesystem file).

 <property name="template" value="classpath:some/resource/path/myTemplate.txt">



 <property name="template" value="file:/some/resource/path/myTemplate.txt"/>




4.7. Application contexts and Resource paths

4.7.1. Constructing application contexts


                                           Spring Framework (2.5.6)                                           111
Resources


An application context constructor (for a specific application context type) generally takes a string or array of
strings as the location path(s) of the resource(s) such as XML files that make up the definition of the context.

When such a location path doesn't have a prefix, the specific Resource type built from that path and used to
load the bean definitions, depends on and is appropriate to the specific application context. For example, if you
create a ClassPathXmlApplicationContext as follows:

  ApplicationContext ctx = new ClassPathXmlApplicationContext("conf/appContext.xml");



The bean definitions will be loaded from the classpath, as a ClassPathResource will be used. But if you create
a FileSystemXmlApplicationContext as follows:

  ApplicationContext ctx =
      new FileSystemXmlApplicationContext("conf/appContext.xml");



The bean definition will be loaded from a filesystem location, in this case relative to the current working
directory.

Note that the use of the special classpath prefix or a standard URL prefix on the location path will override the
default type of Resource created to load the definition. So this FileSystemXmlApplicationContext...

  ApplicationContext ctx =
      new FileSystemXmlApplicationContext("classpath:conf/appContext.xml");



...   will   actually   load   its    bean definitions from the classpath. However, it is still a
FileSystemXmlApplicationContext. If it is subsequently used as a ResourceLoader, any unprefixed paths will
still be treated as filesystem paths.

4.7.1.1. Constructing ClassPathXmlApplicationContext instances - shortcuts

The ClassPathXmlApplicationContext exposes a number of constructors to enable convenient instantiation.
The basic idea is that one supplies merely a string array containing just the filenames of the XML files
themselves (without the leading path information), and one also supplies a Class; the
ClassPathXmlApplicationContext will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like this:

  com/
    foo/
       services.xml
       daos.xml
       MessengerService.class



A ClassPathXmlApplicationContext instance composed of the beans defined in the 'services.xml' and
'daos.xml' could be instantiated like so...

  ApplicationContext ctx = new ClassPathXmlApplicationContext(
      new String[] {"services.xml", "daos.xml"}, MessengerService.class);



Please do consult the Javadocs for the ClassPathXmlApplicationContext class for details of the various
constructors.


4.7.2. Wildcards in application context constructor resource paths


                                           Spring Framework (2.5.6)                                          112
Resources


The resource paths in application context constructor values may be a simple path (as shown above) which has
a one-to-one mapping to a target Resource, or alternately may contain the special "classpath*:" prefix and/or
internal Ant-style regular expressions (matched using Spring's PathMatcher utility). Both of the latter are
effectively wildcards

One use for this mechanism is when doing component-style application assembly. All components can 'publish'
context definition fragments to a well-known location path, and when the final application context is created
using the same path prefixed via classpath*:, all component fragments will be picked up automatically.

Note that this wildcarding is specific to use of resource paths in application context constructors (or when using
the PathMatcher utility class hierarchy directly), and is resolved at construction time. It has nothing to do with
the Resource type itself. It's not possible to use the classpath*: prefix to construct an actual Resource, as a
resource points to just one resource at a time.

4.7.2.1. Ant-style Patterns

When the path location contains an Ant-style pattern, for example:

       /WEB-INF/*-context.xml
       com/mycompany/**/applicationContext.xml
       file:C:/some/path/*-context.xml
       classpath:com/mycompany/**/applicationContext.xml



... the resolver follows a more complex but defined procedure to try to resolve the wildcard. It produces a
Resource for the path up to the last non-wildcard segment and obtains a URL from it. If this URL is not a "jar:"
URL or container-specific variant (e.g. "zip:" in WebLogic, "wsjar" in WebSphere, etc.), then a
java.io.File is obtained from it and used to resolve the wildcard by traversing the filesystem. In the case of a
jar URL, the resolver either gets a java.net.JarURLConnection from it or manually parses the jar URL and
then traverses the contents of the jar file to resolve the wildcards.

4.7.2.1.1. Implications on portability
If the specified path is already a file URL (either explicitly, or implicitly because the base ResourceLoader is a
filesystem one, then wildcarding is guaranteed to work in a completely portable fashion.

If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path segment
URL via a Classloader.getResource() call. Since this is just a node of the path (not the file at the end) it is
actually undefined (in the ClassLoader Javadocs) exactly what sort of a URL is returned in this case. In
practice, it is always a java.io.File representing the directory, where the classpath resource resolves to a
filesystem location, or a jar URL of some sort, where the classpath resource resolves to a jar location. Still,
there is a portability concern on this operation.

If a jar URL is obtained for the last non-wildcard segment, the resolver must be able to get a
java.net.JarURLConnection from it, or manually parse the jar URL, to be able to walk the contents of the jar,
and resolve the wildcard. This will work in most environments, but will fail in others, and it is strongly
recommended that the wildcard resolution of resources coming from jars be thoroughly tested in your specific
environment before you rely on it.

4.7.2.2. The classpath*: prefix

When constructing an XML-based application context, a location string may use the special classpath*:
prefix:

 ApplicationContext ctx =
     new ClassPathXmlApplicationContext("classpath*:conf/appContext.xml");


                                           Spring Framework (2.5.6)                                           113
Resources


This special prefix specifies that all classpath resources that match the given name must be obtained (internally,
this essentially happens via a ClassLoader.getResources(...) call), and then merged to form the final
application context definition.

            Classpath*: portability
            The wildcard classpath relies on the getResources() method of the underlying classloader. As
            most application servers nowadays supply their own classloader implementation, the behavior
            might differ especially when dealing with jar files. A simple test to check if classpath* works is to
            use the classloader to load a file from within a jar on the classpath:
            getClass().getClassLoader().getResources("<someFileInsideTheJar>"). Try this test with
            files that have the same name but are placed inside two different locations. In case an inappropriate
            result is returned, check the application server documentation for settings that might affect the
            classloader behavior.


The "classpath*:" prefix can also be combined with a PathMatcher pattern in the rest of the location path, for
example "classpath*:META-INF/*-beans.xml". In this case, the resolution strategy is fairly simple: a
ClassLoader.getResources() call is used on the last non-wildcard path segment to get all the matching resources
in the class loader hierarchy, and then off each resource the same PathMatcher resoltion strategy described
above is used for the wildcard subpath.

4.7.2.3. Other notes relating to wildcards

Please note that "classpath*:" when combined with Ant-style patterns will only work reliably with at least
one root directory before the pattern starts, unless the actual target files reside in the file system. This means
that a pattern like "classpath*:*.xml" will not retrieve files from the root of jar files but rather only from the
root of expanded directories. This originates from a limitation in the JDK's ClassLoader.getResources()
method which only returns file system locations for a passed-in empty string (indicating potential roots to
search).

Ant-style patterns with "classpath:" resources are not guaranteed to find matching resources if the root
package to search is available in multiple class path locations. This is because a resource such as

      com/mycompany/package1/service-context.xml



may be in only one location, but when a path such as

      classpath:com/mycompany/**/service-context.xml



is   used   to   try   to   resolve  it, the resolver will work off the (first) URL returned by
getResource("com/mycompany");.       If this base package node exists in multiple classloader locations, the actual
end resource may not be underneath. Therefore, preferably, use "classpath*:" with the same Ant-style pattern
in such a case, which will search all class path locations that contain the root package.


4.7.3. FileSystemResource caveats

A FileSystemResource that is not attached to a FileSystemApplicationContext (that is, a
FileSystemApplicationContext is not the actual ResourceLoader) will treat absolute vs. relative paths as you
would expect. Relative paths are relative to the current working directory, while absolute paths are relative to
the root of the filesystem.



                                            Spring Framework (2.5.6)                                           114
Resources


For    backwards        compatibility     (historical)   reasons    however, this   changes    when      the
FileSystemApplicationContext is the ResourceLoader. The FileSystemApplicationContext simply forces
all attached FileSystemResource instances to treat all location paths as relative, whether they start with a
leading slash or not. In practice, this means the following are equivalent:

 ApplicationContext ctx =
     new FileSystemXmlApplicationContext("conf/context.xml");



 ApplicationContext ctx =
     new FileSystemXmlApplicationContext("/conf/context.xml");



As are the following: (Even though it would make sense for them to be different, as one case is relative and the
other absolute.)

 FileSystemXmlApplicationContext ctx = ...;
 ctx.getResource("some/resource/path/myTemplate.txt");



 FileSystemXmlApplicationContext ctx = ...;
 ctx.getResource("/some/resource/path/myTemplate.txt");



In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths with
FileSystemResource / FileSystemXmlApplicationContext, and just force the use of a UrlResource, by using
the file: URL prefix.

 // actual context type doesn't matter, the Resource will always be UrlResource
 ctx.getResource("file:/some/resource/path/myTemplate.txt");



 // force this FileSystemXmlApplicationContext to load its definition via a UrlResource
 ApplicationContext ctx =
     new FileSystemXmlApplicationContext("file:/conf/context.xml");




                                          Spring Framework (2.5.6)                                          115
Chapter 5. Validation, Data-binding, the BeanWrapper,
and PropertyEditors

5.1. Introduction
There are pros and cons for considering validation as business logic, and Spring offers a design for validation
(and data binding) that does not exclude either one of them. Specifically validation should not be tied to the
web tier, should be easy to localize and it should be possible to plug in any validator available. Considering the
above, Spring has come up with a Validator interface that is both basic and eminently usable in every layer of
an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of an application
(or whatever objects you use to process user input). Spring provides the so-called DataBinder to do exactly
that. The Validator and the DataBinder make up the validation package, which is primarily used in but not
limited to the MVC framework.

The BeanWrapper is a fundamental concept in the Spring Framework and is used in a lot of places. However,
you probably will not ever have the need to use the BeanWrapper directly. Because this is reference
documentation however, we felt that some explanation might be in order. We're explaining the BeanWrapper in
this chapter since if you were going to use it at all, you would probably do so when trying to bind data to
objects, which is strongly related to the BeanWrapper.

Spring uses PropertyEditors all over the place. The concept of a PropertyEditor is part of the JavaBeans
specification. Just as the BeanWrapper, it's best to explain the use of PropertyEditors in this chapter as well,
since it's closely related to the BeanWrapper and the DataBinder.


5.2. Validation using Spring's Validator interface
Spring's features a Validator interface that you can use to validate objects. The Validator interface works
using an Errors object so that while validating, validators can report validation failures to the Errors object.

Let's consider a small data object:

 public class Person {

     private String name;
     private int age;

     // the usual getters and setters...
 }



We're going to provide validation behavior for the Person class by implementing the following two methods of
the org.springframework.validation.Validator interface:

• supports(Class) - Can this Validator validate instances of the supplied Class?
• validate(Object, org.springframework.validation.Errors) - validates the given object and in case of
  validation errors, registers those with the given Errors object

Implementing a Validator is fairly straightforward, especially when you know of the ValidationUtils helper
class that the Spring Framework also provides.


                                           Spring Framework (2.5.6)                                           116
Validation, Data-binding, the BeanWrapper, and


 public class PersonValidator implements Validator {

      /**
      * This Validator validates just Person instances
      */
      public boolean supports(Class clazz) {
          return Person.class.equals(clazz);
      }

      public void validate(Object obj, Errors e) {
          ValidationUtils.rejectIfEmpty(e, "name", "name.empty");
          Person p = (Person) obj;
          if (p.getAge() < 0) {
              e.rejectValue("age", "negativevalue");
          } else if (p.getAge() > 110) {
              e.rejectValue("age", "too.darn.old");
          }
      }
 }



As you can see, the static rejectIfEmpty(..) method on the ValidationUtils class is used to reject the
'name' property if it is null or the empty string. Have a look at the Javadoc for the ValidationUtils class to
see what functionality it provides besides the example shown previously.

While it is certainly possible to implement a single Validator class to validate each of the nested objects in a
rich object, it may be better to encapsulate the validation logic for each nested class of object in its own
Validator implementation. A simple example of a 'rich' object would be a Customer that is composed of two
String properties (a first and second name) and a complex Address object. Address objects may be used
independently of Customer objects, and so a distinct AddressValidator has been implemented. If you want
your CustomerValidator to reuse the logic contained within the AddressValidator class without recourse to
copy-n-paste you can dependency-inject or instantiate an AddressValidator within your CustomerValidator,
and use it like so:

 public class CustomerValidator implements Validator {

     private final Validator addressValidator;

     public CustomerValidator(Validator addressValidator) {
        if (addressValidator == null) {
            throw new IllegalArgumentException("The supplied [Validator] is required and must not be null.");
        }
        if (!addressValidator.supports(Address.class)) {
            throw new IllegalArgumentException(
              "The supplied [Validator] must support the validation of [Address] instances.");
        }
        this.addressValidator = addressValidator;
     }

       /**
       * This Validator validates Customer instances, and any subclasses of Customer too
       */
     public boolean supports(Class clazz) {
          return Customer.class.isAssignableFrom(clazz);
     }

     public void validate(Object target, Errors errors) {
        ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName", "field.required");
        ValidationUtils.rejectIfEmptyOrWhitespace(errors, "surname", "field.required");
        Customer customer = (Customer) target;
        try {
            errors.pushNestedPath("address");
            ValidationUtils.invokeValidator(this.addressValidator, customer.getAddress(), errors);
        } finally {
            errors.popNestedPath();
        }
     }
 }




                                          Spring Framework (2.5.6)                                          117
PropertyEditors



Validation errors are reported to the Errors object passed to the validator. In case of Spring Web MVC you can
use <spring:bind/> tag to inspect the error messages, but of course you can also inspect the errors object
yourself. More information about the methods it offers can be found from the Javadoc.


5.3. Resolving codes to error messages
We've talked about databinding and validation. Outputting messages corresponding to validation errors is the
last thing we need to discuss. In the example we've shown above, we rejected the name and the age field. If
we're going to output the error messages by using a MessageSource, we will do so using the error code we've
given when rejecting the field ('name' and 'age' in this case). When you call (either directly, or indirectly, using
for example the ValidationUtils class) rejectValue or one of the other reject methods from the Errors
interface, the underlying implementation will not only register the code you've passed in, but also a number of
additional error codes. What error codes it registers is determined by the MessageCodesResolver that is used.
By default, the DefaultMessageCodesResolver is used, which for example not only registers a message with
the code you gave, but also messages that include the field name you passed to the reject method. So in case
you reject a field using rejectValue("age", "too.darn.old"), apart from the too.darn.old code, Spring
will also register too.darn.old.age and too.darn.old.age.int (so the first will include the field name and
the second will include the type of the field); this is done as a convenience to aid developers in targeting error
messages and suchlike.

More information on the MessageCodesResolver and the default strategy can be found online with the
Javadocs for MessageCodesResolver and DefaultMessageCodesResolver respectively.


5.4. Bean manipulation and the BeanWrapper
The org.springframework.beans package adheres to the JavaBeans standard provided by Sun. A JavaBean is
simply a class with a default no-argument constructor, which follows a naming convention where (by way of an
example) a property named bingoMadness would have a setter method setBingoMadness(..) and a getter
method getBingoMadness(). For more information about JavaBeans and the specification, please refer to Sun's
website ( java.sun.com/products/javabeans).

One quite important class in the beans package is the BeanWrapper interface and its corresponding
implementation (BeanWrapperImpl). As quoted from the Javadoc, the BeanWrapper offers functionality to set
and get property values (individually or in bulk), get property descriptors, and to query properties to determine
if they are readable or writable. Also, the BeanWrapper offers support for nested properties, enabling the setting
of properties on sub-properties to an unlimited depth. Then, the BeanWrapper supports the ability to add
standard JavaBeans PropertyChangeListeners and VetoableChangeListeners, without the need for
supporting code in the target class. Last but not least, the BeanWrapper provides support for the setting of
indexed properties. The BeanWrapper usually isn't used by application code directly, but by the DataBinder and
the BeanFactory.

The way the BeanWrapper works is partly indicated by its name: it wraps a bean to perform actions on that
bean, like setting and retrieving properties.


5.4.1. Setting and getting basic and nested properties

Setting and getting properties is done using the setPropertyValue(s) and getPropertyValue(s) methods that
both come with a couple of overloaded variants. They're all described in more detail in the Javadoc Spring
comes with. What's important to know is that there are a couple of conventions for indicating properties of an
object. A couple of examples:

                                            Spring Framework (2.5.6)                                            118
Validation, Data-binding, the BeanWrapper, and



Table 5.1. Examples of properties

Expression                   Explanation

name                         Indicates the property name corresponding to the methods getName() or isName()
                             and setName(..)

account.name                 Indicates the nested property name of the property account corresponding e.g. to
                             the methods getAccount().setName() or getAccount().getName()

account[2]                   Indicates the third element of the indexed property account. Indexed properties
                             can be of type array, list or other naturally ordered collection

account[COMPANYNAME]         Indicates the value of the map entry indexed by the key COMPANYNAME of the
                             Map property account


Below you'll find some examples of working with the BeanWrapper to get and set properties.

(This next section is not vitally important to you if you're not planning to work with the BeanWrapper directly. If
you're just using the DataBinder and the BeanFactory and their out-of-the-box implementation, you should
skip ahead to the section about PropertyEditors.)

Consider the following two classes:

 public class Company {
     private String name;
     private Employee managingDirector;

       public String getName() {
           return this.name;
       }
       public void setName(String name) {
           this.name = name;
       }
       public Employee getManagingDirector() {
           return this.managingDirector;
       }
       public void setManagingDirector(Employee managingDirector) {
           this.managingDirector = managingDirector;
       }
 }



 public class Employee {
     private String name;
     private float salary;

       public String getName() {
           return this.name;
       }
       public void setName(String name) {
           this.name = name;
       }
       public float getSalary() {
           return salary;
       }
       public void setSalary(float salary) {
           this.salary = salary;
       }
 }



The following code snippets show some examples of how to retrieve and manipulate some of the properties of
instantiated Companies and Employees:

 BeanWrapper company = BeanWrapperImpl(new Company());


                                            Spring Framework (2.5.6)                                           119
PropertyEditors



 // setting the company name..
 company.setPropertyValue("name", "Some Company Inc.");
 // ... can also be done like this:
 PropertyValue value = new PropertyValue("name", "Some Company Inc.");
 company.setPropertyValue(value);

 // ok, let's create the director and tie it to the company:
 BeanWrapper jim = BeanWrapperImpl(new Employee());
 jim.setPropertyValue("name", "Jim Stravinsky");
 company.setPropertyValue("managingDirector", jim.getWrappedInstance());

 // retrieving the salary of the managingDirector through the company
 Float salary = (Float) company.getPropertyValue("managingDirector.salary");




5.4.2. Built-in PropertyEditor implementations

Spring heavily uses the concept of PropertyEditors to effect the conversion between an Object and a String.
If you think about it, it sometimes might be handy to be able to represent properties in a different way than the
object itself. For example, a Date can be represented in a human readable way (as the String '2007-14-09'),
while we're still able to convert the human readable form back to the original date (or even better: convert any
date entered in a human readable form, back to Date objects). This behavior can be achieved by registering
custom editors, of type java.beans.PropertyEditor. Registering custom editors on a BeanWrapper or
alternately in a specific IoC container as mentioned in the previous chapter, gives it the knowledge of how to
convert properties to the desired type. Read more about PropertyEditors in the Javadoc of the java.beans
package provided by Sun.

A couple of examples where property editing is used in Spring:

• setting properties on beans is done using PropertyEditors. When mentioning java.lang.String as the
  value of a property of some bean you're declaring in XML file, Spring will (if the setter of the corresponding
  property has a Class-parameter) use the ClassEditor to try to resolve the parameter to a Class object.
• parsing HTTP request parameters in Spring's MVC framework is done using all kinds of PropertyEditors
  that you can manually bind in all subclasses of the CommandController.

Spring has a number of built-in PropertyEditors to make life easy. Each of those is listed below and they are
all located in the org.springframework.beans.propertyeditors package. Most, but not all (as indicated
below), are registered by default by BeanWrapperImpl. Where the property editor is configurable in some
fashion, you can of course still register your own variant to override the default one:


Table 5.2. Built-in PropertyEditors

Class                                      Explanation

ByteArrayPropertyEditor                    Editor for byte arrays. Strings will simply be converted to their
                                           corresponding byte representations. Registered by default by
                                           BeanWrapperImpl.

ClassEditor                                Parses Strings representing classes to actual classes and the other
                                           way    around.     When     a     class   is    not    found,    an
                                           IllegalArgumentException is thrown. Registered by default by
                                           BeanWrapperImpl.

CustomBooleanEditor                        Customizable property editor for Boolean properties. Registered by
                                           default by BeanWrapperImpl, but, can be overridden by registering
                                           custom instance of it as custom editor.

CustomCollectionEditor                     Property editor for Collections, converting any source Collection


                                           Spring Framework (2.5.6)                                          120
Validation, Data-binding, the BeanWrapper, and

Class                                     Explanation

                                          to a given target Collection type.

CustomDateEditor                          Customizable property editor for java.util.Date, supporting a
                                          custom DateFormat. NOT registered by default. Must be user
                                          registered as needed with appropriate format.

CustomNumberEditor                        Customizable property editor for any Number subclass like
                                          Integer, Long, Float, Double. Registered by default by
                                          BeanWrapperImpl, but can be overridden by registering custom
                                          instance of it as a custom editor.

FileEditor                                Capable of resolving Strings to java.io.File objects. Registered
                                          by default by BeanWrapperImpl.

InputStreamEditor                         One-way property editor, capable of taking a text string and
                                          producing (via an intermediate ResourceEditor and Resource) an
                                          InputStream, so InputStream properties may be directly set as
                                          Strings. Note that the default usage will not close the InputStream
                                          for you! Registered by default by BeanWrapperImpl.

LocaleEditor                              Capable of resolving Strings to Locale objects and vice versa (the
                                          String format is [language]_[country]_[variant], which is the same
                                          thing the toString() method of Locale provides). Registered by
                                          default by BeanWrapperImpl.

PatternEditor                             Capable of resolving Strings to JDK 1.5 Pattern objects and vice
                                          versa.

PropertiesEditor                          Capable of converting Strings (formatted using the format as
                                          defined in the Javadoc for the java.lang.Properties class) to
                                          Properties objects. Registered by default by BeanWrapperImpl.

StringTrimmerEditor                       Property editor that trims Strings. Optionally allows transforming
                                          an empty string into a null value. NOT registered by default; must
                                          be user registered as needed.

URLEditor                                 Capable of resolving a String representation of a URL to an actual
                                          URL object. Registered by default by BeanWrapperImpl.



Spring uses the java.beans.PropertyEditorManager to set the search path for property editors that might be
needed. The search path also includes sun.bean.editors, which includes PropertyEditor implementations
for types such as Font, Color, and most of the primitive types. Note also that the standard JavaBeans
infrastructure will automatically discover PropertyEditor classes (without you having to register them
explicitly) if they are in the same package as the class they handle, and have the same name as that class, with
'Editor' appended; for example, one could have the following class and package structure, which would be
sufficient for the FooEditor class to be recognized and used as the PropertyEditor for Foo-typed properties.

 com
   chank
     pop
       Foo
       FooEditor     // the PropertyEditor for the Foo class



Note that you can also use the standard BeanInfo JavaBeans mechanism here as well (described in
not-amazing-detail here). Find below an example of using the BeanInfo mechanism for explicitly registering


                                          Spring Framework (2.5.6)                                          121
PropertyEditors


one or more PropertyEditor instances with the properties of an associated class.

 com
   chank
     pop
       Foo
       FooBeanInfo     // the BeanInfo for the Foo class



Here is the Java source code for the referenced FooBeanInfo class. This would associate a
CustomNumberEditor with the age property of the Foo class.

 public class FooBeanInfo extends SimpleBeanInfo {

      public PropertyDescriptor[] getPropertyDescriptors() {
          try {
              final PropertyEditor numberPE = new CustomNumberEditor(Integer.class, true);
              PropertyDescriptor ageDescriptor = new PropertyDescriptor("age", Foo.class) {
                  public PropertyEditor createPropertyEditor(Object bean) {
                      return numberPE;
                  };
              };
              return new PropertyDescriptor[] { ageDescriptor };
          }
          catch (IntrospectionException ex) {
              throw new Error(ex.toString());
          }
      }
 }




5.4.2.1. Registering additional custom PropertyEditors

When setting bean properties as a string value, a Spring IoC container ultimately uses standard JavaBeans
PropertyEditors to convert these Strings to the complex type of the property. Spring pre-registers a number of
custom PropertyEditors (for example, to convert a classname expressed as a string into a real Class object).
Additionally, Java's standard JavaBeans PropertyEditor lookup mechanism allows a PropertyEditor for a
class simply to be named appropriately and placed in the same package as the class it provides support for, to
be found automatically.

If there is a need to register other custom PropertyEditors, there are several mechanisms available. The most
manual approach, which is not normally convenient or recommended, is to simply use the
registerCustomEditor() method of the ConfigurableBeanFactory interface, assuming you have a
BeanFactory reference. Another, slightly more convenient, mechanism is to use a special bean factory
post-processor called CustomEditorConfigurer. Although bean factory post-processors can be used with
BeanFactory implementations, the CustomEditorConfigurer has a nested property setup, so it is strongly
recommended that it is used with the ApplicationContext, where it may be deployed in similar fashion to any
other bean, and automatically detected and applied.

Note that all bean factories and application contexts automatically use a number of built-in property editors,
through their use of something called a BeanWrapper to handle property conversions. The standard property
editors that the BeanWrapper registers are listed in the previous section. Additionally, ApplicationContexts
also override or add an additional number of editors to handle resource lookups in a manner appropriate to the
specific application context type.

Standard JavaBeans PropertyEditor instances are used to convert property values expressed as strings to the
actual complex type of the property. CustomEditorConfigurer, a bean factory post-processor, may be used to
conveniently add support for additional PropertyEditor instances to an ApplicationContext.

Consider a user class ExoticType, and another class DependsOnExoticType which needs ExoticType set as a
property:



                                          Spring Framework (2.5.6)                                        122
Validation, Data-binding, the BeanWrapper, and


 package example;

 public class ExoticType {

     private String name;

     public ExoticType(String name) {
         this.name = name;
     }
 }

 public class DependsOnExoticType {

     private ExoticType type;

     public void setType(ExoticType type) {
         this.type = type;
     }
 }



When things are properly set up, we want to be able to assign the type property as a string, which a
PropertyEditor will behind the scenes convert into an actual ExoticType instance:

 <bean id="sample" class="example.DependsOnExoticType">
     <property name="type" value="aNameForExoticType"/>
 </bean>



The PropertyEditor implementation could look similar to this:

 // converts string representation to ExoticType object
 package example;

 public class ExoticTypeEditor extends PropertyEditorSupport {

     private String format;

     public void setFormat(String format) {
         this.format = format;
     }

     public void setAsText(String text) {
         if (format != null && format.equals("upperCase")) {
             text = text.toUpperCase();
         }
         ExoticType type = new ExoticType(text);
         setValue(type);
     }
 }



Finally, we use CustomEditorConfigurer to register the new PropertyEditor with the ApplicationContext,
which will then be able to use it as needed:

 <bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
   <property name="customEditors">
     <map>
       <entry key="example.ExoticType">
         <bean class="example.ExoticTypeEditor">
            <property name="format" value="upperCase"/>
         </bean>
       </entry>
     </map>
   </property>
 </bean>



5.4.2.1.1. Using PropertyEditorRegistrars
Another mechanism for registering property editors with the Spring container is to create and use a


                                         Spring Framework (2.5.6)                                 123
PropertyEditors


PropertyEditorRegistrar.     This interface is particularly useful when you need to use the same set of property
editors in several different situations: write a corresponding registrar and reuse that in each case.
PropertyEditorRegistrars work in conjunction with an interface called PropertyEditorRegistry, an
interface that is implemented by the Spring BeanWrapper (and DataBinder). PropertyEditorRegistrars are
particularly convenient when used in conjunction with the CustomEditorConfigurer (introduced here), which
exposes a property called setPropertyEditorRegistrars(..): PropertyEditorRegistrars added to a
CustomEditorConfigurer in this fashion can easily be shared with DataBinder and Spring MVC Controllers.
Furthermore, it avoids the need for synchronization on custom editors: a PropertyEditorRegistrar is
expected to create fresh PropertyEditor instances for each bean creation attempt.

Using a PropertyEditorRegistrar is perhaps best illustrated with an example. First off, you need to create
your own PropertyEditorRegistrar implementation:

 package com.foo.editors.spring;

 public final class CustomPropertyEditorRegistrar implements PropertyEditorRegistrar {

      public void registerCustomEditors(PropertyEditorRegistry registry) {

          // it is expected that new PropertyEditor instances are created
          registry.registerCustomEditor(ExoticType.class, new ExoticTypeEditor());

          // you could register as many custom property editors as are required here...
      }
 }



See   also    the   org.springframework.beans.support.ResourceEditorRegistrar        for an            example
PropertyEditorRegistrar    implementation.     Notice     how     in   its    implementation          of   the
registerCustomEditors(..) method it creates new instances of each property editor.

Next we configure a CustomEditorConfigurer and inject an instance of our CustomPropertyEditorRegistrar
into it:

 <bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
     <property name="propertyEditorRegistrars">
         <list>
             <ref bean="customPropertyEditorRegistrar"/>
         </list>
     </property>
 </bean>

 <bean id="customPropertyEditorRegistrar" class="com.foo.editors.spring.CustomPropertyEditorRegistrar"/>



Finally, and in a bit of a departure from the focus of this chapter, for those of you using Spring's MVC web
framework, using PropertyEditorRegistrars in conjunction with data-binding Controllers (such as
SimpleFormController) can be very convenient. Find below an example of using a PropertyEditorRegistrar
in the implementation of an initBinder(..) method:

 public final class RegisterUserController extends SimpleFormController {

      private final PropertyEditorRegistrar customPropertyEditorRegistrar;

      public RegisterUserController(PropertyEditorRegistrar propertyEditorRegistrar) {
          this.customPropertyEditorRegistrar = propertyEditorRegistrar;
      }

      protected void initBinder(HttpServletRequest request, ServletRequestDataBinder binder) throws Exception {
          this.customPropertyEditorRegistrar.registerCustomEditors(binder);
      }

      // other methods to do with registering a User
 }




                                          Spring Framework (2.5.6)                                          124
Validation, Data-binding, the BeanWrapper, and


This style of PropertyEditor registration can lead to concise code (the implementation of initBinder(..) is
just one line long!), and allows common PropertyEditor registration code to be encapsulated in a class and
then shared amongst as many Controllers as needed.




                                         Spring Framework (2.5.6)                                      125
Chapter 6. Aspect Oriented Programming with
Spring

6.1. Introduction
Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by providing
another way of thinking about program structure. The key unit of modularity in OOP is the class, whereas in
AOP the unit of modularity is the aspect. Aspects enable the modularization of concerns such as transaction
management that cut across multiple types and objects. (Such concerns are often termed crosscutting concerns
in AOP literature.)

One of the key components of Spring is the AOP framework. While the Spring IoC container does not depend
on AOP, meaning you do not need to use AOP if you don't want to, AOP complements Spring IoC to provide a
very capable middleware solution.

  Spring 2.0 AOP

  Spring 2.0 introduces a simpler and more powerful way of writing custom aspects using either a
  schema-based approach or the @AspectJ annotation style. Both of these styles offer fully typed advice
  and use of the AspectJ pointcut language, while still using Spring AOP for weaving.

  The Spring 2.0 schema- and @AspectJ-based AOP support is discussed in this chapter. Spring 2.0 AOP
  remains fully backwards compatible with Spring 1.2 AOP, and the lower-level AOP support offered by
  the Spring 1.2 APIs is discussed in the following chapter.


AOP is used in the Spring Framework to...


• ... provide declarative enterprise services, especially as a replacement for EJB declarative services. The most
  important such service is declarative transaction management.

• ... allow users to implement custom aspects, complementing their use of OOP with AOP.

If you are interested only in generic declarative services or other pre-packaged declarative middleware
services such as pooling, you do not need to work directly with Spring AOP, and can skip most of this chapter.


6.1.1. AOP concepts

Let us begin by defining some central AOP concepts and terminology. These terms are not Spring-specific...
unfortunately, AOP terminology is not particularly intuitive; however, it would be even more confusing if
Spring used its own terminology.


• Aspect: a modularization of a concern that cuts across multiple classes. Transaction management is a good
  example of a crosscutting concern in J2EE applications. In Spring AOP, aspects are implemented using
  regular classes (the schema-based approach) or regular classes annotated with the @Aspect annotation (the
  @AspectJ style).

• Join point: a point during the execution of a program, such as the execution of a method or the handling of an
  exception. In Spring AOP, a join point always represents a method execution.

                                            Spring Framework (2.5.6)                                         126
Aspect Oriented Programming with Spring


• Advice: action taken by an aspect at a particular join point. Different types of advice include "around,"
  "before" and "after" advice. (Advice types are discussed below.) Many AOP frameworks, including Spring,
  model an advice as an interceptor, maintaining a chain of interceptors around the join point.

• Pointcut: a predicate that matches join points. Advice is associated with a pointcut expression and runs at any
  join point matched by the pointcut (for example, the execution of a method with a certain name). The
  concept of join points as matched by pointcut expressions is central to AOP, and Spring uses the AspectJ
  pointcut expression language by default.

• Introduction: declaring additional methods or fields on behalf of a type. Spring AOP allows you to introduce
  new interfaces (and a corresponding implementation) to any advised object. For example, you could use an
  introduction to make a bean implement an IsModified interface, to simplify caching. (An introduction is
  known as an inter-type declaration in the AspectJ community.)

• Target object: object being advised by one or more aspects. Also referred to as the advised object. Since
  Spring AOP is implemented using runtime proxies, this object will always be a proxied object.

• AOP proxy: an object created by the AOP framework in order to implement the aspect contracts (advise
  method executions and so on). In the Spring Framework, an AOP proxy will be a JDK dynamic proxy or a
  CGLIB proxy.

• Weaving: linking aspects with other application types or objects to create an advised object. This can be done
  at compile time (using the AspectJ compiler, for example), load time, or at runtime. Spring AOP, like other
  pure Java AOP frameworks, performs weaving at runtime.

Types of advice:


• Before advice: Advice that executes before a join point, but which does not have the ability to prevent
  execution flow proceeding to the join point (unless it throws an exception).

• After returning advice: Advice to be executed after a join point completes normally: for example, if a method
  returns without throwing an exception.

• After throwing advice: Advice to be executed if a method exits by throwing an exception.

• After (finally) advice: Advice to be executed regardless of the means by which a join point exits (normal or
  exceptional return).

• Around advice: Advice that surrounds a join point such as a method invocation. This is the most powerful
  kind of advice. Around advice can perform custom behavior before and after the method invocation. It is also
  responsible for choosing whether to proceed to the join point or to shortcut the advised method execution by
  returning its own return value or throwing an exception.

Around advice is the most general kind of advice. Since Spring AOP, like AspectJ, provides a full range of
advice types, we recommend that you use the least powerful advice type that can implement the required
behavior. For example, if you need only to update a cache with the return value of a method, you are better off
implementing an after returning advice than an around advice, although an around advice can accomplish the
same thing. Using the most specific advice type provides a simpler programming model with less potential for
errors. For example, you do not need to invoke the proceed() method on the JoinPoint used for around
advice, and hence cannot fail to invoke it.

In Spring 2.0, all advice parameters are statically typed, so that you work with advice parameters of the
appropriate type (the type of the return value from a method execution for example) rather than Object arrays.



                                           Spring Framework (2.5.6)                                          127
Aspect Oriented Programming with Spring


The concept of join points, matched by pointcuts, is the key to AOP which distinguishes it from older
technologies offering only interception. Pointcuts enable advice to be targeted independently of the
Object-Oriented hierarchy. For example, an around advice providing declarative transaction management can
be applied to a set of methods spanning multiple objects (such as all business operations in the service layer).


6.1.2. Spring AOP capabilities and goals

Spring AOP is implemented in pure Java. There is no need for a special compilation process. Spring AOP does
not need to control the class loader hierarchy, and is thus suitable for use in a J2EE web container or
application server.

Spring AOP currently supports only method execution join points (advising the execution of methods on Spring
beans). Field interception is not implemented, although support for field interception could be added without
breaking the core Spring AOP APIs. If you need to advise field access and update join points, consider a
language such as AspectJ.

Spring AOP's approach to AOP differs from that of most other AOP frameworks. The aim is not to provide the
most complete AOP implementation (although Spring AOP is quite capable); it is rather to provide a close
integration between AOP implementation and Spring IoC to help solve common problems in enterprise
applications.

Thus, for example, the Spring Framework's AOP functionality is normally used in conjunction with the Spring
IoC container. Aspects are configured using normal bean definition syntax (although this allows powerful
"autoproxying" capabilities): this is a crucial difference from other AOP implementations. There are some
things you cannot do easily or efficiently with Spring AOP, such as advise very fine-grained objects (such as
domain objects typically): AspectJ is the best choice in such cases. However, our experience is that Spring
AOP provides an excellent solution to most problems in J2EE applications that are amenable to AOP.

Spring AOP will never strive to compete with AspectJ to provide a comprehensive AOP solution. We believe
that both proxy-based frameworks like Spring AOP and full-blown frameworks such as AspectJ are valuable,
and that they are complementary, rather than in competition. Spring 2.0 seamlessly integrates Spring AOP and
IoC with AspectJ, to enable all uses of AOP to be catered for within a consistent Spring-based application
architecture. This integration does not affect the Spring AOP API or the AOP Alliance API: Spring AOP
remains backward-compatible. See the following chapter for a discussion of the Spring AOP APIs.

            Note
            One of the central tenets of the Spring Framework is that of non-invasiveness; this is the idea that
            you should not be forced to introduce framework-specific classes and interfaces into your
            business/domain model. However, in some places the Spring Framework does give you the option
            to introduce Spring Framework-specific dependencies into your codebase: the rationale in giving
            you such options is because in certain scenarios it might be just plain easier to read or code some
            specific piece of functionality in such a way. The Spring Framework (almost) always offers you the
            choice though: you have the freedom to make an informed decision as to which option best suits
            your particular use case or scenario.

            One such choice that is relevant to this chapter is that of which AOP framework (and which AOP
            style) to choose. You have the choice of AspectJ and/or Spring AOP, and you also have the choice
            of either the @AspectJ annotation-style approach or the Spring XML configuration-style approach.
            The fact that this chapter chooses to introduce the @AspectJ-style approach first should not be
            taken as an indication that the Spring team favors the @AspectJ annotation-style approach over the
            Spring XML configuration-style.


                                          Spring Framework (2.5.6)                                          128
Aspect Oriented Programming with Spring



            See the section entitled Section 6.4, “Choosing which AOP declaration style to use” for a fuller
            discussion of the whys and wherefores of each style.



6.1.3. AOP Proxies

Spring AOP defaults to using standard J2SE dynamic proxies for AOP proxies. This enables any interface (or
set of interfaces) to be proxied.

Spring AOP can also use CGLIB proxies. This is necessary to proxy classes, rather than interfaces. CGLIB is
used by default if a business object does not implement an interface. As it is good practice to program to
interfaces rather than classes, business classes normally will implement one or more business interfaces. It is
possible to force the use of CGLIB, in those (hopefully rare) cases where you need to advise a method that is
not declared on an interface, or where you need to pass a proxied object to a method as a concrete type.

It is important to grasp the fact that Spring AOP is proxy-based. See the section entitled Section 6.6.1,
“Understanding AOP proxies” for a thorough examination of exactly what this implementation detail actually
means.


6.2. @AspectJ support
@AspectJ refers to a style of declaring aspects as regular Java classes annotated with Java 5 annotations. The
@AspectJ style was introduced by the AspectJ project as part of the AspectJ 5 release. Spring 2.0 interprets the
same annotations as AspectJ 5, using a library supplied by AspectJ for pointcut parsing and matching. The
AOP runtime is still pure Spring AOP though, and there is no dependency on the AspectJ compiler or weaver.

Using the AspectJ compiler and weaver enables use of the full AspectJ language, and is discussed in
Section 6.8, “Using AspectJ with Spring applications”.


6.2.1. Enabling @AspectJ Support

To use @AspectJ aspects in a Spring configuration you need to enable Spring support for configuring Spring
AOP based on @AspectJ aspects, and autoproxying beans based on whether or not they are advised by those
aspects. By autoproxying we mean that if Spring determines that a bean is advised by one or more aspects, it
will automatically generate a proxy for that bean to intercept method invocations and ensure that advice is
executed as needed.

The @AspectJ support is enabled by including the following element inside your spring configuration:

 <aop:aspectj-autoproxy/>



This assumes that you are using schema support as described in Appendix A, XML Schema-based
configuration. See Section A.2.7, “The aop schema” for how to import the tags in the aop namespace.

If you are using the DTD, it is still possible to enable @AspectJ support by adding the following definition to
your application context:

 <bean class="org.springframework.aop.aspectj.annotation.AnnotationAwareAspectJAutoProxyCreator" />



You will also need two AspectJ libraries on the classpath of your application: aspectjweaver.jar and


                                          Spring Framework (2.5.6)                                          129
Aspect Oriented Programming with Spring

aspectjrt.jar.    These libraries are available in the 'lib' directory of an AspectJ installation (version 1.5.1 or
later required), or in the 'lib/aspectj' directory of the Spring-with-dependencies distribution.


6.2.2. Declaring an aspect

With the @AspectJ support enabled, any bean defined in your application context with a class that is an
@AspectJ aspect (has the @Aspect annotation) will be automatically detected by Spring and used to configure
Spring AOP. The following example shows the minimal definition required for a not-very-useful aspect:

A regular bean definition in the application context, pointing to a bean class that has the @Aspect annotation:

 <bean id="myAspect" class="org.xyz.NotVeryUsefulAspect">
    <!-- configure properties of aspect here as normal -->
 </bean>



And the NotVeryUsefulAspect class definition, annotated with org.aspectj.lang.annotation.Aspect
annotation;

 package org.xyz;
 import org.aspectj.lang.annotation.Aspect;

 @Aspect
 public class NotVeryUsefulAspect {

 }



Aspects (classes annotated with @Aspect) may have methods and fields just like any other class. They may also
contain pointcut, advice, and introduction (inter-type) declarations.

            Advising aspects
            In Spring AOP, it is not possible to have aspects themselves be the target of advice from other
            aspects. The @Aspect annotation on a class marks it as an aspect, and hence excludes it from
            auto-proxying.



6.2.3. Declaring a pointcut

Recall that pointcuts determine join points of interest, and thus enable us to control when advice executes.
Spring AOP only supports method execution join points for Spring beans, so you can think of a pointcut as
matching the execution of methods on Spring beans. A pointcut declaration has two parts: a signature
comprising a name and any parameters, and a pointcut expression that determines exactly which method
executions we are interested in. In the @AspectJ annotation-style of AOP, a pointcut signature is provided by a
regular method definition, and the pointcut expression is indicated using the @Pointcut annotation (the method
serving as the pointcut signature must have a void return type).

An example will help make this distinction between a pointcut signature and a pointcut expression clear. The
following example defines a pointcut named 'anyOldTransfer' that will match the execution of any method
named 'transfer':

 @Pointcut("execution(* transfer(..))")// the pointcut expression
 private void anyOldTransfer() {}// the pointcut signature



The pointcut expression that forms the value of the @Pointcut annotation is a regular AspectJ 5 pointcut
expression. For a full discussion of AspectJ's pointcut language, see the AspectJ Programming Guide (and for


                                            Spring Framework (2.5.6)                                           130
Aspect Oriented Programming with Spring

Java 5 based extensions, the AspectJ 5 Developers Notebook) or one of the books on AspectJ such as “Eclipse
AspectJ” by Colyer et. al. or “AspectJ in Action” by Ramnivas Laddad.

6.2.3.1. Supported Pointcut Designators

Spring AOP supports the following AspectJ pointcut designators (PCD) for use in pointcut expressions:

  Other pointcut types

  The full AspectJ pointcut language supports additional pointcut designators that are not supported in
  Spring. These are: call, get, set, preinitialization, staticinitialization, initialization,
  handler, adviceexecution, withincode, cflow, cflowbelow, if, @this, and @withincode. Use of
  these pointcut designators in pointcut expressions interpreted by Spring AOP will result in an
  IllegalArgumentException being thrown.

  The set of pointcut designators supported by Spring AOP may be extended in future releases both to
  support more of the AspectJ pointcut designators.



• execution - for matching method execution join points, this is the primary pointcut designator you will use
  when working with Spring AOP

• within - limits matching to join points within certain types (simply the execution of a method declared within
  a matching type when using Spring AOP)

• this - limits matching to join points (the execution of methods when using Spring AOP) where the bean
  reference (Spring AOP proxy) is an instance of the given type

• target - limits matching to join points (the execution of methods when using Spring AOP) where the target
  object (application object being proxied) is an instance of the given type

• args - limits matching to join points (the execution of methods when using Spring AOP) where the
  arguments are instances of the given types

• @target - limits matching to join points (the execution of methods when using Spring AOP) where the class
  of the executing object has an annotation of the given type

• @args - limits matching to join points (the execution of methods when using Spring AOP) where the runtime
  type of the actual arguments passed have annotations of the given type(s)

• @within - limits matching to join points within types that have the given annotation (the execution of
  methods declared in types with the given annotation when using Spring AOP)

• @annotation - limits matching to join points where the subject of the join point (method being executed in
  Spring AOP) has the given annotation

Because Spring AOP limits matching to only method execution join points, the discussion of the pointcut
designators above gives a narrower definition than you will find in the AspectJ programming guide. In addition,
AspectJ itself has type-based semantics and at an execution join point both 'this' and 'target' refer to the same
object - the object executing the method. Spring AOP is a proxy-based system and differentiates between the
proxy object itself (bound to 'this') and the target object behind the proxy (bound to 'target').

            Note


                                           Spring Framework (2.5.6)                                          131
Aspect Oriented Programming with Spring



            Due to the proxy-based nature of Spring's AOP framework, protected methods are by definition not
            intercepted, neither for JDK proxies (where this isn't applicable) nor for CGLIB proxies (where this
            is technically possible but not recommendable for AOP purposes). As a consequence, any given
            pointcut will be matched against public methods only!

            If your interception needs include protected/private methods or even constructors, consider the use
            of Spring-driven native AspectJ weaving instead of Spring's proxy-based AOP framework. This
            constitutes a different mode of AOP usage with different characteristics, so be sure to make
            yourself familiar with weaving first before making a decision.


Spring AOP also supports an additional PCD named 'bean'. This PCD allows you to limit the matching of join
points to a particular named Spring bean, or to a set of named Spring beans (when using wildcards). The 'bean'
PCD has the following form:

 bean(idOrNameOfBean)



The 'idOrNameOfBean' token can be the name of any Spring bean: limited wildcard support using the '*'
character is provided, so if you establish some naming conventions for your Spring beans you can quite easily
write a 'bean' PCD expression to pick them out. As is the case with other pointcut designators, the 'bean' PCD
can be &&'ed, ||'ed, and ! (negated) too.

            Note
            Please note that the 'bean' PCD is only supported in Spring AOP - and not in native AspectJ
            weaving. It is a Spring-specific extension to the standard PCDs that AspectJ defines.

            The 'bean' PCD operates at the instance level (building on the Spring bean name concept) rather
            than at the type level only (which is what weaving-based AOP is limited to). Instance-based
            pointcut designators are a special capability of Spring's proxy-based AOP framework and its close
            integration with the Spring bean factory, where it is natural and straightforward to identify specific
            beans by name.


6.2.3.2. Combining pointcut expressions

Pointcut expressions can be combined using '&&', '||' and '!'. It is also possible to refer to pointcut expressions
by name. The following example shows three pointcut expressions: anyPublicOperation (which matches if a
method execution join point represents the execution of any public method); inTrading (which matches if a
method execution is in the trading module), and tradingOperation (which matches if a method execution
represents any public method in the trading module).

      @Pointcut("execution(public * *(..))")
      private void anyPublicOperation() {}

      @Pointcut("within(com.xyz.someapp.trading..*)")
      private void inTrading() {}

      @Pointcut("anyPublicOperation() && inTrading()")
      private void tradingOperation() {}



It is a best practice to build more complex pointcut expressions out of smaller named components as shown
above. When referring to pointcuts by name, normal Java visibility rules apply (you can see private pointcuts in
the same type, protected pointcuts in the hierarchy, public pointcuts anywhere and so on). Visibility does not


                                            Spring Framework (2.5.6)                                           132
Aspect Oriented Programming with Spring


affect pointcut matching.

6.2.3.3. Sharing common pointcut definitions

When working with enterprise applications, you often want to refer to modules of the application and particular
sets of operations from within several aspects. We recommend defining a "SystemArchitecture" aspect that
captures common pointcut expressions for this purpose. A typical such aspect would look as follows:

 package com.xyz.someapp;

 import org.aspectj.lang.annotation.Aspect;
 import org.aspectj.lang.annotation.Pointcut;

 @Aspect
 public class SystemArchitecture {

     /**
      * A join point is in the web layer if the method is defined
      * in a type in the com.xyz.someapp.web package or any sub-package
      * under that.
      */
     @Pointcut("within(com.xyz.someapp.web..*)")
     public void inWebLayer() {}

     /**
      * A join point is in the service layer if the method is defined
      * in a type in the com.xyz.someapp.service package or any sub-package
      * under that.
      */
     @Pointcut("within(com.xyz.someapp.service..*)")
     public void inServiceLayer() {}

     /**
      * A join point is in the data access layer if the method is defined
      * in a type in the com.xyz.someapp.dao package or any sub-package
      * under that.
      */
     @Pointcut("within(com.xyz.someapp.dao..*)")
     public void inDataAccessLayer() {}

     /**
      * A business service is the execution of any method defined on a service
      * interface. This definition assumes that interfaces are placed in the
      * "service" package, and that implementation types are in sub-packages.
      *
      * If you group service interfaces by functional area (for example,
      * in packages com.xyz.someapp.abc.service and com.xyz.def.service) then
      * the pointcut expression "execution(* com.xyz.someapp..service.*.*(..))"
      * could be used instead.
      *
      * Alternatively, you can write the expression using the 'bean'
      * PCD, like so "bean(*Service)". (This assumes that you have
      * named your Spring service beans in a consistent fashion.)
      */
     @Pointcut("execution(* com.xyz.someapp.service.*.*(..))")
     public void businessService() {}

     /**
      * A data access operation is the execution of any method defined on a
      * dao interface. This definition assumes that interfaces are placed in the
      * "dao" package, and that implementation types are in sub-packages.
      */
     @Pointcut("execution(* com.xyz.someapp.dao.*.*(..))")
     public void dataAccessOperation() {}

 }



The pointcuts defined in such an aspect can be referred to anywhere that you need a pointcut expression. For
example, to make the service layer transactional, you could write:

 <aop:config>
   <aop:advisor


                                           Spring Framework (2.5.6)                                        133
Aspect Oriented Programming with Spring


       pointcut="com.xyz.someapp.SystemArchitecture.businessService()"
       advice-ref="tx-advice"/>
 </aop:config>

 <tx:advice id="tx-advice">
   <tx:attributes>
     <tx:method name="*" propagation="REQUIRED"/>
   </tx:attributes>
 </tx:advice>



The <aop:config> and <aop:advisor> elements are discussed in Section 6.3, “Schema-based AOP support”.
The transaction elements are discussed in Chapter 9, Transaction management.

6.2.3.4. Examples

Spring AOP users are likely to use the execution pointcut designator the most often. The format of an
execution expression is:

 execution(modifiers-pattern? ret-type-pattern declaring-type-pattern? name-pattern(param-pattern)
           throws-pattern?)



All parts except the returning type pattern (ret-type-pattern in the snippet above), name pattern, and parameters
pattern are optional. The returning type pattern determines what the return type of the method must be in order
for a join point to be matched. Most frequently you will use * as the returning type pattern, which matches any
return type. A fully-qualified type name will match only when the method returns the given type. The name
pattern matches the method name. You can use the * wildcard as all or part of a name pattern. The parameters
pattern is slightly more complex: () matches a method that takes no parameters, whereas (..) matches any
number of parameters (zero or more). The pattern (*) matches a method taking one parameter of any type,
(*,String) matches a method taking two parameters, the first can be of any type, the second must be a String.
Consult the Language Semantics section of the AspectJ Programming Guide for more information.

Some examples of common pointcut expressions are given below.


• the execution of any public method:

 execution(public * *(..))



• the execution of any method with a name beginning with "set":

 execution(* set*(..))



• the execution of any method defined by the AccountService interface:

 execution(* com.xyz.service.AccountService.*(..))



• the execution of any method defined in the service package:

 execution(* com.xyz.service.*.*(..))



• the execution of any method defined in the service package or a sub-package:

 execution(* com.xyz.service..*.*(..))




                                           Spring Framework (2.5.6)                                          134
Aspect Oriented Programming with Spring


• any join point (method execution only in Spring AOP) within the service package:

 within(com.xyz.service.*)



• any join point (method execution only in Spring AOP) within the service package or a sub-package:

 within(com.xyz.service..*)



• any join point (method execution only in Spring AOP) where the proxy implements the AccountService
  interface:

 this(com.xyz.service.AccountService)



  'this' is more commonly used in a binding form :- see the following section on advice for how to make the
  proxy object available in the advice body.

• any join point (method execution only in Spring AOP) where the target object implements the
  AccountService interface:

 target(com.xyz.service.AccountService)



  'target' is more commonly used in a binding form :- see the following section on advice for how to make the
  target object available in the advice body.

• any join point (method execution only in Spring AOP) which takes a single parameter, and where the
  argument passed at runtime is Serializable:

 args(java.io.Serializable)


  'args' is more commonly used in a binding form :- see the following section on advice for how to make the
  method arguments available in the advice body.

  Note that the pointcut given in this example is different to execution(* *(java.io.Serializable)): the
  args version matches if the argument passed at runtime is Serializable, the execution version matches if the
  method signature declares a single parameter of type Serializable.

• any join point (method execution only in Spring AOP) where the target object has an @Transactional
  annotation:

 @target(org.springframework.transaction.annotation.Transactional)



  '@target' can also be used in a binding form :- see the following section on advice for how to make the
  annotation object available in the advice body.

• any join point (method execution only in Spring AOP) where the declared type of the target object has an
  @Transactional annotation:

 @within(org.springframework.transaction.annotation.Transactional)



  '@within' can also be used in a binding form :- see the following section on advice for how to make the
  annotation object available in the advice body.

• any join point (method execution only in Spring AOP) where the executing method has an @Transactional


                                         Spring Framework (2.5.6)                                         135
Aspect Oriented Programming with Spring


  annotation:

 @annotation(org.springframework.transaction.annotation.Transactional)



  '@annotation' can also be used in a binding form :- see the following section on advice for how to make the
  annotation object available in the advice body.

• any join point (method execution only in Spring AOP) which takes a single parameter, and where the
  runtime type of the argument passed has the @Classified annotation:

 @args(com.xyz.security.Classified)



  '@args' can also be used in a binding form :- see the following section on advice for how to make the
  annotation object(s) available in the advice body.

• any join point (method execution only in Spring AOP) on a Spring bean named 'tradeService':

 bean(tradeService)



• any join point (method execution only in Spring AOP) on Spring beans having names that match the
  wildcard expression '*Service':

 bean(*Service)




6.2.4. Declaring advice

Advice is associated with a pointcut expression, and runs before, after, or around method executions matched
by the pointcut. The pointcut expression may be either a simple reference to a named pointcut, or a pointcut
expression declared in place.

6.2.4.1. Before advice

Before advice is declared in an aspect using the @Before annotation:

 import org.aspectj.lang.annotation.Aspect;
 import org.aspectj.lang.annotation.Before;

 @Aspect
 public class BeforeExample {

     @Before("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
     public void doAccessCheck() {
       // ...
     }

 }



If using an in-place pointcut expression we could rewrite the above example as:

 import org.aspectj.lang.annotation.Aspect;
 import org.aspectj.lang.annotation.Before;

 @Aspect
 public class BeforeExample {

     @Before("execution(* com.xyz.myapp.dao.*.*(..))")
     public void doAccessCheck() {
       // ...


                                          Spring Framework (2.5.6)                                       136
Aspect Oriented Programming with Spring

     }

 }




6.2.4.2. After returning advice

After returning advice runs when a matched method execution returns normally. It is declared using the
@AfterReturning annotation:

 import org.aspectj.lang.annotation.Aspect;
 import org.aspectj.lang.annotation.AfterReturning;

 @Aspect
 public class AfterReturningExample {

     @AfterReturning("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
     public void doAccessCheck() {
       // ...
     }

 }


Note: it is of course possible to have multiple advice declarations, and other members as well, all inside the
same aspect. We're just showing a single advice declaration in these examples to focus on the issue under
discussion at the time.

Sometimes you need access in the advice body to the actual value that was returned. You can use the form of
@AfterReturning that binds the return value for this:

 import org.aspectj.lang.annotation.Aspect;
 import org.aspectj.lang.annotation.AfterReturning;

 @Aspect
 public class AfterReturningExample {

     @AfterReturning(
       pointcut="com.xyz.myapp.SystemArchitecture.dataAccessOperation()",
       returning="retVal")
     public void doAccessCheck(Object retVal) {
       // ...
     }

 }



The name used in the returning attribute must correspond to the name of a parameter in the advice method.
When a method execution returns, the return value will be passed to the advice method as the corresponding
argument value. A returning clause also restricts matching to only those method executions that return a value
of the specified type (Object in this case, which will match any return value).

Please note that it is not possible to return a totally different reference when using after-returning advice.

6.2.4.3. After throwing advice

After throwing advice runs when a matched method execution exits by throwing an exception. It is declared
using the @AfterThrowing annotation:

 import org.aspectj.lang.annotation.Aspect;
 import org.aspectj.lang.annotation.AfterThrowing;

 @Aspect
 public class AfterThrowingExample {

     @AfterThrowing("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
     public void doRecoveryActions() {
       // ...


                                             Spring Framework (2.5.6)                                            137
Aspect Oriented Programming with Spring

     }

 }



Often you want the advice to run only when exceptions of a given type are thrown, and you also often need
access to the thrown exception in the advice body. Use the throwing attribute to both restrict matching (if
desired, use Throwable as the exception type otherwise) and bind the thrown exception to an advice parameter.

 import org.aspectj.lang.annotation.Aspect;
 import org.aspectj.lang.annotation.AfterThrowing;

 @Aspect
 public class AfterThrowingExample {

     @AfterThrowing(
       pointcut="com.xyz.myapp.SystemArchitecture.dataAccessOperation()",
       throwing="ex")
     public void doRecoveryActions(DataAccessException ex) {
       // ...
     }

 }



The name used in the throwing attribute must correspond to the name of a parameter in the advice method.
When a method execution exits by throwing an exception, the exception will be passed to the advice method as
the corresponding argument value. A throwing clause also restricts matching to only those method executions
that throw an exception of the specified type (DataAccessException in this case).

6.2.4.4. After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the @After
annotation. After advice must be prepared to handle both normal and exception return conditions. It is typically
used for releasing resources, etc.

 import org.aspectj.lang.annotation.Aspect;
 import org.aspectj.lang.annotation.After;

 @Aspect
 public class AfterFinallyExample {

     @After("com.xyz.myapp.SystemArchitecture.dataAccessOperation()")
     public void doReleaseLock() {
       // ...
     }

 }




6.2.4.5. Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution. It has the
opportunity to do work both before and after the method executes, and to determine when, how, and even if, the
method actually gets to execute at all. Around advice is often used if you need to share state before and after a
method execution in a thread-safe manner (starting and stopping a timer for example). Always use the least
powerful form of advice that meets your requirements (i.e. don't use around advice if simple before advice
would do).

Around advice is declared using the @Around annotation. The first parameter of the advice method must be of
type ProceedingJoinPoint. Within the body of the advice, calling proceed() on the ProceedingJoinPoint
causes the underlying method to execute. The proceed method may also be called passing in an Object[] - the
values in the array will be used as the arguments to the method execution when it proceeds.


                                           Spring Framework (2.5.6)                                          138
Aspect Oriented Programming with Spring

The behavior of proceed when called with an Object[] is a little different than the behavior of proceed for
around advice compiled by the AspectJ compiler. For around advice written using the traditional AspectJ
language, the number of arguments passed to proceed must match the number of arguments passed to the
around advice (not the number of arguments taken by the underlying join point), and the value passed to
proceed in a given argument position supplants the original value at the join point for the entity the value was
bound to (Don't worry if this doesn't make sense right now!). The approach taken by Spring is simpler and a
better match to its proxy-based, execution only semantics. You only need to be aware of this difference if you
are compiling @AspectJ aspects written for Spring and using proceed with arguments with the AspectJ
compiler and weaver. There is a way to write such aspects that is 100% compatible across both Spring AOP
and AspectJ, and this is discussed in the following section on advice parameters.

 import org.aspectj.lang.annotation.Aspect;
 import org.aspectj.lang.annotation.Around;
 import org.aspectj.lang.ProceedingJoinPoint;

 @Aspect
 public class AroundExample {

     @Around("com.xyz.myapp.SystemArchitecture.businessService()")
     public Object doBasicProfiling(ProceedingJoinPoint pjp) throws Throwable {
       // start stopwatch
       Object retVal = pjp.proceed();
       // stop stopwatch
       return retVal;
     }

 }



The value returned by the around advice will be the return value seen by the caller of the method. A simple
caching aspect for example could return a value from a cache if it has one, and invoke proceed() if it does not.
Note that proceed may be invoked once, many times, or not at all within the body of the around advice, all of
these are quite legal.

6.2.4.6. Advice parameters

Spring 2.0 offers fully typed advice - meaning that you declare the parameters you need in the advice signature
(as we saw for the returning and throwing examples above) rather than work with Object[] arrays all the time.
We'll see how to make argument and other contextual values available to the advice body in a moment. First
let's take a look at how to write generic advice that can find out about the method the advice is currently
advising.

6.2.4.6.1. Access to the current JoinPoint
Any advice method may declare as its first parameter, a parameter of type org.aspectj.lang.JoinPoint
(please note that around advice is required to declare a first parameter of type ProceedingJoinPoint, which is
a subclass of JoinPoint. The JoinPoint interface provides a number of useful methods such as getArgs()
(returns the method arguments), getThis() (returns the proxy object), getTarget() (returns the target object),
getSignature() (returns a description of the method that is being advised) and toString() (prints a useful
description of the method being advised). Please do consult the Javadocs for full details.

6.2.4.6.2. Passing parameters to advice
We've already seen how to bind the returned value or exception value (using after returning and after throwing
advice). To make argument values available to the advice body, you can use the binding form of args. If a
parameter name is used in place of a type name in an args expression, then the value of the corresponding
argument will be passed as the parameter value when the advice is invoked. An example should make this
clearer. Suppose you want to advise the execution of dao operations that take an Account object as the first
parameter, and you need access to the account in the advice body. You could write the following:


                                          Spring Framework (2.5.6)                                          139
Aspect Oriented Programming with Spring


 @Before("com.xyz.myapp.SystemArchitecture.dataAccessOperation() &&" +
          "args(account,..)")
 public void validateAccount(Account account) {
   // ...
 }



The args(account,..) part of the pointcut expression serves two purposes: firstly, it restricts matching to only
those method executions where the method takes at least one parameter, and the argument passed to that
parameter is an instance of Account; secondly, it makes the actual Account object available to the advice via
the account parameter.

Another way of writing this is to declare a pointcut that "provides" the Account object value when it matches a
join point, and then just refer to the named pointcut from the advice. This would look as follows:

 @Pointcut("com.xyz.myapp.SystemArchitecture.dataAccessOperation() &&" +
           "args(account,..)")
 private void accountDataAccessOperation(Account account) {}

 @Before("accountDataAccessOperation(account)")
 public void validateAccount(Account account) {
   // ...
 }



The interested reader is once more referred to the AspectJ programming guide for more details.

The proxy object (this), target object (target), and annotations (@within, @target, @annotation, @args)
can all be bound in a similar fashion. The following example shows how you could match the execution of
methods annotated with an @Auditable annotation, and extract the audit code.

First the definition of the @Auditable annotation:

 @Retention(RetentionPolicy.RUNTIME)
 @Target(ElementType.METHOD)
 public @interface Auditable {
         AuditCode value();
 }



And then the advice that matches the execution of @Auditable methods:

 @Before("com.xyz.lib.Pointcuts.anyPublicMethod() && " +
          "@annotation(auditable)")
 public void audit(Auditable auditable) {
   AuditCode code = auditable.value();
   // ...
 }



6.2.4.6.3. Determining argument names
The parameter binding in advice invocations relies on matching names used in pointcut expressions to declared
parameter names in (advice and pointcut) method signatures. Parameter names are not available through Java
reflection, so Spring AOP uses the following strategies to determine parameter names:


1. If the parameter names have been specified by the user explicitly, then the specified parameter names are
   used: both the advice and the pointcut annotations have an optional "argNames" attribute which can be used
   to specify the argument names of the annotated method - these argument names are available at runtime. For
   example:

 @Before(
    value="com.xyz.lib.Pointcuts.anyPublicMethod() && target(bean) && @annotation(auditable)",


                                           Spring Framework (2.5.6)                                         140
Aspect Oriented Programming with Spring



    argNames="bean,auditable")
 public void audit(Object bean, Auditable auditable) {
   AuditCode code = auditable.value();
   // ... use code and bean
 }



   If the first parameter is of the JoinPoint, ProceedingJoinPoint, or JoinPoint.StaticPart type, you may
   leave out the name of the parameter from the value of the "argNames" attribute. For example, if you modify
   the preceding advice to receive the join point object, the "argNames" attribute need not include it:

 @Before(
    value="com.xyz.lib.Pointcuts.anyPublicMethod() && target(bean) && @annotation(auditable)",
    argNames="bean,auditable")
 public void audit(JoinPoint jp, Object bean, Auditable auditable) {
   AuditCode code = auditable.value();
   // ... use code, bean, and jp
 }



   The special treatment given to the first parameter of the JoinPoint, ProceedingJoinPoint, and
   JoinPoint.StaticPart types is particularly convenient for advice that do not collect any other join point
   context. In such situations, you may simply omit the "argNames" attribute. For example, the following
   advice need not declare the "argNames" attribute:

 @Before(
    "com.xyz.lib.Pointcuts.anyPublicMethod()")
 public void audit(JoinPoint jp) {
   // ... use jp
 }



2. Using the 'argNames' attribute is a little clumsy, so if the 'argNames' attribute has not been specified, then
   Spring AOP will look at the debug information for the class and try to determine the parameter names from
   the local variable table. This information will be present as long as the classes have been compiled with
   debug information ('-g:vars' at a minimum). The consequences of compiling with this flag on are: (1)
   your code will be slightly easier to understand (reverse engineer), (2) the class file sizes will be very slightly
   bigger (typically inconsequential), (3) the optimization to remove unused local variables will not be applied
   by your compiler. In other words, you should encounter no difficulties building with this flag on.
   If an @AspectJ aspect has been compiled by the AspectJ compiler (ajc) even without the debug information
   then there is no need to add the argNames attribute as the compiler will retain the needed information.

3. If the code has been compiled without the necessary debug information, then Spring AOP will attempt to
   deduce the pairing of binding variables to parameters (for example, if only one variable is bound in the
   pointcut expression, and the advice method only takes one parameter, the pairing is obvious!). If the binding
   of variables is ambiguous given the available information, then an AmbiguousBindingException will be
   thrown.

4. If all of the above strategies fail then an IllegalArgumentException will be thrown.

6.2.4.6.4. Proceeding with arguments
We remarked earlier that we would describe how to write a proceed call with arguments that works consistently
across Spring AOP and AspectJ. The solution is simply to ensure that the advice signature binds each of the
method parameters in order. For example:

 @Around("execution(List<Account> find*(..)) &&" +
         "com.xyz.myapp.SystemArchitecture.inDataAccessLayer() && " +
         "args(accountHolderNamePattern)")
 public Object preProcessQueryPattern(ProceedingJoinPoint pjp, String accountHolderNamePattern)
 throws Throwable {


                                            Spring Framework (2.5.6)                                             141
Aspect Oriented Programming with Spring


     String newPattern = preProcess(accountHolderNamePattern);
     return pjp.proceed(new Object[] {newPattern});
 }



In many cases you will be doing this binding anyway (as in the example above).

6.2.4.7. Advice ordering

What happens when multiple pieces of advice all want to run at the same join point? Spring AOP follows the
same precedence rules as AspectJ to determine the order of advice execution. The highest precedence advice
runs first "on the way in" (so given two pieces of before advice, the one with highest precedence runs first).
"On the way out" from a join point, the highest precedence advice runs last (so given two pieces of after advice,
the one with the highest precedence will run second).

When two pieces of advice defined in different aspects both need to run at the same join point, unless you
specify otherwise the order of execution is undefined. You can control the order of execution by specifying
precedence. This is done in the normal Spring way by either implementing the
org.springframework.core.Ordered interface in the aspect class or annotating it with the Order annotation.
Given two aspects, the aspect returning the lower value from Ordered.getValue() (or the annotation value)
has the higher precedence.

When two pieces of advice defined in the same aspect both need to run at the same join point, the ordering is
undefined (since there is no way to retrieve the declaration order via reflection for javac-compiled classes).
Consider collapsing such advice methods into one advice method per join point in each aspect class, or refactor
the pieces of advice into separate aspect classes - which can be ordered at the aspect level.


6.2.5. Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised objects
implement a given interface, and to provide an implementation of that interface on behalf of those objects.

An introduction is made using the @DeclareParents annotation. This annotation is used to declare that
matching types have a new parent (hence the name). For example, given an interface UsageTracked, and an
implementation of that interface DefaultUsageTracked, the following aspect declares that all implementors of
service interfaces also implement the UsageTracked interface. (In order to expose statistics via JMX for
example.)

 @Aspect
 public class UsageTracking {

     @DeclareParents(value="com.xzy.myapp.service.*+",
                     defaultImpl=DefaultUsageTracked.class)
     public static UsageTracked mixin;

     @Before("com.xyz.myapp.SystemArchitecture.businessService() &&" +
             "this(usageTracked)")
     public void recordUsage(UsageTracked usageTracked) {
       usageTracked.incrementUseCount();
     }

 }



The interface to be implemented is determined by the type of the annotated field. The value attribute of the
@DeclareParents annotation is an AspectJ type pattern :- any bean of a matching type will implement the
UsageTracked interface. Note that in the before advice of the above example, service beans can be directly used
as implementations of the UsageTracked interface. If accessing a bean programmatically you would write the


                                           Spring Framework (2.5.6)                                          142
Aspect Oriented Programming with Spring

following:

 UsageTracked usageTracked = (UsageTracked) context.getBean("myService");




6.2.6. Aspect instantiation models
(This is an advanced topic, so if you are just starting out with AOP you can safely skip it until later.)

By default there will be a single instance of each aspect within the application context. AspectJ calls this the
singleton instantiation model. It is possible to define aspects with alternate lifecycles :- Spring supports
AspectJ's perthis and pertarget instantiation models (percflow, percflowbelow, and pertypewithin are
not currently supported).

A "perthis" aspect is declared by specifying a perthis clause in the @Aspect annotation. Let's look at an
example, and then we'll explain how it works.

 @Aspect("perthis(com.xyz.myapp.SystemArchitecture.businessService())")
 public class MyAspect {

     private int someState;

     @Before(com.xyz.myapp.SystemArchitecture.businessService())
     public void recordServiceUsage() {
       // ...
     }

 }



The effect of the 'perthis' clause is that one aspect instance will be created for each unique service object
executing a business service (each unique object bound to 'this' at join points matched by the pointcut
expression). The aspect instance is created the first time that a method is invoked on the service object. The
aspect goes out of scope when the service object goes out of scope. Before the aspect instance is created, none
of the advice within it executes. As soon as the aspect instance has been created, the advice declared within it
will execute at matched join points, but only when the service object is the one this aspect is associated with.
See the AspectJ programming guide for more information on per-clauses.

The 'pertarget' instantiation model works in exactly the same way as perthis, but creates one aspect instance
for each unique target object at matched join points.


6.2.7. Example

Now that you have seen how all the constituent parts work, let's put them together to do something useful!

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock loser).
If the operation is retried, it is quite likely to succeed next time round. For business services where it is
appropriate to retry in such conditions (idempotent operations that don't need to go back to the user for conflict
resolution), we'd like to transparently retry the operation to avoid the client seeing a
PessimisticLockingFailureException. This is a requirement that clearly cuts across multiple services in the
service layer, and hence is ideal for implementing via an aspect.

Because we want to retry the operation, we will need to use around advice so that we can call proceed multiple
times. Here's how the basic aspect implementation looks:

 @Aspect
 public class ConcurrentOperationExecutor implements Ordered {

     private static final int DEFAULT_MAX_RETRIES = 2;

     private int maxRetries = DEFAULT_MAX_RETRIES;


                                            Spring Framework (2.5.6)                                          143
Aspect Oriented Programming with Spring


     private int order = 1;

     public void setMaxRetries(int maxRetries) {
        this.maxRetries = maxRetries;
     }

     public int getOrder() {
        return this.order;
     }

     public void setOrder(int order) {
        this.order = order;
     }

     @Around("com.xyz.myapp.SystemArchitecture.businessService()")
     public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable {
        int numAttempts = 0;
        PessimisticLockingFailureException lockFailureException;
        do {
           numAttempts++;
           try {
              return pjp.proceed();
           }
           catch(PessimisticLockingFailureException ex) {
              lockFailureException = ex;
           }
        }
        while(numAttempts <= this.maxRetries);
        throw lockFailureException;
     }

 }



Note that the aspect implements the Ordered interface so we can set the precedence of the aspect higher than
the transaction advice (we want a fresh transaction each time we retry). The maxRetries and order properties
will both be configured by Spring. The main action happens in the doConcurrentOperation around advice.
Notice that for the moment we're applying the retry logic to all businessService()s. We try to proceed, and if
we fail with an PessimisticLockingFailureException we simply try again unless we have exhausted all of
our retry attempts.

The corresponding Spring configuration is:

 <aop:aspectj-autoproxy/>

 <bean id="concurrentOperationExecutor"
   class="com.xyz.myapp.service.impl.ConcurrentOperationExecutor">
      <property name="maxRetries" value="3"/>
      <property name="order" value="100"/>
 </bean>



To refine the aspect so that it only retries idempotent operations, we might define an Idempotent annotation:

 @Retention(RetentionPolicy.RUNTIME)
 public @interface Idempotent {
   // marker annotation
 }



and use the annotation to annotate the implementation of service operations. The change to the aspect to only
retry idempotent operations simply involves refining the pointcut expression so that only @Idempotent
operations match:

 @Around("com.xyz.myapp.SystemArchitecture.businessService() && " +
         "@annotation(com.xyz.myapp.service.Idempotent)")
 public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable {
   ...
 }




                                           Spring Framework (2.5.6)                                         144
Aspect Oriented Programming with Spring



6.3. Schema-based AOP support
If you are unable to use Java 5, or simply prefer an XML-based format, then Spring 2.0 also offers support for
defining aspects using the new "aop" namespace tags. The exact same pointcut expressions and advice kinds
are supported as when using the @AspectJ style, hence in this section we will focus on the new syntax and refer
the reader to the discussion in the previous section (Section 6.2, “@AspectJ support”) for an understanding of
writing pointcut expressions and the binding of advice parameters.

To use the aop namespace tags described in this section, you need to import the spring-aop schema as described
in Appendix A, XML Schema-based configuration. See Section A.2.7, “The aop schema” for how to import the
tags in the aop namespace.

Within your Spring configurations, all aspect and advisor elements must be placed within an <aop:config>
element (you can have more than one <aop:config> element in an application context configuration). An
<aop:config> element can contain pointcut, advisor, and aspect elements (note these must be declared in that
order).

            Warning
            The <aop:config> style of configuration makes heavy use of Spring's auto-proxying mechanism.
            This can cause issues (such as advice not being woven) if you are already using explicit
            auto-proxying via the use of BeanNameAutoProxyCreator or suchlike. The recommended usage
            pattern is to use either just the <aop:config> style, or just the AutoProxyCreator style.



6.3.1. Declaring an aspect

Using the schema support, an aspect is simply a regular Java object defined as a bean in your Spring application
context. The state and behavior is captured in the fields and methods of the object, and the pointcut and advice
information is captured in the XML.

An aspect is declared using the <aop:aspect> element, and the backing bean is referenced using the ref
attribute:

 <aop:config>
   <aop:aspect id="myAspect" ref="aBean">
     ...
   </aop:aspect>
 </aop:config>

 <bean id="aBean" class="...">
   ...
 </bean>



The bean backing the aspect ("aBean" in this case) can of course be configured and dependency injected just
like any other Spring bean.


6.3.2. Declaring a pointcut

A named pointcut can be declared inside an <aop:config> element, enabling the pointcut definition to be shared
across several aspects and advisors.

A pointcut representing the execution of any business service in the service layer could be defined as follows:

 <aop:config>


                                           Spring Framework (2.5.6)                                          145
Aspect Oriented Programming with Spring



    <aop:pointcut id="businessService"
          expression="execution(* com.xyz.myapp.service.*.*(..))"/>

 </aop:config>



Note that the pointcut expression itself is using the same AspectJ pointcut expression language as described in
Section 6.2, “@AspectJ support”. If you are using the schema based declaration style with Java 5, you can refer
to named pointcuts defined in types (@Aspects) within the pointcut expression, but this feature is not available
on JDK 1.4 and below (it relies on the Java 5 specific AspectJ reflection APIs). On JDK 1.5 therefore, another
way of defining the above pointcut would be:

 <aop:config>

    <aop:pointcut id="businessService"
          expression="com.xyz.myapp.SystemArchitecture.businessService()"/>

 </aop:config>



Assuming you have a SystemArchitecture aspect as described in Section 6.2.3.3, “Sharing common pointcut
definitions”.

Declaring a pointcut inside an aspect is very similar to declaring a top-level pointcut:

 <aop:config>

    <aop:aspect id="myAspect" ref="aBean">

      <aop:pointcut id="businessService"
            expression="execution(* com.xyz.myapp.service.*.*(..))"/>

      ...

    </aop:aspect>

 </aop:config>



Much the same way in an @AspectJ aspect, pointcuts declared using the schema based definition style may
collect join point context. For example, the following pointcut collects the 'this' object as the join point context
and passes it to advice:

 <aop:config>

    <aop:aspect id="myAspect" ref="aBean">

      <aop:pointcut id="businessService"
            expression="execution(* com.xyz.myapp.service.*.*(..)) &amp;&amp; this(service)"/>
      <aop:before pointcut-ref="businessService" method="monitor"/>
      ...

    </aop:aspect>

 </aop:config>



The advice must be declared to receive the collected join point context by including parameters of the matching
names:

 public void monitor(Object service) {
     ...
 }



When combining pointcut sub-expressions, '&&' is awkward within an XML document, and so the keywords


                                            Spring Framework (2.5.6)                                            146
Aspect Oriented Programming with Spring


'and', 'or' and 'not' can be used in place of '&&', '||' and '!' respectively. For example, the previous pointcut may
be better written as:

 <aop:config>

    <aop:aspect id="myAspect" ref="aBean">

      <aop:pointcut id="businessService"
            expression="execution(* com.xyz.myapp.service.*.*(..)) and this(service)"/>
      <aop:before pointcut-ref="businessService" method="monitor"/>
      ...

    </aop:aspect>

 </aop:config>



Note that pointcuts defined in this way are referred to by their XML id and cannot be used as named pointcuts
to form composite pointcuts. The named pointcut support in the schema based definition style is thus more
limited than that offered by the @AspectJ style.


6.3.3. Declaring advice

The same five advice kinds are supported as for the @AspectJ style, and they have exactly the same semantics.

6.3.3.1. Before advice

Before advice runs before a matched method execution. It is declared inside an <aop:aspect> using the
<aop:before> element.

 <aop:aspect id="beforeExample" ref="aBean">

      <aop:before
        pointcut-ref="dataAccessOperation"
        method="doAccessCheck"/>

      ...

 </aop:aspect>



Here dataAccessOperation is the id of a pointcut defined at the top (<aop:config>) level. To define the
pointcut inline instead, replace the pointcut-ref attribute with a pointcut attribute:

 <aop:aspect id="beforeExample" ref="aBean">

      <aop:before
        pointcut="execution(* com.xyz.myapp.dao.*.*(..))"
        method="doAccessCheck"/>

      ...

 </aop:aspect>



As we noted in the discussion of the @AspectJ style, using named pointcuts can significantly improve the
readability of your code.

The method attribute identifies a method (doAccessCheck) that provides the body of the advice. This method
must be defined for the bean referenced by the aspect element containing the advice. Before a data access
operation is executed (a method execution join point matched by the pointcut expression), the
"doAccessCheck" method on the aspect bean will be invoked.



                                            Spring Framework (2.5.6)                                             147
Aspect Oriented Programming with Spring



6.3.3.2. After returning advice

After returning advice runs when a matched method execution completes normally. It is declared inside an
<aop:aspect> in the same way as before advice. For example:

 <aop:aspect id="afterReturningExample" ref="aBean">

      <aop:after-returning
        pointcut-ref="dataAccessOperation"
        method="doAccessCheck"/>

      ...

 </aop:aspect>



Just as in the @AspectJ style, it is possible to get hold of the return value within the advice body. Use the
returning attribute to specify the name of the parameter to which the return value should be passed:

 <aop:aspect id="afterReturningExample" ref="aBean">

      <aop:after-returning
        pointcut-ref="dataAccessOperation"
        returning="retVal"
        method="doAccessCheck"/>

      ...

 </aop:aspect>



The doAccessCheck method must declare a parameter named retVal. The type of this parameter constrains
matching in the same way as described for @AfterReturning. For example, the method signature may be
declared as:

 public void doAccessCheck(Object retVal) {...




6.3.3.3. After throwing advice

After throwing advice executes when a matched method execution exits by throwing an exception. It is
declared inside an <aop:aspect> using the after-throwing element:

 <aop:aspect id="afterThrowingExample" ref="aBean">

      <aop:after-throwing
        pointcut-ref="dataAccessOperation"
        method="doRecoveryActions"/>

      ...

 </aop:aspect>



Just as in the @AspectJ style, it is possible to get hold of the thrown exception within the advice body. Use the
throwing attribute to specify the name of the parameter to which the exception should be passed:

 <aop:aspect id="afterThrowingExample" ref="aBean">

      <aop:after-throwing
        pointcut-ref="dataAccessOperation"
        throwing="dataAccessEx"
        method="doRecoveryActions"/>

      ...

 </aop:aspect>


                                           Spring Framework (2.5.6)                                          148
Aspect Oriented Programming with Spring


The doRecoveryActions method must declare a parameter named dataAccessEx. The type of this parameter
constrains matching in the same way as described for @AfterThrowing. For example, the method signature
may be declared as:

 public void doRecoveryActions(DataAccessException dataAccessEx) {...




6.3.3.4. After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the after element:

 <aop:aspect id="afterFinallyExample" ref="aBean">

      <aop:after
        pointcut-ref="dataAccessOperation"
        method="doReleaseLock"/>

      ...

 </aop:aspect>




6.3.3.5. Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution. It has the
opportunity to do work both before and after the method executes, and to determine when, how, and even if, the
method actually gets to execute at all. Around advice is often used if you need to share state before and after a
method execution in a thread-safe manner (starting and stopping a timer for example). Always use the least
powerful form of advice that meets your requirements; don't use around advice if simple before advice would
do.

Around advice is declared using the aop:around element. The first parameter of the advice method must be of
type ProceedingJoinPoint. Within the body of the advice, calling proceed() on the ProceedingJoinPoint
causes the underlying method to execute. The proceed method may also be calling passing in an Object[] - the
values in the array will be used as the arguments to the method execution when it proceeds. See Section 6.2.4.5,
“Around advice” for notes on calling proceed with an Object[].

 <aop:aspect id="aroundExample" ref="aBean">

      <aop:around
        pointcut-ref="businessService"
        method="doBasicProfiling"/>

      ...

 </aop:aspect>



The implementation of the doBasicProfiling advice would be exactly the same as in the @AspectJ example
(minus the annotation of course):

 public Object doBasicProfiling(ProceedingJoinPoint pjp) throws Throwable {
     // start stopwatch
     Object retVal = pjp.proceed();
     // stop stopwatch
     return retVal;
 }




6.3.3.6. Advice parameters

The schema based declaration style supports fully typed advice in the same way as described for the @AspectJ


                                           Spring Framework (2.5.6)                                          149
Aspect Oriented Programming with Spring


support - by matching pointcut parameters by name against advice method parameters. See Section 6.2.4.6,
“Advice parameters” for details. If you wish to explicitly specify argument names for the advice methods (not
relying on the detection strategies previously described) then this is done using the arg-names attribute of the
advice element, which is treated in the same manner to the "argNames" attribute in an advice annotation as
described in Section 6.2.4.6.3, “Determining argument names”. For example:

 <aop:before
   pointcut="com.xyz.lib.Pointcuts.anyPublicMethod() and @annotation(auditable)"
   method="audit"
   arg-names="auditable"/>



The arg-names attribute accepts a comma-delimited list of parameter names.

Find below a slightly more involved example of the XSD-based approach that illustrates some around advice
used in conjunction with a number of strongly typed parameters.

 package x.y.service;

 public interface FooService {

     Foo getFoo(String fooName, int age);
 }

 public class DefaultFooService implements FooService {

     public Foo getFoo(String name, int age) {
        return new Foo(name, age);
     }
 }



Next up is the aspect. Notice the fact that the profile(..) method accepts a number of strongly-typed
parameters, the first of which happens to be the join point used to proceed with the method call: the presence of
this parameter is an indication that the profile(..) is to be used as around advice:

 package x.y;

 import org.aspectj.lang.ProceedingJoinPoint;
 import org.springframework.util.StopWatch;

 public class SimpleProfiler {

     public Object profile(ProceedingJoinPoint call, String name, int age) throws Throwable {
        StopWatch clock = new StopWatch(
              "Profiling for '" + name + "' and '" + age + "'");
        try {
           clock.start(call.toShortString());
           return call.proceed();
        } finally {
           clock.stop();
           System.out.println(clock.prettyPrint());
        }
     }
 }



Finally, here is the XML configuration that is required to effect the execution of the above advice for a
particular join point:

 <beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:aop="http://www.springframework.org/schema/aop"
       xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

     <!-- this is the object that will be proxied by Spring's AOP infrastructure -->
     <bean id="fooService" class="x.y.service.DefaultFooService"/>


                                           Spring Framework (2.5.6)                                          150
Aspect Oriented Programming with Spring


     <!-- this is the actual advice itself -->
     <bean id="profiler" class="x.y.SimpleProfiler"/>

     <aop:config>
        <aop:aspect ref="profiler">

            <aop:pointcut id="theExecutionOfSomeFooServiceMethod"
                       expression="execution(* x.y.service.FooService.getFoo(String,int))
                       and args(name, age)"/>

            <aop:around pointcut-ref="theExecutionOfSomeFooServiceMethod"
                     method="profile"/>

        </aop:aspect>
     </aop:config>

 </beans>



If we had the following driver script, we would get output something like this on standard output:

 import org.springframework.beans.factory.BeanFactory;
 import org.springframework.context.support.ClassPathXmlApplicationContext;
 import x.y.service.FooService;

 public final class Boot {

     public static void main(final String[] args) throws Exception {
        BeanFactory ctx = new ClassPathXmlApplicationContext("x/y/plain.xml");
        FooService foo = (FooService) ctx.getBean("fooService");
        foo.getFoo("Pengo", 12);
     }
 }



 StopWatch 'Profiling for 'Pengo' and '12'': running time (millis) = 0
 -----------------------------------------
 ms     %     Task name
 -----------------------------------------
 00000 ? execution(getFoo)




6.3.3.7. Advice ordering

When multiple advice needs to execute at the same join point (executing method) the ordering rules are as
described in Section 6.2.4.7, “Advice ordering”. The precedence between aspects is determined by either
adding the Order annotation to the bean backing the aspect or by having the bean implement the Ordered
interface.


6.3.4. Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised objects
implement a given interface, and to provide an implementation of that interface on behalf of those objects.

An introduction is made using the aop:declare-parents element inside an aop:aspect This element is used to
declare that matching types have a new parent (hence the name). For example, given an interface
UsageTracked, and an implementation of that interface DefaultUsageTracked, the following aspect declares
that all implementors of service interfaces also implement the UsageTracked interface. (In order to expose
statistics via JMX for example.)

 <aop:aspect id="usageTrackerAspect" ref="usageTracking">

     <aop:declare-parents
         types-matching="com.xzy.myapp.service.*+"
         implement-interface="com.xyz.myapp.service.tracking.UsageTracked"
         default-impl="com.xyz.myapp.service.tracking.DefaultUsageTracked"/>



                                           Spring Framework (2.5.6)                                     151
Aspect Oriented Programming with Spring



    <aop:before
      pointcut="com.xyz.myapp.SystemArchitecture.businessService()
                and this(usageTracked)"
      method="recordUsage"/>

 </aop:aspect>



The class backing the usageTracking bean would contain the method:

 public void recordUsage(UsageTracked usageTracked) {
     usageTracked.incrementUseCount();
 }



The interface to be implemented is determined by implement-interface attribute. The value of the
types-matching attribute is an AspectJ type pattern :- any bean of a matching type will implement the
UsageTracked interface. Note that in the before advice of the above example, service beans can be directly used
as implementations of the UsageTracked interface. If accessing a bean programmatically you would write the
following:

 UsageTracked usageTracked = (UsageTracked) context.getBean("myService");




6.3.5. Aspect instantiation models

The only supported instantiation model for schema-defined aspects is the singleton model. Other instantiation
models may be supported in future releases.


6.3.6. Advisors

The concept of "advisors" is brought forward from the AOP support defined in Spring 1.2 and does not have a
direct equivalent in AspectJ. An advisor is like a small self-contained aspect that has a single piece of advice.
The advice itself is represented by a bean, and must implement one of the advice interfaces described in
Section 7.3.2, “Advice types in Spring”. Advisors can take advantage of AspectJ pointcut expressions though.

Spring 2.0 supports the advisor concept with the <aop:advisor> element. You will most commonly see it used
in conjunction with transactional advice, which also has its own namespace support in Spring 2.0. Here's how it
looks:

 <aop:config>

    <aop:pointcut id="businessService"
          expression="execution(* com.xyz.myapp.service.*.*(..))"/>

    <aop:advisor
        pointcut-ref="businessService"
        advice-ref="tx-advice"/>

 </aop:config>

 <tx:advice id="tx-advice">
   <tx:attributes>
     <tx:method name="*" propagation="REQUIRED"/>
   </tx:attributes>
 </tx:advice>



As well as the pointcut-ref attribute used in the above example, you can also use the pointcut attribute to
define a pointcut expression inline.



                                           Spring Framework (2.5.6)                                          152
Aspect Oriented Programming with Spring


To define the precedence of an advisor so that the advice can participate in ordering, use the order attribute to
define the Ordered value of the advisor.


6.3.7. Example

Let's see how the concurrent locking failure retry example from Section 6.2.7, “Example” looks when rewritten
using the schema support.

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock loser).
If the operation is retried, it is quite likely it will succeed next time round. For business services where it is
appropriate to retry in such conditions (idempotent operations that don't need to go back to the user for conflict
resolution), we'd like to transparently retry the operation to avoid the client seeing a
PessimisticLockingFailureException. This is a requirement that clearly cuts across multiple services in the
service layer, and hence is ideal for implementing via an aspect.

Because we want to retry the operation, we'll need to use around advice so that we can call proceed multiple
times. Here's how the basic aspect implementation looks (it's just a regular Java class using the schema
support):

 public class ConcurrentOperationExecutor implements Ordered {

     private static final int DEFAULT_MAX_RETRIES = 2;

     private int maxRetries = DEFAULT_MAX_RETRIES;
     private int order = 1;

     public void setMaxRetries(int maxRetries) {
        this.maxRetries = maxRetries;
     }

     public int getOrder() {
        return this.order;
     }

     public void setOrder(int order) {
        this.order = order;
     }

     public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable {
        int numAttempts = 0;
        PessimisticLockingFailureException lockFailureException;
        do {
           numAttempts++;
           try {
              return pjp.proceed();
           }
           catch(PessimisticLockingFailureException ex) {
              lockFailureException = ex;
           }
        }
        while(numAttempts <= this.maxRetries);
        throw lockFailureException;
     }

 }



Note that the aspect implements the Ordered interface so we can set the precedence of the aspect higher than
the transaction advice (we want a fresh transaction each time we retry). The maxRetries and order properties
will both be configured by Spring. The main action happens in the doConcurrentOperation around advice
method. We try to proceed, and if we fail with a PessimisticLockingFailureException we simply try again
unless we have exhausted all of our retry attempts.
This class is identical to the one used in the @AspectJ example, but with the annotations removed.



                                           Spring Framework (2.5.6)                                           153
Aspect Oriented Programming with Spring


The corresponding Spring configuration is:

 <aop:config>

    <aop:aspect id="concurrentOperationRetry" ref="concurrentOperationExecutor">

      <aop:pointcut id="idempotentOperation"
          expression="execution(* com.xyz.myapp.service.*.*(..))"/>

      <aop:around
         pointcut-ref="idempotentOperation"
         method="doConcurrentOperation"/>

    </aop:aspect>

 </aop:config>

 <bean id="concurrentOperationExecutor"
   class="com.xyz.myapp.service.impl.ConcurrentOperationExecutor">
      <property name="maxRetries" value="3"/>
      <property name="order" value="100"/>
 </bean>



Notice that for the time being we assume that all business services are idempotent. If this is not the case we can
refine the aspect so that it only retries genuinely idempotent operations, by introducing an Idempotent
annotation:

 @Retention(RetentionPolicy.RUNTIME)
 public @interface Idempotent {
   // marker annotation
 }



and using the annotation to annotate the implementation of service operations. The change to the aspect to retry
only idempotent operations simply involves refining the pointcut expression so that only @Idempotent
operations match:

    <aop:pointcut id="idempotentOperation"
          expression="execution(* com.xyz.myapp.service.*.*(..)) and
                      @annotation(com.xyz.myapp.service.Idempotent)"/>




6.4. Choosing which AOP declaration style to use
Once you have decided that an aspect is the best approach for implementing a given requirement, how do you
decide between using Spring AOP or AspectJ, and between the Aspect language (code) style, @AspectJ
annotation style, or the Spring XML style? These decisions are influenced by a number of factors including
application requirements, development tools, and team familiarity with AOP.


6.4.1. Spring AOP or full AspectJ?

Use the simplest thing that can work. Spring AOP is simpler than using full AspectJ as there is no requirement
to introduce the AspectJ compiler / weaver into your development and build processes. If you only need to
advise the execution of operations on Spring beans, then Spring AOP is the right choice. If you need to advise
objects not managed by the Spring container (such as domain objects typically), then you will need to use
AspectJ. You will also need to use AspectJ if you wish to advise join points other than simple method
executions (for example, field get or set join points, and so on).

When using AspectJ, you have the choice of the AspectJ language syntax (also known as the "code style") or
the @AspectJ annotation style. Clearly, if you are not using Java 5+ then the choice has been made for you...

                                           Spring Framework (2.5.6)                                           154
Aspect Oriented Programming with Spring


use the code style. If aspects play a large role in your design, and you are able to use the AspectJ Development
Tools (AJDT) plugin for Eclipse, then the AspectJ language syntax is the preferred option: it is cleaner and
simpler because the language was purposefully designed for writing aspects. If you are not using Eclipse, or
have only a few aspects that do not play a major role in your application, then you may want to consider using
the @AspectJ style and sticking with a regular Java compilation in your IDE, and adding an aspect weaving
phase to your build script.


6.4.2. @AspectJ or XML for Spring AOP?

If you have chosen to use Spring AOP, then you have a choice of @AspectJ or XML style. Clearly if you are
not running on Java 5+, then the XML style is the appropriate choice; for Java 5 projects there are various
tradeoffs to consider.

The XML style will be most familiar to existing Spring users. It can be used with any JDK level (referring to
named pointcuts from within pointcut expressions does still require Java 5+ though) and is backed by genuine
POJOs. When using AOP as a tool to configure enterprise services then XML can be a good choice (a good test
is whether you consider the pointcut expression to be a part of your configuration you might want to change
independently). With the XML style arguably it is clearer from your configuration what aspects are present in
the system.

The XML style has two disadvantages. Firstly it does not fully encapsulate the implementation of the
requirement it addresses in a single place. The DRY principle says that there should be a single, unambiguous,
authoritative representation of any piece of knowledge within a system. When using the XML style, the
knowledge of how a requirement is implemented is split across the declaration of the backing bean class, and
the XML in the configuration file. When using the @AspectJ style there is a single module - the aspect - in
which this information is encapsulated. Secondly, the XML style is slightly more limited in what it can express
than the @AspectJ style: only the "singleton" aspect instantiation model is supported, and it is not possible to
combine named pointcuts declared in XML. For example, in the @AspectJ style you can write something like:

    @Pointcut(execution(* get*()))
    public void propertyAccess() {}

    @Pointcut(execution(org.xyz.Account+ *(..))
    public void operationReturningAnAccount() {}

    @Pointcut(propertyAccess() && operationReturningAnAccount())
    public void accountPropertyAccess() {}



In the XML style I can declare the first two pointcuts:

    <aop:pointcut id="propertyAccess"
        expression="execution(* get*())"/>

    <aop:pointcut id="operationReturningAnAccount"
        expression="execution(org.xyz.Account+ *(..))"/>



The downside of the XML approach is that you cannot define the 'accountPropertyAccess' pointcut by
combining these definitions.

The @AspectJ style supports additional instantiation models, and richer pointcut composition. It has the
advantage of keeping the aspect as a modular unit. It also has the advantage the @AspectJ aspects can be
understood (and thus consumed) both by Spring AOP and by AspectJ - so if you later decide you need the
capabilities of AspectJ to implement additional requirements then it is very easy to migrate to an AspectJ-based
approach. On balance the Spring team prefer the @AspectJ style whenever you have aspects that do more than
simple "configuration" of enterprise services.


                                           Spring Framework (2.5.6)                                         155
Aspect Oriented Programming with Spring



6.5. Mixing aspect types
It is perfectly possible to mix @AspectJ style aspects using the autoproxying support, schema-defined
<aop:aspect> aspects, <aop:advisor> declared advisors and even proxies and interceptors defined using the
Spring 1.2 style in the same configuration. All of these are implemented using the same underlying support
mechanism and will co-exist without any difficulty.


6.6. Proxying mechanisms
Spring AOP uses either JDK dynamic proxies or CGLIB to create the proxy for a given target object. (JDK
dynamic proxies are preferred whenever you have a choice).

If the target object to be proxied implements at least one interface then a JDK dynamic proxy will be used. All
of the interfaces implemented by the target type will be proxied. If the target object does not implement any
interfaces then a CGLIB proxy will be created.

If you want to force the use of CGLIB proxying (for example, to proxy every method defined for the target
object, not just those implemented by its interfaces) you can do so. However, there are some issues to consider:


• final methods cannot be advised, as they cannot be overriden.

• You will need the CGLIB 2 binaries on your classpath, whereas dynamic proxies are available with the JDK.
  Spring will automatically warn you when it needs CGLIB and the CGLIB library classes are not found on the
  classpath.

• The constructor of your proxied object will be called twice. This is a natural consequence of the CGLIB
  proxy model whereby a subclass is generated for each proxied object. For each proxied instance, two objects
  are created: the actual proxied object and an instance of the subclass that implements the advice. This
  behavior is not exhibited when using JDK proxies. Usually, calling the constructor of the proxied type twice,
  is not an issue, as there are usually only assignments taking place and no real logic is implemented in the
  constructor.

To force the use of CGLIB proxies set the value of the proxy-target-class attribute of the <aop:config>
element to true:

 <aop:config proxy-target-class="true">
     <!-- other beans defined here... -->
 </aop:config>



To force CGLIB proxying when using the @AspectJ autoproxy support, set the 'proxy-target-class'
attribute of the <aop:aspectj-autoproxy> element to true:

 <aop:aspectj-autoproxy proxy-target-class="true"/>



            Note
            Multiple <aop:config/> sections are collapsed into a single unified auto-proxy creator at runtime,
            which applies the strongest proxy settings that any of the <aop:config/> sections (typically from
            different XML bean definition files) specified. This also applies to the <tx:annotation-driven/>
            and <aop:aspectj-autoproxy/> elements.



                                          Spring Framework (2.5.6)                                          156
Aspect Oriented Programming with Spring



            To    be    clear:    using
                                      'proxy-target-class="true"' on <tx:annotation-driven/>,
            <aop:aspectj-autoproxy/> or <aop:config/> elements will force the use of CGLIB proxies for
            all three of them.



6.6.1. Understanding AOP proxies

Spring AOP is proxy-based. It is vitally important that you grasp the semantics of what that last statement
actually means before you write your own aspects or use any of the Spring AOP-based aspects supplied with
the Spring Framework.

Consider first the scenario where you have a plain-vanilla, un-proxied, nothing-special-about-it, straight object
reference, as illustrated by the following code snippet.

 public class SimplePojo implements Pojo {

     public void foo() {
        // this next method invocation is a direct call on the 'this' reference
        this.bar();
     }

     public void bar() {
        // some logic...
     }
 }



If you invoke a method on an object reference, the method is invoked directly on that object reference, as can
be seen below.




 public class Main {

     public static void main(String[] args) {

         Pojo pojo = new SimplePojo();

         // this is a direct method call on the 'pojo' reference
         pojo.foo();
     }
 }



Things change slightly when the reference that client code has is a proxy. Consider the following diagram and
code snippet.



                                           Spring Framework (2.5.6)                                          157
Aspect Oriented Programming with Spring




 public class Main {

     public static void main(String[] args) {

         ProxyFactory factory = new ProxyFactory(new SimplePojo());
         factory.addInterface(Pojo.class);
         factory.addAdvice(new RetryAdvice());

         Pojo pojo = (Pojo) factory.getProxy();

         // this is a method call on the proxy!
         pojo.foo();
     }
 }



The key thing to understand here is that the client code inside the main(..) of the Main class has a reference to
the proxy. This means that method calls on that object reference will be calls on the proxy, and as such the
proxy will be able to delegate to all of the interceptors (advice) that are relevant to that particular method call.
However, once the call has finally reached the target object, the SimplePojo reference in this case, any method
calls that it may make on itself, such as this.bar() or this.foo(), are going to be invoked against the this
reference, and not the proxy. This has important implications. It means that self-invocation is not going to result
in the advice associated with a method invocation getting a chance to execute.

Okay, so what is to be done about this? The best approach (the term best is used loosely here) is to refactor
your code such that the self-invocation does not happen. For sure, this does entail some work on your part, but
it is the best, least-invasive approach. The next approach is absolutely horrendous, and I am almost reticent to
point it out precisely because it is so horrendous. You can (choke!) totally tie the logic within your class to
Spring AOP by doing this:

 public class SimplePojo implements Pojo {

     public void foo() {
        // this works, but... gah!
        ((Pojo) AopContext.currentProxy()).bar();
     }

     public void bar() {
        // some logic...
     }
 }



This totally couples your code to Spring AOP, and it makes the class itself aware of the fact that it is being used
in an AOP context, which flies in the face of AOP. It also requires some additional configuration when the
proxy is being created:

 public class Main {


                                            Spring Framework (2.5.6)                                            158
Aspect Oriented Programming with Spring



     public static void main(String[] args) {

         ProxyFactory factory = new ProxyFactory(new SimplePojo());
         factory.adddInterface(Pojo.class);
         factory.addAdvice(new RetryAdvice());
         factory.setExposeProxy(true);

         Pojo pojo = (Pojo) factory.getProxy();

         // this is a method call on the proxy!
         pojo.foo();
     }
 }



Finally, it must be noted that AspectJ does not have this self-invocation issue because it is not a proxy-based
AOP framework.


6.7. Programmatic creation of @AspectJ Proxies
In addition to declaring aspects in your configuration using either <aop:config> or <aop:aspectj-autoproxy>,
it is also possible programmatically to create proxies that advise target objects. For the full details of Spring's
AOP API, see the next chapter. Here we want to focus on the ability to automatically create proxies using
@AspectJ aspects.

The class org.springframework.aop.aspectj.annotation.AspectJProxyFactory can be used to create a
proxy for a target object that is advised by one or more @AspectJ aspects. Basic usage for this class is very
simple, as illustrated below. See the Javadocs for full information.

 // create a factory that can generate a proxy for the given target object
 AspectJProxyFactory factory = new AspectJProxyFactory(targetObject);

 // add an aspect, the class must be an @AspectJ aspect
 // you can call this as many times as you need with different aspects
 factory.addAspect(SecurityManager.class);

 // you can also add existing aspect instances, the type of the object supplied must be an @AspectJ aspect
 factory.addAspect(usageTracker);

 // now get the proxy object...
 MyInterfaceType proxy = factory.getProxy();




6.8. Using AspectJ with Spring applications
Everything we've covered so far in this chapter is pure Spring AOP. In this section, we're going to look at how
you can use the AspectJ compiler/weaver instead of, or in addition to, Spring AOP if your needs go beyond the
facilities offered by Spring AOP alone.

Spring ships with a small AspectJ aspect library, which is available standalone in your distribution as
spring-aspects.jar; you'll need to add this to your classpath in order to use the aspects in it. Section 6.8.1,
“Using AspectJ to dependency inject domain objects with Spring” and Section 6.8.2, “Other Spring aspects for
AspectJ” discuss the content of this library and how you can use it. Section 6.8.3, “Configuring AspectJ aspects
using Spring IoC” discusses how to dependency inject AspectJ aspects that are woven using the AspectJ
compiler. Finally, Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework” provides an
introduction to load-time weaving for Spring applications using AspectJ.


6.8.1. Using AspectJ to dependency inject domain objects with Spring

                                            Spring Framework (2.5.6)                                           159
Aspect Oriented Programming with Spring


The Spring container instantiates and configures beans defined in your application context. It is also possible to
ask a bean factory to configure a pre-existing object given the name of a bean definition containing the
configuration to be applied. The spring-aspects.jar contains an annotation-driven aspect that exploits this
capability to allow dependency injection of any object. The support is intended to be used for objects created
outside of the control of any container. Domain objects often fall into this category because they are often
created programmatically using the new operator, or by an ORM tool as a result of a database query.

The @Configurable annotation marks a class as eligible for Spring-driven configuration. In the simplest case it
can be used just as a marker annotation:

 package com.xyz.myapp.domain;

 import org.springframework.beans.factory.annotation.Configurable;

 @Configurable
 public class Account {
    // ...
 }



When used as a marker interface in this way, Spring will configure new instances of the annotated type
(Account in this case) using a prototype-scoped bean definition with the same name as the fully-qualified type
name (com.xyz.myapp.domain.Account). Since the default name for a bean is the fully-qualified name of its
type, a convenient way to declare the prototype definition is simply to omit the id attribute:

 <bean class="com.xyz.myapp.domain.Account" scope="prototype">
   <property name="fundsTransferService" ref="fundsTransferService"/>
 </bean>



If you want to explicitly specify the name of the prototype bean definition to use, you can do so directly in the
annotation:

 package com.xyz.myapp.domain;

 import org.springframework.beans.factory.annotation.Configurable;

 @Configurable("account")
 public class Account {
    // ...
 }



Spring will now look for a bean definition named "account" and use that as the definition to configure new
Account instances.

You can also use autowiring to avoid having to specify a prototype-scoped bean definition at all. To have
Spring apply autowiring use the 'autowire' property of the @Configurable annotation: specify either
@Configurable(autowire=Autowire.BY_TYPE)            or     @Configurable(autowire=Autowire.BY_NAME           for
autowiring by type or by name respectively. As an alternative, as of Spring 2.5 it is preferable to specify
explicit, annotation-driven dependency injection for your @Configurable beans by using @Autowired and
@Resource at the field or method level (see Section 3.11, “Annotation-based configuration” for further details).

Finally you can enable Spring dependency checking for the object references in the newly created and
configured      object       by     using       the      dependencyCheck        attribute     (for      example:
@Configurable(autowire=Autowire.BY_NAME,dependencyCheck=true)). If this attribute is set to true, then
Spring will validate after configuration that all properties (which are not primitives or collections) have been
set.

Using the annotation on its own does nothing of course. It is the AnnotationBeanConfigurerAspect in
spring-aspects.jar that acts on the presence of the annotation. In essence the aspect says "after returning


                                           Spring Framework (2.5.6)                                           160
Aspect Oriented Programming with Spring

from the initialization of a new object of a type annotated with @Configurable, configure the newly created
object using Spring in accordance with the properties of the annotation". In this context, initialization refers to
newly instantiated objects (e.g., objects instantiated with the 'new' operator) as well as to Serializable objects
that are undergoing deserialization (e.g., via readResolve()).

            Note
            One of the key phrases in the above paragraph is 'in essence'. For most cases, the exact semantics
            of 'after returning from the initialization of a new object' will be fine... in this context, 'after
            initialization' means that the dependencies will be injected after the object has been constructed -
            this means that the dependencies will not be available for use in the constructor bodies of the class.
            If you want the dependencies to be injected before the constructor bodies execute, and thus be
            available for use in the body of the constructors, then you need to define this on the @Configurable
            declaration like so:

 @Configurable(preConstruction=true)



            You can find out more information about the language semantics of the various pointcut types in
            AspectJ in this appendix of the AspectJ Programming Guide.


For this to work the annotated types must be woven with the AspectJ weaver - you can either use a build-time
Ant or Maven task to do this (see for example the AspectJ Development Environment Guide) or load-time
weaving (see Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework”). The
AnnotationBeanConfigurerAspect itself needs configuring by Spring (in order to obtain a reference to the
bean factory that is to be used to configure new objects). The Spring context namespace defines a convenient
tag for doing this: just include the following in your application context configuration:

 <context:spring-configured/>



If you are using the DTD instead of schema, the equivalent definition is:

 <bean
         class="org.springframework.beans.factory.aspectj.AnnotationBeanConfigurerAspect"
         factory-method="aspectOf"/>



Instances of @Configurable objects created before the aspect has been configured will result in a warning
being issued to the log and no configuration of the object taking place. An example might be a bean in the
Spring configuration that creates domain objects when it is initialized by Spring. In this case you can use the
"depends-on" bean attribute to manually specify that the bean depends on the configuration aspect.

 <bean id="myService"
   class="com.xzy.myapp.service.MyService"
   depends-on="org.springframework.beans.factory.aspectj.AnnotationBeanConfigurerAspect">

    <!-- ... -->

 </bean>




6.8.1.1. Unit testing @Configurable objects

One of the goals of the @Configurable support is to enable independent unit testing of domain objects without
the difficulties associated with hard-coded lookups. If @Configurable types have not been woven by AspectJ
then the annotation has no affect during unit testing, and you can simply set mock or stub property references in
the object under test and proceed as normal. If @Configurable types have been woven by AspectJ then you can


                                            Spring Framework (2.5.6)                                           161
Aspect Oriented Programming with Spring

still unit test outside of the container as normal, but you will see a warning message each time that you
construct an @Configurable object indicating that it has not been configured by Spring.

6.8.1.2. Working with multiple application contexts

The AnnotationBeanConfigurerAspect used to implement the @Configurable support is an AspectJ singleton
aspect. The scope of a singleton aspect is the same as the scope of static members, that is to say there is one
aspect instance per classloader that defines the type. This means that if you define multiple application contexts
within the same classloader hierarchy you need to consider where to define the
<context:spring-configured/> bean and where to place spring-aspects.jar on the classpath.

Consider a typical Spring web-app configuration with a shared parent application context defining common
business services and everything needed to support them, and one child application context per servlet
containing definitions particular to that servlet. All of these contexts will co-exist within the same classloader
hierarchy, and so the AnnotationBeanConfigurerAspect can only hold a reference to one of them. In this case
we recommend defining the <context:spring-configured/> bean in the shared (parent) application context:
this defines the services that you are likely to want to inject into domain objects. A consequence is that you
cannot configure domain objects with references to beans defined in the child (servlet-specific) contexts using
the @Configurable mechanism (probably not something you want to do anyway!).

When deploying multiple web-apps within the same container, ensure that each web-application loads the types
in spring-aspects.jar using its own classloader (for example, by placing spring-aspects.jar in
'WEB-INF/lib'). If spring-aspects.jar is only added to the container wide classpath (and hence loaded by
the shared parent classloader), all web applications will share the same aspect instance which is probably not
what you want.


6.8.2. Other Spring aspects for AspectJ

In addition to the @Configurable aspect, spring-aspects.jar contains an AspectJ aspect that can be used to
drive Spring's transaction management for types and methods annotated with the @Transactional annotation.
This is primarily intended for users who want to use the Spring Framework's transaction support outside of the
Spring container.

The aspect that interprets @Transactional annotations is the AnnotationTransactionAspect. When using this
aspect, you must annotate the implementation class (and/or methods within that class), not the interface (if any)
that the class implements. AspectJ follows Java's rule that annotations on interfaces are not inherited.

A @Transactional annotation on a class specifies the default transaction semantics for the execution of any
public operation in the class.

A @Transactional annotation on a method within the class overrides the default transaction semantics given
by the class annotation (if present). Methods with public, protected, and default visibility may all be
annotated. Annotating protected and default visibility methods directly is the only way to get transaction
demarcation for the execution of such methods.

For AspectJ programmers that want to use the Spring configuration and transaction management support but
don't want to (or cannot) use annotations, spring-aspects.jar also contains abstract aspects you can extend
to provide your own pointcut definitions. See the sources for the AbstractBeanConfigurerAspect and
AbstractTransactionAspect aspects for more information. As an example, the following excerpt shows how
you could write an aspect to configure all instances of objects defined in the domain model using prototype
bean definitions that match the fully-qualified class names:

 public aspect DomainObjectConfiguration extends AbstractBeanConfigurerAspect {

    public DomainObjectConfiguration() {


                                           Spring Framework (2.5.6)                                           162
Aspect Oriented Programming with Spring


         setBeanWiringInfoResolver(new ClassNameBeanWiringInfoResolver());
     }

     // the creation of a new bean (any object in the domain model)
     protected pointcut beanCreation(Object beanInstance) :
       initialization(new(..)) &&
       SystemArchitecture.inDomainModel() &&
       this(beanInstance);

 }




6.8.3. Configuring AspectJ aspects using Spring IoC

When using AspectJ aspects with Spring applications, it is natural to both want and expect to be able to
configure such aspects using Spring. The AspectJ runtime itself is responsible for aspect creation, and the
means of configuring the AspectJ created aspects via Spring depends on the AspectJ instantiation model (the
'per-xxx' clause) used by the aspect.

The majority of AspectJ aspects are singleton aspects. Configuration of these aspects is very easy: simply
create a bean definition referencing the aspect type as normal, and include the bean attribute
'factory-method="aspectOf"'. This ensures that Spring obtains the aspect instance by asking AspectJ for it
rather than trying to create an instance itself. For example:

 <bean id="profiler" class="com.xyz.profiler.Profiler"
       factory-method="aspectOf">
   <property name="profilingStrategy" ref="jamonProfilingStrategy"/>
 </bean>



Non-singleton aspects are harder to configure: however it is possible to do so by creating prototype bean
definitions and using the @Configurable support from spring-aspects.jar to configure the aspect instances
once they have bean created by the AspectJ runtime.

If you have some @AspectJ aspects that you want to weave with AspectJ (for example, using load-time
weaving for domain model types) and other @AspectJ aspects that you want to use with Spring AOP, and these
aspects are all configured using Spring, then you will need to tell the Spring AOP @AspectJ autoproxying
support which exact subset of the @AspectJ aspects defined in the configuration should be used for
autoproxying. You can do this by using one or more <include/> elements inside the
<aop:aspectj-autoproxy/> declaration. Each <include/> element specifies a name pattern, and only beans
with names matched by at least one of the patterns will be used for Spring AOP autoproxy configuration:

 <aop:aspectj-autoproxy>
   <aop:include name="thisBean"/>
   <aop:include name="thatBean"/>
 </aop:aspectj-autoproxy>



              Note
              Do not be misled by the name of the <aop:aspectj-autoproxy/> element: using it will result in
              the creation of Spring AOP proxies. The @AspectJ style of aspect declaration is just being used
              here, but the AspectJ runtime is not involved.



6.8.4. Load-time weaving with AspectJ in the Spring Framework

Load-time weaving (LTW) refers to the process of weaving AspectJ aspects into an application's class files as



                                           Spring Framework (2.5.6)                                      163
Aspect Oriented Programming with Spring


they are being loaded into the Java virtual machine (JVM). The focus of this section is on configuring and using
LTW in the specific context of the Spring Framework: this section is not an introduction to LTW though. For
full details on the specifics of LTW and configuring LTW with just AspectJ (with Spring not being involved at
all), see the LTW section of the AspectJ Development Environment Guide.

The value-add that the Spring Framework brings to AspectJ LTW is in enabling much finer-grained control
over the weaving process. 'Vanilla' AspectJ LTW is effected using a Java (5+) agent, which is switched on by
specifying a VM argument when starting up a JVM. It is thus a JVM-wide setting, which may be fine in some
situations, but often is a little too coarse. Spring-enabled LTW enables you to switch on LTW on a
per-ClassLoader basis, which obviously is more fine-grained and which can make more sense in a
'single-JVM-multiple-application' environment (such as is found in a typical application server environment).

Further, in certain environments, this support enables load-time weaving without making any modifications to
the application server's launch script that will be needed to add -javaagent:path/to/aspectjweaver.jar or (as we
describe later in this section) -javaagent:path/to/spring-agent.jar. Developers simply modify one or more files
that form the application context to enable load-time weaving instead of relying on administrators who
typically are in charge of the deployment configuration such as the launch script.

Now that the sales pitch is over, let us first walk through a quick example of AspectJ LTW using Spring,
followed by detailed specifics about elements introduced in the following example. For a complete example,
please see the Petclinic sample application.

6.8.4.1. A first example

Let us assume that you are an application developer who has been tasked with diagnosing the cause of some
performance problems in a system. Rather than break out a profiling tool, what we are going to do is switch on
a simple profiling aspect that will enable us to very quickly get some performance metrics, so that we can then
apply a finer-grained profiling tool to that specific area immediately afterwards.

Here is the profiling aspect. Nothing too fancy, just a quick-and-dirty time-based profiler, using the
@AspectJ-style of aspect declaration.

 package foo;

 import   org.aspectj.lang.ProceedingJoinPoint;
 import   org.aspectj.lang.annotation.Aspect;
 import   org.aspectj.lang.annotation.Around;
 import   org.aspectj.lang.annotation.Pointcut;
 import   org.springframework.util.StopWatch;
 import   org.springframework.core.annotation.Order;

 @Aspect
 public class ProfilingAspect {

      @Around("methodsToBeProfiled()")
      public Object profile(ProceedingJoinPoint pjp) throws Throwable {
          StopWatch sw = new StopWatch(getClass().getSimpleName());
          try {
              sw.start(pjp.getSignature().getName());
              return pjp.proceed();
          } finally {
              sw.stop();
              System.out.println(sw.prettyPrint());
          }
      }

      @Pointcut("execution(public * foo..*.*(..))")
      public void methodsToBeProfiled(){}
 }



We will also need to create an 'META-INF/aop.xml' file, to inform the AspectJ weaver that we want to weave


                                          Spring Framework (2.5.6)                                          164
Aspect Oriented Programming with Spring

our ProfilingAspect into our classes. This file convention, namely the presence of a file (or files) on the Java
classpath called ' META-INF/aop.xml' is standard AspectJ.

 <!DOCTYPE aspectj PUBLIC
         "-//AspectJ//DTD//EN" "http://www.eclipse.org/aspectj/dtd/aspectj.dtd">
 <aspectj>

       <weaver>

            <!-- only weave classes in our application-specific packages -->
            <include within="foo.*"/>

       </weaver>

       <aspects>

            <!-- weave in just this aspect -->
            <aspect name="foo.ProfilingAspect"/>

       </aspects>

     </aspectj>



Now to the Spring-specific portion of the configuration. We need to configure a LoadTimeWeaver (all explained
later, just take it on trust for now). This load-time weaver is the essential component responsible for weaving
the aspect configuration in one or more 'META-INF/aop.xml' files into the classes in your application. The good
thing is that it does not require a lot of configuration, as can be seen below (there are some more options that
you can specify, but these are detailed later).

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:context="http://www.springframework.org/schema/context"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.x

       <!-- a service object; we will be profiling its methods -->
       <bean id="entitlementCalculationService"
             class="foo.StubEntitlementCalculationService"/>

       <!-- this switches on the load-time weaving -->
       <context:load-time-weaver/>

 </beans>



Now that all the required artifacts are in place - the aspect, the 'META-INF/aop.xml' file, and the Spring
configuration -, let us create a simple driver class with a main(..) method to demonstrate the LTW in action.

 package foo;

 import org.springframework.context.support.ClassPathXmlApplicationContext;

 public final class Main {

       public static void main(String[] args) {

            ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml", Main.class);

            EntitlementCalculationService entitlementCalculationService
                = (EntitlementCalculationService) ctx.getBean("entitlementCalculationService");

            // the profiling aspect is 'woven' around this method execution
            entitlementCalculationService.calculateEntitlement();
       }
 }



There is one last thing to do. The introduction to this section did say that one could switch on LTW selectively


                                          Spring Framework (2.5.6)                                          165
Aspect Oriented Programming with Spring


on a per-ClassLoader basis with Spring, and this is true. However, just for this example, we are going to use a
Java agent (supplied with Spring) to switch on the LTW. This is the command line we will use to run the above
Main class:

 java -javaagent:C:/projects/foo/lib/global/spring-agent.jar foo.Main



The '-javaagent' is a Java 5+ flag for specifying and enabling agents to instrument programs running on the
JVM. The Spring Framework ships with such an agent, the InstrumentationSavingAgent, which is packaged
in the spring-agent.jar that was supplied as the value of the -javaagent argument in the above example.

The output from the execution of the Main program will look something like that below. (I have introduced a
Thread.sleep(..) statement into the calculateEntitlement() implementation so that the profiler actually
captures something other than 0 milliseconds - the 01234 milliseconds is not an overhead introduced by the
AOP :) )

 Calculating entitlement

 StopWatch 'ProfilingAspect': running time (millis) = 1234
 ------ ----- ----------------------------
 ms     %     Task name
 ------ ----- ----------------------------
 01234 100% calculateEntitlement



Since this LTW is effected using full-blown AspectJ, we are not just limited to advising Spring beans; the
following slight variation on the Main program will yield the same result.

 package foo;

 import org.springframework.context.support.ClassPathXmlApplicationContext;

 public final class Main {

      public static void main(String[] args) {

          new ClassPathXmlApplicationContext("beans.xml", Main.class);

          EntitlementCalculationService entitlementCalculationService =
              new StubEntitlementCalculationService();

          // the profiling aspect will be 'woven' around this method execution
          entitlementCalculationService.calculateEntitlement();
      }
 }



Notice how in the above program we are simply bootstrapping the Spring container, and then creating a new
instance of the StubEntitlementCalculationService totally outside the context of Spring... the profiling
advice still gets woven in.

The example admittedly is simplistic... however the basics of the LTW support in Spring have all been
introduced in the above example, and the rest of this section will explain the 'why' behind each bit of
configuration and usage in detail.

            Note
            The ProfilingAspect used in this example may be basic, but it is quite useful. It is a nice example
            of a development-time aspect that developers can use during development (of course), and then
            quite easily exclude from builds of the application being deployed into UAT or production.




                                          Spring Framework (2.5.6)                                         166
Aspect Oriented Programming with Spring



6.8.4.2. Aspects

The aspects that you use in LTW have to be AspectJ aspects. They can be written in either the AspectJ
language itself or you can write your aspects in the @AspectJ-style. The latter option is of course only an
option if you are using Java 5+, but it does mean that your aspects are then both valid AspectJ and Spring AOP
aspects. Furthermore, the compiled aspect classes need to be available on the classpath.

6.8.4.3. 'META-INF/aop.xml'

The AspectJ LTW infrastructure is configured using one or more 'META-INF/aop.xml' files, that are on the Java
classpath (either directly, or more typically in jar files).

The structure and contents of this file is detailed in the main AspectJ reference documentation, and the
interested reader is referred to that resource. (I appreciate that this section is brief, but the 'aop.xml' file is 100%
AspectJ - there is no Spring-specific information or semantics that apply to it, and so there is no extra value that
I can contribute either as a result), so rather than rehash the quite satisfactory section that the AspectJ
developers wrote, I am just directing you there.)

6.8.4.4. Required libraries (JARS)

At a minimum you will need the following libraries to use the Spring Framework's support for AspectJ LTW:


1. spring.jar (version 2.5 or later)

2. aspectjrt.jar (version 1.5 or later)

3. aspectjweaver.jar (version 1.5 or later)

If you are using the Spring-provided agent to enable instrumentation, you will also need:


1. spring-agent.jar

6.8.4.5. Spring configuration

The    key    component      in   Spring's    LTW  support is the LoadTimeWeaver interface (in the
org.springframework.instrument.classloading         package), and the numerous implementations of it that ship
with the Spring distribution. A LoadTimeWeaver is responsible for adding one or more
java.lang.instrument.ClassFileTransformers to a ClassLoader at runtime, which opens the door to all
manner of interesting applications, one of which happens to be the LTW of aspects.

             Tip
             If you are unfamiliar with the idea of runtime class file transformation, you are encouraged to read
             the Javadoc API documentation for the java.lang.instrument package before continuing. This is
             not a huge chore because there is - rather annoyingly - precious little documentation there... the key
             interfaces and classes will at least be laid out in front of you for reference as you read through this
             section.


Configuring a LoadTimeWeaver using XML for a particular ApplicationContext can be as easy as adding one
line. (Please note that you almost certainly will need to be using an ApplicationContext as your Spring
container - typically a BeanFactory will not be enough because the LTW support makes use of


                                              Spring Framework (2.5.6)                                             167
Aspect Oriented Programming with Spring

BeanFactoryPostProcessors.)

To enable the Spring Framework's LTW support, you need to configure a LoadTimeWeaver, which typically is
done using the <context:load-time-weaver/> element. Find below a valid <context:load-time-weaver/>
definition that uses default settings.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:context="http://www.springframework.org/schema/context"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.x

       <context:load-time-weaver/>

 </beans>



The above <context:load-time-weaver/> bean definition will define and register a number of LTW-specific
infrastructure beans for you automatically, such as a LoadTimeWeaver and an AspectJWeavingEnabler. Notice
how the <context:load-time-weaver/> is defined in the 'context' namespace; note also that the referenced
XML Schema file is only available in versions of Spring 2.5 and later.

What the above configuration does is define and register a default LoadTimeWeaver bean for you. The default
LoadTimeWeaver is the DefaultContextLoadTimeWeaver class, which attempts to decorate an automatically
detected LoadTimeWeaver: the exact type of LoadTimeWeaver that will be 'automatically detected' is dependent
upon your runtime environment (summarised in the following table).


Table 6.1. DefaultContextLoadTimeWeaver LoadTimeWeavers

Runtime Environment                                     LoadTimeWeaver   implementation


Running in BEA's Weblogic 10                            WebLogicLoadTimeWeaver


Running in Oracle's OC4J                                OC4JLoadTimeWeaver


Running in GlassFish                                    GlassFishLoadTimeWeaver


JVM started with Spring                                 InstrumentationLoadTimeWeaver
InstrumentationSavingAgent

(java -javaagent:path/to/spring-agent.jar)


Fallback, expecting the underlying ClassLoader to       ReflectiveLoadTimeWeaver
follow common conventions (e.g. applicable to
TomcatInstrumentableClassLoader and to Resin)



Note    that   these   are   just  the LoadTimeWeavers that are autodetected when using the
DefaultContextLoadTimeWeaver: it is of course possible to specify exactly which LoadTimeWeaver
implementation that you wish to use by specifying the fully-qualified classname as the value of the
'weaver-class' attribute of the <context:load-time-weaver/> element. Find below an example of doing just
that:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"


                                           Spring Framework (2.5.6)                                     168
Aspect Oriented Programming with Spring


        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:context="http://www.springframework.org/schema/context"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.x

      <context:load-time-weaver
              weaver-class="org.springframework.instrument.classloading.ReflectiveLoadTimeWeaver"/>

 </beans>



The LoadTimeWeaver that is defined and registered by the <context:load-time-weaver/> element can be later
retrieved from the Spring container using the well-known name 'loadTimeWeaver'. Remember that the
LoadTimeWeaver exists just as a mechanism for Spring's LTW infrastructure to add one or more
ClassFileTransformers.       The actual ClassFileTransformer that does the LTW is the
ClassPreProcessorAgentAdapter (from the org.aspectj.weaver.loadtime package) class. See the
class-level Javadoc for the ClassPreProcessorAgentAdapter class for further details, because the specifics of
how the weaving is actually effected is beyond the scope of this section.

There is one final attribute of the <context:load-time-weaver/> left to discuss: the 'aspectj-weaving'
attribute. This is a simple attribute that controls whether LTW is enabled or not, it is as simple as that. It accepts
one of three possible values, summarised below, with the default value if the attribute is not present being '
autodetect'



Table 6.2. 'aspectj-weaving' attribute values

Attribute Value                                            Explanation


on                                                         AspectJ weaving is on, and aspects will be woven at
                                                           load-time as appropriate.


off                                                        LTW is off... no aspect will be woven at load-time.


autodetect                                                 If the Spring LTW infrastructure can find at least one
                                                           'META-INF/aop.xml' file, then AspectJ weaving is on,
                                                           else it is off. This is the default value.



6.8.4.6. Environment-specific configuration

This last section contains any additional settings and configuration that you will need when using Spring's
LTW support in environments such as application servers and web containers.

6.8.4.6.1. Generic Java applications
You may enable Spring's support for LTW in any Java application (standalone as well as application server
based) through the use of the Spring-provided instrumentation agent. To do so, start the VM by by specifying
the -javaagent:path/to/spring-agent.jar option. Note that this requires modification of the VM launch
script which may prevent you from using this in application server environments (depending on your operation
policies).

6.8.4.6.2. Tomcat
For   web    applications    deployed     onto   Apache     Tomcat     5.0    and   above,    Spring    provides     a


                                             Spring Framework (2.5.6)                                              169
Aspect Oriented Programming with Spring

TomcatInstrumentableClassLoader      to be registered as the web app class loader. The required Tomcat setup
looks as follows, to be included either in Tomcat's central server.xml file or in an application-specific
META-INF/context.xml file within the WAR root. Spring's spring-tomcat-weaver.jar needs to be included
in Tomcat's common lib directory in order to make this setup work.

 <Context path="/myWebApp" docBase="/my/webApp/location">
     <Loader loaderClass="org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader"
             useSystemClassLoaderAsParent="false"/>
 </Context>



Note: We generally recommend Tomcat 5.5.20 or above when enabling load-time weaving. Prior versions have
known issues with custom ClassLoader setup.

Alternatively, consider the use of the Spring-provided generic VM agent, to be specified in Tomcat's launch
script (see above). This will make instrumentation available to all deployed web applications, no matter which
ClassLoader they happen to run on.

For a more detailed discussion of Tomcat-based weaving setup, check out the Section 12.6.1.3.1, “Tomcat
load-time weaving setup (5.0+)” section which discusses specifics of various Tomcat versions. While the
primary focus of that section is on JPA persistence provider setup, the Tomcat setup characteristics apply to
general load-time weaving as well.

6.8.4.6.3. WebLogic, OC4J, Resin, GlassFish
Recent versions of BEA WebLogic (version 10 and above), Oracle Containers for Java EE (OC4J 10.1.3.1 and
above) and Resin (3.1 and above) provide a ClassLoader that is capable of local instrumentation. Spring's
native LTW leverages such ClassLoaders to enable AspectJ weaving. You can enable LTW by simply
activating context:load-time-weaver as described earlier. Specifically, you do not need to modify the launch
script to add -javaagent:path/to/spring-agent.jar.

GlassFish provides an instrumentation-capable ClassLoader as well, but only in its EAR environment. For
GlassFish web applications, follow the Tomcat setup instructions as outlined above.


6.9. Further Resources
More information on AspectJ can be found on the AspectJ website.

The book Eclipse AspectJ by Adrian Colyer et. al. (Addison-Wesley, 2005) provides a comprehensive
introduction and reference for the AspectJ language.

The book AspectJ in Action by Ramnivas Laddad (Manning, 2003) comes highly recommended; the focus of
the book is on AspectJ, but a lot of general AOP themes are explored (in some depth).




                                          Spring Framework (2.5.6)                                        170
Chapter 7. Spring AOP APIs

7.1. Introduction
The previous chapter described the Spring 2.0 support for AOP using @AspectJ and schema-based aspect
definitions. In this chapter we discuss the lower-level Spring AOP APIs and the AOP support used in Spring
1.2 applications. For new applications, we recommend the use of the Spring 2.0 AOP support described in the
previous chapter, but when working with existing applications, or when reading books and articles, you may
come across Spring 1.2 style examples. Spring 2.0 is fully backwards compatible with Spring 1.2 and
everything described in this chapter is fully supported in Spring 2.0.


7.2. Pointcut API in Spring
Let's look at how Spring handles the crucial pointcut concept.


7.2.1. Concepts

Spring's pointcut model enables pointcut reuse independent of advice types. It's possible to target different
advice using the same pointcut.

The org.springframework.aop.Pointcut interface is the central interface, used to target advices to particular
classes and methods. The complete interface is shown below:

 public interface Pointcut {

      ClassFilter getClassFilter();

      MethodMatcher getMethodMatcher();

 }



Splitting the Pointcut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a "union" with another method matcher).

The ClassFilter interface is used to restrict the pointcut to a given set of target classes. If the matches()
method always returns true, all target classes will be matched:

 public interface ClassFilter {

      boolean matches(Class clazz);
 }



The MethodMatcher interface is normally more important. The complete interface is shown below:

 public interface MethodMatcher {

      boolean matches(Method m, Class targetClass);

      boolean isRuntime();

      boolean matches(Method m, Class targetClass, Object[] args);
 }



The matches(Method, Class) method is used to test whether this pointcut will ever match a given method on

                                           Spring Framework (2.5.6)                                      171
Spring AOP APIs

a target class. This evaluation can be performed when an AOP proxy is created, to avoid the need for a test on
every method invocation. If the 2-argument matches method returns true for a given method, and the
isRuntime() method for the MethodMatcher returns true, the 3-argument matches method will be invoked on
every method invocation. This enables a pointcut to look at the arguments passed to the method invocation
immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their isRuntime() method returns false. In this case, the
3-argument matches method will never be invoked.

            Tip
            If possible, try to make pointcuts static, allowing the AOP framework to cache the results of
            pointcut evaluation when an AOP proxy is created.



7.2.2. Operations on pointcuts

Spring supports operations on pointcuts: notably, union and intersection.


• Union means the methods that either pointcut matches.

• Intersection means the methods that both pointcuts match.

• Union is usually more useful.

• Pointcuts can be composed using the static methods in the org.springframework.aop.support.Pointcuts class,
  or using the ComposablePointcut class in the same package. However, using AspectJ pointcut expressions is
  usually a simpler approach.


7.2.3. AspectJ expression pointcuts

Since     2.0,      the     most      important       type     of     pointcut    used     by     Spring    is
org.springframework.aop.aspectj.AspectJExpressionPointcut.             This is a pointcut that uses an AspectJ
supplied library to parse an AspectJ pointcut expression string.

See the previous chapter for a discussion of supported AspectJ pointcut primitives.


7.2.4. Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the box; others are
intended to be subclassed in application-specific pointcuts.

7.2.4.1. Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method's arguments.
Static pointcuts are sufficient - and best - for most usages. It's possible for Spring to evaluate a static pointcut
only once, when a method is first invoked: after that, there is no need to evaluate the pointcut again with each
method invocation.

Let's consider some static pointcut implementations included with Spring.

7.2.4.1.1. Regular expression pointcuts


                                            Spring Framework (2.5.6)                                            172
Spring AOP APIs


One obvious way to specify static pointcuts is regular expressions. Several AOP frameworks besides Spring
make this possible. org.springframework.aop.support.Perl5RegexpMethodPointcut is a generic regular
expression pointcut, using Perl 5 regular expression syntax. The Perl5RegexpMethodPointcut class depends on
Jakarta ORO for regular expression matching. Spring also provides the JdkRegexpMethodPointcut class that
uses the regular expression support in JDK 1.4+.

Using the Perl5RegexpMethodPointcut class, you can provide a list of pattern Strings. If any of these is a
match, the pointcut will evaluate to true. (So the result is effectively the union of these pointcuts.)

The usage is shown below:


 <bean id="settersAndAbsquatulatePointcut"
     class="org.springframework.aop.support.Perl5RegexpMethodPointcut">
     <property name="patterns">
         <list>
             <value>.*set.*</value>
             <value>.*absquatulate</value>
         </list>
     </property>
 </bean>



Spring provides a convenience class, RegexpMethodPointcutAdvisor, that allows us to also reference an
Advice (remember that an Advice can be an interceptor, before advice, throws advice etc.). Behind the scenes,
Spring will use a JdkRegexpMethodPointcut. Using RegexpMethodPointcutAdvisor simplifies wiring, as the
one bean encapsulates both pointcut and advice, as shown below:


 <bean id="settersAndAbsquatulateAdvisor"
     class="org.springframework.aop.support.RegexpMethodPointcutAdvisor">
     <property name="advice">
         <ref local="beanNameOfAopAllianceInterceptor"/>
     </property>
     <property name="patterns">
         <list>
             <value>.*set.*</value>
             <value>.*absquatulate</value>
         </list>
     </property>
 </bean>



RegexpMethodPointcutAdvisor can be used with any Advice type.

7.2.4.1.2. Attribute-driven pointcuts
An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata attributes:
typically, source-level metadata.

7.2.4.2. Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method arguments, as
well as static information. This means that they must be evaluated with every method invocation; the result
cannot be cached, as arguments will vary.

The main example is the control flow pointcut.

7.2.4.2.1. Control flow pointcuts
Spring control flow pointcuts are conceptually similar to AspectJ cflow pointcuts, although less powerful.


                                          Spring Framework (2.5.6)                                          173
Spring AOP APIs

(There is currently no way to specify that a pointcut executes below a join point matched by another pointcut.)
A control flow pointcut matches the current call stack. For example, it might fire if the join point was invoked
by a method in the com.mycompany.web package, or by the SomeCaller class. Control flow pointcuts are
specified using the org.springframework.aop.support.ControlFlowPointcut class.

            Note
            Control flow pointcuts are significantly more expensive to evaluate at runtime than even other
            dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic pointcuts.



7.2.5. Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you'll probably subclass StaticMethodMatcherPointcut, as shown
below. This requires implementing just one abstract method (although it's possible to override other methods to
customize behavior):


 class TestStaticPointcut extends StaticMethodMatcherPointcut {

      public boolean matches(Method m, Class targetClass) {
          // return true if custom criteria match
      }
 }


There are also superclasses for dynamic pointcuts.

You can use custom pointcuts with any advice type in Spring 1.0 RC2 and above.


7.2.6. Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in AspectJ) it's possible to
declare custom pointcuts, whether static or dynamic. Custom pointcuts in Spring can be arbitrarily complex.
However, using the AspectJ pointcut expression language is recommended if possible.

            Note
            Later versions of Spring may offer support for "semantic pointcuts" as offered by JAC: for
            example, "all methods that change instance variables in the target object."



7.3. Advice API in Spring
Let's now look at how Spring AOP handles advice.


7.3.1. Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique to each
advised object. This corresponds to per-class or per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors. These do
not depend on the state of the proxied object or add new state; they merely act on the method and arguments.


                                          Spring Framework (2.5.6)                                          174
Spring AOP APIs


Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds state to the
proxied object.

It's possible to use a mix of shared and per-instance advice in the same AOP proxy.


7.3.2. Advice types in Spring

Spring provides several advice types out of the box, and is extensible to support arbitrary advice types. Let us
look at the basic concepts and standard advice types.

7.3.2.1. Interception around advice

The most fundamental advice type in Spring is interception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method interception.
MethodInterceptors implementing around advice should implement the following interface:

 public interface MethodInterceptor extends Interceptor {

      Object invoke(MethodInvocation invocation) throws Throwable;
 }



The MethodInvocation argument to the invoke() method exposes the method being invoked; the target join
point; the AOP proxy; and the arguments to the method. The invoke() method should return the invocation's
result: the return value of the join point.

A simple MethodInterceptor implementation looks as follows:

 public class DebugInterceptor implements MethodInterceptor {

      public Object invoke(MethodInvocation invocation) throws Throwable {
          System.out.println("Before: invocation=[" + invocation + "]");
          Object rval = invocation.proceed();
          System.out.println("Invocation returned");
          return rval;
      }
 }



Note the call to the MethodInvocation's proceed() method. This proceeds down the interceptor chain towards
the join point. Most interceptors will invoke this method, and return its return value. However, a
MethodInterceptor, like any around advice, can return a different value or throw an exception rather than
invoke the proceed method. However, you don't want to do this without good reason!

            Note
            MethodInterceptors offer interoperability with other AOP Alliance-compliant AOP
            implementations. The other advice types discussed in the remainder of this section implement
            common AOP concepts, but in a Spring-specific way. While there is an advantage in using the
            most specific advice type, stick with MethodInterceptor around advice if you are likely to want to
            run the aspect in another AOP framework. Note that pointcuts are not currently interoperable
            between frameworks, and the AOP Alliance does not currently define pointcut interfaces.


7.3.2.2. Before advice

A simpler advice type is a before advice. This does not need a MethodInvocation object, since it will only be


                                            Spring Framework (2.5.6)                                           175
Spring AOP APIs

called before entering the method.

The main advantage of a before advice is that there is no need to invoke the proceed() method, and therefore
no possibility of inadvertently failing to proceed down the interceptor chain.

The MethodBeforeAdvice interface is shown below. (Spring's API design would allow for field before advice,
although the usual objects apply to field interception and it's unlikely that Spring will ever implement it).

 public interface MethodBeforeAdvice extends BeforeAdvice {

      void before(Method m, Object[] args, Object target) throws Throwable;
 }



Note the return type is void. Before advice can insert custom behavior before the join point executes, but
cannot change the return value. If a before advice throws an exception, this will abort further execution of the
interceptor chain. The exception will propagate back up the interceptor chain. If it is unchecked, or on the
signature of the invoked method, it will be passed directly to the client; otherwise it will be wrapped in an
unchecked exception by the AOP proxy.

An example of a before advice in Spring, which counts all method invocations:

 public class CountingBeforeAdvice implements MethodBeforeAdvice {

      private int count;

      public void before(Method m, Object[] args, Object target) throws Throwable {
          ++count;
      }

      public int getCount() {
          return count;
      }
 }



            Tip
            Before advice can be used with any pointcut.


7.3.2.3. Throws advice

Throws advice is invoked after the return of the join point if the join point threw an exception. Spring offers
typed throws advice. Note that this means that the org.springframework.aop.ThrowsAdvice interface does
not contain any methods: It is a tag interface identifying that the given object implements one or more typed
throws advice methods. These should be in the form of:

 afterThrowing([Method, args, target], subclassOfThrowable)



Only the last argument is required. The method signatures may have either one or four arguments, depending
on whether the advice method is interested in the method and arguments. The following classes are examples of
throws advice.

The advice below is invoked if a RemoteException is thrown (including subclasses):

 public class RemoteThrowsAdvice implements ThrowsAdvice {

      public void afterThrowing(RemoteException ex) throws Throwable {
          // Do something with remote exception
      }
 }



                                          Spring Framework (2.5.6)                                          176
Spring AOP APIs


The following advice is invoked if a ServletException is thrown. Unlike the above advice, it declares 4
arguments, so that it has access to the invoked method, method arguments and target object:

 public class ServletThrowsAdviceWithArguments implements ThrowsAdvice {

      public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) {
          // Do something with all arguments
      }
 }



The final example illustrates how these two methods could be used in a single class, which handles both
RemoteException and ServletException. Any number of throws advice methods can be combined in a single
class.

 public static class CombinedThrowsAdvice implements ThrowsAdvice {

      public void afterThrowing(RemoteException ex) throws Throwable {
          // Do something with remote exception
      }

      public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) {
          // Do something with all arguments
      }
 }



Note: If a throws-advice method throws an exception itself, it will override the original exception (i.e. change
the exception thrown to the user). The overriding exception will typically be a RuntimeException; this is
compatible with any method signature. However, if a throws-advice method throws a checked exception, it will
have to match the declared exceptions of the target method and is hence to some degree coupled to specific
target method signatures. Do not throw an undeclared checked exception that is incompatible with the target
method's signature!

            Tip
            Throws advice can be used with any pointcut.


7.3.2.4. After Returning advice

An after returning advice in Spring must implement the org.springframework.aop.AfterReturningAdvice
interface, shown below:

 public interface AfterReturningAdvice extends Advice {

      void afterReturning(Object returnValue, Method m, Object[] args, Object target)
              throws Throwable;
 }



An after returning advice has access to the return value (which it cannot modify), invoked method, methods
arguments and target.

The following after returning advice counts all successful method invocations that have not thrown exceptions:

 public class CountingAfterReturningAdvice implements AfterReturningAdvice {

      private int count;

      public void afterReturning(Object returnValue, Method m, Object[] args, Object target)
              throws Throwable {
          ++count;
      }



                                          Spring Framework (2.5.6)                                          177
Spring AOP APIs



      public int getCount() {
          return count;
      }
 }



This advice doesn't change the execution path. If it throws an exception, this will be thrown up the interceptor
chain instead of the return value.

            Tip
            After returning advice can be used with any pointcut.


7.3.2.5. Introduction advice

Spring treats introduction advice as a special kind of interception advice.

Introduction requires an IntroductionAdvisor, and an IntroductionInterceptor, implementing the
following interface:

 public interface IntroductionInterceptor extends MethodInterceptor {

      boolean implementsInterface(Class intf);
 }



The invoke() method inherited from the AOP Alliance MethodInterceptor interface must implement the
introduction: that is, if the invoked method is on an introduced interface, the introduction interceptor is
responsible for handling the method call - it cannot invoke proceed().

Introduction advice cannot be used with any pointcut, as it applies only at class, rather than method, level. You
can only use introduction advice with the IntroductionAdvisor, which has the following methods:

 public interface IntroductionAdvisor extends Advisor, IntroductionInfo {

          ClassFilter getClassFilter();

          void validateInterfaces() throws IllegalArgumentException;
 }

 public interface IntroductionInfo {

          Class[] getInterfaces();
 }



There is no MethodMatcher, and hence no Pointcut, associated with introduction advice. Only class filtering is
logical.

The getInterfaces() method returns the interfaces introduced by this advisor.
The validateInterfaces() method is used internally to see whether or not the introduced interfaces can be
implemented by the configured IntroductionInterceptor .

Let's look at a simple example from the Spring test suite. Let's suppose we want to introduce the following
interface to one or more objects:


 public interface Lockable {
     void lock();
     void unlock();
     boolean locked();



                                            Spring Framework (2.5.6)                                         178
Spring AOP APIs


 }



This illustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type, and call
lock and unlock methods. If we call the lock() method, we want all setter methods to throw a LockedException.
Thus we can add an aspect that provides the ability to make objects immutable, without them having any
knowledge of it: a good example of AOP.

Firstly, we'll need an IntroductionInterceptor that does the heavy lifting. In this case, we extend the
org.springframework.aop.support.DelegatingIntroductionInterceptor convenience class. We could
implement IntroductionInterceptor directly, but using DelegatingIntroductionInterceptor is best for most
cases.

The DelegatingIntroductionInterceptor is designed to delegate an introduction to an actual implementation
of the introduced interface(s), concealing the use of interception to do so. The delegate can be set to any object
using a constructor argument; the default delegate (when the no-arg constructor is used) is this. Thus in the
example below, the delegate is the LockMixin subclass of DelegatingIntroductionInterceptor. Given a
delegate (by default itself), a DelegatingIntroductionInterceptor instance looks for all interfaces
implemented by the delegate (other than IntroductionInterceptor), and will support introductions against any of
them. It's possible for subclasses such as LockMixin to call the suppressInterface(Class intf) method to
suppress interfaces that should not be exposed. However, no matter how many interfaces an
IntroductionInterceptor is prepared to support, the IntroductionAdvisor used will control which
interfaces are actually exposed. An introduced interface will conceal any implementation of the same interface
by the target.

Thus LockMixin subclasses DelegatingIntroductionInterceptor and implements Lockable itself. The
superclass automatically picks up that Lockable can be supported for introduction, so we don't need to specify
that. We could introduce any number of interfaces in this way.

Note the use of the locked instance variable. This effectively adds additional state to that held in the target
object.


 public class LockMixin extends DelegatingIntroductionInterceptor
     implements Lockable {

      private boolean locked;

      public void lock() {
          this.locked = true;
      }

      public void unlock() {
          this.locked = false;
      }

      public boolean locked() {
          return this.locked;
      }

      public Object invoke(MethodInvocation invocation) throws Throwable {
          if (locked() && invocation.getMethod().getName().indexOf("set") == 0)
              throw new LockedException();
          return super.invoke(invocation);
      }

 }



Often it isn't necessary to override the invoke() method: the DelegatingIntroductionInterceptor
implementation - which calls the delegate method if the method is introduced, otherwise proceeds towards the
join point - is usually sufficient. In the present case, we need to add a check: no setter method can be invoked if


                                            Spring Framework (2.5.6)                                           179
Spring AOP APIs

in locked mode.

The introduction advisor required is simple. All it needs to do is hold a distinct LockMixin instance, and specify
the introduced interfaces - in this case, just Lockable. A more complex example might take a reference to the
introduction interceptor (which would be defined as a prototype): in this case, there's no configuration relevant
for a LockMixin, so we simply create it using new.


 public class LockMixinAdvisor extends DefaultIntroductionAdvisor {

      public LockMixinAdvisor() {
          super(new LockMixin(), Lockable.class);
      }
 }



We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It's impossible to
use an IntroductionInterceptor without an IntroductionAdvisor.) As usual with introductions, the advisor
must be per-instance, as it is stateful. We need a different instance of LockMixinAdvisor, and hence LockMixin,
for each advised object. The advisor comprises part of the advised object's state.

We can apply this advisor programmatically, using the Advised.addAdvisor() method, or (the recommended
way) in XML configuration, like any other advisor. All proxy creation choices discussed below, including
"auto proxy creators," correctly handle introductions and stateful mixins.


7.4. Advisor API in Spring
In Spring, an Advisor is an aspect that contains just a single advice object associated with a pointcut expression.

Apart from the special case of introductions, any advisor can be used with any advice.
org.springframework.aop.support.DefaultPointcutAdvisor is the most commonly used advisor class. For
example, it can be used with a MethodInterceptor, BeforeAdvice or ThrowsAdvice.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For example, you could use a
interception around advice, throws advice and before advice in one proxy configuration: Spring will
automatically create the necessary interceptor chain.


7.5. Using the ProxyFactoryBean to create AOP proxies
If you're using the Spring IoC container (an ApplicationContext or BeanFactory) for your business objects -
and you should be! - you will want to use one of Spring's AOP FactoryBeans. (Remember that a factory bean
introduces a layer of indirection, enabling it to create objects of a different type.)

            Note
            The Spring 2.0 AOP support also uses factory beans under the covers.


The     basic     way      to     create    an   AOP       proxy     in     Spring     is    to     use    the
org.springframework.aop.framework.ProxyFactoryBean. This gives complete control over the pointcuts and
advice that will apply, and their ordering. However, there are simpler options that are preferable if you don't
need such control.


7.5.1. Basics

                                            Spring Framework (2.5.6)                                           180
Spring AOP APIs


The ProxyFactoryBean, like other Spring FactoryBean implementations, introduces a level of indirection. If
you define a ProxyFactoryBean with name foo, what objects referencing foo see is not the ProxyFactoryBean
instance itself, but an object created by the ProxyFactoryBean's implementation of the getObject() method.
This method will create an AOP proxy wrapping a target object.

One of the most important benefits of using a ProxyFactoryBean or another IoC-aware class to create AOP
proxies, is that it means that advices and pointcuts can also be managed by IoC. This is a powerful feature,
enabling certain approaches that are hard to achieve with other AOP frameworks. For example, an advice may
itself reference application objects (besides the target, which should be available in any AOP framework),
benefiting from all the pluggability provided by Dependency Injection.


7.5.2. JavaBean properties

In common with most FactoryBean implementations provided with Spring, the ProxyFactoryBean class is
itself a JavaBean. Its properties are used to:


• Specify the target you want to proxy.

• Specify whether to use CGLIB (see below and also the section entitled Section 7.5.3, “JDK- and
  CGLIB-based proxies”).

Some key properties are inherited from org.springframework.aop.framework.ProxyConfig (the superclass
for all AOP proxy factories in Spring). These key properties include:


• proxyTargetClass: true if the target class is to be proxied, rather than the target class' interfaces. If this
  property value is set to true, then CGLIB proxies will be created (but see also below the section entitled
  Section 7.5.3, “JDK- and CGLIB-based proxies”).

• optimize: controls whether or not aggressive optimizations are applied to proxies created via CGLIB. One
  should not blithely use this setting unless one fully understands how the relevant AOP proxy handles
  optimization. This is currently used only for CGLIB proxies; it has no effect with JDK dynamic proxies.

• frozen: if a proxy configuration is frozen, then changes to the configuration are no longer allowed. This is
  useful both as a slight optimization and for those cases when you don't want callers to be able to manipulate
  the proxy (via the Advised interface) after the proxy has been created. The default value of this property is
  false, so changes such as adding additional advice are allowed.

• exposeProxy: determines whether or not the current proxy should be exposed in a ThreadLocal so that it can
  be accessed by the target. If a target needs to obtain the proxy and the exposeProxy property is set to true,
  the target can use the AopContext.currentProxy() method.

• aopProxyFactory: the implementation of AopProxyFactory to use. Offers a way of customizing whether to
  use dynamic proxies, CGLIB or any other proxy strategy. The default implementation will choose dynamic
  proxies or CGLIB appropriately. There should be no need to use this property; it is intended to allow the
  addition of new proxy types in Spring 1.1.

Other properties specific to ProxyFactoryBean include:


• proxyInterfaces: array of String interface names. If this isn't supplied, a CGLIB proxy for the target class
  will be used (but see also below the section entitled Section 7.5.3, “JDK- and CGLIB-based proxies”).

• interceptorNames: String array of Advisor, interceptor or other advice names to apply. Ordering is


                                          Spring Framework (2.5.6)                                          181
Spring AOP APIs


  significant, on a first come-first served basis. That is to say that the first interceptor in the list will be the first
  to be able to intercept the invocation.

  The names are bean names in the current factory, including bean names from ancestor factories. You can't
  mention bean references here since doing so would result in the ProxyFactoryBean ignoring the singleton
  setting of the advice.

  You can append an interceptor name with an asterisk (*). This will result in the application of all advisor
  beans with names starting with the part before the asterisk to be applied. An example of using this feature
  can be found in Section 7.5.6, “Using 'global' advisors”.

• singleton: whether or not the factory should return a single object, no matter how often the getObject()
  method is called. Several FactoryBean implementations offer such a method. The default value is true. If
  you want to use stateful advice - for example, for stateful mixins - use prototype advices along with a
  singleton value of false.


7.5.3. JDK- and CGLIB-based proxies

This section serves as the definitive documentation on how the ProxyFactoryBean chooses to create one of
either a JDK- and CGLIB-based proxy for a particular target object (that is to be proxied).

            Note
            The behavior of the ProxyFactoryBean with regard to creating JDK- or CGLIB-based proxies
            changed between versions 1.2.x and 2.0 of Spring. The ProxyFactoryBean now exhibits similar
            semantics with regard to auto-detecting interfaces as those of the TransactionProxyFactoryBean
            class.


If the class of a target object that is to be proxied (hereafter simply referred to as the target class) doesn't
implement any interfaces, then a CGLIB-based proxy will be created. This is the easiest scenario, because JDK
proxies are interface based, and no interfaces means JDK proxying isn't even possible. One simply plugs in the
target bean, and specifies the list of interceptors via the interceptorNames property. Note that a CGLIB-based
proxy will be created even if the proxyTargetClass property of the ProxyFactoryBean has been set to false.
(Obviously this makes no sense, and is best removed from the bean definition because it is at best redundant,
and at worst confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is created depends on the
configuration of the ProxyFactoryBean.

If the proxyTargetClass property of the ProxyFactoryBean has been set to true, then a CGLIB-based proxy
will be created. This makes sense, and is in keeping with the principle of least surprise. Even if the
proxyInterfaces property of the ProxyFactoryBean has been set to one or more fully qualified interface
names, the fact that the proxyTargetClass property is set to true will cause CGLIB-based proxying to be in
effect.

If the proxyInterfaces property of the ProxyFactoryBean has been set to one or more fully qualified interface
names, then a JDK-based proxy will be created. The created proxy will implement all of the interfaces that
were specified in the proxyInterfaces property; if the target class happens to implement a whole lot more
interfaces than those specified in the proxyInterfaces property, that is all well and good but those additional
interfaces will not be implemented by the returned proxy.

If the proxyInterfaces property of the ProxyFactoryBean has not been set, but the target class does implement


                                              Spring Framework (2.5.6)                                               182
Spring AOP APIs

one (or more) interfaces, then the ProxyFactoryBean will auto-detect the fact that the target class does actually
implement at least one interface, and a JDK-based proxy will be created. The interfaces that are actually
proxied will be all of the interfaces that the target class implements; in effect, this is the same as simply
supplying a list of each and every interface that the target class implements to the proxyInterfaces property.
However, it is significantly less work, and less prone to typos.


7.5.4. Proxying interfaces

Let's look at a simple example of ProxyFactoryBean in action. This example involves:


• A target bean that will be proxied. This is the "personTarget" bean definition in the example below.

• An Advisor and an Interceptor used to provide advice.

• An AOP proxy bean definition specifying the target object (the personTarget bean) and the interfaces to
  proxy, along with the advices to apply.


 <bean id="personTarget" class="com.mycompany.PersonImpl">
     <property name="name"><value>Tony</value></property>
     <property name="age"><value>51</value></property>
 </bean>

 <bean id="myAdvisor" class="com.mycompany.MyAdvisor">
     <property name="someProperty"><value>Custom string property value</value></property>
 </bean>

 <bean id="debugInterceptor" class="org.springframework.aop.interceptor.DebugInterceptor">
 </bean>

 <bean id="person"
     class="org.springframework.aop.framework.ProxyFactoryBean">
     <property name="proxyInterfaces"><value>com.mycompany.Person</value></property>

     <property name="target"><ref local="personTarget"/></property>
     <property name="interceptorNames">
         <list>
             <value>myAdvisor</value>
             <value>debugInterceptor</value>
         </list>
     </property>
 </bean>



Note that the interceptorNames property takes a list of String: the bean names of the interceptor or advisors in
the current factory. Advisors, interceptors, before, after returning and throws advice objects can be used. The
ordering of advisors is significant.

            Note
            You might be wondering why the list doesn't hold bean references. The reason for this is that if the
            ProxyFactoryBean's singleton property is set to false, it must be able to return independent proxy
            instances. If any of the advisors is itself a prototype, an independent instance would need to be
            returned, so it's necessary to be able to obtain an instance of the prototype from the factory; holding
            a reference isn't sufficient.


The "person" bean definition above can be used in place of a Person implementation, as follows:

 Person person = (Person) factory.getBean("person");




                                           Spring Framework (2.5.6)                                            183
Spring AOP APIs


Other beans in the same IoC context can express a strongly typed dependency on it, as with an ordinary Java
object:


 <bean id="personUser" class="com.mycompany.PersonUser">
   <property name="person"><ref local="person" /></property>
 </bean>



The PersonUser class in this example would expose a property of type Person. As far as it's concerned, the
AOP proxy can be used transparently in place of a "real" person implementation. However, its class would be a
dynamic proxy class. It would be possible to cast it to the Advised interface (discussed below).

It's possible to conceal the distinction between target and proxy using an anonymous inner bean, as follows.
Only the ProxyFactoryBean definition is different; the advice is included only for completeness:


 <bean id="myAdvisor" class="com.mycompany.MyAdvisor">
   <property name="someProperty"><value>Custom string property value</value></property>
 </bean>

 <bean id="debugInterceptor" class="org.springframework.aop.interceptor.DebugInterceptor"/>

 <bean id="person" class="org.springframework.aop.framework.ProxyFactoryBean">
   <property name="proxyInterfaces"><value>com.mycompany.Person</value></property>
   <!-- Use inner bean, not local reference to target -->
   <property name="target">
     <bean class="com.mycompany.PersonImpl">
       <property name="name"><value>Tony</value></property>
       <property name="age"><value>51</value></property>
     </bean>
   </property>
   <property name="interceptorNames">
     <list>
       <value>myAdvisor</value>
       <value>debugInterceptor</value>
     </list>
   </property>
 </bean>



This has the advantage that there's only one object of type Person: useful if we want to prevent users of the
application context from obtaining a reference to the un-advised object, or need to avoid any ambiguity with
Spring IoC autowiring. There's also arguably an advantage in that the ProxyFactoryBean definition is
self-contained. However, there are times when being able to obtain the un-advised target from the factory might
actually be an advantage: for example, in certain test scenarios.


7.5.5. Proxying classes

What if you need to proxy a class, rather than one or more interfaces?

Imagine that in our example above, there was no Person interface: we needed to advise a class called Person
that didn't implement any business interface. In this case, you can configure Spring to use CGLIB proxying,
rather than dynamic proxies. Simply set the proxyTargetClass property on the ProxyFactoryBean above to
true. While it's best to program to interfaces, rather than classes, the ability to advise classes that don't
implement interfaces can be useful when working with legacy code. (In general, Spring isn't prescriptive. While
it makes it easy to apply good practices, it avoids forcing a particular approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this generated
subclass to delegate method calls to the original target: the subclass is used to implement the Decorator pattern,


                                           Spring Framework (2.5.6)                                           184
Spring AOP APIs

weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues to consider:


• Final methods can't be advised, as they can't be overridden.

• You'll need the CGLIB 2 binaries on your classpath; dynamic proxies are available with the JDK.

There's little performance difference between CGLIB proxying and dynamic proxies. As of Spring 1.0,
dynamic proxies are slightly faster. However, this may change in the future. Performance should not be a
decisive consideration in this case.


7.5.6. Using 'global' advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching the part before the
asterisk, will be added to the advisor chain. This can come in handy if you need to add a standard set of 'global'
advisors:

 <bean id="proxy" class="org.springframework.aop.framework.ProxyFactoryBean">
   <property name="target" ref="service"/>
   <property name="interceptorNames">
     <list>
       <value>global*</value>
     </list>
   </property>
 </bean>

 <bean id="global_debug" class="org.springframework.aop.interceptor.DebugInterceptor"/>
 <bean id="global_performance" class="org.springframework.aop.interceptor.PerformanceMonitorInterceptor"/>




7.6. Concise proxy definitions
Especially when defining transactional proxies, you may end up with many similar proxy definitions. The use
of parent and child bean definitions, along with inner bean definitions, can result in much cleaner and more
concise proxy definitions.

First a parent, template, bean definition is created for the proxy:


 <bean id="txProxyTemplate" abstract="true"
         class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
   <property name="transactionManager" ref="transactionManager"/>
   <property name="transactionAttributes">
     <props>
       <prop key="*">PROPAGATION_REQUIRED</prop>
     </props>
   </property>
 </bean>



This will never be instantiated itself, so may actually be incomplete. Then each proxy which needs to be created
is just a child bean definition, which wraps the target of the proxy as an inner bean definition, since the target
will never be used on its own anyway.

 <bean id="myService" parent="txProxyTemplate">
   <property name="target">
     <bean class="org.springframework.samples.MyServiceImpl">
     </bean>
   </property>
 </bean>


                                             Spring Framework (2.5.6)                                         185
Spring AOP APIs


It is of course possible to override properties from the parent template, such as in this case, the transaction
propagation settings:

 <bean id="mySpecialService" parent="txProxyTemplate">
   <property name="target">
     <bean class="org.springframework.samples.MySpecialServiceImpl">
     </bean>
   </property>
   <property name="transactionAttributes">
     <props>
       <prop key="get*">PROPAGATION_REQUIRED,readOnly</prop>
       <prop key="find*">PROPAGATION_REQUIRED,readOnly</prop>
       <prop key="load*">PROPAGATION_REQUIRED,readOnly</prop>
       <prop key="store*">PROPAGATION_REQUIRED</prop>
     </props>
   </property>
 </bean>



Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute, as described previously, so that it may not actually ever be instantiated. Application contexts
(but not simple bean factories) will by default pre-instantiate all singletons. It is therefore important (at least for
singleton beans) that if you have a (parent) bean definition which you intend to use only as a template, and this
definition specifies a class, you must make sure to set the abstract attribute to true, otherwise the application
context will actually try to pre-instantiate it.


7.7. Creating AOP proxies programmatically with the
ProxyFactory
It's easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP without
dependency on Spring IoC.

The following listing shows creation of a proxy for a target object, with one interceptor and one advisor. The
interfaces implemented by the target object will automatically be proxied:


 ProxyFactory factory = new ProxyFactory(myBusinessInterfaceImpl);
 factory.addInterceptor(myMethodInterceptor);
 factory.addAdvisor(myAdvisor);
 MyBusinessInterface tb = (MyBusinessInterface) factory.getProxy();



The first step is to construct an object of type org.springframework.aop.framework.ProxyFactory. You can
create this with a target object, as in the above example, or specify the interfaces to be proxied in an alternate
constructor.

You can add interceptors or advisors, and manipulate them for the life of the ProxyFactory. If you add an
IntroductionInterceptionAroundAdvisor you can cause the proxy to implement additional interfaces.

There are also convenience methods on ProxyFactory (inherited from AdvisedSupport) which allow you to add
other advice types such as before and throws advice. AdvisedSupport is the superclass of both ProxyFactory
and ProxyFactoryBean.

             Tip
             Integrating AOP proxy creation with the IoC framework is best practice in most applications. We
             recommend that you externalize configuration from Java code with AOP, as in general.



                                             Spring Framework (2.5.6)                                              186
Spring AOP APIs



7.8. Manipulating advised objects
However       you      create    AOP       proxies,      you     can      manipulate     them using    the
org.springframework.aop.framework.Advised          interface. Any AOP proxy can be cast to this interface,
whichever other interfaces it implements. This interface includes the following methods:

 Advisor[] getAdvisors();

 void addAdvice(Advice advice) throws AopConfigException;

 void addAdvice(int pos, Advice advice)
         throws AopConfigException;

 void addAdvisor(Advisor advisor) throws AopConfigException;

 void addAdvisor(int pos, Advisor advisor) throws AopConfigException;

 int indexOf(Advisor advisor);

 boolean removeAdvisor(Advisor advisor) throws AopConfigException;

 void removeAdvisor(int index) throws AopConfigException;

 boolean replaceAdvisor(Advisor a, Advisor b) throws AopConfigException;

 boolean isFrozen();



The getAdvisors() method will return an Advisor for every advisor, interceptor or other advice type that has
been added to the factory. If you added an Advisor, the returned advisor at this index will be the object that you
added. If you added an interceptor or other advice type, Spring will have wrapped this in an advisor with a
pointcut that always returns true. Thus if you added a MethodInterceptor, the advisor returned for this index
will be an DefaultPointcutAdvisor returning your MethodInterceptor and a pointcut that matches all classes
and methods.

The addAdvisor() methods can be used to add any Advisor. Usually the advisor holding pointcut and advice
will be the generic DefaultPointcutAdvisor, which can be used with any advice or pointcut (but not for
introductions).

By default, it's possible to add or remove advisors or interceptors even once a proxy has been created. The only
restriction is that it's impossible to add or remove an introduction advisor, as existing proxies from the factory
will not show the interface change. (You can obtain a new proxy from the factory to avoid this problem.)

A simple example of casting an AOP proxy to the Advised interface and examining and manipulating its
advice:


 Advised advised = (Advised) myObject;
 Advisor[] advisors = advised.getAdvisors();
 int oldAdvisorCount = advisors.length;
 System.out.println(oldAdvisorCount + " advisors");

 // Add an advice like an interceptor without a pointcut
 // Will match all proxied methods
 // Can use for interceptors, before, after returning or throws advice
 advised.addAdvice(new DebugInterceptor());

 // Add selective advice using a pointcut
 advised.addAdvisor(new DefaultPointcutAdvisor(mySpecialPointcut, myAdvice));

 assertEquals("Added two advisors",
      oldAdvisorCount + 2, advised.getAdvisors().length);




                                           Spring Framework (2.5.6)                                           187
Spring AOP APIs


            Note
            It's questionable whether it's advisable (no pun intended) to modify advice on a business object in
            production, although there are no doubt legitimate usage cases. However, it can be very useful in
            development: for example, in tests. I have sometimes found it very useful to be able to add test
            code in the form of an interceptor or other advice, getting inside a method invocation I want to test.
            (For example, the advice can get inside a transaction created for that method: for example, to run
            SQL to check that a database was correctly updated, before marking the transaction for roll back.)


Depending on how you created the proxy, you can usually set a frozen flag, in which case the Advised
isFrozen() method will return true, and any attempts to modify advice through addition or removal will result
in an AopConfigException. The ability to freeze the state of an advised object is useful in some cases, for
example, to prevent calling code removing a security interceptor. It may also be used in Spring 1.1 to allow
aggressive optimization if runtime advice modification is known not to be required.


7.9. Using the "autoproxy" facility
So far we've considered explicit creation of AOP proxies using a ProxyFactoryBean or similar factory bean.

Spring also allows us to use "autoproxy" bean definitions, which can automatically proxy selected bean
definitions. This is built on Spring "bean post processor" infrastructure, which enables modification of any bean
definition as the container loads.

In this model, you set up some special bean definitions in your XML bean definition file to configure the auto
proxy infrastructure. This allows you just to declare the targets eligible for autoproxying: you don't need to use
ProxyFactoryBean.

There are two ways to do this:


• Using an autoproxy creator that refers to specific beans in the current context.

• A special case of autoproxy creation that deserves to be considered separately; autoproxy creation driven by
  source-level metadata attributes.


7.9.1. Autoproxy bean definitions

The org.springframework.aop.framework.autoproxy package provides the following standard autoproxy
creators.

7.9.1.1. BeanNameAutoProxyCreator

The BeanNameAutoProxyCreator class is a BeanPostProcessor that automatically creates AOP proxies for
beans with names matching literal values or wildcards.


 <bean class="org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator">
   <property name="beanNames"><value>jdk*,onlyJdk</value></property>
   <property name="interceptorNames">
     <list>
       <value>myInterceptor</value>
     </list>
   </property>
 </bean>



                                           Spring Framework (2.5.6)                                           188
Spring AOP APIs


As with ProxyFactoryBean, there is an interceptorNames property rather than a list of interceptors, to allow
correct behavior for prototype advisors. Named "interceptors" can be advisors or any advice type.

As with auto proxying in general, the main point of using BeanNameAutoProxyCreator is to apply the same
configuration consistently to multiple objects, with minimal volume of configuration. It is a popular choice for
applying declarative transactions to multiple objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above example, are plain old
bean definitions with the target class. An AOP proxy will be created automatically by the
BeanNameAutoProxyCreator. The same advice will be applied to all matching beans. Note that if advisors are
used (rather than the interceptor in the above example), the pointcuts may apply differently to different beans.

7.9.1.2. DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is DefaultAdvisorAutoProxyCreator. This will
automagically apply eligible advisors in the current context, without the need to include specific bean names in
the autoproxy advisor's bean definition. It offers the same merit of consistent configuration and avoidance of
duplication as BeanNameAutoProxyCreator.

Using this mechanism involves:


• Specifying a DefaultAdvisorAutoProxyCreator bean definition.

• Specifying any number of Advisors in the same or related contexts. Note that these must be Advisors, not
  just interceptors or other advices. This is necessary because there must be a pointcut to evaluate, to check the
  eligibility of each advice to candidate bean definitions.

The DefaultAdvisorAutoProxyCreator will automatically evaluate the pointcut contained in each advisor, to
see what (if any) advice it should apply to each business object (such as "businessObject1" and
"businessObject2" in the example).

This means that any number of advisors can be applied automatically to each business object. If no pointcut in
any of the advisors matches any method in a business object, the object will not be proxied. As bean definitions
are added for new business objects, they will automatically be proxied if necessary.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain an
un-advised object. Calling getBean("businessObject1") on this ApplicationContext will return an AOP proxy,
not the target business object. (The "inner bean" idiom shown earlier also offers this benefit.)


 <bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

 <bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
   <property name="transactionInterceptor" ref="transactionInterceptor"/>
 </bean>

 <bean id="customAdvisor" class="com.mycompany.MyAdvisor"/>

 <bean id="businessObject1" class="com.mycompany.BusinessObject1">
   <!-- Properties omitted -->
 </bean>

 <bean id="businessObject2" class="com.mycompany.BusinessObject2"/>



The DefaultAdvisorAutoProxyCreator is very useful if you want to apply the same advice consistently to
many business objects. Once the infrastructure definitions are in place, you can simply add new business
objects without including specific proxy configuration. You can also drop in additional aspects very easily - for


                                           Spring Framework (2.5.6)                                           189
Spring AOP APIs

example, tracing or performance monitoring aspects - with minimal change to configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so that only
certain advisors are evaluated, allowing use of multiple, differently configured, AdvisorAutoProxyCreators in
the same factory) and ordering. Advisors can implement the org.springframework.core.Ordered interface to
ensure correct ordering if this is an issue. The TransactionAttributeSourceAdvisor used in the above example
has a configurable order value; the default setting is unordered.

7.9.1.3. AbstractAdvisorAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own autoproxy creators by
subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to the
behavior of the framework DefaultAdvisorAutoProxyCreator.


7.9.2. Using metadata-driven auto-proxying

A particularly important type of autoproxying is driven by metadata. This produces a similar programming
model to .NET ServicedComponents. Instead of using XML deployment descriptors as in EJB, configuration
for transaction management and other enterprise services is held in source-level attributes.

In this case, you use the DefaultAdvisorAutoProxyCreator, in combination with Advisors that understand
metadata attributes. The metadata specifics are held in the pointcut part of the candidate advisors, rather than in
the autoproxy creation class itself.

This is really a special case of the DefaultAdvisorAutoProxyCreator, but deserves consideration on its own.
(The metadata-aware code is in the pointcuts contained in the advisors, not the AOP framework itself.)

The /attributes directory of the JPetStore sample application shows the use of attribute-driven autoproxying.
In this case, there's no need to use the TransactionProxyFactoryBean. Simply defining transactional attributes
on business objects is sufficient, because of the use of metadata-aware pointcuts. The bean definitions include
the following code, in /WEB-INF/declarativeServices.xml. Note that this is generic, and can be used outside
the JPetStore:


 <bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

 <bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
   <property name="transactionInterceptor" ref="transactionInterceptor"/>
 </bean>

 <bean id="transactionInterceptor"
     class="org.springframework.transaction.interceptor.TransactionInterceptor">
   <property name="transactionManager" ref="transactionManager"/>
   <property name="transactionAttributeSource">
     <bean class="org.springframework.transaction.interceptor.AttributesTransactionAttributeSource">
       <property name="attributes" ref="attributes"/>
     </bean>
   </property>
 </bean>

 <bean id="attributes" class="org.springframework.metadata.commons.CommonsAttributes"/>



The DefaultAdvisorAutoProxyCreator bean definition (the name is not significant, hence it can even be
omitted) will pick up all eligible pointcuts in the current application context. In this case, the
"transactionAdvisor" bean definition, of type TransactionAttributeSourceAdvisor, will apply to classes or
methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor depends on a
TransactionInterceptor, via constructor dependency. The example resolves this via autowiring. The
AttributesTransactionAttributeSource            depends    on     an     implementation       of      the


                                            Spring Framework (2.5.6)                                           190
Spring AOP APIs

org.springframework.metadata.Attributes     interface. In this fragment, the "attributes" bean satisfies this,
using the Jakarta Commons Attributes API to obtain attribute information. (The application code must have
been compiled using the Commons Attributes compilation task.)

The /annotation directory of the JPetStore sample application contains an analogous example for
auto-proxying driven by JDK 1.5+ annotations. The following configuration enables automatic detection of
Spring's Transactional annotation, leading to implicit proxies for beans containing that annotation:


 <bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

 <bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
   <property name="transactionInterceptor" ref="transactionInterceptor"/>
 </bean>

 <bean id="transactionInterceptor"
     class="org.springframework.transaction.interceptor.TransactionInterceptor">
   <property name="transactionManager" ref="transactionManager"/>
   <property name="transactionAttributeSource">
     <bean class="org.springframework.transaction.annotation.AnnotationTransactionAttributeSource"/>
   </property>
 </bean>



The TransactionInterceptor defined here depends on a PlatformTransactionManager definition, which is
not included in this generic file (although it could be) because it will be specific to the application's transaction
requirements (typically JTA, as in this example, or Hibernate, JDO or JDBC):

 <bean id="transactionManager"
     class="org.springframework.transaction.jta.JtaTransactionManager"/>



            Tip
            If you require only declarative transaction management, using these generic XML definitions will
            result in Spring automatically proxying all classes or methods with transaction attributes. You
            won't need to work directly with AOP, and the programming model is similar to that of .NET
            ServicedComponents.


This mechanism is extensible. It's possible to do autoproxying based on custom attributes. You need to:


• Define your custom attribute.

• Specify an Advisor with the necessary advice, including a pointcut that is triggered by the presence of the
  custom attribute on a class or method. You may be able to use an existing advice, merely implementing a
  static pointcut that picks up the custom attribute.

It's possible for such advisors to be unique to each advised class (for example, mixins): they simply need to be
defined as prototype, rather than singleton, bean definitions. For example, the LockMixin introduction
interceptor from the Spring test suite, shown above, could be used in conjunction with an attribute-driven
pointcut to target a mixin, as shown here. We use the generic DefaultPointcutAdvisor, configured using
JavaBean properties:


 <bean id="lockMixin" class="org.springframework.aop.LockMixin"
     scope="prototype"/>

 <bean id="lockableAdvisor" class="org.springframework.aop.support.DefaultPointcutAdvisor"
     scope="prototype">
   <property name="pointcut" ref="myAttributeAwarePointcut"/>
   <property name="advice" ref="lockMixin"/>
 </bean>


                                            Spring Framework (2.5.6)                                             191
Spring AOP APIs




 <bean id="anyBean" class="anyclass" ...



If the attribute aware pointcut matches any methods in the anyBean or other bean definitions, the mixin will be
applied. Note that both lockMixin and lockableAdvisor definitions are prototypes. The
myAttributeAwarePointcut pointcut can be a singleton definition, as it doesn't hold state for individual
advised objects.


7.10. Using TargetSources
Spring offers the concept of a TargetSource, expressed in the org.springframework.aop.TargetSource
interface. This interface is responsible for returning the "target object" implementing the join point. The
TargetSource implementation is asked for a target instance each time the AOP proxy handles a method
invocation.

Developers using Spring AOP don't normally need to work directly with TargetSources, but this provides a
powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a pooling
TargetSource can return a different target instance for each invocation, using a pool to manage instances.

If you do not specify a TargetSource, a default implementation is used that wraps a local object. The same
target is returned for each invocation (as you would expect).

Let's look at the standard target sources provided with Spring, and how you can use them.

            Tip
            When using a custom target source, your target will usually need to be a prototype rather than a
            singleton bean definition. This allows Spring to create a new target instance when required.



7.10.1. Hot swappable target sources

The org.springframework.aop.target.HotSwappableTargetSource exists to allow the target of an AOP
proxy to be switched while allowing callers to keep their references to it.

Changing the target source's target takes effect immediately. The HotSwappableTargetSource is threadsafe.

You can change the target via the swap() method on HotSwappableTargetSource as follows:


 HotSwappableTargetSource swapper =
     (HotSwappableTargetSource) beanFactory.getBean("swapper");
 Object oldTarget = swapper.swap(newTarget);



The XML definitions required look as follows:


 <bean id="initialTarget" class="mycompany.OldTarget"/>

 <bean id="swapper" class="org.springframework.aop.target.HotSwappableTargetSource">
   <constructor-arg ref="initialTarget"/>
 </bean>

 <bean id="swappable" class="org.springframework.aop.framework.ProxyFactoryBean">
   <property name="targetSource" ref="swapper"/>


                                          Spring Framework (2.5.6)                                          192
Spring AOP APIs



  </bean>



The above swap() call changes the target of the swappable bean. Clients who hold a reference to that bean will
be unaware of the change, but will immediately start hitting the new target.

Although this example doesn't add any advice - and it's not necessary to add advice to use a TargetSource - of
course any TargetSource can be used in conjunction with arbitrary advice.


7.10.2. Pooling target sources

Using a pooling target source provides a similar programming model to stateless session EJBs, in which a pool
of identical instances is maintained, with method invocations going to free objects in the pool.

A crucial difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to any
POJO. As with Spring in general, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Jakarta Commons Pool 1.3, which provides a fairly efficient pooling
implementation. You'll need the commons-pool Jar on your application's classpath to use this feature. It's also
possible to subclass org.springframework.aop.target.AbstractPoolingTargetSource to support any other
pooling API.

Sample configuration is shown below:


  <bean id="businessObjectTarget" class="com.mycompany.MyBusinessObject"
      scope="prototype">
    ... properties omitted
  </bean>

  <bean id="poolTargetSource" class="org.springframework.aop.target.CommonsPoolTargetSource">
    <property name="targetBeanName" value="businessObjectTarget"/>
    <property name="maxSize" value="25"/>
  </bean>

  <bean id="businessObject" class="org.springframework.aop.framework.ProxyFactoryBean">
    <property name="targetSource" ref="poolTargetSource"/>
    <property name="interceptorNames" value="myInterceptor"/>
  </bean>



Note that the target object - "businessObjectTarget" in the example - must be a prototype. This allows the
PoolingTargetSource implementation to create new instances of the target to grow the pool as necessary. See
the havadoc for AbstractPoolingTargetSource and the concrete subclass you wish to use for information
about its properties: "maxSize" is the most basic, and always guaranteed to be present.

In this case, "myInterceptor" is the name of an interceptor that would need to be defined in the same IoC
context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling, and no
other advice, don't set the interceptorNames property at all.

It's   possible   to   configure   Spring   so   as   to  be able to cast any pooled object to the
org.springframework.aop.target.PoolingConfig            interface, which exposes information about the
configuration and current size of the pool through an introduction. You'll need to define an advisor like this:


  <bean id="poolConfigAdvisor" class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
    <property name="targetObject" ref="poolTargetSource"/>
    <property name="targetMethod" value="getPoolingConfigMixin"/>
  </bean>




                                            Spring Framework (2.5.6)                                       193
Spring AOP APIs


This advisor is obtained by calling a convenience method on the AbstractPoolingTargetSource class, hence
the use of MethodInvokingFactoryBean. This advisor's name ("poolConfigAdvisor" here) must be in the list of
interceptors names in the ProxyFactoryBean exposing the pooled object.

The cast will look as follows:

 PoolingConfig conf = (PoolingConfig) beanFactory.getBean("businessObject");
 System.out.println("Max pool size is " + conf.getMaxSize());



            Note
            Pooling stateless service objects is not usually necessary. We don't believe it should be the default
            choice, as most stateless objects are naturally thread safe, and instance pooling is problematic if
            resources are cached.


Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any autoproxy
creator.


7.10.3. Prototype target sources

Setting up a "prototype" target source is similar to a pooling TargetSource. In this case, a new instance of the
target will be created on every method invocation. Although the cost of creating a new object isn't high in a
modern JVM, the cost of wiring up the new object (satisfying its IoC dependencies) may be more expensive.
Thus you shouldn't use this approach without very good reason.

To do this, you could modify the poolTargetSource definition shown above as follows. (I've also changed the
name, for clarity.)

 <bean id="prototypeTargetSource" class="org.springframework.aop.target.PrototypeTargetSource">
   <property name="targetBeanName" ref="businessObjectTarget"/>
 </bean>



There's only one property: the name of the target bean. Inheritance is used in the TargetSource implementations
to ensure consistent naming. As with the pooling target source, the target bean must be a prototype bean
definition.


7.10.4. ThreadLocal target sources

ThreadLocal    target sources are useful if you need an object to be created for each incoming request (per thread
that is). The concept of a ThreadLocal provide a JDK-wide facility to transparently store resource alongside a
thread. Setting up a ThreadLocalTargetSource is pretty much the same as was explained for the other types of
target source:

 <bean id="threadlocalTargetSource" class="org.springframework.aop.target.ThreadLocalTargetSource">
   <property name="targetBeanName" value="businessObjectTarget"/>
 </bean>



            Note
            ThreadLocals come with serious issues (potentially resulting in memory leaks) when incorrectly
            using them in a multi-threaded and multi-classloader environments. One should always consider
            wrapping a threadlocal in some other class and never directly use the ThreadLocal itself (except of


                                           Spring Framework (2.5.6)                                           194
Spring AOP APIs


            course in the wrapper class). Also, one should always remember to correctly set and unset (where
            the latter simply involved a call to ThreadLocal.set(null)) the resource local to the thread.
            Unsetting should be done in any case since not unsetting it might result in problematic behavior.
            Spring's ThreadLocal support does this for you and should always be considered in favor of using
            ThreadLocals without other proper handling code.



7.11. Defining new Advice types
Spring AOP is designed to be extensible. While the interception implementation strategy is presently used
internally, it is possible to support arbitrary advice types in addition to the out-of-the-box interception around
advice, before, throws advice and after returning advice.

The org.springframework.aop.framework.adapter package is an SPI package allowing support for new
custom advice types to be added without changing the core framework. The only constraint on a custom Advice
type is that it must implement the org.aopalliance.aop.Advice tag interface.

Please refer to the org.springframework.aop.framework.adapter package's Javadocs for further information.


7.12. Further resources
Please refer to the Spring sample applications for further examples of Spring AOP:


• The JPetStore's default configuration illustrates the use of the TransactionProxyFactoryBean for declarative
  transaction management.

• The /attributes directory of the JPetStore illustrates the use of attribute-driven declarative transaction
  management.




                                           Spring Framework (2.5.6)                                           195
Chapter 8. Testing

8.1. Introduction
The Spring team considers developer testing to be an absolutely integral part of enterprise software
development. A thorough treatment of testing in the enterprise is beyond the scope of this chapter; rather, the
focus here is on the value-add that the adoption of the IoC principle can bring to unit testing and on the benefits
that the Spring Framework provides in integration testing.


8.2. Unit testing
One of the main benefits of Dependency Injection is that your code should really depend far less on the
container than in traditional J2EE development. The POJOs that comprise your application should be testable in
JUnit or TestNG tests, with objects simply instantiated using the new operator, without Spring or any other
container. You can use mock objects (in conjunction with many other valuable testing techniques) to test your
code in isolation. If you follow the architecture recommendations around Spring you will find that the resulting
clean layering and componentization of your codebase will naturally facilitate easier unit testing. For example,
you will be able to test service layer objects by stubbing or mocking DAO or Repository interfaces, without any
need to access persistent data while running unit tests.

True unit tests typically will run extremely quickly, as there is no runtime infrastructure to set up, whether
application server, database, ORM tool, or whatever. Thus emphasizing true unit tests as part of your
development methodology will boost your productivity. The upshot of this is that you often do not need this
section of the testing chapter to help you write effective unit tests for your IoC-based applications. For certain
unit testing scenarios, however, the Spring Framework provides the following mock objects and testing support
classes.


8.2.1. Mock objects

8.2.1.1. JNDI

The org.springframework.mock.jndi package contains an implementation of the JNDI SPI, which is useful
for setting up a simple JNDI environment for test suites or stand-alone applications. If, for example, JDBC
DataSources get bound to the same JNDI names in test code as within a J2EE container, both application code
and configuration can be reused in testing scenarios without modification.

8.2.1.2. Servlet API

The org.springframework.mock.web package contains a comprehensive set of Servlet API mock objects,
targeted at usage with Spring's Web MVC framework, which are useful for testing web contexts and
controllers. These mock objects are generally more convenient to use than dynamic mock objects (e.g.,
EasyMock) or existing Servlet API mock objects (e.g., MockObjects).

8.2.1.3. Portlet API

The org.springframework.mock.web.portlet package contains a set of Portlet API mock objects, targeted at
usage with Spring's Portlet MVC framework.



                                            Spring Framework (2.5.6)                                           196
Testing


8.2.2. Unit testing support classes

8.2.2.1. General utilities

The org.springframework.test.util package contains ReflectionTestUtils, which is a collection of
reflection-based utility methods for use in unit and integration testing scenarios in which the developer would
benefit from being able to set a non-public field or invoke a non-public setter method when testing
application code involving, for example:


• ORM frameworks such as JPA and Hibernate which condone the usage of private or protected field access
  as opposed to public setter methods for properties in a domain entity

• Spring's support for annotations such as @Autowired and @Resource which provides dependency injection for
  private or protected fields, setter methods, and configuration methods


8.2.2.2. Spring MVC

The org.springframework.test.web package contains AbstractModelAndViewTests, which serves as a
convenient base class for JUnit 3.8 based unit tests dealing with Spring MVC ModelAndView objects. When
developing against Java 1.4 and higher (e.g., in combination with JUnit 4+, TestNG, etc.), you have the option
of using the ModelAndViewAssert class (in the same package) to test your ModelAndView related functionality.

Tip: depending on your testing environment, either extend AbstractModelAndViewTests or use
ModelAndViewAssert directly and then use MockHttpServletRequest, MockHttpSession, etc. from the
org.springframework.mock.web package to test your Spring MVC Controllers.



8.3. Integration testing

8.3.1. Overview

It is important to be able to perform some integration testing without requiring deployment to your application
server or connecting to other enterprise infrastructure. This will enable you to test things such as:


• The correct wiring of your Spring IoC container contexts.

• Data access using JDBC or an ORM tool. This would include such things as the correctness of SQL
  statements, Hibernate queries, JPA entity mappings, etc.

The Spring Framework provides first class support for integration testing in the form of the classes that are
packaged in the spring-test.jar library. In this library, you will find the org.springframework.test
package which contains valuable classes for integration testing using a Spring container, while at the same time
not being reliant on an application server or other deployment environment. Such tests will be slower to run
than unit tests but much faster to run than the equivalent Cactus tests or remote tests relying on deployment to
an application server.

Prior to the 2.5 release of the framework, Spring provided integration testing support specific to JUnit 3.8. As
of the 2.5 release, Spring offers support for unit and integration testing in the form of the Spring TestContext
Framework, which is agnostic of the actual testing framework in use, thus allowing instrumentation of tests in
various environments including JUnit 3.8, JUnit 4.4, TestNG, etc. Note that the Spring TestContext Framework
requires Java 5+.


                                          Spring Framework (2.5.6)                                          197
Testing


8.3.2. Which support framework to use

The Spring team recommends using the Spring TestContext Framework for all new unit testing or integration
testing involving ApplicationContexts or requiring transactional test fixtures; however, if you are developing
in a pre-Java 5 environment, you will need to continue to use the JUnit 3.8 legacy support. In addition, explicit
integration testing support for JPA which relies on shadow class loading for JPA class instrumentation is
currently only available with the JUnit 3.8 legacy support. If you are testing against a JPA provider which does
not require class instrumentation, however, it is recommended that you use the TestContext framework.


8.3.3. Common goals

The Spring integration testing support frameworks share several common goals, including:


• Spring IoC container caching between test execution.

• Dependency Injection of test fixture instances (this is nice).

• Transaction management appropriate to integration testing (this is even nicer).

• Spring-specific support classes that are really useful when writing integration tests.

The following sections outline each of these goals and provide direct links to information specific to the
particular support frameworks.

8.3.3.1. Context management and caching

Spring integration testing support frameworks provide consistent loading of Spring ApplicationContexts and
caching of those contexts. Support for the caching of loaded contexts is important, because if you are working
on a large project, startup time may become an issue - not because of the overhead of Spring itself, but because
the objects instantiated by the Spring container will themselves take time to instantiate. For example, a project
with 50-100 Hibernate mapping files might take 10-20 seconds to load the mapping files, and incurring that
cost before running every single test in every single test fixture will lead to slower overall test runs that could
reduce productivity.

Test classes will generally provide an array containing the resource locations of XML configuration metadata -
typically on the classpath - used to configure the application. This will be the same, or nearly the same, as the
list of configuration locations specified in web.xml or other deployment configuration.

By default, once loaded, the configured ApplicationContext will be reused for each test. Thus the setup cost
will be incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely
case that a test may 'dirty' the application context, requiring reloading - for example, by changing a bean
definition or the state of an application object - Spring's testing support provides mechanisms to cause the test
fixture to reload the configurations and rebuild the application context before executing the next test.

Context management and caching with:


• JUnit 3.8 legacy support

• The TestContext Framework

8.3.3.2. Dependency Injection of test fixtures



                                            Spring Framework (2.5.6)                                           198
Testing


When Spring integration testing support frameworks load your application context, they can optionally
configure instances of your test classes via Dependency Injection. This provides a convenient mechanism for
setting up test fixtures using pre-configured beans from your application context. A strong benefit here is that
you can reuse application contexts across various testing scenarios (e.g., for configuring Spring-managed object
graphs, transactional proxies, DataSources, etc.), thus avoiding the need to duplicate complex test fixture set up
for individual test cases.

As an example, consider the scenario where we have a class, HibernateTitleDao, that performs data access
logic for say, the Title domain object. We want to write integration tests that test all of the following areas:


• The Spring configuration: basically, is everything related to the configuration of the HibernateTitleDao
  bean correct and present?

• The Hibernate mapping file configuration: is everything mapped correctly and are the correct lazy-loading
  settings in place?

• The logic of the HibernateTitleDao: does the configured instance of this class perform as anticipated?

Dependency Injection of test fixtures with:


• JUnit 3.8 legacy support

• The TestContext Framework

8.3.3.3. Transaction management

One common issue in tests that access a real database is their affect on the state of the persistence store. Even
when you're using a development database, changes to the state may affect future tests. Also, many operations -
such as inserting to or modifying persistent data - cannot be performed (or verified) outside a transaction.

The Spring integration testing support frameworks meet this need. By default, they create and roll back a
transaction for each test. You simply write code that can assume the existence of a transaction. If you call
transactionally proxied objects in your tests, they will behave correctly, according to their transactional
semantics. In addition, if test methods delete the contents of selected tables while running within a transaction,
the transaction will roll back by default, and the database will return to its state prior to execution of the test.
Transactional support is provided to your test class via a PlatformTransactionManager bean defined in the
test's application context.

If you want a transaction to commit - unusual, but occasionally useful when you want a particular test to
populate or modify the database - the Spring integration testing support frameworks can be instructed to cause
the transaction to commit instead of roll back either by calling an inherited hook-method or by declaring a
specific annotation.

Transaction management with:


• JUnit 3.8 legacy support

• The TestContext Framework

8.3.3.4. Integration testing support classes

The Spring integration testing support frameworks provide several abstract support classes that can simplify


                                              Spring Framework (2.5.6)                                          199
Testing

writing integration tests. These base test classes provide well defined hooks into the testing framework as well
as convenient instance variables and methods, allowing access to such things as:


• The ApplicationContext: useful for performing explicit bean lookups or testing the state of the context as a
  whole.

• A JdbcTemplate or SimpleJdbcTemplate: useful for querying to confirm state. For example, you might
  query before and after testing application code that creates an object and persists it using an ORM tool, to
  verify that the data appears in the database. (Spring will ensure that the query runs in the scope of the same
  transaction.) You will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example
  using the flush() method on Hibernate's Session interface.

Often you will provide an application-wide superclass for integration tests that provides further useful instance
variables used in many tests.

Support classes for:


• JUnit 3.8 legacy support

• The TestContext Framework


8.3.4. JDBC testing support

The org.springframework.test.jdbc package contains SimpleJdbcTestUtils, which is a Java-5-based
collection of JDBC related utility functions intended to simplify standard database testing scenarios. Note that
AbstractTransactionalJUnit38SpringContextTests, AbstractTransactionalJUnit4SpringContextTests,
and AbstractTransactionalTestNGSpringContextTests provide convenience methods which delegate to
SimpleJdbcTestUtils internally.



8.3.5. Common annotations

The    Spring    Framework      provides   a common set of Spring-specific annotations in the
org.springframework.test.annotation        package that you can use in your testing if you are developing
against Java 5 or greater.


• @IfProfileValue

  Indicates that the annotated test is enabled for a specific testing environment. If the configured
  ProfileValueSource returns a matching value for the provided name, the test will be enabled. This
  annotation can be applied to an entire class or individual methods.

 @IfProfileValue(name="java.vendor", value="Sun Microsystems Inc.")
 public void testProcessWhichRunsOnlyOnSunJvm() {
     // some logic that should run only on Java VMs from Sun Microsystems
 }



  Alternatively @IfProfileValue may be configured with a list of values (with OR semantics) to achieve
  TestNG-like support for test groups in a JUnit environment. Consider the following example:

 @IfProfileValue(name="test-groups", values={"unit-tests", "integration-tests"})
 public void testProcessWhichRunsForUnitOrIntegrationTestGroups() {
     // some logic that should run only for unit and integration test groups
 }




                                           Spring Framework (2.5.6)                                           200
Testing


• @ProfileValueSourceConfiguration

  Class-level annotation which is used to specify what type of ProfileValueSource to use when retrieving
  profile values configured via the @IfProfileValue annotation. If @ProfileValueSourceConfiguration is
  not declared for a test, SystemProfileValueSource will be used by default.

 @ProfileValueSourceConfiguration(CustomProfileValueSource.class)
 public class CustomProfileValueSourceTests {
     // class body...
 }



• @DirtiesContext

  The presence of this annotation on a test method indicates that the underlying Spring container is 'dirtied'
  during the execution of the test method, and thus must be rebuilt after the test method finishes execution
  (regardless of whether the test passed or not).

 @DirtiesContext
 public void testProcessWhichDirtiesAppCtx() {
     // some logic that results in the Spring container being dirtied
 }



• @ExpectedException

  Indicates that the annotated test method is expected to throw an exception during execution. The type of the
  expected exception is provided in the annotation, and if an instance of the exception is thrown during the test
  method execution then the test passes. Likewise if an instance of the exception is not thrown during the test
  method execution then the test fails.

 @ExpectedException(SomeBusinessException.class)
 public void testProcessRainyDayScenario() {
     // some logic that should result in an Exception being thrown
 }



• @Timed

  Indicates that the annotated test method has to finish execution in a specified time period (in milliseconds). If
  the text execution time takes longer than the specified time period, the test fails.

  Note that the time period includes execution of the test method itself, any repetitions of the test (see
  @Repeat), as well as any set up or tear down of the test fixture.

 @Timed(millis=1000)
 public void testProcessWithOneSecondTimeout() {
     // some logic that should not take longer than 1 second to execute
 }



• @Repeat

  Indicates that the annotated test method must be executed repeatedly. The number of times that the test
  method is to be executed is specified in the annotation.

  Note that the scope of execution to be repeated includes execution of the test method itself as well as any set
  up or tear down of the test fixture.

 @Repeat(10)
 public void testProcessRepeatedly() {
     // ...



                                           Spring Framework (2.5.6)                                            201
Testing


 }



• @Rollback

  Indicates whether or not the transaction for the annotated test method should be rolled back after the test
  method has completed. If true, the transaction will be rolled back; otherwise, the transaction will be
  committed. Use @Rollback to override the default rollback flag configured at the class level.

 @Rollback(false)
 public void testProcessWithoutRollback() {
     // ...
 }



• @NotTransactional

  The presence of this annotation indicates that the annotated test method must not execute in a transactional
  context.

 @NotTransactional
 public void testProcessWithoutTransaction() {
     // ...
 }



Annotation support for:


• JUnit 3.8 legacy support: all common annotations listed above are supported but must be used in conjunction
  with AbstractAnnotationAwareTransactionalTests in order for the presence of these annotations to have
  any effect.

• The TestContext Framework: supports all of the common annotations listed above while providing additional
  TestContext-specific and transactional annotations (e.g., @ContextConfiguration, @BeforeTransaction,
  etc.). Note, however, that some of the common annotations are only supported when used in conjunction
  with JUnit (e.g., with the SpringJUnit4ClassRunner or the JUnit 3.8 and JUnit 4.4 base test classes). Refer to
  the documentation in the TestContext Framework section for further details.


8.3.6. JUnit 3.8 legacy support

Spring's JUnit 3.8 legacy support is comprised of the classes found in the org.springframework.test package.
This package provides valuable JUnit TestCase superclasses which can be extended for out-of-container
integration tests involving Spring ApplicationContexts or requiring transactional support at the test method
level.

8.3.6.1. Context management and caching

AbstractSingleSpringContextTests    provides context management and caching support for JUnit 3.8 based
test cases and exposes a protected method that subclasses can override to provide the location of context
definition files:

 protected String[] getConfigLocations()



Implementations of this method must provide an array containing the resource locations of XML configuration
metadata - typically on the classpath - used to configure the application. This will be the same, or nearly the


                                          Spring Framework (2.5.6)                                          202
Testing


same, as the list of configuration locations specified in web.xml or other deployment configuration. As an
alternative you may choose to override one of the following. See the respective JavaDoc for further details.

 protected String[] getConfigPaths()



 protected String getConfigPath()



By default, once loaded, the configuration file set will be reused for each test case. Thus the setup cost will be
incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely case that
a test may 'dirty' the application context, requiring reloading - for example, by changing a bean definition or the
state of an application object - you can call the setDirty() method on AbstractSingleSpringContextTests to
cause the test fixture to reload the configurations and rebuild the application context before executing the next
test case. As an alternative, if you are developing against Java 5 or greater and extending
AbstractAnnotationAwareTransactionalTests, you may annotate your test method with @DirtiesContext to
achieve the same effect.

8.3.6.2. Dependency Injection of test fixtures

When AbstractDependencyInjectionSpringContextTests (and subclasses) load your application context,
they can optionally configure instances of your test classes by Setter Injection. All you need to do is to define
instance variables and the corresponding setter methods. AbstractDependencyInjectionSpringContextTests
will automatically locate the corresponding object in the set of configuration files specified in the
getConfigLocations() method.

Consider the scenario where we have a class, HibernateTitleDao (as outlined in the Common goals section).
Let's look at a JUnit 3.8 based implementation of the test class itself (we will look at the configuration
immediately afterwards).

 public final class HibernateTitleDaoTests extends AbstractDependencyInjectionSpringContextTests              {

      // this instance will be (automatically) dependency injected
      private HibernateTitleDao titleDao;

      // a setter method to enable DI of the 'titleDao' instance variable
      public void setTitleDao(HibernateTitleDao titleDao) {
          this.titleDao = titleDao;
      }

      public void testLoadTitle() throws Exception {
          Title title = this.titleDao.loadTitle(new Long(10));
          assertNotNull(title);
      }

      // specifies the Spring configuration to load for this test fixture
      protected String[] getConfigLocations() {
          return new String[] { "classpath:com/foo/daos.xml" };
      }

 }



The file referenced by the getConfigLocations() method (i.e., "classpath:com/foo/daos.xml") looks like
this:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://www.springframework.org/schema/beans
            http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

      <!-- this bean will be injected into the HibernateTitleDaoTests class -->
      <bean id="titleDao" class="com.foo.dao.hibernate.HibernateTitleDao">



                                            Spring Framework (2.5.6)                                           203
Testing

          <property name="sessionFactory" ref="sessionFactory"/>
      </bean>

      <bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
          <!-- dependencies elided for clarity -->
      </bean>

 </beans>



The AbstractDependencyInjectionSpringContextTests classes uses autowire by type. Thus if you have
multiple bean definitions of the same type, you cannot rely on this approach for those particular beans. In that
case, you can use the inherited applicationContext instance variable and perform explicit lookups using (for
example) a call to applicationContext.getBean("titleDao").

If you don't want dependency injection applied to your test cases, simply don't declare any public setter
methods. Alternatively, you can extend AbstractSpringContextTests - the root of the JUnit 3.8 integration
testing support class hierarchy in the org.springframework.test package - which merely contains
convenience methods to load Spring contexts and performs no Dependency Injection of the test fixture.

8.3.6.2.1. Field level injection
If, for whatever reason, you don't fancy having setter methods in your test fixtures, Spring can inject
dependencies into protected fields. Find below a reworking of the previous example to use field level
injection (the Spring XML configuration does not need to change, merely the test fixture).

 public final class HibernateTitleDaoTests extends AbstractDependencyInjectionSpringContextTests              {

      public HibernateTitleDaoTests() {
          // switch on field level injection
          setPopulateProtectedVariables(true);
      }

      // this instance will be (automatically) dependency injected
      protected HibernateTitleDao titleDao;

      public void testLoadTitle() throws Exception {
          Title title = this.titleDao.loadTitle(new Long(10));
          assertNotNull(title);
      }

      // specifies the Spring configuration to load for this test fixture
      protected String[] getConfigLocations() {
          return new String[] { "classpath:com/foo/daos.xml" };
      }

 }



In the case of field injection, there is no autowiring going on: the name of a protected instance variable is used
as the lookup bean name in the configured Spring container.

8.3.6.3. Transaction management

AbstractTransactionalSpringContextTests        depends on a PlatformTransactionManager bean being defined
in the application context. The name doesn't matter due to the use of autowire by type.

Typically you will extend the subclass, AbstractTransactionalDataSourceSpringContextTests. This class
also requires that a DataSource bean definition - again, with any name - be present in the application context. It
creates a JdbcTemplate instance variable, that is useful for convenient querying, and provides handy methods
to delete the contents of selected tables (remember that the transaction will roll back by default, so this is safe
to do).

If you want a transaction to commit programmatically - unusual, but occasionally useful when you want a


                                            Spring Framework (2.5.6)                                           204
Testing

particular test to populate the database - you can call the setComplete() method inherited from
AbstractTransactionalSpringContextTests. This will cause the transaction to commit instead of roll back.
As an alternative, if you are developing against Java 5 or greater and extending
AbstractAnnotationAwareTransactionalTests, you may annotate your test method with @Rollback(false)
to achieve the same effect through configuration.

There is also the convenient ability to end a transaction before the test case ends, by calling the
endTransaction() method. This will roll back the transaction by default and commit it only if setComplete()
had previously been called. This functionality is useful if you want to test the behavior of 'disconnected' data
objects, such as Hibernate-mapped entities that will be used in a web or remoting tier outside a transaction.
Often, lazy loading errors are discovered only through UI testing; if you call endTransaction() you can ensure
correct operation of the UI through your JUnit test suite.

8.3.6.4. JUnit 3.8 legacy support classes

When you extend the AbstractTransactionalDataSourceSpringContextTests class you will have access to
the following protected instance variables:


• applicationContext          (a      ConfigurableApplicationContext):       inherited      from         the
  AbstractSingleSpringContextTests superclass. Use this to perform explicit bean lookup or to test the state
  of the context as a whole.

• jdbcTemplate: inherited from AbstractTransactionalDataSourceSpringContextTests. Useful for
  querying to confirm state. For example, you might query before and after testing application code that creates
  an object and persists it using an ORM tool, to verify that the data appears in the database. (Spring will
  ensure that the query runs in the scope of the same transaction.) You will need to tell your ORM tool to
  'flush' its changes for this to work correctly, for example using the flush() method on Hibernate's Session
  interface.

8.3.6.5. Java 5+ specific support

8.3.6.5.1. Annotation aware transactional tests
In addition to the aforementioned common annotations, the org.springframework.test.annotation package
also contains an abstract JUnit TestCase class which provides annotation-driven integration testing support.

The                AbstractAnnotationAwareTransactionalTests                 class             extends
AbstractTransactionalDataSourceSpringContextTests and makes text fixtures, which extend it, aware of a
number of (Spring-specific) annotations. AbstractAnnotationAwareTransactionalTests supports all
annotations listed in the common annotations section as well as Spring's @Transactional annotation for
configuring explicit transactional semantics.

8.3.6.5.2. JPA support classes
The org.springframework.test.jpa package provides support classes for tests based on the Java Persistence
API (JPA).


• AbstractJpaTests is a convenient support class for JPA-related tests, which offers the same contract as
  AbstractTransactionalDataSourceSpringContextTests and equally good performance, even when
  performing the instrumentation required by the JPA specification. Exposes an EntityManagerFactory and a
  shared EntityManager. Requires an EntityManagerFactory to be injected, plus the DataSource and
  JpaTransactionManager through the superclass.




                                          Spring Framework (2.5.6)                                          205
Testing


• AbstractAspectjJpaTests is a subclass of AbstractJpaTests that activates AspectJ load-time weaving and
  allows the ability to specify a custom location for AspectJ's aop.xml file.


8.3.7. Spring TestContext Framework

The Spring TestContext Framework (located in the org.springframework.test.context package) provides
generic, annotation-driven unit and integration testing support that is agnostic of the testing framework in use,
for example JUnit 3.8, JUnit 4.4, TestNG 5.5, etc. The TestContext framework also places a great deal of
importance on convention over configuration with reasonable defaults that can be overridden via
annotation-based configuration.

In addition to generic testing infrastructure, the TestContext framework provides explicit support for JUnit 3.8,
JUnit 4.4, and TestNG 5.5 in the form of abstract support classes. For JUnit 4.4, the framework also provides
a custom Runner which allows one to write test classes that are not required to extend a particular class
hierarchy.

The following section provides an overview of the internals of the TestContext framework. If you are only
interested in using the framework and not necessarily interested in extending it with your own custom listeners,
feel free to skip ahead to the configuration (context management, dependency injection, transaction
management), support classes, and annotation support sections.

8.3.7.1. Key abstractions

The core of the framework consists of the TestContext and TestContextManager classes and the
TestExecutionListener interface. A TestContextManager is created on a per-test basis. The
TestContextManager in turn manages a TestContext which is responsible for holding the context of the
current test. The TestContextManager is also responsible for updating the state of the TestContext as the test
progresses and delegating to TestExecutionListeners, which instrument the actual test execution (e.g.,
providing dependency injection, managing transactions, etc.). Consult the JavaDoc and the Spring test suite for
further information and examples of various configurations.


• TestContext: encapsulates the context in which a test is executed, agnostic of the actual testing framework
  in use.

• TestContextManager: the main entry point into the Spring TestContext Framework, which is responsible for
  managing a single TestContext and signaling events to all registered TestExecutionListeners at well
  defined test execution points: test instance preparation, prior to any before methods of a particular testing
  framework, and after any after methods of a particular testing framework.

• TestExecutionListener: defines a listener API for reacting to test execution events published by the
  TestContextManager with which the listener is registered.

  Spring provides three TestExecutionListener implementations which are configured by default (via the
  @TestExecutionListeners                annotation):           DependencyInjectionTestExecutionListener,
  DirtiesContextTestExecutionListener, and TransactionalTestExecutionListener, which provide
  support for dependency injection of the test instance, handling of the @DirtiesContext annotation, and
  transactional test execution support with default rollback semantics, respectively.

The following three sections explain how to configure the TestContext framework via annotations and provide
working examples of how to actually write unit and integration tests with the framework.

8.3.7.2. Context management and caching


                                           Spring Framework (2.5.6)                                          206
Testing


Each TestContext provides context management and caching support for the test instance for which it is
responsible. Test instances do not automatically receive access to the configured ApplicationContext;
however, if a test class implements the ApplicationContextAware interface, a reference to the
ApplicationContext          will   be  supplied      to    the    test    instance    (provided    the
DependencyInjectionTestExecutionListener has been configured, which is the default). Note that
AbstractJUnit38SpringContextTests,                 AbstractJUnit4SpringContextTests,              and
AbstractTestNGSpringContextTests already implement ApplicationContextAware and therefore provide
this functionality out-of-the-box.

In contrast to the JUnit 3.8 legacy support, test classes which use the TestContext framework do not need to
override any protected instance methods to configure their application context. Rather, configuration is
achieved merely by declaring the @ContextConfiguration annotation at the class level. If your test class does
not explicitly declare any application context resource locations, the configured ContextLoader will
determine how and whether or not to load a context from a default set of locations. For example,
GenericXmlContextLoader - which is the default ContextLoader - will generate a default location based on the
name of the test class. If your class is named com.example.MyTest, GenericXmlContextLoader will load your
application context from "classpath:/com/example/MyTest-context.xml".

 package com.example;

 @RunWith(SpringJUnit4ClassRunner.class)
 // ApplicationContext will be loaded from "classpath:/com/example/MyTest-context.xml"
 @ContextConfiguration
 public class MyTest {
     // class body...
 }



If the default location does not suit your needs, you are free to explicitly configure the locations attribute of
@ContextConfiguration (see code listing below) with an array containing the resource locations of XML
configuration metadata (assuming an XML-capable ContextLoader has been configured) - typically on the
classpath - used to configure the application. This will be the same, or nearly the same, as the list of
configuration locations specified in web.xml or other deployment configuration. As an alternative you may
choose to implement and configure your own custom ContextLoader.

 @RunWith(SpringJUnit4ClassRunner.class)
 // ApplicationContext will be loaded from "/applicationContext.xml" and "/applicationContext-test.xml"
 // in the root of the classpath
 @ContextConfiguration(locations={"/applicationContext.xml", "/applicationContext-test.xml"})
 public class MyTest {
     // class body...
 }



@ContextConfiguration      also supports a boolean inheritLocations attribute which denotes whether or not
resource locations from superclasses should be inherited. The default value is true, which means that an
annotated class will inherit the resource locations defined by an annotated superclass. Specifically, the resource
locations for an annotated class will be appended to the list of resource locations defined by an annotated
superclass. Thus, subclasses have the option of extending the list of resource locations. In the following
example, the ApplicationContext for ExtendedTest will be loaded from "/base-context.xml" and
"/extended-context.xml", in that order. Beans defined in "/extended-context.xml" may therefore override those
defined in "/base-context.xml".

 @RunWith(SpringJUnit4ClassRunner.class)
 // ApplicationContext will be loaded from "/base-context.xml" in the root of the classpath
 @ContextConfiguration(locations={"/base-context.xml"})
 public class BaseTest {
     // class body...
 }

 // ApplicationContext will be loaded from "/base-context.xml" and "/extended-context.xml"



                                           Spring Framework (2.5.6)                                           207
Testing

 // in the root of the classpath
 @ContextConfiguration(locations={"/extended-context.xml"})
 public class ExtendedTest extends BaseTest {
     // class body...
 }



If inheritLocations is set to false, the resource locations for the annotated class will shadow and effectively
replace any resource locations defined by a superclass.

By default, once loaded, the configured ApplicationContext will be reused for each test. Thus the setup cost
will be incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely
case that a test may dirty the application context, requiring reloading - for example, by changing a bean
definition or the state of an application object - you may annotate your test method with @DirtiesContext
(assuming DirtiesContextTestExecutionListener has been configured, which is the default) to cause the test
fixture to reload the configurations and rebuild the application context before executing the next test.

8.3.7.3. Dependency Injection of test fixtures

When you configure the DependencyInjectionTestExecutionListener - which is configured by default - via
the @TestExecutionListeners annotation, the dependencies of your test instances will be injected from beans
in the application context you configured via @ContextConfiguration by Setter Injection, Field Injection, or
both, depending on which annotations you choose and whether you place them on setter methods or fields. For
consistency with annotation support in Spring 2.5, you may choose either Spring's @Autowired annotation or
the @Resource annotation from JSR 250. The semantics for both are consistent throughout the Spring
Framework. For example, if you prefer autowiring by type, annotate your setter methods or fields with
@Autowired. On the other hand, if you prefer to have your dependencies injected by name, annotate your setter
methods or fields with @Resource.

            Tip
            The TestContext framework does not instrument the manner in which a test instance is instantiated.
            Thus the use of @Autowired for constructors has no effect for test classes.


Since @Autowired performs autowiring by type, if you have multiple bean definitions of the same type, you
cannot rely on this approach for those particular beans. In that case, you can use @Resource for injection by
name. Alternatively, if your test class implements ApplicationContextAware, you can directly access the
ApplicationContext supplied to your test and perform an explicit lookup using (for example) a call to
applicationContext.getBean("titleDao").

If you don't want dependency injection applied to your test instances, simply don't annotate any fields or setter
methods with @Autowired or @Resource. Alternatively, you can disable dependency injection altogether by
explicitly    configuring     your      class      with      @TestExecutionListeners          and       omitting
DependencyInjectionTestExecutionListener.class from the list of listeners.

Consider the scenario where we have a class, HibernateTitleDao (as outlined in the common goals section).
First, let's look at a JUnit 4.4 based implementation of the test class itself which uses @Autowired for field
injection (we will look at the application context configuration after all sample code listings). Note: The
dependency injection behavior in the following code listings is not in any way specific to JUnit 4.4. The same
DI techniques can be used in conjunction with any testing framework.

 @RunWith(SpringJUnit4ClassRunner.class)
 // specifies the Spring configuration to load for this test fixture
 @ContextConfiguration(locations={"daos.xml"})
 public final class HibernateTitleDaoTests {

      // this instance will be dependency injected by type


                                           Spring Framework (2.5.6)                                          208
Testing

      @Autowired
      private HibernateTitleDao titleDao;

      public void testLoadTitle() throws Exception {
          Title title = this.titleDao.loadTitle(new Long(10));
          assertNotNull(title);
      }
 }



Alternatively, we can configure the class to use @Autowired for setter injection.

 @RunWith(SpringJUnit4ClassRunner.class)
 // specifies the Spring configuration to load for this test fixture
 @ContextConfiguration(locations={"daos.xml"})
 public final class HibernateTitleDaoTests {

      // this instance will be dependency injected by type
      private HibernateTitleDao titleDao;

      @Autowired
      public void setTitleDao(HibernateTitleDao titleDao) {
          this.titleDao = titleDao;
      }

      public void testLoadTitle() throws Exception {
          Title title = this.titleDao.loadTitle(new Long(10));
          assertNotNull(title);
      }
 }



Now let's take a look at an example using @Resource for field injection.

 @RunWith(SpringJUnit4ClassRunner.class)
 // specifies the Spring configuration to load for this test fixture
 @ContextConfiguration(locations={"daos.xml"})
 public final class HibernateTitleDaoTests {

      // this instance will be dependency injected by name
      @Resource
      private HibernateTitleDao titleDao;

      public void testLoadTitle() throws Exception {
          Title title = this.titleDao.loadTitle(new Long(10));
          assertNotNull(title);
      }
 }



Finally, here is an example using @Resource for setter injection.

 @RunWith(SpringJUnit4ClassRunner.class)
 // specifies the Spring configuration to load for this test fixture
 @ContextConfiguration(locations={"daos.xml"})
 public final class HibernateTitleDaoTests {

      // this instance will be dependency injected by name
      private HibernateTitleDao titleDao;

      @Resource
      public void setTitleDao(HibernateTitleDao titleDao) {
          this.titleDao = titleDao;
      }

      public void testLoadTitle() throws Exception {
          Title title = this.titleDao.loadTitle(new Long(10));
          assertNotNull(title);
      }
 }



The above code listings use the same XML context file referenced by the @ContextConfiguration annotation
(i.e., "daos.xml") which looks like this:

                                           Spring Framework (2.5.6)                                 209
Testing


 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://www.springframework.org/schema/beans
            http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

       <!-- this bean will be injected into the HibernateTitleDaoTests class -->
       <bean id="titleDao" class="com.foo.dao.hibernate.HibernateTitleDao">
           <property name="sessionFactory" ref="sessionFactory"/>
       </bean>

       <bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
           <!-- dependencies elided for clarity -->
       </bean>

 </beans>



            Note
            If you are extending from a Spring-provided test base class that happens to use @Autowired on one
            of its setters methods, you might have multiple beans of the affected type defined in your
            application context: e.g. multiple DataSource beans. In such a case, you may override the setter
            and use the @Qualifier annotation to indicate a specific target bean as follows:

 ...
       @Override @Autowired
       public void setDataSource(@Qualifier("myDataSource") DataSource dataSource) {
           super.setDataSource(dataSource);
       }
 ...



            The specified qualifier value indicates the specific DataSource bean to inject, narrowing the set of
            type matches to a specific bean. Its value is matched against <qualifier> declarations within the
            corresponding <bean> definitions. The bean name is used as a fallback qualifier value, so you may
            effectively also point to a specific bean by name there (as shown above, assuming that
            "myDataSource" is the bean id). If there is only one DataSource bean to begin with, then the
            qualifier will simply not have any effect - independent from the bean name of that single matching
            bean.

            Alternatively, consider using the @Resource annotation on such an overridden setter methods,
            defining the target bean name explicitly - with no type matching semantics. Note that this always
            points to a bean with that specific name, no matter whether there is one or more beans of the given
            type.

 ...
       @Override @Resource("myDataSource")
       public void setDataSource(DataSource dataSource) {
           super.setDataSource(dataSource);
       }
 ...




8.3.7.4. Transaction management

In the TestContext framework, transactions are managed by the TransactionalTestExecutionListener,
which is configured via the @TestExecutionListeners annotation by default, even if you do not explicitly
declare @TestExecutionListeners on your test class. To enable support for transactions, however, you must
provide a PlatformTransactionManager bean in the application context loaded via @ContextConfiguration
semantics. In addition, you must declare @Transactional either at the class or method level.



                                          Spring Framework (2.5.6)                                          210
Testing


For class-level transaction configuration (i.e., setting the bean name for the transaction manager and the default
rollback flag), see the @TransactionConfiguration entry in the TestContext framework annotation support
section.

There are several options for configuring transactions for individual test methods. If transactions are not
enabled for the entire test class, methods may be explicitly annotated with @Transactional. Similarly, if
transactions are enabled for the entire test class, methods may be explicitly flagged not to run within a
transaction by annotating them with @NotTransactional. To control whether or not a transaction should
commit for a particular test method, you may use the @Rollback annotation to override the class-level default
rollback setting.

Note                         that                        AbstractTransactionalJUnit38SpringContextTests,
AbstractTransactionalJUnit4SpringContextTests,                                                               and
AbstractTransactionalTestNGSpringContextTests           are pre-configured for transactional support at the class
level.

You will occasionally find that you need to execute certain code before or after a transactional test method but
outside the transactional context, for example to verify the initial database state prior to execution of your test
or to verify expected transactional commit behavior after test execution (e.g., if the test was configured not to
roll back the transaction). TransactionalTestExecutionListener supports the @BeforeTransaction and
@AfterTransaction annotations exactly for such scenarios. Simply annotate any public void method in your
test class with one of these annotations, and the TransactionalTestExecutionListener will ensure that your
before transaction method or after transaction method is executed at the appropriate time.

              Tip
              Any before methods (e.g., methods annotated with JUnit 4's @Before) and any after methods (e.g.,
              methods annotated with JUnit 4's @After) will be executed within a transaction. In addition,
              methods annotated with @BeforeTransaction or @AfterTransaction will naturally not be
              executed for tests annotated with @NotTransactional.


The following JUnit 4 based example displays a fictitious integration testing scenario highlighting several of
the transaction-related annotations. Consult the TestContext framework annotation support section of the
reference manual for further information and configuration examples.

  @RunWith(SpringJUnit4ClassRunner.class)
  @ContextConfiguration
  @TransactionConfiguration(transactionManager="txMgr", defaultRollback=false)
  @Transactional
  public class FictitiousTransactionalTest {

         @BeforeTransaction
         public void verifyInitialDatabaseState() {
             // logic to verify the initial state before a transaction is started
         }

         @Before
         public void setUpTestDataWithinTransaction() {
             // set up test data within the transaction
         }

         @Test
         // overrides the class-level defaultRollback setting
         @Rollback(true)
         public void modifyDatabaseWithinTransaction() {
             // logic which uses the test data and modifies database state
         }

         @After
         public void tearDownWithinTransaction() {
             // execute "tear down" logic within the transaction



                                            Spring Framework (2.5.6)                                           211
Testing

     }

     @AfterTransaction
     public void verifyFinalDatabaseState() {
         // logic to verify the final state after transaction has rolled back
     }

     @Test
     @NotTransactional
     public void performNonDatabaseRelatedAction() {
         // logic which does not modify database state
     }
 }




8.3.7.5. TestContext support classes

8.3.7.5.1. JUnit 3.8 support classes
The org.springframework.test.context.junit38 package provides support classes for JUnit 3.8 based test
cases.


• AbstractJUnit38SpringContextTests:

  Abstract TestCase which integrates the Spring TestContext Framework with explicit ApplicationContext
  testing support in a JUnit 3.8 environment. When you extend the AbstractJUnit38SpringContextTests
  class you will have access to the following protected instance variables:

  • applicationContext: use this to perform explicit bean lookups or to test the state of the context as a
    whole.

• AbstractTransactionalJUnit38SpringContextTests:

  Abstract transactional extension of AbstractJUnit38SpringContextTests that also adds some convenience
  functionality for JDBC access. Expects a javax.sql.DataSource bean and a PlatformTransactionManager
  bean     to     be     defined    in    the    ApplicationContext.     When      you    extend    the
  AbstractTransactionalJUnit38SpringContextTests class you will have access to the following
  protected instance variables:

  • applicationContext: inherited from the AbstractJUnit38SpringContextTests superclass. Use this to
    perform explicit bean lookups or to test the state of the context as a whole.

  • simpleJdbcTemplate: useful for querying to confirm state. For example, you might query before and after
    testing application code that creates an object and persists it using an ORM tool, to verify that the data
    appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) You
    will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the
    flush() method on Hibernate's Session interface.


8.3.7.5.2. JUnit 4.4 support classes
The org.springframework.test.context.junit4 package provides support classes for JUnit 4.4 based test
cases.


• AbstractJUnit4SpringContextTests:

  Abstract base test class which integrates the Spring TestContext Framework with explicit
  ApplicationContext testing support in a JUnit 4.4 environment.




                                          Spring Framework (2.5.6)                                         212
Testing



  When you extend AbstractJUnit4SpringContextTests you will have access to the following protected
  instance variables:

  • applicationContext: use this to perform explicit bean lookups or to test the state of the context as a
    whole.

• AbstractTransactionalJUnit4SpringContextTests:

  Abstract transactional extension of AbstractJUnit4SpringContextTests that also adds some convenience
  functionality for JDBC access. Expects a javax.sql.DataSource bean and a PlatformTransactionManager
  bean to be defined in the ApplicationContext.

  When you extend AbstractTransactionalJUnit4SpringContextTests you will have access to the
  following protected instance variables:

  • applicationContext: inherited from the AbstractJUnit4SpringContextTests superclass. Use this to
    perform explicit bean lookups or to test the state of the context as a whole.

  • simpleJdbcTemplate: useful for querying to confirm state. For example, you might query before and after
    testing application code that creates an object and persists it using an ORM tool, to verify that the data
    appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) You
    will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the
    flush() method on Hibernate's Session interface.


            Tip
            These classes serve only as a convenience for extension. If you do not wish for your test classes to
            be tied to a Spring-specific class hierarchy - for example, if you wish to directly extend the class
            you are testing - you may configure your own custom test classes by using
            @RunWith(SpringJUnit4ClassRunner.class),                                  @ContextConfiguration,
            @TestExecutionListeners, etc.



8.3.7.5.3. Custom JUnit 4.4 Runner
The Spring TestContext Framework offers full integration with JUnit 4.4 via a custom runner. By annotating
test classes with @Runwith(SpringJUnit4ClassRunner.class), developers can implement standard JUnit 4.4
unit and integration tests and simultaneously reap the benefits of the TestContext framework such as support
for loading application contexts, dependency injection of test instances, transactional test method execution,
etc. The following code listing displays the minimal requirements for configuring a test class to run with the
custom Spring Runner. Note that @TestExecutionListeners has been configured with an empty list in order to
disable the default listeners, which would otherwise require that an ApplicationContext be configured via
@ContextConfiguration.

 @RunWith(SpringJUnit4ClassRunner.class)
 @TestExecutionListeners({})
 public class SimpleTest {

      @Test
      public void testMethod() {
          // execute test logic...
      }
 }



8.3.7.5.4. TestNG support classes


                                          Spring Framework (2.5.6)                                          213
Testing


The org.springframework.test.context.testng package provides support classes for TestNG based test
cases.


• AbstractTestNGSpringContextTests:

  Abstract base test class which integrates the Spring TestContext Framework with explicit
  ApplicationContext testing support in a TestNG environment.

  When you extend AbstractTestNGSpringContextTests you will have access to the following protected
  instance variables:

  • applicationContext: use this to perform explicit bean lookups or to test the state of the context as a
    whole.

• AbstractTransactionalTestNGSpringContextTests:

  Abstract transactional extension of AbstractTestNGSpringContextTests that adds some convenience
  functionality for JDBC access. Expects a javax.sql.DataSource bean and a PlatformTransactionManager
  bean to be defined in the ApplicationContext.

  When you extend AbstractTransactionalTestNGSpringContextTests you will have access to the
  following protected instance variables:

  • applicationContext: inherited from the AbstractTestNGSpringContextTests superclass. Use this to
    perform explicit bean lookups or to test the state of the context as a whole.

  • simpleJdbcTemplate: useful for querying to confirm state. For example, you might query before and after
    testing application code that creates an object and persists it using an ORM tool, to verify that the data
    appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) You
    will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the
    flush() method on Hibernate's Session interface.


           Tip
           These classes serve only as a convenience for extension. If you do not wish for your test classes to
           be tied to a Spring-specific class hierarchy - for example, if you wish to directly extend the class
           you are testing - you may configure your own custom test classes by using
           @ContextConfiguration, @TestExecutionListeners, etc. and by manually instrumenting your
           test     class    with      a     TestContextManager.        See    the      source     code      of
           AbstractTestNGSpringContextTests for an example of how to instrument your test class.



8.3.7.6. TestContext framework annotation support

The Spring TestContext Framework supports all annotations as outlined in the common annotations section.
The following annotations, however, are only supported when used in conjunction with JUnit (e.g., with the
SpringJUnit4ClassRunner or the JUnit 3.8 and JUnit 4.4 support classes.


• @IfProfileValue

• @ProfileValueSourceConfiguration

• @ExpectedException



                                          Spring Framework (2.5.6)                                         214
Testing



  Using Spring's @ExpectedException annotation in conjunction with JUnit 4's @Test(expected=...)
  configuration would lead to an unresolvable conflict. Developers must therefore choose one or the other
  when integrating with JUnit 4, in which case it is generally preferable to use the explicit JUnit 4
  configuration.

• @Timed

  Spring's @Timed annotation has different semantics than JUnit 4's @Test(timeout=...) support. Specifically,
  due to the manner in which JUnit 4 handles test execution timeouts (i.e., by executing the test method in a
  separate Thread), @Test(timeout=...) applies to each iteration in the case of repetitions and preemptively
  fails the test if the test takes too long. Spring's @Timed, on the other hand, times the total test execution time
  (including all repetitions) and does not preemptively fail the test but rather waits for the test to actually
  complete before failing.

• @Repeat

The following non-test-specific annotations are also supported by the Spring TestContext Framework with their
standard semantics.


• @Autowired

• @Qualifier

• @Resource (javax.annotation) if JSR-250 is present

• @PersistenceContext (javax.persistence) if JPA is present

• @PersistenceUnit (javax.persistence) if JPA is present

• @Required

• @Transactional

The following list includes all annotations specific to the Spring TestContext Framework. Refer to the
respective JavaDoc for further information, including default attribute values, etc.


• @ContextConfiguration

  Defines class-level metadata which is used to determine how to load and configure an ApplicationContext.
  Specifically, @ContextConfiguration defines the application context resource locations to load as well as
  the ContextLoader strategy to use for loading the context.

 @ContextConfiguration(locations={"example/test-context.xml"}, loader=CustomContextLoader.class)
 public class CustomConfiguredApplicationContextTests {
     // class body...
 }



  Note: @ContextConfiguration provides support for inherited resource locations by default. See the Context
  management and caching section and JavaDoc for an example and further details.

• @TestExecutionListeners

  Defines class-level metadata for configuring which TestExecutionListeners should be registered with a
  TestContextManager. Typically, @TestExecutionListeners will be used in conjunction with



                                            Spring Framework (2.5.6)                                            215
Testing


  @ContextConfiguration.

 @ContextConfiguration
 @TestExecutionListeners({CustomTestExecutionListener.class, AnotherTestExecutionListener.class})
 public class CustomTestExecutionListenerTests {
     // class body...
 }



  Note: @TestExecutionListeners provides support for inherited listeners by default. See the JavaDoc for an
  example and further details.

• @TransactionConfiguration

  Defines class-level metadata for configuring transactional tests. Specifically, the bean name of the
  PlatformTransactionManager that is to be used to drive transactions can be explicitly configured if the bean
  name of the desired PlatformTransactionManager is not "transactionManager". In addition, the
  defaultRollback flag can optionally be changed to false. Typically, @TransactionConfiguration will be
  used in conjunction with @ContextConfiguration.

 @ContextConfiguration
 @TransactionConfiguration(transactionManager="txMgr", defaultRollback=false)
 public class CustomConfiguredTransactionalTests {
     // class body...
 }



• @BeforeTransaction

  Indicates that the annotated public void method should be executed before a transaction is started for test
  methods configured to run within a transaction via the @Transactional annotation.

 @BeforeTransaction
 public void beforeTransaction() {
     // logic to be executed before a transaction is started
 }



• @AfterTransaction

  Indicates that the annotated public void method should be executed after a transaction has been ended for
  test methods configured to run within a transaction via the @Transactional annotation.

 @AfterTransaction
 public void afterTransaction() {
     // logic to be executed after a transaction has ended
 }




8.3.8. PetClinic example

The PetClinic sample application included with the full Spring distribution illustrates several features of the
Spring TestContext Framework in a JUnit 4.4 environment. Most test functionality is included in the
AbstractClinicTests, for which a partial listing is shown below:

 @ContextConfiguration
 public abstract class AbstractClinicTests extends AbstractTransactionalJUnit4SpringContextTests {

      @Autowired
      protected Clinic clinic;

      @Test
      public void getVets() {



                                          Spring Framework (2.5.6)                                         216
Testing

          Collection<Vet> vets = this.clinic.getVets();
          assertEquals("JDBC query must show the same number of vets",
              super.countRowsInTable("VETS"), vets.size());
          Vet v1 = EntityUtils.getById(vets, Vet.class, 2);
          assertEquals("Leary", v1.getLastName());
          assertEquals(1, v1.getNrOfSpecialties());
          assertEquals("radiology", (v1.getSpecialties().get(0)).getName());
          // ...
      }

      // ...
 }



Notes:


• This test case extends the AbstractTransactionalJUnit4SpringContextTests class, from which it inherits
  configuration for Dependency Injection (via the DependencyInjectionTestExecutionListener) and
  transactional behavior (via the TransactionalTestExecutionListener).

• The clinic instance variable - the application object being tested - is set by Dependency Injection via
  @Autowired semantics.

• The testGetVets() method illustrates how the inherited countRowsInTable() method can be used to easily
  verify the number of rows in a given table, thus testing correct behavior of the application code being tested.
  This allows for stronger tests and lessens dependency on the exact test data. For example, you can add
  additional rows in the database without breaking tests.

• Like many integration tests using a database, most of the tests in AbstractClinicTests depend on a
  minimum amount of data already in the database before the test cases run. You might, however, choose to
  populate the database in your test cases also - again, within the same transaction.

The PetClinic application supports three data access technologies - JDBC, Hibernate, and JPA. By declaring
@ContextConfiguration without any specific resource locations, the AbstractClinicTests class will have its
application context loaded from the default location, "AbstractClinicTests-context.xml", which declares a
common DataSource. Subclasses specify additional context locations which must declare a
PlatformTransactionManager and a concrete implementation of Clinic.

For example, the Hibernate implementation of the PetClinic tests contains the following implementation. Note
that for this example, HibernateClinicTests does not contain a single line of code: we only need to declare
@ContextConfiguration,       and the tests are inherited from AbstractClinicTests. Since
@ContextConfiguration is declared without any specific resource locations, the Spring TestContext
Framework        will   load   an    application     context    from     all    the   beans     defined   in
"AbstractClinicTests-context.xml"             (i.e.,       the         inherited        locations)       and
"HibernateClinicTests-context.xml", with "HibernateClinicTests-context.xml" possibly overriding
beans defined in "AbstractClinicTests-context.xml".

 @ContextConfiguration
 public class HibernateClinicTests extends AbstractClinicTests { }



As you can see in the PetClinic application, the Spring configuration is split across multiple files. As is typical
of large scale applications, configuration locations will often be specified in a common base class for all
application-specific integration tests. Such a base class may also add useful instance variables - populated by
Dependency Injection, naturally - such as a HibernateTemplate, in the case of an application using Hibernate.

As far as possible, you should have exactly the same Spring configuration files in your integration tests as in
the deployed environment. One likely point of difference concerns database connection pooling and transaction
infrastructure. If you are deploying to a full-blown application server, you will probably use its connection pool

                                            Spring Framework (2.5.6)                                           217
Testing


(available through JNDI) and JTA implementation. Thus in production you will use a JndiObjectFactoryBean
for the DataSource and JtaTransactionManager. JNDI and JTA will not be available in out-of-container
integration tests, so you should use a combination like the Commons DBCP BasicDataSource and
DataSourceTransactionManager or HibernateTransactionManager for them. You can factor out this variant
behavior into a single XML file, having the choice between application server and 'local' configuration
separated from all other configuration, which will not vary between the test and production environments. In
addition, it is advisable to use properties files for connection settings: see the PetClinic application for an
example.


8.4. Further Resources
This section contains links to further resources about testing in general.


• The JUnit homepage. The Spring Framework's unit test suite is written using JUnit 3.8 as the testing
  framework.

• The TestNG homepage. TestNG is a testing framework inspired by JUnit 3.8 with added support for Java 5
  annotations, test groups, data-driven testing, distributed testing, etc.

• The Mock Objects homepage. About Mock Objects, a technique for improving the design of code within
  Test-Driven Development.

• "Mock Objects" article at Wikipedia.

• The EasyMock homepage. The Spring Framework uses EasyMock extensively in its test suite.

• The JMock homepage. JMock is a library that supports test-driven development of Java code with mock
  objects.

• The DbUnit homepage. DbUnit is a JUnit extension (also usable with Ant) targeted for database-driven
  projects that, among other things, puts your database into a known state between test runs.

• The Grinder homepage. The Grinder is a Java load-testing framework.




                                            Spring Framework (2.5.6)                                       218
Part II. Middle Tier Data Access
This part of the reference documentation is concerned with the middle tier, and specifically the data access
responsibilities of said tier.

Spring's comprehensive transaction management support is covered in some detail, followed by thorough
coverage of the various middle tier data access frameworks and technologies that the Spring Framework
integrates with.


• Chapter 9, Transaction management

• Chapter 10, DAO support

• Chapter 11, Data access using JDBC

• Chapter 12, Object Relational Mapping (ORM) data access




                                         Spring Framework (2.5.6)                                       219
Chapter 9. Transaction management

9.1. Introduction
One of the most compelling reasons to use the Spring Framework is the comprehensive transaction support.
The Spring Framework provides a consistent abstraction for transaction management that delivers the following
benefits:


• Provides a consistent programming model across different transaction APIs such as JTA, JDBC, Hibernate,
  JPA, and JDO.

• Supports declarative transaction management.

• Provides a simpler API for programmatic transaction management than a number of complex transaction
  APIs such as JTA.

• Integrates very well with Spring's various data access abstractions.

This chapter is divided up into a number of sections, each detailing one of the value-adds or technologies of the
Spring Framework's transaction support. The chapter closes up with some discussion of best practices
surrounding transaction management (for example, choosing between declarative and programmatic transaction
management).


• The first section, entitled Motivations, describes why one would want to use the Spring Framework's
  transaction abstraction as opposed to EJB CMT or driving transactions via a proprietary API such as
  Hibernate.

• The second section, entitled Key abstractions outlines the core classes in the Spring Framework's transaction
  support, as well as how to configure and obtain DataSource instances from a variety of sources.

• The third section, entitled Declarative transaction management, covers the Spring Framework's support for
  declarative transaction management.

• The fourth section, entitled Programmatic transaction management, covers the Spring Framework's support
  for programmatic (that is, explicitly coded) transaction management.



9.2. Motivations

  Is an application server needed for transaction management?

  The Spring Framework's transaction management support significantly changes traditional thinking as to
  when a J2EE application requires an application server.

  In particular, you don't need an application server just to have declarative transactions via EJB. In fact,
  even if you have an application server with powerful JTA capabilities, you may well decide that the
  Spring Framework's declarative transactions offer more power and a much more productive programming
  model than EJB CMT.

  Typically you need an application server's JTA capability only if you need to enlist multiple transactional


                                           Spring Framework (2.5.6)                                          220
Transaction management



   resources, and for many applications being able to handle transactions across multiple resources isn't a
   requirement. For example, many high-end applications use a single, highly scalable database (such as
   Oracle 9i RAC). Standalone transaction managers such as Atomikos Transactions and JOTM are other
   options. (Of course you may need other application server capabilities such as JMS and JCA.)

   The most important point is that with the Spring Framework you can choose when to scale your
   application up to a full-blown application server. Gone are the days when the only alternative to using
   EJB CMT or JTA was to write code using local transactions such as those on JDBC connections, and face
   a hefty rework if you ever needed that code to run within global, container-managed transactions. With
   the Spring Framework, only configuration needs to change so that your code doesn't have to.


Traditionally, J2EE developers have had two choices for transaction management: global or local transactions.
Global transactions are managed by the application server, using the Java Transaction API (JTA). Local
transactions are resource-specific: the most common example would be a transaction associated with a JDBC
connection. This choice has profound implications. For instance, global transactions provide the ability to work
with multiple transactional resources (typically relational databases and message queues). With local
transactions, the application server is not involved in transaction management and cannot help ensure
correctness across multiple resources. (It is worth noting that most applications use a single transaction
resource.)

Global Transactions. Global transactions have a significant downside, in that code needs to use JTA, and JTA
is a cumbersome API to use (partly due to its exception model). Furthermore, a JTA UserTransaction
normally needs to be sourced from JNDI: meaning that we need to use both JNDI and JTA to use JTA.
Obviously all use of global transactions limits the reusability of application code, as JTA is normally only
available in an application server environment. Previously, the preferred way to use global transactions was via
EJB CMT (Container Managed Transaction): CMT is a form of declarative transaction management (as
distinguished from programmatic transaction management). EJB CMT removes the need for
transaction-related JNDI lookups - although of course the use of EJB itself necessitates the use of JNDI. It
removes most of the need (although not entirely) to write Java code to control transactions. The significant
downside is that CMT is tied to JTA and an application server environment. Also, it is only available if one
chooses to implement business logic in EJBs, or at least behind a transactional EJB facade. The negatives
around EJB in general are so great that this is not an attractive proposition, especially in the face of compelling
alternatives for declarative transaction management.

Local Transactions. Local transactions may be easier to use, but have significant disadvantages: they cannot
work across multiple transactional resources. For example, code that manages transactions using a JDBC
connection cannot run within a global JTA transaction. Another downside is that local transactions tend to be
invasive to the programming model.

Spring resolves these problems. It enables application developers to use a consistent programming model in any
environment. You write your code once, and it can benefit from different transaction management strategies in
different environments. The Spring Framework provides both declarative and programmatic transaction
management. Declarative transaction management is preferred by most users, and is recommended in most
cases.

With programmatic transaction management, developers work with the Spring Framework transaction
abstraction, which can run over any underlying transaction infrastructure. With the preferred declarative model,
developers typically write little or no code related to transaction management, and hence don't depend on the
Spring Framework's transaction API (or indeed on any other transaction API).




                                            Spring Framework (2.5.6)                                           221
Transaction management



9.3. Key abstractions
The key to the Spring transaction abstraction is the notion of a transaction strategy. A transaction strategy is
defined by the org.springframework.transaction.PlatformTransactionManager interface, shown below:

 public interface PlatformTransactionManager {

      TransactionStatus getTransaction(TransactionDefinition definition)
        throws TransactionException;

      void commit(TransactionStatus status) throws TransactionException;

      void rollback(TransactionStatus status) throws TransactionException;
 }



This is primarily an SPI interface, although it can be used programmatically. Note that in keeping with the
Spring Framework's philosophy, PlatformTransactionManager is an interface, and can thus be easily mocked
or stubbed as necessary. Nor is it tied to a lookup strategy such as JNDI: PlatformTransactionManager
implementations are defined like any other object (or bean) in the Spring Framework's IoC container. This
benefit alone makes it a worthwhile abstraction even when working with JTA: transactional code can be tested
much more easily than if it used JTA directly.

Again in keeping with Spring's philosophy, the TransactionException that can be thrown by any of the
PlatformTransactionManager       interface's methods is unchecked (that is it extends the
java.lang.RuntimeException class). Transaction infrastructure failures are almost invariably fatal. In rare
cases where application code can actually recover from a transaction failure, the application developer can still
choose to catch and handle TransactionException. The salient point is that developers are not forced to do so.

The     getTransaction(..)      method returns a TransactionStatus object, depending on a
TransactionDefinition      parameter. The returned TransactionStatus might represent a new or existing
transaction (if there were a matching transaction in the current call stack - with the implication being that (as
with J2EE transaction contexts) a TransactionStatus is associated with a thread of execution).

The TransactionDefinition interface specifies:


• Isolation: the degree of isolation this transaction has from the work of other transactions. For example, can
  this transaction see uncommitted writes from other transactions?

• Propagation: normally all code executed within a transaction scope will run in that transaction. However,
  there are several options specifying behavior if a transactional method is executed when a transaction context
  already exists: for example, simply continue running in the existing transaction (the common case); or
  suspending the existing transaction and creating a new transaction. Spring offers all of the transaction
  propagation options familiar from EJB CMT. (Some details regarding the semantics of transaction
  propagation in Spring can be found in the section entitled Section 9.5.7, “Transaction propagation”.

• Timeout: how long this transaction may run before timing out (and automatically being rolled back by the
  underlying transaction infrastructure).

• Read-only status: a read-only transaction does not modify any data. Read-only transactions can be a useful
  optimization in some cases (such as when using Hibernate).

These settings reflect standard transactional concepts. If necessary, please refer to a resource discussing
transaction isolation levels and other core transaction concepts because understanding such core concepts is
essential to using the Spring Framework or indeed any other transaction management solution.



                                           Spring Framework (2.5.6)                                          222
Transaction management


The TransactionStatus interface provides a simple way for transactional code to control transaction execution
and query transaction status. The concepts should be familiar, as they are common to all transaction APIs:

 public interface TransactionStatus {

     boolean isNewTransaction();

     void setRollbackOnly();

     boolean isRollbackOnly();
 }



Regardless of whether you opt for declarative or programmatic transaction management in Spring, defining the
correct PlatformTransactionManager implementation is absolutely essential. In good Spring fashion, this
important definition typically is made using via Dependency Injection.

PlatformTransactionManager      implementations normally require knowledge of the environment in which they
work: JDBC, JTA, Hibernate, etc The following examples from the dataAccessContext-local.xml file from
Spring's jPetStore sample application show how a local PlatformTransactionManager implementation can be
defined. (This will work with plain JDBC.)

We must define a JDBC DataSource, and then use the Spring DataSourceTransactionManager, giving it a
reference to the DataSource.

 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
   <property name="driverClassName" value="${jdbc.driverClassName}" />
   <property name="url" value="${jdbc.url}" />
   <property name="username" value="${jdbc.username}" />
   <property name="password" value="${jdbc.password}" />
 </bean>



The related PlatformTransactionManager bean definition will look like this:

 <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
   <property name="dataSource" ref="dataSource"/>
 </bean>



If we use JTA in a J2EE container, as in the 'dataAccessContext-jta.xml' file from the same sample
application, we use a container DataSource, obtained via JNDI, in conjunction with Spring's
JtaTransactionManager. The JtaTransactionManager doesn't need to know about the DataSource, or any
other specific resources, as it will use the container's global transaction management infrastructure.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xmlns:jee="http://www.springframework.org/schema/jee"
 xsi:schemaLocation="
      http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xs
      http://www.springframework.org/schema/jee http://www.springframework.org/schema/jee/spring-jee-2.5.xsd">

     <jee:jndi-lookup id="dataSource" jndi-name="jdbc/jpetstore"/>

     <bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager" />

     <!-- other <bean/> definitions here -->

 </beans>



            Note
            The above definition of the 'dataSource' bean uses the <jndi-lookup/> tag from the 'jee'


                                          Spring Framework (2.5.6)                                       223
Transaction management


            namespace. For more information on schema-based configuration, see Appendix A, XML
            Schema-based configuration, and for more information on the <jee/> tags see the section entitled
            Section A.2.3, “The jee schema”.


We can also use Hibernate local transactions easily, as shown in the following examples from the Spring
Framework's PetClinic sample application. In this case, we need to define a Hibernate
LocalSessionFactoryBean, which application code will use to obtain Hibernate Session instances.

The DataSource bean definition will be similar to the one shown previously (and thus is not shown). If the
DataSource is managed by the JEE container it should be non-transactional as the Spring Framework, rather
than the JEE container, will manage transactions.

The 'txManager' bean in this case is of the HibernateTransactionManager type. In the same way as the
DataSourceTransactionManager needs a reference to the DataSource, the HibernateTransactionManager
needs a reference to the SessionFactory.

 <bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
   <property name="dataSource" ref="dataSource" />
   <property name="mappingResources">
   <list>
     <value>org/springframework/samples/petclinic/hibernate/petclinic.hbm.xml</value>
   </list>
   </property>
   <property name="hibernateProperties">
   <value>
            hibernate.dialect=${hibernate.dialect}
          </value>
   </property>
 </bean>

 <bean id="txManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager">
   <property name="sessionFactory" ref="sessionFactory" />
 </bean>



With Hibernate and JTA transactions, we can simply use the JtaTransactionManager as with JDBC or any
other resource strategy.

 <bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager"/>



Note that this is identical to JTA configuration for any resource, as these are global transactions, which can
enlist any transactional resource.

In all these cases, application code will not need to change at all. We can change how transactions are
managed merely by changing configuration, even if that change means moving from local to global
transactions or vice versa.


9.4. Resource synchronization with transactions
It should now be clear how different transaction managers are created, and how they are linked to related
resources which need to be synchronized to transactions (for example DataSourceTransactionManager to a
JDBC DataSource, HibernateTransactionManager to a Hibernate SessionFactory, and so forth). There
remains the question however of how the application code, directly or indirectly using a persistence API (such
as JDBC, Hibernate, and JDO), ensures that these resources are obtained and handled properly in terms of
proper creation/reuse/cleanup and trigger (optionally) transaction synchronization via the relevant
PlatformTransactionManager.




                                          Spring Framework (2.5.6)                                        224
Transaction management


9.4.1. High-level approach

The preferred approach is to use Spring's highest level persistence integration APIs. These do not replace the
native APIs, but internally handle resource creation/reuse, cleanup, optional transaction synchronization of the
resources and exception mapping so that user data access code doesn't have to worry about these concerns at
all, but can concentrate purely on non-boilerplate persistence logic. Generally, the same template approach is
used for all persistence APIs, with examples including the JdbcTemplate, HibernateTemplate, and
JdoTemplate classes (detailed in subsequent chapters of this reference documentation.



9.4.2. Low-level approach

At a lower level exist classes such as DataSourceUtils (for JDBC), SessionFactoryUtils (for Hibernate),
PersistenceManagerFactoryUtils (for JDO), and so on. When it is preferable for application code to deal
directly with the resource types of the native persistence APIs, these classes ensure that proper Spring
Framework-managed instances are obtained, transactions are (optionally) synchronized, and exceptions which
happen in the process are properly mapped to a consistent API.

For example, in the case of JDBC, instead of the traditional JDBC approach of calling the getConnection()
method        on       the      DataSource,         you        would      instead        use      Spring's
org.springframework.jdbc.datasource.DataSourceUtils class as follows:

 Connection conn = DataSourceUtils.getConnection(dataSource);



If an existing transaction exists, and already has a connection synchronized (linked) to it, that instance will be
returned. Otherwise, the method call will trigger the creation of a new connection, which will be (optionally)
synchronized to any existing transaction, and made available for subsequent reuse in that same transaction. As
mentioned, this has the added advantage that any SQLException will be wrapped in a Spring Framework
CannotGetJdbcConnectionException - one of the Spring Framework's hierarchy of unchecked
DataAccessExceptions. This gives you more information than can easily be obtained from the SQLException,
and ensures portability across databases: even across different persistence technologies.

It should be noted that this will also work fine without Spring transaction management (transaction
synchronization is optional), so you can use it whether or not you are using Spring for transaction management.

Of course, once you've used Spring's JDBC support or Hibernate support, you will generally prefer not to use
DataSourceUtils or the other helper classes, because you'll be much happier working via the Spring
abstraction than directly with the relevant APIs. For example, if you use the Spring JdbcTemplate or
jdbc.object package to simplify your use of JDBC, correct connection retrieval happens behind the scenes
and you won't need to write any special code.


9.4.3. TransactionAwareDataSourceProxy

At the very lowest level exists the TransactionAwareDataSourceProxy class. This is a proxy for a target
DataSource, which wraps the target DataSource to add awareness of Spring-managed transactions. In this
respect, it is similar to a transactional JNDI DataSource as provided by a J2EE server.

It should almost never be necessary or desirable to use this class, except when existing code exists which must
be called and passed a standard JDBC DataSource interface implementation. In that case, it's possible to still
have this code be usable, but participating in Spring managed transactions. It is preferable to write your new
code using the higher level abstractions mentioned above.




                                           Spring Framework (2.5.6)                                           225
Transaction management



9.5. Declarative transaction management
Most users of the Spring Framework choose declarative transaction management. It is the option with the least
impact on application code, and hence is most consistent with the ideals of a non-invasive lightweight
container.

The Spring Framework's declarative transaction management is made possible with Spring AOP, although, as
the transactional aspects code comes with the Spring Framework distribution and may be used in a boilerplate
fashion, AOP concepts do not generally have to be understood to make effective use of this code.

It may be helpful to begin by considering EJB CMT and explaining the similarities and differences with the
Spring Framework's declarative transaction management. The basic approach is similar: it is possible to specify
transaction behavior (or lack of it) down to individual method level. It is possible to make a
setRollbackOnly() call within a transaction context if necessary. The differences are:


• Unlike EJB CMT, which is tied to JTA, the Spring Framework's declarative transaction management works
  in any environment. It can work with JDBC, JDO, Hibernate or other transactions under the covers, with
  configuration changes only.

• The Spring Framework enables declarative transaction management to be applied to any class, not merely
  special classes such as EJBs.

• The Spring Framework offers declarative rollback rules: this is a feature with no EJB equivalent. Both
  programmatic and declarative support for rollback rules is provided.

• The Spring Framework gives you an opportunity to customize transactional behavior, using AOP. For
  example, if you want to insert custom behavior in the case of transaction rollback, you can. You can also add
  arbitrary advice, along with the transactional advice. With EJB CMT, you have no way to influence the
  container's transaction management other than setRollbackOnly().

• The Spring Framework does not support propagation of transaction contexts across remote calls, as do
  high-end application servers. If you need this feature, we recommend that you use EJB. However, consider
  carefully before using such a feature, because normally, one does not want transactions to span remote calls.


  Where is TransactionProxyFactoryBean?

  Declarative transaction configuration in versions of Spring 2.0 and above differs considerably from
  previous versions of Spring. The main difference is that there is no longer any need to configure
  TransactionProxyFactoryBean beans.

  The old, pre-Spring 2.0 configuration style is still 100% valid configuration; think of the new <tx:tags/>
  as simply defining TransactionProxyFactoryBean beans on your behalf.


The concept of rollback rules is important: they enable us to specify which exceptions (and throwables) should
cause automatic roll back. We specify this declaratively, in configuration, not in Java code. So, while we can
still call setRollbackOnly()on the TransactionStatus object to roll the current transaction back
programmatically, most often we can specify a rule that MyApplicationException must always result in
rollback. This has the significant advantage that business objects don't need to depend on the transaction
infrastructure. For example, they typically don't need to import any Spring APIs, transaction or other.

While the EJB default behavior is for the EJB container to automatically roll back the transaction on a system
exception (usually a runtime exception), EJB CMT does not roll back the transaction automatically on an


                                          Spring Framework (2.5.6)                                         226
Transaction management

application exception (that is, a checked exception other than java.rmi.RemoteException). While the Spring
default behavior for declarative transaction management follows EJB convention (roll back is automatic only
on unchecked exceptions), it is often useful to customize this.


9.5.1. Understanding the Spring Framework's declarative transaction
implementation

The aim of this section is to dispel the mystique that is sometimes associated with the use of declarative
transactions. It is all very well for this reference documentation simply to tell you to annotate your classes with
the @Transactional annotation, add the line ('<tx:annotation-driven/>') to your configuration, and then
expect you to understand how it all works. This section will explain the inner workings of the Spring
Framework's declarative transaction infrastructure to help you navigate your way back upstream to calmer
waters in the event of transaction-related issues.

The most important concepts to grasp with regard to the Spring Framework's declarative transaction support are
that this support is enabled via AOP proxies, and that the transactional advice is driven by metadata (currently
XML- or annotation-based). The combination of AOP with transactional metadata yields an AOP proxy that
uses a TransactionInterceptor in conjunction with an appropriate PlatformTransactionManager
implementation to drive transactions around method invocations.

            Note
            Although knowledge of Spring AOP is not required to use Spring's declarative transaction support,
            it can help. Spring AOP is thoroughly covered in the chapter entitled Chapter 6, Aspect Oriented
            Programming with Spring.


Conceptually, calling a method on a transactional proxy looks like this...




9.5.2. A first example

                                            Spring Framework (2.5.6)                                           227
Transaction management


Consider the following interface, and its attendant implementation. (The intent is to convey the concepts, and
using the rote Foo and Bar tropes means that you can concentrate on the transaction usage and not have to
worry about the domain model.)

 // the service interface that we want to make transactional

 package x.y.service;

 public interface FooService {

     Foo getFoo(String fooName);

     Foo getFoo(String fooName, String barName);

     void insertFoo(Foo foo);

     void updateFoo(Foo foo);

 }



 // an implementation of the above interface

 package x.y.service;

 public class DefaultFooService implements FooService {

     public Foo getFoo(String fooName) {
       throw new UnsupportedOperationException();
     }

     public Foo getFoo(String fooName, String barName) {
       throw new UnsupportedOperationException();
     }

     public void insertFoo(Foo foo) {
       throw new UnsupportedOperationException();
     }

     public void updateFoo(Foo foo) {
       throw new UnsupportedOperationException();
     }

 }



(For    the   purposes   of     this
                                   example, the fact that the DefaultFooService class throws
UnsupportedOperationException instances in the body of each implemented method is good; it will allow us
to see transactions being created and then rolled back in response to the UnsupportedOperationException
instance being thrown.)

Let's assume that the first two methods of the FooService interface (getFoo(String) and getFoo(String,
String)) have to execute in the context of a transaction with read-only semantics, and that the other methods
(insertFoo(Foo) and updateFoo(Foo)) have to execute in the context of a transaction with read-write
semantics. Don't worry about taking the following configuration in all at once; everything will be explained in
detail in the next few paragraphs.

 <!-- from the file 'context.xml' -->
 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xmlns:aop="http://www.springframework.org/schema/aop"
      xmlns:tx="http://www.springframework.org/schema/tx"
      xsi:schemaLocation="
      http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xs
      http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
      http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

     <!-- this is the service object that we want to make transactional -->
     <bean id="fooService" class="x.y.service.DefaultFooService"/>



                                          Spring Framework (2.5.6)                                         228
Transaction management

   <!-- the transactional advice (what 'happens'; see the <aop:advisor/> bean below) -->
   <tx:advice id="txAdvice" transaction-manager="txManager">
   <!-- the transactional semantics... -->
   <tx:attributes>
     <!-- all methods starting with 'get' are read-only -->
     <tx:method name="get*" read-only="true"/>
     <!-- other methods use the default transaction settings (see below) -->
     <tx:method name="*"/>
   </tx:attributes>
   </tx:advice>

   <!-- ensure that the above transactional advice runs for any execution
     of an operation defined by the FooService interface -->
   <aop:config>
   <aop:pointcut id="fooServiceOperation" expression="execution(* x.y.service.FooService.*(..))"/>
   <aop:advisor advice-ref="txAdvice" pointcut-ref="fooServiceOperation"/>
   </aop:config>

   <!-- don't forget the DataSource -->
   <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
   <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
   <property name="url" value="jdbc:oracle:thin:@rj-t42:1521:elvis"/>
   <property name="username" value="scott"/>
   <property name="password" value="tiger"/>
   </bean>

   <!-- similarly, don't forget the PlatformTransactionManager -->
   <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
   <property name="dataSource" ref="dataSource"/>
   </bean>

   <!-- other <bean/> definitions here -->

 </beans>



Let's pick apart the above configuration. We have a service object (the 'fooService' bean) that we want to
make transactional. The transaction semantics that we want to apply are encapsulated in the <tx:advice/>
definition. The <tx:advice/> definition reads as “... all methods on starting with 'get' are to execute in the
context of a read-only transaction, and all other methods are to execute with the default transaction
semantics”. The 'transaction-manager' attribute of the <tx:advice/> tag is set to the name of the
PlatformTransactionManager bean that is going to actually drive the transactions (in this case the
'txManager' bean).


            Tip
            You can actually omit the 'transaction-manager' attribute in the transactional advice
            (<tx:advice/>) if the bean name of the PlatformTransactionManager that you want to wire in
            has the name 'transactionManager'. If the PlatformTransactionManager bean that you want to
            wire in has any other name, then you have to be explicit and use the 'transaction-manager'
            attribute as in the example above.


The <aop:config/> definition ensures that the transactional advice defined by the 'txAdvice' bean actually
executes at the appropriate points in the program. First we define a pointcut that matches the execution of any
operation defined in the FooService interface ('fooServiceOperation'). Then we associate the pointcut with
the 'txAdvice' using an advisor. The result indicates that at the execution of a 'fooServiceOperation', the
advice defined by 'txAdvice' will be run.

The expression defined within the <aop:pointcut/> element is an AspectJ pointcut expression; see the chapter
entitled Chapter 6, Aspect Oriented Programming with Spring for more details on pointcut expressions in
Spring 2.0.

A common requirement is to make an entire service layer transactional. The best way to do this is simply to
change the pointcut expression to match any operation in your service layer. For example:


                                          Spring Framework (2.5.6)                                         229
Transaction management


 <aop:config>
   <aop:pointcut id="fooServiceMethods" expression="execution(* x.y.service.*.*(..))"/>
   <aop:advisor advice-ref="txAdvice" pointcut-ref="fooServiceMethods"/>
   </aop:config>



(This example assumes that all your service interfaces are defined in the 'x.y.service' package; see the
chapter entitled Chapter 6, Aspect Oriented Programming with Spring for more details.)

Now that we've analyzed the configuration, you may be asking yourself, “Okay... but what does all this
configuration actually do?”.

The above configuration is going to effect the creation of a transactional proxy around the object that is created
from the 'fooService' bean definition. The proxy will be configured with the transactional advice, so that
when an appropriate method is invoked on the proxy, a transaction may be started, suspended, be marked as
read-only, etc., depending on the transaction configuration associated with that method. Consider the following
program that test drives the above configuration.

 public final class Boot {

     public static void main(final String[] args) throws Exception {
       ApplicationContext ctx = new ClassPathXmlApplicationContext("context.xml", Boot.class);
       FooService fooService = (FooService) ctx.getBean("fooService");
       fooService.insertFoo (new Foo());
     }
 }



The output from running the above program will look something like this. (Please note that the Log4J output
and the stacktrace from the UnsupportedOperationException thrown by the insertFoo(..) method of the
DefaultFooService class have been truncated in the interest of clarity.)

   <!-- the Spring container is starting up... -->
 [AspectJInvocationContextExposingAdvisorAutoProxyCreator] - Creating implicit proxy
     for bean 'fooService' with 0 common interceptors and 1 specific interceptors
   <!-- the DefaultFooService is actually proxied -->
 [JdkDynamicAopProxy] - Creating JDK dynamic proxy for [x.y.service.DefaultFooService]

     <!-- ... the insertFoo(..) method is now being invoked on the proxy -->

 [TransactionInterceptor] - Getting transaction for x.y.service.FooService.insertFoo
   <!-- the transactional advice kicks in here... -->
 [DataSourceTransactionManager] - Creating new transaction with name [x.y.service.FooService.insertFoo]
 [DataSourceTransactionManager] - Acquired Connection
     [org.apache.commons.dbcp.PoolableConnection@a53de4] for JDBC transaction

   <!-- the insertFoo(..) method from DefaultFooService throws an exception... -->
 [RuleBasedTransactionAttribute] - Applying rules to determine whether transaction should
     rollback on java.lang.UnsupportedOperationException
 [TransactionInterceptor] - Invoking rollback for transaction on x.y.service.FooService.insertFoo
     due to throwable [java.lang.UnsupportedOperationException]

    <!-- and the transaction is rolled back (by default, RuntimeException instances cause rollback) -->
 [DataSourceTransactionManager] - Rolling back JDBC transaction on Connection
     [org.apache.commons.dbcp.PoolableConnection@a53de4]
 [DataSourceTransactionManager] - Releasing JDBC Connection after transaction
 [DataSourceUtils] - Returning JDBC Connection to DataSource

 Exception in thread "main" java.lang.UnsupportedOperationException
         at x.y.service.DefaultFooService.insertFoo(DefaultFooService.java:14)
    <!-- AOP infrastructure stack trace elements removed for clarity -->
         at $Proxy0.insertFoo(Unknown Source)
         at Boot.main(Boot.java:11)




9.5.3. Rolling back


                                           Spring Framework (2.5.6)                                           230
Transaction management


The previous section outlined the basics of how to specify the transactional settings for the classes, typically
service layer classes, in your application in a declarative fashion. This section describes how you can control
the rollback of transactions in a simple declarative fashion.

The recommended way to indicate to the Spring Framework's transaction infrastructure that a transaction's
work is to be rolled back is to throw an Exception from code that is currently executing in the context of a
transaction. The Spring Framework's transaction infrastructure code will catch any unhandled Exception as it
bubbles up the call stack, and will mark the transaction for rollback.

Note however that the Spring Framework's transaction infrastructure code will, by default, only mark a
transaction for rollback in the case of runtime, unchecked exceptions; that is, when the thrown exception is an
instance or subclass of RuntimeException. (Errors will also - by default - result in a rollback.) Checked
exceptions that are thrown from a transactional method will not result in the transaction being rolled back.

Exactly which Exception types mark a transaction for rollback can be configured. Find below a snippet of
XML configuration that demonstrates how one would configure rollback for a checked, application-specific
Exception type.

 <tx:advice id="txAdvice" transaction-manager="txManager">
   <tx:attributes>
   <tx:method name="get*" read-only="true" rollback-for="NoProductInStockException"/>
   <tx:method name="*"/>
   </tx:attributes>
 </tx:advice>



It is also possible to specify 'no rollback rules', for those times when you do not want a transaction to be marked
for rollback when an exception is thrown. In the example configuration below, we effectively are telling the
Spring Framework's transaction infrastructure to commit the attendant transaction even in the face of an
unhandled InstrumentNotFoundException.

 <tx:advice id="txAdvice">
   <tx:attributes>
   <tx:method name="updateStock" no-rollback-for="InstrumentNotFoundException"/>
   <tx:method name="*"/>
   </tx:attributes>
 </tx:advice>



When the Spring Framework's transaction infrastructure has caught an exception and is consulting any
configured rollback rules to determine whether or not to mark the transaction for rollback, the strongest
matching rule wins. So in the case of the following configuration, any exception other than an
InstrumentNotFoundException would result in the attendant transaction being marked for rollback.

 <tx:advice id="txAdvice">
   <tx:attributes>
   <tx:method name="*" rollback-for="Throwable" no-rollback-for="InstrumentNotFoundException"/>
   </tx:attributes>
 </tx:advice>



The second way to indicate that a rollback is required is to do so programmatically. Although very simple, this
way is quite invasive, and tightly couples your code to the Spring Framework's transaction infrastructure, as
can be seen below:

 public void resolvePosition() {
   try {
     // some business logic...
   } catch (NoProductInStockException ex) {
     // trigger rollback programmatically
     TransactionAspectSupport.currentTransactionStatus().setRollbackOnly();
   }
 }


                                            Spring Framework (2.5.6)                                           231
Transaction management


You are strongly encouraged to use the declarative approach to rollback if at all possible. Programmatic
rollback is available should you absolutely need it, but its usage flies in the face of achieving a nice, clean
POJO-based architecture.


9.5.4. Configuring different transactional semantics for different beans

Consider the scenario where you have a number of service layer objects, and you want to apply totally different
transactional configuration to each of them. This is achieved by defining distinct <aop:advisor/> elements
with differing 'pointcut' and 'advice-ref' attribute values.

Let's assume that all of your service layer classes are defined in a root 'x.y.service' package. To make all
beans that are instances of classes defined in that package (or in subpackages) and that have names ending in
'Service' have the default transactional configuration, you would write the following:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:aop="http://www.springframework.org/schema/aop"
   xmlns:tx="http://www.springframework.org/schema/tx"
   xsi:schemaLocation="
   http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
   http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
   http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

    <aop:config>

      <aop:pointcut id="serviceOperation"
            expression="execution(* x.y.service..*Service.*(..))"/>

      <aop:advisor pointcut-ref="serviceOperation" advice-ref="txAdvice"/>

    </aop:config>

    <!-- these two beans will be transactional... -->
    <bean id="fooService" class="x.y.service.DefaultFooService"/>
    <bean id="barService" class="x.y.service.extras.SimpleBarService"/>

    <!-- ... and these two beans won't -->
    <bean id="anotherService" class="org.xyz.SomeService"/> <!-- (not in the right package) -->
    <bean id="barManager" class="x.y.service.SimpleBarManager"/> <!-- (doesn't end in 'Service') -->

    <tx:advice id="txAdvice">
      <tx:attributes>
        <tx:method name="get*" read-only="true"/>
        <tx:method name="*"/>
      </tx:attributes>
    </tx:advice>

    <!-- other transaction infrastructure beans such as a PlatformTransactionManager omitted... -->

 </beans>



Find below an example of configuring two distinct beans with totally different transactional settings.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:aop="http://www.springframework.org/schema/aop"
   xmlns:tx="http://www.springframework.org/schema/tx"
   xsi:schemaLocation="
   http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
   http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
   http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

    <aop:config>

      <aop:pointcut id="defaultServiceOperation"
            expression="execution(* x.y.service.*Service.*(..))"/>



                                           Spring Framework (2.5.6)                                        232
Transaction management

       <aop:pointcut id="noTxServiceOperation"
             expression="execution(* x.y.service.ddl.DefaultDdlManager.*(..))"/>

       <aop:advisor pointcut-ref="defaultServiceOperation" advice-ref="defaultTxAdvice"/>

       <aop:advisor pointcut-ref="noTxServiceOperation" advice-ref="noTxAdvice"/>

    </aop:config>

    <!-- this bean will be transactional (see the 'defaultServiceOperation' pointcut) -->
    <bean id="fooService" class="x.y.service.DefaultFooService"/>

    <!-- this bean will also be transactional, but with totally different transactional settings -->
    <bean id="anotherFooService" class="x.y.service.ddl.DefaultDdlManager"/>

    <tx:advice id="defaultTxAdvice">
      <tx:attributes>
        <tx:method name="get*" read-only="true"/>
        <tx:method name="*"/>
      </tx:attributes>
    </tx:advice>

    <tx:advice id="noTxAdvice">
      <tx:attributes>
        <tx:method name="*" propagation="NEVER"/>
      </tx:attributes>
    </tx:advice>

    <!-- other transaction infrastructure beans such as a PlatformTransactionManager omitted... -->

 </beans>




9.5.5. <tx:advice/> settings

This section summarises the various transactional settings that can be specified using the <tx:advice/> tag.
The default <tx:advice/> settings are:



• The propagation setting is REQUIRED

• The isolation level is DEFAULT

• The transaction is read/write

• The transaction timeout defaults to the default timeout of the underlying transaction system, or or none if
  timeouts are not supported

• Any RuntimeException will trigger rollback, and any checked Exception will not

These default settings can be changed; the various attributes of the <tx:method/> tags that are nested within
<tx:advice/> and <tx:attributes/> tags are summarized below:




Table 9.1. <tx:method/> settings

Attribute                   Required?                  Default                     Description

name                        Yes
                                                                                   The method name(s) with
                                                                                   which the transaction
                                                                                   attributes are to be
                                                                                   associated. The wildcard
                                                                                   (*) character can be used


                                         Spring Framework (2.5.6)                                        233
Transaction management

Attribute                   Required?                   Default                     Description


                                                                                    to associate the same
                                                                                    transaction       attribute
                                                                                    settings with a number of
                                                                                    methods; for example,
                                                                                    'get*',        'handle*',
                                                                                    'on*Event', and so forth.

propagation                 No                          REQUIRED                    The           transaction
                                                                                    propagation behavior

isolation                   No                          DEFAULT                     The transaction isolation
                                                                                    level

timeout                     No                          -1                          The transaction timeout
                                                                                    value (in seconds)

read-only                   No                          false                       Is    this     transaction
                                                                                    read-only?

rollback-for                No
                                                                                    The Exception(s) that
                                                                                    will trigger rollback;
                                                                                    comma-delimited.   For
                                                                                    example,
                                                                                    'com.foo.MyBusinessException,Serv

no-rollback-for             No
                                                                                    The Exception(s) that
                                                                                    will not trigger rollback;
                                                                                    comma-delimited.       For
                                                                                    example,
                                                                                    'com.foo.MyBusinessException,Serv



At the time of writing it is not possible to have explicit control over the name of a transaction, where 'name'
means the transaction name that will be shown in a transaction monitor, if applicable (for example, WebLogic's
transaction monitor), and in logging output. For declarative transactions, the transaction name is always the
fully-qualified class name + "." + method name of the transactionally-advised class. For example
'com.foo.BusinessService.handlePayment'.



9.5.6. Using @Transactional

            Note
            The functionality offered by the @Transactional annotation and the support classes is only
            available to you if you are using at least Java 5 (Tiger).


In addition to the XML-based declarative approach to transaction configuration, you can also use an
annotation-based approach to transaction configuration. Declaring transaction semantics directly in the Java
source code puts the declarations much closer to the affected code, and there is generally not much danger of
undue coupling, since code that is meant to be used transactionally is almost always deployed that way anyway.



                                          Spring Framework (2.5.6)                                          234
Transaction management


The ease-of-use afforded by the use of the @Transactional annotation is best illustrated with an example, after
which all of the details will be explained. Consider the following class definition:

 // the service class that we want to make transactional
 @Transactional
 public class DefaultFooService implements FooService {

      Foo getFoo(String fooName);

      Foo getFoo(String fooName, String barName);

      void insertFoo(Foo foo);

      void updateFoo(Foo foo);
 }



When the above POJO is defined as a bean in a Spring IoC container, the bean instance can be made
transactional by adding merely one line of XML configuration, like so:

 <!-- from the file 'context.xml' -->
 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xmlns:aop="http://www.springframework.org/schema/aop"
      xmlns:tx="http://www.springframework.org/schema/tx"
      xsi:schemaLocation="
      http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xs
      http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
      http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

      <!-- this is the service object that we want to make transactional -->
      <bean id="fooService" class="x.y.service.DefaultFooService"/>

      <!-- enable the configuration of transactional behavior based on annotations -->
      <tx:annotation-driven transaction-manager="txManager"/>

      <!-- a PlatformTransactionManager is still required -->
      <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
      <!-- (this dependency is defined somewhere else) -->
      <property name="dataSource" ref="dataSource"/>
      </bean>

      <!-- other <bean/> definitions here -->

 </beans>



              Tip
              You can actually omit the 'transaction-manager' attribute in the <tx:annotation-driven/> tag
              if the bean name of the PlatformTransactionManager that you want to wire in has the name
              'transactionManager'. If the PlatformTransactionManager bean that you want to dependency
              inject has any other name, then you have to be explicit and use the 'transaction-manager'
              attribute as in the example above.


     Method visibility and @Transactional

     When using proxies, the @Transactional annotation should only be applied to methods with public
     visibility. If you do annotate protected, private or package-visible methods with the @Transactional
     annotation, no error will be raised, but the annotated method will not exhibit the configured transactional
     settings. Consider the use of AspectJ (see below) if you need to annotate non-public methods.


The @Transactional annotation may be placed before an interface definition, a method on an interface, a class

                                             Spring Framework (2.5.6)                                          235
Transaction management

definition, or a public method on a class. However, please note that the mere presence of the @Transactional
annotation is not enough to actually turn on the transactional behavior - the @Transactional annotation is
simply metadata that can be consumed by something that is @Transactional-aware and that can use the
metadata to configure the appropriate beans with transactional behavior. In the case of the above example, it is
the presence of the <tx:annotation-driven/> element that switches on the transactional behavior.

The Spring team's recommendation is that you only annotate concrete classes with the @Transactional
annotation, as opposed to annotating interfaces. You certainly can place the @Transactional annotation on an
interface (or an interface method), but this will only work as you would expect it to if you are using
interface-based proxies. The fact that annotations are not inherited means that if you are using class-based
proxies (proxy-target-class="true") or the weaving-based aspect (mode="aspectj") then the transaction
settings will not be recognised by the proxying/weaving infrastructure and the object will not be wrapped in a
transactional proxy (which would be decidedly bad). So please do take the Spring team's advice and only
annotate concrete classes (and the methods of concrete classes) with the @Transactional annotation.

Note: In proxy mode (which is the default), only 'external' method calls coming in through the proxy will be
intercepted. This means that 'self-invocation', i.e. a method within the target object calling some other method
of the target object, won't lead to an actual transaction at runtime even if the invoked method is marked with
@Transactional!

Consider the use of AspectJ mode (see below) if you expect self-invocations to be wrapped with transactions as
well. In this case, there won't be a proxy in the first place; instead, the target class will be 'weaved' (i.e. its byte
code will be modified) in order to turn @Transactional into runtime behavior on any kind of method.



Table 9.2. <tx:annotation-driven/> settings

Attribute                               Default                                 Description

transaction-manager                     transactionManager
                                                                                The name of transaction manager
                                                                                to use. Only required if the name
                                                                                of the transaction manager is not
                                                                                transactionManager, as in the
                                                                                example above.

mode                                    proxy
                                                                                The default mode "proxy" will
                                                                                process annotated beans to be
                                                                                proxied using Spring's AOP
                                                                                framework     (following     proxy
                                                                                semantics, as discussed above,
                                                                                applying to method calls coming in
                                                                                through the proxy only). The
                                                                                alternative mode "aspectj" will
                                                                                instead weave the affected classes
                                                                                with Spring's AspectJ transaction
                                                                                aspect (modifying the target class
                                                                                byte code in order to apply to any
                                                                                kind of method call). AspectJ
                                                                                weaving requires spring-aspects.jar
                                                                                on the classpath as well as
                                                                                load-time       weaving         (or
                                                                                compile-time weaving) enabled.
                                                                                (See      the   section    entitled

                                              Spring Framework (2.5.6)                                             236
Transaction management

Attribute                             Default                              Description

                                                                           Section        6.8.4.5,    “Spring
                                                                           configuration” for details on how
                                                                           to set up load-time weaving.)

proxy-target-class                    false
                                                                           Applies to proxy mode only.
                                                                           Controls what type of transactional
                                                                           proxies are created for classes
                                                                           annotated           with         the
                                                                           @Transactional annotation. If
                                                                           "proxy-target-class" attribute is
                                                                           set to "true", then class-based
                                                                           proxies will be created. If
                                                                           "proxy-target-class" is "false"
                                                                           or if the attribute is omitted, then
                                                                           standard JDK interface-based
                                                                           proxies will be created. (See the
                                                                           section entitled Section 6.6,
                                                                           “Proxying mechanisms” for a
                                                                           detailed examination of the
                                                                           different proxy types.)

order                                 Ordered.LOWEST_PRECEDENCE
                                                                           Defines the order of the transaction
                                                                           advice that will be applied to beans
                                                                           annotated with @Transactional.
                                                                           More on the rules related to
                                                                           ordering of AOP advice can be
                                                                           found in the AOP chapter (see
                                                                           section Section 6.2.4.7, “Advice
                                                                           ordering”).     Note     that    not
                                                                           specifying any ordering will leave
                                                                           the decision as to what order
                                                                           advice is run in to the AOP
                                                                           subsystem.


            Note
            The "proxy-target-class" attribute on the <tx:annotation-driven/> element controls what type
            of transactional proxies are created for classes annotated with the @Transactional annotation. If
            "proxy-target-class" attribute is set to "true", then class-based proxies will be created. If
            "proxy-target-class" is "false" or if the attribute is omitted, then standard JDK interface-based
            proxies will be created. (See the section entitled Section 6.6, “Proxying mechanisms” for a detailed
            examination of the different proxy types.)


            Note
            Note that <tx:annotation-driven/> only looks for @Transactional on beans in the same
            application context it is defined in. This means that, if you put <tx:annotation-driven/> in a
            WebApplicationContext for a DispatcherServlet, it only checks for @Transactional beans in



                                          Spring Framework (2.5.6)                                          237
Transaction management


            your controllers, and not your services. See Section 13.2, “The DispatcherServlet” for more
            information.


The most derived location takes precedence when evaluating the transactional settings for a method. In the case
of the following example, the DefaultFooService class is annotated at the class level with the settings for a
read-only transaction, but the @Transactional annotation on the updateFoo(Foo) method in the same class
takes precedence over the transactional settings defined at the class level.

 @Transactional(readOnly = true)
 public class DefaultFooService implements FooService {

     public Foo getFoo(String fooName) {
       // do something
     }

     // these settings have precedence for this method
     @Transactional(readOnly = false, propagation = Propagation.REQUIRES_NEW)
     public void updateFoo(Foo foo) {
       // do something
     }
 }




9.5.6.1. @Transactional settings

The @Transactional annotation is metadata that specifies that an interface, class, or method must have
transactional semantics; for example, “start a brand new read-only transaction when this method is invoked,
suspending any existing transaction”. The default @Transactional settings are:


• The propagation setting is PROPAGATION_REQUIRED

• The isolation level is ISOLATION_DEFAULT

• The transaction is read/write

• The transaction timeout defaults to the default timeout of the underlying transaction system, or or none if
  timeouts are not supported

• Any RuntimeException will trigger rollback, and any checked Exception will not

These default settings can be changed; the various properties of the @Transactional annotation are
summarized in the following table:



Table 9.3. @Transactional properties

Property                             Type                                 Description

propagation                          enum: Propagation                    optional propagation setting

isolation                            enum: Isolation                      optional isolation level

readOnly                             boolean                              read/write vs. read-only transaction

timeout                              int (in seconds granularity)         the transaction timeout

rollbackFor                          an array of Class objects, which an optional array of exception
                                     must be derived from Throwable   classes which must cause rollback



                                           Spring Framework (2.5.6)                                        238
Transaction management

Property                             Type                                Description

rollbackForClassname                 an array of class names. Classes an optional array of names of
                                     must be derived from Throwable   exception classes that must cause
                                                                      rollback

noRollbackFor                        an array of Class objects, which an optional array of exception
                                     must be derived from Throwable   classes that must not cause
                                                                      rollback.

noRollbackForClassname               an array of String class names, an optional array of names of
                                     which must be derived from exception classes that must not
                                     Throwable                       cause rollback


Currently it is not possible to have explicit control over the name of a transaction, where 'name' means the
transaction name that will be shown in a transaction monitor, if applicable (for example, WebLogic's
transaction monitor), and in logging output. For declarative transactions, the transaction name is always the
fully-qualified class name + "." + method name of the transactionally-advised class. For example, if the
handlePayment(..) method of the BusinessService class started a transaction, the name of the transaction
would be:

 com.foo.BusinessService.handlePayment




9.5.7. Transaction propagation

Please note that this section of the Spring reference documentation is not an introduction to transaction
propagation proper; rather it details some of the semantics regarding transaction propagation in Spring.

In the case of Spring-managed transactions, please be aware of the difference between physical and logical
transactions, and how the propagation setting applies to this difference.

9.5.7.1. Required




                                       PROPAGATION_REQUIRED

When the propagation setting is PROPAGATION_REQUIRED, a logical transaction scope is created for each method


                                         Spring Framework (2.5.6)                                        239
Transaction management

that it gets applied to. Each such logical transaction scope can individually decide on rollback-only status, with
an outer transaction scope being logically independent from the inner transaction scope. Of course, in case of
standard PROPAGATION_REQUIRED behavior, they will be mapped to the same physical transaction. So a
rollback-only marker set in the inner transaction scope does affect the outer transactions chance to actually
commit (as you would expect it to).

However, in the case where an inner transaction scopes sets the rollback-only marker, the outer transaction
itself has not decided on the rollback itself, and so the rollback (silently triggered by the inner transaction
scope) is unexpected: a corresponding UnexpectedRollbackException will be thrown at that point. This is
expected behavior so that the caller of a transaction can never be misled to assume that a commit was
performed when it really was not. So if an inner transaction (that the outer caller is not aware of) silently marks
a transaction as rollback-only, the outer caller would still innocently call commit - and needs to receive an
UnexpectedRollbackException to indicate clearly that a rollback was performed instead.


9.5.7.2. RequiresNew




                                      PROPAGATION_REQUIRES_NEW

PROPAGATION_REQUIRES_NEW,       in contrast, uses a completely independent transaction for each affected
transaction scope. In that case, the underlying physical transactions will be different and hence can commit or
rollback independently, with an outer transaction not affected by an inner transaction's rollback status.

9.5.7.3. Nested

PROPAGATION_NESTED     is different again in that it uses a single physical transaction with multiple savepoints that
it can roll back to. Such partial rollbacks allow an inner transaction scope to trigger a rollback for its scope,
with the outer transaction being able to continue the physical transaction despite some operations having been
rolled back. This is typically mapped onto JDBC savepoints, so will only work with JDBC resource
transactions (see Spring's DataSourceTransactionManager).


9.5.8. Advising transactional operations

Consider the situation where you would like to execute both transactional and (to keep things simple) some
basic profiling advice. How do you effect this in the context of using <tx:annotation-driven/>?

What we want to see when we invoke the updateFoo(Foo) method is:


• the configured profiling aspect starting up,

• then the transactional advice executing,

                                             Spring Framework (2.5.6)                                            240
Transaction management


• then the method on the advised object executing

• then the transaction committing (we'll assume a sunny day scenario here),

• and then finally the profiling aspect reporting (somehow) exactly how long the whole transactional method
  invocation took

            Note
            This chapter is not concerned with explaining AOP in any great detail (except as it applies to
            transactions). Please see the chapter entitled Chapter 6, Aspect Oriented Programming with Spring
            for detailed coverage of the various bits and pieces of the following AOP configuration (and AOP
            in general).


Here is the code for a simple profiling aspect. The ordering of advice is controlled via the Ordered interface.
For full details on advice ordering, see Section 6.2.4.7, “Advice ordering”.

 package x.y;

 import org.aspectj.lang.ProceedingJoinPoint;
 import org.springframework.util.StopWatch;
 import org.springframework.core.Ordered;

 public class SimpleProfiler implements Ordered {

     private int order;

     // allows us to control the ordering of advice
     public int getOrder() {
       return this.order;
     }

     public void setOrder(int order) {
       this.order = order;
     }

     // this method is the around advice
     public Object profile(ProceedingJoinPoint call) throws Throwable {
       Object returnValue;
       StopWatch clock = new StopWatch(getClass().getName());
       try {
         clock.start(call.toShortString());
         returnValue = call.proceed();
       } finally {
         clock.stop();
         System.out.println(clock.prettyPrint());
       }
       return returnValue;
     }
 }



 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xmlns:aop="http://www.springframework.org/schema/aop"
      xmlns:tx="http://www.springframework.org/schema/tx"
      xsi:schemaLocation="
    http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
    http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
    http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

     <bean id="fooService" class="x.y.service.DefaultFooService"/>

     <!-- this is the aspect -->
     <bean id="profiler" class="x.y.SimpleProfiler">
       <!-- execute before the transactional advice (hence the lower order number) -->
       <property name="order" value="1"/>
     </bean>



                                          Spring Framework (2.5.6)                                         241
Transaction management

   <tx:annotation-driven transaction-manager="txManager" order="200"/>

   <aop:config>
     <!-- this advice will execute around the transactional advice -->
     <aop:aspect id="profilingAspect" ref="profiler">
       <aop:pointcut id="serviceMethodWithReturnValue"
                expression="execution(!void x.y..*Service.*(..))"/>
       <aop:around method="profile" pointcut-ref="serviceMethodWithReturnValue"/>
     </aop:aspect>
   </aop:config>

   <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
     <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
     <property name="url" value="jdbc:oracle:thin:@rj-t42:1521:elvis"/>
     <property name="username" value="scott"/>
     <property name="password" value="tiger"/>
   </bean>

   <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
     <property name="dataSource" ref="dataSource"/>
   </bean>

 </beans>



The result of the above configuration will be a 'fooService' bean that has profiling and transactional aspects
applied to it in that order. The configuration of any number of additional aspects is effected in a similar
fashion.

Finally, find below some example configuration for effecting the same setup as above, but using the purely
XML declarative approach.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xmlns:aop="http://www.springframework.org/schema/aop"
      xmlns:tx="http://www.springframework.org/schema/tx"
      xsi:schemaLocation="
    http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
    http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
    http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

   <bean id="fooService" class="x.y.service.DefaultFooService"/>

   <!-- the profiling advice -->
   <bean id="profiler" class="x.y.SimpleProfiler">
     <!-- execute before the transactional advice (hence the lower order number) -->
     <property name="order" value="1"/>
   </bean>

   <aop:config>

      <aop:pointcut id="entryPointMethod" expression="execution(* x.y..*Service.*(..))"/>

      <!-- will execute after the profiling advice (c.f. the order attribute) -->
      <aop:advisor
          advice-ref="txAdvice"
          pointcut-ref="entryPointMethod"
          order="2"/> <!-- order value is higher than the profiling aspect -->

      <aop:aspect id="profilingAspect" ref="profiler">
        <aop:pointcut id="serviceMethodWithReturnValue"
                expression="execution(!void x.y..*Service.*(..))"/>
        <aop:around method="profile" pointcut-ref="serviceMethodWithReturnValue"/>
      </aop:aspect>

   </aop:config>

   <tx:advice id="txAdvice" transaction-manager="txManager">
     <tx:attributes>
       <tx:method name="get*" read-only="true"/>
       <tx:method name="*"/>
     </tx:attributes>
   </tx:advice>

   <!-- other <bean/> definitions such as a DataSource and a PlatformTransactionManager here -->


                                          Spring Framework (2.5.6)                                        242
Transaction management


 </beans>



The result of the above configuration will be a 'fooService' bean that has profiling and transactional aspects
applied to it in that order. If we wanted the profiling advice to execute after the transactional advice on the way
in, and before the transactional advice on the way out, then we would simply swap the value of the profiling
aspect bean's 'order' property such that it was higher than the transactional advice's order value.

The configuration of any number of additional aspects is achieved in a similar fashion.


9.5.9. Using @Transactional with AspectJ

It is also possible to use the Spring Framework's @Transactional support outside of a Spring container by
means of an AspectJ aspect. To use this support you must first annotate your classes (and optionally your
classes' methods with the @Transactional annotation, and then you must link (weave) your application with
the     org.springframework.transaction.aspectj.AnnotationTransactionAspect               defined    in    the
spring-aspects.jar file. The aspect must also be configured with a transaction manager. You could of course
use the Spring Framework's IoC container to take care of dependency injecting the aspect. The simplest way to
configure the transaction management aspect is to use the '<tx:annotation-driven/>' element and specify
the mode attribute to asepctj as described in Section 9.5.6, “Using @Transactional”. Since we're focusing here
on applications running outside of a Spring container, we'll show you how to do it programmatically.

            Note
            Prior to continuing, you may well want to read the previous sections entitled Section 9.5.6, “Using
            @Transactional” and Chapter 6, Aspect Oriented Programming with Spring respectively.


 // construct an appropriate transaction manager
 DataSourceTransactionManager txManager = new DataSourceTransactionManager(getDataSource());

 // configure the AnnotationTransactionAspect to use it; this must be done before executing any transactional methods
 AnnotationTransactionAspect.aspectOf().setTransactionManager(txManager);



            Note
            When using this aspect, you must annotate the implementation class (and/or methods within that
            class), not the interface (if any) that the class implements. AspectJ follows Java's rule that
            annotations on interfaces are not inherited.


The @Transactional annotation on a class specifies the default transaction semantics for the execution of any
method in the class.

The @Transactional annotation on a method within the class overrides the default transaction semantics given
by the class annotation (if present). Any method may be annotated, regardless of visibility.

To weave your applications with the AnnotationTransactionAspect you must either build your application
with AspectJ (see the AspectJ Development Guide) or use load-time weaving. See the section entitled
Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework” for a discussion of load-time
weaving with AspectJ.


9.6. Programmatic transaction management

                                            Spring Framework (2.5.6)                                           243
Transaction management


The Spring Framework provides two means of programmatic transaction management:


• Using the TransactionTemplate.

• Using a PlatformTransactionManager implementation directly.

If you are going to use programmatic transaction management, the Spring team generally recommends using
the TransactionTemplate. The second approach is similar to using the JTA UserTransaction API (although
exception handling is less cumbersome).


9.6.1. Using the TransactionTemplate

The TransactionTemplate adopts the same approach as other Spring templates such as the JdbcTemplate. It
uses a callback approach, to free application code from having to do the boilerplate acquisition and release of
transactional resources, and results in code that is intention driven, in that the code that is written focuses solely
on what the developer wants to do.

              Note
              As you will immediately see in the examples that follow, using the TransactionTemplate
              absolutely couples you to Spring's transaction infrastructure and APIs. Whether or not
              programmatic transaction management is suitable for your development needs is a decision that
              you will have to make yourself.


Application code that must execute in a transactional context, and that will use the TransactionTemplate
explicitly, looks like this. You, as an application developer, will write a TransactionCallback implementation
(typically expressed as an anonymous inner class) that will contain all of the code that you need to have execute
in the context of a transaction. You will then pass an instance of your custom TransactionCallback to the
execute(..) method exposed on the TransactionTemplate.

 public class SimpleService implements Service {

     // single TransactionTemplate shared amongst all methods in this instance
     private final TransactionTemplate transactionTemplate;

     // use constructor-injection to supply the PlatformTransactionManager
     public SimpleService(PlatformTransactionManager transactionManager) {
       Assert.notNull(transactionManager, "The 'transactionManager' argument must not be null.");
       this.transactionTemplate = new TransactionTemplate(transactionManager);
     }

     public Object someServiceMethod() {
       return transactionTemplate.execute(new TransactionCallback() {

           // the code in this method executes in a transactional context
           public Object doInTransaction(TransactionStatus status) {
             updateOperation1();
             return resultOfUpdateOperation2();
           }
         });
     }
 }



If there is no return value, use the convenient TransactionCallbackWithoutResult class via an anonymous
class like so:

 transactionTemplate.execute(new TransactionCallbackWithoutResult() {

     protected void doInTransactionWithoutResult(TransactionStatus status) {



                                             Spring Framework (2.5.6)                                             244
Transaction management

         updateOperation1();
         updateOperation2();
   }
 });



Code within the callback can roll the transaction back by calling the setRollbackOnly() method on the
supplied TransactionStatus object.

 transactionTemplate.execute(new TransactionCallbackWithoutResult() {

   protected void doInTransactionWithoutResult(TransactionStatus status) {
     try {
       updateOperation1();
       updateOperation2();
     } catch (SomeBusinessExeption ex) {
       status.setRollbackOnly();
     }
   }
 });




9.6.1.1. Specifying transaction settings

Transaction settings such as the propagation mode, the isolation level, the timeout, and so forth can be set on
the TransactionTemplate either programmatically or in configuration. TransactionTemplate instances by
default have the default transactional settings. Find below an example of programmatically customizing the
transactional settings for a specific TransactionTemplate.

 public class SimpleService implements Service {

     private final TransactionTemplate transactionTemplate;

     public SimpleService(PlatformTransactionManager transactionManager) {
       Assert.notNull(transactionManager, "The 'transactionManager' argument must not be null.");
       this.transactionTemplate = new TransactionTemplate(transactionManager);

         // the transaction settings can be set here explicitly if so desired
         this.transactionTemplate.setIsolationLevel(TransactionDefinition.ISOLATION_READ_UNCOMMITTED);
         this.transactionTemplate.setTimeout(30); // 30 seconds
         // and so forth...
     }
 }



Find below an example of defining a TransactionTemplate with some custom transactional settings, using
Spring XML configuration. The 'sharedTransactionTemplate' can then be injected into as many services as
are required.

 <bean id="sharedTransactionTemplate"
     class="org.springframework.transaction.support.TransactionTemplate">
   <property name="isolationLevelName" value="ISOLATION_READ_UNCOMMITTED"/>
   <property name="timeout" value="30"/>
 </bean>"



Finally, instances of the TransactionTemplate class are threadsafe, in that instances do not maintain any
conversational state. TransactionTemplate instances do however maintain configuration state, so while a
number of classes may choose to share a single instance of a TransactionTemplate, if a class needed to use a
TransactionTemplate with different settings (for example, a different isolation level), then two distinct
TransactionTemplate instances would need to be created and used.



9.6.2. Using the PlatformTransactionManager

You can also use the org.springframework.transaction.PlatformTransactionManager directly to manage


                                          Spring Framework (2.5.6)                                         245
Transaction management

your transaction. Simply pass the implementation of the PlatformTransactionManager you're using to your
bean via a bean reference. Then, using the TransactionDefinition and TransactionStatus objects you can
initiate transactions, rollback and commit.

 DefaultTransactionDefinition def = new DefaultTransactionDefinition();
 // explicitly setting the transaction name is something that can only be done programmatically
 def.setName("SomeTxName");
 def.setPropagationBehavior(TransactionDefinition.PROPAGATION_REQUIRED);

 TransactionStatus status = txManager.getTransaction(def);
 try {
   // execute your business logic here
 }
 catch (MyException ex) {
   txManager.rollback(status);
   throw ex;
 }
 txManager.commit(status);




9.7. Choosing between programmatic and declarative
transaction management
Programmatic transaction management is usually a good idea only if you have a small number of transactional
operations. For example, if you have a web application that require transactions only for certain update
operations, you may not want to set up transactional proxies using Spring or any other technology. In this case,
using the TransactionTemplate may be a good approach. Being able to set the transaction name explicitly is
also something that can only be done using the programmatic approach to transaction management.

On the other hand, if your application has numerous transactional operations, declarative transaction
management is usually worthwhile. It keeps transaction management out of business logic, and is not difficult
to configure. When using the Spring Framework, rather than EJB CMT, the configuration cost of declarative
transaction management is greatly reduced.


9.8. Application server-specific integration
Spring's   transaction  abstraction generally is application server agnostic. Additionally, Spring's
JtaTransactionManager class, which can optionally perform a JNDI lookup for the JTA UserTransaction and
TransactionManager objects, autodetects the location for the latter object, which varies by application server.
Having access to the JTA TransactionManager allows for enhanced transaction semantics, in particular
supporting transaction suspension. Please see the JtaTransactionManager Javadocs for details.

Spring's JtaTransactionManager is the standard choice when running on J2EE application servers, known to
work on all common servers. Its advanced functionality such as transaction suspension is known to work on
many servers as well - including GlassFish, JBoss, Geronimo and Oracle OC4J - without any special
configuration required. However, for fully supported transaction suspension and further advanced integration,
Spring ships special adapters for IBM WebSphere and BEA WebLogic and also for Oracle OC4J. We'll discuss
these adapters in the following sections.

For standard scenarios, including WebLogic, WebSphere and OC4J, consider using the convenient
'<tx:jta-transaction-manager/>' configuration element. This will automatically detect the underlying
server and choose the best transaction manager available for the platform. This means that you won't have to
configure server-specific adapter classes (as discussed in the following sections) explicitly; they will rather be
chosen automatically, with the standard JtaTransactionManager as default fallback.




                                           Spring Framework (2.5.6)                                           246
Transaction management


9.8.1. IBM WebSphere

On WebSphere 6.0 and above, the recommended Spring JTA transaction manager to use is
WebSphereUowTransactionManager. This special adapter leverages IBM's UOWManager API which is available
in WebSphere Application Server 6.0.2.19 or above and 6.1.0.9 or above. With this adapter, Spring-driven
transaction suspension (suspend/resume as initiated by PROPAGATION_REQUIRES_NEW) is officially supported by
IBM!

In a WebSphere 5.1 environment, you may wish to use Spring's WebSphereTransactionManagerFactoryBean
class. This is a factory bean which retrieves the JTA TransactionManager in a WebSphere environment, which
is done via WebSphere's static access methods. Once the JTA TransactionManager instance has been
obtained via this factory bean, Spring's JtaTransactionManager may be configured with a reference to it, for
enhanced transaction semantics over the use of only the JTA UserTransaction object. Please see the Javadocs
for full details.

Note that WebSphereTransactionManagerFactoryBean usage is known to work on WAS 5.1 and 6.0 but is not
officially supported by IBM. Prefer WebSphereUowTransactionManager when running on WAS 6.0 or higher
(see above).


9.8.2. BEA WebLogic

On WebLogic 8.1 or above, you will generally prefer to use the WebLogicJtaTransactionManager instead of
the stock JtaTransactionManager class. This special WebLogic-specific subclass of the normal
JtaTransactionManager supports the full power of Spring's transaction definitions in a WebLogic-managed
transaction environment, beyond standard JTA semantics: Features include transaction names, per-transaction
isolation levels, and proper resuming of transactions in all cases.


9.8.3. Oracle OC4J

Spring ships a special adapter class for OC4J 10.1.3 or above: OC4JJtaTransactionManager. This is analogous
to the WebLogicJtaTransactionManager class discussed in the previous section, providing similar value-adds
on OC4J: transaction names and per-transaction isolation levels.

Note that the full JTA functionality, including transaction suspension, works fine with Spring's
JtaTransactionManager on OC4J as well. The special OC4JJtaTransactionManager adapter simply provides
value-adds beyond standard JTA.


9.9. Solutions to common problems

9.9.1. Use of the wrong transaction manager for a specific DataSource

You should take care to use the correct PlatformTransactionManager implementation for their requirements.
Used properly, the Spring Framework merely provides a straightforward and portable abstraction. If you are
using global transactions, you must use the org.springframework.transaction.jta.JtaTransactionManager
class (or an application server-specific subclass of it) for all your transactional operations. Otherwise the
transaction infrastructure will attempt to perform local transactions on resources such as container DataSource
instances. Such local transactions do not make sense, and a good application server will treat them as errors.




                                          Spring Framework (2.5.6)                                         247
Transaction management



9.10. Further Resources
Find below links to further resources about the Spring Framework's transaction support.


• Java Transaction Design Strategies is a book available from InfoQ that provides a well-paced introduction to
  transactions in Java. It also includes side-by-side examples of how to configure and use transactions using
  both the Spring Framework and EJB3.




                                          Spring Framework (2.5.6)                                        248
Chapter 10. DAO support

10.1. Introduction
The Data Access Object (DAO) support in Spring is aimed at making it easy to work with data access
technologies like JDBC, Hibernate or JDO in a consistent way. This allows one to switch between the
aforementioned persistence technologies fairly easily and it also allows one to code without worrying about
catching exceptions that are specific to each technology.


10.2. Consistent exception hierarchy
Spring provides a convenient translation from technology-specific exceptions like SQLException to its own
exception class hierarchy with the DataAccessException as the root exception. These exceptions wrap the
original exception so there is never any risk that one might lose any information as to what might have gone
wrong.

In addition to JDBC exceptions, Spring can also wrap Hibernate-specific exceptions, converting them from
proprietary, checked exceptions (in the case of versions of Hibernate prior to Hibernate 3.0), to a set of focused
runtime exceptions (the same is true for JDO and JPA exceptions). This allows one to handle most persistence
exceptions, which are non-recoverable, only in the appropriate layers, without having annoying boilerplate
catch-and-throw blocks and exception declarations in one's DAOs. (One can still trap and handle exceptions
anywhere one needs to though.) As mentioned above, JDBC exceptions (including database-specific dialects)
are also converted to the same hierarchy, meaning that one can perform some operations with JDBC within a
consistent programming model.

The above holds true for the various template classes in Springs support for various ORM frameworks. If one
uses the interceptor-based classes then the application must care about handling HibernateExceptions and
JDOExceptions           itself,    preferably        via      delegating       to     SessionFactoryUtils'
convertHibernateAccessException(..) or convertJdoAccessException methods respectively. These
methods convert the exceptions to ones that are compatible with the exceptions in the
org.springframework.dao exception hierarchy. As JDOExceptions are unchecked, they can simply get thrown
too, sacrificing generic DAO abstraction in terms of exceptions though.

The exception hierarchy that Spring provides can be seen below. (Please note that the class hierarchy detailed
in the image shows only a subset of the entire DataAccessException hierarchy.)




                                           Spring Framework (2.5.6)                                           249
DAO support




10.3. Consistent abstract classes for DAO support
To make it easier to work with a variety of data access technologies such as JDBC, JDO and Hibernate in a
consistent way, Spring provides a set of abstract DAO classes that one can extend. These abstract classes
have methods for providing the data source and any other configuration settings that are specific to the relevant
data-access technology.


• JdbcDaoSupport - superclass for JDBC data access objects. Requires a DataSource to be provided; in turn,
  this class provides a JdbcTemplate instance initialized from the supplied DataSource to subclasses.

• HibernateDaoSupport - superclass for Hibernate data access objects. Requires a SessionFactory to be
  provided; in turn, this class provides a HibernateTemplate instance initialized from the supplied
  SessionFactory to subclasses. Can alternatively be initialized directly via a HibernateTemplate, to reuse
  the latters settings like SessionFactory, flush mode, exception translator, and so forth.

• JdoDaoSupport - super class for JDO data access objects. Requires a PersistenceManagerFactory to be
  provided; in turn, this class provides a JdoTemplate instance initialized from the supplied
  PersistenceManagerFactory to subclasses.

• JpaDaoSupport - super class for JPA data access objects. Requires a EntityManagerFactory to be provided;
  in turn, this class provides a JpaTemplate instance initialized from the supplied EntityManagerFactory to
  subclasses.




                                           Spring Framework (2.5.6)                                          250
Chapter 11. Data access using JDBC

11.1. Introduction
The value-add provided by the Spring Framework's JDBC abstraction framework is perhaps best shown by the
following list (note that only the italicized lines need to be coded by an application developer):


1. Define connection parameters

2. Open the connection

3. Specify the statement

4. Prepare and execute the statement

5. Set up the loop to iterate through the results (if any)

6. Do the work for each iteration

7. Process any exception

8. Handle transactions

9. Close the connection

The Spring Framework takes care of all the grungy, low-level details that can make JDBC such a tedious API
to develop with.


11.1.1. Choosing a style

There are a number of options for selecting an approach to form the basis for your JDBC database access.
There are three flavors of the JdbcTemplate, a new "SimpleJdbc" approach taking advantage of database
metadata, and there is also the "RDBMS Object" style for a more object oriented approach similar in style to
the JDO Query design. We'll briefly list the primary reasons why you would pick one of these approaches.
Keep in mind that even if you start using one of these approaches, you can still mix and match if there is a
feature in a different approach that you would like to take advantage of. All approaches requires a JDBC 2.0
compliant driver and some advanced features require a JDBC 3.0 driver.


• JdbcTemplate - this is the classic Spring JDBC approach and the most widely used. This is the "lowest
  level" approach and all other approaches use a JdbcTemplate under the covers. Works well in a JDK 1.4 and
  higher environment.

• NamedParameterJdbcTemplate - wraps a JdbcTemplate to provide more convenient usage with named
  parameters instead of the traditional JDBC "?" place holders. This provides better documentation and ease of
  use when you have multiple parameters for an SQL statement. Works with JDK 1.4 and up.

• SimpleJdbcTemplate - this class combines the most frequently used features of both JdbcTemplate and
  NamedParameterJdbcTemplate plus it adds additional convenience by taking advantage of some Java 5
  features like varargs, autoboxing and generics to provide an easier to use API. Requires JDK 5 or higher.

• SimpleJdbcInsert and SimpleJdbcCall - designed to take advantage of database metadata to limit the


                                             Spring Framework (2.5.6)                                     251
Data access using JDBC


  amount of configuration needed. This will simplify the coding to a point where you only need to provide the
  name of the table or procedure and provide a Map of parameters matching the column names. Designed to
  work together with the SimpleJdbcTemplate. Requires JDK 5 or higher and a database that provides
  adequate metadata.

• RDBMS Objects including MappingSqlQuery, SqlUpdate and StoredProcedure - an approach where
  you create reusable and thread safe objects during initialization of your data access layer. This approach is
  modeled after JDO Query where you define your query string, declare parameters and compile the query.
  Once that is done any execute methods can be called multiple times with various parameter values passed in.
  Works with JDK 1.4 and higher.


11.1.2. The package hierarchy

The Spring Framework's JDBC abstraction framework consists of four different packages, namely core,
datasource, object, and support.

The org.springframework.jdbc.core package contains the JdbcTemplate class and its various callback
interfaces, plus a variety of related classes. A sub-package named org.springframework.jdbc.core.simple
contains the SimpleJdbcTemplate class and the related SimpleJdbcInsert and SimpleJdbcCall classes.
Another       sub-package       named       org.springframework.jdbc.core.namedparam     contains   the
NamedParameterJdbcTemplate class and the related support classes.

The org.springframework.jdbc.datasource package contains a utility class for easy DataSource access, and
various simple DataSource implementations that can be used for testing and running unmodified JDBC code
outside of a J2EE container. The utility class provides static methods to obtain connections from JNDI and to
close connections if necessary. It has support for thread-bound connections, e.g. for use with
DataSourceTransactionManager.

Next, the org.springframework.jdbc.object package contains classes that represent RDBMS queries,
updates, and stored procedures as thread safe, reusable objects. This approach is modeled by JDO, although of
course objects returned by queries are “disconnected” from the database. This higher level of JDBC abstraction
depends on the lower-level abstraction in the org.springframework.jdbc.core package.

Finally the org.springframework.jdbc.support package is where you find the SQLException translation
functionality and some utility classes.

Exceptions   thrown      during JDBC processing are translated to exceptions defined in the
org.springframework.dao package. This means that code using the Spring JDBC abstraction layer does not
need to implement JDBC or RDBMS-specific error handling. All translated exceptions are unchecked giving
you the option of catching the exceptions that you can recover from while allowing other exceptions to be
propagated to the caller.


11.2. Using the JDBC Core classes to control basic JDBC
processing and error handling

11.2.1. JdbcTemplate

The JdbcTemplate class is the central class in the JDBC core package. It simplifies the use of JDBC since it
handles the creation and release of resources. This helps to avoid common errors such as forgetting to always
close the connection. It executes the core JDBC workflow like statement creation and execution, leaving


                                          Spring Framework (2.5.6)                                         252
Data access using JDBC

application code to provide SQL and extract results. This class executes SQL queries, update statements or
stored procedure calls, imitating iteration over ResultSets and extraction of returned parameter values. It also
catches JDBC exceptions and translates them to the generic, more informative, exception hierarchy defined in
the org.springframework.dao package.

Code using the JdbcTemplate only need to implement callback interfaces, giving them a clearly defined
contract. The PreparedStatementCreator callback interface creates a prepared statement given a Connection
provided by this class, providing SQL and any necessary parameters. The same is true for the
CallableStatementCreator interface which creates callable statement. The RowCallbackHandler interface
extracts values from each row of a ResultSet.

The JdbcTemplate can be used within a DAO implementation via direct instantiation with a DataSource
reference, or be configured in a Spring IOC container and given to DAOs as a bean reference. Note: the
DataSource should always be configured as a bean in the Spring IoC container, in the first case given to the
service directly, in the second case to the prepared template.

Finally, all of the SQL issued by this class is logged at the 'DEBUG' level under the category corresponding to
the fully qualified class name of the template instance (typically JdbcTemplate, but it may be different if a
custom subclass of the JdbcTemplate class is being used).

11.2.1.1. Examples

Find below some examples of using the JdbcTemplate class. (These examples are not an exhaustive list of all
of the functionality exposed by the JdbcTemplate; see the attendant Javadocs for that).

11.2.1.1.1. Querying (SELECT)
A simple query for getting the number of rows in a relation.

 int rowCount = this.jdbcTemplate.queryForInt("select count(0) from t_accrual");



A simple query using a bind variable.

 int countOfActorsNamedJoe = this.jdbcTemplate.queryForInt(
         "select count(0) from t_actors where first_name = ?", new Object[]{"Joe"});



Querying for a String.

 String surname = (String) this.jdbcTemplate.queryForObject(
         "select surname from t_actor where id = ?",
         new Object[]{new Long(1212)}, String.class);



Querying and populating a single domain object.

 Actor actor = (Actor) this.jdbcTemplate.queryForObject(
     "select first_name, surname from t_actor where id = ?",
     new Object[]{new Long(1212)},
     new RowMapper() {

            public Object mapRow(ResultSet rs, int rowNum) throws SQLException {
                Actor actor = new Actor();
                actor.setFirstName(rs.getString("first_name"));
                actor.setSurname(rs.getString("surname"));
                return actor;
            }
      });



Querying and populating a number of domain objects.

                                           Spring Framework (2.5.6)                                         253
Data access using JDBC


 Collection actors = this.jdbcTemplate.query(
     "select first_name, surname from t_actor",
     new RowMapper() {

            public Object mapRow(ResultSet rs, int rowNum) throws SQLException {
                Actor actor = new Actor();
                actor.setFirstName(rs.getString("first_name"));
                actor.setSurname(rs.getString("surname"));
                return actor;
            }
      });



If the last two snippets of code actually existed in the same application, it would make sense to remove the
duplication present in the two RowMapper anonymous inner classes, and extract them out into a single class
(typically a static inner class) that can then be referenced by DAO methods as needed. For example, the last
code snippet might be better off written like so:

 public Collection findAllActors() {
     return this.jdbcTemplate.query( "select first_name, surname from t_actor", new ActorMapper());
 }

 private static final class ActorMapper implements RowMapper {

      public Object mapRow(ResultSet rs, int rowNum) throws SQLException {
          Actor actor = new Actor();
          actor.setFirstName(rs.getString("first_name"));
          actor.setSurname(rs.getString("surname"));
          return actor;
      }
 }



11.2.1.1.2. Updating (INSERT/UPDATE/DELETE)
 this.jdbcTemplate.update(
         "insert into t_actor (first_name, surname) values (?, ?)",
         new Object[] {"Leonor", "Watling"});



 this.jdbcTemplate.update(
         "update t_actor set weapon = ? where id = ?",
         new Object[] {"Banjo", new Long(5276)});



 this.jdbcTemplate.update(
         "delete from actor where id = ?",
         new Object[] {new Long.valueOf(actorId)});



11.2.1.1.3. Other operations
The execute(..) method can be used to execute any arbitrary SQL, and as such is often used for DDL
statements. It is heavily overloaded with variants taking callback interfaces, binding variable arrays, and
suchlike.

 this.jdbcTemplate.execute("create table mytable (id integer, name varchar(100))");



Invoking a simple stored procedure (more sophisticated stored procedure support is covered later).

 this.jdbcTemplate.update(
         "call SUPPORT.REFRESH_ACTORS_SUMMARY(?)",
         new Object[]{Long.valueOf(unionId)});




11.2.1.2. JdbcTemplate idioms (best practices)

                                          Spring Framework (2.5.6)                                      254
Data access using JDBC


Instances of the JdbcTemplate class are threadsafe once configured. This is important because it means that
you can configure a single instance of a JdbcTemplate and then safely inject this shared reference into multiple
DAOs (or repositories). To be clear, the JdbcTemplate is stateful, in that it maintains a reference to a
DataSource, but this state is not conversational state.

A common idiom when using the JdbcTemplate class (and the associated SimpleJdbcTemplate and
NamedParameterJdbcTemplate classes) is to configure a DataSource in your Spring configuration file, and then
dependency inject that shared DataSource bean into your DAO classes; the JdbcTemplate is created in the
setter for the DataSource. This leads to DAOs that look in part like this:

 public class JdbcCorporateEventDao implements CorporateEventDao {

      private JdbcTemplate jdbcTemplate;

      public void setDataSource(DataSource dataSource) {
          this.jdbcTemplate = new JdbcTemplate(dataSource);
      }

      // JDBC-backed implementations of the methods on the CorporateEventDao follow...
 }



The attendant configuration might look like this.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

      <bean id="corporateEventDao" class="com.example.JdbcCorporateEventDao">
          <property name="dataSource" ref="dataSource"/>
      </bean>

      <!-- the DataSource (parameterized for configuration via a PropertyPlaceHolderConfigurer) -->
      <bean id="dataSource" destroy-method="close" class="org.apache.commons.dbcp.BasicDataSource">
          <property name="driverClassName" value="${jdbc.driverClassName}"/>
          <property name="url" value="${jdbc.url}"/>
          <property name="username" value="${jdbc.username}"/>
          <property name="password" value="${jdbc.password}"/>
      </bean>

 </beans>



If you are using Spring's JdbcDaoSupport class, and your various JDBC-backed DAO classes extend from it,
then you inherit a setDataSource(..) method for free from said superclass. It is totally up to you as to whether
or not you inherit from said class, you certainly are not forced to. If you look at the source for the
JdbcDaoSupport class you will see that there is not a whole lot to it... it is provided as a convenience only.

Regardless of which of the above template initialization styles you choose to use (or not), there is (almost)
certainly no need to create a brand new instance of a JdbcTemplate class each and every time you wish to
execute some SQL... remember, once configured, a JdbcTemplate instance is threadsafe. A reason for wanting
multiple JdbcTemplate instances would be when you have an application that accesses multiple databases,
which requires multiple DataSources, and subsequently multiple differently configured JdbcTemplates.


11.2.2. NamedParameterJdbcTemplate

The NamedParameterJdbcTemplate class adds support for programming JDBC statements using named
parameters (as opposed to programming JDBC statements using only classic placeholder ('?') arguments. The
NamedParameterJdbcTemplate class wraps a JdbcTemplate, and delegates to the wrapped JdbcTemplate to do
much of its work. This section will describe only those areas of the NamedParameterJdbcTemplate class that


                                           Spring Framework (2.5.6)                                         255
Data access using JDBC

differ from the JdbcTemplate itself; namely, programming JDBC statements using named parameters.

 // some JDBC-backed DAO class...
 private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

 public void setDataSource(DataSource dataSource) {
     this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);
 }

 public int countOfActorsByFirstName(String firstName) {

      String sql = "select count(0) from T_ACTOR where first_name = :first_name";

      SqlParameterSource namedParameters = new MapSqlParameterSource("first_name", firstName);

      return namedParameterJdbcTemplate.queryForInt(sql, namedParameters);
 }



Notice the use of the named parameter notation in the value assigned to the 'sql' variable, and the
corresponding value that is plugged into the 'namedParameters' variable (of type MapSqlParameterSource).

If you like, you can also pass along named parameters (and their corresponding values) to a
NamedParameterJdbcTemplate instance using the (perhaps more familiar) Map-based style. (The rest of the
methods exposed by the NamedParameterJdbcOperations - and implemented by the
NamedParameterJdbcTemplate class) follow a similar pattern and will not be covered here.)

 // some JDBC-backed DAO class...
 private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

 public void setDataSource(DataSource dataSource) {
     this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);
 }

 public int countOfActorsByFirstName(String firstName) {

      String sql = "select count(0) from T_ACTOR where first_name = :first_name";

      Map namedParameters = Collections.singletonMap("first_name", firstName);

      return this.namedParameterJdbcTemplate.queryForInt(sql, namedParameters);
 }



Another nice feature related to the NamedParameterJdbcTemplate (and existing in the same Java package) is
the SqlParameterSource interface. You have already seen an example of an implementation of this interface in
one of the preceding code snippets (the MapSqlParameterSource class). The entire point of the
SqlParameterSource is to serve as a source of named parameter values to a NamedParameterJdbcTemplate.
The MapSqlParameterSource class is a very simple implementation, that is simply an adapter around a
java.util.Map, where the keys are the parameter names and the values are the parameter values.

Another SqlParameterSource implementation is the BeanPropertySqlParameterSource class. This class
wraps an arbitrary JavaBean (that is, an instance of a class that adheres to the JavaBean conventions), and uses
the properties of the wrapped JavaBean as the source of named parameter values.

 public class Actor {

      private Long id;
      private String firstName;
      private String lastName;

      public String getFirstName() {
          return this.firstName;
      }

      public String getLastName() {
          return this.lastName;
      }




                                          Spring Framework (2.5.6)                                          256
Data access using JDBC


      public Long getId() {
          return this.id;
      }

      // setters omitted...

 }



 // some JDBC-backed DAO class...
 private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

 public void setDataSource(DataSource dataSource) {
     this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);
 }

 public int countOfActors(Actor exampleActor) {

      // notice how the named parameters match the properties of the above 'Actor' class
      String sql = "select count(0) from T_ACTOR where first_name = :firstName and last_name = :lastName";

      SqlParameterSource namedParameters = new BeanPropertySqlParameterSource(exampleActor);

      return this.namedParameterJdbcTemplate.queryForInt(sql, namedParameters);
 }



Remember that the NamedParameterJdbcTemplate class wraps a classic JdbcTemplate template; if you need
access to the wrapped JdbcTemplate instance (to access some of the functionality only present in the
JdbcTemplate class), then you can use the getJdbcOperations() method to access the wrapped JdbcTemplate
via the JdbcOperations interface.

See also the section entitled Section 11.2.1.2, “JdbcTemplate idioms (best practices)” for some advice on how
to best use the NamedParameterJdbcTemplate class in the context of an application.


11.2.3. SimpleJdbcTemplate

            Note
            The functionality offered by the SimpleJdbcTemplate is only available to you if you are using Java
            5 or later.


The SimpleJdbcTemplate class is a wrapper around the classic JdbcTemplate that takes advantage of Java 5
language features such as varargs and autoboxing. The SimpleJdbcTemplate class is somewhat of a sop to the
syntactic-sugar-like features of Java 5, but as anyone who has developed on Java 5 and then had to move back
to developing on a previous version of the JDK will know, those syntactic-sugar-like features sure are nice.

The value-add of the SimpleJdbcTemplate class in the area of syntactic-sugar is best illustrated with a 'before
and after' example. The following code snippet shows first some data access code using the classic
JdbcTemplate, followed immediately thereafter by a code snippet that does the same job, only this time using
the SimpleJdbcTemplate.

 // classic JdbcTemplate-style...
 private JdbcTemplate jdbcTemplate;

 public void setDataSource(DataSource dataSource) {
     this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 public Actor findActor(long id) {
     String sql = "select id, first_name, last_name from T_ACTOR where id = ?";

      RowMapper mapper = new RowMapper() {



                                          Spring Framework (2.5.6)                                         257
Data access using JDBC

           public Object mapRow(ResultSet rs, int rowNum) throws SQLException {
               Actor actor = new Actor();
               actor.setId(rs.getLong("id"));
               actor.setFirstName(rs.getString("first_name"));
               actor.setLastName(rs.getString("last_name"));
               return actor;
           }
      };

      // notice the cast, the wrapping up of the 'id' argument
      // in an array, and the boxing of the 'id' argument as a reference type
      return (Actor) jdbcTemplate.queryForObject(sql, mapper, new Object[] {Long.valueOf(id)});
 }



Here is the same method, only this time using the SimpleJdbcTemplate; notice how much 'cleaner' the code is.

 // SimpleJdbcTemplate-style...
 private SimpleJdbcTemplate simpleJdbcTemplate;

 public void setDataSource(DataSource dataSource) {
     this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
 }

 public Actor findActor(long id) {
     String sql = "select id, first_name, last_name from T_ACTOR where id = ?";

      ParameterizedRowMapper<Actor> mapper = new ParameterizedRowMapper<Actor>() {

           // notice the return type with respect to Java 5 covariant return types
           public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {
               Actor actor = new Actor();
               actor.setId(rs.getLong("id"));
               actor.setFirstName(rs.getString("first_name"));
               actor.setLastName(rs.getString("last_name"));
               return actor;
           }
      };

      return this.simpleJdbcTemplate.queryForObject(sql, mapper, id);
 }



See also the section entitled Section 11.2.1.2, “JdbcTemplate idioms (best practices)” for some advice on how
to best use the SimpleJdbcTemplate class in the context of an application.

            Note
            The SimpleJdbcTemplate class only offers a subset of the methods exposed on the JdbcTemplate
            class. If you need to use a method from the JdbcTemplate that is not defined on the
            SimpleJdbcTemplate, you can always access the underlying JdbcTemplate by calling the
            getJdbcOperations() method on the SimpleJdbcTemplate, which will then allow you to invoke
            the method that you want. The only downside is that the methods on the JdbcOperations interface
            are not generified, so you are back to casting and such again.



11.2.4. DataSource

In order to work with data from a database, one needs to obtain a connection to the database. The way Spring
does this is through a DataSource. A DataSource is part of the JDBC specification and can be seen as a
generalized connection factory. It allows a container or a framework to hide connection pooling and transaction
management issues from the application code. As a developer, you don not need to know any details about how
to connect to the database, that is the responsibility for the administrator that sets up the datasource. You will
most likely have to fulfill both roles while you are developing and testing you code though, but you will not
necessarily have to know how the production data source is configured.


                                           Spring Framework (2.5.6)                                           258
Data access using JDBC


When using Spring's JDBC layer, you can either obtain a data source from JNDI or you can configure your
own, using an implementation that is provided in the Spring distribution. The latter comes in handy for unit
testing outside of a web container. We will use the DriverManagerDataSource implementation for this section
but there are several additional implementations that will be covered later on. The DriverManagerDataSource
works the same way that you probably are used to work when you obtain a JDBC connection. You have to
specify the fully qualified class name of the JDBC driver that you are using so that the DriverManager can load
the driver class. Then you have to provide a URL that varies between JDBC drivers. You have to consult the
documentation for your driver for the correct value to use here. Finally you must provide a username and a
password that will be used to connect to the database. Here is an example of how to configure a
DriverManagerDataSource:

 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setDriverClassName("org.hsqldb.jdbcDriver");
 dataSource.setUrl("jdbc:hsqldb:hsql://localhost:");
 dataSource.setUsername("sa");
 dataSource.setPassword("");




11.2.5. SQLExceptionTranslator

SQLExceptionTranslator   is an interface to be implemented by classes that can translate between
SQLExceptions            and               Spring's            own               data-access-strategy-agnostic
org.springframework.dao.DataAccessException. Implementations can be generic (for example, using
SQLState codes for JDBC) or proprietary (for example, using Oracle error codes) for greater precision.

SQLErrorCodeSQLExceptionTranslator      is the implementation of SQLExceptionTranslator that is used by
default. This implementation uses specific vendor codes. More precise than SQLState implementation, but
vendor specific. The error code translations are based on codes held in a JavaBean type class named
SQLErrorCodes. This class is created and populated by an SQLErrorCodesFactory which as the name suggests
is a factory for creating SQLErrorCodes based on the contents of a configuration file named
'sql-error-codes.xml'. This file is populated with vendor codes and based on the DatabaseProductName
taken from the DatabaseMetaData, the codes for the current database are used.

The SQLErrorCodeSQLExceptionTranslator applies the following matching rules:

• Try custom translation implemented by any subclass. Note that this class is concrete and is typically used
  itself, in which case this rule does not apply.
• Apply error code matching. Error codes are obtained from the SQLErrorCodesFactory by default. This looks
  up error codes from the classpath and keys into them from the database name from the database metadata.
• Use the fallback translator. SQLStateSQLExceptionTranslator is the default fallback translator.

SQLErrorCodeSQLExceptionTranslator         can be extended the following way:

 public class MySQLErrorCodesTranslator extends SQLErrorCodeSQLExceptionTranslator {

      protected DataAccessException customTranslate(String task, String sql, SQLException sqlex) {
          if (sqlex.getErrorCode() == -12345) {
              return new DeadlockLoserDataAccessException(task, sqlex);
          }
          return null;
      }
 }



In this example the specific error code '-12345' is translated and any other errors are simply left to be
translated by the default translator implementation. To use this custom translator, it is necessary to pass it to the
JdbcTemplate using the method setExceptionTranslator and to use this JdbcTemplate for all of the data
access processing where this translator is needed. Here is an example of how this custom translator can be used:

                                            Spring Framework (2.5.6)                                             259
Data access using JDBC


 // create a JdbcTemplate and set data source
 JdbcTemplate jt = new JdbcTemplate();
 jt.setDataSource(dataSource);
 // create a custom translator and set the DataSource for the default translation lookup
 MySQLErrorCodesTransalator tr = new MySQLErrorCodesTransalator();
 tr.setDataSource(dataSource);
 jt.setExceptionTranslator(tr);
 // use the JdbcTemplate for this SqlUpdate
 SqlUpdate su = new SqlUpdate();
 su.setJdbcTemplate(jt);
 su.setSql("update orders set shipping_charge = shipping_charge * 1.05");
 su.compile();
 su.update();



The custom translator is passed a data source because we still want the default translation to look up the error
codes in sql-error-codes.xml.


11.2.6. Executing statements

To execute an SQL statement, there is very little code needed. All you need is a DataSource and a
JdbcTemplate. Once you have that, you can use a number of convenience methods that are provided with the
JdbcTemplate. Here is a short example showing what you need to include for a minimal but fully functional
class that creates a new table.

 import javax.sql.DataSource;
 import org.springframework.jdbc.core.JdbcTemplate;

 public class ExecuteAStatement {

      private JdbcTemplate jdbcTemplate;

      public void setDataSource(DataSource dataSource) {
          this.jdbcTemplate = new JdbcTemplate(dataSource);
      }

      public void doExecute() {
          this.jdbcTemplate.execute("create table mytable (id integer, name varchar(100))");
      }
 }




11.2.7. Running Queries

In addition to the execute methods, there is a large number of query methods. Some of these methods are
intended to be used for queries that return a single value. Maybe you want to retrieve a count or a specific value
from one row. If that is the case then you can use queryForInt(..), queryForLong(..) or
queryForObject(..). The latter will convert the returned JDBC Type to the Java class that is passed in as an
argument. If the type conversion is invalid, then an InvalidDataAccessApiUsageException will be thrown.
Here is an example that contains two query methods, one for an int and one that queries for a String.

 import javax.sql.DataSource;
 import org.springframework.jdbc.core.JdbcTemplate;

 public class RunAQuery {

      private JdbcTemplate jdbcTemplate;

      public void setDataSource(DataSource dataSource) {
          this.jdbcTemplate = new JdbcTemplate(dataSource);
      }

      public int getCount() {
          return this.jdbcTemplate.queryForInt("select count(*) from mytable");
      }




                                           Spring Framework (2.5.6)                                           260
Data access using JDBC


      public String getName() {
          return (String) this.jdbcTemplate.queryForObject("select name from mytable", String.class);
      }

      public void setDataSource(DataSource dataSource) {
          this.dataSource = dataSource;
      }
 }



In addition to the single results query methods there are several methods that return a List with an entry for
each row that the query returned. The most generic method is queryForList(..) which returns a List where
each entry is a Map with each entry in the map representing the column value for that row. If we add a method
to the above example to retrieve a list of all the rows, it would look like this:

 private JdbcTemplate jdbcTemplate;

 public void setDataSource(DataSource dataSource) {
     this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 public List getList() {
     return this.jdbcTemplate.queryForList("select * from mytable");
 }



The list returned would look something like this:

 [{name=Bob, id=1}, {name=Mary, id=2}]




11.2.8. Updating the database

There are also a number of update methods that you can use. Find below an example where a column is
updated for a certain primary key. In this example an SQL statement is used that has place holders for row
parameters. Note that the parameter values are passed in as an array of objects (and thus primitives have to be
wrapped in the primitive wrapper classes).

 import javax.sql.DataSource;

 import org.springframework.jdbc.core.JdbcTemplate;

 public class ExecuteAnUpdate {

      private JdbcTemplate jdbcTemplate;

      public void setDataSource(DataSource dataSource) {
          this.jdbcTemplate = new JdbcTemplate(dataSource);
      }

      public void setName(int id, String name) {
          this.jdbcTemplate.update(
                  "update mytable set name = ? where id = ?",
                  new Object[] {name, new Integer(id)});
      }
 }




11.2.9. Retrieving auto-generated keys

One of the update convenience methods provides support for acquiring the primary keys generated by the
database (part of the JDBC 3.0 standard - see chapter 13.6 of the specification for details). The method takes a
PreparedStatementCreator as its first argument, and this is the way the required insert statement is specified.
The other argument is a KeyHolder, which will contain the generated key on successful return from the update.

                                           Spring Framework (2.5.6)                                         261
Data access using JDBC

There is not a standard single way to create an appropriate PreparedStatement (which explains why the
method signature is the way it is). An example that works on Oracle and may not work on other platforms is:

 final String INSERT_SQL = "insert into my_test (name) values(?)";
 final String name = "Rob";

 KeyHolder keyHolder = new GeneratedKeyHolder();
 jdbcTemplate.update(
     new PreparedStatementCreator() {
         public PreparedStatement createPreparedStatement(Connection connection) throws SQLException {
             PreparedStatement ps =
                 connection.prepareStatement(INSERT_SQL, new String[] {"id"});
             ps.setString(1, name);
             return ps;
         }
     },
     keyHolder);

 // keyHolder.getKey() now contains the generated key




11.3. Controlling database connections

11.3.1. DataSourceUtils

The DataSourceUtils class is a convenient and powerful helper class that provides static methods to obtain
connections from JNDI and close connections if necessary. It has support for thread-bound connections, for
example for use with DataSourceTransactionManager.


11.3.2. SmartDataSource

The SmartDataSource interface is to be implemented by classes that can provide a connection to a relational
database. Extends the DataSource interface to allow classes using it to query whether or not the connection
should be closed after a given operation. This can sometimes be useful for efficiency, in the cases where one
knows that one wants to reuse a connection.


11.3.3. AbstractDataSource

This is an abstract base class for Spring's DataSource implementations, that takes care of the "uninteresting"
glue. This is the class one would extend if one was writing one's own DataSource implementation.


11.3.4. SingleConnectionDataSource

The SingleConnectionDataSource class is an implementation of the SmartDataSource interface that wraps a
single Connection that is not closed after use. Obviously, this is not multi-threading capable.

If client code will call close in the assumption of a pooled connection, like when using persistence tools, set
suppressClose to true. This will return a close-suppressing proxy instead of the physical connection. Be
aware that you will not be able to cast this to a native Oracle Connection or the like anymore.

This is primarily a test class. For example, it enables easy testing of code outside an application server, in
conjunction with a simple JNDI environment. In contrast to DriverManagerDataSource, it reuses the same
connection all the time, avoiding excessive creation of physical connections.


11.3.5. DriverManagerDataSource

                                          Spring Framework (2.5.6)                                         262
Data access using JDBC


The DriverManagerDataSource class is an implementation of the standard DataSource interface that
configures a plain old JDBC Driver via bean properties, and returns a new Connection every time.

This is potentially useful for test or standalone environments outside of a J2EE container, either as a
DataSource bean in a Spring IoC container, or in conjunction with a simple JNDI environment. Pool-assuming
Connection.close() calls will simply close the connection, so any DataSource-aware persistence code should
work. However, using JavaBean style connection pools such as commons-dbcp is so easy, even in a test
environment, that it is almost always preferable to use such a connection pool over DriverManagerDataSource.


11.3.6. TransactionAwareDataSourceProxy

TransactionAwareDataSourceProxy    is a proxy for a target DataSource, which wraps that target DataSource to
add awareness of Spring-managed transactions. In this respect it is similar to a transactional JNDI DataSource
as provided by a J2EE server.

              Note
              It should almost never be necessary or desirable to use this class, except when existing code exists
              which must be called and passed a standard JDBC DataSource interface implementation. In this
              case, it's possible to still have this code be usable, but participating in Spring managed transactions.
              It is generally preferable to write your own new code using the higher level abstractions for
              resource management, such as JdbcTemplate or DataSourceUtils.


(See the TransactionAwareDataSourceProxy Javadocs for more details.)


11.3.7. DataSourceTransactionManager

The DataSourceTransactionManager class is a PlatformTransactionManager implementation for single
JDBC datasources. It binds a JDBC connection from the specified data source to the currently executing thread,
potentially allowing for one thread connection per data source.

Application        code       is      required   to      retrieve     the     JDBC         connection       via
DataSourceUtils.getConnection(DataSource) instead of J2EE's standard DataSource.getConnection. This
is recommended anyway, as it throws unchecked org.springframework.dao exceptions instead of checked
SQLExceptions. All framework classes like JdbcTemplate use this strategy implicitly. If not used with this
transaction manager, the lookup strategy behaves exactly like the common one - it can thus be used in any case.

The DataSourceTransactionManager class supports custom isolation levels, and timeouts that get applied as
appropriate JDBC statement query timeouts. To support the latter, application code must either use
JdbcTemplate or call DataSourceUtils.applyTransactionTimeout(..) method for each created statement.

This implementation can be used instead of JtaTransactionManager in the single resource case, as it does not
require the container to support JTA. Switching between both is just a matter of configuration, if you stick to
the required connection lookup pattern. Note that JTA does not support custom isolation levels!


11.3.8. NativeJdbcExtractor

There are times when we need to access vendor specific JDBC methods that differ from the standard JDBC
API. This can be problematic if we are running in an application server or with a DataSource that wraps the
Connection, Statement and ResultSet objects with its own wrapper objects. To gain access to the native
objects you can configure your JdbcTemplate or OracleLobHandler with a NativeJdbcExtractor.


                                              Spring Framework (2.5.6)                                            263
Data access using JDBC


The NativeJdbcExtractor comes in a variety of flavors to match your execution environment:


• SimpleNativeJdbcExtractor

• C3P0NativeJdbcExtractor

• CommonsDbcpNativeJdbcExtractor

• JBossNativeJdbcExtractor

• WebLogicNativeJdbcExtractor

• WebSphereNativeJdbcExtractor

• XAPoolNativeJdbcExtractor

Usually the SimpleNativeJdbcExtractor is sufficient for unwrapping a Connection object in most
environments. See the Java Docs for more details.


11.4. JDBC batch operations
Most JDBC drivers provide improved performance if you batch multiple calls to the same prepared statement.
By grouping updates into batches you limit the number of round trips to the database. This section will cover
batch processing using both the JdbcTemplate and the SimpleJdbcTemplate.


11.4.1. Batch operations with the JdbcTemplate

Using the JdbcTemplate batch processing is accomplished by implementing a special interface,
BatchPreparedStatementSetter, and passing that in as the second parameter in your batchUpdate method
call. This interface has two methods you must implement. One is named getBatchSize and here you provide
the size of the current batch. The other method is setValues and it allows you to set the values for the
parameters of the prepared statement and. This method will get called the number of times that you specified in
the getBatchSize call. Here is an example of this where we update the actor table based on entries in a list. The
entire list is used as the batch in his example.


 public class JdbcActorDao implements ActorDao {
     private JdbcTemplate jdbcTemplate;

      public void setDataSource(DataSource dataSource) {
          this.jdbcTemplate = new JdbcTemplate(dataSource);
      }

      public int[] batchUpdate(final List actors) {
          int[] updateCounts = jdbcTemplate.batchUpdate(
                  "update t_actor set first_name = ?, last_name = ? where id = ?",
                  new BatchPreparedStatementSetter() {
                      public void setValues(PreparedStatement ps, int i) throws SQLException {
                          ps.setString(1, ((Actor)actors.get(i)).getFirstName());
                          ps.setString(2, ((Actor)actors.get(i)).getLastName());
                          ps.setLong(3, ((Actor)actors.get(i)).getId().longValue());
                      }

                      public int getBatchSize() {
                          return actors.size();
                      }
                  } );
          return updateCounts;
      }



                                           Spring Framework (2.5.6)                                          264
Data access using JDBC



      //   ... additional methods
 }


If you are processing stream of updates or reading from a file then you might have a preferred batch size, but
the last batch might not have that number of entries. In this case you can use the
InterruptibleBatchPreparedStatementSetter interface which allows you to interrupt a batch once the input
source is exhausted. The isBatchExhausted method allows you to signal the end of the batch.


11.4.2. Batch operations with the SimpleJdbcTemplate

The SimpleJdbcTemplate provides an alternate way of providing the batch update. Instead of implementing a
special batch interface, you simply provide all parameter values in the call and the framework will loop over
these values and use an internal prepared statement setter. The API varies depending on whether you use named
parameters or not. For the named parameters you provide an array of SqlParameterSource, one entry for each
member of the batch. You can use the SqlParameterSource.createBatch method to create this array, passing
in either an array of JavaBeans or an array of Maps containing the parameter values.

This example shows a batch update using named parameters:


 public class JdbcActorDao implements ActorDao {
     private SimpleJdbcTemplate simpleJdbcTemplate;

      public void setDataSource(DataSource dataSource) {
          this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
      }

      public int[] batchUpdate(final List<Actor> actors) {
          SqlParameterSource[] batch = SqlParameterSourceUtils.createBatch(actors.toArray());
          int[] updateCounts = simpleJdbcTemplate.batchUpdate(
                  "update t_actor set first_name = :firstName, last_name = :lastName where id = :id",
                  batch);
          return updateCounts;
      }

      //   ... additional methods
 }


For an SQL statement using the classic "?" place holders you pass in a List containing an object array with the
update values. This object array must have one entry for each placeholder in the SQL statement and they must
be in the same order as they are defined in the SQL statement.

The same example using classic JDBC "?" place holders:


 public class JdbcActorDao implements ActorDao {
     private SimpleJdbcTemplate simpleJdbcTemplate;

      public void setDataSource(DataSource dataSource) {
          this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
      }

      public int[] batchUpdate(final List<Actor> actors) {
          List<Object[]> batch = new ArrayList<Object[]>();
          for (Actor actor : actors) {
              Object[] values = new Object[] {
                      actor.getFirstName(),
                      actor.getLastName(),
                      actor.getId()};
              batch.add(values);
          }
          int[] updateCounts = simpleJdbcTemplate.batchUpdate(
                  "update t_actor set first_name = ?, last_name = ? where id = ?",
                  batch);
          return updateCounts;



                                          Spring Framework (2.5.6)                                         265
Data access using JDBC



      }

      //   ... additional methods
 }


All batch update methods return an int array containing the number of affected rows for each batch entry. This
count is reported by the JDBC driver and it's not always available in which case the JDBC driver simply returns
a -2 value.


11.5. Simplifying JDBC operations with the SimpleJdbc
classes
The SimpleJdbcInsert and SimpleJdbcCall classes provide simplified configuration by taking advantage of
database metadata that can be retrieved via the JDBC driver. This means there is less to configure up front,
although you can override or turn off the metadata processing if you prefer to provide all the details in your
code.


11.5.1. Inserting data using SimpleJdbcInsert

Let's start by looking at the SimpleJdbcInsert class first. We will use the minimal amount of configuration
options to start with. The SimpleJdbcInsert should be instantiated in the data access layer's initialization
method. For this example, the initializing method is the setDataSource method. There is no need to subclass
the SimpleJdbcInsert class, just create a new instance and set the table name using the withTableName
method. Configuration methods for this class follows the "fluid" style returning the instance of the
SimpleJdbcInsert which allows you to chain all configuration methods. In this case there is only one
configuration method used but we will see examples of multiple ones soon.

 public class JdbcActorDao implements ActorDao {
     private SimpleJdbcTemplate simpleJdbcTemplate;
     private SimpleJdbcInsert insertActor;

      public void setDataSource(DataSource dataSource) {
          this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
          this.insertActor =
                  new SimpleJdbcInsert(dataSource).withTableName("t_actor");
      }

      public void add(Actor actor) {
          Map<String, Object> parameters = new HashMap<String, Object>(3);
          parameters.put("id", actor.getId());
          parameters.put("first_name", actor.getFirstName());
          parameters.put("last_name", actor.getLastName());
          insertActor.execute(parameters);
      }

      //   ... additional methods
 }



The execute method used here takes a plain java.utils.Map as its only parameter. The important thing to note
here is that the keys used for the Map must match the column names of the table as defined in the database.
This is because we read the metadata in order to construct the actual insert statement.


11.5.2. Retrieving auto-generated keys using SimpleJdbcInsert

Next we'll look at the same insert, but instead of passing in the id we will retrieve the auto-generated key and
set it on the new Actor object. When we create the SimpleJdbcInsert, in addition to specifying the table name,


                                          Spring Framework (2.5.6)                                          266
Data access using JDBC

we specify the name of the generated key column using the usingGeneratedKeyColumns method.


 public class JdbcActorDao implements ActorDao {
     private SimpleJdbcTemplate simpleJdbcTemplate;
     private SimpleJdbcInsert insertActor;

      public void setDataSource(DataSource dataSource) {
          this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
          this.insertActor =
                  new SimpleJdbcInsert(dataSource)
                          .withTableName("t_actor")
                          .usingGeneratedKeyColumns("id");
      }

      public void add(Actor actor) {
          Map<String, Object> parameters = new HashMap<String, Object>(2);
          parameters.put("first_name", actor.getFirstName());
          parameters.put("last_name", actor.getLastName());
          Number newId = insertActor.executeAndReturnKey(parameters);
          actor.setId(newId.longValue());
      }

      //   ... additional methods
 }


Here we can see the main difference when executing the insert is that we don't add the id to the Map and we
call the executeReturningKey method. This returns a java.lang.Number object that we can use to create an
instance of the numerical type that is used in our domain class. It's important to note that we can't rely on all
databases to return a specific Java class here, java.lang.Number is the base class that we can rely on. If you
have multiple auto-generated columns or the generated values are non-numeric then you can use a KeyHolder
that is returned from the executeReturningKeyHolder method.


11.5.3. Specifying the columns to use for a SimpleJdbcInsert

It's possible to limit the columns used for the insert by specifying a list of column names to be used. This is
accomplished using the usingColumns method.


 public class JdbcActorDao implements ActorDao {
     private SimpleJdbcTemplate simpleJdbcTemplate;
     private SimpleJdbcInsert insertActor;

      public void setDataSource(DataSource dataSource) {
          this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
          this.insertActor =
                  new SimpleJdbcInsert(dataSource)
                          .withTableName("t_actor")
                          .usingColumns("first_name", "last_name")
                          .usingGeneratedKeyColumns("id");
      }

      public void add(Actor actor) {
          Map<String, Object> parameters = new HashMap<String, Object>(2);
          parameters.put("first_name", actor.getFirstName());
          parameters.put("last_name", actor.getLastName());
          Number newId = insertActor.executeAndReturnKey(parameters);
          actor.setId(newId.longValue());
      }

      //   ... additional methods
 }


The execution of the insert is the same as if we had relied on the metadata for determining what columns to use.


11.5.4. Using SqlParameterSource to provide parameter values

Using a Map to provide parameter values works fine, but it's not the most convenient class to use. Spring

                                           Spring Framework (2.5.6)                                          267
Data access using JDBC


provides a couple of implementations of the SqlParameterSource interface that can be used instead. The first
one we'll look at is BeanPropertySqlParameterSource which is a very convenient class as long as you have a
JavaBean compliant class that contains your values. It will use the corresponding getter method to extract the
parameter values. Here is an example:


 public class JdbcActorDao implements ActorDao {
     private SimpleJdbcTemplate simpleJdbcTemplate;
     private SimpleJdbcInsert insertActor;

      public void setDataSource(DataSource dataSource) {
          this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
          this.insertActor =
                  new SimpleJdbcInsert(dataSource)
                          .withTableName("t_actor")
                          .usingGeneratedKeyColumns("id");
      }

      public void add(Actor actor) {
          SqlParameterSource parameters = new BeanPropertySqlParameterSource(actor);
          Number newId = insertActor.executeAndReturnKey(parameters);
          actor.setId(newId.longValue());
      }

      //   ... additional methods
 }


Another option is the MapSqlParameterSource that resembles a Map but provides a more convenient addValue
method that can be chained.


 public class JdbcActorDao implements ActorDao {
     private SimpleJdbcTemplate simpleJdbcTemplate;
     private SimpleJdbcInsert insertActor;

      public void setDataSource(DataSource dataSource) {
          this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
          this.insertActor =
                  new SimpleJdbcInsert(dataSource)
                          .withTableName("t_actor")
                          .usingGeneratedKeyColumns("id");
      }

      public void add(Actor actor) {
          SqlParameterSource parameters = new MapSqlParameterSource()
                  .addValue("first_name", actor.getFirstName())
                  .addValue("last_name", actor.getLastName());
          Number newId = insertActor.executeAndReturnKey(parameters);
          actor.setId(newId.longValue());
      }

      //   ... additional methods
 }


As you can see, the configuration is the same, it;s just the executing code that has to change to use these
alternative input classes.


11.5.5. Calling a stored procedure using SimpleJdbcCall

Let's now turn our attention to calling stored procedures using the SimpleJdbcCall class. This class is designed
to make it as simple as possible to call a stored procedure. It takes advantage of metadata present in the
database to look up names of in and out parameters. This means that you don't have to explicitly declare
parameters. You can of course still declare them if you prefer to do that or if you have parameters that don't
have an automatic mapping to a Java class like ARRAY or STRUCT parameters. In our first example we will
look at a plain vanilla procedure that only returns scalar values in form of VARCHAR and DATE. I have added
a birthDate property to the Actor class to get some variety in terms of return values. The example procedure


                                          Spring Framework (2.5.6)                                          268
Data access using JDBC

reads a specified actor entry and returns first_name, last_name, and birth_date columns in the form of out
parameters. Here is the source for the procedure as it would look when using MySQL as the database:


 CREATE PROCEDURE read_actor (
   IN in_id INTEGER,
   OUT out_first_name VARCHAR(100),
   OUT out_last_name VARCHAR(100),
   OUT out_birth_date DATE)
 BEGIN
   SELECT first_name, last_name, birth_date
   INTO out_first_name, out_last_name, out_birth_date
   FROM t_actor where id = in_id;
 END;


As you can see there are four parameters. One is an in parameter "in_id" containing the id of the Actor we are
looking up. The remaining parameters are out parameters and they will be used to return the data read from the
table.

The SimpleJdbcCall is declared in a similar manner to the SimpleJdbcInsert, no need to subclass and we
declare it in the initialization method. For this example, all we need to specify is the name of the procedure.


 public class JdbcActorDao implements ActorDao {
     private SimpleJdbcTemplate simpleJdbcTemplate;
     private SimpleJdbcCall procReadActor;

      public void setDataSource(DataSource dataSource) {
          this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
          this.procReadActor =
                  new SimpleJdbcCall(dataSource)
                          .withProcedureName("read_actor");
      }

      public Actor readActor(Long id) {
          SqlParameterSource in = new MapSqlParameterSource()
                  .addValue("in_id", id);
          Map out = procReadActor.execute(in);
          Actor actor = new Actor();
          actor.setId(id);
          actor.setFirstName((String) out.get("out_first_name"));
          actor.setLastName((String) out.get("out_last_name"));
          actor.setBirthDate((Date) out.get("out_birth_date"));
          return actor;
      }

      //   ... additional methods
 }


The execution of the call involves creating an SqlParameterSource containing the in parameter. It's important
to match the name of the parameter declared in the stored procedure. The case doesn't have to match since we
use metadata to determine how database objects should be referred to - what you specify in your source for the
stored procedure is not necessarily the way it is stored in the database, some databases transform names to all
upper case while others use lower case or the case as specified.

The execute method takes the in parameters and returns a Map containing any out parameters keyed by the
name as specified in the stored procedure. In this case they are out_first_name, out_last_name and
out_birth_date.

The last part of the execute method just creates an Actor instance to use to return the data retrieved. Again, it's
important to match the names of the out parameters here. Also, the case used for the names of the out
parameters stored in the results map are as they were defined in the database. You will either have to do a
case-insensitive lookup or instruct Spring to use a CaseInsensitiveMap from the Jakarta Commons project.
The way you do that is by creating your own JdbcTemplate and setting the setResultsMapCaseInsensitive
property to true. Then you pass this customized JdbcTemplate instance into the constructor of your
SimpleJdbcCall. You also have to include the commons-collections.jar on your classpath for this to work.



                                            Spring Framework (2.5.6)                                           269
Data access using JDBC

Here is an example of this configuration:


 public class JdbcActorDao implements ActorDao {
     private SimpleJdbcCall procReadActor;

      public void setDataSource(DataSource dataSource) {
          JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
          jdbcTemplate.setResultsMapCaseInsensitive(true);
          this.procReadActor =
                  new SimpleJdbcCall(jdbcTemplate)
                          .withProcedureName("read_actor");
      }


      //   ... additional methods
 }


By doing this, you don't have to worry about the case used for the names of your returned out parameters.


11.5.6. Declaring parameters to use for a SimpleJdbcCall

We have seen how the parameters are deduced based on metadata, but you can declare then explicitly if you
wish. This is done when the SimpleJdbcCall is created and configured using the declareParameters method
that takes a variable number of SqlParameter objects as input. See the next section for details on how to define
an SqlParameter.

We can opt to declare one, some or all of the parameters explicitly. The parameter metadata is still being used.
By calling the method withoutProcedureColumnMetaDataAccess we can specify that we would like to bypass
any processing of the metadata lookups for potential parameters and only use the declared ones. Another
situation that can arise is that one or more in parameters have default values and we would like to leave them
out of the call. To do that we will just call the useInParameterNames to specify the list of in parameter names
to include.

This is what a fully declared procedure call declaration of our earlier example would look like:


 public class JdbcActorDao implements ActorDao {
     private SimpleJdbcCall procReadActor;

      public void setDataSource(DataSource dataSource) {
          JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
          jdbcTemplate.setResultsMapCaseInsensitive(true);
          this.procReadActor =
                  new SimpleJdbcCall(jdbcTemplate)
                          .withProcedureName("read_actor")
                          .withoutProcedureColumnMetaDataAccess()
                          .useInParameterNames("in_id")
                          .declareParameters(
                                  new SqlParameter("in_id", Types.NUMERIC),
                                  new SqlOutParameter("out_first_name", Types.VARCHAR),
                                  new SqlOutParameter("out_last_name", Types.VARCHAR),
                                  new SqlOutParameter("out_birth_date", Types.DATE)
                          );
      }


      //   ... additional methods
 }


The execution and end results are the same, we are just specifying all the details explicitly rather than relying
on metadata. This will be necessary if the database we use is not part of the supported databases. Currently we
support metadata lookup of stored procedure calls for the following databases: Apache Derby, DB2, MySQL,
Microsoft SQL Server, Oracle and Sybase. We also support metadata lookup of stored functions for: MySQL,
Microsoft SQL Server and Oracle.



                                            Spring Framework (2.5.6)                                         270
Data access using JDBC


11.5.7. How to define SqlParameters

To define a parameter to be used for the SimpleJdbc classes, and also for the RDBMS operations classes
covered in the following section, you use an SqlParameter or one of its subclasses. You typically specify the
parameter name and SQL type in the constructor. The SQL type is specified using the java.sql.Types
constants. We have already seen declarations like:


     new SqlParameter("in_id", Types.NUMERIC),
     new SqlOutParameter("out_first_name", Types.VARCHAR),



The first line with the SqlParameter declares an in parameter. In parameters can be used for both stored
procedure calls and for queries using the SqlQuery and its subclasses covered in the following section.

The second line with the SqlOutParameter declares an out parameter to be used in a stored procedure call.
There is also an SqlInOutParameter for inout parameters, parameters that provide an in value to the procedure
and that also return a value

            Note
            Only parameters declared as SqlParameter and SqlInOutParameter will be used to provide input
            values. This is different from the StoredProcedure class which for backwards compatibility
            reasons allows input values to be provided for parameters declared as SqlOutParameter.


In addition to the name and the SQL type you can specify additional options. For in parameters you can specify
a scale for numeric data or a type name for custom database types. For out parameters you can provide a
RowMapper to handle mapping of rows returned from a REF cursor. Another option is to specify an
SqlReturnType that provides and opportunity to define customized handling of the return values.



11.5.8. Calling a stored function using SimpleJdbcCall

Calling a stored function is done almost exactly the same way as calling a stored procedure. The only
difference is that you need to provide a function name rather than a procedure name. This is done by using the
withFunctionName method. Using this method indicates that your call is to a function and the corresponding
call string for a function call will be generated. There is also a specialized execute call executeFunction that
will return the function return value as an object of a specified type. This way you don't have to retrieve the
return value from the results map. A similar convenience method named executeObject is also available for
stored procedures that only have one out parameter. The following example is based on a stored function
named get_actor_name that returns an actor's full name. Here is the MySQL source for this function:


 CREATE FUNCTION get_actor_name (in_id INTEGER)
 RETURNS VARCHAR(200) READS SQL DATA
 BEGIN
   DECLARE out_name VARCHAR(200);
   SELECT concat(first_name, ' ', last_name)
      INTO out_name
      FROM t_actor where id = in_id;
   RETURN out_name;
 END;



To call this function we again create a SimpleJdbcCall in the initialization method.


 public class JdbcActorDao implements ActorDao {
     private SimpleJdbcTemplate simpleJdbcTemplate;


                                           Spring Framework (2.5.6)                                         271
Data access using JDBC



      private SimpleJdbcCall funcGetActorName;

      public void setDataSource(DataSource dataSource) {
          this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
          JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
          jdbcTemplate.setResultsMapCaseInsensitive(true);
          this.funcGetActorName =
                  new SimpleJdbcCall(jdbcTemplate)
                          .withFunctionName("get_actor_name");
      }

      public String getActorName(Long id) {
          SqlParameterSource in = new MapSqlParameterSource()
                  .addValue("in_id", id);
          String name = funcGetActorName.executeFunction(String.class, in);
          return name;
      }

      //   ... additional methods
 }


The execute method used returns a String containing the return value from the function call.


11.5.9. Returning ResultSet/REF Cursor from a SimpleJdbcCall

Calling a stored procedure or function that returns a result set has always been a bit tricky. Some databases
return result sets during the JDBC results processing while others require an explicitly registered out parameter
of a specific type. Both approaches still needs some additional processing to loop over the result set and process
the returned rows. With the SimpleJdbcCall you use the returningResultSet method and declare a
RowMapper implementation to be used for a specific parameter. In the case where the result set is returned
during the results processing, there are no names defined, so the returned results will have to match the order
you declare the RowMapper implementations. The name specified will still be used to store the processed list of
results in the results map returned from the execute statement.

For this example we will use a stored procedure that takes no in parameters and returns all rows from the
t_actor table. Here is the MySQL source for this procedure:


 CREATE PROCEDURE read_all_actors()
 BEGIN
  SELECT a.id, a.first_name, a.last_name, a.birth_date FROM t_actor a;
 END;


In order to call this procedure we need to declare the RowMapper to be used. Since the class we want to map to
follows the JavaBean rules, we can use a ParameterizedBeanPropertyRowMapper that is created by passing in
the required class to map to in the newInstance method.


 public class JdbcActorDao implements ActorDao {
     private SimpleJdbcTemplate simpleJdbcTemplate;
     private SimpleJdbcCall procReadAllActors;

      public void setDataSource(DataSource dataSource) {
          this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
          JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
          jdbcTemplate.setResultsMapCaseInsensitive(true);
          this.procReadAllActors =
                  new SimpleJdbcCall(jdbcTemplate)
                          .withProcedureName("read_all_actors")
                          .returningResultSet("actors",
                                  ParameterizedBeanPropertyRowMapper.newInstance(Actor.class));
      }

      public List getActorsList() {
          Map m = procReadAllActors.execute(new HashMap<String, Object>(0));
          return (List) m.get("actors");


                                           Spring Framework (2.5.6)                                           272
Data access using JDBC



      }

      //   ... additional methods
 }


The execute call passes in an empty Map since this call doesn't take any parameters. The list of Actors is then
retrieved from the results map and returned to the caller.


11.6. Modeling JDBC operations as Java objects
The org.springframework.jdbc.object package contains classes that allow one to access the database in a
more object-oriented manner. By way of an example, one can execute queries and get the results back as a list
containing business objects with the relational column data mapped to the properties of the business object.
One can also execute stored procedures and run update, delete and insert statements.

            Note
            There is a view borne from experience acquired in the field amongst some of the Spring developers
            that the various RDBMS operation classes described below (with the exception of the
            StoredProcedure class) can often be replaced with straight JdbcTemplate calls... often it is simpler
            to use and plain easier to read a DAO method that simply calls a method on a JdbcTemplate direct
            (as opposed to encapsulating a query as a full-blown class).

            It must be stressed however that this is just a view... if you feel that you are getting measurable
            value from using the RDBMS operation classes, feel free to continue using these classes.



11.6.1. SqlQuery

SqlQuery   is a reusable, threadsafe class that encapsulates an SQL query. Subclasses must implement the
newRowMapper(..) method to provide a RowMapper instance that can create one object per row obtained from
iterating over the ResultSet that is created during the execution of the query. The SqlQuery class is rarely used
directly since the MappingSqlQuery subclass provides a much more convenient implementation for mapping
rows to Java classes. Other implementations that extend SqlQuery are MappingSqlQueryWithParameters and
UpdatableSqlQuery.



11.6.2. MappingSqlQuery

MappingSqlQuery   is a reusable query in which concrete subclasses must implement the abstract mapRow(..)
method to convert each row of the supplied ResultSet into an object. Find below a brief example of a custom
query that maps the data from the customer relation to an instance of the Customer class.

 private class CustomerMappingQuery extends MappingSqlQuery {

      public CustomerMappingQuery(DataSource ds) {
          super(ds, "SELECT id, name FROM customer WHERE id = ?");
          super.declareParameter(new SqlParameter("id", Types.INTEGER));
          compile();
      }

      public Object mapRow(ResultSet rs, int rowNumber) throws SQLException {
          Customer cust = new Customer();
          cust.setId((Integer) rs.getObject("id"));
          cust.setName(rs.getString("name"));
          return cust;
      }


                                           Spring Framework (2.5.6)                                          273
Data access using JDBC


 }



We provide a constructor for this customer query that takes the DataSource as the only parameter. In this
constructor we call the constructor on the superclass with the DataSource and the SQL that should be executed
to retrieve the rows for this query. This SQL will be used to create a PreparedStatement so it may contain
place holders for any parameters to be passed in during execution. Each parameter must be declared using the
declareParameter method passing in an SqlParameter. The SqlParameter takes a name and the JDBC type as
defined in java.sql.Types. After all parameters have been defined we call the compile() method so the
statement can be prepared and later be executed.

 public Customer getCustomer(Integer id) {
     CustomerMappingQuery custQry = new CustomerMappingQuery(dataSource);
     Object[] parms = new Object[1];
     parms[0] = id;
     List customers = custQry.execute(parms);
     if (customers.size() > 0) {
         return (Customer) customers.get(0);
     }
     else {
         return null;
     }
 }



The method in this example retrieves the customer with the id that is passed in as the only parameter. After
creating an instance of the CustomerMappingQuery class we create an array of objects that will contain all
parameters that are passed in. In this case there is only one parameter and it is passed in as an Integer. Now we
are ready to execute the query using this array of parameters and we get a List that contains a Customer object
for each row that was returned for our query. In this case it will only be one entry if there was a match.


11.6.3. SqlUpdate

The SqlUpdate class encapsulates an SQL update. Like a query, an update object is reusable, and like all
RdbmsOperation classes, an update can have parameters and is defined in SQL. This class provides a number of
update(..) methods analogous to the execute(..) methods of query objects. This class is concrete. Although
it can be subclassed (for example to add a custom update method) it can easily be parameterized by setting SQL
and declaring parameters.

 import java.sql.Types;

 import javax.sql.DataSource;

 import org.springframework.jdbc.core.SqlParameter;
 import org.springframework.jdbc.object.SqlUpdate;

 public class UpdateCreditRating extends SqlUpdate {

      public UpdateCreditRating(DataSource ds) {
          setDataSource(ds);
          setSql("update customer set credit_rating = ? where id = ?");
          declareParameter(new SqlParameter(Types.NUMERIC));
          declareParameter(new SqlParameter(Types.NUMERIC));
          compile();
      }

      /**
       * @param id for the Customer to be updated
       * @param rating the new value for credit rating
       * @return number of rows updated
       */
      public int run(int id, int rating) {
          Object[] params =
              new Object[] {
                  new Integer(rating),
                  new Integer(id)};


                                           Spring Framework (2.5.6)                                          274
Data access using JDBC

           return update(params);
      }
 }




11.6.4. StoredProcedure

The StoredProcedure class is a superclass for object abstractions of RDBMS stored procedures. This class is
abstract, and its various execute(..) methods have protected access, preventing use other than through a
subclass that offers tighter typing.

The inherited sql property will be the name of the stored procedure in the RDBMS.

To define a parameter to be used for the StoredProcedure classe, you use an SqlParameter or one of its
subclasses. You must specify the parameter name and SQL type in the constructor. The SQL type is specified
using the java.sql.Types constants. We have already seen declarations like:


     new SqlParameter("in_id", Types.NUMERIC),
     new SqlOutParameter("out_first_name", Types.VARCHAR),



The first line with the SqlParameter declares an in parameter. In parameters can be used for both stored
procedure calls and for queries using the SqlQuery and its subclasses covered in the following section.

The second line with the SqlOutParameter declares an out parameter to be used in the stored procedure call.
There is also an SqlInOutParameter for inout parameters, parameters that provide an in value to the procedure
and that also return a value


            Note
            Parameters declared as SqlParameter and SqlInOutParameter will always be used to provide
            input values. In addition to this any parameter declared as SqlOutParameter where an non-null
            input value is provided will also be used as an input paraneter.


In addition to the name and the SQL type you can specify additional options. For in parameters you can specify
a scale for numeric data or a type name for custom database types. For out parameters you can provide a
RowMapper to handle mapping of rows returned from a REF cursor. Another option is to specify an
SqlReturnType that provides and opportunity to define customized handling of the return values.

Here is an example of a program that calls a function, sysdate(), that comes with any Oracle database. To use
the stored procedure functionality one has to create a class that extends StoredProcedure. There are no input
parameters, but there is an output parameter that is declared as a date type using the class SqlOutParameter.
The execute() method returns a map with an entry for each declared output parameter using the parameter
name as the key.

 import   java.sql.Types;
 import   java.util.HashMap;
 import   java.util.Iterator;
 import   java.util.Map;

 import javax.sql.DataSource;

 import org.springframework.jdbc.core.SqlOutParameter;
 import org.springframework.jdbc.datasource.*;
 import org.springframework.jdbc.object.StoredProcedure;

 public class TestStoredProcedure {



                                          Spring Framework (2.5.6)                                        275
Data access using JDBC


     public static void main(String[] args) {
         TestStoredProcedure t = new TestStoredProcedure();
         t.test();
         System.out.println("Done!");
     }

     void test() {
         DriverManagerDataSource ds = new DriverManagerDataSource();
         ds.setDriverClassName("oracle.jdbc.OracleDriver");
         ds.setUrl("jdbc:oracle:thin:@localhost:1521:mydb");
         ds.setUsername("scott");
         ds.setPassword("tiger");

         MyStoredProcedure sproc = new MyStoredProcedure(ds);
         Map results = sproc.execute();
         printMap(results);
     }

     private class MyStoredProcedure extends StoredProcedure {

         private static final String SQL = "sysdate";

         public MyStoredProcedure(DataSource ds) {
             setDataSource(ds);
             setFunction(true);
             setSql(SQL);
             declareParameter(new SqlOutParameter("date", Types.DATE));
             compile();
         }

         public Map execute() {
             // the 'sysdate' sproc has no input parameters, so an empty Map is supplied...
             return execute(new HashMap());
         }
     }

     private static void printMap(Map results) {
         for (Iterator it = results.entrySet().iterator(); it.hasNext(); ) {
             System.out.println(it.next());
         }
     }
 }



Find below an example of a StoredProcedure that has two output parameters (in this case Oracle REF
cursors).

 import oracle.jdbc.driver.OracleTypes;
 import org.springframework.jdbc.core.SqlOutParameter;
 import org.springframework.jdbc.object.StoredProcedure;

 import javax.sql.DataSource;
 import java.util.HashMap;
 import java.util.Map;

 public class TitlesAndGenresStoredProcedure extends StoredProcedure {

     private static final String SPROC_NAME = "AllTitlesAndGenres";

     public TitlesAndGenresStoredProcedure(DataSource dataSource) {
         super(dataSource, SPROC_NAME);
         declareParameter(new SqlOutParameter("titles", OracleTypes.CURSOR, new TitleMapper()));
         declareParameter(new SqlOutParameter("genres", OracleTypes.CURSOR, new GenreMapper()));
         compile();
     }

     public Map execute() {
         // again, this sproc has no input parameters, so an empty Map is supplied...
         return super.execute(new HashMap());
     }
 }



Notice how the overloaded variants of the declareParameter(..) method that have been used in the
TitlesAndGenresStoredProcedure constructor are passed RowMapper implementation instances; this is a very


                                       Spring Framework (2.5.6)                                     276
Data access using JDBC

convenient and powerful way to reuse existing functionality. (The code for the two RowMapper implementations
is provided below in the interest of completeness.)

Firstly the TitleMapper class, which simply maps a ResultSet to a Title domain object for each row in the
supplied ResultSet.

 import com.foo.sprocs.domain.Title;
 import org.springframework.jdbc.core.RowMapper;

 import java.sql.ResultSet;
 import java.sql.SQLException;

 public final class TitleMapper implements RowMapper {

      public Object mapRow(ResultSet rs, int rowNum) throws SQLException {
          Title title = new Title();
          title.setId(rs.getLong("id"));
          title.setName(rs.getString("name"));
          return title;
      }
 }



Secondly, the GenreMapper class, which again simply maps a ResultSet to a Genre domain object for each row
in the supplied ResultSet.

 import org.springframework.jdbc.core.RowMapper;

 import java.sql.ResultSet;
 import java.sql.SQLException;

 import com.foo.domain.Genre;

 public final class GenreMapper implements RowMapper {

      public Object mapRow(ResultSet rs, int rowNum) throws SQLException {
          return new Genre(rs.getString("name"));
      }
 }



If one needs to pass parameters to a stored procedure (that is the stored procedure has been declared as having
one or more input parameters in its definition in the RDBMS), one would code a strongly typed execute(..)
method which would delegate to the superclass' (untyped) execute(Map parameters) (which has protected
access); for example:

 import oracle.jdbc.driver.OracleTypes;
 import org.springframework.jdbc.core.SqlOutParameter;
 import org.springframework.jdbc.object.StoredProcedure;

 import javax.sql.DataSource;
 import java.util.HashMap;
 import java.util.Map;

 public class TitlesAfterDateStoredProcedure extends StoredProcedure {

      private static final String SPROC_NAME = "TitlesAfterDate";
      private static final String CUTOFF_DATE_PARAM = "cutoffDate";

      public TitlesAfterDateStoredProcedure(DataSource dataSource) {
          super(dataSource, SPROC_NAME);
          declareParameter(new SqlParameter(CUTOFF_DATE_PARAM, Types.DATE);
          declareParameter(new SqlOutParameter("titles", OracleTypes.CURSOR, new TitleMapper()));
          compile();
      }

      public Map execute(Date cutoffDate) {
          Map inputs = new HashMap();
          inputs.put(CUTOFF_DATE_PARAM, cutoffDate);
          return super.execute(inputs);
      }
 }



                                          Spring Framework (2.5.6)                                         277
Data access using JDBC


11.6.5. SqlFunction

The SqlFunction RDBMS operation class encapsulates an SQL "function" wrapper for a query that returns a
single row of results. The default behavior is to return an int, but that can be overridden by using the methods
with an extra return type parameter. This is similar to using the queryForXxx methods of the JdbcTemplate.
The advantage with SqlFunction is that you don't have to create the JdbcTemplate, it is done behind the
scenes.

This class is intended to use to call SQL functions that return a single result using a query like "select user()" or
"select sysdate from dual". It is not intended for calling more complex stored functions or for using a
CallableStatement to invoke a stored procedure or stored function. (Use the StoredProcedure or SqlCall
classes for this type of processing).

SqlFunction    is a concrete class, and there is typically no need to subclass it. Code using this package can
create an object of this type, declaring SQL and parameters, and then invoke the appropriate run method
repeatedly to execute the function. Here is an example of retrieving the count of rows from a table:

 public int countRows() {
     SqlFunction sf = new SqlFunction(dataSource, "select count(*) from mytable");
     sf.compile();
     return sf.run();
 }




11.7. Common issues with parameter and data value handling
There are some issues involving parameters and data values that are common across all the different approaches
provided by the Spring JDBC Framework.


11.7.1. Providing SQL type information for parameters

Most of the time Spring will assume the SQL type of the parameters based on the type of parameter passed in.
It is possible to explicitly provide the SQL type to be used when setting parameter values. This is sometimes
necessary to correctly set NULL values.

There are a few different ways this can be accomplished:


• Many of the update and query methods of the JdbcTemplate take an additional parameter in the form of an
  int array. This array should contain the SQL type using constant values from the java.sql.Types class.
  There must be one entry for each parameter.


• You can wrap the parameter value that needs this additional information using the SqlParameterValue class.
  Create a new instance for each value and pass in the SQL type and parameter value in the constructor. You
  can also provide an optional scale parameter for numeric values.


• For methods working with named parameters, you can use the SqlParameterSource classes
  BeanPropertySqlParameterSource or MapSqlParameterSource. They both have methods for registering the
  SQL type for any of the named parameter values.


11.7.2. Handling BLOB and CLOB objects


                                            Spring Framework (2.5.6)                                             278
Data access using JDBC


You can store images and other binary objects as well and large chunks of text. These large object are called
BLOB for binary data and CLOB for character data. Spring lets you handle these large objects using the
JdbcTemplate directly and also when using the higher abstractions provided by RDBMS Objects and the
SimpleJdbc classes. All of these approaches use an implementation of the LobHandler interface for the actual
management of the LOB data. The LobHandler provides access to a LobCreator, via the getLobCreator
method, for creating new LOB objects to be inserted.

The LobCreator/LobHandler provides the following support for LOB in- and output:



• BLOB

    • byte[] – getBlobAsBytes and setBlobAsBytes

    • InputStream – getBlobAsBinaryStream and setBlobAsBinaryStream


• CLOB

    • String – getClobAsString and setClobAsString

    • InputStream – getClobAsAsciiStream and setClobAsAsciiStream

    • Reader – getClobAsCharacterStream and setClobAsCharacterStream

We will now show an example of how to create and insert a BLOB. We will later see how to read it back from
the database.

This      example       uses     a      JdbcTemplate       and      an      implementation        of      the
AbstractLobCreatingPreparedStatementCallback. There is one method that must be implemented and it is
"setValues". In this method you will be provided with a LobCreator that can be used to set the values for the
LOB columns in your SQL insert statement.

We are assuming that we have a variable named 'lobHandler' that already is set to an instance of a
DefaultLobHandler. This is typically done using dependency injection.

 final File blobIn = new File("spring2004.jpg");
 final InputStream blobIs = new FileInputStream(blobIn);
 final File clobIn = new File("large.txt");
 final InputStream clobIs = new FileInputStream(clobIn);
 final InputStreamReader clobReader = new InputStreamReader(clobIs);
 jdbcTemplate.execute(
    "INSERT INTO lob_table (id, a_clob, a_blob) VALUES (?, ?, ?)",
    new AbstractLobCreatingPreparedStatementCallback(lobhandler) {                              ‚
        protected void setValues(PreparedStatement ps, LobCreator lobCreator)
            throws SQLException {
          ps.setLong(1, 1L);
          lobCreator.setClobAsCharacterStream(ps, 2, clobReader, (int)clobIn.length());         ƒ
          lobCreator.setBlobAsBinaryStream(ps, 3, blobIs, (int)blobIn.length());                „
        }
    }
 );
 blobIs.close();
 clobReader.close();



‚     Here we use the lobHandler that in this example is a plain DefaultLobHandler
ƒ     Using the method setClobAsCharacterStream we pass in the contents of the CLOB
„     Using the method setBlobAsBinartStream we pass in the contents of the BLOB

Now it's time to read the LOB data from the database. Again, we use a JdbcTempate and we have the same


                                         Spring Framework (2.5.6)                                        279
Data access using JDBC


instance variable 'lobHandler' with a reference to a DefaultLobHandler.


 List l = jdbcTemplate.query("select id, a_clob, a_blob from lob_table",
     new RowMapper() {
       public Object mapRow(ResultSet rs, int i) throws SQLException {
         Map results = new HashMap();
         String clobText = lobHandler.getClobAsString(rs, "a_clob");                              ‚
         results.put("CLOB", clobText);
         byte[] blobBytes = lobHandler.getBlobAsBytes(rs, "a_blob");                              ƒ
         results.put("BLOB", blobBytes);
         return results;
       }
     });



ƒ    Using the method getClobAsString we retrieve the contents of the CLOB
„    Using the method getBlobAsBytes we retrieve the contents of the BLOB


11.7.3. Passing in lists of values for IN clause

The SQL standard allows for selecting rows based on an expression that includes a variable list of values. A
typical example would be "select * from T_ACTOR where id in (1, 2, 3)". This variable list is not directly
supported for prepared statements by the JDBC standard - there is no way of declaring a variable number of
place holders. You would have to either have a number of variations with the desired number of place holders
prepared or you would have to dynamically generate the SQL string once you know how many place holders
are required. The named parameter support provided in the NamedParameterJdbcTemplate and
SimpleJdbcTemplate takes the latter approach. When you pass in the values you should pass them in as a
java.util.List of primitive objects. This list will be used to insert the required place holders and pass in the
values during the statement execution.

            Note
            You need to be careful when passing in a large number of values. The JDBC standard doesn't
            guarantee that you can use more than 100 values for an IN expression list. Various databases
            exceed this number, but they usually have a hard limit for how many values are allowed. Oracle's
            limit for instance is 1000.


In addition to the primitive values in the value list, you can create a java.util.List of object arrays. This
would support a case where there are multiple expressions defined for the IN clause like "select * from
T_ACTOR where (id, last_name) in ((1, 'Johnson'), (2, 'Harrop'))". This of course requires that your database
supports this syntax.


11.7.4. Handling complex types for stored procedure calls

When calling stored procedures it's sometimes possible to use complex types specific to the database. To
accommodate these types Spring provides a SqlReturnType for handling them when they are returned from the
stored procedure call and SqlTypeValue when they are passed in as a parameter to the stored procedure.

Here is an example of returning the value of an Oracle STRUCT object of the user declared type
"ITEM_TYPE". The SqlReturnType interface has a single method named "getTypeValue" that must be
implemented. This interface is used as part of the declaration of an SqlOutParameter.


 declareParameter(new SqlOutParameter("item", OracleTypes.STRUCT, "ITEM_TYPE",
     new SqlReturnType() {
       public Object getTypeValue(CallableStatement cs, int colIndx, int sqlType, String typeName)


                                          Spring Framework (2.5.6)                                          280
Data access using JDBC



              throws SQLException {
            STRUCT struct = (STRUCT)cs.getObject(colIndx);
            Object[] attr = struct.getAttributes();
            TestItem item = new TestItem();
            item.setId(((Number) attr[0]).longValue());
            item.setDescription((String)attr[1]);
            item.setExpirationDate((java.util.Date)attr[2]);
            return item;
       }
     }));


Going from Java to the database and passing in the value of a TestItem into a stored procedure is done using
the SqlTypeValue. The SqlTypeValue interface has a single method named "createTypeValue" that must be
implemented. The active connection is passed in and can be used to create database specific objects like
StructDescriptors or ArrayDescriptors


 SqlTypeValue value = new AbstractSqlTypeValue() {
    protected Object createTypeValue(Connection conn, int sqlType, String typeName) throws SQLException {
      StructDescriptor itemDescriptor = new StructDescriptor(typeName, conn);
      Struct item = new STRUCT(itemDescriptor, conn,
          new Object[] {
              testItem.getId(),
              testItem.getDescription(),
              new java.sql.Date(testItem.getExpirationDate().getTime())
          });
      return item;
    }
 };


This SqlTypeValue can now be added to the Map containing the input parameters for the execute call of the
stored procedure.




                                         Spring Framework (2.5.6)                                       281
Chapter 12. Object Relational Mapping (ORM) data
access

12.1. Introduction
The Spring Framework provides integration with Hibernate, JDO, Oracle TopLink, iBATIS SQL Maps and
JPA: in terms of resource management, DAO implementation support, and transaction strategies. For example
for Hibernate, there is first-class support with lots of IoC convenience features, addressing many typical
Hibernate integration issues. All of these support packages for O/R (Object Relational) mappers comply with
Spring's generic transaction and DAO exception hierarchies. There are usually two integration styles: either
using Spring's DAO 'templates' or coding DAOs against plain Hibernate/JDO/TopLink/etc APIs. In both cases,
DAOs can be configured through Dependency Injection and participate in Spring's resource and transaction
management.

Spring adds significant support when using the O/R mapping layer of your choice to create data access
applications. First of all, you should know that once you started using Spring's support for O/R mapping, you
don't have to go all the way. No matter to what extent, you're invited to review and leverage the Spring
approach, before deciding to take the effort and risk of building a similar infrastructure in-house. Much of the
O/R mapping support, no matter what technology you're using may be used in a library style, as everything is
designed as a set of reusable JavaBeans. Usage inside a Spring IoC container does provide additional benefits
in terms of ease of configuration and deployment; as such, most examples in this section show configuration
inside a Spring container.

Some of the benefits of using the Spring Framework to create your ORM DAOs include:


• Ease of testing. Spring's IoC approach makes it easy to swap the implementations and config locations of
  Hibernate SessionFactory instances, JDBC DataSource instances, transaction managers, and mappes object
  implementations (if needed). This makes it much easier to isolate and test each piece of persistence-related
  code in isolation.

• Common data access exceptions. Spring can wrap exceptions from your O/R mapping tool of choice,
  converting them from proprietary (potentially checked) exceptions to a common runtime
  DataAccessException hierarchy. This allows you to handle most persistence exceptions, which are
  non-recoverable, only in the appropriate layers, without annoying boilerplate catches/throws, and exception
  declarations. You can still trap and handle exceptions anywhere you need to. Remember that JDBC
  exceptions (including DB specific dialects) are also converted to the same hierarchy, meaning that you can
  perform some operations with JDBC within a consistent programming model.

• General resource management. Spring application contexts can handle the location and configuration of
  Hibernate SessionFactory instances, JDBC DataSource instances, iBATIS SQL Maps configuration
  objects, and other related resources. This makes these values easy to manage and change. Spring offers
  efficient, easy and safe handling of persistence resources. For example: related code using Hibernate
  generally needs to use the same Hibernate Session for efficiency and proper transaction handling. Spring
  makes it easy to transparently create and bind a Session to the current thread, either by using an explicit
  'template' wrapper class at the Java code level or by exposing a current Session through the Hibernate
  SessionFactory (for DAOs based on plain Hibernate API). Thus Spring solves many of the issues that
  repeatedly arise from typical Hibernate usage, for any transaction environment (local or JTA).

• Integrated transaction management. Spring allows you to wrap your O/R mapping code with either a
  declarative, AOP style method interceptor, or an explicit 'template' wrapper class at the Java code level. In

                                          Spring Framework (2.5.6)                                          282
Object Relational Mapping (ORM) data access


  either case, transaction semantics are handled for you, and proper transaction handling (rollback, etc) in case
  of exceptions is taken care of. As discussed below, you also get the benefit of being able to use and swap
  various transaction managers, without your Hibernate/JDO related code being affected: for example, between
  local transactions and JTA, with the same full services (such as declarative transactions) available in both
  scenarios. As an additional benefit, JDBC-related code can fully integrate transactionally with the code you
  use to do O/R mapping. This is useful for data access that's not suitable for O/R mapping, such as batch
  processing or streaming of BLOBs, which still needs to share common transactions with ORM operations.

The PetClinic sample in the Spring distribution offers alternative DAO implementations and application
context configurations for JDBC, Hibernate, Oracle TopLink, and JPA. PetClinic can therefore serve as
working sample app that illustrates the use of Hibernate, TopLink and JPA in a Spring web application. It also
leverages declarative transaction demarcation with different transaction strategies.

The JPetStore sample illustrates the use of iBATIS SQL Maps in a Spring environment. It also features two
web tier versions: one based on Spring Web MVC, one based on Struts.

Beyond the samples shipped with Spring, there are a variety of Spring-based O/R mapping samples provided
by specific vendors: for example, the JDO implementations JPOX (http://www.jpox.org/) and Kodo
(http://www.bea.com/kodo/).


12.2. Hibernate
We will start with a coverage of Hibernate 3 in a Spring environment, using it to demonstrate the approach that
Spring takes towards integrating O/R mappers. This section will cover many issues in detail and show different
variations of DAO implementations and transaction demarcation. Most of these patterns can be directly
translated to all other supported ORM tools. The following sections in this chapter will then cover the other
ORM technologies, showing briefer examples there.

Note: As of Spring 2.5, Spring requires Hibernate 3.1 or higher. Neither Hibernate 2.1 nor Hibernate 3.0 are
supported anymore.


12.2.1. Resource management

Typical business applications are often cluttered with repetitive resource management code. Many projects try
to invent their own solutions for this issue, sometimes sacrificing proper handling of failures for programming
convenience. Spring advocates strikingly simple solutions for proper resource handling, namely IoC via
templating; for example infrastructure classes with callback interfaces, or applying AOP interceptors. The
infrastructure cares for proper resource handling, and for appropriate conversion of specific API exceptions to
an unchecked infrastructure exception hierarchy. Spring introduces a DAO exception hierarchy, applicable to
any data access strategy. For direct JDBC, the JdbcTemplate class mentioned in a previous section cares for
connection handling, and for proper conversion of SQLException to the DataAccessException hierarchy,
including translation of database-specific SQL error codes to meaningful exception classes. It supports both
JTA and JDBC transactions, via respective Spring transaction managers.

Spring also offers Hibernate and JDO support, consisting of a HibernateTemplate / JdoTemplate analogous to
JdbcTemplate, a HibernateInterceptor / JdoInterceptor, and a Hibernate / JDO transaction manager. The
major goal is to allow for clear application layering, with any data access and transaction technology, and for
loose coupling of application objects. No more business service dependencies on the data access or transaction
strategy, no more hard-coded resource lookups, no more hard-to-replace singletons, no more custom service
registries. One simple and consistent approach to wiring up application objects, keeping them as reusable and
free from container dependencies as possible. All the individual data access features are usable on their own but


                                           Spring Framework (2.5.6)                                          283
Object Relational Mapping (ORM) data access

integrate nicely with Spring's application context concept, providing XML-based configuration and
cross-referencing of plain JavaBean instances that don't need to be Spring-aware. In a typical Spring
application, many important objects are JavaBeans: data access templates, data access objects (that use the
templates), transaction managers, business services (that use the data access objects and transaction managers),
web view resolvers, web controllers (that use the business services),and so on.


12.2.2. SessionFactory setup in a Spring container

To avoid tying application objects to hard-coded resource lookups, Spring allows you to define resources such
as a JDBC DataSource or a Hibernate SessionFactory as beans in the Spring container. Application objects
that need to access resources just receive references to such pre-defined instances via bean references (the DAO
definition in the next section illustrates this). The following excerpt from an XML application context
definition shows how to set up a JDBC DataSource and a Hibernate SessionFactory on top of it:

 <beans>

    <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
      <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
      <property name="url" value="jdbc:hsqldb:hsql://localhost:9001"/>
      <property name="username" value="sa"/>
      <property name="password" value=""/>
    </bean>

    <bean id="mySessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
      <property name="dataSource" ref="myDataSource"/>
      <property name="mappingResources">
        <list>
          <value>product.hbm.xml</value>
        </list>
      </property>
      <property name="hibernateProperties">
        <value>
          hibernate.dialect=org.hibernate.dialect.HSQLDialect
        </value>
      </property>
    </bean>

 </beans>



Note that switching from a local Jakarta Commons DBCP BasicDataSource to a JNDI-located DataSource
(usually managed by an application server) is just a matter of configuration:

 <beans>

    <bean id="myDataSource" class="org.springframework.jndi.JndiObjectFactoryBean">
      <property name="jndiName" value="java:comp/env/jdbc/myds"/>
    </bean>

 </beans>



You can also access a JNDI-located SessionFactory, using Spring's JndiObjectFactoryBean to retrieve and
expose it. However, that is typically not common outside of an EJB context.


12.2.3. The HibernateTemplate

The basic programming model for templating looks as follows, for methods that can be part of any custom data
access object or business service. There are no restrictions on the implementation of the surrounding object at
all, it just needs to provide a Hibernate SessionFactory. It can get the latter from anywhere, but preferably as
bean reference from a Spring IoC container - via a simple setSessionFactory(..) bean property setter. The
following snippets show a DAO definition in a Spring container, referencing the above defined
SessionFactory, and an example for a DAO method implementation.



                                          Spring Framework (2.5.6)                                          284
Object Relational Mapping (ORM) data access


 <beans>

     <bean id="myProductDao" class="product.ProductDaoImpl">
       <property name="sessionFactory" ref="mySessionFactory"/>
     </bean>

 </beans>



 public class ProductDaoImpl implements ProductDao {

      private HibernateTemplate hibernateTemplate;

      public void setSessionFactory(SessionFactory sessionFactory) {
          this.hibernateTemplate = new HibernateTemplate(sessionFactory);
      }

      public Collection loadProductsByCategory(String category) throws DataAccessException {
              return this.hibernateTemplate.find("from test.Product product where product.category=?", category);
      }
 }



The HibernateTemplate class provides many methods that mirror the methods exposed on the Hibernate
Session interface, in addition to a number of convenience methods such as the one shown above. If you need
access to the Session to invoke methods that are not exposed on the HibernateTemplate, you can always drop
down to a callback-based approach like so.

 public class ProductDaoImpl implements ProductDao {

      private HibernateTemplate hibernateTemplate;

      public void setSessionFactory(SessionFactory sessionFactory) {
          this.hibernateTemplate = new HibernateTemplate(sessionFactory);
      }

      public Collection loadProductsByCategory(final String category) throws DataAccessException {
          return this.hibernateTemplate.execute(new HibernateCallback() {

                 public Object doInHibernate(Session session) {
                     Criteria criteria = session.createCriteria(Product.class);
                     criteria.add(Expression.eq("category", category));
                     criteria.setMaxResults(6);
                     return criteria.list();
                 }
            };
      }
 }



A callback implementation effectively can be used for any Hibernate data access. HibernateTemplate will
ensure that Session instances are properly opened and closed, and automatically participate in transactions.
The template instances are thread-safe and reusable, they can thus be kept as instance variables of the
surrounding class. For simple single step actions like a single find, load, saveOrUpdate, or delete call,
HibernateTemplate offers alternative convenience methods that can replace such one line callback
implementations. Furthermore, Spring provides a convenient HibernateDaoSupport base class that provides a
setSessionFactory(..) method for receiving a SessionFactory, and getSessionFactory() and
getHibernateTemplate()for use by subclasses. In combination, this allows for very simple DAO
implementations for typical requirements:

 public class ProductDaoImpl extends HibernateDaoSupport implements ProductDao {

      public Collection loadProductsByCategory(String category) throws DataAccessException {
          return this.getHibernateTemplate().find(
              "from test.Product product where product.category=?", category);
      }
 }




                                          Spring Framework (2.5.6)                                      285
Object Relational Mapping (ORM) data access


12.2.4. Implementing Spring-based DAOs without callbacks

As alternative to using Spring's HibernateTemplate to implement DAOs, data access code can also be written
in a more traditional fashion, without wrapping the Hibernate access code in a callback, while still respecting
and participating in Spring's generic DataAccessException hierarchy. The HibernateDaoSupport base class
offers methods to access the current transactional Session and to convert exceptions in such a scenario; similar
methods are also available as static helpers on the SessionFactoryUtils class. Note that such code will usually
pass 'false' as the value of the getSession(..) methods 'allowCreate' argument, to enforce running within a
transaction (which avoids the need to close the returned Session, as its lifecycle is managed by the transaction).

 public class HibernateProductDao extends HibernateDaoSupport implements ProductDao {

      public Collection loadProductsByCategory(String category) throws DataAccessException, MyException {
          Session session = getSession(false);
          try {
              Query query = session.createQuery("from test.Product product where product.category=?");
              query.setString(0, category);
              List result = query.list();
              if (result == null) {
                  throw new MyException("No search results.");
              }
              return result;
          }
          catch (HibernateException ex) {
              throw convertHibernateAccessException(ex);
          }
      }
 }



The advantage of such direct Hibernate access code is that it allows any checked application exception to be
thrown within the data access code; contrast this to the HibernateTemplate class which is restricted to
throwing only unchecked exceptions within the callback. Note that you can often defer the corresponding
checks and the throwing of application exceptions to after the callback, which still allows working with
HibernateTemplate. In general, the HibernateTemplate class' convenience methods are simpler and more
convenient for many scenarios.


12.2.5. Implementing DAOs based on plain Hibernate 3 API

Hibernate 3 provides a feature called "contextual Sessions", where Hibernate itself manages one current
Session per transaction. This is roughly equivalent to Spring's synchronization of one Hibernate Session per
transaction. A corresponding DAO implementation looks like as follows, based on the plain Hibernate API:

 public class ProductDaoImpl implements ProductDao {

      private SessionFactory sessionFactory;

      public void setSessionFactory(SessionFactory sessionFactory) {
          this.sessionFactory = sessionFactory;
      }

      public Collection loadProductsByCategory(String category) {
          return this.sessionFactory.getCurrentSession()
                  .createQuery("from test.Product product where product.category=?")
                  .setParameter(0, category)
                  .list();
      }
 }



This style is very similar to what you will find in the Hibernate reference documentation and examples, except
for holding the SessionFactory in an instance variable. We strongly recommend such an instance-based setup
over the old-school static HibernateUtil class from Hibernate's CaveatEmptor sample application. (In


                                           Spring Framework (2.5.6)                                           286
Object Relational Mapping (ORM) data access

general, do not keep any resources in static variables unless absolutely necessary.)

The above DAO follows the Dependency Injection pattern: it fits nicely into a Spring IoC container, just like it
would if coded against Spring's HibernateTemplate. Of course, such a DAO can also be set up in plain Java
(for example, in unit tests): simply instantiate it and call setSessionFactory(..) with the desired factory
reference. As a Spring bean definition, it would look as follows:

 <beans>

    <bean id="myProductDao" class="product.ProductDaoImpl">
      <property name="sessionFactory" ref="mySessionFactory"/>
    </bean>

 </beans>



The main advantage of this DAO style is that it depends on Hibernate API only; no import of any Spring class
is required. This is of course appealing from a non-invasiveness perspective, and will no doubt feel more
natural to Hibernate developers.

However, the DAO throws plain HibernateException (which is unchecked, so does not have to be declared or
caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on
Hibernate's own exception hierarchy. Catching specific causes such as an optimistic locking failure is not
possible without tieing the caller to the implementation strategy. This tradeoff might be acceptable to
applications that are strongly Hibernate-based and/or do not need any special exception treatment.

Fortunately, Spring's LocalSessionFactoryBean supports Hibernate's SessionFactory.getCurrentSession()
method for any Spring transaction strategy, returning the current Spring-managed transactional Session even
with HibernateTransactionManager. Of course, the standard behavior of that method remains: returning the
current Session associated with the ongoing JTA transaction, if any (no matter whether driven by Spring's
JtaTransactionManager, by EJB CMT, or by JTA).

In summary: DAOs can be implemented based on the plain Hibernate 3 API, while still being able to
participate in Spring-managed transactions.


12.2.6. Programmatic transaction demarcation

Transactions can be demarcated in a higher level of the application, on top of such lower-level data access
services spanning any number of operations. There are no restrictions on the implementation of the surrounding
business service here as well, it just needs a Spring PlatformTransactionManager. Again, the latter can come
from anywhere, but preferably as bean reference via a setTransactionManager(..) method - just like the
productDAO should be set via a setProductDao(..) method. The following snippets show a transaction
manager and a business service definition in a Spring application context, and an example for a business
method implementation.

 <beans>

    <bean id="myTxManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager">
      <property name="sessionFactory" ref="mySessionFactory"/>
    </bean>

    <bean id="myProductService" class="product.ProductServiceImpl">
      <property name="transactionManager" ref="myTxManager"/>
      <property name="productDao" ref="myProductDao"/>
    </bean>

 </beans>



 public class ProductServiceImpl implements ProductService {




                                          Spring Framework (2.5.6)                                          287
Object Relational Mapping (ORM) data access


      private TransactionTemplate transactionTemplate;
      private ProductDao productDao;

      public void setTransactionManager(PlatformTransactionManager transactionManager) {
          this.transactionTemplate = new TransactionTemplate(transactionManager);
      }

      public void setProductDao(ProductDao productDao) {
          this.productDao = productDao;
      }

      public void increasePriceOfAllProductsInCategory(final String category) {
          this.transactionTemplate.execute(new TransactionCallbackWithoutResult() {

                     public void doInTransactionWithoutResult(TransactionStatus status) {
                         List productsToChange = this.productDao.loadProductsByCategory(category);
                         // do the price increase...
                     }
                 }
            );
      }
 }




12.2.7. Declarative transaction demarcation

Alternatively, one can use Spring's declarative transaction support, which essentially enables you to replace
explicit transaction demarcation API calls in your Java code with an AOP transaction interceptor configured in
a Spring container. This allows you to keep business services free of repetitive transaction demarcation code,
and allows you to focus on adding business logic which is where the real value of your application lies.
Furthermore, transaction semantics like propagation behavior and isolation level can be changed in a
configuration file and do not affect the business service implementations.

 <beans>

     <bean id="myTxManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager">
       <property name="sessionFactory" ref="mySessionFactory"/>
     </bean>

     <bean id="myProductService" class="org.springframework.aop.framework.ProxyFactoryBean">
       <property name="proxyInterfaces" value="product.ProductService"/>
       <property name="target">
           <bean class="product.DefaultProductService">
                <property name="productDao" ref="myProductDao"/>
           </bean>
       </property>
       <property name="interceptorNames">
         <list>
           <value>myTxInterceptor</value> <!-- the transaction interceptor (configured elsewhere) -->
         </list>
       </property>
     </bean>

 </beans>



 public class ProductServiceImpl implements ProductService {

      private ProductDao productDao;

      public void setProductDao(ProductDao productDao) {
          this.productDao = productDao;
      }

      // notice the absence of transaction demarcation code in this method
      // Spring's declarative transaction infrastructure will be demarcating transactions on your behalf
      public void increasePriceOfAllProductsInCategory(final String category) {
          List productsToChange = this.productDao.loadProductsByCategory(category);
          // ...
      }
 }



                                          Spring Framework (2.5.6)                                        288
Object Relational Mapping (ORM) data access


Spring's TransactionInterceptor allows any checked application exception to be thrown with the callback
code, while TransactionTemplate is restricted to unchecked exceptions within the callback.
TransactionTemplate will trigger a rollback in case of an unchecked application exception, or if the
transaction has been marked rollback-only by the application (via TransactionStatus).
TransactionInterceptor behaves the same way by default but allows configurable rollback policies per
method.

The following higher level approach to declarative transactions doesn't use the ProxyFactoryBean, and as such
may be easier to use if you have a large number of service objects that you wish to make transactional.

            Note
            You are strongly encouraged to read the section entitled Section 9.5, “Declarative transaction
            management” if you have not done so already prior to continuing.


 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:aop="http://www.springframework.org/schema/aop"
        xmlns:tx="http://www.springframework.org/schema/tx"
        xsi:schemaLocation="
        http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.
        http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
        http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

   <!-- SessionFactory, DataSource, etc. omitted -->

   <bean id="myTxManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager">
     <property name="sessionFactory" ref="mySessionFactory"/>
   </bean>

   <aop:config>
     <aop:pointcut id="productServiceMethods" expression="execution(* product.ProductService.*(..))"/>
     <aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/>
   </aop:config>

   <tx:advice id="txAdvice" transaction-manager="myTxManager">
     <tx:attributes>
       <tx:method name="increasePrice*" propagation="REQUIRED"/>
       <tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/>
       <tx:method name="*" propagation="SUPPORTS" read-only="true"/>
     </tx:attributes>
   </tx:advice>

   <bean id="myProductService" class="product.SimpleProductService">
     <property name="productDao" ref="myProductDao"/>
   </bean>

 </beans>




12.2.8. Transaction management strategies

Both TransactionTemplate and TransactionInterceptor delegate the actual transaction handling to a
PlatformTransactionManager instance, which can be a HibernateTransactionManager (for a single
Hibernate SessionFactory, using a ThreadLocal Session under the hood) or a JtaTransactionManager
(delegating to the JTA subsystem of the container) for Hibernate applications. You could even use a custom
PlatformTransactionManager implementation. So switching from native Hibernate transaction management to
JTA, such as when facing distributed transaction requirements for certain deployments of your application, is
just a matter of configuration. Simply replace the Hibernate transaction manager with Spring's JTA transaction
implementation. Both transaction demarcation and data access code will work without changes, as they just use
the generic transaction management APIs.



                                          Spring Framework (2.5.6)                                        289
Object Relational Mapping (ORM) data access


For     distributed  transactions across multiple Hibernate session factories, simply combine
JtaTransactionManager as a transaction strategy with multiple LocalSessionFactoryBean definitions. Each
of your DAOs then gets one specific SessionFactory reference passed into its corresponding bean property. If
all underlying JDBC data sources are transactional container ones, a business service can demarcate
transactions across any number of DAOs and any number of session factories without special regard, as long as
it is using JtaTransactionManager as the strategy.

 <beans>

      <bean id="myDataSource1" class="org.springframework.jndi.JndiObjectFactoryBean">
        <property name="jndiName value="java:comp/env/jdbc/myds1"/>
      </bean>

      <bean id="myDataSource2" class="org.springframework.jndi.JndiObjectFactoryBean">
        <property name="jndiName" value="java:comp/env/jdbc/myds2"/>
      </bean>

      <bean id="mySessionFactory1" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
        <property name="dataSource" ref="myDataSource1"/>
        <property name="mappingResources">
          <list>
            <value>product.hbm.xml</value>
          </list>
        </property>
        <property name="hibernateProperties">
          <value>
            hibernate.dialect=org.hibernate.dialect.MySQLDialect
            hibernate.show_sql=true
          </value>
        </property>
      </bean>

      <bean id="mySessionFactory2" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
        <property name="dataSource" ref="myDataSource2"/>
        <property name="mappingResources">
          <list>
            <value>inventory.hbm.xml</value>
          </list>
        </property>
        <property name="hibernateProperties">
          <value>
            hibernate.dialect=org.hibernate.dialect.OracleDialect
          </value>
        </property>
      </bean>

      <bean id="myTxManager" class="org.springframework.transaction.jta.JtaTransactionManager"/>

      <bean id="myProductDao" class="product.ProductDaoImpl">
        <property name="sessionFactory" ref="mySessionFactory1"/>
      </bean>

      <bean id="myInventoryDao" class="product.InventoryDaoImpl">
        <property name="sessionFactory" ref="mySessionFactory2"/>
      </bean>

      <!-- this shows the Spring 1.x style of declarative transaction configuration -->
      <!-- it is totally supported, 100% legal in Spring 2.x, but see also above for the sleeker, Spring 2.0 style -
      <bean id="myProductService"
          class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
        <property name="transactionManager" ref="myTxManager"/>
        <property name="target">
          <bean class="product.ProductServiceImpl">
            <property name="productDao" ref="myProductDao"/>
            <property name="inventoryDao" ref="myInventoryDao"/>
          </bean>
        </property>
        <property name="transactionAttributes">
          <props>
            <prop key="increasePrice*">PROPAGATION_REQUIRED</prop>
            <prop key="someOtherBusinessMethod">PROPAGATION_REQUIRES_NEW</prop>
            <prop key="*">PROPAGATION_SUPPORTS,readOnly</prop>
          </props>
        </property>
      </bean>


                                         Spring Framework (2.5.6)                                        290
Object Relational Mapping (ORM) data access


 </beans>



Both HibernateTransactionManager and JtaTransactionManager allow for proper JVM-level cache handling
with Hibernate - without container-specific transaction manager lookup or JCA connector (as long as not using
EJB to initiate transactions).

HibernateTransactionManager  can export the JDBC Connection used by Hibernate to plain JDBC access
code, for a specific DataSource. This allows for high-level transaction demarcation with mixed
Hibernate/JDBC data access completely without JTA, as long as you are just accessing one database!
HibernateTransactionManager will automatically expose the Hibernate transaction as JDBC transaction if the
passed-in SessionFactory has been set up with a DataSource (through the "dataSource" property of the
LocalSessionFactoryBean class). Alternatively, the DataSource that the transactions are supposed to be
exposed for can also be specified explicitly, through the "dataSource" property of the
HibernateTransactionManager class.



12.2.9. Container resources versus local resources

Spring's resource management allows for simple switching between a JNDI SessionFactory and a local one,
without having to change a single line of application code. The decision as to whether to keep the resource
definitions in the container or locally within the application, is mainly a matter of the transaction strategy being
used. Compared to a Spring-defined local SessionFactory, a manually registered JNDI SessionFactory does
not provide any benefits. Deploying a SessionFactory through Hibernate's JCA connector provides the added
value of participating in the J2EE server's management infrastructure, but does not add actual value beyond
that.

An important benefit of Spring's transaction support is that it isn't bound to a container at all. Configured to any
other strategy than JTA, it will work in a standalone or test environment too. Especially for the typical case of
single-database transactions, this is a very lightweight and powerful alternative to JTA. When using local EJB
Stateless Session Beans to drive transactions, you depend both on an EJB container and JTA - even if you just
access a single database anyway, and just use SLSBs for declarative transactions via CMT. The alternative of
using JTA programmatically requires a J2EE environment as well. JTA does not just involve container
dependencies in terms of JTA itself and of JNDI DataSource instances. For non-Spring JTA-driven Hibernate
transactions, you have to use the Hibernate JCA connector, or extra Hibernate transaction code with the
TransactionManagerLookup being configured for proper JVM-level caching.

Spring-driven transactions can work with a locally defined Hibernate SessionFactory nicely, just like with a
local JDBC DataSource - if accessing a single database, of course. Therefore you just have to fall back to
Spring's JTA transaction strategy when actually facing distributed transaction requirements. Note that a JCA
connector needs container-specific deployment steps, and obviously JCA support in the first place. This is far
more hassle than deploying a simple web app with local resource definitions and Spring-driven transactions.
And you often need the Enterprise Edition of your container, as for example WebLogic Express does not
provide JCA. A Spring application with local resources and transactions spanning one single database will
work in any J2EE web container (without JTA, JCA, or EJB) - like Tomcat, Resin, or even plain Jetty.
Additionally, such a middle tier can be reused in desktop applications or test suites easily.

All things considered: if you do not use EJB, stick with local SessionFactory setup and Spring's
HibernateTransactionManager or JtaTransactionManager. You will get all of the benefits including proper
transactional JVM-level caching and distributed transactions, without any container deployment hassle. JNDI
registration of a Hibernate SessionFactory via the JCA connector really only adds value when used in
conjunction with EJBs.




                                            Spring Framework (2.5.6)                                            291
Object Relational Mapping (ORM) data access


12.2.10. Spurious application server warnings when using Hibernate

In some JTA environments with very strict XADataSource implementations -- currently only some WebLogic
and WebSphere versions -- when using Hibernate configured without any awareness of the JTA
PlatformTransactionManager object for that environment, it is possible for spurious warning or exceptions to
show up in the application server log. These warnings or exceptions will say something to the effect that the
connection being accessed is no longer valid, or JDBC access is no longer valid, possibly because the
transaction is no longer active. As an example, here is an actual exception from WebLogic:

 java.sql.SQLException: The transaction is no longer active - status: 'Committed'.
    No further JDBC access is allowed within this transaction.



This warning is easy to resolve by simply making Hibernate aware of the JTA PlatformTransactionManager
instance, to which it will also synchronize (along with Spring). This may be done in two ways:


• If in your application context you are already directly obtaining the JTA PlatformTransactionManager
  object (presumably from JNDI via JndiObjectFactoryBean) and feeding it for example to Spring's
  JtaTransactionManager, then the easiest way is to simply specify a reference to this as the value of
  LocalSessionFactoryBean's jtaTransactionManager property. Spring will then make the object available to
  Hibernate.

• More likely you do not already have the JTA PlatformTransactionManager instance (since Spring's
  JtaTransactionManager can find it itself) so you need to instead configure Hibernate to also look it up
  directly. This is done by configuring an AppServer specific TransactionManagerLookup class in the
  Hibernate configuration, as described in the Hibernate manual.

It is not necessary to read any more for proper usage, but the full sequence of events with and without
Hibernate being aware of the JTA PlatformTransactionManager will now be described.

When Hibernate is not configured with any awareness of the JTA PlatformTransactionManager, the sequence
of events when a JTA transaction commits is as follows:


• JTA transaction commits

• Spring's JtaTransactionManager is synchronized to the JTA transaction, so it is called back via an
  afterCompletion callback by the JTA transaction manager.

• Among other activities, this can trigger a callback by Spring to Hibernate, via Hibernate's
  afterTransactionCompletion callback (used to clear the Hibernate cache), followed by an explicit close()
  call on the Hibernate Session, which results in Hibernate trying to close() the JDBC Connection.

• In some environments, this Connection.close() call then triggers the warning or error, as the application
  server no longer considers the Connection usable at all, since the transaction has already been committed.

When Hibernate is configured with awareness of the JTA PlatformTransactionManager, the sequence of
events when a JTA transaction commits is instead as follows:


• JTA transaction is ready to commit

• Spring's JtaTransactionManager is synchronized to the JTA transaction, so it is called back via a
  beforeCompletion callback by the JTA transaction manager.

• Spring is aware that Hibernate itself is synchronized to the JTA transaction, and behaves differently than in

                                          Spring Framework (2.5.6)                                         292
Object Relational Mapping (ORM) data access


  the previous scenario. Assuming the Hibernate Session needs to be closed at all, Spring will close it now.

• JTA Transaction commits

• Hibernate is synchronized to the JTA transaction, so it is called back via an afterCompletion callback by the
  JTA transaction manager, and can properly clear its cache.




12.3. JDO
Spring supports the standard JDO 2.0/2.1 API as data access strategy, following the same style as the Hibernate
support. The corresponding integration classes reside in the org.springframework.orm.jdo package.


12.3.1. PersistenceManagerFactory setup

Spring provides a LocalPersistenceManagerFactoryBean class that allows for defining a local JDO
PersistenceManagerFactory within a Spring application context:

 <beans>

   <bean id="myPmf" class="org.springframework.orm.jdo.LocalPersistenceManagerFactoryBean">
     <property name="configLocation" value="classpath:kodo.properties"/>
   </bean>

 </beans>



Alternatively, a PersistenceManagerFactory can also be set up through direct instantiation of a
PersistenceManagerFactory implementation class. A JDO PersistenceManagerFactory implementation
class is supposed to follow the JavaBeans pattern, just like a JDBC DataSource implementation class, which is
a natural fit for a Spring bean definition. This setup style usually supports a Spring-defined JDBC DataSource,
passed into the "connectionFactory" property. For example, for the open source JDO implementation JPOX
(http://www.jpox.org):

 <beans>

  <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
    <property name="driverClassName" value="${jdbc.driverClassName}"/>
    <property name="url" value="${jdbc.url}"/>
    <property name="username" value="${jdbc.username}"/>
    <property name="password" value="${jdbc.password}"/>
  </bean>

  <bean id="myPmf" class="org.jpox.PersistenceManagerFactoryImpl" destroy-method="close">
    <property name="connectionFactory" ref="dataSource"/>
    <property name="nontransactionalRead" value="true"/>
  </bean>

 </beans>



A JDO PersistenceManagerFactory can also be set up in the JNDI environment of a J2EE application server,
usually through the JCA connector provided by the particular JDO implementation. Spring's standard
JndiObjectFactoryBean can be used to retrieve and expose such a PersistenceManagerFactory. However,
outside an EJB context, there is often no compelling benefit in holding the PersistenceManagerFactory in
JNDI: only choose such setup for a good reason. See "container resources versus local resources" in the
Hibernate section for a discussion; the arguments there apply to JDO as well.




                                          Spring Framework (2.5.6)                                         293
Object Relational Mapping (ORM) data access


12.3.2. JdoTemplate and JdoDaoSupport

Each JDO-based DAO will then receive the PersistenceManagerFactory through dependency injection. Such
a DAO could be coded against plain JDO API, working with the given PersistenceManagerFactory, but will
usually rather be used with the Spring Framework's JdoTemplate:

 <beans>

     <bean id="myProductDao" class="product.ProductDaoImpl">
       <property name="persistenceManagerFactory" ref="myPmf"/>
     </bean>

 </beans>



 public class ProductDaoImpl implements ProductDao {

      private JdoTemplate jdoTemplate;

      public void setPersistenceManagerFactory(PersistenceManagerFactory pmf) {
          this.jdoTemplate = new JdoTemplate(pmf);
      }

      public Collection loadProductsByCategory(final String category) throws DataAccessException {
          return (Collection) this.jdoTemplate.execute(new JdoCallback() {
              public Object doInJdo(PersistenceManager pm) throws JDOException {
                  Query query = pm.newQuery(Product.class, "category = pCategory");
                  query.declareParameters("String pCategory");
                  List result = query.execute(category);
                  // do some further stuff with the result list
                  return result;
              }
          });
      }
 }



A callback implementation can effectively be used for any JDO data access. JdoTemplate will ensure that
PersistenceManagers are properly opened and closed, and automatically participate in transactions. The
template instances are thread-safe and reusable, they can thus be kept as instance variables of the surrounding
class. For simple single-step actions such as a single find, load, makePersistent, or delete call, JdoTemplate
offers alternative convenience methods that can replace such one line callback implementations. Furthermore,
Spring provides a convenient JdoDaoSupport base class that provides a setPersistenceManagerFactory(..)
method for receiving a PersistenceManagerFactory, and getPersistenceManagerFactory() and
getJdoTemplate() for use by subclasses. In combination, this allows for very simple DAO implementations
for typical requirements:

 public class ProductDaoImpl extends JdoDaoSupport implements ProductDao {

      public Collection loadProductsByCategory(String category) throws DataAccessException {
          return getJdoTemplate().find(
              Product.class, "category = pCategory", "String category", new Object[] {category});
      }
 }



As alternative to working with Spring's JdoTemplate, you can also code Spring-based DAOs at the JDO API
level, explicitly opening and closing a PersistenceManager. As elaborated in the corresponding Hibernate
section, the main advantage of this approach is that your data access code is able to throw checked exceptions.
JdoDaoSupport offers a variety of support methods for this scenario, for fetching and releasing a transactional
PersistenceManager as well as for converting exceptions.



12.3.3. Implementing DAOs based on the plain JDO API


                                          Spring Framework (2.5.6)                                         294
Object Relational Mapping (ORM) data access


DAOs can also be written against plain JDO API, without any Spring dependencies, directly using an injected
PersistenceManagerFactory. A corresponding DAO implementation looks like as follows:

 public class ProductDaoImpl implements ProductDao {

      private PersistenceManagerFactory persistenceManagerFactory;

      public void setPersistenceManagerFactory(PersistenceManagerFactory pmf) {
          this.persistenceManagerFactory = pmf;
      }

      public Collection loadProductsByCategory(String category) {
          PersistenceManager pm = this.persistenceManagerFactory.getPersistenceManager();
          try {
              Query query = pm.newQuery(Product.class, "category = pCategory");
              query.declareParameters("String pCategory");
              return query.execute(category);
          }
          finally {
            pm.close();
          }
      }
 }



As the above DAO still follows the Dependency Injection pattern, it still fits nicely into a Spring container, just
like it would if coded against Spring's JdoTemplate:

 <beans>

     <bean id="myProductDao" class="product.ProductDaoImpl">
       <property name="persistenceManagerFactory" ref="myPmf"/>
     </bean>

 </beans>



The main issue with such DAOs is that they always get a new PersistenceManager from the factory. To still
access    a     Spring-managed      transactional    PersistenceManager,    consider     defining      a
TransactionAwarePersistenceManagerFactoryProxy (as included in Spring) in front of your target
PersistenceManagerFactory, passing the proxy into your DAOs.

 <beans>

     <bean id="myPmfProxy"
         class="org.springframework.orm.jdo.TransactionAwarePersistenceManagerFactoryProxy">
       <property name="targetPersistenceManagerFactory" ref="myPmf"/>
     </bean>

     <bean id="myProductDao" class="product.ProductDaoImpl">
       <property name="persistenceManagerFactory" ref="myPmfProxy"/>
     </bean>

 </beans>



Your data access code will then receive a transactional PersistenceManager (if any) from the
PersistenceManagerFactory.getPersistenceManager() method that it calls. The latter method call goes
through the proxy, which will first check for a current transactional PersistenceManager before getting a new
one from the factory. close() calls on the PersistenceManager will be ignored in case of a transactional
PersistenceManager.

If your data access code will always run within an active transaction (or at least within active transaction
synchronization), it is safe to omit the PersistenceManager.close() call and thus the entire finally block,
which you might prefer to keep your DAO implementations concise:

 public class ProductDaoImpl implements ProductDao {



                                            Spring Framework (2.5.6)                                           295
Object Relational Mapping (ORM) data access


      private PersistenceManagerFactory persistenceManagerFactory;

      public void setPersistenceManagerFactory(PersistenceManagerFactory pmf) {
          this.persistenceManagerFactory = pmf;
      }

      public Collection loadProductsByCategory(String category) {
          PersistenceManager pm = this.persistenceManagerFactory.getPersistenceManager();
          Query query = pm.newQuery(Product.class, "category = pCategory");
          query.declareParameters("String pCategory");
          return query.execute(category);
      }
 }



With such DAOs that rely on active transactions, it is recommended to enforce active transactions through
turning TransactionAwarePersistenceManagerFactoryProxy's "allowCreate" flag off:

 <beans>

     <bean id="myPmfProxy"
         class="org.springframework.orm.jdo.TransactionAwarePersistenceManagerFactoryProxy">
       <property name="targetPersistenceManagerFactory" ref="myPmf"/>
       <property name="allowCreate" value="false"/>
     </bean>

     <bean id="myProductDao" class="product.ProductDaoImpl">
       <property name="persistenceManagerFactory" ref="myPmfProxy"/>
     </bean>

 </beans>



The main advantage of this DAO style is that it depends on JDO API only; no import of any Spring class is
required. This is of course appealing from a non-invasiveness perspective, and might feel more natural to JDO
developers.

However, the DAO throws plain JDOException (which is unchecked, so does not have to be declared or
caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on
JDO's own exception structure. Catching specific causes such as an optimistic locking failure is not possible
without tying the caller to the implementation strategy. This tradeoff might be acceptable to applications that
are strongly JDO-based and/or do not need any special exception treatment.

In summary: DAOs can be implemented based on plain JDO API, while still being able to participate in
Spring-managed transactions. This might in particular appeal to people already familiar with JDO, feeling more
natural to them. However, such DAOs will throw plain JDOException; conversion to Spring's
DataAccessException would have to happen explicitly (if desired).



12.3.4. Transaction management

To execute service operations within transactions, you can use Spring's common declarative transaction
facilities. For example:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans
         xmlns="http://www.springframework.org/schema/beans"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xmlns:aop="http://www.springframework.org/schema/aop"
         xmlns:tx="http://www.springframework.org/schema/tx"
         xsi:schemaLocation="
    http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
    http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
    http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

     <bean id="myTxManager" class="org.springframework.orm.jdo.JdoTransactionManager">
       <property name="persistenceManagerFactory" ref="myPmf"/>


                                          Spring Framework (2.5.6)                                         296
Object Relational Mapping (ORM) data access


    </bean>

    <bean id="myProductService" class="product.ProductServiceImpl">
      <property name="productDao" ref="myProductDao"/>
    </bean>

    <tx:advice id="txAdvice" transaction-manager="txManager">
      <tx:attributes>
        <tx:method name="increasePrice*" propagation="REQUIRED"/>
        <tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/>
        <tx:method name="*" propagation="SUPPORTS" read-only="true"/>
      </tx:attributes>
    </tx:advice>

    <aop:config>
      <aop:pointcut id="productServiceMethods" expression="execution(* product.ProductService.*(..))"/>
      <aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/>
    </aop:config>

 </beans>



Note that JDO requires an active transaction when modifying a persistent object. There is no concept like a
non-transactional flush in JDO, in contrast to Hibernate. For this reason, the chosen JDO implementation needs
to be set up for a specific environment: in particular, it needs to be explicitly set up for JTA synchronization, to
detect an active JTA transaction itself. This is not necessary for local transactions as performed by Spring's
JdoTransactionManager, but it is necessary for participating in JTA transactions (whether driven by Spring's
JtaTransactionManager or by EJB CMT / plain JTA).

JdoTransactionManager    is capable of exposing a JDO transaction to JDBC access code that accesses the same
JDBC DataSource, provided that the registered JdoDialect supports retrieval of the underlying JDBC
Connection. This is the case for JDBC-based JDO 2.0 implementations by default.



12.3.5. JdoDialect

As an advanced feature, both JdoTemplate and interfacename support a custom JdoDialect, to be passed into
the "jdoDialect" bean property. In such a scenario, the DAOs won't receive a PersistenceManagerFactory
reference but rather a full JdoTemplate instance instead (for example, passed into JdoDaoSupport's
"jdoTemplate" property). A JdoDialect implementation can enable some advanced features supported by
Spring, usually in a vendor-specific manner:


• applying specific transaction semantics (such as custom isolation level or transaction timeout)

• retrieving the transactional JDBC Connection (for exposure to JDBC-based DAOs)

• applying query timeouts (automatically calculated from Spring-managed transaction timeout)

• eagerly flushing a PersistenceManager (to make transactional changes visible to JDBC-based data access
  code)

• advanced translation of JDOExceptions to Spring DataAccessExceptions

See the JdoDialect Javadoc for more details on its operations and how they are used within Spring's JDO
support.


12.4. Oracle TopLink
Since Spring 1.2, Spring supports Oracle TopLink (http://www.oracle.com/technology/products/ias/toplink) as


                                            Spring Framework (2.5.6)                                            297
Object Relational Mapping (ORM) data access

data access strategy, following the same style as the Hibernate support. Both TopLink 9.0.4 (the production
version as of Spring 1.2) and 10.1.3 (still in beta as of Spring 1.2) are supported. The corresponding integration
classes reside in the org.springframework.orm.toplink package.

Spring's TopLink support has been co-developed with the Oracle TopLink team. Many thanks to the TopLink
team, in particular to Jim Clark who helped to clarify details in all areas!


12.4.1. SessionFactory abstraction

TopLink itself does not ship with a SessionFactory abstraction. Instead, multi-threaded access is based on the
concept of a central ServerSession, which in turn is able to spawn ClientSession instances for
single-threaded usage. For flexible setup options, Spring defines a SessionFactory abstraction for TopLink,
enabling to switch between different Session creation strategies.

As a one-stop shop, Spring provides a LocalSessionFactoryBean class that allows for defining a TopLink
SessionFactory with bean-style configuration. It needs to be configured with the location of the TopLink
session configuration file, and usually also receives a Spring-managed JDBC DataSource to use.

 <beans>

    <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
      <property name="driverClassName" value="${jdbc.driverClassName}"/>
      <property name="url" value="${jdbc.url}"/>
      <property name="username" value="${jdbc.username}"/>
      <property name="password" value="${jdbc.password}"/>
    </bean>

    <bean id="mySessionFactory" class="org.springframework.orm.toplink.LocalSessionFactoryBean">
      <property name="configLocation" value="toplink-sessions.xml"/>
      <property name="dataSource" ref="dataSource"/>
    </bean>

 </beans>



 <toplink-configuration>

    <session>
      <name>Session</name>
      <project-xml>toplink-mappings.xml</project-xml>
      <session-type>
        <server-session/>
      </session-type>
      <enable-logging>true</enable-logging>
      <logging-options/>
    </session>

 </toplink-configuration>



Usually, LocalSessionFactoryBean will hold a multi-threaded TopLink ServerSession underneath and create
appropriate client Sessions for it: either a plain Session (typical), a managed ClientSession, or a
transaction-aware Session (the latter are mainly used internally by Spring's TopLink support). It might also
hold a single-threaded TopLink DatabaseSession; this is rather unusual, though.


12.4.2. TopLinkTemplate and TopLinkDaoSupport

Each TopLink-based DAO will then receive the SessionFactory through dependency injection, i.e. through a
bean property setter or through a constructor argument. Such a DAO could be coded against plain TopLink
API, fetching a Session from the given SessionFactory, but will usually rather be used with Spring's
TopLinkTemplate:

 <beans>


                                           Spring Framework (2.5.6)                                           298
Object Relational Mapping (ORM) data access



     <bean id="myProductDao" class="product.ProductDaoImpl">
       <property name="sessionFactory" ref="mySessionFactory"/>
     </bean>

 </beans>



 public class TopLinkProductDao implements ProductDao {

      private TopLinkTemplate tlTemplate;

      public void setSessionFactory(SessionFactory sessionFactory) {
          this.tlTemplate = new TopLinkTemplate(sessionFactory);
      }

      public Collection loadProductsByCategory(final String category) throws DataAccessException {
          return (Collection) this.tlTemplate.execute(new TopLinkCallback() {
              public Object doInTopLink(Session session) throws TopLinkException {
                  ReadAllQuery findOwnersQuery = new ReadAllQuery(Product.class);
                  findOwnersQuery.addArgument("Category");
                  ExpressionBuilder builder = this.findOwnersQuery.getExpressionBuilder();
                  findOwnersQuery.setSelectionCriteria(
                      builder.get("category").like(builder.getParameter("Category")));

                      Vector args = new Vector();
                      args.add(category);
                      List result = session.executeQuery(findOwnersQuery, args);
                      // do some further stuff with the result list
                      return result;
                  }
            });
      }
 }



A callback implementation can effectively be used for any TopLink data access. TopLinkTemplate will ensure
that Sessions are properly opened and closed, and automatically participate in transactions. The template
instances are thread-safe and reusable, they can thus be kept as instance variables of the surrounding class. For
simple single-step actions such as a single executeQuery, readAll, readById, or merge call, JdoTemplate
offers alternative convenience methods that can replace such one line callback implementations. Furthermore,
Spring provides a convenient TopLinkDaoSupport base class that provides a setSessionFactory(..) method
for receiving a SessionFactory, and getSessionFactory() and getTopLinkTemplate() for use by subclasses.
In combination, this allows for simple DAO implementations for typical requirements:

 public class ProductDaoImpl extends TopLinkDaoSupport implements ProductDao {

      public Collection loadProductsByCategory(String category) throws DataAccessException {
          ReadAllQuery findOwnersQuery = new ReadAllQuery(Product.class);
          findOwnersQuery.addArgument("Category");
          ExpressionBuilder builder = this.findOwnersQuery.getExpressionBuilder();
          findOwnersQuery.setSelectionCriteria(
              builder.get("category").like(builder.getParameter("Category")));

            return getTopLinkTemplate().executeQuery(findOwnersQuery, new Object[] {category});
      }
 }



Side note: TopLink query objects are thread-safe and can be cached within the DAO, i.e. created on startup and
kept in instance variables.

As alternative to working with Spring's TopLinkTemplate, you can also code your TopLink data access based
on the raw TopLink API, explicitly opening and closing a Session. As elaborated in the corresponding
Hibernate section, the main advantage of this approach is that your data access code is able to throw checked
exceptions. TopLinkDaoSupport offers a variety of support methods for this scenario, for fetching and releasing
a transactional Session as well as for converting exceptions.



                                           Spring Framework (2.5.6)                                          299
Object Relational Mapping (ORM) data access


12.4.3. Implementing DAOs based on plain TopLink API

DAOs can also be written against plain TopLink API, without any Spring dependencies, directly using an
injected TopLink Session. The latter will usually be based on a SessionFactory defined by a
LocalSessionFactoryBean,   exposed for bean references of type Session through Spring's
TransactionAwareSessionAdapter.

The getActiveSession() method defined on TopLink's Session interface will return the current transactional
Session in such a scenario. If there is no active transaction, it will return the shared TopLink ServerSession
as-is, which is only supposed to be used directly for read-only access. There is also an analogous
getActiveUnitOfWork() method, returning the TopLink UnitOfWork associated with the current transaction, if
any (returning null else).

A corresponding DAO implementation looks like as follows:

 public class ProductDaoImpl implements ProductDao {

      private Session session;

      public void setSession(Session session) {
          this.session = session;
      }

      public Collection loadProductsByCategory(String category) {
          ReadAllQuery findOwnersQuery = new ReadAllQuery(Product.class);
          findOwnersQuery.addArgument("Category");
          ExpressionBuilder builder = this.findOwnersQuery.getExpressionBuilder();
          findOwnersQuery.setSelectionCriteria(
              builder.get("category").like(builder.getParameter("Category")));

            Vector args = new Vector();
            args.add(category);
            return session.getActiveSession().executeQuery(findOwnersQuery, args);
      }
 }



As the above DAO still follows the Dependency Injection pattern, it still fits nicely into a Spring application
context, analogous to like it would if coded against Spring's TopLinkTemplate. Spring's
TransactionAwareSessionAdapter is used to expose a bean reference of type Session, to be passed into the
DAO:

 <beans>

     <bean id="mySessionAdapter"
         class="org.springframework.orm.toplink.support.TransactionAwareSessionAdapter">
       <property name="sessionFactory" ref="mySessionFactory"/>
     </bean>

     <bean id="myProductDao" class="product.ProductDaoImpl">
       <property name="session" ref="mySessionAdapter"/>
     </bean>

 </beans>



The main advantage of this DAO style is that it depends on TopLink API only; no import of any Spring class is
required. This is of course appealing from a non-invasiveness perspective, and might feel more natural to
TopLink developers.

However, the DAO throws plain TopLinkException (which is unchecked, so does not have to be declared or
caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on
TopLink's own exception structure. Catching specific causes such as an optimistic locking failure is not
possible without tying the caller to the implementation strategy. This tradeoff might be acceptable to


                                          Spring Framework (2.5.6)                                         300
Object Relational Mapping (ORM) data access

applications that are strongly TopLink-based and/or do not need any special exception treatment.

A further disadvantage of that DAO style is that TopLink's standard getActiveSession() feature just works
within JTA transactions. It does not work with any other transaction strategy out-of-the-box, in particular not
with local TopLink transactions.

Fortunately, Spring's TransactionAwareSessionAdapter exposes a corresponding proxy for the TopLink
ServerSession         which         supports        TopLink's       Session.getActiveSession()           and
Session.getActiveUnitOfWork() methods for any Spring transaction strategy, returning the current
Spring-managed transactional Session even with TopLinkTransactionManager. Of course, the standard
behavior of that method remains: returning the current Session associated with the ongoing JTA transaction, if
any (no matter whether driven by Spring's JtaTransactionManager, by EJB CMT, or by plain JTA).

In summary: DAOs can be implemented based on plain TopLink API, while still being able to participate in
Spring-managed transactions. This might in particular appeal to people already familiar with TopLink, feeling
more natural to them. However, such DAOs will throw plain TopLinkException; conversion to Spring's
DataAccessException would have to happen explicitly (if desired).



12.4.4. Transaction management

To execute service operations within transactions, you can use Spring's common declarative transaction
facilities. For example:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans
         xmlns="http://www.springframework.org/schema/beans"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xmlns:aop="http://www.springframework.org/schema/aop"
         xmlns:tx="http://www.springframework.org/schema/tx"
         xsi:schemaLocation="
    http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
    http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
    http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

    <bean id="myTxManager" class="org.springframework.orm.toplink.TopLinkTransactionManager">
      <property name="sessionFactory" ref="mySessionFactory"/>
    </bean>

    <bean id="myProductService" class="product.ProductServiceImpl">
      <property name="productDao" ref="myProductDao"/>
    </bean>

    <aop:config>
      <aop:pointcut id="productServiceMethods" expression="execution(* product.ProductService.*(..))"/>
      <aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/>
    </aop:config>

    <tx:advice id="txAdvice" transaction-manager="myTxManager">
      <tx:attributes>
        <tx:method name="increasePrice*" propagation="REQUIRED"/>
        <tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/>
        <tx:method name="*" propagation="SUPPORTS" read-only="true"/>
      </tx:attributes>
    </tx:advice>

 </beans>



Note that TopLink requires an active UnitOfWork for modifying a persistent object. (You should never modify
objects returned by a plain TopLink Session - those are usually read-only objects, directly taken from the
second-level cache!) There is no concept like a non-transactional flush in TopLink, in contrast to Hibernate. For
this reason, TopLink needs to be set up for a specific environment: in particular, it needs to be explicitly set up
for JTA synchronization, to detect an active JTA transaction itself and expose a corresponding active Session
and UnitOfWork. This is not necessary for local transactions as performed by Spring's


                                            Spring Framework (2.5.6)                                           301
Object Relational Mapping (ORM) data access

TopLinkTransactionManager,  but it is necessary for participating in JTA transactions (whether driven by
Spring's JtaTransactionManager or by EJB CMT / plain JTA).

Within your TopLink-based DAO code, use the Session.getActiveUnitOfWork() method to access the
current UnitOfWork and perform write operations through it. This will only work within an active transaction
(both within Spring-managed transactions and plain JTA transactions). For special needs, you can also acquire
separate UnitOfWork instances that won't participate in the current transaction; this is hardly needed, though.

TopLinkTransactionManager       is capable of exposing a TopLink transaction to JDBC access code that accesses
the same JDBC DataSource, provided that TopLink works with JDBC in the backend and is thus able to expose
the underlying JDBC Connection. The DataSource to expose the transactions for needs to be specified
explicitly; it won't be autodetected.


12.5. iBATIS SQL Maps
The iBATIS support in the Spring Framework much resembles the JDBC / Hibernate support in that it supports
the same template style programming and just as with JDBC or Hibernate, the iBATIS support works with
Spring's exception hierarchy and let's you enjoy the all IoC features Spring has.

Transaction management can be handled through Spring's standard facilities. There are no special transaction
strategies for iBATIS, as there is no special transactional resource involved other than a JDBC Connection.
Hence, Spring's standard JDBC DataSourceTransactionManager or JtaTransactionManager are perfectly
sufficient.

             Note
             Spring does actually support both iBatis 1.x and 2.x. However, only support for iBatis 2.x is
             actually shipped with the core Spring distribution. The iBatis 1.x support classes were moved to the
             Spring Modules project as of Spring 2.0, and you are directed there for documentation.



12.5.1. Setting up the SqlMapClient

If we want to map the previous Account class with iBATIS 2.x we need to create the following SQL map
'Account.xml':

 <sqlMap namespace="Account">

    <resultMap id="result" class="examples.Account">
      <result property="name" column="NAME" columnIndex="1"/>
      <result property="email" column="EMAIL" columnIndex="2"/>
    </resultMap>

    <select id="getAccountByEmail" resultMap="result">
      select ACCOUNT.NAME, ACCOUNT.EMAIL
      from ACCOUNT
      where ACCOUNT.EMAIL = #value#
    </select>

    <insert id="insertAccount">
      insert into ACCOUNT (NAME, EMAIL) values (#name#, #email#)
    </insert>

 </sqlMap>



The configuration file for iBATIS 2 looks like this:

 <sqlMapConfig>



                                           Spring Framework (2.5.6)                                          302
Object Relational Mapping (ORM) data access


     <sqlMap resource="example/Account.xml"/>

 </sqlMapConfig>



Remember that iBATIS loads resources from the class path, so be sure to add the 'Account.xml' file to the
class path.

We can use the SqlMapClientFactoryBean in the Spring container. Note that with iBATIS SQL Maps 2.x, the
JDBC DataSource is usually specified on the SqlMapClientFactoryBean, which enables lazy loading.

 <beans>

     <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
       <property name="driverClassName" value="${jdbc.driverClassName}"/>
       <property name="url" value="${jdbc.url}"/>
       <property name="username" value="${jdbc.username}"/>
       <property name="password" value="${jdbc.password}"/>
     </bean>

     <bean id="sqlMapClient" class="org.springframework.orm.ibatis.SqlMapClientFactoryBean">
       <property name="configLocation" value="WEB-INF/sqlmap-config.xml"/>
       <property name="dataSource" ref="dataSource"/>
     </bean>

 </beans>




12.5.2. Using SqlMapClientTemplate and SqlMapClientDaoSupport

The SqlMapClientDaoSupport class offers a supporting class similar to the SqlMapDaoSupport. We extend it to
implement our DAO:

 public class SqlMapAccountDao extends SqlMapClientDaoSupport implements AccountDao {

      public Account getAccount(String email) throws DataAccessException {
          return (Account) getSqlMapClientTemplate().queryForObject("getAccountByEmail", email);
      }

      public void insertAccount(Account account) throws DataAccessException {
          getSqlMapClientTemplate().update("insertAccount", account);
      }
 }



In the DAO, we use the pre-configured SqlMapClientTemplate to execute the queries, after setting up the
SqlMapAccountDao in the application context and wiring it with our SqlMapClient instance:

 <beans>

     <bean id="accountDao" class="example.SqlMapAccountDao">
       <property name="sqlMapClient" ref="sqlMapClient"/>
     </bean>

 </beans>



Note that a SqlMapTemplate instance could also be created manually, passing in the SqlMapClient as
constructor argument. The SqlMapClientDaoSupport base class simply pre-initializes a
SqlMapClientTemplate instance for us.

The SqlMapClientTemplate also offers a generic execute method, taking a custom SqlMapClientCallback
implementation as argument. This can, for example, be used for batching:

 public class SqlMapAccountDao extends SqlMapClientDaoSupport implements AccountDao {




                                         Spring Framework (2.5.6)                                      303
Object Relational Mapping (ORM) data access


      public void insertAccount(Account account) throws DataAccessException {
          getSqlMapClientTemplate().execute(new SqlMapClientCallback() {
              public Object doInSqlMapClient(SqlMapExecutor executor) throws SQLException {
                  executor.startBatch();
                  executor.update("insertAccount", account);
                  executor.update("insertAddress", account.getAddress());
                  executor.executeBatch();
              }
          });
      }
 }



In general, any combination of operations offered by the native SqlMapExecutor API can be used in such a
callback. Any SQLException thrown will automatically get converted to Spring's generic
DataAccessException hierarchy.



12.5.3. Implementing DAOs based on plain iBATIS API

DAOs can also be written against plain iBATIS API, without any Spring dependencies, directly using an
injected SqlMapClient. A corresponding DAO implementation looks like as follows:

 public class SqlMapAccountDao implements AccountDao {

      private SqlMapClient sqlMapClient;

      public void setSqlMapClient(SqlMapClient sqlMapClient) {
          this.sqlMapClient = sqlMapClient;
      }

      public Account getAccount(String email) {
          try {
              return (Account) this.sqlMapClient.queryForObject("getAccountByEmail", email);
          }
          catch (SQLException ex) {
              throw new MyDaoException(ex);
          }
      }

      public void insertAccount(Account account) throws DataAccessException {
          try {
              this.sqlMapClient.update("insertAccount", account);
          }
          catch (SQLException ex) {
              throw new MyDaoException(ex);
          }
      }
 }



In such a scenario, the SQLException thrown by the iBATIS API needs to be handled in a custom fashion:
usually, wrapping it in your own application-specific DAO exception. Wiring in the application context would
still look like before, due to the fact that the plain iBATIS-based DAO still follows the Dependency Injection
pattern:

 <beans>

     <bean id="accountDao" class="example.SqlMapAccountDao">
       <property name="sqlMapClient" ref="sqlMapClient"/>
     </bean>

 </beans>




12.6. JPA


                                          Spring Framework (2.5.6)                                        304
Object Relational Mapping (ORM) data access


Spring JPA (available under the org.springframework.orm.jpa package) offers comprehensive support for
the Java Persistence API in a similar manner to the integration with Hibernate or JDO, while being aware of the
underlying implementation in order to provide additional features.


12.6.1. JPA setup in a Spring environment

Spring JPA offers three ways of setting up JPA EntityManagerFactory:

12.6.1.1. LocalEntityManagerFactoryBean

The LocalEntityManagerFactoryBean creates an EntityManagerFactory suitable for environments which
solely use JPA for data access. The factory bean will use the JPA PersistenceProvider autodetection
mechanism (according to JPA's Java SE bootstrapping) and, in most cases, requires only the persistence unit
name to be specified:

 <beans>

     <bean id="myEmf" class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
        <property name="persistenceUnitName" value="myPersistenceUnit"/>
     </bean>

 </beans>



This is the simplest but also most limited form of JPA deployment. There is no way to link to an existing JDBC
DataSource and no support for global transactions, for example. Furthermore, weaving (byte-code
transformation) of persistent classes is provider-specific, often requiring a specific JVM agent to specified on
startup. All in all, this option is only really sufficient for standalone applications and test environments (which
is exactly what the JPA specification designed it for).

Only use this option in simple deployment environments like standalone applications and integration tests.

12.6.1.2. Obtaining an EntityManagerFactory from JNDI

Obtaining an EntityManagerFactory from JNDI (for example in a Java EE 5 environment), is just a matter of
changing the XML configuration:

 <beans>

      <jee:jndi-lookup id="myEmf" jndi-name="persistence/myPersistenceUnit"/>

 </beans>



This assumes standard Java EE 5 bootstrapping, with the Java EE server autodetecting persistence units (i.e.
META-INF/persistence.xml files in application jars) and persistence-unit-ref entries in the Java EE
deployment descriptor (e.g. web.xml) defining environment naming context locations for those persistence
units.

In such a scenario, the entire persistence unit deployment, including the weaving (byte-code transformation) of
persistent classes, is up to the Java EE server. The JDBC DataSource is defined through a JNDI location in the
META-INF/persistence.xml file; EntityManager transactions are integrated with the server's JTA subsystem.
Spring merely uses the obtained EntityManagerFactory, passing it on to application objects via dependency
injection, and managing transactions for it (typically through JtaTransactionManager).

Note that, in case of multiple persistence units used in the same application, the bean names of such a
JNDI-retrieved persistence units should match the persistence unit names that the application uses to refer to


                                            Spring Framework (2.5.6)                                           305
Object Relational Mapping (ORM) data access


them (e.g. in @PersistenceUnit and @PersistenceContext annotations).

Use this option when deploying to a Java EE 5 server. Check your server's documentation on how to deploy a
custom JPA provider into your server, allowing for a different provider than the server's default.

12.6.1.3. LocalContainerEntityManagerFactoryBean

The LocalContainerEntityManagerFactoryBean gives full control over EntityManagerFactory configuration
and is appropriate for environments where fine-grained customization is required. The
LocalContainerEntityManagerFactoryBean        will create a PersistenceUnitInfo based on the
persistence.xml file, the supplied dataSourceLookup strategy and the specified loadTimeWeaver. It is thus
possible to work with custom DataSources outside of JNDI and to control the weaving process.

 <beans>

  <bean id="myEmf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
   <property name="dataSource" ref="someDataSource"/>
   <property name="loadTimeWeaver">
     <bean class="org.springframework.instrument.classloading.InstrumentationLoadTimeWeaver"/>
   </property>
  </bean>

 </beans>



A typical persistence.xml file looks as follows:

 <persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

    <persistence-unit name="myUnit" transaction-type="RESOURCE_LOCAL">
      <mapping-file>META-INF/orm.xml</mapping-file>
      <exclude-unlisted-classes/>
    </persistence-unit>

 </persistence>



NOTE: The "exclude-unlisted-classes" element always indicates that NO scanning for annotated entity classes
is supposed to happen, in order to support the <exclude-unlisted-classes/> shortcut. This is in line with the
JPA specification (which suggests that shortcut) but unfortunately in conflict with the JPA XSD (which implies
"false"    for     that    shortcut).   As     a    consequence,     "<exclude-unlisted-classes>        false
</exclude-unlisted-classes/>" is not supported! Simply omit the "exclude-unlisted-classes" element if you
would like entity class scanning to actually happen.

This is the most powerful JPA setup option, allowing for flexible local configuration within the application. It
supports links to an existing JDBC DataSource, supports both local and global transactions, etc. However, it
also imposes requirements onto the runtime environment, such as the availability of a weaving-capable
ClassLoader if the persistence provider demands byte-code transformation.

Note that this option may conflict with the built-in JPA capabilities of a Java EE 5 server. So when running in a
full Java EE 5 environment, consider obtaining your EntityManagerFactory from JNDI. Alternatively, specify
a custom "persistenceXmlLocation" on your LocalContainerEntityManagerFactoryBean definition, e.g.
"META-INF/my-persistence.xml", and only include a descriptor with that name in your application jar files.
Since the Java EE 5 server will only look for default META-INF/persistence.xml files, it will ignore such
custom persistence units and hence avoid conflicts with a Spring-driven JPA setup upfront. (This applies to
Resin 3.1, for example.)

Use this option for full JPA capabilities in a Spring-based application environment. This includes web
containers such as Tomcat as well as standalone applications and integration tests with sophisticated
persistence requirements.

                                           Spring Framework (2.5.6)                                          306
Object Relational Mapping (ORM) data access



  When is load-time weaving required?

  Not all JPA providers impose the need of a JVM agent (Hibernate being an example). If your provider
  does not require an agent or you have other alternatives (for example applying enhancements at build
  time through a custom compiler or an ant task) the load-time weaver should not be used.


The LoadTimeWeaver interface is a Spring-provided class that allows JPA ClassTransformer instances to be
plugged in a specific manner depending on the environment (web container/application server). Hooking
ClassTransformers through a Java 5 agent is typically not efficient - the agents work against the entire virtual
machine and inspect every class that is loaded - something that is typically undesirable in a production server
enviroment.

Spring provides a number of LoadTimeWeaver implementations for various environments, allowing
ClassTransformer instances to be applied only per ClassLoader and not per VM.

The following sections will discuss typical JPA weaving setup on Tomcat as well as using Spring's VM agent.
See the AOP chapter section entitled Section 6.8.4.5, “Spring configuration” for details on how to set up
general load-time weaving, covering Tomcat and the VM agent as well as WebLogic, OC4J, GlassFish and
Resin.

12.6.1.3.1. Tomcat load-time weaving setup (5.0+)
Apache Tomcat's default ClassLoader does not support class transformation but allows custom ClassLoaders to
be      used.    Spring       offers     the     TomcatInstrumentableClassLoader            (inside     the
org.springframework.instrument.classloading.tomcat package) which extends the Tomcat ClassLoader
(WebappClassLoader) and allows JPA ClassTransformer instances to 'enhance' all classes loaded by it. In
short, JPA transformers will be applied only inside a specific web application (which uses the
TomcatInstrumentableClassLoader).

In order to use the custom ClassLoader on:


1. Copy spring-tomcat-weaver.jar into $CATALINA_HOME/server/lib (where $CATALINA_HOME
   represents the root of the Tomcat installation).

2. Instruct Tomcat to use the custom ClassLoader (instead of the default one) by editing the web application
   context file:

 <Context path="/myWebApp" docBase="/my/webApp/location">
     <Loader loaderClass="org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader"/>
 </Context>



  Tomcat 5.0.x and 5.5.x series support several context locations: server configuration file
  ($CATALINA_HOME/conf/server.xml),               the           default    context        configuration
  ($CATALINA_HOME/conf/context.xml) that affects all deployed web applications and per-webapp
  configurations,                 deployed                     on             the                server
  ($CATALINA_HOME/conf/[enginename]/[hostname]/my-webapp-context.xml) side or along with the
  webapp (your-webapp.war/META-INF/context.xml). For efficiency, inside the web-app configuration style
  is recommended since only applications which use JPA will use the custom ClassLoader. See the Tomcat
  5.x documentation for more details about available context locations.

  Note that versions prior to 5.5.20 contained a bug in the XML configuration parsing preventing usage of
  Loader tag inside server.xml (no matter if a ClassLoader is specified or not (be it the official or a custom


                                             Spring Framework (2.5.6)                                       307
Object Relational Mapping (ORM) data access


  one). See Tomcat's bugzilla for more details.

  If you are using Tomcat 5.5.20+ you can set useSystemClassLoaderAsParent to false to fix the problem:

 <Context path="/myWebApp" docBase="/my/webApp/location">
     <Loader loaderClass="org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader"
             useSystemClassLoaderAsParent="false"/>
 </Context>




1. Copy spring-tomcat-weaver.jar into $CATALINA_HOME/lib (where $CATALINA_HOME represents the
   root of the Tomcat installation).

2. Instruct Tomcat to use the custom ClassLoader (instead of the default one) by editing the web application
   context file:

 <Context path="/myWebApp" docBase="/my/webApp/location">
     <Loader loaderClass="org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader"/>
 </Context>



  Tomcat 6.0.x (similar to 5.0.x/5.5.x) series support several context locations: server configuration file
  ($CATALINA_HOME/conf/server.xml),               the           default      context         configuration
  ($CATALINA_HOME/conf/context.xml) that affects all deployed web applications and per-webapp
  configurations,                 deployed                     on               the                  server
  ($CATALINA_HOME/conf/[enginename]/[hostname]/my-webapp-context.xml) side or along with the
  webapp (your-webapp.war/META-INF/context.xml). For efficiency, inside the web-app configuration style
  is recommended since only applications which use JPA will use the custom ClassLoader. See the Tomcat
  5.x documentation for more details about available context locations.


• Tomcat 5.0.x/5.5.x

• Tomcat 6.0.x

The last step required on all Tomcat versions, is to use the appropriate the LoadTimeWeaver when configuring
LocalContainerEntityManagerFactoryBean:

 <bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
   <property name="loadTimeWeaver">
     <bean class="org.springframework.instrument.classloading.ReflectiveLoadTimeWeaver"/>
   </property>
 </bean>



Using this technique, JPA applications relying on instrumentation, can run in Tomcat without the need of an
agent. This is important especially when hosting applications which rely on different JPA implementations
since the JPA transformers are applied only at ClassLoader level and thus, are isolated from each other.

           Note
           If TopLink is being used a JPA provider under Tomcat, please place the toplink-essentials jar under
           $CATALINA_HOME/shared/lib folder instead of your war.


12.6.1.3.2. General load-time weaving using the VM agent
For environments where class instrumentation is required but are not supported by the existing
LoadTimeWeaver implementations, a JDK agent can be the only solution. For such cases, Spring provides

                                          Spring Framework (2.5.6)                                        308
Object Relational Mapping (ORM) data access

InstrumentationLoadTimeWeaver       which requires a Spring-specific (but very general) VM agent
(spring-agent.jar):

 <bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
   <property name="loadTimeWeaver">
     <bean class="org.springframework.instrument.classloading.InstrumentationLoadTimeWeaver"/>
   </property>
 </bean>



Note that the virtual machine has to be started with the Spring agent, by supplying the following JVM options:

 -javaagent:/path/to/spring-agent.jar



12.6.1.3.3. Context-wide load-time weaver setup
Since Spring 2.5, a context-wide LoadTimeWeaver can be configured using the context:load-time-weaver
configuration   element.    Such    a   'global' weaver    will   be    picked   up   by   all   JPA
LocalContainerEntityManagerFactoryBeans automatically.

This is the preferred way of setting up a load-time weaver, delivering autodetection of the platform (WebLogic,
OC4J, GlassFish, Tomcat, Resin, VM agent) as well as automatic propagation of the weaver to all
weaver-aware beans.

 <context:load-time-weaver/>

 <bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
     ...
 </bean>



See the section entitled Section 6.8.4.5, “Spring configuration” for details on how to set up general load-time
weaving, covering Tomcat and the VM agent as well as WebLogic, OC4J, GlassFish and Resin.

12.6.1.4. Dealing with multiple persistence units

For applications that rely on multiple persistence units locations (stored in various jars in the classpath for
example), Spring offers the PersistenceUnitManager to act as a central repository and avoid the (potentially
expensive) persistence units discovery process. The default implementation allows multiple locations to be
specified (by default, the classpath is searched for 'META-INF/persistence.xml' files) which are parsed and
later on retrieved through the persistence unit name:

 <bean id="pum" class="org.springframework.orm.jpa.persistenceunit.DefaultPersistenceUnitManager">
   <property name="persistenceXmlLocation">
     <list>
      <value>org/springframework/orm/jpa/domain/persistence-multi.xml</value>
      <value>classpath:/my/package/**/custom-persistence.xml</value>
      <value>classpath*:META-INF/persistence.xml</value>
     </list>
   </property>
   <property name="dataSources">
    <map>
     <entry key="localDataSource" value-ref="local-db"/>
     <entry key="remoteDataSource" value-ref="remote-db"/>
    </map>
   </property>
   <!-- if no datasource is specified, use this one -->
   <property name="defaultDataSource" ref="remoteDataSource"/>
 </bean>

 <bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
   <property name="persistenceUnitManager" ref="pum"/>
 </bean>




                                          Spring Framework (2.5.6)                                         309
Object Relational Mapping (ORM) data access


Note that the default implementation allows customization of the persistence unit infos before feeding them to
the JPA provider declaratively through its properties (which affect all hosted units) or programmatically,
through the PersistenceUnitPostProcessor (which allows persistence unit selection). If no
PersistenceUnitManager       is specified, one will be created and used internally by
LocalContainerEntityManagerFactoryBean.



12.6.2. JpaTemplate and JpaDaoSupport

Each JPA-based DAO will then receive a EntityManagerFactory via dependency injection. Such a DAO can
be coded against plain JPA and work with the given EntityManagerFactory or through Spring's JpaTemplate:

 <beans>

     <bean id="myProductDao" class="product.ProductDaoImpl">
       <property name="entityManagerFactory" ref="myEmf"/>
     </bean>

 </beans>



 public class JpaProductDao implements ProductDao {

      private JpaTemplate jpaTemplate;

      public void setEntityManagerFactory(EntityManagerFactory emf) {
          this.jpaTemplate = new JpaTemplate(emf);
      }

      public Collection loadProductsByCategory(final String category) throws DataAccessException {
          return (Collection) this.jpaTemplate.execute(new JpaCallback() {
              public Object doInJpa(EntityManager em) throws PersistenceException {
                  Query query = em.createQuery("from Product as p where p.category = :category");
                  query.setParameter("category", category);
                  List result = query.getResultList();
                  // do some further processing with the result list
                  return result;
              }
          });
      }
 }



The JpaCallback implementation allows any type of JPA data access. The JpaTemplate will ensure that
EntityManagers are properly opened and closed and automatically participate in transactions. Moreover, the
JpaTemplate properly handles exceptions, making sure resources are cleaned up and the appropriate
transactions rolled back. The template instances are thread-safe and reusable and they can be kept as instance
variable of the enclosing class. Note that JpaTemplate offers single-step actions such as find, load, merge, etc
along with alternative convenience methods that can replace one line callback implementations.

Furthermore,    Spring    provides a convenient JpaDaoSupport base class                  that   provides   the
get/setEntityManagerFactory     and getJpaTemplate() to be used by subclasses:

 public class ProductDaoImpl extends JpaDaoSupport implements ProductDao {

      public Collection loadProductsByCategory(String category) throws DataAccessException {
          Map<String, String> params = new HashMap<String, String>();
          params.put("category", category);
          return getJpaTemplate().findByNamedParams("from Product as p where p.category = :category", params);
      }
 }



Besides working with Spring's JpaTemplate, one can also code Spring-based DAOs against the JPA, doing
one's own explicit EntityManager handling. As also elaborated in the corresponding Hibernate section, the



                                          Spring Framework (2.5.6)                                          310
Object Relational Mapping (ORM) data access

main advantage of this approach is that your data access code is able to throw checked exceptions.
JpaDaoSupport offers a variety of support methods for this scenario, for retrieving and releasing a transaction
EntityManager, as well as for converting exceptions.

JpaTemplate mainly exists as a sibling of JdoTemplate and HibernateTemplate, offering the same style for
people used to it. For newly started projects, consider adopting the native JPA style of coding data access
objects instead, based on a "shared EntityManager" reference obtained through the JPA
@PersistenceContext annotation (using Spring's PersistenceAnnotationBeanPostProcessor; see below for
details.)


12.6.3. Implementing DAOs based on plain JPA

            Note
            While EntityManagerFactory instances are thread-safe, EntityManager instances are not. The
            injected JPA EntityManager behave just like an EntityManager fetched from an application
            server's JNDI environment, as defined by the JPA specification. It will delegate all calls to the
            current transactional EntityManager, if any; else, it will fall back to a newly created
            EntityManager per operation, making it thread-safe.



It is possible to write code against the plain JPA without using any Spring dependencies, using an injected
EntityManagerFactory or EntityManager. Note that Spring can understand @PersistenceUnit and
@PersistenceContext         annotations      both    at     field    and     method      level     if     a
PersistenceAnnotationBeanPostProcessor is enabled. A corresponding DAO implementation might look
like this:

 public class ProductDaoImpl implements ProductDao {

      private EntityManagerFactory emf;

      @PersistenceUnit
      public void setEntityManagerFactory(EntityManagerFactory emf) {
          this.emf = emf;
      }

      public Collection loadProductsByCategory(String category) {
          EntityManager em = this.emf.createEntityManager();
          try {
                Query query = em.createQuery("from Product as p where p.category = ?1");
                query.setParameter(1, category);
                return query.getResultList();
          }
          finally {
              if (em != null) {
                   em.close();
              }
          }
      }
 }



The DAO above has no dependency on Spring and still fits nicely into a Spring application context, just like it
would if coded against Spring's JpaTemplate. Moreover, the DAO takes advantage of annotations to require the
injection of the default EntityManagerFactory:

 <beans>

     <!-- bean post-processor for JPA annotations -->
     <bean class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/>

     <bean id="myProductDao" class="product.ProductDaoImpl"/>

 </beans>


                                          Spring Framework (2.5.6)                                         311
Object Relational Mapping (ORM) data access


Note: As alternative to defining a PersistenceAnnotationBeanPostProcessor explicitly, consider using
Spring 2.5's context:annotation-config XML element in your application context configuration. This will
automatically register all of Spring's standard post-processors for annotation-based configuration (including
CommonAnnotationBeanPostProcessor etc).

 <beans>

      <!-- post-processors for all standard config annotations -->
      <context:annotation-config/>

      <bean id="myProductDao" class="product.ProductDaoImpl"/>

 </beans>



The main issue with such a DAO is that it always creates a new EntityManager via the factory. This can be
easily overcome by requesting a transactional EntityManager (also called "shared EntityManager", since it is a
shared, thread-safe proxy for the actual transactional EntityManager) to be injected instead of the factory:

 public class ProductDaoImpl implements ProductDao {

        @PersistenceContext
        private EntityManager em;

        public Collection loadProductsByCategory(String category) {
           Query query = em.createQuery("from Product as p where p.category = :category");
           query.setParameter("category", category);
           return query.getResultList();
        }
 }



Note that the @PersistenceContext annotation has an optional attribute type, which defaults to
PersistenceContextType.TRANSACTION. This default is what you need to receive a "shared EntityManager"
proxy. The alternative, PersistenceContextType.EXTENDED, is a completely different affair: This results in a
so-called "extended EntityManager", which is not thread-safe and hence must not be used in a concurrently
accessed component such as a Spring-managed singleton bean. Extended EntityManagers are only supposed to
be used in stateful components that, for example, reside in a session, with the lifecycle of the EntityManager
not tied to a current transaction but rather being completely up to the application.

     Method and Field level Injection

     Annotations that indicate dependency injections (such as @PersistenceUnit and @PersistenceContext)
     can be applied on field or methods inside a class, therefore the expression "method/field level injection".
     Field-level annotations concise and easier to use while method-level allow for processing the injected
     dependency. In both cases the member visibility (public, protected, private) does not matter.

     What about class level annotations?

     On the Java EE 5 platform, they are used for dependency declaration and not for resource injection.


The injected EntityManager is Spring-managed (aware of the ongoing transaction). It is important to note that
even though the new implementation prefers method level injection (of an EntityManager instead of an
EntityManagerFactory), no change is required in the application context XML due to annotation usage.

The main advantage of this DAO style is that it depends on Java Persistence API; no import of any Spring class
is required. Moreover, as the JPA annotations are understood, the injections are applied automatically by the
Spring container. This is of course appealing from a non-invasiveness perspective, and might feel more natural
to JPA developers.

                                             Spring Framework (2.5.6)                                          312
Object Relational Mapping (ORM) data access


12.6.4. Exception Translation

However, the DAO throws the plain PersistenceException exception class (which is unchecked, and so does
not have to be declared or caught) but also IllegalArgumentException and IllegalStateException, which
means that callers can only treat exceptions as generally fatal - unless they want to depend on JPA's own
exception structure. Catching specific causes such as an optimistic locking failure is not possible without tying
the caller to the implementation strategy. This tradeoff might be acceptable to applications that are strongly
JPA-based and/or do not need any special exception treatment. However, Spring offers a solution allowing
exception translation to be applied transparently through the @Repository annotation:

 @Repository
 public class ProductDaoImpl implements ProductDao {

      // class body here...

 }



 <beans>

     <!-- Exception translation bean post processor -->
     <bean class="org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor"/>

     <bean id="myProductDao" class="product.ProductDaoImpl"/>

 </beans>



The postprocessor will automatically look for all exception translators (implementations of the
PersistenceExceptionTranslator interface) and advise all beans marked with the @Repository annotation so
that the discovered translators can intercept and apply the appropriate translation on the thrown exceptions.

In summary: DAOs can be implemented based on the plain Java Persistence API and annotations, while still
being able to benefit from Spring-managed transactions, dependency injection, and transparent exception
conversion (if desired) to Spring's custom exception hierarchies.


12.7. Transaction Management
To execute service operations within transactions, you can use Spring's common declarative transaction
facilities. For example:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:aop="http://www.springframework.org/schema/aop"
        xmlns:tx="http://www.springframework.org/schema/tx"
        xsi:schemaLocation="
        http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.
        http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
        http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

     <bean id="myTxManager" class="org.springframework.orm.jpa.JpaTransactionManager">
       <property name="entityManagerFactory" ref="myEmf"/>
     </bean>

     <bean id="myProductService" class="product.ProductServiceImpl">
       <property name="productDao" ref="myProductDao"/>
     </bean>

     <aop:config>
       <aop:pointcut id="productServiceMethods" expression="execution(* product.ProductService.*(..))"/>
       <aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/>
     </aop:config>

     <tx:advice id="txAdvice" transaction-manager="myTxManager">


                                           Spring Framework (2.5.6)                                          313
Object Relational Mapping (ORM) data access


       <tx:attributes>
         <tx:method name="increasePrice*" propagation="REQUIRED"/>
         <tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/>
         <tx:method name="*" propagation="SUPPORTS" read-only="true"/>
       </tx:attributes>
     </tx:advice>

 </beans>



Spring JPA allows a configured JpaTransactionManager to expose a JPA transaction to JDBC access code that
accesses the same JDBC DataSource, provided that the registered JpaDialect supports retrieval of the
underlying JDBC Connection. Out of the box, Spring provides dialects for the Toplink, Hibernate and
OpenJPA JPA implementations. See the next section for details on the JpaDialect mechanism.


12.8. JpaDialect
As     an     advanced      feature    JpaTemplate,      JpaTransactionManager and     subclasses    of
AbstractEntityManagerFactoryBean support a custom JpaDialect, to be passed into the "jpaDialect" bean
property. In such a scenario, the DAOs won't receive an EntityManagerFactory reference but rather a full
JpaTemplate instance instead (for example, passed into JpaDaoSupport's "jpaTemplate" property). A
JpaDialect implementation can enable some advanced features supported by Spring, usually in a
vendor-specific manner:


• applying specific transaction semantics (such as custom isolation level or transaction timeout)

• retrieving the transactional JDBC Connection (for exposure to JDBC-based DAOs)

• advanced translation of PersistenceExceptions to Spring DataAccessExceptions

This is particularly valuable for special transaction semantics and for advanced translation of exception. Note
that the default implementation used (DefaultJpaDialect) doesn't provide any special capabilities and if the
above features are required, the appropriate dialect has to be specified.

See the JpaDialect Javadoc for more details of its operations and how they are used within Spring's JPA
support.




                                           Spring Framework (2.5.6)                                        314
Part III. The Web
This part of the reference documentation covers the Spring Framework's support for the presentation tier (and
specifically web-based presentation tiers).

The Spring Framework's own web framework, Spring Web MVC, is covered in the first couple of chapters. A
number of the remaining chapters in this part of the reference documentation are concerned with the Spring
Framework's integration with other web technologies, such as Struts and JSF (to name but two).

This section concludes with coverage of Spring's MVC portlet framework.


• Chapter 13, Web MVC framework

• Chapter 14, View technologies

• Chapter 15, Integrating with other web frameworks

• Chapter 16, Portlet MVC Framework




                                         Spring Framework (2.5.6)                                        315
Chapter 13. Web MVC framework

13.1. Introduction
Spring's Web MVC framework is designed around a DispatcherServlet that dispatches requests to handlers,
with configurable handler mappings, view resolution, locale and theme resolution as well as support for upload
files. The default handler is a very simple Controller interface, just offering a ModelAndView
handleRequest(request,response) method. This can already be used for application controllers, but you will
prefer the included implementation hierarchy, consisting of, for example AbstractController,
AbstractCommandController and SimpleFormController. Application controllers will typically be subclasses
of those. Note that you can choose an appropriate base class: if you don't have a form, you don't need a form
controller. This is a major difference to Struts.

            Tip
            Since Spring 2.5, an annotated controller style is available for Java 5+ users. This is a compelling
            alternative to implementing traditional Controller (sub-)classes, allowing for flexible multi-action
            handling. See the Section 13.11, “Annotation-based controller configuration” section for details.


   “Open for extension...”

   One of the overarching design principles in Spring Web MVC (and in Spring in general) is the “Open for
   extension, closed for modification” principle.

   The reason that this principle is being mentioned here is because a number of methods in the core classes
   in Spring Web MVC are marked final. This means of course that you as a developer cannot override
   these methods to supply your own behavior... this is by design and has not been done arbitrarily to annoy.

   The book 'Expert Spring Web MVC and Web Flow' by Seth Ladd and others explains this principle and
   the reasons for adhering to it in some depth on page 117 (first edition) in the section entitled 'A Look At
   Design'.

   If you don't have access to the aforementioned book, then the following article may be of interest the next
   time you find yourself going “Gah! Why can't I override this method?” (if indeed you ever do).


   1. Bob Martin, The Open-Closed Principle (PDF)

   Note that you cannot add advice to final methods using Spring MVC. This means it won't be possible to
   add advice to for example the AbstractController.handleRequest() method. Refer to Section 6.6.1,
   “Understanding AOP proxies” for more information on AOP proxies and why you cannot add advice to
   final methods.


Spring Web MVC allows you to use any object as a command or form object - there is no need to implement a
framework-specific interface or base class. Spring's data binding is highly flexible: for example, it treats type
mismatches as validation errors that can be evaluated by the application, not as system errors. All this means
that you don't need to duplicate your business objects' properties as simple, untyped strings in your form objects
just to be able to handle invalid submissions, or to convert the Strings properly. Instead, it is often preferable to
bind directly to your business objects. This is another major difference to Struts which is built around required


                                            Spring Framework (2.5.6)                                             316
Web MVC framework


base classes such as Action and ActionForm.

Compared to WebWork, Spring has more differentiated object roles. It supports the notion of a Controller, an
optional command or form object, and a model that gets passed to the view. The model will normally include
the command or form object but also arbitrary reference data; instead, a WebWork Action combines all those
roles into one single object. WebWork does allow you to use existing business objects as part of your form, but
only by making them bean properties of the respective Action class. Finally, the same Action instance that
handles the request is used for evaluation and form population in the view. Thus, reference data needs to be
modeled as bean properties of the Action too. These are (arguably) too many roles for one object.

Spring's view resolution is extremely flexible. A Controller implementation can even write a view directly to
the response (by returning null for the ModelAndView). In the normal case, a ModelAndView instance consists of
a view name and a model Map, which contains bean names and corresponding objects (like a command or form,
containing reference data). View name resolution is highly configurable, either via bean names, via a properties
file, or via your own ViewResolver implementation. The fact that the model (the M in MVC) is based on the
Map interface allows for the complete abstraction of the view technology. Any renderer can be integrated
directly, whether JSP, Velocity, or any other rendering technology. The model Map is simply transformed into
an appropriate format, such as JSP request attributes or a Velocity template model.


13.1.1. Pluggability of other MVC implementations

There are several reasons why some projects will prefer to use other MVC implementations. Many teams
expect to leverage their existing investment in skills and tools. In addition, there is a large body of knowledge
and experience available for the Struts framework. Thus, if you can live with Struts' architectural flaws, it can
still be a viable choice for the web layer; the same applies to WebWork and other web MVC frameworks.

If you don't want to use Spring's web MVC, but intend to leverage other solutions that Spring offers, you can
integrate the web MVC framework of your choice with Spring easily. Simply start up a Spring root application
context via its ContextLoaderListener, and access it via its ServletContext attribute (or Spring's respective
helper method) from within a Struts or WebWork action. Note that there aren't any "plug-ins" involved, so no
dedicated integration is necessary. From the web layer's point of view, you'll simply use Spring as a library,
with the root application context instance as the entry point.

All your registered beans and all of Spring's services can be at your fingertips even without Spring's Web
MVC. Spring doesn't compete with Struts or WebWork in this scenario, it just addresses the many areas that
the pure web MVC frameworks don't, from bean configuration to data access and transaction handling. So you
are able to enrich your application with a Spring middle tier and/or data access tier, even if you just want to use,
for example, the transaction abstraction with JDBC or Hibernate.


13.1.2. Features of Spring Web MVC

   Spring Web Flow

   Spring Web Flow (SWF) aims to be the best solution for the management of web application page flow.

   SWF integrates with existing frameworks like Spring MVC, Struts, and JSF, in both servlet and portlet
   environments. If you have a business process (or processes) that would benefit from a conversational
   model as opposed to a purely request model, then SWF may be the solution.

   SWF allows you to capture logical page flows as self-contained modules that are reusable in different
   situations, and as such is ideal for building web application modules that guide the user through



                                            Spring Framework (2.5.6)                                            317
Web MVC framework



   controlled navigations that drive business processes.

   For more information about SWF, consult the Spring Web Flow website.


Spring's web module provides a wealth of unique web support features, including:


• Clear separation of roles - controller, validator, command object, form object, model object,
  DispatcherServlet, handler mapping, view resolver, etc. Each role can be fulfilled by a specialized object.

• Powerful and straightforward configuration of both framework and application classes as JavaBeans,
  including easy referencing across contexts, such as from web controllers to business objects and validators.

• Adaptability, non-intrusiveness. Use whatever controller subclass you need (plain, command, form, wizard,
  multi-action, or a custom one) for a given scenario instead of deriving from a single controller for
  everything.

• Reusable business code - no need for duplication. You can use existing business objects as command or form
  objects instead of mirroring them in order to extend a particular framework base class.

• Customizable binding and validation - type mismatches as application-level validation errors that keep the
  offending value, localized date and number binding, etc instead of String-only form objects with manual
  parsing and conversion to business objects.

• Customizable handler mapping and view resolution - handler mapping and view resolution strategies range
  from simple URL-based configuration, to sophisticated, purpose-built resolution strategies. This is more
  flexible than some web MVC frameworks which mandate a particular technique.

• Flexible model transfer - model transfer via a name/value Map supports easy integration with any view
  technology.

• Customizable locale and theme resolution, support for JSPs with or without Spring tag library, support for
  JSTL, support for Velocity without the need for extra bridges, etc.

• A simple yet powerful JSP tag library known as the Spring tag library that provides support for features such
  as data binding and themes. The custom tags allow for maximum flexibility in terms of markup code. For
  information on the tag library descriptor, see the appendix entitled Appendix D, spring.tld

• A JSP form tag library, introduced in Spring 2.0, that makes writing forms in JSP pages much easier. For
  information on the tag library descriptor, see the appendix entitled Appendix E, spring-form.tld

• Beans whose lifecycle is scoped to the current HTTP request or HTTP Session. This is not a specific feature
  of Spring MVC itself, but rather of the WebApplicationContext container(s) that Spring MVC uses. These
  bean scopes are described in detail in the section entitled Section 3.4.4, “The other scopes”



13.2. The DispatcherServlet
Spring's web MVC framework is, like many other web MVC frameworks, request-driven, designed around a
central servlet that dispatches requests to controllers and offers other functionality facilitating the development
of web applications. Spring's DispatcherServlet however, does more than just that. It is completely integrated
with the Spring IoC container and as such allows you to use every other feature that Spring has.



                                            Spring Framework (2.5.6)                                           318
Web MVC framework


The request processing workflow of the Spring Web MVC DispatcherServlet is illustrated in the following
diagram. The pattern-savvy reader will recognize that the DispatcherServlet is an expression of the “Front
Controller” design pattern (this is a pattern that Spring Web MVC shares with many other leading web
frameworks).




                    The requesting processing workflow in Spring Web MVC (high level)

The DispatcherServlet is an actual Servlet (it inherits from the HttpServlet base class), and as such is
declared in the web.xml of your web application. Requests that you want the DispatcherServlet to handle will
have to be mapped using a URL mapping in the same web.xml file. This is standard J2EE servlet configuration;
an example of such a DispatcherServlet declaration and mapping can be found below.

 <web-app>

     <servlet>
         <servlet-name>example</servlet-name>
         <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
         <load-on-startup>1</load-on-startup>
     </servlet>

     <servlet-mapping>
         <servlet-name>example</servlet-name>
         <url-pattern>*.form</url-pattern>
     </servlet-mapping>

 </web-app>



In the example above, all requests ending with .form will be handled by the 'example' DispatcherServlet.
This is only the first step in setting up Spring Web MVC... the various beans used by the Spring Web MVC
framework (over and above the DispatcherServlet itself) now need to be configured.

As detailed in the section entitled Section 3.8, “The ApplicationContext”, ApplicationContext instances in
Spring can be scoped. In the web MVC framework, each DispatcherServlet has its own


                                         Spring Framework (2.5.6)                                       319
Web MVC framework

WebApplicationContext,      which inherits all the beans already defined in the root WebApplicationContext.
These inherited beans defined can be overridden in the servlet-specific scope, and new scope-specific beans can
be defined local to a given servlet instance.




                                   Context hierarchy in Spring Web MVC

The    framework      will,   on   initialization of a DispatcherServlet, look for a file named
[servlet-name]-servlet.xml       in the WEB-INF directory of your web application and create the beans defined
there (overriding the definitions of any beans defined with the same name in the global scope).

Consider the following DispatcherServlet servlet configuration (in the 'web.xml' file.)

 <web-app>

       <servlet>
           <servlet-name>golfing</servlet-name>
           <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
           <load-on-startup>1</load-on-startup>
       </servlet>

       <servlet-mapping>
           <servlet-name>golfing</servlet-name>
           <url-pattern>*.do</url-pattern>
       </servlet-mapping>

 </web-app>



With    the   above     servlet   configuration in place, you will need to have a file called
'/WEB-INF/golfing-servlet.xml'         in your application; this file will contain all of your Spring Web
MVC-specific components (beans). The exact location of this configuration file can be changed via a servlet
initialization parameter (see below for details).



                                          Spring Framework (2.5.6)                                         320
Web MVC framework


The WebApplicationContext is an extension of the plain ApplicationContext that has some extra features
necessary for web applications. It differs from a normal ApplicationContext in that it is capable of resolving
themes (see Section 13.7, “Using themes”), and that it knows which servlet it is associated with (by having a
link to the ServletContext). The WebApplicationContext is bound in the ServletContext, and by using
static methods on the RequestContextUtils class you can always lookup the WebApplicationContext in case
you need access to it.

The Spring DispatcherServlet has a couple of special beans it uses in order to be able to process requests and
render the appropriate views. These beans are included in the Spring framework and can be configured in the
WebApplicationContext, just as any other bean would be configured. Each of those beans is described in more
detail below. Right now, we'll just mention them, just to let you know they exist and to enable us to go on
talking about the DispatcherServlet. For most of the beans, sensible defaults are provided so you don't
(initially) have to worry about configuring them.


Table 13.1. Special beans in the WebApplicationContext

Bean type               Explanation

Controllers             Controllers are the components that form the 'C' part of the MVC.

Handler mappings        Handler mappings handle the execution of a list of pre- and post-processors and
                        controllers that will be executed if they match certain criteria (for instance a matching
                        URL specified with the controller)

View resolvers          View resolvers are components capable of resolving view names to views

Locale resolver         A locale resolver is a component capable of resolving the locale a client is using, in
                        order to be able to offer internationalized views

Theme resolver          A theme resolver is capable of resolving themes your web application can use, for
                        example, to offer personalized layouts

multipart          file A multipart file resolver offers the functionality to process file uploads from HTML
resolver                forms

Handler exception Handler exception resolvers offer functionality to map exceptions to views or
resolver(s)       implement other more complex exception handling code


When a DispatcherServlet is set up for use and a request comes in for that specific DispatcherServlet, said
DispatcherServlet starts processing the request. The list below describes the complete process a request goes
through when handled by a DispatcherServlet:


1. The WebApplicationContext is searched for and bound in the request as an attribute in order for the
   controller and other elements in the process to use. It is bound by default under the key
   DispatcherServlet.WEB_APPLICATION_CONTEXT_ATTRIBUTE.

2. The locale resolver is bound to the request to let elements in the process resolve the locale to use when
   processing the request (rendering the view, preparing data, etc.) If you don't use the resolver, it won't affect
   anything, so if you don't need locale resolving, you don't have to use it.

3. The theme resolver is bound to the request to let elements such as views determine which theme to use. The
   theme resolver does not affect anything if you don't use it, so if you don't need themes you can just ignore it.

4. If a multipart resolver is specified, the request is inspected for multiparts; if multiparts are found, the request


                                             Spring Framework (2.5.6)                                             321
Web MVC framework


   is wrapped in a MultipartHttpServletRequest for further processing by other elements in the process. (See
   the section entitled Section 13.8.2, “Using the MultipartResolver” for further information about multipart
   handling).

5. An appropriate handler is searched for. If a handler is found, the execution chain associated with the handler
   (preprocessors, postprocessors, and controllers) will be executed in order to prepare a model (for rendering).

6. If a model is returned, the view is rendered. If no model is returned (which could be due to a pre- or
   postprocessor intercepting the request, for example, for security reasons), no view is rendered, since the
   request could already have been fulfilled.

Exceptions that are thrown during processing of the request get picked up by any of the handler exception
resolvers that are declared in the WebApplicationContext. Using these exception resolvers allows you to
define custom behaviors in case such exceptions get thrown.

The Spring DispatcherServlet also has support for returning the last-modification-date, as specified by the
Servlet API. The process of determining the last modification date for a specific request is straightforward: the
DispatcherServlet will first lookup an appropriate handler mapping and test if the handler that is found
implements the interface LastModified interface. If so, the value of the long getLastModified(request)
method of the LastModified interface is returned to the client.

You can customize Spring's DispatcherServlet by adding context parameters in the web.xml file or servlet
initialization parameters. The possibilities are listed below.


Table 13.2. DispatcherServlet initialization parameters

Parameter              Explanation

contextClass           Class that implements WebApplicationContext, which will be used to instantiate the
                       context used by this servlet. If this parameter isn't specified, the
                       XmlWebApplicationContext will be used.

                   String
contextConfigLocation         which is passed to the context instance (specified by contextClass) to indicate
                       where context(s) can be found. The string is potentially split up into multiple strings
                       (using a comma as a delimiter) to support multiple contexts (in case of multiple context
                       locations, of beans that are defined twice, the latest takes precedence).

namespace              the namespace of the WebApplicationContext. Defaults to [servlet-name]-servlet.




13.3. Controllers
The notion of a controller is part of the MVC design pattern (more specifically, it is the 'C' in MVC).
Controllers provide access to the application behavior which is typically defined by a service interface.
Controllers interpret user input and transform such input into a sensible model which will be represented to the
user by the view. Spring has implemented the notion of a controller in a very abstract way enabling a wide
variety of different kinds of controllers to be created. Spring contains form-specific controllers,
command-based controllers, and controllers that execute wizard-style logic, to name but a few.

Spring's basis for the controller architecture is the org.springframework.web.servlet.mvc.Controller
interface, the source code for which is listed below.

 public interface Controller {



                                           Spring Framework (2.5.6)                                          322
Web MVC framework


      /**
       * Process the request and return a ModelAndView object which the DispatcherServlet
       * will render.
       */
      ModelAndView handleRequest(
          HttpServletRequest request,
          HttpServletResponse response) throws Exception;

 }



As you can see, the Controller interface defines a single method that is responsible for handling a request and
returning an appropriate model and view. These three concepts are the basis for the Spring MVC
implementation - ModelAndView and Controller. While the Controller interface is quite abstract, Spring
offers a lot of Controller implementations out of the box that already contain a lot of the functionality you
might need. The Controller interface just defines the most basic responsibility required of every controller;
namely handling a request and returning a model and a view.


13.3.1. AbstractController and WebContentGenerator

To provide a basic infrastructure, all of Spring's various Controller inherit from AbstractController, a class
offering caching support and, for example, the setting of the mimetype.


Table 13.3. Features offered by the AbstractController

Feature                     Explanation

supportedMethods            indicates what methods this controller should accept. Usually this is set to both
                            GET and POST, but you can modify this to reflect the method you want to support.
                            If a request is received with a method that is not supported by the controller, the
                            client will be informed of this (expedited by the throwing of a
                            ServletException).

requireSession              indicates whether or not this controller requires a HTTP session to do its work. If
                            a session is not present when such a controller receives a request, the user is
                            informed of this by a ServletException being thrown.

synchronizeOnSession        use this if you want handling by this controller to be synchronized on the user's
                            HTTP session.

cacheSeconds                when you want a controller to generate a caching directive in the HTTP response,
                            specify a positive integer here. By default the value of this property is set to -1 so
                            no caching directives will be included in the generated response.

useExpiresHeader            tweaks your controllers to specify the HTTP 1.0 compatible "Expires" header in
                            the generated response. By default the value of this property is true.

useCacheHeader              tweaks your controllers to specify the HTTP 1.1 compatible "Cache-Control"
                            header in the generated response. By default the value of this property is true.


When using the AbstractController as the baseclass for your controllers you only have to override the
handleRequestInternal(HttpServletRequest, HttpServletResponse) method, implement your logic, and
return a ModelAndView object. Here is short example consisting of a class and a declaration in the web
application context.

 package samples;




                                          Spring Framework (2.5.6)                                             323
Web MVC framework


 public class SampleController extends AbstractController {

      public ModelAndView handleRequestInternal(
          HttpServletRequest request,
          HttpServletResponse response) throws Exception {

          ModelAndView mav = new ModelAndView("hello");
          mav.addObject("message", "Hello World!");
          return mav;
      }
 }



 <bean id="sampleController" class="samples.SampleController">
     <property name="cacheSeconds" value="120"/>
 </bean>



The above class and the declaration in the web application context is all you need besides setting up a handler
mapping (see the section entitled Section 13.4, “Handler mappings”) to get this very simple controller working.
This controller will generate caching directives telling the client to cache things for 2 minutes before
rechecking. This controller also returns a hard-coded view (which is typically considered bad practice).


13.3.2. Other simple controllers

Although you can extend AbstractController, Spring provides a number of concrete implementations which
offer functionality that is commonly used in simple MVC applications. The ParameterizableViewController
is basically the same as the example above, except for the fact that you can specify the view name that it will
return in the web application context (and thus remove the need to hard-code the viewname in the Java class).

The UrlFilenameViewController inspects the URL and retrieves the filename of the file request and uses that
as a viewname. For example, the filename of http://www.springframework.org/index.html request is
index.



13.3.3. The MultiActionController

Spring offers a MultiActionController class that supports the aggregation of multiple request-handling
methods into one controller, which then allows you to group related functionality together. (If you are a Struts
veteran you might recognize the similarity between the Struts DispatchAction and the Spring MVC
MultiActionController.) The MultiActionController class is defined in a distinct package -
org.springframework.web.servlet.mvc.multiaction - and it is capable of mapping requests to method
names and then invoking the correct method to handle a particular request. Using the MultiActionController
is especially handy when you have a lot of related functionality that would perhaps be nice to define all in a
single class without having to implement one Controller for each bit of functionality. The
MultiActionController typically is not appropriate for capturing very complex request-handling logic or use
cases that address totally-different areas of functionality, and you are encouraged to stick with the standard 'one
piece-of-functionality maps to one Controller' for such cases.

There are two usage-styles for the MultiActionController. Either you subclass the MultiActionController
and specify the methods that will be resolved by the MethodNameResolver on your subclass, or you define a
delegate object, on which methods resolved by the MethodNameResolver will be invoked. If you choose the
former style, you do not need to set a delegate, but for the latter style, you will need to inject your delegate
object into the MultiActionController as a collaborator (either as a single constructor argument or via the
'setDelegate' method).

The MultiActionController needs some strategy to determine which method to invoke when handling an
incoming request: this strategy is defined by the MethodNameResolver interface. The MultiActionController

                                            Spring Framework (2.5.6)                                           324
Web MVC framework

class exposes the 'methodNameResolver' property so that you can inject a MethodNameResolver that is capable
of doing that. The methods that you define on a MultiActionController (or on the class of the injected
delegate object) must conform to the following signature:

 // 'anyMeaningfulName' can be replaced by any method name
 public [ModelAndView | Map | void] anyMeaningfulName(HttpServletRequest, HttpServletResponse [,HttpSession] [,An



The full details of this method signature are covered in the class-level Javadoc of the MultiActionController
source itself. If you are planning to use the MultiActionController, you are highly encouraged to consult that
Javadoc. However, below you will find some basic examples of valid MultiActionController method
signatures.

The standard signature (mirrors the Controller interface method).

 public ModelAndView displayCatalog(HttpServletRequest, HttpServletResponse)



This signature accepts a Login argument that will be populated (bound) with parameters retrieved from the
request.

 public ModelAndView login(HttpServletRequest, HttpServletResponse, Login)



This signature requires that the request already have a valid session.

 public ModelAndView viewCart(HttpServletRequest, HttpServletResponse, HttpSession)



This signature accepts a Product argument that will be populated (bound) with parameters retrieved from the
request and requires that the request already have a valid session. Note that the order of arguments is important:
the session must be the third argument, and an object to be bound must always be the final argument (fourth
when a session is specified, or third otherwise).

 public ModelAndView updateCart(HttpServletRequest, HttpServletResponse, HttpSession, Product)



This signature has a void return type indicating that the handler method assumes the responsibility of writing
the response.

 public void home(HttpServletRequest, HttpServletResponse)



This signature has a Map return type indicating that a view name translator will be responsible for providing the
view name based upon the request, and the model will consist of the Map's entries (see the section entitled
Section 13.10, “Convention over configuration” below).

 public Map list(HttpServletRequest, HttpServletResponse)



The MethodNameResolver is responsible for resolving method names based on the specifics of the incoming
HttpServletRequest. A number of MethodNameResolver implementations are provided for you, and of course
you can always write your own. Please also note that the InternalPathMethodNameResolver is the default
MethodNameResolver that will be used if you don't inject one explicitly.


• InternalPathMethodNameResolver - interprets the final filename from the request path and uses that as the
  method name/

  For example, 'http://www.sf.net/testing.view' will result in the method testing(HttpServletRequest,


                                            Spring Framework (2.5.6)                                          325
Web MVC framework


  HttpServletResponse)     being invoked.

• ParameterMethodNameResolver - interprets a request parameter as the name of the method that is to be
  invoked.

  For     example,   'http://www.sf.net/index.view?method=testIt' will result in the method
  testIt(HttpServletRequest, HttpServletResponse)       being invoked. The 'paramName' property specifies
  the name of the request parameter that is to be used.

• PropertiesMethodNameResolver - uses a user-defined Properties object with request URLs mapped to
  method names. For example, when the Properties contain '/index/welcome.html=doIt' and a request to
  /index/welcome.html comes in, the doIt(HttpServletRequest, HttpServletResponse) method will be
  invoked. This particular MethodNameResolver uses the Spring PathMatcher class internally, so if the
  Properties contained '/**/welcom?.html', the example would also have worked.

You may also declare custom methods for handling Exceptions that occur during request handling. The valid
signature for such a method is similar to the request handling methods in that the HttpServletRequest and
HttpServletResponse must be provided as the first and second parameters respectively. Unlike request
handling methods however, the method's name is irrelevant. Instead, when determining which Exception
handling method to invoke, the decision is based upon the most specific possible match among the methods
whose third argument is some type of Exception. Here is an example signature for one such Exception
handling method.

 public ModelAndView processException(HttpServletRequest, HttpServletResponse, IllegalArgumentException)



Let's look at an example showing the delegate-style of MultiActionController usage in conjunction with the
ParameterMethodNameResolver.

 <bean id="paramMultiController"
       class="org.springframework.web.servlet.mvc.multiaction.MultiActionController">

        <property name="methodNameResolver">
            <bean class="org.springframework.web.servlet.mvc.multiaction.ParameterMethodNameResolver">
                <property name="paramName" value="method"/>
            </bean>
        </property>

        <property name="delegate">
            <bean class="samples.SampleDelegate"/>
        </property>

 </bean>
 }



 public class SampleDelegate {

        public ModelAndView retrieveIndex(HttpServletRequest req, HttpServletResponse resp) {
            return new ModelAndView("index", "date", new Long(System.currentTimeMillis()));
        }
 }



When using the delegate shown above, we could also configure the PropertiesMethodNameResolver to match
any number couple of URLs to the method we defined:

 <bean id="propsResolver"
       class="org....mvc.multiaction.PropertiesMethodNameResolver">
     <property name="mappings">
         <value>
 /index/welcome.html=retrieveIndex
 /**/notwelcome.html=retrieveIndex
 /*/user?.html=retrieveIndex


                                            Spring Framework (2.5.6)                                  326
Web MVC framework


         </value>
     </property>
 </bean>

 <bean id="paramMultiController" class="org....mvc.multiaction.MultiActionController">

      <property name="methodNameResolver" ref="propsResolver"/>
      <property name="delegate">
          <bean class="samples.SampleDelegate"/>
      </property>

 </bean>




13.3.4. Command controllers

Spring's command controllers are a fundamental part of the Spring Web MVC package. Command controllers
provide a way to interact with data objects and dynamically bind parameters from the HttpServletRequest to
the data object specified. They perform a somewhat similar role to the Struts ActionForm, but in Spring, your
data objects don't have to implement a framework-specific interface. First, lets examine what command
controllers are available straight out of the box.

• AbstractCommandController - a command controller you can use to create your own command controller,
  capable of binding request parameters to a data object you specify. This class does not offer form
  functionality; it does however offer validation features and lets you specify in the controller itself what to do
  with the command object that has been populated with request parameter values.
• AbstractFormController - an abstract controller offering form submission support. Using this controller
  you can model forms and populate them using a command object you retrieve in the controller. After a user
  has filled the form, the AbstractFormController binds the fields, validates the command object, and hands
  the object back to the controller to take the appropriate action. Supported features are: invalid form
  submission (resubmission), validation, and normal form workflow. You implement methods to determine
  which views are used for form presentation and success. Use this controller if you need forms, but don't want
  to specify what views you're going to show the user in the application context.
• SimpleFormController - a form controller that provides even more support when creating a form with a
  corresponding command object. The SimpleFormController let's you specify a command object, a
  viewname for the form, a viewname for page you want to show the user when form submission has
  succeeded, and more.
• AbstractWizardFormController - as the class name suggests, this is an abstract class - your wizard
  controller should extend it. This means you have to implement the validatePage(), processFinish() and
  processCancel() methods.

  You probably also want to write a contractor, which should at the very least call setPages() and
  setCommandName(). The former takes as its argument an array of type String. This array is the list of views
  which comprise your wizard. The latter takes as its argument a String, which will be used to refer to your
  command object from within your views.

  As with any instance of AbstractFormController, you are required to use a command object - a JavaBean
  which will be populated with the data from your forms. You can do this in one of two ways: either call
  setCommandClass() from the constructor with the class of your command object, or implement the
  formBackingObject() method.

  AbstractWizardFormController      has a number of concrete methods that you may wish to override. Of these,
  the ones you are likely to find most useful are: referenceData(..) which you can use to pass model data to
  your view in the form of a Map; getTargetPage() if your wizard needs to change page order or omit pages
  dynamically; and onBindAndValidate() if you want to override the built-in binding and validation
  workflow.


                                            Spring Framework (2.5.6)                                           327
Web MVC framework


  Finally, it is worth pointing out the setAllowDirtyBack() and setAllowDirtyForward(), which you can
  call from getTargetPage() to allow users to move backwards and forwards in the wizard even if validation
  fails for the current page.

  For a full list of methods, see the Javadoc for AbstractWizardFormController. There is an implemented
  example      of    this  wizard     in   the    jPetStore  included  in   the   Spring     distribution:
  org.springframework.samples.jpetstore.web.spring.OrderFormController.




13.4. Handler mappings
Using a handler mapping you can map incoming web requests to appropriate handlers. There are some handler
mappings you can use out of the box, for example, the SimpleUrlHandlerMapping or the
BeanNameUrlHandlerMapping, but let's first examine the general concept of a HandlerMapping.

The functionality a basic HandlerMapping provides is the delivering of a HandlerExecutionChain, which must
contain the handler that matches the incoming request, and may also contain a list of handler interceptors that
are applied to the request. When a request comes in, the DispatcherServlet will hand it over to the handler
mapping to let it inspect the request and come up with an appropriate HandlerExecutionChain. Then the
DispatcherServlet will execute the handler and interceptors in the chain (if any).

The concept of configurable handler mappings that can optionally contain interceptors (executed before or after
the actual handler was executed, or both) is extremely powerful. A lot of supporting functionality can be built
into custom HandlerMappings. Think of a custom handler mapping that chooses a handler not only based on the
URL of the request coming in, but also on a specific state of the session associated with the request.

This section describes two of Spring's most commonly used handler mappings. They both extend the
AbstractHandlerMapping and share the following properties:

• interceptors: the list of interceptors to use. HandlerInterceptors are discussed in Section 13.4.3,
  “Intercepting requests - the HandlerInterceptor interface”.
• defaultHandler: the default handler to use, when this handler mapping does not result in a matching
  handler.
• order: based on the value of the order property (see the org.springframework.core.Ordered interface),
  Spring will sort all handler mappings available in the context and apply the first matching handler.
• alwaysUseFullPath: if this property is set to true, Spring will use the full path within the current servlet
  context to find an appropriate handler. If this property is set to false (the default), the path within the current
  servlet mapping will be used. For example, if a servlet is mapped using /testing/* and the
  alwaysUseFullPath property is set to true, /testing/viewPage.html would be used, whereas if the property
  is set to false, /viewPage.html would be used.
• urlDecode: the default value for this property is true, as of Spring 2.5. If you prefer to compare encoded
  paths, switch this flag to false. However, note that the HttpServletRequest always exposes the servlet path
  in decoded form. Be aware that the servlet path will not match when compared with encoded paths.
• lazyInitHandlers: allows for lazy initialization of singleton handlers (prototype handlers are always lazily
  initialized). Default value is false.

(Note:      the     last     three      properties      are      only
                                                             available                     to     subclasses      of
org.springframework.web.servlet.handler.AbstractUrlHandlerMapping).



13.4.1. BeanNameUrlHandlerMapping

A very simple, but very powerful handler mapping is the BeanNameUrlHandlerMapping, which maps incoming


                                            Spring Framework (2.5.6)                                             328
Web MVC framework

HTTP requests to names of beans, defined in the web application context. Let's say we want to enable a user to
insert an account and we've already provided an appropriate form controller (see Section 13.3.4, “Command
controllers” for more information on command- and form controllers) and a JSP view (or Velocity template)
that renders the form. When using the BeanNameUrlHandlerMapping, we could map the HTTP request with the
URL http://samples.com/editaccount.form to the appropriate form Controller as follows:

 <beans>
   <bean id="handlerMapping" class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping"/>

   <bean name="/editaccount.form" class="org.springframework.web.servlet.mvc.SimpleFormController">
     <property name="formView" value="account"/>
     <property name="successView" value="account-created"/>
     <property name="commandName" value="account"/>
     <property name="commandClass" value="samples.Account"/>
   </bean>
 <beans>



All incoming requests for the URL /editaccount.form will now be handled by the form Controller in the
source listing above. Of course we have to define a servlet-mapping in web.xml as well, to let through all the
requests ending with .form.

 <web-app>
     ...
     <servlet>
         <servlet-name>sample</servlet-name>
         <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
         <load-on-startup>1</load-on-startup>
     </servlet>

    <!-- maps the sample dispatcher to *.form -->
     <servlet-mapping>
         <servlet-name>sample</servlet-name>
         <url-pattern>*.form</url-pattern>
     </servlet-mapping>
     ...
 </web-app>



            Note
            If you want to use the BeanNameUrlHandlerMapping, you don't necessarily have to define it in the
            web application context (as indicated above). By default, if no handler mapping can be found in the
            context, the DispatcherServlet creates a BeanNameUrlHandlerMapping for you!



13.4.2. SimpleUrlHandlerMapping

A further - and much more powerful handler mapping - is the SimpleUrlHandlerMapping. This mapping is
configurable in the application context and has Ant-style path matching capabilities (see the Javadoc for the
org.springframework.util.PathMatcher class). Here is an example:

 <web-app>
     ...
     <servlet>
         <servlet-name>sample</servlet-name>
         <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
         <load-on-startup>1</load-on-startup>
     </servlet>

      <!-- maps the sample dispatcher to *.form -->
      <servlet-mapping>
          <servlet-name>sample</servlet-name>
          <url-pattern>*.form</url-pattern>
      </servlet-mapping>

      <!-- maps the sample dispatcher to *.html -->



                                          Spring Framework (2.5.6)                                         329
Web MVC framework

     <servlet-mapping>
         <servlet-name>sample</servlet-name>
         <url-pattern>*.html</url-pattern>
     </servlet-mapping>
     ...
 </web-app>



The above web.xml configuration snippet enables all requests ending with .html and .form to be handled by the
sample dispatcher servlet.

 <beans>

      <!-- no 'id' required, HandlerMapping beans are automatically detected by the DispatcherServlet -->
      <bean class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
          <property name="mappings">
              <value>
                   /*/account.form=editAccountFormController
                   /*/editaccount.form=editAccountFormController
                   /ex/view*.html=helpController
                   /**/help.html=helpController
              </value>
          </property>
      </bean>

      <bean id="helpController"
            class="org.springframework.web.servlet.mvc.UrlFilenameViewController"/>

     <bean id="editAccountFormController"
           class="org.springframework.web.servlet.mvc.SimpleFormController">
         <property name="formView" value="account"/>
         <property name="successView" value="account-created"/>
         <property name="commandName" value="Account"/>
         <property name="commandClass" value="samples.Account"/>
     </bean>
 <beans>



This handler mapping routes requests for 'help.html' in any directory to the 'helpController', which is a
UrlFilenameViewController (more about controllers can be found in the section entitled Section 13.3,
“Controllers”). Requests for a resource beginning with 'view', and ending with '.html' in the directory 'ex'
will be routed to the 'helpController'. Two further mappings are also defined for
'editAccountFormController'.



13.4.3. Intercepting requests - the HandlerInterceptor interface

Spring's handler mapping mechanism has the notion of handler interceptors, that can be extremely useful when
you want to apply specific functionality to certain requests, for example, checking for a principal.

Interceptors   located   in   the  handler mapping must implement HandlerInterceptor from the
org.springframework.web.servlet package. This interface defines three methods, one that will be called
before the actual handler will be executed, one that will be called after the handler is executed, and one that is
called after the complete request has finished. These three methods should provide enough flexibility to do all
kinds of pre- and post-processing.

The preHandle(..) method returns a boolean value. You can use this method to break or continue the
processing of the execution chain. When this method returns true, the handler execution chain will continue,
when it returns false, the DispatcherServlet assumes the interceptor itself has taken care of requests (and, for
example, rendered an appropriate view) and does not continue executing the other interceptors and the actual
handler in the execution chain.

The following example provides an interceptor that intercepts all requests and reroutes the user to a specific
page if the time is not between 9 a.m. and 6 p.m.



                                           Spring Framework (2.5.6)                                           330
Web MVC framework


 <beans>
     <bean id="handlerMapping"
           class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
         <property name="interceptors">
             <list>
                 <ref bean="officeHoursInterceptor"/>
             </list>
         </property>
         <property name="mappings">
             <value>
                 /*.form=editAccountFormController
                 /*.view=editAccountFormController
             </value>
         </property>
     </bean>

     <bean id="officeHoursInterceptor"
           class="samples.TimeBasedAccessInterceptor">
         <property name="openingTime" value="9"/>
         <property name="closingTime" value="18"/>
     </bean>
 <beans>



 package samples;

 public class TimeBasedAccessInterceptor extends HandlerInterceptorAdapter {

      private int openingTime;
      private int closingTime;

      public void setOpeningTime(int openingTime) {
          this.openingTime = openingTime;
      }

      public void setClosingTime(int closingTime) {
          this.closingTime = closingTime;
      }

      public boolean preHandle(
              HttpServletRequest request,
              HttpServletResponse response,
              Object handler) throws Exception {

          Calendar cal = Calendar.getInstance();
          int hour = cal.get(HOUR_OF_DAY);
          if (openingTime <= hour < closingTime) {
              return true;
          } else {
              response.sendRedirect("http://host.com/outsideOfficeHours.html");
              return false;
          }
      }
 }



Any request coming in, will be intercepted by the TimeBasedAccessInterceptor, and if the current time is
outside office hours, the user will be redirected to a static html file, saying, for example, he can only access the
website during office hours.

As you can see, Spring has an adapter class (the cunningly named HandlerInterceptorAdapter) to make it
easier to extend the HandlerInterceptor interface.


13.5. Views and resolving them
All MVC frameworks for web applications provide a way to address views. Spring provides view resolvers,
which enable you to render models in a browser without tying you to a specific view technology. Out of the
box, Spring enables you to use JSPs, Velocity templates and XSLT views, for example. The section entitled
Chapter 14, View technologies has details of how to integrate and use a number of disparate view technologies.


                                            Spring Framework (2.5.6)                                            331
Web MVC framework


The two interfaces which are important to the way Spring handles views are ViewResolver and View. The
ViewResolver provides a mapping between view names and actual views. The View interface addresses the
preparation of the request and hands the request over to one of the view technologies.


13.5.1. Resolving views - the ViewResolver interface

As discussed in the section entitled Section 13.3, “Controllers”, all controllers in the Spring Web MVC
framework return a ModelAndView instance. Views in Spring are addressed by a view name and are resolved by
a view resolver. Spring comes with quite a few view resolvers. We'll list most of them and then provide a
couple of examples.


Table 13.4. View resolvers

ViewResolver                        Description

AbstractCachingViewResolver         An abstract view resolver which takes care of caching views. Often
                                    views need preparation before they can be used, extending this view
                                    resolver provides caching of views.

XmlViewResolver                     An implementation of ViewResolver that accepts a configuration file
                                    written in XML with the same DTD as Spring's XML bean factories.
                                    The default configuration file is /WEB-INF/views.xml.

ResourceBundleViewResolver          An implementation of ViewResolver that uses bean definitions in a
                                    ResourceBundle, specified by the bundle basename. The bundle is
                                    typically defined in a properties file, located in the classpath. The
                                    default file name is views.properties.

UrlBasedViewResolver                A simple implementation of the ViewResolver interface that effects the
                                    direct resolution of symbolic view names to URLs, without an explicit
                                    mapping definition. This is appropriate if your symbolic names match
                                    the names of your view resources in a straightforward manner, without
                                    the need for arbitrary mappings.

InternalResourceViewResolver        A convenience subclass of UrlBasedViewResolver that supports
                                    InternalResourceView (i.e. Servlets and JSPs), and subclasses such as
                                    JstlView and TilesView. The view class for all views generated by this
                                    resolver can be specified via setViewClass(..). See the Javadocs for
                                    the UrlBasedViewResolver class for details.

VelocityViewResolver             / A convenience subclass of UrlBasedViewResolver that supports
FreeMarkerViewResolver             VelocityView (i.e. Velocity templates) or FreeMarkerView respectively
                                   and custom subclasses of them.


As an example, when using JSP for a view technology you can use the UrlBasedViewResolver. This view
resolver translates a view name to a URL and hands the request over to the RequestDispatcher to render the
view.

 <bean id="viewResolver"
       class="org.springframework.web.servlet.view.UrlBasedViewResolver">
     <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>
     <property name="prefix" value="/WEB-INF/jsp/"/>
     <property name="suffix" value=".jsp"/>
 </bean>




                                        Spring Framework (2.5.6)                                       332
Web MVC framework


When returning test as a viewname, this view resolver will hand the request over to the RequestDispatcher
that will send the request to /WEB-INF/jsp/test.jsp.

When mixing different view technologies in a web application, you can use the ResourceBundleViewResolver:

 <bean id="viewResolver"
       class="org.springframework.web.servlet.view.ResourceBundleViewResolver">
     <property name="basename" value="views"/>
     <property name="defaultParentView" value="parentView"/>
 </bean>



The ResourceBundleViewResolver inspects the ResourceBundle identified by the basename, and for each view
it is supposed to resolve, it uses the value of the property [viewname].class as the view class and the value of
the property [viewname].url as the view url. As you can see, you can identify a parent view, from which all
views in the properties file sort of extend. This way you can specify a default view class, for example.

A note on caching - subclasses of AbstractCachingViewResolver cache view instances they have resolved.
This greatly improves performance when using certain view technologies. It's possible to turn off the cache, by
setting the cache property to false. Furthermore, if you have the requirement to be able to refresh a certain
view at runtime (for example when a Velocity template has been modified), you can use the
removeFromCache(String viewName, Locale loc) method.



13.5.2. Chaining ViewResolvers

Spring supports more than just one view resolver. This allows you to chain resolvers and, for example, override
specific views in certain circumstances. Chaining view resolvers is pretty straightforward - just add more than
one resolver to your application context and, if necessary, set the order property to specify an order.
Remember, the higher the order property, the later the view resolver will be positioned in the chain.

In   the   following     example,
                               the chain of view resolvers consists of two resolvers, a
InternalResourceViewResolver (which is always automatically positioned as the last resolver in the chain)
and an XmlViewResolver for specifying Excel views (which are not supported by the
InternalResourceViewResolver):

 <bean id="jspViewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">
   <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>
   <property name="prefix" value="/WEB-INF/jsp/"/>
   <property name="suffix" value=".jsp"/>
 </bean>

 <bean id="excelViewResolver" class="org.springframework.web.servlet.view.XmlViewResolver">
   <property name="order" value="1"/>
   <property name="location" value="/WEB-INF/views.xml"/>
 </bean>

 <!-- in views.xml -->

 <beans>
   <bean name="report" class="org.springframework.example.ReportExcelView"/>
 </beans>



If a specific view resolver does not result in a view, Spring will inspect the context to see if other view
resolvers are configured. If there are additional view resolvers, it will continue to inspect them. If not, it will
throw an Exception.

You have to keep something else in mind - the contract of a view resolver mentions that a view resolver can
return null to indicate the view could not be found. Not all view resolvers do this however! This is because in
some cases, the resolver simply cannot detect whether or not the view exists. For example, the


                                            Spring Framework (2.5.6)                                           333
Web MVC framework

InternalResourceViewResolver         uses the RequestDispatcher internally, and dispatching is the only way to
figure out if a JSP exists - this can only be done once. The same holds for the VelocityViewResolver and some
others. Check the Javadoc for the view resolver to see if you're dealing with a view resolver that does not report
non-existing views. As a result of this, putting an InternalResourceViewResolver in the chain in a place other
than the last, will result in the chain not being fully inspected, since the InternalResourceViewResolver will
always return a view!


13.5.3. Redirecting to views

As has been mentioned, a controller normally returns a logical view name, which a view resolver resolves to a
particular view technology. For view technologies such as JSPs that are actually processed via the Servlet/JSP
engine, this is normally handled via InternalResourceViewResolver / InternalResourceView which will
ultimately end up issuing an internal forward or include, via the Servlet API's
RequestDispatcher.forward(..) or RequestDispatcher.include(). For other view technologies, such as
Velocity, XSLT, etc., the view itself produces the content on the response stream.

It is sometimes desirable to issue an HTTP redirect back to the client, before the view is rendered. This is
desirable for example when one controller has been called with POSTed data, and the response is actually a
delegation to another controller (for example on a successful form submission). In this case, a normal internal
forward will mean the other controller will also see the same POST data, which is potentially problematic if it
can confuse it with other expected data. Another reason to do a redirect before displaying the result is that this
will eliminate the possibility of the user doing a double submission of form data. The browser will have sent the
initial POST, will have seen a redirect back and done a subsequent GET because of that, and thus as far as it is
concerned, the current page does not reflect the result of a POST, but rather of a GET, so there is no way the user
can accidentally re-POST the same data by doing a refresh. The refresh would just force a GET of the result page,
not a resend of the initial POST data.

13.5.3.1. RedirectView

One way to force a redirect as the result of a controller response is for the controller to create and return an
instance of Spring's RedirectView. In this case, DispatcherServlet will not use the normal view resolution
mechanism, but rather as it has been given the (redirect) view already, will just ask it to do its work.

The RedirectView simply ends up issuing an HttpServletResponse.sendRedirect() call, which will come
back to the client browser as an HTTP redirect. All model attributes are simply exposed as HTTP query
parameters. This does mean that the model must contain only objects (generally Strings or convertible to
Strings) which can be readily converted to a string-form HTTP query parameter.

If using RedirectView and the view is created by the controller itself, it is preferable for the redirect URL to be
injected into the controller so that it is not baked into the controller but configured in the context along with the
view names.

13.5.3.2. The redirect: prefix

While the use of RedirectView works fine, if the controller itself is creating the RedirectView, there is no
getting around the fact that the controller is aware that a redirection is happening. This is really suboptimal and
couples things too tightly. The controller should not really care about how the response gets handled... it should
generally think only in terms of view names that have been injected into it.

The special redirect: prefix allows this to be achieved. If a view name is returned which has the prefix
redirect:, then UrlBasedViewResolver (and all subclasses) will recognize this as a special indication that a
redirect is needed. The rest of the view name will be treated as the redirect URL.



                                            Spring Framework (2.5.6)                                             334
Web MVC framework


The net effect is the same as if the controller had returned a RedirectView, but now the controller itself can
deal   just    in     terms    of    logical     view    names.     A    logical   view      name     such     as
redirect:/my/response/controller.html will redirect relative to the current servlet context, while a name
such as redirect:http://myhost.com/some/arbitrary/path.html will redirect to an absolute URL. The
important thing is that as long as this redirect view name is injected into the controller like any other logical
view name, the controller is not even aware that redirection is happening.

13.5.3.3. The forward: prefix

It is also possible to use a special forward: prefix for view names that will ultimately be resolved by
UrlBasedViewResolver and subclasses. All this does is create an InternalResourceView (which ultimately
does a RequestDispatcher.forward()) around the rest of the view name, which is considered a URL.
Therefore, there is never any use in using this prefix when using InternalResourceViewResolver /
InternalResourceView anyway (for JSPs for example), but it's of potential use when you are primarily using
another view technology, but still want to force a forward to happen to a resource to be handled by the
Servlet/JSP engine. (Note that you may also chain multiple view resolvers, instead.)

As with the redirect: prefix, if the view name with the prefix is just injected into the controller, the controller
does not have to be aware that anything special is happening in terms of handling the response.


13.6. Using locales
Most parts of Spring's architecture support internationalization, just as the Spring web MVC framework does.
DispatcherServlet enables you to automatically resolve messages using the client's locale. This is done with
LocaleResolver objects.

When a request comes in, the DispatcherServlet looks for a locale resolver and if it finds one it tries to use it
to set the locale. Using the RequestContext.getLocale() method, you can always retrieve the locale that was
resolved by the locale resolver.

Besides the automatic locale resolution, you can also attach an interceptor to the handler mapping (see
Section 13.4.3, “Intercepting requests - the HandlerInterceptor interface” for more information on handler
mapping interceptors), to change the locale under specific circumstances, based on a parameter in the request,
for example.

Locale resolvers and interceptors are all defined in the org.springframework.web.servlet.i18n package, and
are configured in your application context in the normal way. Here is a selection of the locale resolvers
included in Spring.


13.6.1. AcceptHeaderLocaleResolver

This locale resolver inspects the accept-language header in the request that was sent by the browser of the
client. Usually this header field contains the locale of the client's operating system.


13.6.2. CookieLocaleResolver

This locale resolver inspects a Cookie that might exist on the client, to see if a locale is specified. If so, it uses
that specific locale. Using the properties of this locale resolver, you can specify the name of the cookie, as well
as the maximum age. Find below an example of defining a CookieLocaleResolver.

 <bean id="localeResolver" class="org.springframework.web.servlet.i18n.CookieLocaleResolver">



                                             Spring Framework (2.5.6)                                             335
Web MVC framework


      <property name="cookieName" value="clientlanguage"/>

      <!-- in seconds. If set to -1, the cookie is not persisted (deleted when browser shuts down) -->
      <property name="cookieMaxAge" value="100000">

 </bean>




Table 13.5. CookieLocaleResolver properties

Property               Default               Description

cookieName             classname          + The name of the cookie
                       LOCALE

cookieMaxAge           Integer.MAX_INT       The maximum time a cookie will stay persistent on the client. If
                                             -1 is specified, the cookie will not be persisted. It will only be
                                             available until the client shuts down his or her browser.

cookiePath             /                     Using this parameter, you can limit the visibility of the cookie to
                                             a certain part of your site. When cookiePath is specified, the
                                             cookie will only be visible to that path, and the paths below it.



13.6.3. SessionLocaleResolver

The SessionLocaleResolver allows you to retrieve locales from the session that might be associated with the
user's request.


13.6.4. LocaleChangeInterceptor

You can build in changing of locales using the LocaleChangeInterceptor. This interceptor needs to be added
to one of the handler mappings (see Section 13.4, “Handler mappings”). It will detect a parameter in the request
and change the locale (it calls setLocale() on the LocaleResolver that also exists in the context).

 <bean id="localeChangeInterceptor"
       class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor">
     <property name="paramName" value="siteLanguage"/>
 </bean>

 <bean id="localeResolver"
       class="org.springframework.web.servlet.i18n.CookieLocaleResolver"/>

 <bean id="urlMapping"
       class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
     <property name="interceptors">
         <list>
             <ref bean="localeChangeInterceptor"/>
         </list>
     </property>
     <property name="mappings">
         <value>/**/*.view=someController</value>
     </property>
 </bean>



All calls to all *.view resources containing a parameter named siteLanguage will now change the locale. So a
request for the following URL, http://www.sf.net/home.view?siteLanguage=nl will change the site
language to Dutch.




                                          Spring Framework (2.5.6)                                           336
Web MVC framework



13.7. Using themes

13.7.1. Introduction

The theme support provided by the Spring web MVC framework enables you to further enhance the user
experience by allowing the look and feel of your application to be themed. A theme is basically a collection of
static resources affecting the visual style of the application, typically style sheets and images.


13.7.2. Defining themes

When    you    want    to   use   themes    in    your web application you'll have to set up a
org.springframework.ui.context.ThemeSource.            The     WebApplicationContext       interface   extends
ThemeSource but delegates its responsibilities to a dedicated implementation. By default the delegate will be a
org.springframework.ui.context.support.ResourceBundleThemeSource that loads properties files from the
root of the classpath. If you want to use a custom ThemeSource implementation or if you need to configure the
basename prefix of the ResourceBundleThemeSource, you can register a bean in the application context with
the reserved name "themeSource". The web application context will automatically detect that bean and start
using it.

When using the ResourceBundleThemeSource, a theme is defined in a simple properties file. The properties file
lists the resources that make up the theme. Here is an example:

 styleSheet=/themes/cool/style.css
 background=/themes/cool/img/coolBg.jpg



The keys of the properties are the names used to refer to the themed elements from view code. For a JSP this
would typically be done using the spring:theme custom tag, which is very similar to the spring:message tag.
The following JSP fragment uses the theme defined above to customize the look and feel:

 <%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
 <html>
    <head>
        <link rel="stylesheet" href="<spring:theme code="styleSheet"/>" type="text/css"/>
    </head>
    <body background="<spring:theme code="background"/>">
        ...
    </body>
 </html>



By default, the ResourceBundleThemeSource uses an empty basename prefix. As a result the properties files
will be loaded from the root of the classpath, so we'll have to put our cool.properties theme definition in a
directory at the root of the classpath, e.g. in /WEB-INF/classes. Note that the ResourceBundleThemeSource
uses the standard Java resource bundle loading mechanism, allowing for full internationalization of themes. For
instance, we could have a /WEB-INF/classes/cool_nl.properties that references a special background
image, e.g. with Dutch text on it.


13.7.3. Theme resolvers

Now that we have our themes defined, the only thing left to do is decide which theme to use. The
DispatcherServlet will look for a bean named "themeResolver" to find out which ThemeResolver
implementation to use. A theme resolver works in much the same way as a LocaleResolver. It can detect the
theme that should be used for a particular request and can also alter the request's theme. The following theme


                                           Spring Framework (2.5.6)                                        337
Web MVC framework

resolvers are provided by Spring:


Table 13.6. ThemeResolver implementations

Class                       Description

FixedThemeResolver          Selects a fixed theme, set using the "defaultThemeName" property.

SessionThemeResolver        The theme is maintained in the users HTTP session. It only needs to be set once
                            for each session, but is not persisted between sessions.

CookieThemeResolver         The selected theme is stored in a cookie on the user-agent's machine.


Spring also provides a ThemeChangeInterceptor, which allows changing the theme on every request by
including a simple request parameter.


13.8. Spring's multipart (fileupload) support

13.8.1. Introduction

Spring has built-in multipart support to handle fileuploads in web applications. The design for the multipart
support     is     done       with      pluggable   MultipartResolver       objects,   defined     in     the
org.springframework.web.multipart package. Out of the box, Spring provides a MultipartResolver for use
with Commons FileUpload (http://jakarta.apache.org/commons/fileupload). How uploading files is supported
will be described in the rest of this chapter.

By default, no multipart handling will be done by Spring, as some developers will want to handle multiparts
themselves. You will have to enable it yourself by adding a multipart resolver to the web application's context.
After you have done that, each request will be inspected to see if it contains a multipart. If no multipart is
found, the request will continue as expected. However, if a multipart is found in the request, the
MultipartResolver that has been declared in your context will be used. After that, the multipart attribute in
your request will be treated like any other attribute.


13.8.2. Using the MultipartResolver

The following example shows how to use the CommonsMultipartResolver:

 <bean id="multipartResolver"
     class="org.springframework.web.multipart.commons.CommonsMultipartResolver">

     <!-- one of the properties available; the maximum file size in bytes -->
     <property name="maxUploadSize" value="100000"/>
 </bean>



This is an example using the CosMultipartResolver:

 <bean id="multipartResolver" class="org.springframework.web.multipart.cos.CosMultipartResolver">

     <!-- one of the properties available; the maximum file size in bytes -->
     <property name="maxUploadSize" value="100000"/>
 </bean>



Of course you also need to put the appropriate jars in your classpath for the multipart resolver to work. In the


                                          Spring Framework (2.5.6)                                          338
Web MVC framework


case of the CommonsMultipartResolver, you need to use commons-fileupload.jar; in the case of the
CosMultipartResolver, use cos.jar.

Now that you have seen how to set Spring up to handle multipart requests, let's talk about how to actually use
it. When the Spring DispatcherServlet detects a multi-part request, it activates the resolver that has been
declared in your context and hands over the request. What the resolver then does is wrap the current
HttpServletRequest into a MultipartHttpServletRequest that has support for multipart file uploads. Using
the MultipartHttpServletRequest you can get information about the multiparts contained by this request and
actually get access to the multipart files themselves in your controllers.


13.8.3. Handling a file upload in a form

After the MultipartResolver has finished doing its job, the request will be processed like any other. To use it,
you create a form with an upload field (see immediately below), then let Spring bind the file onto your form
(backing object). To actually let the user upload a file, we have to create a (HTML) form:

 <html>
     <head>
         <title>Upload a file please</title>
     </head>
     <body>
         <h1>Please upload a file</h1>
         <form method="post" action="upload.form" enctype="multipart/form-data">
             <input type="file" name="file"/>
             <input type="submit"/>
         </form>
     </body>
 </html>



As you can see, we've created a field named after the property of the bean that holds the byte[]. Furthermore
we've added the encoding attribute (enctype="multipart/form-data") which is necessary to let the browser
know how to encode the multipart fields (do not forget this!).

Just as with any other property that's not automagically convertible to a string or primitive type, to be able to
put binary data in your objects you have to register a custom editor with the ServletRequestDatabinder.
There are a couple of editors available for handling files and setting the results on an object. There's a
StringMultipartEditor capable of converting files to Strings (using a user-defined character set) and there is
a ByteArrayMultipartEditor which converts files to byte arrays. They function just as the CustomDateEditor
does.

So, to be able to upload files using a (HTML) form, declare the resolver, a url mapping to a controller that will
process the bean, and the controller itself.

 <beans>
   <!-- lets use the Commons-based implementation of the MultipartResolver interface -->
     <bean id="multipartResolver"
         class="org.springframework.web.multipart.commons.CommonsMultipartResolver"/>

      <bean id="urlMapping" class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
          <property name="mappings">
              <value>
                  /upload.form=fileUploadController
              </value>
          </property>
      </bean>

      <bean id="fileUploadController" class="examples.FileUploadController">
          <property name="commandClass" value="examples.FileUploadBean"/>
          <property name="formView" value="fileuploadform"/>
          <property name="successView" value="confirmation"/>
      </bean>




                                           Spring Framework (2.5.6)                                          339
Web MVC framework

 </beans>



After that, create the controller and the actual class to hold the file property.

 public class FileUploadController extends SimpleFormController {

      protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
              Object command, BindException errors) throws ServletException, IOException {

             // cast the bean
            FileUploadBean bean = (FileUploadBean) command;

              let's see if there's content there
            byte[] file = bean.getFile();
            if (file == null) {
                  // hmm, that's strange, the user did not upload anything
            }

             // well, let's do nothing with the bean for now and return
            return super.onSubmit(request, response, command, errors);
      }

      protected void initBinder(HttpServletRequest request, ServletRequestDataBinder binder)
          throws ServletException {
          // to actually be able to convert Multipart instance to byte[]
          // we have to register a custom editor
          binder.registerCustomEditor(byte[].class, new ByteArrayMultipartFileEditor());
          // now Spring knows how to handle multipart object and convert them
      }
 }

 public class FileUploadBean {

      private byte[] file;

      public void setFile(byte[] file) {
          this.file = file;
      }

      public byte[] getFile() {
          return file;
      }
 }



As you can see, the FileUploadBean has a property typed byte[] that holds the file. The controller registers a
custom editor to let Spring know how to actually convert the multipart objects the resolver has found to
properties specified by the bean. In this example, nothing is done with the byte[] property of the bean itself,
but in practice you can do whatever you want (save it in a database, mail it to somebody, etc).

An equivalent example in which a file is bound straight to a String-typed property on a (form backing) object
might look like:

 public class FileUploadController extends SimpleFormController {

      protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
              Object command, BindException errors) throws ServletException, IOException {

             // cast the bean
            FileUploadBean bean = (FileUploadBean) command;

              let's see if there's content there
            String file = bean.getFile();
            if (file == null) {
                  // hmm, that's strange, the user did not upload anything
            }

             // well, let's do nothing with the bean for now and return
            return super.onSubmit(request, response, command, errors);
      }

      protected void initBinder(HttpServletRequest request, ServletRequestDataBinder binder)
          throws ServletException {


                                             Spring Framework (2.5.6)                                      340
Web MVC framework

          // to actually be able to convert Multipart instance to a String
          // we have to register a custom editor
          binder.registerCustomEditor(String.class, new StringMultipartFileEditor());
          // now Spring knows how to handle multipart object and convert them
      }

 }

 public class FileUploadBean {

      private String file;

      public void setFile(String file) {
          this.file = file;
      }

      public String getFile() {
          return file;
      }
 }



Of course, this last example only makes (logical) sense in the context of uploading a plain text file (it wouldn't
work so well in the case of uploading an image file).

The third (and final) option is where one binds directly to a MultipartFile property declared on the (form
backing) object's class. In this case one does not need to register any custom PropertyEditor because there is
no type conversion to be performed.

 public class FileUploadController extends SimpleFormController {

      protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
              Object command, BindException errors) throws ServletException, IOException {

           // cast the bean
          FileUploadBean bean = (FileUploadBean) command;

            let's see if there's content there
          MultipartFile file = bean.getFile();
          if (file == null) {
                // hmm, that's strange, the user did not upload anything
          }

           // well, let's do nothing with the bean for now and return
          return super.onSubmit(request, response, command, errors);
      }
 }

 public class FileUploadBean {

      private MultipartFile file;

      public void setFile(MultipartFile file) {
          this.file = file;
      }

      public MultipartFile getFile() {
          return file;
      }
 }




13.9. Handling exceptions
Spring provides HandlerExceptionResolvers to ease the pain of unexpected exceptions occurring while your
request is being handled by a controller which matched the request. HandlerExceptionResolvers somewhat
resemble the exception mappings you can define in the web application descriptor web.xml. However, they
provide a more flexible way to handle exceptions. They provide information about what handler was executing
when the exception was thrown. Furthermore, a programmatic way of handling exception gives you many more


                                           Spring Framework (2.5.6)                                           341
Web MVC framework

options for how to respond appropriately before the request is forwarded to another URL (the same end result
as when using the servlet specific exception mappings).

Besides implementing the HandlerExceptionResolver interface, which is only a matter of implementing the
resolveException(Exception, Handler) method and returning a ModelAndView, you may also use the
SimpleMappingExceptionResolver. This resolver enables you to take the class name of any exception that
might be thrown and map it to a view name. This is functionally equivalent to the exception mapping feature
from the Servlet API, but it's also possible to implement more finely grained mappings of exceptions from
different handlers.


13.10. Convention over configuration
For a lot of projects, sticking to established conventions and having reasonable defaults is just what they (the
projects) need... this theme of convention-over-configuration now has explicit support in Spring Web MVC.
What this means is that if you establish a set of naming conventions and suchlike, you can substantially cut
down on the amount of configuration that is required to set up handler mappings, view resolvers, ModelAndView
instances, etc. This is a great boon with regards to rapid prototyping, and can also lend a degree of (always
good-to-have) consistency across a codebase should you choose to move forward with it into production.

This convention over configuration support address the three core areas of MVC - namely, the models, views,
and controllers.


13.10.1. The Controller - ControllerClassNameHandlerMapping

The ControllerClassNameHandlerMapping class is a HandlerMapping implementation that uses a convention
to determine the mapping between request URLs and the Controller instances that are to handle those
requests.

An example; consider the following (simplistic) Controller implementation. Take especial notice of the name
of the class.

 public class ViewShoppingCartController implements Controller {

      public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) {
          // the implementation is not hugely important for this example...
      }
 }



Here is a snippet from the attendent Spring Web MVC configuration file...

 <bean class="org.springframework.web.servlet.mvc.support.ControllerClassNameHandlerMapping"/>

 <bean id="viewShoppingCart" class="x.y.z.ViewShoppingCartController">
     <!-- inject dependencies as required... -->
 </bean>



The ControllerClassNameHandlerMapping finds all of the various handler (or Controller) beans defined in
its application context and strips 'Controller' off the name to define its handler mappings.

Let's look at some more examples so that the central idea becomes immediately familiar.


• WelcomeController maps to the '/welcome*' request URL

• HomeController maps to the '/home*' request URL


                                          Spring Framework (2.5.6)                                          342
Web MVC framework


• IndexController maps to the '/index*' request URL

• RegisterController maps to the '/register*' request URL

• DisplayShoppingCartController maps to the '/displayshoppingcart*' request URL

  (Notice the casing - all lowercase - in the case of camel-cased Controller class names.)

In the case of MultiActionController handler classes, the mappings generated are (ever so slightly) more
complex, but hopefully no less understandable. Some examples (all of the Controller names in this next bit
are assumed to be MultiActionController implementations).


• AdminController maps to the '/admin/*' request URL

• CatalogController maps to the '/catalog/*' request URL

If you follow the pretty standard convention of naming your Controller implementations as xxxController,
then the ControllerClassNameHandlerMapping will save you the tedium of having to firstly define and then
having to maintain a potentially looooong SimpleUrlHandlerMapping (or suchlike).

The ControllerClassNameHandlerMapping class extends the AbstractHandlerMapping base class so you can
define HandlerInterceptor instances and everything else just like you would with many other
HandlerMapping implementations.



13.10.2. The Model - ModelMap (ModelAndView)

The ModelMap class is essentially a glorified Map that can make adding objects that are to be displayed in (or on)
a View adhere to a common naming convention. Consider the following Controller implementation; notice
that objects are added to the ModelAndView without any associated name being specified.

 public class DisplayShoppingCartController implements Controller {

      public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) {

           List cartItems = // get a List of CartItem objects
           User user = // get the User doing the shopping

           ModelAndView mav = new ModelAndView("displayShoppingCart"); <-- the logical view name

           mav.addObject(cartItems); <-- look ma, no name, just the object
           mav.addObject(user); <-- and again ma!

           return mav;
      }
 }



The ModelAndView class uses a ModelMap class that is a custom Map implementation that automatically
generates a key for an object when an object is added to it. The strategy for determining the name for an added
object is, in the case of a scalar object such as User, to use the short class name of the object's class. Find below
some examples of the names that are generated for scalar objects put into a ModelMap instance.


• An x.y.User instance added will have the name 'user' generated

• An x.y.Registration instance added will have the name 'registration' generated

• An x.y.Foo instance added will have the name 'foo' generated



                                            Spring Framework (2.5.6)                                             343
Web MVC framework


• A java.util.HashMap instance added will have the name 'hashMap' generated (you'll probably want to be
  explicit about the name in this case because 'hashMap' is less than intuitive).

• Adding null will result in an IllegalArgumentException being thrown. If the object (or objects) that you
  are adding could potentially be null, then you will also want to be explicit about the name).


     What, no automatic pluralisation?

     Spring Web MVC's convention over configuration support does not support automatic pluralisation. That
     is to say, you cannot add a List of Person objects to a ModelAndView and have the generated name be
     'people'.

     This decision was taken after some debate, with the “Principle of Least Surprise” winning out in the end.


The strategy for generating a name after adding a Set, List or array object is to peek into the collection, take
the short class name of the first object in the collection, and use that with 'List' appended to the name. Some
examples will make the semantics of name generation for collections clearer...


• An x.y.User[] array with one or more x.y.User elements added will have the name 'userList' generated

• An x.y.Foo[] array with one or more x.y.User elements added will have the name 'fooList' generated

• A java.util.ArrayList with one or more x.y.User elements added will have the name 'userList'
  generated

• A java.util.HashSet with one or more x.y.Foo elements added will have the name 'fooList' generated

• An empty java.util.ArrayList will not be added at all (i.e. the addObject(..) call will essentially be a
  no-op).


13.10.3. The View - RequestToViewNameTranslator

The RequestToViewNameTranslator interface is responsible for determining a logical View name when no such
logical view name is explicitly supplied. It has just one implementation, the rather cunningly named
DefaultRequestToViewNameTranslator class.

The DefaultRequestToViewNameTranslator maps request URLs to logical view names in a fashion that is
probably best explained by recourse to an example.

 public class RegistrationController implements Controller {

        public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) {
            // process the request...
            ModelAndView mav = new ModelAndView();
            // add data as necessary to the model...
            return mav;
            // notice that no View or logical view name has been set
        }
 }



 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"
         "http://www.springframework.org/dtd/spring-beans-2.0.dtd">
 <beans>

        <!-- this bean with the well known name generates view names for us -->
        <bean id="viewNameTranslator" class="org.springframework.web.servlet.view.DefaultRequestToViewNameTranslator


                                             Spring Framework (2.5.6)                                            344
Web MVC framework


      <bean class="x.y.RegistrationController">
          <!-- inject dependencies as necessary -->
      </bean>

      <!-- maps request URLs to Controller names -->
      <bean class="org.springframework.web.servlet.mvc.support.ControllerClassNameHandlerMapping"/>

      <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">
          <property name="prefix" value="/WEB-INF/jsp/"/>
          <property name="suffix" value=".jsp"/>
      </bean>

 </beans>



Notice how in the implementation of the handleRequest(..) method no View or logical view name is ever set
on the ModelAndView that is returned. It is the DefaultRequestToViewNameTranslator that will be tasked with
generating a logical view name from the URL of the request. In the case of the above
RegistrationController, which is being used in conjunction with the ControllerClassNameHandlerMapping,
a request URL of 'http://localhost/registration.html' will result in a logical view name of
'registration' being generated by the DefaultRequestToViewNameTranslator. This logical view name will
then be resolved into the '/WEB-INF/jsp/registration.jsp' view by the InternalResourceViewResolver
bean.

            Tip
            You don't even need to define a DefaultRequestToViewNameTranslator bean explicitly. If you are
            okay with the default settings of the DefaultRequestToViewNameTranslator, then you can rely on
            the fact that the Spring Web MVC DispatcherServlet will actually instantiate an instance of this
            class if one is not explicitly configured.


Of course, if you need to change the default settings, then you do need to configure your own
DefaultRequestToViewNameTranslator bean explicitly. Please do consult the quite comprehensive Javadoc
for the DefaultRequestToViewNameTranslator class for details of the various properties that can be
configured.


13.11. Annotation-based controller configuration
There is a current trend to favor annotations over XML files for some types of configuration data. To facilitate
this, Spring is now (since 2.5) providing support for configuring the MVC framework components using
annotations.

Spring 2.5 introduces an annotation-based programming model for MVC controllers, using annotations such as
@RequestMapping, @RequestParam, @ModelAttribute, etc. This annotation support is available for both Servlet
MVC and Portlet MVC. Controllers implemented in this style do not have to extend specific base classes or
implement specific interfaces. Furthermore, they do not usually have direct dependencies on Servlet or Portlet
API's, although they can easily get access to Servlet or Portlet facilities if desired.

            Tip
            The Spring distribution ships with the PetClinic sample, which is a web application that takes
            advantage of the annotation support described in this section, in the context of simple form
            processing. You can find the PetClinic application in the 'samples/petclinic' directory.

            For a further sample application that builds on annotation-based Web MVC, check out imagedb.


                                          Spring Framework (2.5.6)                                          345
Web MVC framework


            The focus in that sample is on stateless multi-action controllers, including the processing of
            multipart file uploads. You can find the imagedb application in the 'samples/imagedb' directory.


The following sections document these annotations and how they are most commonly used in a Servlet
environment.


13.11.1. Setting up the dispatcher for annotation support

@RequestMapping   will only be processed if a corresponding HandlerMapping (for type level annotations)
and/or HandlerAdapter (for method level annotations) is present in the dispatcher. This is the case by default
in both DispatcherServlet and DispatcherPortlet.

However, if you are defining custom HandlerMappings or HandlerAdapters, then you need to make sure that a
corresponding custom DefaultAnnotationHandlerMapping and/or AnnotationMethodHandlerAdapter is
defined as well - provided that you intend to use @RequestMapping.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xsi:schemaLocation="http://www.springframework.org/schema/beans
         http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

      <bean class="org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping"/>

      <bean class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"/>

      // ... (controller bean definitions) ...

 </beans>



Defining a DefaultAnnotationHandlerMapping and/or AnnotationMethodHandlerAdapter explicitly also
makes sense if you would like to customize the mapping strategy, e.g. specifying a custom PathMatcher or
WebBindingInitializer (see below).



13.11.2. Defining a controller with @Controller

The @Controller annotation indicates that a particular class serves the role of a controller. There is no need to
extend any controller base class or reference the Servlet API. You are of course still able to reference
Servlet-specific features if you need to.

The basic purpose of the @Controller annotation is to act as a stereotype for the annotated class, indicating its
role. The dispatcher will scan such annotated classes for mapped methods, detecting @RequestMapping
annotations (see the next section).

Annotated controller beans may be defined explicitly, using a standard Spring bean definition in the
dispatcher's context. However, the @Controller stereotype also allows for autodetection, aligned with Spring
2.5's general support for detecting component classes in the classpath and auto-registering bean definitions for
them.

To enable autodetection of such annotated controllers, you have to add component scanning to your
configuration. This is easily achieved by using the spring-context schema as shown in the following XML
snippet:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xmlns:p="http://www.springframework.org/schema/p"


                                           Spring Framework (2.5.6)                                          346
Web MVC framework


      xmlns:context="http://www.springframework.org/schema/context"
      xsi:schemaLocation="
          http://www.springframework.org/schema/beans
          http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
          http://www.springframework.org/schema/context
          http://www.springframework.org/schema/context/spring-context-2.5.xsd">

      <context:component-scan base-package="org.springframework.samples.petclinic.web"/>

      // ...

 </beans>




13.11.3. Mapping requests with @RequestMapping

The @RequestMapping annotation is used to map URLs like '/editPet.do' onto an entire class or a particular
handler method. Typically the type-level annotation maps a specific request path (or path pattern) onto a form
controller, with additional method-level annotations 'narrowing' the primary mapping for a specific HTTP
method request method ("GET"/"POST") or specific HTTP request parameters.

             Tip
             @RequestMapping   at the type level may be used for plain implementations of the Controller
             interface as well. In this case, the request processing code would follow the traditional
             handleRequest signature, while the controller's mapping would be expressed through an
             @RequestMapping annotation. This works for pre-built Controller base classes, such as
             SimpleFormController, too.

             In the following discussion, we'll focus on controllers that are based on annotated handler methods.


The following is an example of a form controller from the PetClinic sample application using this annotation:

 @Controller
 @RequestMapping("/editPet.do")
 @SessionAttributes("pet")
 public class EditPetForm {

      private final Clinic clinic;

      @Autowired
      public EditPetForm(Clinic clinic) {
          this.clinic = clinic;
      }

      @ModelAttribute("types")
      public Collection<PetType> populatePetTypes() {
          return this.clinic.getPetTypes();
      }

      @RequestMapping(method = RequestMethod.GET)
      public String setupForm(@RequestParam("petId") int petId, ModelMap model) {
          Pet pet = this.clinic.loadPet(petId);
          model.addAttribute("pet", pet);
          return "petForm";
      }

      @RequestMapping(method = RequestMethod.POST)
      public String processSubmit(
              @ModelAttribute("pet") Pet pet, BindingResult result, SessionStatus status) {

            new PetValidator().validate(pet, result);
            if (result.hasErrors()) {
                return "petForm";
            }
            else {
                this.clinic.storePet(pet);


                                           Spring Framework (2.5.6)                                          347
Web MVC framework

               status.setComplete();
               return "redirect:owner.do?ownerId=" + pet.getOwner().getId();
          }
      }
 }



For a traditional multi-action controller the URLs are typically mapped directly on the methods since the
controller responds to multiple URLs. The following is an example of a multi-action controller from the
PetClinic sample application using @RequestMapping:

 @Controller
 public class ClinicController {

      private final Clinic clinic;

      @Autowired
      public ClinicController(Clinic clinic) {
          this.clinic = clinic;
      }

      /**
        * Custom handler for the welcome view.
        * Note that this handler relies on the RequestToViewNameTranslator to
        * determine the logical view name based on the request URL: "/welcome.do"
        * -> "welcome".
        */
      @RequestMapping("/welcome.do")
      public void welcomeHandler() {
      }

      /**
        * Custom handler for displaying vets.
        * Note that this handler returns a plain {@link ModelMap} object instead of
        * a ModelAndView, thus leveraging convention-based model attribute names.
        * It relies on the RequestToViewNameTranslator to determine the logical
        * view name based on the request URL: "/vets.do" -> "vets".
        * @return a ModelMap with the model attributes for the view
        */
      @RequestMapping("/vets.do")
      public ModelMap vetsHandler() {
           return new ModelMap(this.clinic.getVets());
      }

      /**
        * Custom handler for displaying an owner.
        * Note that this handler returns a plain {@link ModelMap} object instead of
        * a ModelAndView, thus leveraging convention-based model attribute names.
        * It relies on the RequestToViewNameTranslator to determine the logical
        * view name based on the request URL: "/owner.do" -> "owner".
        * @param ownerId the ID of the owner to display
        * @return a ModelMap with the model attributes for the view
        */
      @RequestMapping("/owner.do")
      public ModelMap ownerHandler(@RequestParam("ownerId") int ownerId) {
           return new ModelMap(this.clinic.loadOwner(ownerId));
      }
 }




13.11.3.1. Advanced @RequestMapping options

Ant-style path patterns are supported (e.g. "/myPath/*.do"). At the method level, relative paths (e.g. "edit.do")
are supported within the primary mapping expressed at the type level.

The handler method names are taken into account for narrowing if no path was specified explicitly, according
to the specified org.springframework.web.servlet.mvc.multiaction.MethodNameResolver (by default an
org.springframework.web.servlet.mvc.multiaction.InternalPathMethodNameResolver). Note that this
only applies in case of ambiguous annotation mappings that do not specify a path mapping explicitly. In other
words, the method name is only used for narrowing among a set of matching methods; it does not constitute a
primary path mapping itself.

                                           Spring Framework (2.5.6)                                          348
Web MVC framework


If you have a single default method (without explicit path mapping), then all requests without a more specific
mapped method found will be dispatched to it. If you have multiple such default methods, then the method
name will be taken into account for choosing between them.

Path mappings can be narrowed through parameter conditions: a sequence of "myParam=myValue" style
expressions, with a request only mapped if each such parameter is found to have the given value. "myParam"
style expressions are also supported, with such parameters having to be present in the request (allowed to have
any value). Finally, "!myParam" style expressions indicate that the specified parameter is not supposed to be
present in the request.


13.11.4. Supported handler method arguments and return types

Handler methods which are annotated with @RequestMapping are allowed to have very flexible signatures.
They may have arguments of the following types, in arbitrary order (except for validation results, which need to
follow right after the corresponding command object, if desired):


• Request and/or response objects (Servlet API). You may choose any specific request/response type, e.g.
  ServletRequest / HttpServletRequest.

• Session object (Servlet API): of type HttpSession. An argument of this type will enforce the presence of a
  corresponding session. As a consequence, such an argument will never be null. Note that session access may
  not be thread-safe, in particular in a Servlet environment: Consider switching the
  AnnotationMethodHandlerAdapter's "synchronizeOnSession" flag to "true" if multiple requests are allowed
  to access a session concurrently.

• org.springframework.web.context.request.WebRequest                                                  or
  org.springframework.web.context.request.NativeWebRequest. Allows for generic request parameter
  access as well as request/session attribute access, without ties to the native Servlet/Portlet API.

• java.util.Locale for the current request locale (determined by the most specific locale resolver available,
  i.e. the configured LocaleResolver in a Servlet environment).

• java.io.InputStream / java.io.Reader for access to the request's content. This will be the raw
  InputStream/Reader as exposed by the Servlet API.

• java.io.OutputStream / java.io.Writer for generating the response's content. This will be the raw
  OutputStream/Writer as exposed by the Servlet API.

• @RequestParam annotated parameters for access to specific Servlet request parameters. Parameter values will
  be converted to the declared method argument type.

• java.util.Map / org.springframework.ui.Model / org.springframework.ui.ModelMap for enriching the
  implicit model that will be exposed to the web view.

• Command/form objects to bind parameters to: as bean properties or fields, with customizable type
  conversion, depending on @InitBinder methods and/or the HandlerAdapter configuration - see the
  "webBindingInitializer" property on AnnotationMethodHandlerAdapter. Such command objects along
  with their validation results will be exposed as model attributes, by default using the non-qualified command
  class name in property notation (e.g. "orderAddress" for type "mypackage.OrderAddress"). Specify a
  parameter-level ModelAttribute annotation for declaring a specific model attribute name.

• org.springframework.validation.Errors            /      org.springframework.validation.BindingResult
  validation results for a preceding command/form object (the immediate preceding argument).


                                          Spring Framework (2.5.6)                                          349
Web MVC framework


• org.springframework.web.bind.support.SessionStatus status handle for marking form processing as
  complete (triggering the cleanup of session attributes that have been indicated by the @SessionAttributes
  annotation at the handler type level).

The following return types are supported for handler methods:


• A ModelAndView object, with the model implicitly enriched with command objects and the results of
  @ModelAttribute annotated reference data accessor methods.

• A Model object, with the view name implicitly determined through a RequestToViewNameTranslator and the
  model implicitly enriched with command objects and the results of @ModelAttribute annotated reference
  data accessor methods.

• A Map object for exposing a model, with the view name implicitly determined through a
  RequestToViewNameTranslator and the model implicitly enriched with command objects and the results of
  @ModelAttribute annotated reference data accessor methods.

• A View object, with the model implicitly determined through command objects and @ModelAttribute
  annotated reference data accessor methods. The handler method may also programmatically enrich the model
  by declaring a Model argument (see above).

• A String value which is interpreted as view name, with the model implicitly determined through command
  objects and @ModelAttribute annotated reference data accessor methods. The handler method may also
  programmatically enrich the model by declaring a Model argument (see above).

• void if the method handles the response itself (by writing the response content directly, declaring an
  argument of type ServletResponse / HttpServletResponse for that purpose) or if the view name is
  supposed to be implicitly determined through a RequestToViewNameTranslator (not declaring a response
  argument in the handler method signature).

• Any other return type will be considered as single model attribute to be exposed to the view, using the
  attribute name specified through @ModelAttribute at the method level (or the default attribute name based
  on the return type's class name otherwise). The model will be implicitly enriched with command objects and
  the results of @ModelAttribute annotated reference data accessor methods.


13.11.5. Binding request parameters to method parameters with
@RequestParam

The @RequestParam annotation is used to bind request parameters to a method parameter in your controller.

The following code snippet from the PetClinic sample application shows the usage:

 @Controller
 @RequestMapping("/editPet.do")
 @SessionAttributes("pet")
 public class EditPetForm {

      // ...

      @RequestMapping(method = RequestMethod.GET)
      public String setupForm(@RequestParam("petId") int petId, ModelMap model) {
          Pet pet = this.clinic.loadPet(petId);
          model.addAttribute("pet", pet);
          return "petForm";
      }

      // ...




                                          Spring Framework (2.5.6)                                          350
Web MVC framework


Parameters using this annotation are required by default, but you can specify that a parameter is optional by
setting @RequestParam's required attribute to false (e.g., @RequestParam(value="id", required="false")).


13.11.6. Providing a link to data from the model with @ModelAttribute

@ModelAttribute      has two usage scenarios in controllers. When placed on a method parameter,
@ModelAttribute is used to map a model attribute to the specific, annotated method parameter (see the
processSubmit() method below). This is how the controller gets a reference to the object holding the data
entered in the form. In addition, the parameter can be declared as the specific type of the form backing object
rather than as a generic java.lang.Object, thus increasing type safety.

@ModelAttribute  is also used at the method level to provide reference data for the model (see the
populatePetTypes()   method below). For this usage the method signature can contain the same types as
documented above for the @RequestMapping annotation.

Note: @ModelAttribute annotated methods will be executed before the chosen @RequestMapping annotated
handler method. They effectively pre-populate the implicit model with specific attributes, often loaded from a
database. Such an attribute can then already be accessed through @ModelAttribute annotated handler method
parameters in the chosen handler method, potentially with binding and validation applied to it.

The following code snippet shows these two usages of this annotation:

 @Controller
 @RequestMapping("/editPet.do")
 @SessionAttributes("pet")
 public class EditPetForm {

      // ...

      @ModelAttribute("types")
      public Collection<PetType> populatePetTypes() {
          return this.clinic.getPetTypes();
      }

      @RequestMapping(method = RequestMethod.POST)
      public String processSubmit(
              @ModelAttribute("pet") Pet pet, BindingResult result, SessionStatus status) {

          new PetValidator().validate(pet, result);
          if (result.hasErrors()) {
              return "petForm";
          }
          else {
              this.clinic.storePet(pet);
              status.setComplete();
              return "redirect:owner.do?ownerId=" + pet.getOwner().getId();
          }
      }
 }




13.11.7. Specifying attributes to store in a Session with @SessionAttributes

The type-level @SessionAttributes annotation declares session attributes used by a specific handler. This will
typically list the names of model attributes which should be transparently stored in the session or some
conversational storage, serving as form-backing beans between subsequent requests.

The following code snippet shows the usage of this annotation:

 @Controller
 @RequestMapping("/editPet.do")
 @SessionAttributes("pet")
 public class EditPetForm {


                                          Spring Framework (2.5.6)                                         351
Web MVC framework

     // ...
 }




13.11.8. Customizing WebDataBinder initialization

To customize request parameter binding with PropertyEditors, etc. via Spring's WebDataBinder, you can either
use @InitBinder-annotated methods within your controller or externalize your configuration by providing a
custom WebBindingInitializer.

13.11.8.1. Customizing data binding with @InitBinder

Annotating controller methods with @InitBinder allows you to configure web data binding directly within
your controller class. @InitBinder identifies methods which initialize the WebDataBinder which will be used
for populating command and form object arguments of annotated handler methods.

Such init-binder methods support all arguments that @RequestMapping supports, except for command/form
objects and corresponding validation result objects. Init-binder methods must not have a return value. Thus,
they are usually declared as void. Typical arguments include WebDataBinder in combination with WebRequest
or java.util.Locale, allowing code to register context-specific editors.

The following example demonstrates the use of @InitBinder for configuring a CustomDateEditor for all
java.util.Date form properties.

 @Controller
 public class MyFormController {

     @InitBinder
     public void initBinder(WebDataBinder binder) {
         SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
         dateFormat.setLenient(false);
         binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat, false));
     }

     // ...
 }




13.11.8.2. Configuring a custom WebBindingInitializer

To externalize data binding initialization, you can provide a custom implementation of the
WebBindingInitializer interface, which you then enable by supplying a custom bean configuration for an
AnnotationMethodHandlerAdapter, thus overriding the default configuration.

The following example from the PetClinic application shows a configuration using a custom implementation of
the                                      WebBindingInitializer                                   interface,
org.springframework.samples.petclinic.web.ClinicBindingInitializer,                  which      configures
PropertyEditors required by several of the PetClinic controllers.

 <bean class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
     <property name="cacheSeconds" value="0" />
     <property name="webBindingInitializer">
         <bean class="org.springframework.samples.petclinic.web.ClinicBindingInitializer" />
     </property>
 </bean>




13.12. Further Resources

                                         Spring Framework (2.5.6)                                       352
Web MVC framework


Find below links and pointers to further resources about Spring Web MVC.


• The Spring distribution ships with a Spring Web MVC tutorial that guides the reader through building a
  complete Spring Web MVC-based application using a step-by-step approach. This tutorial is available in the
  'docs' directory of the Spring distribution. An online version can also be found on the Spring Framework
  website.

• The book entitled “Expert Spring Web MVC and Web Flow” by Seth Ladd and others (published by Apress)
  is an excellent hardcopy source of Spring Web MVC goodness.




                                         Spring Framework (2.5.6)                                       353
Chapter 14. View technologies

14.1. Introduction
One of the areas in which Spring excels is in the separation of view technologies from the rest of the MVC
framework. For example, deciding to use Velocity or XSLT in place of an existing JSP is primarily a matter of
configuration. This chapter covers the major view technologies that work with Spring and touches briefly on
how to add new ones. This chapter assumes you are already familiar with Section 13.5, “Views and resolving
them” which covers the basics of how views in general are coupled to the MVC framework.


14.2. JSP & JSTL
Spring provides a couple of out-of-the-box solutions for JSP and JSTL views. Using JSP or JSTL is done using
a normal view resolver defined in the WebApplicationContext. Furthermore, of course you need to write some
JSPs that will actually render the view.


14.2.1. View resolvers

Just as with any other view technology you're integrating with Spring, for JSPs you'll need a view resolver that
will resolve your views. The most commonly used view resolvers when developing with JSPs are the
InternalResourceViewResolver and the ResourceBundleViewResolver. Both are declared in the
WebApplicationContext:

 <!-- the ResourceBundleViewResolver -->
 <bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver">
   <property name="basename" value="views"/>
 </bean>

 # And a sample properties file is uses (views.properties in WEB-INF/classes):
 welcome.class=org.springframework.web.servlet.view.JstlView
 welcome.url=/WEB-INF/jsp/welcome.jsp

 productList.class=org.springframework.web.servlet.view.JstlView
 productList.url=/WEB-INF/jsp/productlist.jsp



As you can see, the ResourceBundleViewResolver needs a properties file defining the view names mapped to
1) a class and 2) a URL. With a ResourceBundleViewResolver you can mix different types of views using only
one resolver.

 <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">
   <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>
   <property name="prefix" value="/WEB-INF/jsp/"/>
   <property name="suffix" value=".jsp"/>
 </bean>



The InternalResourceBundleViewResolver can be configured for using JSPs as described above. As a best
practice, we strongly encourage placing your JSP files in a directory under the 'WEB-INF' directory, so there
can be no direct access by clients.


14.2.2. 'Plain-old' JSPs versus JSTL

When using the Java Standard Tag Library you must use a special view class, the JstlView, as JSTL needs


                                          Spring Framework (2.5.6)                                          354
View technologies

some preparation before things such as the i18N features will work.


14.2.3. Additional tags facilitating development

Spring provides data binding of request parameters to command objects as described in earlier chapters. To
facilitate the development of JSP pages in combination with those data binding features, Spring provides a few
tags that make things even easier. All Spring tags have HTML escaping features to enable or disable escaping
of characters.

The tag library descriptor (TLD) is included in the spring.jar as well in the distribution itself. Further
information about the individual tags can be found in the appendix entitled Appendix D, spring.tld.


14.2.4. Using Spring's form tag library

As of version 2.0, Spring provides a comprehensive set of data binding-aware tags for handling form elements
when using JSP and Spring Web MVC. Each tag provides support for the set of attributes of its corresponding
HTML tag counterpart, making the tags familiar and intuitive to use. The tag-generated HTML is HTML
4.01/XHTML 1.0 compliant.

Unlike other form/input tag libraries, Spring's form tag library is integrated with Spring Web MVC, giving the
tags access to the command object and reference data your controller deals with. As you will see in the
following examples, the form tags make JSPs easier to develop, read and maintain.

Let's go through the form tags and look at an example of how each tag is used. We have included generated
HTML snippets where certain tags require further commentary.

14.2.4.1. Configuration

The form tag library comes bundled in spring.jar. The library descriptor is called spring-form.tld.

To use the tags from this library, add the following directive to the top of your JSP page:

 <%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>



... where form is the tag name prefix you want to use for the tags from this library.

14.2.4.2. The form tag

This tag renders an HTML 'form' tag and exposes a binding path to inner tags for binding. It puts the command
object in the PageContext so that the command object can be accessed by inner tags. All the other tags in this
library are nested tags of the form tag.

Let's assume we have a domain object called User. It is a JavaBean with properties such as firstName and
lastName. We will use it as the form backing object of our form controller which returns form.jsp. Below is an
example of what form.jsp would look like:

 <form:form>
       <table>
           <tr>
                  <td>First Name:</td>
                  <td><form:input path="firstName" /></td>
             </tr>
             <tr>
                  <td>Last Name:</td>
                  <td><form:input path="lastName" /></td>
             </tr>
             <tr>


                                            Spring Framework (2.5.6)                                      355
View technologies


                <td colspan="2">
                    <input type="submit" value="Save Changes" />
                </td>
           </tr>
       </table>
   </form:form>



The firstName and lastName values are retrieved from the command object placed in the PageContext by the
page controller. Keep reading to see more complex examples of how inner tags are used with the form tag.

The generated HTML looks like a standard form:

 <form method="POST">
       <table>
         <tr>
              <td>First Name:</td>
              <td><input name="firstName" type="text" value="Harry"/></td>
         </tr>
         <tr>
              <td>Last Name:</td>
              <td><input name="lastName" type="text" value="Potter"/></td>
         </tr>
         <tr>
              <td colspan="2">
                <input type="submit" value="Save Changes" />
              </td>
         </tr>
       </table>
   </form>



The preceding JSP assumes that the variable name of the form backing object is 'command'. If you have put the
form backing object into the model under another name (definitely a best practice), then you can bind the form
to the named variable like so:

 <form:form commandName="user">
       <table>
           <tr>
                <td>First Name:</td>
                <td><form:input path="firstName" /></td>
           </tr>
           <tr>
                <td>Last Name:</td>
                <td><form:input path="lastName" /></td>
           </tr>
           <tr>
                <td colspan="2">
                    <input type="submit" value="Save Changes" />
                </td>
           </tr>
       </table>
   </form:form>




14.2.4.3. The input tag

This tag renders an HTML 'input' tag with type 'text' using the bound value. For an example of this tag, see
Section 14.2.4.2, “The form tag”.

14.2.4.4. The checkbox tag

This tag renders an HTML 'input' tag with type 'checkbox'.

Let's assume our User has preferences such as newsletter subscription and a list of hobbies. Below is an
example of the Preferences class:

 public class Preferences {


                                          Spring Framework (2.5.6)                                        356
View technologies



        private boolean receiveNewsletter;

        private String[] interests;

        private String favouriteWord;

        public boolean isReceiveNewsletter() {
            return receiveNewsletter;
        }

        public void setReceiveNewsletter(boolean receiveNewsletter) {
            this.receiveNewsletter = receiveNewsletter;
        }

        public String[] getInterests() {
            return interests;
        }

        public void setInterests(String[] interests) {
            this.interests = interests;
        }

        public String getFavouriteWord() {
            return favouriteWord;
        }

        public void setFavouriteWord(String favouriteWord) {
            this.favouriteWord = favouriteWord;
        }
   }



The form.jsp would look like:

 <form:form>
       <table>
           <tr>
                <td>Subscribe to newsletter?:</td>
                <%-- Approach 1: Property is of type java.lang.Boolean --%>
                <td><form:checkbox path="preferences.receiveNewsletter"/></td>
            </tr>

            <tr>
                <td>Interests:</td>
                <td>
                    <%-- Approach 2: Property is of an array or of type java.util.Collection --%>
                    Quidditch: <form:checkbox path="preferences.interests" value="Quidditch"/>
                    Herbology: <form:checkbox path="preferences.interests" value="Herbology"/>
                    Defence Against the Dark Arts: <form:checkbox path="preferences.interests"
                        value="Defence Against the Dark Arts"/>
                </td>
           </tr>
           <tr>
                <td>Favourite Word:</td>
                <td>
                    <%-- Approach 3: Property is of type java.lang.Object --%>
                    Magic: <form:checkbox path="preferences.favouriteWord" value="Magic"/>
                </td>
           </tr>
       </table>
   </form:form>



There are 3 approaches to the checkbox tag which should meet all your checkbox needs.


• Approach One - When the bound value is of type java.lang.Boolean, the input(checkbox) is marked as
  'checked' if the bound value is true. The value attribute corresponds to the resolved value of the
  setValue(Object) value property.

• Approach Two - When the bound value is of type array or java.util.Collection, the input(checkbox) is
  marked as 'checked' if the configured setValue(Object) value is present in the bound Collection.


                                         Spring Framework (2.5.6)                                   357
View technologies


• Approach Three - For any other bound value type, the input(checkbox) is marked as 'checked' if the
  configured setValue(Object) is equal to the bound value.

Note that regardless of the approach, the same HTML structure is generated. Below is an HTML snippet of
some checkboxes:

 <tr>
        <td>Interests:</td>
        <td>
             Quidditch: <input name="preferences.interests" type="checkbox" value="Quidditch"/>
             <input type="hidden" value="1" name="_preferences.interests"/>
             Herbology: <input name="preferences.interests" type="checkbox" value="Herbology"/>
             <input type="hidden" value="1" name="_preferences.interests"/>
             Defence Against the Dark Arts: <input name="preferences.interests" type="checkbox"
                 value="Defence Against the Dark Arts"/>
             <input type="hidden" value="1" name="_preferences.interests"/>
        </td>
    </tr>



What you might not expect to see is the additional hidden field after each checkbox. When a checkbox in an
HTML page is not checked, its value will not be sent to the server as part of the HTTP request parameters once
the form is submitted, so we need a workaround for this quirk in HTML in order for Spring form data binding
to work. The checkbox tag follows the existing Spring convention of including a hidden parameter prefixed by
an underscore ("_") for each checkbox. By doing this, you are effectively telling Spring that “ the checkbox was
visible in the form and I want my object to which the form data will be bound to reflect the state of the checkbox
no matter what ”.

14.2.4.5. The checkboxes tag

This tag renders multiple HTML 'input' tags with type 'checkbox'.

Building on the example from the previous checkbox tag section. Sometimes you prefer not to have to list all
the possible hobbies in your JSP page. You would rather provide a list at runtime of the available options and
pass that in to the tag. That is the purpose of the checkboxes tag. You pass in an Array, a List or a Map
containing the available options in the "items" property. Typically the bound property is a collection so it can
hold multiple values selected by the user. Below is an example of the JSP using this tag:

 <form:form>
       <table>
           <tr>
                 <td>Interests:</td>
                 <td>
                     <%-- Property is of an array or of type java.util.Collection --%>
                     <form:checkboxes path="preferences.interests" items="${interestList}"/>
                 </td>
            </tr>
        </table>
    </form:form>



This example assumes that the "interestList" is a List available as a model attribute containing strings of the
values to be selected from. In the case where you use a Map, the map entry key will be used as the value and
the map entry's value will be used as the label to be displayed. You can also use a custom object where you can
provide the property names for the value using "itemValue" and the label using "itemLabel".

14.2.4.6. The radiobutton tag

This tag renders an HTML 'input' tag with type 'radio'.

A typical usage pattern will involve multiple tag instances bound to the same property but with different values.


                                           Spring Framework (2.5.6)                                           358
View technologies


 <tr>
        <td>Sex:</td>
        <td>Male: <form:radiobutton path="sex" value="M"/> <br/>
            Female: <form:radiobutton path="sex" value="F"/> </td>
    </tr>




14.2.4.7. The radiobuttons tag

This tag renders multiple HTML 'input' tags with type 'radio'.

Just like the checkboxes tag above, you might want to pass in the available options as a runtime variable. For
this usage you would use the radiobuttons tag. You pass in an Array, a List or a Map containing the available
options in the "items" property. In the case where you use a Map, the map entry key will be used as the value
and the map entry's value will be used as the label to be displayed. You can also use a custom object where you
can provide the property names for the value using "itemValue" and the label using "itemLabel".

 <tr>
        <td>Sex:</td>
        <td><form:radiobuttons path="sex" items="${sexOptions}"/></td>
    </tr>




14.2.4.8. The password tag

This tag renders an HTML 'input' tag with type 'password' using the bound value.

 <tr>
        <td>Password:</td>
        <td>
             <form:password path="password" />
        </td>
    </tr>



Please note that by default, the password value is not shown. If you do want the password value to be shown,
then set the value of the 'showPassword' attribute to true, like so.

 <tr>
        <td>Password:</td>
        <td>
             <form:password path="password" value="^76525bvHGq" showPassword="true" />
        </td>
    </tr>




14.2.4.9. The select tag

This tag renders an HTML 'select' element. It supports data binding to the selected option as well as the use of
nested option and options tags.

Let's assume a User has a list of skills.

 <tr>
        <td>Skills:</td>
        <td><form:select path="skills" items="${skills}"/></td>
    </tr>



If the User's skill were in Herbology, the HTML source of the 'Skills' row would look like:

 <tr>
        <td>Skills:</td>
        <td><select name="skills" multiple="true">


                                            Spring Framework (2.5.6)                                        359
View technologies


            <option value="Potions">Potions</option>
            <option value="Herbology" selected="selected">Herbology</option>
            <option value="Quidditch">Quidditch</option></select>
        </td>
    </tr>




14.2.4.10. The option tag

This tag renders an HTML 'option'. It sets 'selected' as appropriate based on the bound value.

 <tr>
        <td>House:</td>
        <td>
             <form:select path="house">
                 <form:option value="Gryffindor"/>
                 <form:option value="Hufflepuff"/>
                 <form:option value="Ravenclaw"/>
                 <form:option value="Slytherin"/>
             </form:select>
        </td>
    </tr>



If the User's house was in Gryffindor, the HTML source of the 'House' row would look like:

 <tr>
        <td>House:</td>
        <td>
             <select name="house">
                 <option value="Gryffindor" selected="selected">Gryffindor</option>
                 <option value="Hufflepuff">Hufflepuff</option>
                 <option value="Ravenclaw">Ravenclaw</option>
                 <option value="Slytherin">Slytherin</option>
             </select>
        </td>
     </tr>




14.2.4.11. The options tag

This tag renders a list of HTML 'option' tags. It sets the 'selected' attribute as appropriate based on the bound
value.

 <tr>
        <td>Country:</td>
        <td>
             <form:select path="country">
                 <form:option value="-" label="--Please Select"/>
                 <form:options items="${countryList}" itemValue="code" itemLabel="name"/>
             </form:select>
        </td>
    </tr>



If the User lived in the UK, the HTML source of the 'Country' row would look like:

 <tr>
        <td>Country:</td>
        <td>
             <select name="country">
                 <option value="-">--Please Select</option>
                 <option value="AT">Austria</option>
                 <option value="UK" selected="selected">United Kingdom</option>
                 <option value="US">United States</option>
             </select>
        </td>
    </tr>




                                           Spring Framework (2.5.6)                                          360
View technologies


As the example shows, the combined usage of an option tag with the options tag generates the same standard
HTML, but allows you to explicitly specify a value in the JSP that is for display only (where it belongs) such as
the default string in the example: "-- Please Select".

The items attribute is typically populated with a collection or array of item objects. itemValue and itemLabel
simply refer to bean properties of those item objects, if specified; otherwise, the item objects themselves will be
stringified. Alternatively, you may specify a Map of items, in which case the map keys are interpreted as option
values and the map values correspond to option labels. If itemValue and/or itemLabel happen to be specified
as well, the item value property will apply to the map key and the item label property will apply to the map
value.

14.2.4.12. The textarea tag

This tag renders an HTML 'textarea'.

 <tr>
        <td>Notes:</td>
        <td><form:textarea path="notes" rows="3" cols="20" /></td>
        <td><form:errors path="notes" /></td>
    </tr>




14.2.4.13. The hidden tag

This tag renders an HTML 'input' tag with type 'hidden' using the bound value. To submit an unbound hidden
value, use the HTML input tag with type 'hidden'.

 <form:hidden path="house" />




If we choose to submit the 'house' value as a hidden one, the HTML would look like:

 <input name="house" type="hidden" value="Gryffindor"/>




14.2.4.14. The errors tag

This tag renders field errors in an HTML 'span' tag. It provides access to the errors created in your controller or
those that were created by any validators associated with your controller.

Let's assume we want to display all error messages for the firstName and lastName fields once we submit the
form. We have a validator for instances of the User class called UserValidator.

 public class UserValidator implements Validator {

        public boolean supports(Class candidate) {
            return User.class.isAssignableFrom(candidate);
        }

        public void validate(Object obj, Errors errors) {
            ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName", "required", "Field is required.");
            ValidationUtils.rejectIfEmptyOrWhitespace(errors, "lastName", "required", "Field is required.");
        }
    }



The form.jsp would look like:

 <form:form>
       <table>


                                            Spring Framework (2.5.6)                                           361
View technologies


            <tr>
                <td>First Name:</td>
                <td><form:input path="firstName" /></td>
                <%-- Show errors for firstName field --%>
                <td><form:errors path="firstName" /></td>
            </tr>

            <tr>
                 <td>Last Name:</td>
                 <td><form:input path="lastName" /></td>
                 <%-- Show errors for lastName field --%>
                 <td><form:errors path="lastName" /></td>
            </tr>
            <tr>
                 <td colspan="3">
                     <input type="submit" value="Save Changes" />
                 </td>
            </tr>
        </table>
    </form:form>



If we submit a form with empty values in the firstName and lastName fields, this is what the HTML would
look like:

 <form method="POST">
       <table>
           <tr>
                <td>First Name:</td>
                <td><input name="firstName" type="text" value=""/></td>
                <%-- Associated errors to firstName field displayed --%>
                <td><span name="firstName.errors">Field is required.</span></td>
           </tr>

            <tr>
                 <td>Last Name:</td>
                 <td><input name="lastName" type="text" value=""/></td>
                 <%-- Associated errors to lastName field displayed --%>
                 <td><span name="lastName.errors">Field is required.</span></td>
            </tr>
            <tr>
                 <td colspan="3">
                     <input type="submit" value="Save Changes" />
                 </td>
            </tr>
        </table>
    </form>



What if we want to display the entire list of errors for a given page? The example below shows that the errors
tag also supports some basic wildcarding functionality.


• path="*" - displays all errors

• path="lastName*" - displays all errors associated with the lastName field

The example below will display a list of errors at the top of the page, followed by field-specific errors next to
the fields:

 <form:form>
       <form:errors path="*" cssClass="errorBox" />
       <table>
           <tr>
                <td>First Name:</td>
                <td><form:input path="firstName" /></td>
                <td><form:errors path="firstName" /></td>
           </tr>
           <tr>
                <td>Last Name:</td>
                <td><form:input path="lastName" /></td>
                <td><form:errors path="lastName" /></td>


                                           Spring Framework (2.5.6)                                          362
View technologies


             </tr>
             <tr>
                  <td colspan="3">
                      <input type="submit" value="Save Changes" />
                  </td>
             </tr>
         </table>
     </form:form>



The HTML would look like:

    <form method="POST">
          <span name="*.errors" class="errorBox">Field is required.<br/>Field is required.</span>
          <table>
              <tr>
                   <td>First Name:</td>
                   <td><input name="firstName" type="text" value=""/></td>
                   <td><span name="firstName.errors">Field is required.</span></td>
              </tr>

               <tr>
                    <td>Last Name:</td>
                    <td><input name="lastName" type="text" value=""/></td>
                    <td><span name="lastName.errors">Field is required.</span></td>
               </tr>
               <tr>
                    <td colspan="3">
                        <input type="submit" value="Save Changes" />
                    </td>
               </tr>
     </form>




14.3. Tiles
It is possible to integrate Tiles - just as any other view technology - in web applications using Spring. The
following describes in a broad way how to do this.

NOTE: This section focuses on Spring's support for Tiles 2 (the standalone version of Tiles, requiring Java 5+)
in the org.springframework.web.servlet.view.tiles2 package. Spring also continues to support Tiles 1.x
(a.k.a. "Struts Tiles", as shipped with Struts 1.1+; compatible with Java 1.4) in the original
org.springframework.web.servlet.view.tiles package.



14.3.1. Dependencies

To be able to use Tiles you have to have a couple of additional dependencies included in your project. The
following is the list of dependencies you need.


•   Tiles version 2.0.4 or higher
•   Commons BeanUtils
•   Commons Digester
•   Commons Logging

These dependencies are all available in the Spring distribution.


14.3.2. How to integrate Tiles

To be able to use Tiles, you have to configure it using files containing definitions (for basic information on
definitions and other Tiles concepts, please have a look at http://tiles.apache.org). In Spring this is done using

                                           Spring Framework (2.5.6)                                           363
View technologies

the TilesConfigurer. Have a look at the following piece of example ApplicationContext configuration:

 <bean id="tilesConfigurer" class="org.springframework.web.servlet.view.tiles2.TilesConfigurer">
   <property name="definitions">
     <list>
       <value>/WEB-INF/defs/general.xml</value>
       <value>/WEB-INF/defs/widgets.xml</value>
       <value>/WEB-INF/defs/administrator.xml</value>
       <value>/WEB-INF/defs/customer.xml</value>
       <value>/WEB-INF/defs/templates.xml</value>
     </list>
   </property>
 </bean>



As you can see, there are five files containing definitions, which are all located in the 'WEB-INF/defs'
directory. At initialization of the WebApplicationContext, the files will be loaded and the definitions factory
will be initialized. After that has been done, the Tiles includes in the definition files can be used as views within
your Spring web application. To be able to use the views you have to have a ViewResolver just as with any
other view technology used with Spring. Below you can find two possibilities, the UrlBasedViewResolver and
the ResourceBundleViewResolver.

14.3.2.1. UrlBasedViewResolver

The UrlBasedViewResolver instantiates the given viewClass for each view it has to resolve.

 <bean id="viewResolver" class="org.springframework.web.servlet.view.UrlBasedViewResolver">
   <property name="viewClass" value="org.springframework.web.servlet.view.tiles2.TilesView"/>
 </bean>




14.3.2.2. ResourceBundleViewResolver

The ResourceBundleViewResolver has to be provided with a property file containing viewnames and
viewclasses the resolver can use:

 <bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver">
   <property name="basename" value="views"/>
 </bean>



 ...
 welcomeView.class=org.springframework.web.servlet.view.tiles2.TilesView
 welcomeView.url=welcome (this is the name of a Tiles definition)

 vetsView.class=org.springframework.web.servlet.view.tiles2.TilesView
 vetsView.url=vetsView (again, this is the name of a Tiles definition)

 findOwnersForm.class=org.springframework.web.servlet.view.JstlView
 findOwnersForm.url=/WEB-INF/jsp/findOwners.jsp
 ...



As you can see, when using the ResourceBundleViewResolver, you can easily mix different view technologies.

Note that the TilesView class for Tiles 2 supports JSTL (the JSP Standard Tag Library) out of the box, whereas
there is a separate TilesJstlView subclass in the Tiles 1.x support.

14.3.2.3. SimpleSpringPreparerFactory and SpringBeanPreparerFactory

As an advanced feature, Spring also supports two special Tiles 2 PreparerFactory implementations. Check out
the Tiles documentation for details on how to use ViewPreparer references in your Tiles definition files.

Specify SimpleSpringPreparerFactory to autowire ViewPreparer instances based on specified preparer


                                            Spring Framework (2.5.6)                                             364
View technologies

classes, applying Spring's container callbacks as well as applying configured Spring BeanPostProcessors. If
Spring's context-wide annotation-config has been activated, annotations in ViewPreparer classes will be
automatically detected and applied. Note that this expects preparer classes in the Tiles definition files, just like
the default PreparerFactory does.

Specify SpringBeanPreparerFactory to operate on specified preparer names instead of classes, obtaining the
corresponding Spring bean from the DispatcherServlet's application context. The full bean creation process will
be in the control of the Spring application context in this case, allowing for the use of explicit dependency
injection configuration, scoped beans etc. Note that you need to define one Spring bean definition per preparer
name (as used in your Tiles definitions).

 <bean id="tilesConfigurer" class="org.springframework.web.servlet.view.tiles2.TilesConfigurer">
   <property name="definitions">
     <list>
       <value>/WEB-INF/defs/general.xml</value>
       <value>/WEB-INF/defs/widgets.xml</value>
       <value>/WEB-INF/defs/administrator.xml</value>
       <value>/WEB-INF/defs/customer.xml</value>
       <value>/WEB-INF/defs/templates.xml</value>
     </list>
   </property>

    <!-- resolving preparer names as Spring bean definition names -->
    <property name="preparerFactoryClass"
         value="org.springframework.web.servlet.view.tiles2.SpringBeanPreparerFactory"/>

 </bean>




14.4. Velocity & FreeMarker
Velocity and FreeMarker are two templating languages that can both be used as view technologies within
Spring MVC applications. The languages are quite similar and serve similar needs and so are considered
together in this section. For semantic and syntactic differences between the two languages, see the FreeMarker
web site.


14.4.1. Dependencies

Your web application will need to include velocity-1.x.x.jar or freemarker-2.x.jar in order to work with
Velocity or FreeMarker respectively and commons-collections.jar needs also to be available for Velocity.
Typically they are included in the WEB-INF/lib folder where they are guaranteed to be found by a J2EE server
and added to the classpath for your application. It is of course assumed that you already have the spring.jar in
your 'WEB-INF/lib' directory too! The latest stable Velocity, FreeMarker and Commons Collections jars are
supplied with the Spring framework and can be copied from the relevant /lib/ sub-directories. If you make use
of Spring's 'dateToolAttribute' or 'numberToolAttribute' in your Velocity views, you will also need to include
the velocity-tools-generic-1.x.jar


14.4.2. Context configuration

A suitable configuration is initialized by adding the relevant configurer bean definition to your
'*-servlet.xml' as shown below:

 <!--
   This bean sets up the Velocity environment for us based on a root path for templates.
   Optionally, a properties file can be specified for more control over the Velocity
   environment, but the defaults are pretty sane for file based template loading.
 -->
 <bean id="velocityConfig" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">
   <property name="resourceLoaderPath" value="/WEB-INF/velocity/"/>


                                            Spring Framework (2.5.6)                                            365
View technologies

 </bean>

 <!--

    View resolvers can also be configured with ResourceBundles or XML files. If you need
    different view resolving based on Locale, you have to use the resource bundle resolver.

 -->
 <bean id="viewResolver" class="org.springframework.web.servlet.view.velocity.VelocityViewResolver">
   <property name="cache" value="true"/>
   <property name="prefix" value=""/>
   <property name="suffix" value=".vm"/>
 </bean>



 <!-- freemarker config -->
 <bean id="freemarkerConfig" class="org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer">
   <property name="templateLoaderPath" value="/WEB-INF/freemarker/"/>
 </bean>

 <!--

    View resolvers can also be configured with ResourceBundles or XML files. If you need
    different view resolving based on Locale, you have to use the resource bundle resolver.

 -->
 <bean id="viewResolver" class="org.springframework.web.servlet.view.freemarker.FreeMarkerViewResolver">
   <property name="cache" value="true"/>
   <property name="prefix" value=""/>
   <property name="suffix" value=".ftl"/>
 </bean>



            Note
            For      non      web-apps       add
                                               a     VelocityConfigurationFactoryBean                    or     a
            FreeMarkerConfigurationFactoryBean to your application context definition file.




14.4.3. Creating templates

Your templates need to be stored in the directory specified by the *Configurer bean shown above. This
document does not cover details of creating templates for the two languages - please see their relevant websites
for information. If you use the view resolvers highlighted, then the logical view names relate to the template
file names in similar fashion to InternalResourceViewResolver for JSP's. So if your controller returns a
ModelAndView object containing a view name of "welcome" then the resolvers will look for the
/WEB-INF/freemarker/welcome.ftl or /WEB-INF/velocity/welcome.vm template as appropriate.



14.4.4. Advanced configuration

The basic configurations highlighted above will be suitable for most application requirements, however
additional configuration options are available for when unusual or advanced requirements dictate.

14.4.4.1. velocity.properties

This file is completely optional, but if specified, contains the values that are passed to the Velocity runtime in
order to configure velocity itself. Only required for advanced configurations, if you need this file, specify its
location on the VelocityConfigurer bean definition above.

 <bean id="velocityConfig" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">
   <property name="configLocation value="/WEB-INF/velocity.properties"/>
 </bean>




                                           Spring Framework (2.5.6)                                           366
View technologies


Alternatively, you can specify velocity properties directly in the bean definition for the Velocity config bean by
replacing the "configLocation" property with the following inline properties.

 <bean id="velocityConfig" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">
   <property name="velocityProperties">
     <props>
       <prop key="resource.loader">file</prop>
       <prop key="file.resource.loader.class">
         org.apache.velocity.runtime.resource.loader.FileResourceLoader
       </prop>
       <prop key="file.resource.loader.path">${webapp.root}/WEB-INF/velocity</prop>
       <prop key="file.resource.loader.cache">false</prop>
     </props>
   </property>
 </bean>



Refer to the API documentation for Spring configuration of Velocity, or the Velocity documentation for
examples and definitions of the 'velocity.properties' file itself.

14.4.4.2. FreeMarker

FreeMarker 'Settings' and 'SharedVariables' can be passed directly to the FreeMarker Configuration object
managed by Spring by setting the appropriate bean properties on the FreeMarkerConfigurer bean. The
freemarkerSettings property requires a java.util.Properties object and the freemarkerVariables
property requires a java.util.Map.

 <bean id="freemarkerConfig" class="org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer">
   <property name="templateLoaderPath" value="/WEB-INF/freemarker/"/>
   <property name="freemarkerVariables">
     <map>
       <entry key="xml_escape" value-ref="fmXmlEscape"/>
     </map>
   </property>
 </bean>

 <bean id="fmXmlEscape" class="freemarker.template.utility.XmlEscape"/>



See the FreeMarker documentation for details of settings and variables as they apply to the Configuration
object.


14.4.5. Bind support and form handling

Spring provides a tag library for use in JSP's that contains (amongst other things) a <spring:bind/> tag. This
tag primarily enables forms to display values from form backing objects and to show the results of failed
validations from a Validator in the web or business tier. From version 1.1, Spring now has support for the
same functionality in both Velocity and FreeMarker, with additional convenience macros for generating form
input elements themselves.

14.4.5.1. The bind macros

A standard set of macros are maintained within the spring.jar file for both languages, so they are always
available to a suitably configured application.

Some of the macros defined in the Spring libraries are considered internal (private) but no such scoping exists
in the macro definitions making all macros visible to calling code and user templates. The following sections
concentrate only on the macros you need to be directly calling from within your templates. If you wish to view
the macro code directly, the files are called spring.vm / spring.ftl and are in the packages
org.springframework.web.servlet.view.velocity                                                                or


                                           Spring Framework (2.5.6)                                           367
View technologies

org.springframework.web.servlet.view.freemarker           respectively.

14.4.5.2. Simple binding

In your html forms (vm / ftl templates) that act as the 'formView' for a Spring form controller, you can use code
similar to the following to bind to field values and display error messages for each input field in similar fashion
to the JSP equivalent. Note that the name of the command object is "command" by default, but can be
overridden in your MVC configuration by setting the 'commandName' bean property on your form controller.
Example code is shown below for the personFormV and personFormF views configured earlier;

 <!-- velocity macros are automatically available -->
 <html>
 ...
 <form action="" method="POST">
   Name:
   #springBind( "command.name" )
   <input type="text"
     name="${status.expression}"
     value="$!status.value" /><br>
   #foreach($error in $status.errorMessages) <b>$error</b> <br> #end
   <br>
   ...
   <input type="submit" value="submit"/>
 </form>
 ...
 </html>



 <!-- freemarker macros have to be imported into a namespace. We strongly
 recommend sticking to 'spring' -->
 <#import "spring.ftl" as spring />
 <html>
 ...
 <form action="" method="POST">
   Name:
   <@spring.bind "command.name" />
   <input type="text"
     name="${spring.status.expression}"
     value="${spring.status.value?default("")}" /><br>
   <#list spring.status.errorMessages as error> <b>${error}</b> <br> </#list>
   <br>
   ...
   <input type="submit" value="submit"/>
 </form>
 ...
 </html>



#springBind    / <@spring.bind> requires a 'path' argument which consists of the name of your command object
(it will be 'command' unless you changed it in your FormController properties) followed by a period and the
name of the field on the command object you wish to bind to. Nested fields can be used too such as
"command.address.street". The bind macro assumes the default HTML escaping behavior specified by the
ServletContext parameter defaultHtmlEscape in web.xml

The optional form of the macro called #springBindEscaped / <@spring.bindEscaped> takes a second
argument and explicitly specifies whether HTML escaping should be used in the status error messages or
values. Set to true or false as required. Additional form handling macros simplify the use of HTML escaping
and these macros should be used wherever possible. They are explained in the next section.

14.4.5.3. Form input generation macros

Additional convenience macros for both languages simplify both binding and form generation (including
validation error display). It is never necessary to use these macros to generate form input fields, and they can be
mixed and matched with simple HTML or calls direct to the spring bind macros highlighted previously.



                                            Spring Framework (2.5.6)                                           368
View technologies


The following table of available macros show the VTL and FTL definitions and the parameter list that each
takes.


Table 14.1. Table of macro definitions

              macro                              VTL definition                    FTL definition

message (output a string from a       #springMessage($code)             <@spring.message code/>
resource bundle based on the code
parameter)

messageText (output a string from #springMessageText($code              <@spring.messageText        code,
a resource bundle based on the      $text)                              text/>
code parameter, falling back to the
value of the default parameter)

url (prefix a relative URL with the   #springUrl($relativeUrl)          <@spring.url relativeUrl/>
application's context root)

formInput (standard input field       #springFormInput($path            <@spring.formInput          path,
for gathering user input)             $attributes)                      attributes, fieldType/>

formHiddenInput * (hidden input #springFormHiddenInput($path            <@spring.formHiddenInput
field for submitting non-user input) $attributes)                       path, attributes/>

formPasswordInput * (standard         #springFormPasswordInput($path <@spring.formPasswordInput
input field for gathering             $attributes)                      path, attributes/>
passwords. Note that no value will
ever be populated in fields of this
type)

formTextarea (large text field for #springFormTextarea($path            <@spring.formTextarea       path,
gathering long, freeform text input) $attributes)                       attributes/>

formSingleSelect (drop down box       #springFormSingleSelect(          <@spring.formSingleSelect
of options allowing a single          $path $options $attributes)       path, options, attributes/>
required value to be selected)

formMultiSelect (a list box of        #springFormMultiSelect($path      <@spring.formMultiSelect
options allowing the user to select   $options $attributes)             path, options, attributes/>
0 or more values)

formRadioButtons (a set of radio      #springFormRadioButtons($path     <@spring.formRadioButtons
buttons allowing a single selection   $options               $separator path,      options     separator,
to be made from the available         $attributes)                      attributes/>
choices)

formCheckboxes (a set of              #springFormCheckboxes($path       <@spring.formCheckboxes path,
checkboxes allowing 0 or more         $options               $separator options,               separator,
values to be selected)                $attributes)                      attributes/>

showErrors (simplify display of       #springShowErrors($separator      <@spring.showErrors
validation errors for the bound       $classOrStyle)                    separator, classOrStyle/>
field)


* In FTL (FreeMarker), these two macros are not actually required as you can use the normal formInput


                                         Spring Framework (2.5.6)                                     369
View technologies

macro, specifying 'hidden' or 'password' as the value for the fieldType parameter.

The parameters to any of the above macros have consistent meanings:


• path: the name of the field to bind to (ie "command.name")

• options: a Map of all the available values that can be selected from in the input field. The keys to the map
  represent the values that will be POSTed back from the form and bound to the command object. Map objects
  stored against the keys are the labels displayed on the form to the user and may be different from the
  corresponding values posted back by the form. Usually such a map is supplied as reference data by the
  controller. Any Map implementation can be used depending on required behavior. For strictly sorted maps, a
  SortedMap such as a TreeMap with a suitable Comparator may be used and for arbitrary Maps that should
  return values in insertion order, use a LinkedHashMap or a LinkedMap from commons-collections.

• separator: where multiple options are available as discreet elements (radio buttons or checkboxes), the
  sequence of characters used to separate each one in the list (ie "<br>").

• attributes: an additional string of arbitrary tags or text to be included within the HTML tag itself. This string
  is echoed literally by the macro. For example, in a textarea field you may supply attributes as 'rows="5"
  cols="60"' or you could pass style information such as 'style="border:1px solid silver"'.

• classOrStyle: for the showErrors macro, the name of the CSS class that the span tag wrapping each error will
  use. If no information is supplied (or the value is empty) then the errors will be wrapped in <b></b> tags.

Examples of the macros are outlined below some in FTL and some in VTL. Where usage differences exist
between the two languages, they are explained in the notes.

14.4.5.3.1. Input Fields

 <!-- the Name field example from above using form macros in VTL -->
 ...
     Name:
     #springFormInput("command.name" "")<br>
     #springShowErrors("<br>" "")<br>



The formInput macro takes the path parameter (command.name) and an additional attributes parameter which
is empty in the example above. The macro, along with all other form generation macros, performs an implicit
spring bind on the path parameter. The binding remains valid until a new bind occurs so the showErrors macro
doesn't need to pass the path parameter again - it simply operates on whichever field a bind was last created for.

The showErrors macro takes a separator parameter (the characters that will be used to separate multiple errors
on a given field) and also accepts a second parameter, this time a class name or style attribute. Note that
FreeMarker is able to specify default values for the attributes parameter, unlike Velocity, and the two macro
calls above could be expressed as follows in FTL:

 <@spring.formInput "command.name"/>
 <@spring.showErrors "<br>"/>



Output is shown below of the form fragment generating the name field, and displaying a validation error after
the form was submitted with no value in the field. Validation occurs through Spring's Validation framework.

The generated HTML looks like this:

 Name:
   <input type="text" name="name" value=""
 >


                                            Spring Framework (2.5.6)                                           370
View technologies


 <br>
   <b>required</b>
 <br>
 <br>



The formTextarea macro works the same way as the formInput macro and accepts the same parameter list.
Commonly, the second parameter (attributes) will be used to pass style information or rows and cols attributes
for the textarea.

14.4.5.3.2. Selection Fields
Four selection field macros can be used to generate common UI value selection inputs in your HTML forms.


• formSingleSelect

• formMultiSelect

• formRadioButtons

• formCheckboxes

Each of the four macros accepts a Map of options containing the value for the form field, and the label
corresponding to that value. The value and the label can be the same.

An example of radio buttons in FTL is below. The form backing object specifies a default value of 'London' for
this field and so no validation is necessary. When the form is rendered, the entire list of cities to choose from is
supplied as reference data in the model under the name 'cityMap'.

 ...
   Town:
   <@spring.formRadioButtons "command.address.town", cityMap, "" /><br><br>



This renders a line of radio buttons, one for each value in cityMap using the separator "". No additional
attributes are supplied (the last parameter to the macro is missing). The cityMap uses the same String for each
key-value pair in the map. The map's keys are what the form actually submits as POSTed request parameters,
map values are the labels that the user sees. In the example above, given a list of three well known cities and a
default value in the form backing object, the HTML would be

 Town:
 <input type="radio" name="address.town" value="London"

 >
 London
 <input type="radio" name="address.town" value="Paris"
   checked="checked"
 >
 Paris
 <input type="radio" name="address.town" value="New York"

 >
 New York



If your application expects to handle cities by internal codes for example, the map of codes would be created
with suitable keys like the example below.

 protected Map referenceData(HttpServletRequest request) throws Exception {
   Map cityMap = new LinkedHashMap();
   cityMap.put("LDN", "London");
   cityMap.put("PRS", "Paris");
   cityMap.put("NYC", "New York");


                                            Spring Framework (2.5.6)                                            371
View technologies



     Map m = new HashMap();
     m.put("cityMap", cityMap);
     return m;
 }



The code would now produce output where the radio values are the relevant codes but the user still sees the
more user friendly city names.

 Town:
 <input type="radio" name="address.town" value="LDN"

 >
 London
 <input type="radio" name="address.town" value="PRS"
   checked="checked"
 >
 Paris
 <input type="radio" name="address.town" value="NYC"

 >
 New York




14.4.5.4. HTML escaping and XHTML compliance

Default usage of the form macros above will result in HTML tags that are HTML 4.01 compliant and that use
the default value for HTML escaping defined in your web.xml as used by Spring's bind support. In order to
make the tags XHTML compliant or to override the default HTML escaping value, you can specify two
variables in your template (or in your model where they will be visible to your templates). The advantage of
specifying them in the templates is that they can be changed to different values later in the template processing
to provide different behavior for different fields in your form.

To switch to XHTML compliance for your tags, specify a value of 'true' for a model/context variable named
xhtmlCompliant:

 ## for Velocity..
 #set($springXhtmlCompliant = true)

 <#-- for FreeMarker -->
 <#assign xhtmlCompliant = true in spring>



Any tags generated by the Spring macros will now be XHTML compliant after processing this directive.

In similar fashion, HTML escaping can be specified per field:

 <#-- until this point, default HTML escaping is used -->

 <#assign htmlEscape = true in spring>
 <#-- next field will use HTML escaping -->
 <@spring.formInput "command.name" />

 <#assign htmlEscape = false in spring>
 <#-- all future fields will be bound with HTML escaping off -->




14.5. XSLT
XSLT is a transformation language for XML and is popular as a view technology within web applications.
XSLT can be a good choice as a view technology if your application naturally deals with XML, or if your
model can easily be converted to XML. The following section shows how to produce an XML document as


                                           Spring Framework (2.5.6)                                          372
View technologies


model data and have it transformed with XSLT in a Spring Web MVC application.


14.5.1. My First Words

This example is a trivial Spring application that creates a list of words in the Controller and adds them to the
model map. The map is returned along with the view name of our XSLT view. See the section entitled
Section 13.3, “Controllers” for details of Spring Web MVC's Controller interface. The XSLT view will turn
the list of words into a simple XML document ready for transformation.

14.5.1.1. Bean definitions

Configuration is standard for a simple Spring application. The dispatcher servlet config file contains a reference
to a ViewResolver, URL mappings and a single controller bean...

 <bean id="homeController"class="xslt.HomeController"/>



... that encapsulates our word generation logic.

14.5.1.2. Standard MVC controller code

The controller logic is encapsulated in a subclass of AbstractController, with the handler method being
defined like so...

 protected ModelAndView handleRequestInternal(
     HttpServletRequest request,
     HttpServletResponse response) throws Exception {

      Map map = new HashMap();
      List wordList = new ArrayList();

      wordList.add("hello");
      wordList.add("world");

      map.put("wordList", wordList);

      return new ModelAndView("home", map);
 }



So far we've done nothing that's XSLT specific. The model data has been created in the same way as you would
for any other Spring MVC application. Depending on the configuration of the application now, that list of
words could be rendered by JSP/JSTL by having them added as request attributes, or they could be handled by
Velocity by adding the object to the VelocityContext. In order to have XSLT render them, they of course have
to be converted into an XML document somehow. There are software packages available that will
automatically 'domify' an object graph, but within Spring, you have complete flexibility to create the DOM
from your model in any way you choose. This prevents the transformation of XML playing too great a part in
the structure of your model data which is a danger when using tools to manage the domification process.

14.5.1.3. Convert the model data to XML

In order to create a DOM document from our list of words or any other model data, we must subclass the
(provided) org.springframework.web.servlet.view.xslt.AbstractXsltView class. In doing so, we must
also typically implement the abstract method createXsltSource(..) method. The first parameter passed to
this method is our model map. Here's the complete listing of the HomePage class in our trivial word application:

 package xslt;



                                            Spring Framework (2.5.6)                                          373
View technologies


 // imports omitted for brevity

 public class HomePage extends AbstractXsltView {

      protected Source createXsltSource(Map model, String rootName, HttpServletRequest
          request, HttpServletResponse response) throws Exception {

          Document document = DocumentBuilderFactory.newInstance().newDocumentBuilder().newDocument();
          Element root = document.createElement(rootName);

          List words = (List) model.get("wordList");
          for (Iterator it = words.iterator(); it.hasNext();) {
              String nextWord = (String) it.next();
              Element wordNode = document.createElement("word");
              Text textNode = document.createTextNode(nextWord);
              wordNode.appendChild(textNode);
              root.appendChild(wordNode);
          }
          return new DOMSource(root);
      }

 }



A series of parameter name/value pairs can optionally be defined by your subclass which will be added to the
transformation object. The parameter names must match those defined in your XSLT template declared with
<xsl:param name="myParam">defaultValue</xsl:param>. To specify the parameters, override the
getParameters() method of the AbstractXsltView class and return a Map of the name/value pairs. If your
parameters need to derive information from the current request, you can override the
getParameters(HttpServletRequest request) method instead.


14.5.1.4. Defining the view properties

The views.properties file (or equivalent xml definition if you're using an XML based view resolver as we did in
the Velocity examples above) looks like this for the one-view application that is 'My First Words':

 home.class=xslt.HomePage
 home.stylesheetLocation=/WEB-INF/xsl/home.xslt
 home.root=words



Here, you can see how the view is tied in with the HomePage class just written which handles the model
domification in the first property '.class'. The 'stylesheetLocation' property points to the XSLT file
which will handle the XML transformation into HTML for us and the final property '.root' is the name that
will be used as the root of the XML document. This gets passed to the HomePage class above in the second
parameter to the createXsltSource(..) method(s).

14.5.1.5. Document transformation

Finally, we have the XSLT code used for transforming the above document. As shown in the above
'views.properties' file, the stylesheet is called 'home.xslt' and it lives in the war file in the 'WEB-INF/xsl'
directory.

 <?xml version="1.0" encoding="utf-8"?>
 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

      <xsl:output method="html" omit-xml-declaration="yes"/>

      <xsl:template match="/">
          <html>
              <head><title>Hello!</title></head>
              <body>
                  <h1>My First Words</h1>
                  <xsl:apply-templates/>
              </body>
          </html>


                                          Spring Framework (2.5.6)                                         374
View technologies


      </xsl:template>

      <xsl:template match="word">
          <xsl:value-of select="."/><br/>
      </xsl:template>

 </xsl:stylesheet>




14.5.2. Summary

A summary of the files discussed and their location in the WAR file is shown in the simplified WAR structure
below.

 ProjectRoot
   |
   +- WebContent
       |
       +- WEB-INF
           |
           +- classes
           |     |
           |     +- xslt
           |     |   |
           |     |   +- HomePageController.class
           |     |   +- HomePage.class
           |     |
           |     +- views.properties
           |
           +- lib
           |   |
           |   +- spring.jar
           |
           +- xsl
           |   |
           |   +- home.xslt
           |
           +- frontcontroller-servlet.xml



You will also need to ensure that an XML parser and an XSLT engine are available on the classpath. JDK 1.4
provides them by default, and most J2EE containers will also make them available by default, but it's a possible
source of errors to be aware of.


14.6. Document views (PDF/Excel)

14.6.1. Introduction

Returning an HTML page isn't always the best way for the user to view the model output, and Spring makes it
simple to generate a PDF document or an Excel spreadsheet dynamically from the model data. The document is
the view and will be streamed from the server with the correct content type to (hopefully) enable the client PC
to run their spreadsheet or PDF viewer application in response.

In order to use Excel views, you need to add the 'poi' library to your classpath, and for PDF generation, the
iText.jar. Both are included in the main Spring distribution.


14.6.2. Configuration and setup

Document based views are handled in an almost identical fashion to XSLT views, and the following sections
build upon the previous one by demonstrating how the same controller used in the XSLT example is invoked to


                                          Spring Framework (2.5.6)                                          375
View technologies


render the same model as both a PDF document and an Excel spreadsheet (which can also be viewed or
manipulated in Open Office).

14.6.2.1. Document view definitions

Firstly, let's amend the views.properties file (or xml equivalent) and add a simple view definition for both
document types. The entire file now looks like this with the XSLT view shown from earlier..

 home.class=xslt.HomePage
 home.stylesheetLocation=/WEB-INF/xsl/home.xslt
 home.root=words

 xl.class=excel.HomePage

 pdf.class=pdf.HomePage


If you want to start with a template spreadsheet to add your model data to, specify the location as the 'url'
property in the view definition

14.6.2.2. Controller code

The controller code we'll use remains exactly the same from the XSLT example earlier other than to change the
name of the view to use. Of course, you could be clever and have this selected based on a URL parameter or
some other logic - proof that Spring really is very good at decoupling the views from the controllers!

14.6.2.3. Subclassing for Excel views

Exactly as we did for the XSLT example, we'll subclass suitable abstract classes in order to implement custom
behavior in generating our output documents. For Excel, this involves writing a subclass of
org.springframework.web.servlet.view.document.AbstractExcelView (for Excel files generated by POI)
or org.springframework.web.servlet.view.document.AbstractJExcelView (for JExcelApi-generated Excel
files). and implementing the buildExcelDocument

Here's the complete listing for our POI Excel view which displays the word list from the model map in
consecutive rows of the first column of a new spreadsheet..

 package excel;

 // imports omitted for brevity

 public class HomePage extends AbstractExcelView {

      protected void buildExcelDocument(
          Map model,
          HSSFWorkbook wb,
          HttpServletRequest req,
          HttpServletResponse resp)
          throws Exception {

          HSSFSheet sheet;
          HSSFRow sheetRow;
          HSSFCell cell;

          // Go to the first sheet
          // getSheetAt: only if wb is created from an existing document
          //sheet = wb.getSheetAt( 0 );
          sheet = wb.createSheet("Spring");
          sheet.setDefaultColumnWidth((short)12);

          // write a text at A1
          cell = getCell( sheet, 0, 0 );
          setText(cell,"Spring-Excel test");

          List words = (List ) model.get("wordList");
          for (int i=0; i < words.size(); i++) {


                                         Spring Framework (2.5.6)                                        376
View technologies


                cell = getCell( sheet, 2+i, 0 );
                setText(cell, (String) words.get(i));

          }
      }
 }



And this a view generating the same Excel file, now using JExcelApi:

 package excel;

 // imports omitted for brevity

 public class HomePage extends AbstractExcelView {

      protected void buildExcelDocument(Map model,
          WritableWorkbook wb,
          HttpServletRequest request,
          HttpServletResponse response)
      throws Exception {

          WritableSheet sheet = wb.createSheet("Spring");

          sheet.addCell(new Label(0, 0, "Spring-Excel test");

          List words = (List)model.get("wordList");
          for (int i = -; i < words.size(); i++) {
              sheet.addCell(new Label(2+i, 0, (String)words.get(i));
          }
      }
 }



Note the differences between the APIs. We've found that the JExcelApi is somewhat more intuitive and
furthermore, JExcelApi has a bit better image-handling capabilities. There have been memory problems with
large Excel file when using JExcelApi however.

If you now amend the controller such that it returns xl as the name of the view (return new
ModelAndView("xl", map);) and run your application again, you should find that the Excel spreadsheet is
created and downloaded automatically when you request the same page as before.

14.6.2.4. Subclassing for PDF views

The   PDF     version     of   the   word      list   is   even   simpler.   This     time,   the class extends
org.springframework.web.servlet.view.document.AbstractPdfView                       and       implements    the
buildPdfDocument()      method as follows..

 package pdf;

 // imports omitted for brevity

 public class PDFPage extends AbstractPdfView {

      protected void buildPdfDocument(
          Map model,
          Document doc,
          PdfWriter writer,
          HttpServletRequest req,
          HttpServletResponse resp)
          throws Exception {

          List words = (List) model.get("wordList");

          for (int i=0; i<words.size(); i++)
              doc.add( new Paragraph((String) words.get(i)));

      }
 }




                                              Spring Framework (2.5.6)                                      377
View technologies

Once again, amend the controller to return the pdf view with a return new ModelAndView("pdf", map); and
reload the URL in your application. This time a PDF document should appear listing each of the words in the
model map.


14.7. JasperReports
JasperReports (http://jasperreports.sourceforge.net) is a powerful open-source reporting engine that supports the
creation of report designs using an easily understood XML file format. JasperReports is capable of rendering
reports output into four different formats: CSV, Excel, HTML and PDF.


14.7.1. Dependencies

Your application will need to include the latest release of JasperReports, which at the time of writing was 0.6.1.
JasperReports itself depends on the following projects:


• BeanShell

• Commons BeanUtils

• Commons Collections

• Commons Digester

• Commons Logging

• iText

• POI

JasperReports also requires a JAXP compliant XML parser.


14.7.2. Configuration

To configure JasperReports views in your Spring container configuration you need to define a ViewResolver to
map view names to the appropriate view class depending on which format you want your report rendered in.

14.7.2.1. Configuring the ViewResolver

Typically, you will use the ResourceBundleViewResolver to map view names to view classes and files in a
properties file.

 <bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver">
     <property name="basename" value="views"/>
 </bean>



Here we've configured an instance of the ResourceBundleViewResolver class that will look for view mappings
in the resource bundle with base name views. (The content of this file is described in the next section.)

14.7.2.2. Configuring the Views

The Spring Framework contains five different View implementations for JasperReports, four of which
correspond to one of the four output formats supported by JasperReports, and one that allows for the format to


                                           Spring Framework (2.5.6)                                           378
View technologies

be determined at runtime:


Table 14.2. JasperReports View classes

Class Name                                              Render Format

JasperReportsCsvView                                    CSV

JasperReportsHtmlView                                   HTML

JasperReportsPdfView                                    PDF

JasperReportsXlsView                                    Microsoft Excel

JasperReportsMultiFormatView                            The view is decided upon at runtime


Mapping one of these classes to a view name and a report file is a matter of adding the appropriate entries into
the resource bundle configured in the previous section as shown here:

 simpleReport.class=org.springframework.web.servlet.view.jasperreports.JasperReportsPdfView
 simpleReport.url=/WEB-INF/reports/DataSourceReport.jasper



Here you can see that the view with name simpleReport is mapped to the JasperReportsPdfView class,
causing the output of this report to be rendered in PDF format. The url property of the view is set to the
location of the underlying report file.

14.7.2.3. About Report Files

JasperReports has two distinct types of report file: the design file, which has a .jrxml extension, and the
compiled report file, which has a .jasper extension. Typically, you use the JasperReports Ant task to compile
your .jrxml design file into a .jasper file before deploying it into your application. With the Spring
Framework you can map either of these files to your report file and the framework will take care of compiling
the .jrxml file on the fly for you. You should note that after a .jrxml file is compiled by the Spring
Framework, the compiled report is cached for the lifetime of the application. To make changes to the file you
will need to restart your application.

14.7.2.4. Using JasperReportsMultiFormatView

The JasperReportsMultiFormatView allows for report format to be specified at runtime. The actual rendering
of the report is delegated to one of the other JasperReports view classes - the JasperReportsMultiFormatView
class simply adds a wrapper layer that allows for the exact implementation to be specified at runtime.

The JasperReportsMultiFormatView class introduces two concepts: the format key and the discriminator key.
The JasperReportsMultiFormatView class uses the mapping key to lookup the actual view implementation
class and uses the format key to lookup up the mapping key. From a coding perspective you add an entry to
your model with the formay key as the key and the mapping key as the value, for example:

 public ModelAndView handleSimpleReportMulti(HttpServletRequest request,
 HttpServletResponse response) throws Exception {

     String uri = request.getRequestURI();
     String format = uri.substring(uri.lastIndexOf(".") + 1);

     Map model = getModel();
     model.put("format", format);

     return new ModelAndView("simpleReportMulti", model);
 }



                                          Spring Framework (2.5.6)                                          379
View technologies


In this example, the mapping key is determined from the extension of the request URI and is added to the
model under the default format key: format. If you wish to use a different format key then you can configure
this using the formatKey property of the JasperReportsMultiFormatView class.

By default the following mapping key mappings are configured in JasperReportsMultiFormatView:


Table 14.3. JasperReportsMultiFormatView Default Mapping Key Mappings

Mapping Key                                             View Class

csv                                                     JasperReportsCsvView

html                                                    JasperReportsHtmlView

pdf                                                     JasperReportsPdfView

xls                                                     JasperReportsXlsView



So in the example above a request to URI /foo/myReport.pdf would be mapped to the JasperReportsPdfView
class. You can override the mapping key to view class mappings using the formatMappings property of
JasperReportsMultiFormatView.



14.7.3. Populating the ModelAndView

In order to render your report correctly in the format you have chosen, you must supply Spring with all of the
data needed to populate your report. For JasperReports this means you must pass in all report parameters along
with the report datasource. Report parameters are simple name/value pairs and can be added be to the Map for
your model as you would add any name/value pair.

When adding the datasource to the model you have two approaches to choose from. The first approach is to add
an instance of JRDataSource or a Collection type to the model Map under any arbitrary key. Spring will then
locate this object in the model and treat it as the report datasource. For example, you may populate your model
like so:

 private Map getModel() {
   Map model = new HashMap();
   Collection beanData = getBeanData();
   model.put("myBeanData", beanData);
   return model;
 }



The second approach is to add the instance of JRDataSource or Collection under a specific key and then
configure this key using the reportDataKey property of the view class. In both cases Spring will instances of
Collection in a JRBeanCollectionDataSource instance. For example:

 private Map getModel() {
   Map model = new HashMap();
   Collection beanData = getBeanData();
   Collection someData = getSomeData();
   model.put("myBeanData", beanData);
   model.put("someData", someData);
   return model;
 }



Here you can see that two Collection instances are being added to the model. To ensure that the correct one is
used, we simply modify our view configuration as appropriate:


                                          Spring Framework (2.5.6)                                         380
View technologies


 simpleReport.class=org.springframework.web.servlet.view.jasperreports.JasperReportsPdfView
 simpleReport.url=/WEB-INF/reports/DataSourceReport.jasper
 simpleReport.reportDataKey=myBeanData



Be aware that when using the first approach, Spring will use the first instance of JRDataSource or Collection
that it encounters. If you need to place multiple instances of JRDataSource or Collection into the model then
you need to use the second approach.


14.7.4. Working with Sub-Reports

JasperReports provides support for embedded sub-reports within your master report files. There are a wide
variety of mechanisms for including sub-reports in your report files. The easiest way is to hard code the report
path and the SQL query for the sub report into your design files. The drawback of this approach is obvious - the
values are hard-coded into your report files reducing reusability and making it harder to modify and update
report designs. To overcome this you can configure sub-reports declaratively and you can include additional
data for these sub-reports directly from your controllers.

14.7.4.1. Configuring Sub-Report Files

To control which sub-report files are included in a master report using Spring, your report file must be
configured to accept sub-reports from an external source. To do this you declare a parameter in your report file
like so:

 <parameter name="ProductsSubReport" class="net.sf.jasperreports.engine.JasperReport"/>



Then, you define your sub-report to use this sub-report parameter:

 <subreport>
     <reportElement isPrintRepeatedValues="false" x="5" y="25" width="325"
         height="20" isRemoveLineWhenBlank="true" backcolor="#ffcc99"/>
     <subreportParameter name="City">
         <subreportParameterExpression><![CDATA[$F{city}]]></subreportParameterExpression>
     </subreportParameter>
     <dataSourceExpression><![CDATA[$P{SubReportData}]]></dataSourceExpression>
     <subreportExpression class="net.sf.jasperreports.engine.JasperReport">
                   <![CDATA[$P{ProductsSubReport}]]></subreportExpression>
 </subreport>



This defines a master report file that expects the sub-report to be passed in as an instance of
net.sf.jasperreports.engine.JasperReports under the parameter ProductsSubReport. When configuring
your Jasper view class, you can instruct Spring to load a report file and pass into the JasperReports engine as a
sub-report using the subReportUrls property:

 <property name="subReportUrls">
     <map>
         <entry key="ProductsSubReport" value="/WEB-INF/reports/subReportChild.jrxml"/>
     </map>
 </property>



Here, the key of the Map corresponds to the name of the sub-report parameter in th report design file, and the
entry is the URL of the report file. Spring will load this report file, compiling it if necessary, and will pass into
the JasperReports engine under the given key.

14.7.4.2. Configuring Sub-Report Data Sources

This step is entirely optional when using Spring configure your sub-reports. If you wish, you can still configure

                                            Spring Framework (2.5.6)                                             381
View technologies


the data source for your sub-reports using static queries. However, if you want Spring to convert data returned
in your ModelAndView into instances of JRDataSource then you need to specify which of the parameters in your
ModelAndView Spring should convert. To do this configure the list of parameter names using the
subReportDataKeys property of the your chosen view class:

 <property name="subReportDataKeys"
     value="SubReportData"/>


Here, the key you supply MUST correspond to both the key used in your ModelAndView and the key used in
your report design file.


14.7.5. Configuring Exporter Parameters

If you have special requirements for exporter configuration - perhaps you want a specific page size for your
PDF report, then you can configure these exporter parameters declaratively in your Spring configuration file
using the exporterParameters property of the view class. The exporterParameters property is typed as Map
and in your configuration the key of an entry should be the fully-qualified name of a static field that contains
the exporter parameter definition and the value of an entry should be the value you want to assign to the
parameter. An example of this is shown below:

 <bean id="htmlReport" class="org.springframework.web.servlet.view.jasperreports.JasperReportsHtmlView">
   <property name="url" value="/WEB-INF/reports/simpleReport.jrxml"/>
   <property name="exporterParameters">
     <map>
       <entry key="net.sf.jasperreports.engine.export.JRHtmlExporterParameter.HTML_FOOTER">
         <value>Footer by Spring!
            &lt;/td&gt;&lt;td width="50%"&gt;&amp;nbsp; &lt;/td&gt;&lt;/tr&gt;
            &lt;/table&gt;&lt;/body&gt;&lt;/html&gt;
         </value>
       </entry>
     </map>
   </property>
 </bean>



Here you can see that the JasperReportsHtmlView is being configured with an exporter parameter for
net.sf.jasperreports.engine.export.JRHtmlExporterParameter.HTML_FOOTER which will output a footer
in the resulting HTML.




                                          Spring Framework (2.5.6)                                          382
Chapter 15. Integrating with other web frameworks

15.1. Introduction
This chapter details Spring's integration with third party web frameworks such as JSF, Struts, WebWork, and
Tapestry.

  Spring Web Flow

  Spring Web Flow (SWF) aims to be the best solution for the management of web application page flow.

  SWF integrates with existing frameworks like Spring MVC, Struts, and JSF, in both servlet and portlet
  environments. If you have a business process (or processes) that would benefit from a conversational
  model as opposed to a purely request model, then SWF may be the solution.

  SWF allows you to capture logical page flows as self-contained modules that are reusable in different
  situations, and as such is ideal for building web application modules that guide the user through
  controlled navigations that drive business processes.

  For more information about SWF, consult the Spring Web Flow website.


One of the core value propositions of the Spring Framework is that of enabling choice. In a general sense,
Spring does not force one to use or buy into any particular architecture, technology, or methodology (although
it certainly recommends some over others). This freedom to pick and choose the architecture, technology, or
methodology that is most relevant to a developer and his or her development team is arguably most evident in
the web area, where Spring provides its own web framework (Spring MVC), while at the same time providing
integration with a number of popular third party web frameworks. This allows one to continue to leverage any
and all of the skills one may have acquired in a particular web framework such as Struts, while at the same time
being able to enjoy the benefits afforded by Spring in other areas such as data access, declarative transaction
management, and flexible configuration and application assembly.

Having dispensed with the woolly sales patter (c.f. the previous paragraph), the remainder of this chapter will
concentrate upon the meaty details of integrating your favourite web framework with Spring. One thing that is
often commented upon by developers coming to Java from other languages is the seeming super-abundance of
web frameworks available in Java... there are indeed a great number of web frameworks in the Java space; in
fact there are far too many to cover with any semblance of detail in a single chapter. This chapter thus picks
four of the more popular web frameworks in Java, starting with the Spring configuration that is common to all
of the supported web frameworks, and then detailing the specific integration options for each supported web
framework.

Please note that this chapter does not attempt to explain how to use any of the supported web frameworks. For
example, if you want to use Struts for the presentation layer of your web application, the assumption is that you
are already familiar with Struts. If you need further details about any of the supported web frameworks
themselves, please do consult the section entitled Section 15.7, “Further Resources” at the end of this chapter.


15.2. Common configuration
Before diving into the integration specifics of each supported web framework, let us first take a look at the
Spring configuration that not specific to any one web framework. (This section is equally applicable to Spring's

                                           Spring Framework (2.5.6)                                          383
Integrating with other web frameworks

own web framework, Spring MVC.)

One of the concepts (for want of a better word) espoused by (Spring's) lightweight application model is that of
a layered architecture. Remember that in a 'classic' layered architecture, the web layer is but one of many
layers... it serves as one of the entry points into a server side application, and it delegates to service objects
(facades) defined in a service layer to satisfy business specific (and presentation-technology agnostic) use
cases. In Spring, these service objects, any other business-specific objects, data access objects, etc. exist in a
distinct 'business context', which contains no web or presentation layer objects (presentation objects such as
Spring MVC controllers are typically configured in a distinct 'presentation context'). This section details how
one configures a Spring container (a WebApplicationContext) that contains all of the 'business beans' in one's
application.

Onto specifics... all that one need do is to declare a ContextLoaderListener in the standard J2EE servlet
web.xml file of one's web application, and add a contextConfigLocation <context-param/> section (in the
same file) that defines which set of Spring XML cpnfiguration files to load.

Find below the <listener/> configuration:

 <listener>
   <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
 </listener>



            Note
            Listeners were added to the Servlet API in version 2.3; listener startup order was finally clarified in
            Servlet 2.4. If you have a Servlet 2.3 container, you can use the ContextLoaderServlet to achieve
            the same functionality in a 100% portable fashion (with respect to startup order).


Find below the <context-param/> configuration:

 <context-param>
   <param-name>contextConfigLocation</param-name>
   <param-value>/WEB-INF/applicationContext*.xml</param-value>
 </context-param>



If you don't specify the contextConfigLocation context parameter, the ContextLoaderListener will look for
a file called /WEB-INF/applicationContext.xml to load. Once the context files are loaded, Spring creates a
WebApplicationContext object based on the bean definitions and stores it in the ServletContext of one's web
application.

All Java web frameworks are built on top of the Servlet API, and so one can use the following code snippet to
get access to this 'business context' ApplicationContext created by the ContextLoaderListener.

 WebApplicationContext ctx = WebApplicationContextUtils.getWebApplicationContext(servletContext);



The WebApplicationContextUtils class is for convenience, so you don't have to remember the name of the
ServletContext attribute. Its getWebApplicationContext() method will return null if an object doesn't exist
under the WebApplicationContext.ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE key. Rather than risk getting
NullPointerExceptions in your application, it's better to use the getRequiredWebApplicationContext()
method. This method throws an exception when the ApplicationContext is missing.

Once you have a reference to the WebApplicationContext, you can retrieve beans by their name or type. Most
developers retrieve beans by name, then cast them to one of their implemented interfaces.




                                            Spring Framework (2.5.6)                                           384
Integrating with other web frameworks


Fortunately, most of the frameworks in this section have simpler ways of looking up beans. Not only do they
make it easy to get beans from a Spring container, but they also allow you to use dependency injection on their
controllers. Each web framework section has more detail on its specific integration strategies.


15.3. JavaServer Faces 1.1 and 1.2
JavaServer Faces (JSF) is the JCP's standard component-based, event-driven web user interface framework. As
of Java EE 5, it is an official part of the Java EE umbrella.

For a popular JSF runtime as well as for popular JSF component libraries, check out the Apache MyFaces
project. The MyFaces project also provides common JSF extensions such as MyFaces Orchestra: a
Spring-based JSF extension that provides rich conversation scope support.

            Note
            Spring Web Flow 2.0 provides rich JSF support through its newly established Spring Faces
            module, both for JSF-centric usage (as described in this section) and for Spring-centric usage
            (using JSF views within a Spring MVC dispatcher). Check out the Spring Web Flow website for
            details!


The key element in Spring's JSF integration is the JSF 1.1 VariableResolver mechanism. On JSF 1.2, Spring
supports the ELResolver mechanism as a next-generation version of JSF EL integration.


15.3.1. DelegatingVariableResolver (JSF 1.1/1.2)

The easiest way to integrate one's Spring middle-tier with one's JSF web layer is to use the
DelegatingVariableResolver class. To configure this variable resolver in one's application, one will need to
edit one's faces-context.xml file. After the opening <faces-config/> element, add an <application/> element
and a <variable-resolver/> element within it. The value of the variable resolver should reference Spring's
DelegatingVariableResolver; for example:

 <faces-config>
   <application>
     <variable-resolver>org.springframework.web.jsf.DelegatingVariableResolver</variable-resolver>
     <locale-config>
       <default-locale>en</default-locale>
       <supported-locale>en</supported-locale>
       <supported-locale>es</supported-locale>
     </locale-config>
     <message-bundle>messages</message-bundle>
   </application>
 </faces-config>



The DelegatingVariableResolver will first delegate value lookups to the default resolver of the underlying
JSF implementation, and then to Spring's 'business context' WebApplicationContext. This allows one to easily
inject dependencies into one's JSF-managed beans.

Managed beans are defined in one's faces-config.xml file. Find below an example where #{userManager} is
a bean that is retrieved from the Spring 'business context'.

 <managed-bean>
   <managed-bean-name>userList</managed-bean-name>
   <managed-bean-class>com.whatever.jsf.UserList</managed-bean-class>
   <managed-bean-scope>request</managed-bean-scope>
   <managed-property>
     <property-name>userManager</property-name>


                                          Spring Framework (2.5.6)                                         385
Integrating with other web frameworks


     <value>#{userManager}</value>
   </managed-property>
 </managed-bean>




15.3.2. SpringBeanVariableResolver (JSF 1.1/1.2)

SpringBeanVariableResolver        is a variant of DelegatingVariableResolver. It delegates to the Spring's
'business context' WebApplicationContext first, then to the default resolver of the underlying JSF
implementation. This is useful in particular when using request/session-scoped beans with special Spring
resolution rules, e.g. Spring FactoryBean implementations.

Configuration-wise, simply define SpringBeanVariableResolver in your faces-context.xml file:

 <faces-config>
   <application>
     <variable-resolver>org.springframework.web.jsf.SpringBeanVariableResolver</variable-resolver>
     ...
   </application>
 </faces-config>




15.3.3. SpringBeanFacesELResolver (JSF 1.2+)

SpringBeanFacesELResolver   is a JSF 1.2 compliant ELResolver implementation, integrating with the standard
Unified EL as used by JSF 1.2 and JSP 2.1. Like SpringBeanVariableResolver, it delegates to the Spring's
'business context' WebApplicationContext first, then to the default resolver of the underlying JSF
implementation.

Configuration-wise, simply define SpringBeanFacesELResolver in your JSF 1.2 faces-context.xml file:

 <faces-config>
   <application>
     <el-resolver>org.springframework.web.jsf.el.SpringBeanFacesELResolver</el-resolver>
     ...
   </application>
 </faces-config>




15.3.4. FacesContextUtils

A custom VariableResolver works well when mapping one's properties to beans in faces-config.xml, but at
times one may need to grab a bean explicitly. The FacesContextUtils class makes this easy. It is similar to
WebApplicationContextUtils, except that it takes a FacesContext parameter rather than a ServletContext
parameter.

 ApplicationContext ctx = FacesContextUtils.getWebApplicationContext(FacesContext.getCurrentInstance());




15.4. Apache Struts 1.x and 2.x
Struts is the de facto web framework for Java applications, mainly because it was one of the first to be released
(June 2001). Invented by Craig McClanahan, Struts is an open source project hosted by the Apache Software
Foundation. At the time, it greatly simplified the JSP/Servlet programming paradigm and won over many
developers who were using proprietary frameworks. It simplified the programming model, it was open source
(and thus free as in beer), and it had a large community, which allowed the project to grow and become popular


                                           Spring Framework (2.5.6)                                          386
Integrating with other web frameworks

among Java web developers.

            Note
            The following section discusses Struts 1 a.k.a. "Struts Classic".

            Struts 2 is effectively a different product - a successor of WebWork 2.2 (as discussed in
            Section 15.5, “WebWork 2.x”), carrying the Struts brand now. Check out the Struts 2 Spring
            Plugin for the built-in Spring integration shipped with Struts 2. In general, Struts 2 is closer to
            WebWork 2.2 than to Struts 1 in terms of its Spring integration implications.


To integrate your Struts 1.x application with Spring, you have two options:


• Configure Spring to manage your Actions as beans, using the ContextLoaderPlugin, and set their
  dependencies in a Spring context file.

• Subclass Spring's ActionSupport classes and grab your Spring-managed beans explicitly using a
  getWebApplicationContext() method.


15.4.1. ContextLoaderPlugin

The ContextLoaderPlugin is a Struts 1.1+ plug-in that loads a Spring context file for the Struts
ActionServlet.      This context refers to the root WebApplicationContext (loaded by the
ContextLoaderListener) as its parent. The default name of the context file is the name of the mapped servlet,
plus -servlet.xml. If ActionServlet is defined in web.xml as <servlet-name>action</servlet-name>, the
default is /WEB-INF/action-servlet.xml.

To configure this plug-in, add the following XML to the plug-ins section near the bottom of your
struts-config.xml file:

 <plug-in className="org.springframework.web.struts.ContextLoaderPlugIn"/>



The location of the context configuration files can be customized using the 'contextConfigLocation' property.

 <plug-in className="org.springframework.web.struts.ContextLoaderPlugIn">
   <set-property property="contextConfigLocation"
       value="/WEB-INF/action-servlet.xml,/WEB-INF/applicationContext.xml"/>
 </plug-in>



It is possible to use this plugin to load all your context files, which can be useful when using testing tools like
StrutsTestCase. StrutsTestCase's MockStrutsTestCase won't initialize Listeners on startup so putting all your
context files in the plugin is a workaround. (A bug has been filed for this issue, but has been closed as 'Wont
Fix').

After configuring this plug-in in struts-config.xml, you can configure your Action to be managed by Spring.
Spring (1.1.3+) provides two ways to do this:


• Override Struts' default RequestProcessor with Spring's DelegatingRequestProcessor.

• Use the DelegatingActionProxy class in the type attribute of your <action-mapping>.

Both of these methods allow you to manage your Actions and their dependencies in the action-servlet.xml file.
The bridge between the Action in struts-config.xml and action-servlet.xml is built with the action-mapping's


                                            Spring Framework (2.5.6)                                           387
Integrating with other web frameworks

"path" and the bean's "name". If you have the following in your struts-config.xml file:

 <action path="/users" .../>



You must define that Action's bean with the "/users" name in action-servlet.xml:

 <bean name="/users" .../>




15.4.1.1. DelegatingRequestProcessor

To configure the DelegatingRequestProcessor in your struts-config.xml file, override the "processorClass"
property in the <controller> element. These lines follow the <action-mapping> element.

 <controller>
   <set-property property="processorClass"
       value="org.springframework.web.struts.DelegatingRequestProcessor"/>
 </controller>



After adding this setting, your Action will automatically be looked up in Spring's context file, no matter what
the type. In fact, you don't even need to specify a type. Both of the following snippets will work:

 <action path="/user" type="com.whatever.struts.UserAction"/>
 <action path="/user"/>



If you're using Struts' modules feature, your bean names must contain the module prefix. For example, an
action defined as <action path="/user"/> with module prefix "admin" requires a bean name with <bean
name="/admin/user"/>.


            Note
            If you are using Tiles in your Struts application, you must configure your <controller> with the
            DelegatingTilesRequestProcessor instead.



15.4.1.2. DelegatingActionProxy

If you have a custom RequestProcessor and can't use the DelegatingRequestProcessor or
DelegatingTilesRequestProcessor approaches, you can use the DelegatingActionProxy as the type in your
action-mapping.

 <action path="/user" type="org.springframework.web.struts.DelegatingActionProxy"
     name="userForm" scope="request" validate="false" parameter="method">
   <forward name="list" path="/userList.jsp"/>
   <forward name="edit" path="/userForm.jsp"/>
 </action>



The bean definition in action-servlet.xml remains the same, whether you use a custom RequestProcessor or
the DelegatingActionProxy.

If you define your Action in a context file, the full feature set of Spring's bean container will be available for it:
dependency injection as well as the option to instantiate a new Action instance for each request. To activate the
latter, add scope="prototype" to your Action's bean definition.

 <bean name="/user" scope="prototype" autowire="byName"
     class="org.example.web.UserAction"/>




                                             Spring Framework (2.5.6)                                             388
Integrating with other web frameworks


15.4.2. ActionSupport Classes

As previously mentioned, you can retrieve the WebApplicationContext from the ServletContext using the
WebApplicationContextUtils class. An easier way is to extend Spring's Action classes for Struts. For
example, instead of subclassing Struts' Action class, you can subclass Spring's ActionSupport class.

The ActionSupport class provides additional convenience methods, like getWebApplicationContext(). Below is
an example of how you might use this in an Action:

    public class UserAction extends DispatchActionSupport {

        public ActionForward execute(ActionMapping mapping,
                                     ActionForm form,
                                     HttpServletRequest request,
                                     HttpServletResponse response) throws Exception {
            if (log.isDebugEnabled()) {
                log.debug("entering 'delete' method...");
            }
            WebApplicationContext ctx = getWebApplicationContext();
            UserManager mgr = (UserManager) ctx.getBean("userManager");
            // talk to manager for business logic
            return mapping.findForward("success");
        }
    }



Spring includes subclasses for all of the standard Struts Actions - the Spring versions merely have Support
appended to the name:

•   ActionSupport,
•   DispatchActionSupport,
•   LookupDispatchActionSupport     and
•   MappingDispatchActionSupport.

The recommended strategy is to use the approach that best suits your project. Subclassing makes your code
more readable, and you know exactly how your dependencies are resolved. However, using the
ContextLoaderPlugin allow you to easily add new dependencies in your context XML file. Either way, Spring
provides some nice options for integrating the two frameworks.


15.5. WebWork 2.x
From the WebWork homepage...
“ WebWork is a Java web-application development framework. It is built specifically with developer
productivity and code simplicity in mind, providing robust support for building reusable UI templates, such as
form controls, UI themes, internationalization, dynamic form parameter mapping to JavaBeans, robust client
and server side validation, and much more. ”

WebWork is (in the opinion of this author) a very clean, elegant web framework. Its architecture and key
concepts are not only very easy to understand, it has a rich tag library, nicely decoupled validation, and it is
(again, in the opinion of this author) quite easy to be productive in next to no time at all (the documentation and
tutorials are pretty good too).

One of the key enablers in WebWork's technology stack is an IoC container to manage Webwork Actions,
handle the "wiring" of business objects, etc. Prior to WebWork version 2.2, WebWork used its own proprietary
IoC container (and provided integration points so that one could integrate an IoC container such as Springs into
the mix). However, as of WebWork version 2.2, the default IoC container that is used within WebWork is
Spring. This is obviously great news if one is a Spring developer, because it means that one is immediately


                                            Spring Framework (2.5.6)                                           389
Integrating with other web frameworks

familiar with the basics of IoC configuration, idioms and suchlike within WebWork.

Now in the interests of adhering to the DRY (Dont Repeat Yourself) principle, it would be foolish to writeup
the Spring-WebWork integration in light of the fact that the WebWork team have already written such a
writeup. Please do consult the Spring-WebWork integration page on the WebWork wiki for the full lowdown.

Note that the Spring-WebWork integration code was developed (and continues to be maintained and improved)
by the WebWork developers themselves, so in the first instance please do refer to the WebWork site and
forums if you are having issues with the integration. Do feel free to post comments and queries regarding the
Spring-WebWork integration on the Spring support forums too.


15.6. Tapestry 3.x and 4.x
From the Tapestry homepage...
“ Tapestry is an open-source framework for creating dynamic, robust, highly scalable web applications in
Java. Tapestry complements and builds upon the standard Java Servlet API, and so it works in any servlet
container or application server. ”

While Spring has its own powerful web layer, there are a number of unique advantages to building a J2EE
application using a combination of Tapestry for the web user interface and the Spring container for the lower
layers. This section of the web integration chapter attempts to detail a few best practices for combining these
two frameworks.

A typical layered J2EE application built with Tapestry and Spring will consist of a top user interface (UI) layer
built with Tapestry, and a number of lower layers, all wired together by one or more Spring containers.
Tapestry's own reference documentation contains the following snippet of best practice advice. (Text that the
author of this Spring section has added is contained within [] brackets.)
“ A very succesful design pattern in Tapestry is to keep pages and components very simple, and delegate as
much logic as possible out to HiveMind [or Spring, or whatever] services. Listener methods should ideally do
little more than marshall together the correct information and pass it over to a service. ”

The key question then is... how does one supply Tapestry pages with collaborating services? The answer,
ideally, is that one would want to dependency inject those services directly into one's Tapestry pages. In
Tapestry, one can effect this dependency injection by a variety of means... This section is only going to
enumerate the dependency injection means afforded by Spring. The real beauty of the rest of this
Spring-Tapestry integration is that the elegant and flexible design of Tapestry itself makes doing this
dependency injection of Spring-managed beans a cinch. (Another nice thing is that this Spring-Tapestry
integration code was written - and continues to be maintained - by the Tapestry creator Howard M. Lewis Ship,
so hats off to him for what is really some silky smooth integration).


15.6.1. Injecting Spring-managed beans

Assume we have the following simple Spring container definition (in the ubiquitous XML format):

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"
         "http://www.springframework.org/dtd/spring-beans-2.0.dtd">

 <beans>
     <!-- the DataSource -->
     <bean id="dataSource" class="org.springframework.jndi.JndiObjectFactoryBean">
         <property name="jndiName" value="java:DefaultDS"/>
     </bean>

      <bean id="hibSessionFactory"
            class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
          <property name="dataSource" ref="dataSource"/>


                                           Spring Framework (2.5.6)                                          390
Integrating with other web frameworks


      </bean>

      <bean id="transactionManager"
            class="org.springframework.transaction.jta.JtaTransactionManager"/>

      <bean id="mapper"
            class="com.whatever.dataaccess.mapper.hibernate.MapperImpl">
          <property name="sessionFactory" ref="hibSessionFactory"/>
      </bean>

      <!-- (transactional) AuthenticationService -->
      <bean id="authenticationService"
            class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
          <property name="transactionManager" ref="transactionManager"/>
          <property name="target">
              <bean class="com.whatever.services.service.user.AuthenticationServiceImpl">
                  <property name="mapper" ref="mapper"/>
              </bean>
          </property>
          <property name="proxyInterfacesOnly" value="true"/>
          <property name="transactionAttributes">
              <value>
                  *=PROPAGATION_REQUIRED
              </value>
          </property>
      </bean>

      <!-- (transactional) UserService -->
      <bean id="userService"
            class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
          <property name="transactionManager" ref="transactionManager"/>
          <property name="target">
               <bean class="com.whatever.services.service.user.UserServiceImpl">
                   <property name="mapper" ref="mapper"/>
               </bean>
          </property>
          <property name="proxyInterfacesOnly" value="true"/>
          <property name="transactionAttributes">
              <value>
                  *=PROPAGATION_REQUIRED
              </value>
          </property>
      </bean>

   </beans>



Inside the Tapestry application, the above bean definitions need to be loaded into a Spring container, and any
relevant Tapestry pages need to be supplied (injected) with the authenticationService and userService
beans, which implement the AuthenticationService and UserService interfaces, respectively.

At this point, the application context is available to a web application by calling Spring's static utility function
WebApplicationContextUtils.getApplicationContext(servletContext), where servletContext is the
standard ServletContext from the J2EE Servlet specification. As such, one simple mechanism for a page to get
an instance of the UserService, for example, would be with code such as:

 WebApplicationContext appContext = WebApplicationContextUtils.getApplicationContext(
     getRequestCycle().getRequestContext().getServlet().getServletContext());
 UserService userService = (UserService) appContext.getBean("userService");
 ... some code which uses UserService



This mechanism does work... having said that, it can be made a lot less verbose by encapsulating most of the
functionality in a method in the base class for the page or component. However, in some respects it goes
against the IoC principle; ideally you would like the page to not have to ask the context for a specific bean by
name, and in fact, the page would ideally not know about the context at all.

Luckily, there is a mechanism to allow this. We rely upon the fact that Tapestry already has a mechanism to
declaratively add properties to a page, and it is in fact the preferred approach to manage all properties on a page


                                            Spring Framework (2.5.6)                                            391
Integrating with other web frameworks


in this declarative fashion, so that Tapestry can properly manage their lifecycle as part of the page and
component lifecycle.

            Note
            This next section is applicable to Tapestry 3.x. If you are using Tapestry version 4.x, please consult
            the section entitled Section 15.6.1.4, “Dependency Injecting Spring Beans into Tapestry pages -
            Tapestry 4.x style”.


15.6.1.1. Dependency Injecting Spring Beans into Tapestry pages

First we need to make the ApplicationContext available to the Tapestry page or Component without having to
have the ServletContext; this is because at the stage in the page's/component's lifecycle when we need to access
the ApplicationContext, the ServletContext won't be easily available to the page, so we can't use
WebApplicationContextUtils.getApplicationContext(servletContext) directly. One way is by defining a
custom version of the Tapestry IEngine which exposes this for us:

 package com.whatever.web.xportal;

 import ...

 public class MyEngine extends org.apache.tapestry.engine.BaseEngine {

      public static final String APPLICATION_CONTEXT_KEY = "appContext";

      /**
       * @see org.apache.tapestry.engine.AbstractEngine#setupForRequest(org.apache.tapestry.request.RequestContext
       */
      protected void setupForRequest(RequestContext context) {
          super.setupForRequest(context);

          // insert ApplicationContext in global, if not there
          Map global = (Map) getGlobal();
          ApplicationContext ac = (ApplicationContext) global.get(APPLICATION_CONTEXT_KEY);
          if (ac == null) {
              ac = WebApplicationContextUtils.getWebApplicationContext(
                  context.getServlet().getServletContext()
              );
              global.put(APPLICATION_CONTEXT_KEY, ac);
          }
      }
 }



This engine class places the Spring Application Context as an attribute called "appContext" in this Tapestry
app's 'Global' object. Make sure to register the fact that this special IEngine instance should be used for this
Tapestry application, with an entry in the Tapestry application definition file. For example:

 file: xportal.application:
 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE application PUBLIC
     "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
     "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">
 <application
     name="Whatever xPortal"
     engine-class="com.whatever.web.xportal.MyEngine">
 </application>




15.6.1.2. Component definition files

Now in our page or component definition file (*.page or *.jwc), we simply add property-specification elements
to grab the beans we need out of the ApplicationContext, and create page or component properties for them.


                                           Spring Framework (2.5.6)                                           392
Integrating with other web frameworks

For example:

      <property-specification name="userService"
                              type="com.whatever.services.service.user.UserService">
          global.appContext.getBean("userService")
      </property-specification>
      <property-specification name="authenticationService"
                              type="com.whatever.services.service.user.AuthenticationService">
          global.appContext.getBean("authenticationService")
      </property-specification>



The OGNL expression inside the property-specification specifies the initial value for the property, as a bean
obtained from the context. The entire page definition might look like this:

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE page-specification PUBLIC
     "-//Apache Software Foundation//Tapestry Specification 3.0//EN"
     "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

 <page-specification class="com.whatever.web.xportal.pages.Login">

      <property-specification name="username" type="java.lang.String"/>
      <property-specification name="password" type="java.lang.String"/>
      <property-specification name="error" type="java.lang.String"/>
      <property-specification name="callback" type="org.apache.tapestry.callback.ICallback" persistent="yes"/>
      <property-specification name="userService"
                              type="com.whatever.services.service.user.UserService">
          global.appContext.getBean("userService")
      </property-specification>
      <property-specification name="authenticationService"
                              type="com.whatever.services.service.user.AuthenticationService">
          global.appContext.getBean("authenticationService")
      </property-specification>

      <bean name="delegate" class="com.whatever.web.xportal.PortalValidationDelegate"/>

      <bean name="validator" class="org.apache.tapestry.valid.StringValidator" lifecycle="page">
          <set-property name="required" expression="true"/>
          <set-property name="clientScriptingEnabled" expression="true"/>
      </bean>

      <component id="inputUsername" type="ValidField">
          <static-binding name="displayName" value="Username"/>
          <binding name="value" expression="username"/>
          <binding name="validator" expression="beans.validator"/>
      </component>

      <component id="inputPassword" type="ValidField">
          <binding name="value" expression="password"/>
         <binding name="validator" expression="beans.validator"/>
         <static-binding name="displayName" value="Password"/>
         <binding name="hidden" expression="true"/>
      </component>

 </page-specification>




15.6.1.3. Adding abstract accessors

Now in the Java class definition for the page or component itself, all we need to do is add an abstract getter
method for the properties we have defined (in order to be able to access the properties).

 // our   UserService implementation; will come from page definition
 public   abstract UserService getUserService();
 // our   AuthenticationService implementation; will come from page definition
 public   abstract AuthenticationService getAuthenticationService();



For the sake of completeness, the entire Java class, for a login page in this example, might look like this:

 package com.whatever.web.xportal.pages;



                                            Spring Framework (2.5.6)                                           393
Integrating with other web frameworks


/**
 * Allows the user to login, by providing username and password.
 * After successfully logging in, a cookie is placed on the client browser
 * that provides the default username for future logins (the cookie
 * persists for a week).
 */
public abstract class Login extends BasePage implements ErrorProperty, PageRenderListener {

   /** the key under which the authenticated user object is stored in the visit as */
   public static final String USER_KEY = "user";

   /** The name of the cookie that identifies a user **/
   private static final String COOKIE_NAME = Login.class.getName() + ".username";
   private final static int ONE_WEEK = 7 * 24 * 60 * 60;

   public abstract String getUsername();
   public abstract void setUsername(String username);

   public abstract String getPassword();
   public abstract void setPassword(String password);

   public abstract ICallback getCallback();
   public abstract void setCallback(ICallback value);

   public abstract UserService getUserService();
   public abstract AuthenticationService getAuthenticationService();

   protected IValidationDelegate getValidationDelegate() {
       return (IValidationDelegate) getBeans().getBean("delegate");
   }

   protected void setErrorField(String componentId, String message) {
       IFormComponent field = (IFormComponent) getComponent(componentId);
       IValidationDelegate delegate = getValidationDelegate();
       delegate.setFormComponent(field);
       delegate.record(new ValidatorException(message));
   }

   /**
    * Attempts to login.
    * <p>
    * If the user name is not known, or the password is invalid, then an error
    * message is displayed.
    **/
   public void attemptLogin(IRequestCycle cycle) {

       String password = getPassword();

       // Do a little extra work to clear out the password.
       setPassword(null);
       IValidationDelegate delegate = getValidationDelegate();

       delegate.setFormComponent((IFormComponent) getComponent("inputPassword"));
       delegate.recordFieldInputValue(null);

       // An error, from a validation field, may already have occurred.
       if (delegate.getHasErrors()) {
           return;
       }

       try {
           User user = getAuthenticationService().login(getUsername(), getPassword());
          loginUser(user, cycle);
       }
       catch (FailedLoginException ex) {
           this.setError("Login failed: " + ex.getMessage());
           return;
       }
   }

   /**
    * Sets up the {@link User} as the logged in user, creates
    * a cookie for their username (for subsequent logins),
    * and redirects to the appropriate page, or
    * a specified page).
    **/
   public void loginUser(User user, IRequestCycle cycle) {




                                     Spring Framework (2.5.6)                                 394
Integrating with other web frameworks


          String username = user.getUsername();

          // Get the visit object; this will likely force the
          // creation of the visit object and an HttpSession
          Map visit = (Map) getVisit();
          visit.put(USER_KEY, user);

          // After logging in, go to the MyLibrary page, unless otherwise specified
          ICallback callback = getCallback();

          if (callback == null) {
              cycle.activate("Home");
          }
          else {
              callback.performCallback(cycle);
          }

          IEngine engine = getEngine();
          Cookie cookie = new Cookie(COOKIE_NAME, username);
          cookie.setPath(engine.getServletPath());
          cookie.setMaxAge(ONE_WEEK);

          // Record the user's username in a cookie
          cycle.getRequestContext().addCookie(cookie);
          engine.forgetPage(getPageName());
      }

      public void pageBeginRender(PageEvent event) {
          if (getUsername() == null) {
              setUsername(getRequestCycle().getRequestContext().getCookieValue(COOKIE_NAME));
          }
      }
 }




15.6.1.4. Dependency Injecting Spring Beans into Tapestry pages - Tapestry 4.x style

Effecting the dependency injection of Spring-managed beans into Tapestry pages in Tapestry version 4.x is so
much simpler. All that is needed is a single add-on library, and some (small) amount of (essentially boilerplate)
configuration. Simply package and deploy this library with the (any of the) other libraries required by your web
application (typically in WEB-INF/lib).

You will then need to create and expose the Spring container using the method detailed previously. You can
then inject Spring-managed beans into Tapestry very easily; if we are using Java 5, consider the Login page
from above: we simply need to annotate the appropriate getter methods in order to dependency inject the
Spring-managed userService and authenticationService objects (lots of the class definition has been elided
for clarity)...

 package com.whatever.web.xportal.pages;

 public abstract class Login extends BasePage implements ErrorProperty, PageRenderListener {

      @InjectObject("spring:userService")
      public abstract UserService getUserService();

      @InjectObject("spring:authenticationService")
      public abstract AuthenticationService getAuthenticationService();

 }



We are almost done... all that remains is the HiveMind configuration that exposes the Spring container stored in
the ServletContext as a HiveMind service; for example:

 <?xml version="1.0"?>
 <module id="com.javaforge.tapestry.spring" version="0.1.1">

      <service-point id="SpringApplicationInitializer"
          interface="org.apache.tapestry.services.ApplicationInitializer"
          visibility="private">


                                           Spring Framework (2.5.6)                                          395
Integrating with other web frameworks


          <invoke-factory>
              <construct class="com.javaforge.tapestry.spring.SpringApplicationInitializer">
                  <set-object property="beanFactoryHolder"
                      value="service:hivemind.lib.DefaultSpringBeanFactoryHolder" />
              </construct>
          </invoke-factory>
      </service-point>

      <!-- Hook the Spring setup into the overall application initialization. -->
      <contribution
          configuration-id="tapestry.init.ApplicationInitializers">
          <command id="spring-context"
              object="service:SpringApplicationInitializer" />
      </contribution>

 </module>



If you are using Java 5 (and thus have access to annotations), then that really is it.

If you are not using Java 5, then one obviously doesn't annotate one's Tapestry page classes with annotations;
instead, one simply uses good old fashioned XML to declare the dependency injection; for example, inside the
.page or .jwc file for the Login page (or component):

 <inject property="userService" object="spring:userService"/>
 <inject property="authenticationService" object="spring:authenticationService"/>



In this example, we've managed to allow service beans defined in a Spring container to be provided to the
Tapestry page in a declarative fashion. The page class does not know where the service implementations are
coming from, and in fact it is easy to slip in another implementation, for example, during testing. This inversion
of control is one of the prime goals and benefits of the Spring Framework, and we have managed to extend it all
the way up the J2EE stack in this Tapestry application.


15.7. Further Resources
Find below links to further resources about the various web frameworks described in this chapter.


• The JSF homepage

• The Struts homepage

• The WebWork homepage

• The Tapestry homepage




                                             Spring Framework (2.5.6)                                         396
Chapter 16. Portlet MVC Framework

16.1. Introduction

  JSR-168 The Java Portlet Specification

  For more general information about portlet development, please review a whitepaper from Sun entitled
  "Introduction to JSR 168", and of course the JSR-168 Specification itself.


In addition to supporting conventional (servlet-based) Web development, Spring also supports JSR-168 Portlet
development. As much as possible, the Portlet MVC framework is a mirror image of the Web MVC
framework, and also uses the same underlying view abstractions and integration technology. So, be sure to
review the chapters entitled Chapter 13, Web MVC framework and Chapter 14, View technologies before
continuing with this chapter.

            Note
            Bear in mind that while the concepts of Spring MVC are the same in Spring Portlet MVC, there are
            some notable differences created by the unique workflow of JSR-168 portlets.


The main way in which portlet workflow differs from servlet workflow is that the request to the portlet can
have two distinct phases: the action phase and the render phase. The action phase is executed only once and is
where any 'backend' changes or actions occur, such as making changes in a database. The render phase then
produces what is displayed to the user each time the display is refreshed. The critical point here is that for a
single overall request, the action phase is executed only once, but the render phase may be executed multiple
times. This provides (and requires) a clean separation between the activities that modify the persistent state of
your system and the activities that generate what is displayed to the user.

  Spring Web Flow

  Spring Web Flow (SWF) aims to be the best solution for the management of web application page flow.

  SWF integrates with existing frameworks like Spring MVC, Struts, and JSF, in both servlet and portlet
  environments. If you have a business process (or processes) that would benefit from a conversational
  model as opposed to a purely request model, then SWF may be the solution.

  SWF allows you to capture logical page flows as self-contained modules that are reusable in different
  situations, and as such is ideal for building web application modules that guide the user through
  controlled navigations that drive business processes.

  For more information about SWF, consult the Spring Web Flow website.


The dual phases of portlet requests are one of the real strengths of the JSR-168 specification. For example,
dynamic search results can be updated routinely on the display without the user explicitly rerunning the search.
Most other portlet MVC frameworks attempt to completely hide the two phases from the developer and make it
look as much like traditional servlet development as possible - we think this approach removes one of the main
benefits of using portlets. So, the separation of the two phases is preserved throughout the Spring Portlet MVC
framework. The primary manifestation of this approach is that where the servlet version of the MVC classes

                                           Spring Framework (2.5.6)                                          397
Portlet MVC Framework


will have one method that deals with the request, the portlet version of the MVC classes will have two methods
that deal with the request: one for the action phase and one for the render phase. For example, where the servlet
version of AbstractController has the handleRequestInternal(..) method, the portlet version of
AbstractController has handleActionRequestInternal(..) and handleRenderRequestInternal(..)
methods.

The framework is designed around a DispatcherPortlet that dispatches requests to handlers, with
configurable handler mappings and view resolution, just as the DispatcherServlet in the web framework
does. File upload is also supported in the same way.

Locale resolution and theme resolution are not supported in Portlet MVC - these areas are in the purview of the
portal/portlet container and are not appropriate at the Spring level. However, all mechanisms in Spring that
depend on the locale (such as internationalization of messages) will still function properly because
DispatcherPortlet exposes the current locale in the same way as DispatcherServlet.



16.1.1. Controllers - The C in MVC

The default handler is still a very simple Controller interface, offering just two methods:


• void handleActionRequest(request,response)

• ModelAndView handleRenderRequest(request,response)

The framework also includes most of the same controller implementation hierarchy, such as
AbstractController, SimpleFormController, and so on. Data binding, command object usage, model
handling, and view resolution are all the same as in the servlet framework.


16.1.2. Views - The V in MVC

All the view rendering capabilities of the servlet framework are used directly via a special bridge servlet named
ViewRendererServlet. By using this servlet, the portlet request is converted into a servlet request and the view
can be rendered using the entire normal servlet infrastructure. This means all the existing renderers, such as
JSP, Velocity, etc., can still be used within the portlet.


16.1.3. Web-scoped beans

Spring Portlet MVC supports beans whose lifecycle is scoped to the current HTTP request or HTTP Session
(both normal and global). This is not a specific feature of Spring Portlet MVC itself, but rather of the
WebApplicationContext container(s) that Spring Portlet MVC uses. These bean scopes are described in detail
in the section entitled Section 3.4.4, “The other scopes”

            Note
            The Spring distribution ships with a complete Spring Portlet MVC sample application that
            demonstrates all of the features and functionality of the Spring Portlet MVC framework. This
            'petportal' application can be found in the 'samples/petportal' directory of the full Spring
            distribution.



16.2. The DispatcherPortlet

                                           Spring Framework (2.5.6)                                          398
Portlet MVC Framework


Portlet MVC is a request-driven web MVC framework, designed around a portlet that dispatches requests to
controllers and offers other functionality facilitating the development of portlet applications. Spring's
DispatcherPortlet however, does more than just that. It is completely integrated with the Spring
ApplicationContext and allows you to use every other feature Spring has.

Like ordinary portlets, the DispatcherPortlet is declared in the portlet.xml of your web application:

 <portlet>
     <portlet-name>sample</portlet-name>
     <portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class>
     <supports>
         <mime-type>text/html</mime-type>
         <portlet-mode>view</portlet-mode>
     </supports>
     <portlet-info>
         <title>Sample Portlet</title>
     </portlet-info>
 </portlet>



The DispatcherPortlet now needs to be configured.

In the Portlet MVC framework, each DispatcherPortlet has its own WebApplicationContext, which inherits
all the beans already defined in the Root WebApplicationContext. These inherited beans can be overridden in
the portlet-specific scope, and new scope- specific beans can be defined local to a given portlet instance.

The   framework      will,   on    initialization of a DispatcherPortlet, look for a file named
[portlet-name]-portlet.xml       in the WEB-INF directory of your web application and create the beans defined
there (overriding the definitions of any beans defined with the same name in the global scope).

The config location used by the DispatcherPortlet can be modified through a portlet initialization parameter
(see below for details).

The Spring DispatcherPortlet has a few special beans it uses, in order to be able to process requests and
render the appropriate views. These beans are included in the Spring framework and can be configured in the
WebApplicationContext, just as any other bean would be configured. Each of those beans is described in more
detail below. Right now, we'll just mention them, just to let you know they exist and to enable us to go on
talking about the DispatcherPortlet. For most of the beans, defaults are provided so you don't have to worry
about configuring them.


Table 16.1. Special beans in the WebApplicationContext

Expression                   Explanation

handler mapping(s)           (Section 16.5, “Handler mappings”) a list of pre- and post-processors and
                             controllers that will be executed if they match certain criteria (for instance a
                             matching portlet mode specified with the controller)

controller(s)                (Section 16.4, “Controllers”) the beans providing the actual functionality (or at
                             least, access to the functionality) as part of the MVC triad

view resolver                (Section 16.6, “Views and resolving them”) capable of resolving view names to
                             view definitions

multipart resolver           (Section 16.7, “Multipart (file upload) support”) offers functionality to process
                             file uploads from HTML forms

handler exception            (Section 16.8, “Handling exceptions”) offers functionality to map exceptions to
resolver                     views or implement other more complex exception handling code


                                           Spring Framework (2.5.6)                                        399
Portlet MVC Framework


When a DispatcherPortlet is setup for use and a request comes in for that specific DispatcherPortlet, it
starts processing the request. The list below describes the complete process a request goes through if handled
by a DispatcherPortlet:


1. The locale returned by PortletRequest.getLocale() is bound to the request to let elements in the process
   resolve the locale to use when processing the request (rendering the view, preparing data, etc.).

2. If a multipart resolver is specified and this is an ActionRequest, the request is inspected for multiparts and if
   they are found, it is wrapped in a MultipartActionRequest for further processing by other elements in the
   process. (See Section 16.7, “Multipart (file upload) support” for further information about multipart
   handling).

3. An appropriate handler is searched for. If a handler is found, the execution chain associated with the handler
   (pre- processors, post-processors, controllers) will be executed in order to prepare a model.

4. If a model is returned, the view is rendered, using the view resolver that has been configured with the
   WebApplicationContext. If no model is returned (which could be due to a pre- or post-processor
   intercepting the request, for example, for security reasons), no view is rendered, since the request could
   already have been fulfilled.

Exceptions that might be thrown during processing of the request get picked up by any of the handler exception
resolvers that are declared in the WebApplicationContext. Using these exception resolvers you can define
custom behavior in case such exceptions get thrown.

You can customize Spring's DispatcherPortlet by adding context parameters in the portlet.xml file or
portlet init-parameters. The possibilities are listed below.


Table 16.2. DispatcherPortlet initialization parameters

Parameter                    Explanation

contextClass                 Class that implements WebApplicationContext, which will be used to instantiate
                             the context used by this portlet. If this parameter isn't specified, the
                             XmlPortletApplicationContext will be used.

contextConfigLocation        String which is passed to the context instance (specified by contextClass) to
                             indicate where context(s) can be found. The String is potentially split up into
                             multiple Strings (using a comma as a delimiter) to support multiple contexts (in
                             case of multiple context locations, of beans that are defined twice, the latest takes
                             precedence).

namespace                    The namespace of the WebApplicationContext. Defaults to [portlet-name]-
                             portlet.

viewRendererUrl              The    URL     at   which DispatcherPortlet can access an instance                 of
                             ViewRendererServlet     (see Section 16.3, “The ViewRendererServlet”).




16.3. The ViewRendererServlet
The rendering process in Portlet MVC is a bit more complex than in Web MVC. In order to reuse all the view
technologies from Spring Web MVC), we must convert the PortletRequest / PortletResponse to
HttpServletRequest / HttpServletResponse and then call the render method of the View. To do this,


                                            Spring Framework (2.5.6)                                            400
Portlet MVC Framework

DispatcherPortlet    uses a special servlet that exists for just this purpose: the ViewRendererServlet.

In order for DispatcherPortlet rendering to work, you must declare an instance of the ViewRendererServlet
in the web.xml file for your web application as follows:

 <servlet>
     <servlet-name>ViewRendererServlet</servlet-name>
     <servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class>
 </servlet>

 <servlet-mapping>
     <servlet-name>ViewRendererServlet</servlet-name>
     <url-pattern>/WEB-INF/servlet/view</url-pattern>
 </servlet-mapping>



To perform the actual rendering, DispatcherPortlet does the following:


1. Binds    the    WebApplicationContext      to the request as an attribute                under     the   same
     WEB_APPLICATION_CONTEXT_ATTRIBUTE     key that DispatcherServlet uses.

2. Binds the Model and View objects to the request to make them available to the ViewRendererServlet.

3. Constructs a PortletRequestDispatcher and performs an include using the /WEB- INF/servlet/view
   URL that is mapped to the ViewRendererServlet.

The ViewRendererServlet is then able to call the render method on the View with the appropriate arguments.

The actual URL for the ViewRendererServlet can be changed using DispatcherPortlet’s viewRendererUrl
configuration parameter.


16.4. Controllers
The controllers in Portlet MVC are very similar to the Web MVC Controllers and porting code from one to the
other should be simple.

The        basis     for       the       Portlet
                                             MVC          controller       architecture               is     the
org.springframework.web.portlet.mvc.Controller interface, which is listed below.

 public interface Controller {

       /**
        * Process the render request and return a ModelAndView object which the
        * DispatcherPortlet will render.
        */
       ModelAndView handleRenderRequest(RenderRequest request, RenderResponse response)
           throws Exception;

       /**
        * Process the action request. There is nothing to return.
        */
       void handleActionRequest(ActionRequest request, ActionResponse response)
           throws Exception;
 }



As you can see, the Portlet Controller interface requires two methods that handle the two phases of a portlet
request: the action request and the render request. The action phase should be capable of handling an action
request and the render phase should be capable of handling a render request and returning an appropriate model
and view. While the Controller interface is quite abstract, Spring Portlet MVC offers a lot of controllers that
already contain a lot of the functionality you might need – most of these are very similar to controllers from


                                           Spring Framework (2.5.6)                                          401
Portlet MVC Framework

Spring Web MVC. The Controller interface just defines the most common functionality required of every
controller - handling an action request, handling a render request, and returning a model and a view.


16.4.1. AbstractController and PortletContentGenerator

Of course, just a Controller interface isn't enough. To provide a basic infrastructure, all of Spring Portlet
MVC's Controllers inherit from AbstractController, a class offering access to Spring's
ApplicationContext and control over caching.



Table 16.3. Features offered by the AbstractController

Parameter                    Explanation

requireSession               Indicates whether or not this Controller requires a session to do its work. This
                             feature is offered to all controllers. If a session is not present when such a
                             controller receives a request, the user is informed using a
                             SessionRequiredException.

synchronizeSession           Use this if you want handling by this controller to be synchronized on the user's
                             session. To be more specific, the extending controller will override the
                             handleRenderRequestInternal(..) and handleActionRequestInternal(..)
                             methods, which will be synchronized on the user’s session if you specify this
                             variable.

renderWhenMinimized          If you want your controller to actually render the view when the portlet is in a
                             minimized state, set this to true. By default, this is set to false so that portlets that
                             are in a minimized state don’t display any content.

cacheSeconds                 When you want a controller to override the default cache expiration defined for
                             the portlet, specify a positive integer here. By default it is set to -1, which does
                             not change the default caching. Setting it to 0 will ensure the result is never
                             cached.


The requireSession and cacheSeconds properties are declared on the PortletContentGenerator class, which
is the superclass of AbstractController) but are included here for completeness.

When using the AbstractController as a baseclass for your controllers (which is not recommended since
there are a lot of other controllers that might already do the job for you) you only have to override either the
handleActionRequestInternal(ActionRequest,                  ActionResponse)         method         or        the
handleRenderRequestInternal(RenderRequest, RenderResponse) method (or both), implement your logic,
and return a ModelAndView object (in the case of handleRenderRequestInternal).

The       default        implementations of     both      handleActionRequestInternal(..)         and
handleRenderRequestInternal(..) throw a PortletException. This is consistent with the behavior of
GenericPortlet from the JSR- 168 Specification API. So you only need to override the method that your
controller is intended to handle.

Here is short example consisting of a class and a declaration in the web application context.

 package samples;

 import javax.portlet.RenderRequest;
 import javax.portlet.RenderResponse;

 import org.springframework.web.portlet.mvc.AbstractController;
 import org.springframework.web.portlet.ModelAndView;


                                            Spring Framework (2.5.6)                                              402
Portlet MVC Framework



 public class SampleController extends AbstractController {

      public ModelAndView handleRenderRequestInternal(RenderRequest request, RenderResponse response) {
          ModelAndView mav = new ModelAndView("foo");
          mav.addObject("message", "Hello World!");
          return mav;
      }
 }

 <bean id="sampleController" class="samples.SampleController">
     <property name="cacheSeconds" value="120"/>
 </bean>



The class above and the declaration in the web application context is all you need besides setting up a handler
mapping (see Section 16.5, “Handler mappings”) to get this very simple controller working.


16.4.2. Other simple controllers

Although you can extend AbstractController, Spring Portlet MVC provides a number of concrete
implementations which offer functionality that is commonly used in simple MVC applications.

The ParameterizableViewController is basically the same as the example above, except for the fact that you
can specify the view name that it will return in the web application context (no need to hard-code the view
name).

The PortletModeNameViewController uses the current mode of the portlet as the view name. So, if your
portlet is in View mode (i.e. PortletMode.VIEW) then it uses "view" as the view name.


16.4.3. Command Controllers

Spring Portlet MVC has the exact same hierarchy of command controllers as Spring Web MVC. They provide
a way to interact with data objects and dynamically bind parameters from the PortletRequest to the data
object specified. Your data objects don't have to implement a framework-specific interface, so you can directly
manipulate your persistent objects if you desire. Let's examine what command controllers are available, to get
an overview of what you can do with them:


• AbstractCommandController - a command controller you can use to create your own command controller,
  capable of binding request parameters to a data object you specify. This class does not offer form
  functionality, it does however offer validation features and lets you specify in the controller itself what to do
  with the command object that has been filled with the parameters from the request.

• AbstractFormController - an abstract controller offering form submission support. Using this controller
  you can model forms and populate them using a command object you retrieve in the controller. After a user
  has filled the form, AbstractFormController binds the fields, validates, and hands the object back to the
  controller to take appropriate action. Supported features are: invalid form submission (resubmission),
  validation, and normal form workflow. You implement methods to determine which views are used for form
  presentation and success. Use this controller if you need forms, but don't want to specify what views you're
  going to show the user in the application context.

• SimpleFormController - a concrete AbstractFormController that provides even more support when
  creating a form with a corresponding command object. The SimpleFormController lets you specify a
  command object, a viewname for the form, a viewname for the page you want to show the user when form
  submission has succeeded, and more.



                                            Spring Framework (2.5.6)                                           403
Portlet MVC Framework


• AbstractWizardFormController – a concrete AbstractFormController that provides a wizard-style
  interface for editing the contents of a command object across multiple display pages. Supports multiple user
  actions: finish, cancel, or page change, all of which are easily specified in request parameters from the view.

These command controllers are quite powerful, but they do require a detailed understanding of how they
operate in order to use them efficiently. Carefully review the Javadocs for this entire hierarchy and then look at
some sample implementations before you start using them.


16.4.4. PortletWrappingController

Instead of developing new controllers, it is possible to use existing portlets and map requests to them from a
DispatcherPortlet. Using the PortletWrappingController, you can instantiate an existing Portlet as a
Controller as follows:

 <bean id="myPortlet" class="org.springframework.web.portlet.mvc.PortletWrappingController">
     <property name="portletClass" value="sample.MyPortlet"/>
     <property name="portletName" value="my-portlet"/>
     <property name="initParameters">
         <value>config=/WEB-INF/my-portlet-config.xml</value>
     </property>
 </bean>



This can be very valuable since you can then use interceptors to pre-process and post-process requests going to
these portlets. Since JSR-168 does not support any kind of filter mechanism, this is quite handy. For example,
this can be used to wrap the Hibernate OpenSessionInViewInterceptor around a MyFaces JSF Portlet.


16.5. Handler mappings
Using a handler mapping you can map incoming portlet requests to appropriate handlers. There are some
handler mappings you can use out of the box, for example, the PortletModeHandlerMapping, but let's first
examine the general concept of a HandlerMapping.

Note: We are intentionally using the term “Handler” here instead of “Controller”. DispatcherPortlet is
designed to be used with other ways to process requests than just Spring Portlet MVC’s own Controllers. A
Handler is any Object that can handle portlet requests. Controllers are an example of Handlers, and they are of
course the default. To use some other framework with DispatcherPortlet, a corresponding implementation of
HandlerAdapter is all that is needed.

The functionality a basic HandlerMapping provides is the delivering of a HandlerExecutionChain, which must
contain the handler that matches the incoming request, and may also contain a list of handler interceptors that
are applied to the request. When a request comes in, the DispatcherPortlet will hand it over to the handler
mapping to let it inspect the request and come up with an appropriate HandlerExecutionChain. Then the
DispatcherPortlet will execute the handler and interceptors in the chain (if any). These concepts are all
exactly the same as in Spring Web MVC.

The concept of configurable handler mappings that can optionally contain interceptors (executed before or after
the actual handler was executed, or both) is extremely powerful. A lot of supporting functionality can be built
into a custom HandlerMapping. Think of a custom handler mapping that chooses a handler not only based on
the portlet mode of the request coming in, but also on a specific state of the session associated with the request.

In Spring Web MVC, handler mappings are commonly based on URLs. Since there is really no such thing as a
URL within a Portlet, we must use other mechanisms to control mappings. The two most common are the
portlet mode and a request parameter, but anything available to the portlet request can be used in a custom


                                            Spring Framework (2.5.6)                                           404
Portlet MVC Framework


handler mapping.

The rest of this section describes three of Spring Portlet MVC's most commonly used handler mappings. They
all extend AbstractHandlerMapping and share the following properties:


• interceptors: The list of interceptors to use. HandlerInterceptors are discussed in Section 16.5.4,
  “Adding HandlerInterceptors”.

• defaultHandler: The default handler to use, when this handler mapping does not result in a matching
  handler.

• order: Based on the value of the order property (see the org.springframework.core.Ordered interface),
  Spring will sort all handler mappings available in the context and apply the first matching handler.

• lazyInitHandlers: Allows for lazy initialization of singleton handlers (prototype handlers are always lazily
  initialized). Default value is false. This property is directly implemented in the three concrete Handlers.


16.5.1. PortletModeHandlerMapping

This is a simple handler mapping that maps incoming requests based on the current mode of the portlet (e.g.
‘view’, ‘edit’, ‘help’). An example:

 <bean class="org.springframework.web.portlet.handler.PortletModeHandlerMapping">
     <property name="portletModeMap">
         <map>
             <entry key="view" value-ref="viewHandler"/>
             <entry key="edit" value-ref="editHandler"/>
             <entry key="help" value-ref="helpHandler"/>
         </map>
     </property>
 </bean>




16.5.2. ParameterHandlerMapping

If we need to navigate around to multiple controllers without changing portlet mode, the simplest way to do this
is with a request parameter that is used as the key to control the mapping.

ParameterHandlerMapping     uses the value of a specific request parameter to control the mapping. The default
name of the parameter is 'action', but can be changed using the 'parameterName' property.

The bean configuration for this mapping will look something like this:

 <bean class="org.springframework.web.portlet.handler.ParameterHandlerMapping”>
     <property name="parameterMap">
         <map>
             <entry key="add" value-ref="addItemHandler"/>
             <entry key="edit" value-ref="editItemHandler"/>
             <entry key="delete" value-ref="deleteItemHandler"/>
         </map>
     </property>
 </bean>




16.5.3. PortletModeParameterHandlerMapping

The most powerful built-in handler mapping, PortletModeParameterHandlerMapping combines the
capabilities of the two previous ones to allow different navigation within each portlet mode.


                                          Spring Framework (2.5.6)                                          405
Portlet MVC Framework


Again the default name of the parameter is "action", but can be changed using the parameterName property.

By default, the same parameter value may not be used in two different portlet modes. This is so that if the
portal itself changes the portlet mode, the request will no longer be valid in the mapping. This behavior can be
changed by setting the allowDupParameters property to true. However, this is not recommended.

The bean configuration for this mapping will look something like this:

 <bean class="org.springframework.web.portlet.handler.PortletModeParameterHandlerMapping">
     <property name="portletModeParameterMap">
         <map>
             <entry key="view"> <!-- 'view' portlet mode -->
                 <map>
                     <entry key="add" value-ref="addItemHandler"/>
                     <entry key="edit" value-ref="editItemHandler"/>
                     <entry key="delete" value-ref="deleteItemHandler"/>
                 </map>
             </entry>
             <entry key="edit"> <!-- 'edit' portlet mode -->
                 <map>
                     <entry key="prefs" value-ref="prefsHandler"/>
                     <entry key="resetPrefs" value-ref="resetPrefsHandler"/>
                 </map>
             </entry>
         </map>
     </property>
 </bean>



This mapping can be chained ahead of a PortletModeHandlerMapping, which can then provide defaults for
each mode and an overall default as well.


16.5.4. Adding HandlerInterceptors

Spring's handler mapping mechanism has a notion of handler interceptors, which can be extremely useful when
you want to apply specific functionality to certain requests, for example, checking for a principal. Again Spring
Portlet MVC implements these concepts in the same way as Web MVC.

Interceptors   located   in   the   handler mapping must implement HandlerInterceptor from the
org.springframework.web.portlet        package. Just like the servlet version, this interface defines three methods:
one that will be called before the actual handler will be executed (preHandle), one that will be called after the
handler is executed (postHandle), and one that is called after the complete request has finished
(afterCompletion). These three methods should provide enough flexibility to do all kinds of pre- and post-
processing.

The preHandle method returns a boolean value. You can use this method to break or continue the processing of
the execution chain. When this method returns true, the handler execution chain will continue. When it returns
false, the DispatcherPortlet assumes the interceptor itself has taken care of requests (and, for example,
rendered an appropriate view) and does not continue executing the other interceptors and the actual handler in
the execution chain.

The postHandle method is only called on a RenderRequest. The preHandle and afterCompletion methods are
called on both an ActionRequest and a RenderRequest. If you need to execute logic in these methods for just
one type of request, be sure to check what kind of request it is before processing it.


16.5.5. HandlerInterceptorAdapter

As with the servlet package, the portlet package has a concrete implementation of HandlerInterceptor called
HandlerInterceptorAdapter. This class has empty versions of all the methods so that you can inherit from


                                            Spring Framework (2.5.6)                                            406
Portlet MVC Framework

this class and implement just one or two methods when that is all you need.


16.5.6. ParameterMappingInterceptor

The portlet package also has a concrete interceptor named ParameterMappingInterceptor that is meant to be
used directly with ParameterHandlerMapping and PortletModeParameterHandlerMapping. This interceptor
will cause the parameter that is being used to control the mapping to be forwarded from an ActionRequest to
the subsequent RenderRequest. This will help ensure that the RenderRequest is mapped to the same Handler as
the ActionRequest. This is done in the preHandle method of the interceptor, so you can still modify the
parameter value in your handler to change where the RenderRequest will be mapped.

Be aware that this interceptor is calling setRenderParameter on the ActionResponse, which means that you
cannot call sendRedirect in your handler when using this interceptor. If you need to do external redirects then
you will either need to forward the mapping parameter manually or write a different interceptor to handle this
for you.


16.6. Views and resolving them
As mentioned previously, Spring Portlet MVC directly reuses all the view technologies from Spring Web
MVC. This includes not only the various View implementations themselves, but also the ViewResolver
implementations. For more information, refer to the sections entitled Chapter 14, View technologies and
Section 13.5, “Views and resolving them” respectively.

A few items on using the existing View and ViewResolver implementations are worth mentioning:


• Most portals expect the result of rendering a portlet to be an HTML fragment. So, things like JSP/JSTL,
  Velocity, FreeMarker, and XSLT all make sense. But it is unlikely that views that return other document
  types will make any sense in a portlet context.

• There is no such thing as an HTTP redirect from within a portlet (the sendRedirect(..) method of
  ActionResponse cannot be used to stay within the portal). So, RedirectView and use of the 'redirect:'
  prefix will not work correctly from within Portlet MVC.

• It may be possible to use the 'forward:' prefix from within Portlet MVC. However, remember that since
  you are in a portlet, you have no idea what the current URL looks like. This means you cannot use a relative
  URL to access other resources in your web application and that you will have to use an absolute URL.

Also, for JSP development, the new Spring Taglib and the new Spring Form Taglib both work in portlet views
in exactly the same way that they work in servlet views.


16.7. Multipart (file upload) support
Spring Portlet MVC has built-in multipart support to handle file uploads in portlet applications, just like Web
MVC does. The design for the multipart support is done with pluggable PortletMultipartResolver objects,
defined in the org.springframework.web.portlet.multipart package. Spring provides a
PortletMultipartResolver for use with Commons FileUpload. How uploading files is supported will be
described in the rest of this section.

By default, no multipart handling will be done by Spring Portlet MVC, as some developers will want to handle
multiparts themselves. You will have to enable it yourself by adding a multipart resolver to the web
application's context. After you have done that, DispatcherPortlet will inspect each request to see if it

                                          Spring Framework (2.5.6)                                         407
Portlet MVC Framework

contains a multipart. If no multipart is found, the request will continue as expected. However, if a multipart is
found in the request, the PortletMultipartResolver that has been declared in your context will be used. After
that, the multipart attribute in your request will be treated like any other attribute.

            Note
            Any configured PortletMultipartResolver bean must have the following id (or name):
            "portletMultipartResolver". If you have defined your PortletMultipartResolver with any
            other name, then the DispatcherPortlet will not find your PortletMultipartResolver, and
            consequently no multipart support will be in effect.



16.7.1. Using the PortletMultipartResolver

The following example shows how to use the CommonsPortletMultipartResolver:

 <bean id="portletMultipartResolver"
         class="org.springframework.web.portlet.multipart.CommonsPortletMultipartResolver">

     <!-- one of the properties available; the maximum file size in bytes -->
     <property name="maxUploadSize" value="100000"/>
 </bean>



Of course you also need to put the appropriate jars in your classpath for the multipart resolver to work. In the
case of the CommonsMultipartResolver, you need to use commons-fileupload.jar. Be sure to use at least
version 1.1 of Commons FileUpload as previous versions do not support JSR-168 Portlet applications.

Now that you have seen how to set Portlet MVC up to handle multipart requests, let's talk about how to actually
use it. When DispatcherPortlet detects a multipart request, it activates the resolver that has been declared in
your context and hands over the request. What the resolver then does is wrap the current ActionRequest into a
MultipartActionRequest that has support for multipart file uploads. Using the MultipartActionRequest you
can get information about the multiparts contained by this request and actually get access to the multipart files
themselves in your controllers.

Note that you can only receive multipart file uploads as part of an ActionRequest, not as part of a
RenderRequest.



16.7.2. Handling a file upload in a form

After the PortletMultipartResolver has finished doing its job, the request will be processed like any other.
To use it, you create a form with an upload field (see immediately below), then let Spring bind the file onto
your form (backing object). To actually let the user upload a file, we have to create a (JSP/HTML) form:

 <h1>Please upload a file</h1>
 <form method="post" action="<portlet:actionURL/>" enctype="multipart/form-data">
     <input type="file" name="file"/>
     <input type="submit"/>
 </form>



As you can see, we've created a field named “file” after the property of the bean that holds the byte[].
Furthermore we've added the encoding attribute (enctype="multipart/form-data"), which is necessary to let
the browser know how to encode the multipart fields (do not forget this!).

Just as with any other property that's not automagically convertible to a string or primitive type, to be able to
put binary data in your objects you have to register a custom editor with the PortletRequestDataBinder.


                                           Spring Framework (2.5.6)                                          408
Portlet MVC Framework

There are a couple of editors available for handling files and setting the results on an object. There's a
StringMultipartFileEditor capable of converting files to Strings (using a user-defined character set) and
there is a ByteArrayMultipartFileEditor which converts files to byte arrays. They function just as the
CustomDateEditor does.

So, to be able to upload files using a form, declare the resolver, a mapping to a controller that will process the
bean, and the controller itself.

 <bean id="portletMultipartResolver"
         class="org.springframework.web.portlet.multipart.CommonsPortletMultipartResolver"/>

 <bean class="org.springframework.web.portlet.handler.PortletModeHandlerMapping">
     <property name="portletModeMap">
         <map>
             <entry key="view" value-ref="fileUploadController"/>
         </map>
     </property>
 </bean>

 <bean id="fileUploadController" class="examples.FileUploadController">
     <property name="commandClass" value="examples.FileUploadBean"/>
     <property name="formView" value="fileuploadform"/>
     <property name="successView" value="confirmation"/>
 </bean>



After that, create the controller and the actual class to hold the file property.

 public class FileUploadController extends SimpleFormController {

      public void onSubmitAction(ActionRequest request, ActionResponse response,
              Object command, BindException errors) throws Exception {

           // cast the bean
           FileUploadBean bean = (FileUploadBean) command;

           // let's see if there's content there
           byte[] file = bean.getFile();
           if (file == null) {
               // hmm, that's strange, the user did not upload anything
           }

           // do something with the file here
      }

      protected void initBinder(
              PortletRequest request, PortletRequestDataBinder binder) throws Exception {
          // to actually be able to convert Multipart instance to byte[]
          // we have to register a custom editor
          binder.registerCustomEditor(byte[].class, new ByteArrayMultipartFileEditor());
          // now Spring knows how to handle multipart object and convert
      }
 }

 public class FileUploadBean {

      private byte[] file;

      public void setFile(byte[] file) {
          this.file = file;
      }

      public byte[] getFile() {
          return file;
      }
 }



As you can see, the FileUploadBean has a property typed byte[] that holds the file. The controller registers a
custom editor to let Spring know how to actually convert the multipart objects the resolver has found to
properties specified by the bean. In this example, nothing is done with the byte[] property of the bean itself,
but in practice you can do whatever you want (save it in a database, mail it to somebody, etc).


                                             Spring Framework (2.5.6)                                         409
Portlet MVC Framework


An equivalent example in which a file is bound straight to a String-typed property on a (form backing) object
might look like this:

 public class FileUploadController extends SimpleFormController {

      public void onSubmitAction(ActionRequest request, ActionResponse response,
              Object command, BindException errors) throws Exception {

          // cast the bean
          FileUploadBean bean = (FileUploadBean) command;

          // let's see if there's content there
          String file = bean.getFile();
          if (file == null) {
              // hmm, that's strange, the user did not upload anything
          }

          // do something with the file here
      }

      protected void initBinder(
          PortletRequest request, PortletRequestDataBinder binder) throws Exception {

          // to actually be able to convert Multipart instance to a String
          // we have to register a custom editor
          binder.registerCustomEditor(String.class,
              new StringMultipartFileEditor());
          // now Spring knows how to handle multipart objects and convert
      }
 }

 public class FileUploadBean {

      private String file;

      public void setFile(String file) {
          this.file = file;
      }

      public String getFile() {
          return file;
      }
 }



Of course, this last example only makes (logical) sense in the context of uploading a plain text file (it wouldn't
work so well in the case of uploading an image file).

The third (and final) option is where one binds directly to a MultipartFile property declared on the (form
backing) object's class. In this case one does not need to register any custom property editor because there is no
type conversion to be performed.

 public class FileUploadController extends SimpleFormController {

      public void onSubmitAction(ActionRequest request, ActionResponse response,
              Object command, BindException errors) throws Exception {

          // cast the bean
          FileUploadBean bean = (FileUploadBean) command;

          // let's see if there's content there
          MultipartFile file = bean.getFile();
          if (file == null) {
              // hmm, that's strange, the user did not upload anything
          }

          // do something with the file here
      }
 }

 public class FileUploadBean {

      private MultipartFile file;



                                           Spring Framework (2.5.6)                                           410
Portlet MVC Framework


      public void setFile(MultipartFile file) {
          this.file = file;
      }

      public MultipartFile getFile() {
          return file;
      }
 }




16.8. Handling exceptions
Just like Web MVC, Portlet MVC provides HandlerExceptionResolvers to ease the pain of unexpected
exceptions occurring while your request is being processed by a handler that matched the request. Portlet MVC
also provides the same concrete SimpleMappingExceptionResolver that enables you to take the class name of
any exception that might be thrown and map it to a view name.


16.9. Annotation-based controller configuration
Spring 2.5 introduces an annotation-based programming model for MVC controllers, using annotations such as
@RequestMapping, @RequestParam, @ModelAttribute, etc. This annotation support is available for both Servlet
MVC and Portlet MVC. Controllers implemented in this style do not have to extend specific base classes or
implement specific interfaces. Furthermore, they do not usually have direct dependencies on Servlet or Portlet
API's, although they can easily get access to Servlet or Portlet facilities if desired.

            Tip
            The Spring distribution ships with the PetPortal sample, which is a portal application that takes
            advantage of the annotation support described in this section, in the context of simple form
            processing. You can find the PetPortal application in the 'samples/petportal' directory.


The following sections document these annotations and how they are most commonly used in a Portlet
environment.


16.9.1. Setting up the dispatcher for annotation support

@RequestMapping   will only be processed if a corresponding HandlerMapping (for type level annotations)
and/or HandlerAdapter (for method level annotations) is present in the dispatcher. This is the case by default
in both DispatcherServlet and DispatcherPortlet.

However, if you are defining custom HandlerMappings or HandlerAdapters, then you need to make sure that a
corresponding custom DefaultAnnotationHandlerMapping and/or AnnotationMethodHandlerAdapter is
defined as well - provided that you intend to use @RequestMapping.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xsi:schemaLocation="http://www.springframework.org/schema/beans
         http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

      <bean class="org.springframework.web.portlet.mvc.annotation.DefaultAnnotationHandlerMapping"/>

      <bean class="org.springframework.web.portlet.mvc.annotation.AnnotationMethodHandlerAdapter"/>

      // ... (controller bean definitions) ...




                                          Spring Framework (2.5.6)                                        411
Portlet MVC Framework

 </beans>



Defining a DefaultAnnotationHandlerMapping and/or AnnotationMethodHandlerAdapter explicitly also
makes sense if you would like to customize the mapping strategy, e.g. specifying a custom
WebBindingInitializer (see below).



16.9.2. Defining a controller with @Controller

The @Controller annotation indicates that a particular class serves the role of a controller. There is no need to
extend any controller base class or reference the Portlet API. You are of course still able to reference
Portlet-specific features if you need to.

The basic purpose of the @Controller annotation is to act as a stereotype for the annotated class, indicating its
role. The dispatcher will scan such annotated classes for mapped methods, detecting @RequestMapping
annotations (see the next section).

Annotated controller beans may be defined explicitly, using a standard Spring bean definition in the
dispatcher's context. However, the @Controller stereotype also allows for autodetection, aligned with Spring
2.5's general support for detecting component classes in the classpath and auto-registering bean definitions for
them.

To enable autodetection of such annotated controllers, you have to add component scanning to your
configuration. This is easily achieved by using the spring-context schema as shown in the following XML
snippet:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xmlns:p="http://www.springframework.org/schema/p"
     xmlns:context="http://www.springframework.org/schema/context"
     xsi:schemaLocation="
         http://www.springframework.org/schema/beans
         http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
         http://www.springframework.org/schema/context
         http://www.springframework.org/schema/context/spring-context-2.5.xsd">

      <context:component-scan base-package="org.springframework.samples.petportal.portlet"/>

      // ...

 </beans>




16.9.3. Mapping requests with @RequestMapping

The @RequestMapping annotation is used to map portlet modes like 'VIEW'/'EDIT' onto an entire class or a
particular handler method. Typically the type-level annotation maps a specific mode (or mode plus parameter
condition) onto a form controller, with additional method-level annotations 'narrowing' the primary mapping
for specific portlet request parameters.

            Tip
            @RequestMapping   at the type level may be used for plain implementations of the Controller
            interface as well. In this case, the request processing code would follow the traditional
            handle(Action|Render)Request signature, while the controller's mapping would be expressed
            through an @RequestMapping annotation. This works for pre-built Controller base classes, such as
            SimpleFormController, too.



                                           Spring Framework (2.5.6)                                          412
Portlet MVC Framework



            In the following discussion, we'll focus on controllers that are based on annotated handler methods.


The following is an example of a form controller from the PetPortal sample application using this annotation:

 @Controller
 @RequestMapping("EDIT")
 @SessionAttributes("site")
 public class PetSitesEditController {

      private Properties petSites;

      public void setPetSites(Properties petSites) {
          this.petSites = petSites;
      }

      @ModelAttribute("petSites")
      public Properties getPetSites() {
          return this.petSites;
      }

      @RequestMapping // default (action=list)
      public String showPetSites() {
          return "petSitesEdit";
      }

      @RequestMapping(params = "action=add") // render phase
      public String showSiteForm(Model model) {
          // Used for the initial form as well as for redisplaying with errors.
          if (!model.containsAttribute("site")) {
              model.addAttribute("site", new PetSite());
          }
          return "petSitesAdd";
      }

      @RequestMapping(params = "action=add") // action phase
      public void populateSite(
              @ModelAttribute("site") PetSite petSite, BindingResult result,
              SessionStatus status, ActionResponse response) {

          new PetSiteValidator().validate(petSite, result);
          if (!result.hasErrors()) {
              this.petSites.put(petSite.getName(), petSite.getUrl());
              status.setComplete();
              response.setRenderParameter("action", "list");
          }
      }

      @RequestMapping(params = "action=delete")
      public void removeSite(@RequestParam("site") String site, ActionResponse response) {
          this.petSites.remove(site);
          response.setRenderParameter("action", "list");
      }
 }




16.9.4. Supported handler method arguments

Handler methods which are annotated with @RequestMapping are allowed to have very flexible signatures.
They may have arguments of the following types, in arbitrary order (except for validation results, which need to
follow right after the corresponding command object, if desired):


• Request and/or response objects (Portlet API). You may choose any specific request/response type, e.g.
  PortletRequest / ActionRequest / RenderRequest. An explicitly declared action/render argument is also used
  for mapping specific request types onto a handler method (in case of no other information given that
  differentiates between action and render requests).



                                          Spring Framework (2.5.6)                                          413
Portlet MVC Framework


• Session object (Portlet API): of type PortletSession. An argument of this type will enforce the presence of a
  corresponding session. As a consequence, such an argument will never be null.

• org.springframework.web.context.request.WebRequest                                                  or
  org.springframework.web.context.request.NativeWebRequest. Allows for generic request parameter
  access as well as request/session attribute access, without ties to the native Servlet/Portlet API.

• java.util.Locale for the current request locale (the portal locale in a Portlet environment).

• java.io.InputStream / java.io.Reader for access to the request's content. This will be the raw
  InputStream/Reader as exposed by the Portlet API.

• java.io.OutputStream / java.io.Writer for generating the response's content. This will be the raw
  OutputStream/Writer as exposed by the Portlet API.

• @RequestParam annotated parameters for access to specific Portlet request parameters. Parameter values will
  be converted to the declared method argument type.

• java.util.Map / org.springframework.ui.Model / org.springframework.ui.ModelMap for enriching the
  implicit model that will be exposed to the web view.

• Command/form objects to bind parameters to: as bean properties or fields, with customizable type
  conversion, depending on @InitBinder methods and/or the HandlerAdapter configuration - see the
  "webBindingInitializer" property on AnnotationMethodHandlerAdapter. Such command objects along
  with their validation results will be exposed as model attributes, by default using the non-qualified command
  class name in property notation (e.g. "orderAddress" for type "mypackage.OrderAddress"). Specify a
  parameter-level ModelAttribute annotation for declaring a specific model attribute name.

• org.springframework.validation.Errors            /      org.springframework.validation.BindingResult
  validation results for a preceding command/form object (the immediate preceding argument).

• org.springframework.web.bind.support.SessionStatus status handle for marking form processing as
  complete (triggering the cleanup of session attributes that have been indicated by the @SessionAttributes
  annotation at the handler type level).

The following return types are supported for handler methods:


• A ModelAndView object, with the model implicitly enriched with command objects and the results of
  @ModelAttribute annotated reference data accessor methods.

• A Model object, with the view name implicitly determined through a RequestToViewNameTranslator and the
  model implicitly enriched with command objects and the results of @ModelAttribute annotated reference
  data accessor methods.

• A Map object for exposing a model, with the view name implicitly determined through a
  RequestToViewNameTranslator and the model implicitly enriched with command objects and the results of
  @ModelAttribute annotated reference data accessor methods.

• A View object, with the model implicitly determined through command objects and @ModelAttribute
  annotated reference data accessor methods. The handler method may also programmatically enrich the model
  by declaring a Model argument (see above).

• A String value which is interpreted as view name, with the model implicitly determined through command
  objects and @ModelAttribute annotated reference data accessor methods. The handler method may also


                                           Spring Framework (2.5.6)                                        414
Portlet MVC Framework


  programmatically enrich the model by declaring a Model argument (see above).

• void if the method handles the response itself (e.g. by writing the response content directly).

• Any other return type will be considered as single model attribute to be exposed to the view, using the
  attribute name specified through @ModelAttribute at the method level (or the default attribute name based
  on the return type's class name otherwise). The model will be implicitly enriched with command objects and
  the results of @ModelAttribute annotated reference data accessor methods.


16.9.5. Binding request parameters to method parameters with
@RequestParam

The @RequestParam annotation is used to bind request parameters to a method parameter in your controller.

The following code snippet from the PetPortal sample application shows the usage:

 @Controller
 @RequestMapping("EDIT")
 @SessionAttributes("site")
 public class PetSitesEditController {

      // ...

      public void removeSite(@RequestParam("site") String site, ActionResponse response) {
          this.petSites.remove(site);
          response.setRenderParameter("action", "list");
      }

      // ...
 }



Parameters using this annotation are required by default, but you can specify that a parameter is optional by
setting @RequestParam's required attribute to false (e.g., @RequestParam(value="id", required="false")).


16.9.6. Providing a link to data from the model with @ModelAttribute

@ModelAttribute      has two usage scenarios in controllers. When placed on a method parameter,
@ModelAttribute is used to map a model attribute to the specific, annotated method parameter (see the
processSubmit() method below). This is how the controller gets a reference to the object holding the data
entered in the form. In addition, the parameter can be declared as the specific type of the form backing object
rather than as a generic java.lang.Object, thus increasing type safety.

@ModelAttribute  is also used at the method level to provide reference data for the model (see the
populatePetTypes()   method below). For this usage the method signature can contain the same types as
documented above for the @RequestMapping annotation.

Note: @ModelAttribute annotated methods will be executed before the chosen @RequestMapping annotated
handler method. They effectively pre-populate the implicit model with specific attributes, often loaded from a
database. Such an attribute can then already be accessed through @ModelAttribute annotated handler method
parameters in the chosen handler method, potentially with binding and validation applied to it.

The following code snippet shows these two usages of this annotation:

 @Controller
 @RequestMapping("EDIT")
 @SessionAttributes("site")
 public class PetSitesEditController {




                                           Spring Framework (2.5.6)                                         415
Portlet MVC Framework


      // ...

      @ModelAttribute("petSites")
      public Properties getPetSites() {
          return this.petSites;
      }

      @RequestMapping(params = "action=add") // action phase
      public void populateSite(
              @ModelAttribute("site") PetSite petSite, BindingResult result,
              SessionStatus status, ActionResponse response) {

          new PetSiteValidator().validate(petSite, result);
          if (!result.hasErrors()) {
              this.petSites.put(petSite.getName(), petSite.getUrl());
              status.setComplete();
              response.setRenderParameter("action", "list");
          }
      }
 }




16.9.7. Specifying attributes to store in a Session with @SessionAttributes

The type-level @SessionAttributes annotation declares session attributes used by a specific handler. This will
typically list the names of model attributes which should be transparently stored in the session or some
conversational storage, serving as form-backing beans between subsequent requests.

The following code snippet shows the usage of this annotation:

 @Controller
 @RequestMapping("EDIT")
 @SessionAttributes("site")
 public class PetSitesEditController {
   // ...
 }




16.9.8. Customizing WebDataBinder initialization

To customize request parameter binding with PropertyEditors, etc. via Spring's WebDataBinder, you can either
use @InitBinder-annotated methods within your controller or externalize your configuration by providing a
custom WebBindingInitializer.

16.9.8.1. Customizing data binding with @InitBinder

Annotating controller methods with @InitBinder allows you to configure web data binding directly within
your controller class. @InitBinder identifies methods which initialize the WebDataBinder which will be used
for populating command and form object arguments of annotated handler methods.

Such init-binder methods support all arguments that @RequestMapping supports, except for command/form
objects and corresponding validation result objects. Init-binder methods must not have a return value. Thus,
they are usually declared as void. Typical arguments include WebDataBinder in combination with WebRequest
or java.util.Locale, allowing code to register context-specific editors.

The following example demonstrates the use of @InitBinder for configuring a CustomDateEditor for all
java.util.Date form properties.

 @Controller
 public class MyFormController {

      @InitBinder
      public void initBinder(WebDataBinder binder) {


                                          Spring Framework (2.5.6)                                        416
Portlet MVC Framework

          SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
          dateFormat.setLenient(false);
          binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat, false));
      }

      // ...
 }




16.9.8.2. Configuring a custom WebBindingInitializer

To externalize data binding initialization, you can provide a custom implementation of the
WebBindingInitializer interface, which you then enable by supplying a custom bean configuration for an
AnnotationMethodHandlerAdapter, thus overriding the default configuration.



16.10. Portlet application deployment
The process of deploying a Spring Portlet MVC application is no different than deploying any JSR-168 Portlet
application. However, this area is confusing enough in general that it is worth talking about here briefly.

Generally, the portal/portlet container runs in one webapp in your servlet container and your portlets run in
another webapp in your servlet container. In order for the portlet container webapp to make calls into your
portlet webapp it must make cross-context calls to a well-known servlet that provides access to the portlet
services defined in your portlet.xml file.

The JSR-168 specification does not specify exactly how this should happen, so each portlet container has its
own mechanism for this, which usually involves some kind of “deployment process” that makes changes to the
portlet webapp itself and then registers the portlets within the portlet container.

At a minimum, the web.xml file in your portlet webapp is modified to inject the well-known servlet that the
portlet container will call. In some cases a single servlet will service all portlets in the webapp, in other cases
there will be an instance of the servlet for each portlet.

Some portlet containers will also inject libraries and/or configuration files into the webapp as well. The portlet
container must also make its implementation of the Portlet JSP Tag Library available to your webapp.

The bottom line is that it is important to understand the deployment needs of your target portal and make sure
they are met (usually by following the automated deployment process it provides). Be sure to carefully review
the documentation from your portal for this process.

Once you have deployed your portlet, review the resulting web.xml file for sanity. Some older portals have
been known to corrupt the definition of the ViewRendererServlet, thus breaking the rendering of your portlets.




                                            Spring Framework (2.5.6)                                           417
Part IV. Integration
This part of the reference documentation covers the Spring Framework's integration with a number of J2EE
(and related) technologies.


• Chapter 17, Remoting and web services using Spring

• Chapter 18, Enterprise Java Beans (EJB) integration

• Chapter 19, JMS (Java Message Service)

• Chapter 20, JMX

• Chapter 21, JCA CCI

• Chapter 22, Email

• Chapter 23, Scheduling and Thread Pooling

• Chapter 24, Dynamic language support

• Chapter 25, Annotations and Source Level Metadata Support




                                         Spring Framework (2.5.6)                                   418
Chapter 17. Remoting and web services using
Spring

17.1. Introduction
Spring features integration classes for remoting support using various technologies. The remoting support eases
the development of remote-enabled services, implemented by your usual (Spring) POJOs. Currently, Spring
supports four remoting technologies:


• Remote Method Invocation (RMI). Through the use of the RmiProxyFactoryBean and the
  RmiServiceExporter Spring supports both traditional RMI (with java.rmi.Remote interfaces and
  java.rmi.RemoteException) and transparent remoting via RMI invokers (with any Java interface).

• Spring's HTTP invoker. Spring provides a special remoting strategy which allows for Java serialization via
  HTTP, supporting any Java interface (just like the RMI invoker). The corresponding support classes are
  HttpInvokerProxyFactoryBean and HttpInvokerServiceExporter.

• Hessian. By using Spring's HessianProxyFactoryBean and the HessianServiceExporter you can
  transparently expose your services using the lightweight binary HTTP-based protocol provided by Caucho.

• Burlap. Burlap is Caucho's XML-based alternative to Hessian. Spring provides support classes such as
  BurlapProxyFactoryBean and BurlapServiceExporter.

• JAX-RPC. Spring provides remoting support for web services via JAX-RPC (J2EE 1.4's web service API).

• JAX-WS. Spring provides remoting support for web services via JAX-WS (the successor of JAX-RPC, as
  introduced in Java EE 5 and Java 6).

• JMS. Remoting using JMS as the underlying protocol is supported via the JmsInvokerServiceExporter and
  JmsInvokerProxyFactoryBean classes.

While discussing the remoting capabilities of Spring, we'll use the following domain model and corresponding
services:

 public class Account implements Serializable{

      private String name;

      public String getName();

      public void setName(String name) {
        this.name = name;
      }
 }



 public interface AccountService {

      public void insertAccount(Account account);

      public List getAccounts(String name);
 }



 public interface RemoteAccountService extends Remote {

      public void insertAccount(Account account) throws RemoteException;



                                          Spring Framework (2.5.6)                                         419
Remoting and web services using Spring


      public List getAccounts(String name) throws RemoteException;
 }



 // the implementation doing nothing at the moment
 public class AccountServiceImpl implements AccountService {

      public void insertAccount(Account acc) {
          // do something...
      }

      public List getAccounts(String name) {
          // do something...
      }
 }



We will start exposing the service to a remote client by using RMI and talk a bit about the drawbacks of using
RMI. We'll then continue to show an example using Hessian as the protocol.


17.2. Exposing services using RMI
Using Spring's support for RMI, you can transparently expose your services through the RMI infrastructure.
After having this set up, you basically have a configuration similar to remote EJBs, except for the fact that there
is no standard support for security context propagation or remote transaction propagation. Spring does provide
hooks for such additional invocation context when using the RMI invoker, so you can for example plug in
security frameworks or custom security credentials here.


17.2.1. Exporting the service using the RmiServiceExporter

Using the RmiServiceExporter, we can expose the interface of our AccountService object as RMI object. The
interface can be accessed by using RmiProxyFactoryBean, or via plain RMI in case of a traditional RMI
service. The RmiServiceExporter explicitly supports the exposing of any non-RMI services via RMI invokers.

Of course, we first have to set up our service in the Spring container:

 <bean id="accountService" class="example.AccountServiceImpl">
     <!-- any additional properties, maybe a DAO? -->
 </bean>



Next we'll have to expose our service using the RmiServiceExporter:

 <bean class="org.springframework.remoting.rmi.RmiServiceExporter">
     <!-- does not necessarily have to be the same name as the bean to be exported -->
     <property name="serviceName" value="AccountService"/>
     <property name="service" ref="accountService"/>
     <property name="serviceInterface" value="example.AccountService"/>
     <!-- defaults to 1099 -->
     <property name="registryPort" value="1199"/>
 </bean>



As you can see, we're overriding the port for the RMI registry. Often, your application server also maintains an
RMI registry and it is wise to not interfere with that one. Furthermore, the service name is used to bind the
service under. So right now, the service will be bound at 'rmi://HOST:1199/AccountService'. We'll use the
URL later on to link in the service at the client side.

            Note


                                            Spring Framework (2.5.6)                                           420
Remoting and web services using Spring



            The servicePort property has been omitted (it defaults to 0). This means that an anonymous port
            will be used to communicate with the service.



17.2.2. Linking in the service at the client

Our client is a simple object using the AccountService to manage accounts:

 public class SimpleObject {

      private AccountService accountService;

      public void setAccountService(AccountService accountService) {
          this.accountService = accountService;
      }
 }



To link in the service on the client, we'll create a separate Spring container, containing the simple object and the
service linking configuration bits:

 <bean class="example.SimpleObject">
     <property name="accountService" ref="accountService"/>
 </bean>

 <bean id="accountService" class="org.springframework.remoting.rmi.RmiProxyFactoryBean">
     <property name="serviceUrl" value="rmi://HOST:1199/AccountService"/>
     <property name="serviceInterface" value="example.AccountService"/>
 </bean>



That's all we need to do to support the remote account service on the client. Spring will transparently create an
invoker and remotely enable the account service through the RmiServiceExporter. At the client we're linking it
in using the RmiProxyFactoryBean.


17.3. Using Hessian or Burlap to remotely call services via
HTTP
Hessian offers a binary HTTP-based remoting protocol. It is developed by Caucho and more information about
Hessian itself can be found at http://www.caucho.com.


17.3.1. Wiring up the DispatcherServlet for Hessian and co.

Hessian communicates via HTTP and does so using a custom servlet. Using Spring's DispatcherServlet
principles, as known from Spring Web MVC usage, you can easily wire up such a servlet exposing your
services. First we'll have to create a new servlet in your application (this an excerpt from 'web.xml'):

 <servlet>
     <servlet-name>remoting</servlet-name>
     <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
     <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
     <servlet-name>remoting</servlet-name>
     <url-pattern>/remoting/*</url-pattern>
 </servlet-mapping>




                                            Spring Framework (2.5.6)                                            421
Remoting and web services using Spring


You're probably familiar with Spring's DispatcherServlet principles and if so, you know that now you'll have
to create a Spring container configuration resource named 'remoting-servlet.xml' (after the name of your
servlet) in the 'WEB-INF' directory. The application context will be used in the next section.

Alternatively, consider the use of Spring's simpler HttpRequestHandlerServlet. This allows you to embed the
remote     exporter      definitions    in     your    root    application     context  (by   default    in
'WEB-INF/applicationContext.xml'), with individual servlet definitions pointing to specific exporter beans.
Each servlet name needs to match the bean name of its target exporter in this case.


17.3.2. Exposing your beans by using the HessianServiceExporter

In   the   newly     created application context        called    remoting-servlet.xml,       we'll    create     a
HessianServiceExporter     exporting your services:

 <bean id="accountService" class="example.AccountServiceImpl">
     <!-- any additional properties, maybe a DAO? -->
 </bean>

 <bean name="/AccountService" class="org.springframework.remoting.caucho.HessianServiceExporter">
     <property name="service" ref="accountService"/>
     <property name="serviceInterface" value="example.AccountService"/>
 </bean>



Now we're ready to link in the service at the client. No explicit handler mapping is specified, mapping request
URLs onto services, so BeanNameUrlHandlerMapping will be used: Hence, the service will be exported at the
URL indicated through its bean name within the containing DispatcherServlet's mapping (as defined above):
'http://HOST:8080/remoting/AccountService'.

Alternatively,   create   a   HessianServiceExporter       in    your   root   application   context    (e.g.    in
'WEB-INF/applicationContext.xml'):

 <bean name="accountExporter" class="org.springframework.remoting.caucho.HessianServiceExporter">
     <property name="service" ref="accountService"/>
     <property name="serviceInterface" value="example.AccountService"/>
 </bean>



In the latter case, define a corresponding servlet for this exporter in 'web.xml', with the same end result: The
exporter getting mapped to the request path /remoting/AccountService. Note that the servlet name needs to
match the bean name of the target exporter.

 <servlet>
     <servlet-name>accountExporter</servlet-name>
     <servlet-class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class>
 </servlet>

 <servlet-mapping>
     <servlet-name>accountExporter</servlet-name>
     <url-pattern>/remoting/AccountService</url-pattern>
 </servlet-mapping>




17.3.3. Linking in the service on the client

Using the we can link in the service at the client. The same principles apply as with the RMI example. We'll
create a separate bean factory or application context and mention the following beans where the SimpleObject
is using the AccountService to manage accounts:

 <bean class="example.SimpleObject">
     <property name="accountService" ref="accountService"/>


                                          Spring Framework (2.5.6)                                              422
Remoting and web services using Spring


 </bean>

 <bean id="accountService" class="org.springframework.remoting.caucho.HessianProxyFactoryBean">
     <property name="serviceUrl" value="http://remotehost:8080/remoting/AccountService"/>
     <property name="serviceInterface" value="example.AccountService"/>
 </bean>




17.3.4. Using Burlap

We won't discuss Burlap, the XML-based equivalent of Hessian, in detail here, since it is configured and set up
in exactly the same way as the Hessian variant explained above. Just replace the word Hessian with Burlap and
you're all set to go.


17.3.5. Applying HTTP basic authentication to a service exposed through
Hessian or Burlap

One of the advantages of Hessian and Burlap is that we can easily apply HTTP basic authentication, because
both protocols are HTTP-based. Your normal HTTP server security mechanism can easily be applied through
using the web.xml security features, for example. Usually, you don't use per-user security credentials here, but
rather shared credentials defined at the Hessian/BurlapProxyFactoryBean level (similar to a JDBC
DataSource).

 <bean class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping">
     <property name="interceptors" ref="authorizationInterceptor"/>
 </bean>

 <bean id="authorizationInterceptor"
       class="org.springframework.web.servlet.handler.UserRoleAuthorizationInterceptor">
     <property name="authorizedRoles" value="administrator,operator"/>
 </bean>



This an example where we explicitly mention the BeanNameUrlHandlerMapping and set an interceptor allowing
only administrators and operators to call the beans mentioned in this application context.

            Note
            Of course, this example doesn't show a flexible kind of security infrastructure. For more options as
            far as security is concerned, have a look at the Acegi Security System for Spring, to be found at
            http://acegisecurity.sourceforge.net.



17.4. Exposing services using HTTP invokers
As opposed to Burlap and Hessian, which are both lightweight protocols using their own slim serialization
mechanisms, Spring Http invokers use the standard Java serialization mechanism to expose services through
HTTP. This has a huge advantage if your arguments and return types are complex types that cannot be
serialized using the serialization mechanisms Hessian and Burlap use (refer to the next section for more
considerations when choosing a remoting technology).

Under the hood, Spring uses either the standard facilities provided by J2SE to perform HTTP calls or Commons
HttpClient. Use the latter if you need more advanced and easy-to-use functionality. Refer to
jakarta.apache.org/commons/httpclient for more info.



                                          Spring Framework (2.5.6)                                          423
Remoting and web services using Spring


17.4.1. Exposing the service object

Setting up the HTTP invoker infrastructure for a service objects much resembles the way you would do using
Hessian or Burlap. Just as Hessian support provides the HessianServiceExporter, Spring's HttpInvoker
support provides the org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter.

To expose the AccountService (mentioned above) within a Spring Web MVC DispatcherServlet, the
following configuration needs to be in place in the dispatcher's application context:

 <bean name="/AccountService" class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter">
     <property name="service" ref="accountService"/>
     <property name="serviceInterface" value="example.AccountService"/>
 </bean>



Such an exporter definition will be exposed through the DispatcherServlet's standard mapping facilities, as
explained in the section on Hessian.

Alternatively, create an HttpInvokerServiceExporter in your root application context (e.g. in
'WEB-INF/applicationContext.xml'):

 <bean name="accountExporter" class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter">
     <property name="service" ref="accountService"/>
     <property name="serviceInterface" value="example.AccountService"/>
 </bean>



In addition, define a corresponding servlet for this exporter in 'web.xml', with the servlet name matching the
bean name of the target exporter:

 <servlet>
     <servlet-name>accountExporter</servlet-name>
     <servlet-class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class>
 </servlet>

 <servlet-mapping>
     <servlet-name>accountExporter</servlet-name>
     <url-pattern>/remoting/AccountService</url-pattern>
 </servlet-mapping>




17.4.2. Linking in the service at the client

Again, linking in the service from the client much resembles the way you would do it when using Hessian or
Burlap. Using a proxy, Spring will be able to translate your calls to HTTP POST requests to the URL pointing
to the exported service.

 <bean id="httpInvokerProxy" class="org.springframework.remoting.httpinvoker.HttpInvokerProxyFactoryBean">
     <property name="serviceUrl" value="http://remotehost:8080/remoting/AccountService"/>
     <property name="serviceInterface" value="example.AccountService"/>
 </bean>



As mentioned before, you can choose what HTTP client you want to use. By default, the HttpInvokerProxy
uses the J2SE HTTP functionality, but you can also use the Commons HttpClient by setting the
httpInvokerRequestExecutor property:

 <property name="httpInvokerRequestExecutor">
     <bean class="org.springframework.remoting.httpinvoker.CommonsHttpInvokerRequestExecutor"/>
 </property>




                                          Spring Framework (2.5.6)                                        424
Remoting and web services using Spring



17.5. Web services
Spring provides full support for standard Java web services APIs:


• Exposing web services using JAX-RPC

• Accessing web services using JAX-RPC

• Exposing web services using JAX-WS

• Accessing web services using JAX-WS

            Note
            Why two standard Java web services APIs?

            JAX-RPC 1.1 is the standard web service API in J2EE 1.4. As its name indicates, it focuses on on
            RPC bindings, which became less and less popular in the past couple of years. As a consequence, it
            has been superseded by JAX-WS 2.0 in Java EE 5, being more flexible in terms of bindings but
            also being heavily annotation-based. JAX-WS 2.1 is also included in Java 6 (or more specifically,
            in Sun's JDK 1.6.0_04 and above; previous Sun JDK 1.6.0 releases included JAX-WS 2.0),
            integrated with the JDK's built-in HTTP server.

            Spring can work with both standard Java web services APIs. The choice is effectively dependent
            on the runtime platform: On JDK 1.4 / J2EE 1.4, the only option is JAX-RPC. On Java EE 5 / Java
            6, the obvious choice is JAX-WS. On J2EE 1.4 environments that run on Java 5, you might have
            the option to plug in a JAX-WS provider; check your J2EE server's documentation.


In addition to stock support for JAX-RPC and JAX-WS in Spring Core, the Spring portfolio also features
Spring Web Services, a solution for contract-first, document-driven web services - highly recommended for
building modern, future-proof web services. Last but not least, XFire also allows you to export Spring-managed
beans as a web service, through built-in Spring support.


17.5.1. Exposing servlet-based web services using JAX-RPC

Spring   provides   a convenience base class for JAX-RPC servlet endpoint implementations -
ServletEndpointSupport.   To expose our AccountService we extend Spring's ServletEndpointSupport class
and implement our business logic here, usually delegating the call to the business layer.

 /**
  * JAX-RPC compliant RemoteAccountService implementation that simply delegates
  * to the AccountService implementation in the root web application context.
  *
  * This wrapper class is necessary because JAX-RPC requires working with dedicated
  * endpoint classes. If an existing service needs to be exported, a wrapper that
  * extends ServletEndpointSupport for simple application context access is
  * the simplest JAX-RPC compliant way.
  *
  * This is the class registered with the server-side JAX-RPC implementation.
  * In the case of Axis, this happens in "server-config.wsdd" respectively via
  * deployment calls. The web service engine manages the lifecycle of instances
  * of this class: A Spring application context can just be accessed here.
  */import org.springframework.remoting.jaxrpc.ServletEndpointSupport;

 public class AccountServiceEndpoint extends ServletEndpointSupport implements RemoteAccountService {

      private AccountService biz;



                                          Spring Framework (2.5.6)                                        425
Remoting and web services using Spring

      protected void onInit() {
          this.biz = (AccountService) getWebApplicationContext().getBean("accountService");
      }

      public void insertAccount(Account acc) throws RemoteException {
          biz.insertAccount(acc);
      }

      public Account[] getAccounts(String name) throws RemoteException {
          return biz.getAccounts(name);
      }
 }



Our AccountServletEndpoint needs to run in the same web application as the Spring context to allow for
access to Spring's facilities. In case of Axis, copy the AxisServlet definition into your 'web.xml', and set up
the endpoint in 'server-config.wsdd' (or use the deploy tool). See the sample application JPetStore where the
OrderService is exposed as a web service using Axis.



17.5.2. Accessing web services using JAX-RPC

Spring   provides    two       factory beans to create JAX-RPC web service proxies, namely
LocalJaxRpcServiceFactoryBean         and JaxRpcPortProxyFactoryBean. The former can only return a JAX-RPC
service class for us to work with. The latter is the full-fledged version that can return a proxy that implements
our business service interface. In this example we use the latter to create a proxy for the AccountService
endpoint we exposed in the previous section. You will see that Spring has great support for web services
requiring little coding efforts - most of the setup is done in the Spring configuration file as usual:

 <bean id="accountWebService" class="org.springframework.remoting.jaxrpc.JaxRpcPortProxyFactoryBean">
     <property name="serviceInterface" value="example.RemoteAccountService"/>
     <property name="wsdlDocumentUrl" value="http://localhost:8080/account/services/accountService?WSDL"/>
     <property name="namespaceUri" value="http://localhost:8080/account/services/accountService"/>
     <property name="serviceName" value="AccountService"/>
     <property name="portName" value="AccountPort"/>
 </bean>



Where serviceInterface is our remote business interface the clients will use. wsdlDocumentUrl is the URL
for the WSDL file. Spring needs this a startup time to create the JAX-RPC Service. namespaceUri corresponds
to the targetNamespace in the .wsdl file. serviceName corresponds to the service name in the .wsdl file.
portName corresponds to the port name in the .wsdl file.

Accessing the web service is now very easy as we have a bean factory for it that will expose it as
RemoteAccountService interface. We can wire this up in Spring:

 <bean id="client" class="example.AccountClientImpl">
     ...
     <property name="service" ref="accountWebService"/>
 </bean>



From the client code we can access the web service just as if it was a normal class, except that it throws
RemoteException.

 public class AccountClientImpl {

      private RemoteAccountService service;

      public void setService(RemoteAccountService service) {
          this.service = service;
      }

      public void foo() {
          try {
              service.insertAccount(...);



                                           Spring Framework (2.5.6)                                          426
Remoting and web services using Spring


          }
          catch (RemoteException ex) {
              // ouch
          }
      }
 }



We can get rid of the checked RemoteException since Spring supports automatic conversion to its
corresponding unchecked RemoteException. This requires that we provide a non-RMI interface also. Our
configuration is now:

 <bean id="accountWebService" class="org.springframework.remoting.jaxrpc.JaxRpcPortProxyFactoryBean">
     <property name="serviceInterface" value="example.AccountService"/>
     <property name="portInterface" value="example.RemoteAccountService"/>
 </bean>



Where serviceInterface is changed to our non RMI interface. Our RMI interface is now defined using the
property portInterface. Our client code can now avoid handling java.rmi.RemoteException:

 public class AccountClientImpl {

      private AccountService service;

      public void setService(AccountService service) {
          this.service = service;
      }

      public void foo() {
          service.insertAccount(...);
      }
 }



Note that you can also drop the "portInterface" part and specify a plain business interface as "serviceInterface".
In this case, JaxRpcPortProxyFactoryBean will automatically switch to the JAX-RPC "Dynamic Invocation
Interface", performing dynamic invocations without a fixed port stub. The advantage is that you don't even
need to have an RMI-compliant Java port interface around (e.g. in case of a non-Java target web service); all
you need is a matching business interface. Check out JaxRpcPortProxyFactoryBean's javadoc for details on
the runtime implications.


17.5.3. Registering JAX-RPC Bean Mappings

To transfer complex objects over the wire such as Account we must register bean mappings on the client side.

            Note
            On the server side using Axis registering bean mappings is usually done in the
            'server-config.wsdd' file.



We will use Axis to register bean mappings on the client side. To do this we need to register the bean mappings
programmatically:

 public class AxisPortProxyFactoryBean extends JaxRpcPortProxyFactoryBean {

      protected void postProcessJaxRpcService(Service service) {
          TypeMappingRegistry registry = service.getTypeMappingRegistry();
          TypeMapping mapping = registry.createTypeMapping();
          registerBeanMapping(mapping, Account.class, "Account");
          registry.register("http://schemas.xmlsoap.org/soap/encoding/", mapping);
      }




                                           Spring Framework (2.5.6)                                           427
Remoting and web services using Spring


      protected void registerBeanMapping(TypeMapping mapping, Class type, String name) {
          QName qName = new QName("http://localhost:8080/account/services/accountService", name);
          mapping.register(type, qName,
                  new BeanSerializerFactory(type, qName),
                  new BeanDeserializerFactory(type, qName));
      }
 }




17.5.4. Registering your own JAX-RPC Handler

In this section we will register our own javax.rpc.xml.handler.Handler to the web service proxy where we
can do custom code before the SOAP message is sent over the wire. The Handler is a callback interface. There
is a convenience base class provided in jaxrpc.jar, namely javax.rpc.xml.handler.GenericHandler that
we will extend:

 public class AccountHandler extends GenericHandler {

      public QName[] getHeaders() {
          return null;
      }

      public boolean handleRequest(MessageContext context) {
          SOAPMessageContext smc = (SOAPMessageContext) context;
          SOAPMessage msg = smc.getMessage();
          try {
              SOAPEnvelope envelope = msg.getSOAPPart().getEnvelope();
              SOAPHeader header = envelope.getHeader();
              ...
          }
          catch (SOAPException ex) {
              throw new JAXRPCException(ex);
          }
          return true;
      }
 }



What we need to do now is to register our AccountHandler to JAX-RPC Service so it would invoke
handleRequest(..) before the message is sent over the wire. Spring has at this time of writing no declarative
support for registering handlers, so we must use the programmatic approach. However Spring has made it very
easy for us to do this as we can override the postProcessJaxRpcService(..) method that is designed for this:

 public class AccountHandlerJaxRpcPortProxyFactoryBean extends JaxRpcPortProxyFactoryBean {

      protected void postProcessJaxRpcService(Service service) {
          QName port = new QName(this.getNamespaceUri(), this.getPortName());
          List list = service.getHandlerRegistry().getHandlerChain(port);
          list.add(new HandlerInfo(AccountHandler.class, null, null));
          logger.info("Registered JAX-RPC AccountHandler on port " + port);
      }
 }



The last thing we must remember to do is to change the Spring configuration to use our factory bean:

 <bean id="accountWebService" class="example.AccountHandlerJaxRpcPortProxyFactoryBean">
     ...
 </bean>




17.5.5. Exposing servlet-based web services using JAX-WS

Spring   provides   a   convenient    base class for JAX-WS servlet endpoint              implementations -
SpringBeanAutowiringSupport.         To    expose   our  AccountService we                 extend    Spring's


                                          Spring Framework (2.5.6)                                       428
Remoting and web services using Spring

SpringBeanAutowiringSupport    class and implement our business logic here, usually delegating the call to the
business layer. We'll simply use Spring 2.5's @Autowired annotation for expressing such dependencies on
Spring-managed beans.

 /**
  * JAX-WS compliant AccountService implementation that simply delegates
  * to the AccountService implementation in the root web application context.
  *
  * This wrapper class is necessary because JAX-WS requires working with dedicated
  * endpoint classes. If an existing service needs to be exported, a wrapper that
  * extends SpringBeanAutowiringSupport for simple Spring bean autowiring (through
  * the @Autowired annotation) is the simplest JAX-WS compliant way.
  *
  * This is the class registered with the server-side JAX-WS implementation.
  * In the case of a Java EE 5 server, this would simply be defined as a servlet
  * in web.xml, with the server detecting that this is a JAX-WS endpoint and reacting
  * accordingly. The servlet name usually needs to match the specified WS service name.
  *
  * The web service engine manages the lifecycle of instances of this class.
  * Spring bean references will just be wired in here.
  */import org.springframework.web.context.support.SpringBeanAutowiringSupport;

 @WebService(serviceName="AccountService")
 public class AccountServiceEndpoint extends SpringBeanAutowiringSupport {

       @Autowired
       private AccountService biz;

       @WebMethod
       public void insertAccount(Account acc) {
          biz.insertAccount(acc);
       }

       @WebMethod
       public Account[] getAccounts(String name) {
          return biz.getAccounts(name);
       }
 }



Our AccountServletEndpoint needs to run in the same web application as the Spring context to allow for
access to Spring's facilities. This is the case by default in Java EE 5 environments, using the standard contract
for JAX-WS servlet endpoint deployment. See Java EE 5 web service tutorials for details.


17.5.6. Exporting standalone web services using JAX-WS

The built-in JAX-WS provider that comes with Sun's JDK 1.6 supports exposure of web services using the
built-in HTTP server that's included in JDK 1.6 as well. Spring's SimpleJaxWsServiceExporter detects all
@WebService annotated beans in the Spring application context, exporting them through the default JAX-WS
server (the JDK 1.6 HTTP server).

In this scenario, the endpoint instances are defined and managed as Spring beans themselves; they will be
registered with the JAX-WS engine but their lifecycle will be up to the Spring application context. This means
that Spring functionality like explicit dependency injection may be applied to the endpoint instances. Of course,
annotation-driven injection through @Autowired will work as well.

 <bean class="org.springframework.remoting.jaxws.SimpleJaxWsServiceExporter">
     <property name="baseAddress" value="http://localhost:9999/"/>
 </bean>

 <bean id="accountServiceEndpoint" class="example.AccountServiceEndpoint">
     ...
 </bean>

 ...



The AccountServiceEndpoint may derive from Spring's SpringBeanAutowiringSupport but doesn't have to

                                           Spring Framework (2.5.6)                                          429
Remoting and web services using Spring

since the endpoint is a fully Spring-managed bean here. This means that the endpoint implementation may look
like as follows, without any superclass declared - and Spring's @Autowired configuration annotation still being
honored:

 @WebService(serviceName="AccountService")
 public class AccountServiceEndpoint {

      @Autowired
      private AccountService biz;

      @WebMethod
      public void insertAccount(Account acc) {
         biz.insertAccount(acc);
      }

      @WebMethod
      public Account[] getAccounts(String name) {
         return biz.getAccounts(name);
      }
 }




17.5.7. Exporting web services using the JAX-WS RI's Spring support

Sun's JAX-WS RI, developed as part of the GlassFish project, ships Spring support as part of its JAX-WS
Commons project. This allows for defining JAX-WS endpoints as Spring-managed beans, similar to the
standalone mode discussed in the previous section - but this time in a Servlet environment. Note that this is not
portable in a Java EE 5 environment; it is mainly intended for non-EE environments such as Tomcat,
embedding the JAX-WS RI as part of the web application.

The difference to the standard style of exporting servlet-based endpoints is that the lifecycle of the endpoint
instances themselves will be managed by Spring here, and that there will be only one JAX-WS servlet defined
in web.xml. With the standard Java EE 5 style (as illustrated above), you'll have one servlet definition per
service endpoint, with each endpoint typically delegating to Spring beans (through the use of @Autowired, as
shown above).

Check out https://jax-ws-commons.dev.java.net/spring/ for the details on setup and usage style.


17.5.8. Accessing web services using JAX-WS

Analogous to the JAX-RPC support, Spring provides two factory beans to create JAX-WS web service proxies,
namely LocalJaxWsServiceFactoryBean and JaxWsPortProxyFactoryBean. The former can only return a
JAX-WS service class for us to work with. The latter is the full-fledged version that can return a proxy that
implements our business service interface. In this example we use the latter to create a proxy for the
AccountService endpoint (again):

 <bean id="accountWebService" class="org.springframework.remoting.jaxws.JaxWsPortProxyFactoryBean">
     <property name="serviceInterface" value="example.AccountService"/>
     <property name="wsdlDocumentUrl" value="http://localhost:8080/account/services/accountService?WSDL"/>
     <property name="namespaceUri" value="http://localhost:8080/account/services/accountService"/>
     <property name="serviceName" value="AccountService"/>
     <property name="portName" value="AccountPort"/>
 </bean>



Where serviceInterface is our business interface the clients will use. wsdlDocumentUrl is the URL for the
WSDL file. Spring needs this a startup time to create the JAX-WS Service. namespaceUri corresponds to the
targetNamespace in the .wsdl file. serviceName corresponds to the service name in the .wsdl file. portName
corresponds to the port name in the .wsdl file.

Accessing the web service is now very easy as we have a bean factory for it that will expose it as

                                           Spring Framework (2.5.6)                                          430
Remoting and web services using Spring

AccountService   interface. We can wire this up in Spring:

 <bean id="client" class="example.AccountClientImpl">
     ...
     <property name="service" ref="accountWebService"/>
 </bean>



From the client code we can access the web service just as if it was a normal class:

 public class AccountClientImpl {

      private AccountService service;

      public void setService(AccountService service) {
          this.service = service;
      }

      public void foo() {
          service.insertAccount(...);
      }
 }



NOTE: The above is slightly simplified in that JAX-WS requires endpoint interfaces and implementation
classes to be annotated with @WebService, @SOAPBinding etc annotations. This means that you cannot (easily)
use plain Java interfaces and implementation classes as JAX-WS endpoint artifacts; you need to annotate them
accordingly first. Check the JAX-WS documentation for details on those requirements.


17.5.9. Exposing web services using XFire

XFire is a lightweight SOAP library, hosted by Codehaus. Exposing XFire is done using a XFire context that
shipping with XFire itself in combination with a RemoteExporter-style bean you have to add to your
WebApplicationContext. As with all methods that allow you to expose service, you have to create a
DispatcherServlet with a corresponding WebApplicationContext containing the services you will be
exposing:

 <servlet>
     <servlet-name>xfire</servlet-name>
     <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 </servlet>



You also have to link in the XFire configuration. This is done by adding a context file to the
contextConfigLocations     context parameter picked up by the ContextLoaderListener (or
ContextLoaderServlet for that matter).

 <context-param>
     <param-name>contextConfigLocation</param-name>
     <param-value>classpath:org/codehaus/xfire/spring/xfire.xml</param-value>
 </context-param>

 <listener>
     <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
 </listener>



After you added a servlet mapping (mapping /* to the XFire servlet declared above) you only have to add one
extra bean to expose the service using XFire. Add for example the following configuration in your
'xfire-servlet.xml' file:

 <beans>

      <bean name="/Echo" class="org.codehaus.xfire.spring.remoting.XFireExporter">
          <property name="serviceInterface" value="org.codehaus.xfire.spring.Echo"/>
          <property name="serviceBean">


                                           Spring Framework (2.5.6)                                     431
Remoting and web services using Spring


                      <bean class="org.codehaus.xfire.spring.EchoImpl"/>
           </property>
           <!-- the XFire bean is defined in the xfire.xml file -->
           <property name="xfire" ref="xfire"/>
     </bean>

 </beans>



XFire handles the rest. It introspects your service interface and generates a WSDL from it. Parts of this
documentation have been taken from the XFire site; for more detailed information on XFire Spring integration,
navigate to http://docs.codehaus.org/display/XFIRE/Spring.


17.6. JMS
It is also possible to expose services transparently using JMS as the underlying communication protocol. The
JMS remoting support in the Spring Framework is pretty basic - it sends and receives on the same thread and
in the same non-transactional Session, and as such throughput will be very implementation dependent.

The following interface is used on both the server and the client side.

 package com.foo;

 public interface CheckingAccountService {

      public void cancelAccount(Long accountId);
 }



The following simple implementation of the above interface is used on the server-side.

 package com.foo;

 public class SimpleCheckingAccountService implements CheckingAccountService {

      public void cancelAccount(Long accountId) {
          System.out.println("Cancelling account [" + accountId + "]");
      }
 }



This configuration file contains the JMS-infrastructure beans that are shared on both the client and server.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
         http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

      <bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
          <property name="brokerURL" value="tcp://ep-t43:61616"/>
      </bean>

      <bean id="queue" class="org.apache.activemq.command.ActiveMQQueue">
          <constructor-arg value="mmm"/>
      </bean>

 </beans>




17.6.1. Server-side configuration

On the server, you just need to expose the service object using the JmsInvokerServiceExporter.

 <?xml version="1.0" encoding="UTF-8"?>


                                            Spring Framework (2.5.6)                                           432
Remoting and web services using Spring


 <beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
          http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

      <bean id="checkingAccountService"
             class="org.springframework.jms.remoting.JmsInvokerServiceExporter">
          <property name="serviceInterface" value="com.foo.CheckingAccountService"/>
          <property name="service">
               <bean class="com.foo.SimpleCheckingAccountService"/>
          </property>
     </bean>

     <bean class="org.springframework.jms.listener.SimpleMessageListenerContainer">
         <property name="connectionFactory" ref="connectionFactory"/>
         <property name="destination" ref="queue"/>
         <property name="concurrentConsumers" value="3"/>
         <property name="messageListener" ref="checkingAccountService"/>
     </bean>

 </beans>



 package com.foo;

 import org.springframework.context.support.ClassPathXmlApplicationContext;

 public class Server {

      public static void main(String[] args) throws Exception {
          new ClassPathXmlApplicationContext(new String[]{"com/foo/server.xml", "com/foo/jms.xml"});
      }
 }




17.6.2. Client-side configuration

The client merely needs to create a client-side proxy that will implement the agreed upon interface
(CheckingAccountService). The resulting object created off the back of the following bean definition can be
injected into other client side objects, and the proxy will take care of forwarding the call to the server-side
object via JMS.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
         http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

      <bean id="checkingAccountService"
            class="org.springframework.jms.remoting.JmsInvokerProxyFactoryBean">
          <property name="serviceInterface" value="com.foo.CheckingAccountService"/>
          <property name="connectionFactory" ref="connectionFactory"/>
          <property name="queue" ref="queue"/>
      </bean>

 </beans>



 package com.foo;

 import org.springframework.context.ApplicationContext;
 import org.springframework.context.support.ClassPathXmlApplicationContext;

 public class Client {

      public static void main(String[] args) throws Exception {
          ApplicationContext ctx = new ClassPathXmlApplicationContext(
                  new String[] {"com/foo/client.xml", "com/foo/jms.xml"});
          CheckingAccountService service = (CheckingAccountService) ctx.getBean("checkingAccountService");
          service.cancelAccount(new Long(10));
      }
 }



                                          Spring Framework (2.5.6)                                         433
Remoting and web services using Spring


You may also wish to investigate the support provided by the Lingo project, which (to quote the homepage
blurb) “... is a lightweight POJO based remoting and messaging library based on the Spring Framework's
remoting libraries which extends it to support JMS.”


17.7. Auto-detection is not implemented for remote interfaces
The main reason why auto-detection of implemented interfaces does not occur for remote interfaces is to avoid
opening too many doors to remote callers. The target object might implement internal callback interfaces like
InitializingBean or DisposableBean which one would not want to expose to callers.

Offering a proxy with all interfaces implemented by the target usually does not matter in the local case. But
when exporting a remote service, you should expose a specific service interface, with specific operations
intended for remote usage. Besides internal callback interfaces, the target might implement multiple business
interfaces, with just one of them intended for remote exposure. For these reasons, we require such a service
interface to be specified.

This is a trade-off between configuration convenience and the risk of accidental exposure of internal methods.
Always specifying a service interface is not too much effort, and puts you on the safe side regarding controlled
exposure of specific methods.


17.8. Considerations when choosing a technology
Each and every technology presented here has its drawbacks. You should carefully consider you needs, the
services your exposing and the objects you'll be sending over the wire when choosing a technology.

When using RMI, it's not possible to access the objects through the HTTP protocol, unless you're tunneling the
RMI traffic. RMI is a fairly heavy-weight protocol in that it support full-object serialization which is important
when using a complex data model that needs serialization over the wire. However, RMI-JRMP is tied to Java
clients: It is a Java-to-Java remoting solution.

Spring's HTTP invoker is a good choice if you need HTTP-based remoting but also rely on Java serialization. It
shares the basic infrastructure with RMI invokers, just using HTTP as transport. Note that HTTP invokers are
not only limited to Java-to-Java remoting but also to Spring on both the client and server side. (The latter also
applies to Spring's RMI invoker for non-RMI interfaces.)

Hessian and/or Burlap might provide significant value when operating in a heterogeneous environment,
because they explicitly allow for non-Java clients. However, non-Java support is still limited. Known issues
include the serialization of Hibernate objects in combination with lazily-initialized collections. If you have such
a data model, consider using RMI or HTTP invokers instead of Hessian.

JMS can be useful for providing clusters of services and allowing the JMS broker to take care of load
balancing, discovery and auto-failover. By default: Java serialization is used when using JMS remoting but the
JMS provider could use a different mechanism for the wire formatting, such as XStream to allow servers to be
implemented in other technologies.

Last but not least, EJB has an advantage over RMI in that it supports standard role-based authentication and
authorization and remote transaction propagation. It is possible to get RMI invokers or HTTP invokers to
support security context propagation as well, although this is not provided by core Spring: There are just
appropriate hooks for plugging in third-party or custom solutions here.




                                            Spring Framework (2.5.6)                                           434
Chapter 18. Enterprise Java Beans (EJB) integration

18.1. Introduction
As a lightweight container, Spring is often considered an EJB replacement. We do believe that for many if not
most applications and use cases, Spring as a container, combined with its rich supporting functionality in the
area of transactions, ORM and JDBC access, is a better choice than implementing equivalent functionality via
an EJB container and EJBs.

However, it is important to note that using Spring does not prevent you from using EJBs. In fact, Spring makes
it much easier to access EJBs and implement EJBs and functionality within them. Additionally, using Spring to
access services provided by EJBs allows the implementation of those services to later transparently be switched
between local EJB, remote EJB, or POJO (plain old Java object) variants, without the client code having to be
changed.

In this chapter, we look at how Spring can help you access and implement EJBs. Spring provides particular
value when accessing stateless session beans (SLSBs), so we'll begin by discussing this.


18.2. Accessing EJBs

18.2.1. Concepts

To invoke a method on a local or remote stateless session bean, client code must normally perform a JNDI
lookup to obtain the (local or remote) EJB Home object, then use a 'create' method call on that object to obtain
the actual (local or remote) EJB object. One or more methods are then invoked on the EJB.

To avoid repeated low-level code, many EJB applications use the Service Locator and Business Delegate
patterns. These are better than spraying JNDI lookups throughout client code, but their usual implementations
have significant disadvantages. For example:


• Typically code using EJBs depends on Service Locator or Business Delegate singletons, making it hard to
  test.

• In the case of the Service Locator pattern used without a Business Delegate, application code still ends up
  having to invoke the create() method on an EJB home, and deal with the resulting exceptions. Thus it
  remains tied to the EJB API and the complexity of the EJB programming model.

• Implementing the Business Delegate pattern typically results in significant code duplication, where we have
  to write numerous methods that simply call the same method on the EJB.

The Spring approach is to allow the creation and use of proxy objects, normally configured inside a Spring
container, which act as codeless business delegates. You do not need to write another Service Locator, another
JNDI lookup, or duplicate methods in a hand-coded Business Delegate unless you are actually adding real
value in such code.


18.2.2. Accessing local SLSBs

Assume that we have a web controller that needs to use a local EJB. We’ll follow best practice and use the EJB


                                          Spring Framework (2.5.6)                                          435
Enterprise Java Beans (EJB) integration


Business Methods Interface pattern, so that the EJB’s local interface extends a non EJB-specific business
methods interface. Let’s call this business methods interface MyComponent.

 public interface MyComponent {
     ...
 }



One of the main reasons to use the Business Methods Interface pattern is to ensure that synchronization
between method signatures in local interface and bean implementation class is automatic. Another reason is that
it later makes it much easier for us to switch to a POJO (plain old Java object) implementation of the service if
it makes sense to do so. Of course we’ll also need to implement the local home interface and provide an
implementation class that implements SessionBean and the MyComponent business methods interface. Now the
only Java coding we’ll need to do to hook up our web tier controller to the EJB implementation is to expose a
setter method of type MyComponent on the controller. This will save the reference as an instance variable in the
controller:

 private MyComponent myComponent;

 public void setMyComponent(MyComponent myComponent) {
     this.myComponent = myComponent;
 }



We can subsequently use this instance variable in any business method in the controller. Now assuming we are
obtaining our controller object out of a Spring container, we can (in the same context) configure a
LocalStatelessSessionProxyFactoryBean instance, which will be the EJB proxy object. The configuration of
the proxy, and setting of the myComponent property of the controller is done with a configuration entry such as:

 <bean id="myComponent"
       class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">
   <property name="jndiName" value="ejb/myBean"/>
   <property name="businessInterface" value="com.mycom.MyComponent"/>
 </bean>

 <bean id="myController" class="com.mycom.myController">
   <property name="myComponent" ref="myComponent"/>
 </bean>



There’s a lot of work happening behind the scenes, courtesy of the Spring AOP framework, although you aren’t
forced to work with AOP concepts to enjoy the results. The myComponent bean definition creates a proxy for the
EJB, which implements the business method interface. The EJB local home is cached on startup, so there’s only
a single JNDI lookup. Each time the EJB is invoked, the proxy invokes the classname method on the local EJB
and invokes the corresponding business method on the EJB.

The myController bean definition sets the myComponent property of the controller class to the EJB proxy.

Alternatively (and preferably in case of many such proxy definitions), consider using the <jee:local-slsb>
configuration element in Spring's "jee" namespace:

 <jee:local-slsb id="myComponent" jndi-name="ejb/myBean"
       business-interface="com.mycom.MyComponent"/>

 <bean id="myController" class="com.mycom.myController">
   <property name="myComponent" ref="myComponent"/>
 </bean>



This EJB access mechanism delivers huge simplification of application code: the web tier code (or other EJB
client code) has no dependence on the use of EJB. If we want to replace this EJB reference with a POJO or a
mock object or other test stub, we could simply change the myComponent bean definition without changing a


                                           Spring Framework (2.5.6)                                          436
Enterprise Java Beans (EJB) integration

line of Java code. Additionally, we haven’t had to write a single line of JNDI lookup or other EJB plumbing
code as part of our application.

Benchmarks and experience in real applications indicate that the performance overhead of this approach (which
involves reflective invocation of the target EJB) is minimal, and is typically undetectable in typical use.
Remember that we don’t want to make fine-grained calls to EJBs anyway, as there’s a cost associated with the
EJB infrastructure in the application server.

There is one caveat with regards to the JNDI lookup. In a bean container, this class is normally best used as a
singleton (there simply is no reason to make it a prototype). However, if that bean container pre-instantiates
singletons (as do the various XML ApplicationContext variants) you may have a problem if the bean
container is loaded before the EJB container loads the target EJB. That is because the JNDI lookup will be
performed in the init() method of this class and then cached, but the EJB will not have been bound at the
target location yet. The solution is to not pre-instantiate this factory object, but allow it to be created on first
use. In the XML containers, this is controlled via the lazy-init attribute.

Although this will not be of interest to the majority of Spring users, those doing programmatic AOP work with
EJBs may want to look at LocalSlsbInvokerInterceptor.


18.2.3. Accessing remote SLSBs

Accessing    remote    EJBs    is   essentiallyidentical to accessing local EJBs, except that the
SimpleRemoteStatelessSessionProxyFactoryBean        or <jee:remote-slsb> configuration element is used. Of
course, with or without Spring, remote invocation semantics apply; a call to a method on an object in another
VM in another computer does sometimes have to be treated differently in terms of usage scenarios and failure
handling.

Spring's EJB client support adds one more advantage over the non-Spring approach. Normally it is problematic
for EJB client code to be easily switched back and forth between calling EJBs locally or remotely. This is
because the remote interface methods must declare that they throw RemoteException, and client code must deal
with this, while the local interface methods don't. Client code written for local EJBs which needs to be moved
to remote EJBs typically has to be modified to add handling for the remote exceptions, and client code written
for remote EJBs which needs to be moved to local EJBs, can either stay the same but do a lot of unnecessary
handling of remote exceptions, or needs to be modified to remove that code. With the Spring remote EJB
proxy, you can instead not declare any thrown RemoteException in your Business Method Interface and
implementing EJB code, have a remote interface which is identical except that it does throw RemoteException,
and rely on the proxy to dynamically treat the two interfaces as if they were the same. That is, client code does
not have to deal with the checked RemoteException class. Any actual RemoteException that is thrown during
the EJB invocation will be re-thrown as the non-checked RemoteAccessException class, which is a subclass of
RuntimeException. The target service can then be switched at will between a local EJB or remote EJB (or even
plain Java object) implementation, without the client code knowing or caring. Of course, this is optional; there
is nothing stopping you from declaring RemoteExceptions in your business interface.


18.2.4. Accessing EJB 2.x SLSBs versus EJB 3 SLSBs

Accessing EJB 2.x Session Beans and EJB 3 Session Beans via Spring is largely transparent. Spring's EJB
accessors, including the <jee:local-slsb> and <jee:remote-slsb> facilities, transparently adapt to the actual
component at runtime. They handle a home interface if found (EJB 2.x style), or perform straight component
invocations if no home interface is available (EJB 3 style).

Note: For EJB 3 Session Beans, you could effectively use a JndiObjectFactoryBean / <jee:jndi-lookup> as
well, since fully usable component references are exposed for plain JNDI lookups there. Defining explicit
<jee:local-slsb> / <jee:remote-slsb> lookups simply provides consistent and more explicit EJB access


                                            Spring Framework (2.5.6)                                            437
Enterprise Java Beans (EJB) integration

configuration.


18.3. Using Spring's EJB implementation support classes

18.3.1. EJB 2.x base classes

Spring provides convenience classes to help you implement EJBs. These are designed to encourage the good
practice of putting business logic behind EJBs in POJOs, leaving EJBs responsible for transaction demarcation
and (optionally) remoting.

To implement a Stateless or Stateful session bean, or a Message Driven bean, you need only derive your
implementation class from AbstractStatelessSessionBean, AbstractStatefulSessionBean, and
AbstractMessageDrivenBean/AbstractJmsMessageDrivenBean, respectively.

Consider an example Stateless Session bean which actually delegates the implementation to a plain java service
object. We have the business interface:

 public interface MyComponent {
     public void myMethod(...);
     ...
 }



We also have the plain Java implementation object:

 public class MyComponentImpl implements MyComponent {
     public String myMethod(...) {
         ...
     }
     ...
 }



And finally the Stateless Session Bean itself:

 public class MyFacadeEJB extends AbstractStatelessSessionBean
         implements MyFacadeLocal {

      private MyComponent myComp;

      /**
        * Obtain our POJO service object from the BeanFactory/ApplicationContext
        * @see org.springframework.ejb.support.AbstractStatelessSessionBean#onEjbCreate()
        */
      protected void onEjbCreate() throws CreateException {
           myComp = (MyComponent) getBeanFactory().getBean(
               ServicesConstants.CONTEXT_MYCOMP_ID);
      }

      // for business method, delegate to POJO service impl.
      public String myFacadeMethod(...) {
          return myComp.myMethod(...);
      }
      ...
 }



The Spring EJB support base classes will by default create and load a Spring IoC container as part of their
lifecycle, which is then available to the EJB (for example, as used in the code above to obtain the POJO service
object). The loading is done via a strategy object which is a subclass of BeanFactoryLocator. The actual
implementation of BeanFactoryLocator used by default is ContextJndiBeanFactoryLocator, which creates
the ApplicationContext from a resource locations specified as a JNDI environment variable (in the case of the
EJB classes, at java:comp/env/ejb/BeanFactoryPath). If there is a need to change the

                                            Spring Framework (2.5.6)                                        438
Enterprise Java Beans (EJB) integration

BeanFactory/ApplicationContext loading strategy, the default BeanFactoryLocator implementation used may
be overridden by calling the setBeanFactoryLocator() method, either in setSessionContext(), or in the
actual constructor of the EJB. Please see the Javadocs for more details.

As described in the Javadocs, Stateful Session beans expecting to be passivated and reactivated as part of their
lifecycle, and which use a non-serializable container instance (which is the normal case) will have to manually
call unloadBeanFactory() and loadBeanFactory from ejbPassivate and ejbActivate, respectively, to
unload and reload the BeanFactory on passivation and activation, since it can not be saved by the EJB
container.

The default behavior of the ContextJndiBeanFactoryLocator classes which is to load an ApplicationContext
for the use of the EJB is adequate for some situations. However, it is problematic when the
ApplicationContext is loading a number of beans, or the initialization of those beans is time consuming or
memory intensive (such as a Hibernate SessionFactory initialization, for example), since every EJB will have
their own copy. In this case, the user may want to override the default ContextJndiBeanFactoryLocator usage
and use another BeanFactoryLocator variant, such as the ContextSingletonBeanFactoryLocator which can
load and use a shared container to be used by multiple EJBs or other clients. Doing this is relatively simple, by
adding code similar to this to the EJB:

     /**
       * Override default BeanFactoryLocator implementation
       * @see javax.ejb.SessionBean#setSessionContext(javax.ejb.SessionContext)
       */
     public void setSessionContext(SessionContext sessionContext) {
          super.setSessionContext(sessionContext);
          setBeanFactoryLocator(ContextSingletonBeanFactoryLocator.getInstance());
          setBeanFactoryLocatorKey(ServicesConstants.PRIMARY_CONTEXT_ID);
     }



You would then need to create a bean definition file named beanRefContext.xml. This file defines all bean
factories (usually in the form of application contexts) that may be used in the EJB. In many cases, this file will
only contain a single bean definition such as this (where businessApplicationContext.xml contains the bean
definitions for all business service POJOs):

 <beans>
     <bean id="businessBeanFactory" class="org.springframework.context.support.ClassPathXmlApplicationContext">
          <constructor-arg value="businessApplicationContext.xml" />
     </bean>
 </beans>



In the above example, the ServicesConstants.PRIMARY_CONTEXT_ID constant would be defined as follows:

 public static final String ServicesConstants.PRIMARY_CONTEXT_ID = "businessBeanFactory";



Please see the respective Javadocs for the BeanFactoryLocator and ContextSingletonBeanFactoryLocator
classes for more information on their usage.


18.3.2. EJB 3 injection interceptor

For EJB 3 Session Beans and Message-Driven Beans, Spring provides a convenient interceptor that resolves
Spring     2.5's     @Autowired      annotation      in      the      EJB        component         class:
org.springframework.ejb.interceptor.SpringBeanAutowiringInterceptor. This interceptor can be
applied through an @Interceptors annotation in the EJB component class, or through an
interceptor-binding XML element in the EJB deployment descriptor.

 @Stateless
 @Interceptors(SpringBeanAutowiringInterceptor.class)



                                           Spring Framework (2.5.6)                                           439
Enterprise Java Beans (EJB) integration


 public class MyFacadeEJB implements MyFacadeLocal {

      // automatically injected with a matching Spring bean
      @Autowired
      private MyComponent myComp;

      // for business method, delegate to POJO service impl.
      public String myFacadeMethod(...) {
          return myComp.myMethod(...);
      }
      ...
 }



SpringBeanAutowiringInterceptor          by       default      obtains     target      beans      from       a
ContextSingletonBeanFactoryLocator,       with the context defined in a bean definition file named
beanRefContext.xml. By default, a single context definition is expected, which is obtained by type rather than
by name. However, if you need to choose between multiple context definitions, a specific locator key is
required. The locator key (i.e. the name of the context definition in beanRefContext.xml) can be explicitly
specified either through overriding the getBeanFactoryLocatorKey method in a custom
SpringBeanAutowiringInterceptor subclass.

Alternatively, consider overriding SpringBeanAutowiringInterceptor's getBeanFactory method, e.g.
obtaining a shared ApplicationContext from a custom holder class.




                                          Spring Framework (2.5.6)                                        440
Chapter 19. JMS (Java Message Service)

19.1. Introduction
Spring provides a JMS integration framework that simplifies the use of the JMS API and shields the user from
differences between the JMS 1.0.2 and 1.1 APIs.

JMS can be roughly divided into two areas of functionality, namely the production and consumption of
messages. The JmsTemplate class is used for message production and synchronous message reception. For
asynchronous reception similar to J2EE's message-driven bean style, Spring provides a number of message
listener containers that are used to create Message-Driven POJOs (MDPs).

  Domain Unification

  There are two major releases of the JMS specification, 1.0.2 and 1.1.

  JMS 1.0.2 defined two types of messaging domains, point-to-point (Queues) and publish/subscribe
  (Topics). The 1.0.2 API reflected these two messaging domains by providing a parallel class hierarchy for
  each domain. As a result, a client application became domain specific in its use of the JMS API. JMS 1.1
  introduced the concept of domain unification that minimized both the functional differences and client
  API differences between the two domains. As an example of a functional difference that was removed, if
  you use a JMS 1.1 provider you can transactionally consume a message from one domain and produce a
  message on the other using the same Session.

               Note
               The JMS 1.1 specification was released in April 2002 and incorporated as part of J2EE 1.4 in
               November 2003. As a result, common J2EE 1.3 application servers which are still in
               widespread use (such as BEA WebLogic 8.1 and IBM WebSphere 5.1) are based on JMS
               1.0.2.



The package org.springframework.jms.core provides the core functionality for using JMS. It contains JMS
template classes that simplifies the use of the JMS by handling the creation and release of resources, much like
the JdbcTemplate does for JDBC. The design principle common to Spring template classes is to provide helper
methods to perform common operations and for more sophisticated usage, delegate the essence of the
processing task to user implemented callback interfaces. The JMS template follows the same design. The
classes offer various convenience methods for the sending of messages, consuming a message synchronously,
and exposing the JMS session and message producer to the user.

The package org.springframework.jms.support provides JMSException translation functionality. The
translation converts the checked JMSException hierarchy to a mirrored hierarchy of unchecked exceptions. If
there are any provider specific subclasses of the checked javax.jms.JMSException, this exception is wrapped
in the unchecked UncategorizedJmsException.

The package org.springframework.jms.support.converter provides a MessageConverter abstraction to
convert between Java objects and JMS messages.

The package org.springframework.jms.support.destination provides various strategies for managing JMS
destinations, such as providing a service locator for destinations stored in JNDI.


                                          Spring Framework (2.5.6)                                          441
JMS (Java Message Service)


Finally,   the package org.springframework.jms.connection provides an implementation of the
ConnectionFactory suitable for use in standalone applications. It also contains an implementation of Spring's
PlatformTransactionManager for JMS (the cunningly named JmsTransactionManager). This allows for
seamless integration of JMS as a transactional resource into Spring's transaction management mechanisms.


19.2. Using Spring JMS

19.2.1. JmsTemplate

There are two variants of the functionality offered by the JmsTemplate: the JmsTemplate uses the JMS 1.1 API,
and the subclass JmsTemplate102 uses the JMS 1.0.2 API.

Code that uses the JmsTemplate only needs to implement callback interfaces giving them a clearly defined
contract. The MessageCreator callback interface creates a message given a Session provided by the calling
code in JmsTemplate. In order to allow for more complex usage of the JMS API, the callback SessionCallback
provides the user with the JMS session and the callback ProducerCallback exposes a Session and
MessageProducer pair.

The JMS API exposes two types of send methods, one that takes delivery mode, priority, and time-to-live as
Quality of Service (QOS) parameters and one that takes no QOS parameters which uses default values. Since
there are many send methods in JmsTemplate, the setting of the QOS parameters have been exposed as bean
properties to avoid duplication in the number of send methods. Similarly, the timeout value for synchronous
receive calls is set using the property setReceiveTimeout.

Some JMS providers allow the setting of default QOS values administratively through the configuration of the
ConnectionFactory. This has the effect that a call to MessageProducer's send method send(Destination
destination, Message message) will use different QOS default values than those specified in the JMS
specification. In order to provide consistent management of QOS values, the JmsTemplate must therefore be
specifically enabled to use its own QOS values by setting the boolean property isExplicitQosEnabled to true.

            Note
            Instances of the JmsTemplate class are thread-safe once configured. This is important because it
            means that you can configure a single instance of a JmsTemplate and then safely inject this shared
            reference into multiple collaborators. To be clear, the JmsTemplate is stateful, in that it maintains a
            reference to a ConnectionFactory, but this state is not conversational state.



19.2.2. Connections

The JmsTemplate requires a reference to a ConnectionFactory. The ConnectionFactory is part of the JMS
specification and serves as the entry point for working with JMS. It is used by the client application as a factory
to create connections with the JMS provider and encapsulates various configuration parameters, many of which
are vendor specific such as SSL configuration options.

When using JMS inside an EJB, the vendor provides implementations of the JMS interfaces so that they can
participate in declarative transaction management and perform pooling of connections and session. In order to
use this implementation, J2EE containers typically require that you declare a JMS connection factory as a
resource-ref inside the EJB or servlet deployment descriptors. To ensure the use of these features with the
JmsTemplate inside an EJB, the client application should ensure that it references the managed implementation
of the ConnectionFactory.

                                            Spring Framework (2.5.6)                                           442
JMS (Java Message Service)


Spring provides an implementation of the ConnectionFactory interface, SingleConnectionFactory, that will
return the same Connection on all createConnection calls and ignore calls to close. This is useful for testing
and standalone environments so that the same connection can be used for multiple JmsTemplate calls that may
span any number of transactions. SingleConnectionFactory takes a reference to a standard
ConnectionFactory that would typically come from JNDI.



19.2.3. Destination Management

Destinations, like ConnectionFactories, are JMS administered objects that can be stored and retrieved in JNDI.
When configuring a Spring application context you can use the JNDI factory class JndiObjectFactoryBean to
perform dependency injection on your object's references to JMS destinations. However, often this strategy is
cumbersome if there are a large number of destinations in the application or if there are advanced destination
management features unique to the JMS provider. Examples of such advanced destination management would
be the creation of dynamic destinations or support for a hierarchical namespace of destinations. The
JmsTemplate delegates the resolution of a destination name to a JMS destination object to an implementation of
the interface DestinationResolver. DynamicDestinationResolver is the default implementation used by
JmsTemplate and accommodates resolving dynamic destinations. A JndiDestinationResolver is also
provided that acts as a service locator for destinations contained in JNDI and optionally falls back to the
behavior contained in DynamicDestinationResolver.

Quite often the destinations used in a JMS application are only known at runtime and therefore cannot be
administratively created when the application is deployed. This is often because there is shared application
logic between interacting system components that create destinations at runtime according to a well-known
naming convention. Even though the creation of dynamic destinations are not part of the JMS specification,
most vendors have provided this functionality. Dynamic destinations are created with a name defined by the
user which differentiates them from temporary destinations and are often not registered in JNDI. The API used
to create dynamic destinations varies from provider to provider since the properties associated with the
destination are vendor specific. However, a simple implementation choice that is sometimes made by vendors
is to disregard the warnings in the JMS specification and to use the TopicSession method
createTopic(String topicName) or the QueueSession method createQueue(String queueName) to create a
new destination with default destination properties. Depending on the vendor implementation,
DynamicDestinationResolver may then also create a physical destination instead of only resolving one.

The boolean property pubSubDomain is used to configure the JmsTemplate with knowledge of what JMS
domain is being used. By default the value of this property is false, indicating that the point-to-point domain,
Queues, will be used. In the 1.0.2 implementation the value of this property determines if the JmsTemplate's
send operations will send a message to a Queue or to a Topic. This flag has no effect on send operations for the
1.1 implementation. However, in both implementations, this property determines the behavior of dynamic
destination resolution via implementations of the DestinationResolver interface.

You can also configure the JmsTemplate with a default destination via the property defaultDestination. The
default destination will be used with send and receive operations that do not refer to a specific destination.


19.2.4. Message Listener Containers

One of the most common uses of JMS messages in the EJB world is to drive message-driven beans (MDBs).
Spring offers a solution to create message-driven POJOs (MDPs) in a way that does not tie a user to an EJB
container. (See the section entitled Section 19.4.2, “Asynchronous Reception - Message-Driven POJOs” for
detailed coverage of Spring's MDP support.)

A message listener container is used to receive messages from a JMS message queue and drive the
MessageListener that is injected into it. The listener container is responsible for all threading of message

                                          Spring Framework (2.5.6)                                          443
JMS (Java Message Service)


reception and dispatches into the listener for processing. A message listener container is the intermediary
between an MDP and a messaging provider, and takes care of registering to receive messages, participating in
transactions, resource acquisition and release, exception conversion and suchlike. This allows you as an
application developer to write the (possibly complex) business logic associated with receiving a message (and
possibly responding to it), and delegates boilerplate JMS infrastructure concerns to the framework.

There are three standard JMS message listener containers packaged with Spring, each with its specialised
feature set.

19.2.4.1. SimpleMessageListenerContainer

This message listener container is the simplest of the three standard flavors. It simply creates a fixed number of
JMS sessions at startup and uses them throughout the lifespan of the container. This container doesn't allow for
dynamic adaption to runtime demands or participate in externally managed transactions. However, it does have
the fewest requirements on the JMS provider: This listener container only requires simple JMS API
compliance.

19.2.4.2. DefaultMessageListenerContainer

This    message     listener   container is the one used in most cases. In contrast to
SimpleMessageListenerContainer, this container variant does allow for dynamic adaption to runtime
demands and is able to participate in externally managed transactions. Each received message is registered with
an XA transaction (when configured with a JtaTransactionManager); processing can take advantage of XA
transation semantics. This listener container strikes a good balance between low requirements on the JMS
provider and good functionality including transaction participation.

19.2.4.3. ServerSessionMessageListenerContainer

This listener container leverages the JMS ServerSessionPool SPI to allow for dynamic management of JMS
sessions. The use of this variety of message listener container enables the provider to perform dynamic runtime
tuning but, at the expense of requiring the JMS provider to support the ServerSessionPool SPI. If there is no
need for provider-driven runtime tuning, look at the DefaultMessageListenerContainer or the
SimpleMessageListenerContainer instead.



19.2.5. Transaction management

Spring provides a JmsTransactionManager that manages transactions for a single JMS ConnectionFactory.
This allows JMS applications to leverage the managed transaction features of Spring as described in Chapter 9,
Transaction management. The JmsTransactionManager performs local resource transactions, binding a JMS
Connection/Session pair from the specified ConnectionFactory to the thread. JmsTemplate automatically
detects such transactional resources and operates on them accordingly.

In a J2EE environment, the ConnectionFactory will pool Connections and Sessions, so those resources are
efficiently reused across transactions. In a standalone environment, using Spring's SingleConnectionFactory
will result in a shared JMS Connection, with each transaction having its own independent Session.
Alternatively, consider the use of a provider-specific pooling adapter such as ActiveMQ's
PooledConnectionFactory class.

JmsTemplate  can also be used with the JtaTransactionManager and an XA-capable JMS ConnectionFactory
for performing distributed transactions. Note that this requires the use of a JTA transaction manager as well as a
properly XA-configured ConnectionFactory! (Check your J2EE server's / JMS provider's documentation.)



                                           Spring Framework (2.5.6)                                           444
JMS (Java Message Service)


Reusing code across a managed and unmanaged transactional environment can be confusing when using the
JMS API to create a Session from a Connection. This is because the JMS API has only one factory method to
create a Session and it requires values for the transaction and acknowledgement modes. In a managed
environment, setting these values is the responsibility of the environment's transactional infrastructure, so these
values are ignored by the vendor's wrapper to the JMS Connection. When using the JmsTemplate in an
unmanaged environment you can specify these values through the use of the properties sessionTransacted
and sessionAcknowledgeMode. When using a PlatformTransactionManager with JmsTemplate, the template
will always be given a transactional JMS Session.


19.3. Sending a Message
The JmsTemplate contains many convenience methods to send a message. There are send methods that specify
the destination using a javax.jms.Destination object and those that specify the destination using a string for
use in a JNDI lookup. The send method that takes no destination argument uses the default destination. Here is
an example that sends a message to a queue using the 1.0.2 implementation.

 import   javax.jms.ConnectionFactory;
 import   javax.jms.JMSException;
 import   javax.jms.Message;
 import   javax.jms.Queue;
 import   javax.jms.Session;

 import org.springframework.jms.core.MessageCreator;
 import org.springframework.jms.core.JmsTemplate;
 import org.springframework.jms.core.JmsTemplate102;

 public class JmsQueueSender {

      private JmsTemplate jmsTemplate;
      private Queue queue;

      public void setConnectionFactory(ConnectionFactory cf) {
          this.jmsTemplate = new JmsTemplate102(cf, false);
      }

      public void setQueue(Queue queue) {
          this.queue = queue;
      }

      public void simpleSend() {
          this.jmsTemplate.send(this.queue, new MessageCreator() {
              public Message createMessage(Session session) throws JMSException {
                return session.createTextMessage("hello queue world");
              }
          });
      }
 }



This example uses the MessageCreator callback to create a text message from the supplied Session object and
the JmsTemplate is constructed by passing a reference to a ConnectionFactory and a boolean specifying the
messaging domain. A zero argument constructor and connectionFactory / queue bean properties are provided
and can be used for constructing the instance (using a BeanFactory or plain Java code). Alternatively, consider
deriving from Spring's JmsGatewaySupport convenience base class, which provides pre-built bean properties
for JMS configuration.

When configuring the JMS 1.0.2 support in an application context, it is important to remember setting the value
of the boolean property pubSubDomain property in order to indicate if you want to send to Queues or Topics.

The method send(String destinationName, MessageCreator creator) lets you send to a message using the
string name of the destination. If these names are registered in JNDI, you should set the destinationResolver
property of the template to an instance of JndiDestinationResolver.


                                            Spring Framework (2.5.6)                                           445
JMS (Java Message Service)


If you created the JmsTemplate and specified a default destination, the send(MessageCreator c) sends a
message to that destination.


19.3.1. Using Message Converters

In order to facilitate the sending of domain model objects, the JmsTemplate has various send methods that take
a Java object as an argument for a message's data content. The overloaded methods convertAndSend and
receiveAndConvert in JmsTemplate delegate the conversion process to an instance of the MessageConverter
interface. This interface defines a simple contract to convert between Java objects and JMS messages. The
default implementation SimpleMessageConverter supports conversion between String and TextMessage,
byte[] and BytesMesssage, and java.util.Map and MapMessage. By using the converter, you and your
application code can focus on the business object that is being sent or received via JMS and not be concerned
with the details of how it is represented as a JMS message.

The sandbox currently includes a MapMessageConverter which uses reflection to convert between a JavaBean
and a MapMessage. Other popular implementations choices you might implement yourself are Converters that
use an existing XML marshalling package, such as JAXB, Castor, XMLBeans, or XStream, to create a
TextMessage representing the object.

To accommodate the setting of a message's properties, headers, and body that can not be generically
encapsulated inside a converter class, the MessagePostProcessor interface gives you access to the message
after it has been converted, but before it is sent. The example below demonstrates how to modify a message
header and a property after a java.util.Map is converted to a message.

 public void sendWithConversion() {
     Map map = new HashMap();
     map.put("Name", "Mark");
     map.put("Age", new Integer(47));
     jmsTemplate.convertAndSend("testQueue", map, new MessagePostProcessor() {
         public Message postProcessMessage(Message message) throws JMSException {
             message.setIntProperty("AccountID", 1234);
             message.setJMSCorrelationID("123-00001");
             return message;
         }
     });
 }



This results in a message of the form:

 MapMessage={
     Header={
         ... standard headers ...
         CorrelationID={123-00001}
     }
     Properties={
         AccountID={Integer:1234}
     }
     Fields={
         Name={String:Mark}
         Age={Integer:47}
     }
 }




19.3.2. SessionCallback and ProducerCallback

While the send operations cover many common usage scenarios, there are cases when you want to perform
multiple operations on a JMS Session or MessageProducer. The SessionCallback and ProducerCallback
expose the JMS Session and Session / MessageProducer pair respectfully. The execute() methods on


                                          Spring Framework (2.5.6)                                        446
JMS (Java Message Service)

JmsTemplate   execute these callback methods.


19.4. Receiving a message

19.4.1. Synchronous Reception

While JMS is typically associated with asynchronous processing, it is possible to consume messages
synchronously. The overloaded receive(..) methods provide this functionality. During a synchronous receive,
the calling thread blocks until a message becomes available. This can be a dangerous operation since the calling
thread can potentially be blocked indefinitely. The property receiveTimeout specifies how long the receiver
should wait before giving up waiting for a message.


19.4.2. Asynchronous Reception - Message-Driven POJOs

In a fashion similar to a Message-Driven Bean (MDB) in the EJB world, the Message-Driven POJO (MDP)
acts as a receiver for JMS messages. The one restriction (but see also below for the discussion of the
MessageListenerAdapter class) on an MDP is that it must implement the javax.jms.MessageListener
interface. Please also be aware that in the case where your POJO will be receiving messages on multiple
threads, it is important to ensure that your implementation is thread-safe.

Below is a simple implementation of an MDP:

 import   javax.jms.JMSException;
 import   javax.jms.Message;
 import   javax.jms.MessageListener;
 import   javax.jms.TextMessage;

 public class ExampleListener implements MessageListener {

      public void onMessage(Message message) {
          if (message instanceof TextMessage) {
              try {
                  System.out.println(((TextMessage) message).getText());
              }
              catch (JMSException ex) {
                  throw new RuntimeException(ex);
              }
          }
          else {
              throw new IllegalArgumentException("Message must be of type TextMessage");
          }
      }
 }



Once you've implemented your MessageListener, it's time to create a message listener container.

Find below an example of how to define and configure one of the message listener containers that ships with
Spring (in this case the DefaultMessageListenerContainer).

 <!-- this is the Message Driven POJO (MDP) -->
 <bean id="messageListener" class="jmsexample.ExampleListener" />

 <!-- and this is the message listener container -->
 <bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer">
     <property name="connectionFactory" ref="connectionFactory"/>
     <property name="destination" ref="destination"/>
     <property name="messageListener" ref="messageListener" />
 </bean>



Please refer to the Spring Javadoc of the various message listener containers for a full description of the

                                          Spring Framework (2.5.6)                                          447
JMS (Java Message Service)


features supported by each implementation.


19.4.3. The SessionAwareMessageListener interface

The SessionAwareMessageListener interface is a Spring-specific interface that provides a similar contract the
JMS MessageListener interface, but also provides the message handling method with access to the JMS
Session from which the Message was received.

 package org.springframework.jms.listener;

 public interface SessionAwareMessageListener {

      void onMessage(Message message, Session session) throws JMSException;
 }



You can choose to have your MDPs implement this interface (in preference to the standard JMS
MessageListener interface) if you want your MDPs to be able to respond to any received messages (using the
Session supplied in the onMessage(Message, Session) method). All of the message listener container
implementations that ship wth Spring have support for MDPs that implement either the MessageListener or
SessionAwareMessageListener interface. Classes that implement the SessionAwareMessageListener come
with the caveat that they are then tied to Spring through the interface. The choice of whether or not to use it is
left entirely up to you as an application developer or architect.

Please note that the 'onMessage(..)' method of the SessionAwareMessageListener interface throws
JMSException. In contrast to the standard JMS MessageListener interface, when using the
SessionAwareMessageListener interface, it is the responsibility of the client code to handle any exceptions
thrown.


19.4.4. The MessageListenerAdapter

The MessageListenerAdapter class is the final component in Spring's asynchronous messaging support: in a
nutshell, it allows you to expose almost any class as a MDP (there are of course some constraints).

            Note
            If you are using the JMS 1.0.2 API, you will want to use the MessageListenerAdapter102 class
            which provides the exact same functionality and value add as the MessageListenerAdapter class,
            but for the JMS 1.0.2 API.


Consider the following interface definition. Notice that although the interface extends neither the
MessageListener nor SessionAwareMessageListener interfaces, it can still be used as a MDP via the use of
the MessageListenerAdapter class. Notice also how the various message handling methods are strongly typed
according to the contents of the various Message types that they can receive and handle.

 public interface MessageDelegate {

      void handleMessage(String message);

      void handleMessage(Map message);

      void handleMessage(byte[] message);

      void handleMessage(Serializable message);
 }




                                           Spring Framework (2.5.6)                                           448
JMS (Java Message Service)


 public class DefaultMessageDelegate implements MessageDelegate {
     // implementation elided for clarity...
 }



In particular, note how the above implementation of the MessageDelegate interface (the above
DefaultMessageDelegate class) has no JMS dependencies at all. It truly is a POJO that we will make into an
MDP via the following configuration.

 <!-- this is the Message Driven POJO (MDP) -->
 <bean id="messageListener" class="org.springframework.jms.listener.adapter.MessageListenerAdapter">
     <constructor-arg>
         <bean class="jmsexample.DefaultMessageDelegate"/>
     </constructor-arg>
 </bean>

 <!-- and this is the message listener container... -->
 <bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer">
     <property name="connectionFactory" ref="connectionFactory"/>
     <property name="destination" ref="destination"/>
     <property name="messageListener" ref="messageListener" />
 </bean>



Below is an example of another MDP that can only handle the receiving of JMS TextMessage messages. Notice
how the message handling method is actually called 'receive' (the name of the message handling method in a
MessageListenerAdapter defaults to 'handleMessage'), but it is configurable (as you will see below). Notice
also how the 'receive(..)' method is strongly typed to receive and respond only to JMS TextMessage
messages.

 public interface TextMessageDelegate {

     void receive(TextMessage message);
 }



 public class DefaultTextMessageDelegate implements TextMessageDelegate {
     // implementation elided for clarity...
 }



The configuration of the attendant MessageListenerAdapter would look like this:

 <bean id="messageListener" class="org.springframework.jms.listener.adapter.MessageListenerAdapter">
     <constructor-arg>
         <bean class="jmsexample.DefaultTextMessageDelegate"/>
     </constructor-arg>
     <property name="defaultListenerMethod" value="receive"/>
     <!-- we don't want automatic message context extraction -->
     <property name="messageConverter">
         <null/>
     </property>
 </bean>



Please note that if the above 'messageListener' receives a JMS Message of a type other than TextMessage, an
IllegalStateException will be thrown (and subsequently swallowed). Another of the capabilities of the
MessageListenerAdapter class is the ability to automatically send back a response Message if a handler
method returns a non-void value. Consider the interface and class:

 public interface ResponsiveTextMessageDelegate {

     // notice the return type...
     String receive(TextMessage message);
 }



 public class DefaultResponsiveTextMessageDelegate implements ResponsiveTextMessageDelegate {


                                         Spring Framework (2.5.6)                                      449
JMS (Java Message Service)


      // implementation elided for clarity...
 }



If the above DefaultResponsiveTextMessageDelegate is used in conjunction with a MessageListenerAdapter
then any non-null value that is returned from the execution of the 'receive(..)' method will (in the default
configuration) be converted into a TextMessage. The resulting TextMessage will then be sent to the
Destination (if one exists) defined in the JMS Reply-To property of the original Message, or the default
Destination set on the MessageListenerAdapter (if one has been configured); if no Destination is found
then an InvalidDestinationException will be thrown (and please note that this exception will not be
swallowed and will propagate up the call stack).


19.4.5. Processing messages within transactions

Invoking a message listener within a transaction only requires reconfiguration of the listener container.

Local resource transactions can simply be activated through the sessionTransacted flag on the listener
container definition. Each message listener invocation will then operate within an active JMS transaction, with
message reception rolled back in case of listener execution failure. Sending a response message (via
SessionAwareMessageListener) will be part of the same local transaction, but any other resource operations
(such as database access) will operate independently. This usually requires duplicate message detection in the
listener implementation, covering the case where database processing has committed but message processing
failed to commit.

 <bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer">
     <property name="connectionFactory" ref="connectionFactory"/>
     <property name="destination" ref="destination"/>
     <property name="messageListener" ref="messageListener"/>
     <property name="sessionTransacted" value="true"/>
 </bean>



For participating in an externally managed transaction, you will need to configure a transaction manager and
use    a    listener    container   which     supports    externally    managed     transactions:   typically
DefaultMessageListenerContainer.

To configure a message listener container for XA transaction participation, you'll want to configure a
JtaTransactionManager (which, by default, delegates to the J2EE server's transaction subsystem). Note that
the underlying JMS ConnectionFactory needs to be XA-capable and properly registered with your JTA
transaction coordinator! (Check your J2EE server's configuration of JNDI resources.) This allows message
recepton as well as e.g. database access to be part of the same transaction (with unified commit semantics, at
the expense of XA transaction log overhead).

 <bean id="transactionManager" class="org.springframework.transaction.jta.JtaTransactionManager"/>



Then you just need to add it to our earlier container configuration. The container will take care of the rest.

 <bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer">
     <property name="connectionFactory" ref="connectionFactory"/>
     <property name="destination" ref="destination"/>
     <property name="messageListener" ref="messageListener"/>
     <property name="transactionManager" ref="transactionManager"/>
 </bean>




19.5. Support for JCA Message Endpoints

                                            Spring Framework (2.5.6)                                             450
JMS (Java Message Service)


Beginning with version 2.5, Spring also provides support for a JCA-based MessageListener container. The
JmsMessageEndpointManager will attempt to automatically determine the ActivationSpec class name from the
provider's ResourceAdapter class name. Therefore, it is typically possible to just provide Spring's generic
JmsActivationSpecConfig as shown in the following example.

 <bean class="org.springframework.jms.listener.endpoint.JmsMessageEndpointManager">
     <property name="resourceAdapter" ref="resourceAdapter"/>
     <property name="activationSpecConfig">
         <bean class="org.springframework.jms.listener.endpoint.JmsActivationSpecConfig">
             <property name="destinationName" value="myQueue"/>
         </bean>
     </property>
     <property name="messageListener" ref="myMessageListener"/>
 </bean>



Alternatively, you may set up a JmsMessageEndpointManager with a given ActivationSpec object. The
ActivationSpec object may also come from a JNDI lookup (using <jee:jndi-lookup>).

 <bean class="org.springframework.jms.listener.endpoint.JmsMessageEndpointManager">
     <property name="resourceAdapter" ref="resourceAdapter"/>
     <property name="activationSpec">
         <bean class="org.apache.activemq.ra.ActiveMQActivationSpec">
             <property name="destination" value="myQueue"/>
             <property name="destinationType" value="javax.jms.Queue"/>
         </bean>
     </property>
     <property name="messageListener" ref="myMessageListener"/>
 </bean>



Using Spring's ResourceAdapterFactoryBean, the target ResourceAdapter may be configured locally as
depicted in the following example.

 <bean id="resourceAdapter" class="org.springframework.jca.support.ResourceAdapterFactoryBean">
     <property name="resourceAdapter">
         <bean class="org.apache.activemq.ra.ActiveMQResourceAdapter">
             <property name="serverUrl" value="tcp://localhost:61616"/>
         </bean>
     </property>
     <property name="workManager">
         <bean class="org.springframework.jca.work.SimpleTaskWorkManager"/>
     </property>
 </bean>



The specified WorkManager may also point to an environment-specific thread pool - typically through
SimpleTaskWorkManager's "asyncTaskExecutor" property. Consider defining a shared thread pool for all your
ResourceAdapter instances if you happen to use multiple adapters.

In some environments (e.g. WebLogic 9 or above), the entire ResourceAdapter object may be obtained from
JNDI instead (using <jee:jndi-lookup>). The Spring-based message listeners can then interact with the
server-hosted ResourceAdapter, also using the server's built-in WorkManager.

Please   consult   theJavaDoc for JmsMessageEndpointManager,              JmsActivationSpecConfig,      and
ResourceAdapterFactoryBean for more details.

Spring also provides a generic JCA message endpoint manager which is not tied to JMS:
org.springframework.jca.endpoint.GenericMessageEndpointManager. This component allows for using
any message listener type (e.g. a CCI MessageListener) and any provided-specific ActivationSpec object.
Check out your JCA provider's documentation to find out about the actual capabilities of your connector, and
consult GenericMessageEndpointManager's JavaDoc for the Spring-specific configuration details.




                                         Spring Framework (2.5.6)                                       451
JMS (Java Message Service)


            Note
            JCA-based message endpoint management is very analogous to EJB 2.1 Message-Driven Beans; it
            uses the same underlying resource provider contract. Like with EJB 2.1 MDBs, any message
            listener interface supported by your JCA provider can be used in the Spring context as well. Spring
            nevertheless provides explicit 'convenience' support for JMS, simply because JMS is the most
            common endpoint API used with the JCA endpoint management contract.



19.6. JMS Namespace Support
Spring 2.5 introduces an XML namespace for simplifying JMS configuration. To use the JMS namespace
elements you will need to reference the JMS schema:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:jms="http://www.springframework.org/schema/jms"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/jms http://www.springframework.org/schema/jms/spring-jms-2.5.xsd">

 <!-- <bean/> definitions here -->

 </beans>



The namespace consists of two top-level elements: <listener-container/> and <jca-listener-container/>
both of which may contain one or more <listener/> child elements. Here is an example of a basic
configuration for two listeners.

 <jms:listener-container>

      <jms:listener destination="queue.orders" ref="orderService" method="placeOrder"/>

      <jms:listener destination="queue.confirmations" ref="confirmationLogger" method="log"/>

 </jms:listener-container>



The example above is equivalent to creating two distinct listener container bean definitions and two distinct
MessageListenerAdapter bean definitions as demonstrated in the section entitled Section 19.4.4, “The
MessageListenerAdapter”. In addition to the attributes shown above, the listener element may contain
several optional ones. The following table describes all available attributes:


Table 19.1. Attributes of the JMS <listener> element

Attribute                            Description

id
                                     A bean name for the hosting listener container. If not specified, a bean
                                     name will be automatically generated.

destination (required)
                                     The destination name for this listener, resolved through the
                                     DestinationResolver strategy.

ref (required)
                                     The bean name of the handler object.



                                          Spring Framework (2.5.6)                                         452
JMS (Java Message Service)

Attribute                             Description

method
                                      The name of the handler method to invoke. If the ref points to a
                                      MessageListener or Spring SessionAwareMessageListener, this
                                      attribute may be omitted.

response-destination
                                      The name of the default response destination to send response messages
                                      to. This will be applied in case of a request message that does not carry a
                                      "JMSReplyTo" field. The type of this destination will be determined by
                                      the listener-container's "destination-type" attribute. Note: This only
                                      applies to a listener method with a return value, for which each result
                                      object will be converted into a response message.

subscription
                                      The name of the durable subscription, if any.

selector
                                      An optional message selector for this listener.


The <listener-container/> element also accepts several optional attributes. This allows for customization of
the various strategies (for example, taskExecutor and destinationResolver) as well as basic JMS settings and
resource references. Using these attributes, it is possible to define highly-customized listener containers while
still benefiting from the convenience of the namespace.

 <jms:listener-container connection-factory="myConnectionFactory"
                         task-executor="myTaskExecutor"
                         destination-resolver="myDestinationResolver"
                         transaction-manager="myTransactionManager"
                         concurrency="10">

      <jms:listener destination="queue.orders" ref="orderService" method="placeOrder"/>

      <jms:listener destination="queue.confirmations" ref="confirmationLogger" method="log"/>

 </jms:listener-container>



The following table describes all available attributes. Consult the class-level Javadoc of the
AbstractMessageListenerContainer and its concrete subclasses for more detail on the individual properties.
The Javadoc also provides a discussion of transaction choices and message redelivery scenarios.


Table 19.2. Attributes of the JMS <listener-container> element

Attribute                             Description

container-type
                                      The type of this listener container. Available options are: default,
                                      simple, default102, or simple102 (the default value is 'default').

connection-factory
                                      A reference to the JMS ConnectionFactory bean (the default bean
                                      name is 'connectionFactory').

task-executor
                                      A reference to the Spring TaskExecutor for the JMS listener invokers.

destination-resolver
                                      A reference to the DestinationResolver strategy for resolving JMS
                                      Destinations.


                                           Spring Framework (2.5.6)                                           453
JMS (Java Message Service)

Attribute                            Description

message-converter
                                     A reference to the MessageConverter strategy for converting JMS
                                     Messages to listener method arguments. Default is a
                                     SimpleMessageConverter.

destination-type
                                     The JMS destination type for this listener: queue, topic or
                                     durableTopic. The default is queue.

client-id
                                     The JMS client id for this listener container. Needs to be specified when
                                     using durable subscriptions.

cache
                                     The cache level for JMS resources: none, connection, session,
                                     consumer or auto. By default (auto), the cache level will effectively be
                                     "consumer", unless an external transaction manager has been specified -
                                     in which case the effective default will be none (assuming J2EE-style
                                     transaction management where the given ConnectionFactory is an
                                     XA-aware pool).

acknowledge
                                     The native JMS acknowledge mode: auto, client, dups-ok or
                                     transacted. A value of transacted activates a locally transacted
                                     Session. As an alternative, specify the transaction-manager attribute
                                     described below. Default is auto.

transaction-manager
                                     A reference to an external PlatformTransactionManager (typically an
                                     XA-based         transaction      coordinator,    e.g.     Spring's
                                     JtaTransactionManager). If not specified, native acknowledging will
                                     be used (see "acknowledge" attribute).

concurrency
                                     The number of concurrent sessions/consumers to start for each listener.
                                     Can either be a simple number indicating the maximum number (e.g.
                                     "5") or a range indicating the lower as well as the upper limit (e.g.
                                     "3-5"). Note that a specified minimum is just a hint and might be
                                     ignored at runtime. Default is 1; keep concurrency limited to 1 in case of
                                     a topic listener or if queue ordering is important; consider raising it for
                                     general queues.

prefetch
                                     The maximum number of messages to load into a single session. Note
                                     that raising this number might lead to starvation of concurrent
                                     consumers!


Configuring a JCA-based listener container with the "jms" schema support is very similar.

 <jms:jca-listener-container resource-adapter="myResourceAdapter"
                             destination-resolver="myDestinationResolver"
                             transaction-manager="myTransactionManager"
                             concurrency="10">

      <jms:listener destination="queue.orders" ref="myMessageListener"/>

 </jms:jca-listener-container>



                                          Spring Framework (2.5.6)                                           454
JMS (Java Message Service)


The available configuration options for the JCA variant are described in the following table:


Table 19.3. Attributes of the JMS <jca-listener-container/> element

Attribute                             Description

resource-adapter
                                      A reference to the JCA ResourceAdapter bean (the default bean name is
                                      'resourceAdapter').

activation-spec-factory
                                      A reference to the JmsActivationSpecFactory. The default is to
                                      autodetect the JMS provider and its ActivationSpec class (see
                                      DefaultJmsActivationSpecFactory)

destination-resolver
                                      A reference to the DestinationResolver strategy for resolving JMS
                                      Destinations.

message-converter
                                      A reference to the MessageConverter strategy for converting JMS
                                      Messages to listener method arguments. Default is a
                                      SimpleMessageConverter.

destination-type
                                      The JMS destination type for this listener: queue, topic or
                                      durableTopic. The default is queue.

client-id
                                      The JMS client id for this listener container. Needs to be specified when
                                      using durable subscriptions.

acknowledge
                                      The native JMS acknowledge mode: auto, client, dups-ok or
                                      transacted. A value of transacted activates a locally transacted
                                      Session. As an alternative, specify the transaction-manager attribute
                                      described below. Default is auto.

transaction-manager
                                      A    reference    to    a   Spring    JtaTransactionManager   or a
                                      javax.transaction.TransactionManager       for kicking off an XA
                                      transaction for each incoming message. If not specified, native
                                      acknowledging will be used (see the "acknowledge" attribute).

concurrency
                                      The number of concurrent sessions/consumers to start for each listener.
                                      Can either be a simple number indicating the maximum number (e.g.
                                      "5") or a range indicating the lower as well as the upper limit (e.g.
                                      "3-5"). Note that a specified minimum is just a hint and will typically be
                                      ignored at runtime when using a JCA listener container. Default is 1.

prefetch
                                      The maximum number of messages to load into a single session. Note
                                      that raising this number might lead to starvation of concurrent
                                      consumers!




                                           Spring Framework (2.5.6)                                          455
Chapter 20. JMX

20.1. Introduction
The JMX support in Spring provides you with the features to easily and transparently integrate your Spring
application into a JMX infrastructure.

  JMX?

  This chapter is not an introduction to JMX... it doesn't try to explain the motivations of why one might
  want to use JMX (or indeed what the letters JMX actually stand for). If you are new to JMX, check out
  the section entitled Section 20.8, “Further Resources” at the end of this chapter.


Specifically, Spring's JMX support provides four core features:


• The automatic registration of any Spring bean as a JMX MBean

• A flexible mechanism for controlling the management interface of your beans

• The declarative exposure of MBeans over remote, JSR-160 connectors

• The simple proxying of both local and remote MBean resources

These features are designed to work without coupling your application components to either Spring or JMX
interfaces and classes. Indeed, for the most part your application classes need not be aware of either Spring or
JMX in order to take advantage of the Spring JMX features.


20.2. Exporting your beans to JMX
The core class in Spring's JMX framework is the MBeanExporter. This class is responsible for taking your
Spring beans and registering them with a JMX MBeanServer. For example, consider the following class:

 package org.springframework.jmx;

 public class JmxTestBean implements IJmxTestBean {

      private String name;
      private int age;
      private boolean isSuperman;

      public int getAge() {
          return age;
      }

      public void setAge(int age) {
          this.age = age;
      }

      public void setName(String name) {
          this.name = name;
      }

      public String getName() {
          return name;
      }

      public int add(int x, int y) {


                                          Spring Framework (2.5.6)                                          456
JMX


            return x + y;
      }

      public void dontExposeMe() {
          throw new RuntimeException();
      }
 }



To expose the properties and methods of this bean as attributes and operations of an MBean you simply
configure an instance of the MBeanExporter class in your configuration file and pass in the bean as shown
below:

 <beans>

     <!-- this bean must not be lazily initialized if the exporting is to happen -->
     <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter" lazy-init="false">
       <property name="beans">
         <map>
           <entry key="bean:name=testBean1" value-ref="testBean"/>
         </map>
       </property>
     </bean>

     <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
       <property name="name" value="TEST"/>
       <property name="age" value="100"/>
     </bean>

 </beans>



The pertinent bean definition from the above configuration snippet is the exporter bean. The beans property
tells the MBeanExporter exactly which of your beans must be exported to the JMX MBeanServer. In the default
configuration, the key of each entry in the beans Map is used as the ObjectName for the bean referenced by the
corresponding entry value. This behavior can be changed as described in the section entitled Section 20.4,
“Controlling the ObjectNames for your beans”.

With this configuration the testBean bean is exposed as an MBean under the ObjectName
bean:name=testBean1. By default, all public properties of the bean are exposed as attributes and all public
methods (bar those inherited from the Object class) are exposed as operations.


20.2.1. Creating an MBeanServer

The above configuration assumes that the application is running in an environment that has one (and only one)
MBeanServer already running. In this case, Spring will attempt to locate the running MBeanServer and register
your beans with that server (if any). This behavior is useful when your application is running inside a container
such as Tomcat or IBM WebSphere that has itss own MBeanServer.

However, this approach is of no use in a standalone environment, or when running inside a container that does
not provide an MBeanServer. To address this you can create an MBeanServer instance declaratively by adding
an instance of the org.springframework.jmx.support.MBeanServerFactoryBean class to your configuration.
You can also ensure that a specific MBeanServer is used by setting the value of the MBeanExporter's server
property to the MBeanServer value returned by an MBeanServerFactoryBean; for example:

 <beans>

     <bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean"/>

     <!--
       this bean needs to be eagerly pre-instantiated in order for the exporting to occur;
       this means that it must not be marked as lazily initialized
     -->
     <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">


                                           Spring Framework (2.5.6)                                          457
JMX

     <property name="beans">
       <map>
         <entry key="bean:name=testBean1" value-ref="testBean"/>
       </map>
     </property>
     <property name="server" ref="mbeanServer"/>
   </bean>

   <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
     <property name="name" value="TEST"/>
     <property name="age" value="100"/>
   </bean>

 </beans>



Here an instance of MBeanServer is created by the MBeanServerFactoryBean and is supplied to the
MBeanExporter via the server property. When you supply your own MBeanServer instance, the MBeanExporter
will not attempt to locate a running MBeanServer and will use the supplied MBeanServer instance. For this to
work correctly, you must (of course) have a JMX implementation on your classpath.


20.2.2. Reusing an existing MBeanServer

If no server is specified, the MBeanExporter tries to automatically detect a running MBeanServer. This works in
most environment where only one MBeanServer instance is used, however when multiple instances exist, the
exporter might pick the wrong server. In such cases, one should use the MBeanServer agentId to indicate which
instance to be used:

 <beans>
    <bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean">
      <!-- indicate to first look for a server -->
      <property name="locateExistingServerIfPossible" value="true"/>
      <!-- search for the MBeanServer instance with the given agentId -->
      <property name="agentId" value="<MBeanServer instance agentId>"/>
    </bean>

    <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
      <property name="server" ref="mbeanServer"/>
    ...
    </bean>
 </beans>



For platforms/cases where the existing MBeanServer has a dynamic (or unknown) agentId which is retrieved
through lookup methods, one should use factory-method:

 <beans>
    <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
      <property name="server">
         <!-- Custom MBeanServerLocator -->
         <bean class="platform.package.MBeanServerLocator" factory-method="locateMBeanServer"/>
      </property>

       <!-- other beans here -->

    </bean>
 </beans>




20.2.3. Lazy-initialized MBeans

If you configure a bean with the MBeanExporter that is also configured for lazy initialization, then the
MBeanExporter will not break this contract and will avoid instantiating the bean. Instead, it will register a
proxy with the MBeanServer and will defer obtaining the bean from the container until the first invocation on
the proxy occurs.


                                          Spring Framework (2.5.6)                                         458
JMX


20.2.4. Automatic registration of MBeans

Any beans that are exported through the MBeanExporter and are already valid MBeans are registered as-is with
the MBeanServer without further intervention from Spring. MBeans can be automatically detected by the
MBeanExporter by setting the autodetect property to true:

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
   <property name="autodetect" value="true"/>
 </bean>

 <bean name="spring:mbean=true" class="org.springframework.jmx.export.TestDynamicMBean"/>



Here, the bean called spring:mbean=true is already a valid JMX MBean and will be automatically registered
by Spring. By default, beans that are autodetected for JMX registration have their bean name used as the
ObjectName. This behavior can be overridden as detailed in the section entitled Section 20.4, “Controlling the
ObjectNames for your beans”.



20.2.5. Controlling the registration behavior

Consider the scenario where a Spring MBeanExporter attempts to register an MBean with an MBeanServer using
the ObjectName 'bean:name=testBean1'. If an MBean instance has already been registered under that same
ObjectName, the default behavior is to fail (and throw an InstanceAlreadyExistsException).

It is possible to control the behavior of exactly what happens when an MBean is registered with an MBeanServer.
Spring's JMX support allows for three different registration behaviors to control the registration behavior when
the registration process finds that an MBean has already been registered under the same ObjectName; these
registration behaviors are summarized on the following table:


Table 20.1. Registration Behaviors

                Registration behavior                                        Explanation


REGISTRATION_FAIL_ON_EXISTING                           This is the default registration behavior. If an MBean
                                                        instance has already been registered under the same
                                                        ObjectName, the MBean that is being registered will
                                                        not        be         registered        and         an
                                                        InstanceAlreadyExistsException will be thrown.
                                                        The existing MBean is unaffected.


REGISTRATION_IGNORE_EXISTING                            If an MBean instance has already been registered under
                                                        the same ObjectName, the MBean that is being
                                                        registered will not be registered. The existing MBean
                                                        is unaffected, and no Exception will be thrown.

                                                        This is useful in settings where multiple applications
                                                        want to share a common MBean in a shared
                                                        MBeanServer.


REGISTRATION_REPLACE_EXISTING                           If an MBean instance has already been registered under
                                                        the same ObjectName, the existing MBean that was
                                                        previously registered will be unregistered and the new
                                                        MBean will be registered in its place (the new MBean


                                          Spring Framework (2.5.6)                                          459
JMX

                  Registration behavior                                       Explanation

                                                         effectively replaces the previous instance).


The above values are defined as constants on the MBeanRegistrationSupport class (the MBeanExporter class
derives from this superclass). If you want to change the default registration behavior, you simply need to set the
value of the registrationBehaviorName property on your MBeanExporter definition to one of those values.

The following example illustrates how to effect a change from the default registration behavior to the
REGISTRATION_REPLACE_EXISTING behavior:

 <beans>

      <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
          <property name="beans">
              <map>
                  <entry key="bean:name=testBean1" value-ref="testBean"/>
              </map>
          </property>
          <property name="registrationBehaviorName" value="REGISTRATION_REPLACE_EXISTING"/>
      </bean>

      <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
          <property name="name" value="TEST"/>
          <property name="age" value="100"/>
      </bean>

 </beans>




20.3. Controlling the management interface of your beans
In the previous example, you had little control over the management interface of your bean; all of the public
properties and methods of each exported bean was exposed as JMX attributes and operations respectively. To
exercise finer-grained control over exactly which properties and methods of your exported beans are actually
exposed as JMX attributes and operations, Spring JMX provides a comprehensive and extensible mechanism
for controlling the management interfaces of your beans.


20.3.1. The MBeanInfoAssembler Interface

Behind      the    scenes,    the    MBeanExporter       delegates     to  an     implementation   of    the
org.springframework.jmx.export.assembler.MBeanInfoAssembler interface which is responsible for
defining the management interface of each bean that is being exposed. The default implementation,
org.springframework.jmx.export.assembler.SimpleReflectiveMBeanInfoAssembler, simply defines a
management interface that exposes all public properties and methods (as you saw in the previous examples).
Spring provides two additional implementations of the MBeanInfoAssembler interface that allow you to control
the generated management interface using either source-level metadata or any arbitrary interface.


20.3.2. Using source-Level metadata

Using the MetadataMBeanInfoAssembler you can define the management interfaces for your beans using
source    level     metadata.     The  reading  of     metadata   is    encapsulated     by      the
org.springframework.jmx.export.metadata.JmxAttributeSource interface. Out of the box, Spring JMX
provides        support       for     two      implementations       of        this       interface:
org.springframework.jmx.export.metadata.AttributesJmxAttributeSource for Commons Attributes and
org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource for JDK 5.0 annotations.



                                           Spring Framework (2.5.6)                                           460
JMX

The MetadataMBeanInfoAssembler must be configured with an implementation instance of the
JmxAttributeSource interface for it to function correctly (there is no default). For the following example, we
will use the Commons Attributes metadata approach.

To mark a bean for export to JMX, you should annotate the bean class with the ManagedResource attribute. In
the case of the Commons Attributes metadata approach this class can be found in the
org.springframework.jmx.metadata package. Each method you wish to expose as an operation must be
marked with the ManagedOperation attribute and each property you wish to expose must be marked with the
ManagedAttribute attribute. When marking properties you can omit either the annotation of the getter or the
setter to create a write-only or read-only attribute respectively.

The example below shows the JmxTestBean class that you saw earlier marked with Commons Attributes
metadata:

 package org.springframework.jmx;

 /**
  * @@org.springframework.jmx.export.metadata.ManagedResource
  * (description="My Managed Bean", objectName="spring:bean=test",
  * log=true, logFile="jmx.log", currencyTimeLimit=15, persistPolicy="OnUpdate",
  * persistPeriod=200, persistLocation="foo", persistName="bar")
  */
 public class JmxTestBean implements IJmxTestBean {

     private String name;

     private int age;


     /**
       * @@org.springframework.jmx.export.metadata.ManagedAttribute
       *    (description="The Age Attribute", currencyTimeLimit=15)
       */
     public int getAge() {
         return age;
     }

     public void setAge(int age) {
       this.age = age;
     }

     /**
       * @@org.springframework.jmx.export.metadata.ManagedAttribute
       * (description="The Name Attribute", currencyTimeLimit=20,
       *    defaultValue="bar", persistPolicy="OnUpdate")
       */
     public void setName(String name) {
         this.name = name;
     }

     /**
       * @@org.springframework.jmx.export.metadata.ManagedAttribute
       *    (defaultValue="foo", persistPeriod=300)
       */
     public String getName() {
         return name;
     }

     /**
       * @@org.springframework.jmx.export.metadata.ManagedOperation
       * (description="Add Two Numbers Together")
       */
     public int add(int x, int y) {
        return x + y;
     }

     public void dontExposeMe() {
       throw new RuntimeException();
     }
 }




                                          Spring Framework (2.5.6)                                        461
JMX


Here you can see that the JmxTestBean class is marked with the ManagedResource attribute and that this
ManagedResource attribute is configured with a set of properties. These properties can be used to configure
various aspects of the MBean that is generated by the MBeanExporter, and are explained in greater detail later
in section entitled Section 20.3.4, “Source-Level Metadata Types”.

You will also notice that both the age and name properties are annotated with the ManagedAttribute attribute,
but in the case of the age property, only the getter is marked. This will cause both of these properties to be
included in the management interface as attributes, but the age attribute will be read-only.

Finally, you will notice that the add(int, int) method is marked with the ManagedOperation attribute
whereas the dontExposeMe() method is not. This will cause the management interface to contain only one
operation, add(int, int), when using the MetadataMBeanInfoAssembler.

The code below shows how you configure the MBeanExporter to use the MetadataMBeanInfoAssembler:

 <beans>

   <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
     <property name="beans">
       <map>
         <entry key="bean:name=testBean1" value-ref="testBean"/>
       </map>
     </property>
     <property name="assembler" ref="assembler"/>
   </bean>

   <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
     <property name="name" value="TEST"/>
     <property name="age" value="100"/>
   </bean>

   <bean id="attributeSource"
         class="org.springframework.jmx.export.metadata.AttributesJmxAttributeSource">
     <property name="attributes">
       <bean class="org.springframework.metadata.commons.CommonsAttributes"/>
     </property>
   </bean>

   <bean id="assembler" class="org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler">
     <property name="attributeSource" ref="attributeSource"/>
   </bean>

 </beans>



Here you can see that an MetadataMBeanInfoAssembler bean has been configured with an instance of the
AttributesJmxAttributeSource class and passed to the MBeanExporter through the assembler property. This
is all that is required to take advantage of metadata-driven management interfaces for your Spring-exposed
MBeans.


20.3.3. Using JDK 5.0 Annotations

To enable the use of JDK 5.0 annotations for management interface definition, Spring provides a set of
annotations that mirror the Commons Attribute attribute classes and an implementation of the
JmxAttributeSource strategy interface, the AnnotationsJmxAttributeSource class, that allows the
MBeanInfoAssembler to read them.

The example below shows a bean where the management interface is defined by the presence of JDK 5.0
annotation types:

 package org.springframework.jmx;

 import org.springframework.jmx.export.annotation.ManagedResource;
 import org.springframework.jmx.export.annotation.ManagedOperation;


                                          Spring Framework (2.5.6)                                        462
JMX


 import org.springframework.jmx.export.annotation.ManagedAttribute;

 @ManagedResource(objectName="bean:name=testBean4", description="My Managed Bean", log=true,
     logFile="jmx.log", currencyTimeLimit=15, persistPolicy="OnUpdate", persistPeriod=200,
     persistLocation="foo", persistName="bar")
 public class AnnotationTestBean implements IJmxTestBean {

     private String name;
     private int age;

     @ManagedAttribute(description="The Age Attribute", currencyTimeLimit=15)
     public int getAge() {
       return age;
     }

     public void setAge(int age) {
       this.age = age;
     }

     @ManagedAttribute(description="The Name Attribute",
         currencyTimeLimit=20,
         defaultValue="bar",
         persistPolicy="OnUpdate")
     public void setName(String name) {
       this.name = name;
     }

     @ManagedAttribute(defaultValue="foo", persistPeriod=300)
     public String getName() {
       return name;
     }

     @ManagedOperation(description="Add two numbers")
     @ManagedOperationParameters({
       @ManagedOperationParameter(name = "x", description = "The first number"),
       @ManagedOperationParameter(name = "y", description = "The second number")})
     public int add(int x, int y) {
       return x + y;
     }

     public void dontExposeMe() {
       throw new RuntimeException();
     }
 }



As you can see little has changed, other than the basic syntax of the metadata definitions.

 <beans>
     <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
         <property name="assembler" ref="assembler"/>
         <property name="namingStrategy" ref="namingStrategy"/>
         <property name="autodetect" value="true"/>
     </bean>

      <bean id="jmxAttributeSource"
            class="org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/>

      <!-- will create management interface using annotation metadata -->
      <bean id="assembler"
            class="org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler">
          <property name="attributeSource" ref="jmxAttributeSource"/>
      </bean>

      <!-- will pick up the ObjectName from the annotation -->
      <bean id="namingStrategy"
            class="org.springframework.jmx.export.naming.MetadataNamingStrategy">
          <property name="attributeSource" ref="jmxAttributeSource"/>
      </bean>

     <bean id="testBean" class="org.springframework.jmx.AnnotationTestBean">
          <property name="name" value="TEST"/>
          <property name="age" value="100"/>
     </bean>
 </beans>




                                           Spring Framework (2.5.6)                            463
JMX


20.3.4. Source-Level Metadata Types

The following source level metadata types are available for use in Spring JMX:



Table 20.2. Source-Level Metadata Types

          Purpose             Commons Attributes            JDK 5.0 Annotation       Attribute / Annotation
                                  Attribute                                                  Type

Mark all instances of a      ManagedResource             @ManagedResource           Class
Class as JMX managed
resources

Mark a method as a JMX       ManagedOperation            @ManagedOperation          Method
operation

Mark a getter or setter as   ManagedAttribute            @ManagedAttribute          Method (only getters and
one half of a JMX                                                                   setters)
attribute

Define descriptions for      ManagedOperationParameter                     Method
                                                    @ManagedOperationParameter
operation parameters                                     and
                                                         @ManagedOperationParameters



The following configuration parameters are available for use on these source-level metadata types:



Table 20.3. Source-Level Metadata Parameters

             Parameter                             Description                         Applies to

ObjectName                           Used by MetadataNamingStrategy ManagedResource
                                     to determine the ObjectName of a
                                     managed resource

description                          Sets the friendly description of the ManagedResource,
                                     resource, attribute or operation     ManagedAttribute,
                                                                          ManagedOperation,
                                                                           ManagedOperationParameter

currencyTimeLimit                    Sets       the    value     of     the ManagedResource,
                                     currencyTimeLimit           descriptor ManagedAttribute
                                     field

defaultValue                         Sets the value of the defaultValue ManagedAttribute
                                     descriptor field

log                                  Sets the value of the log descriptor ManagedResource
                                     field

logFile                              Sets the value of the logFile ManagedResource
                                     descriptor field

persistPolicy                        Sets       thevalue     of     the ManagedResource
                                     persistPolicy descriptor field


                                             Spring Framework (2.5.6)                                    464
JMX


            Parameter                           Description                       Applies to

persistPeriod                      Sets      the    value     of     the ManagedResource
                                   persistPeriod    descriptor field

persistLocation                    Sets      thevalue     of      the ManagedResource
                                   persistLocation descriptor field

persistName                        Sets the value of the persistName ManagedResource
                                   descriptor field

name                               Sets the display name of an ManagedOperationParameter
                                   operation parameter

index                              Sets the index of an operation ManagedOperationParameter
                                   parameter



20.3.5. The AutodetectCapableMBeanInfoAssembler interface

To simplify configuration even further, Spring introduces the AutodetectCapableMBeanInfoAssembler
interface which extends the MBeanInfoAssembler interface to add support for autodetection of MBean
resources. If you configure the MBeanExporter with an instance of AutodetectCapableMBeanInfoAssembler
then it is allowed to "vote" on the inclusion of beans for exposure to JMX.

Out of the box, the only implementation of the AutodetectCapableMBeanInfo interface is the
MetadataMBeanInfoAssembler which will vote to include any bean which is marked with the ManagedResource
attribute. The default approach in this case is to use the bean name as the ObjectName which results in a
configuration like this:

 <beans>

   <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
     <!-- notice how no 'beans' are explicitly configured here -->
     <property name="autodetect" value="true"/>
     <property name="assembler" ref="assembler"/>
   </bean>

   <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
     <property name="name" value="TEST"/>
     <property name="age" value="100"/>
   </bean>

   <!-- (for Commons Attributes-based metadata) -->
   <bean id="attributeSource"
         class="org.springframework.jmx.export.metadata.AttributesJmxAttributeSource">
     <property name="attributes">
       <bean class="org.springframework.metadata.commons.CommonsAttributes"/>
     </property>
   </bean>

   <!-- (for Java 5+ annotations-based metadata) -->
   <!--
   <bean id="attributeSource"
         class="org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/>
   -->

   <bean id="assembler" class="org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler">
     <property name="attributeSource" ref="attributeSource"/>
   </bean>

 </beans>




                                          Spring Framework (2.5.6)                                   465
JMX


Notice that in this configuration no beans are passed to the MBeanExporter; however, the JmxTestBean will still
be registered since it is marked with the ManagedResource attribute and the MetadataMBeanInfoAssembler
detects this and votes to include it. The only problem with this approach is that the name of the JmxTestBean
now has business meaning. You can address this issue by changing the default behavior for ObjectName
creation as defined in the section entitled Section 20.4, “Controlling the ObjectNames for your beans”.


20.3.6. Defining management interfaces using Java interfaces

In      addition    to      the      MetadataMBeanInfoAssembler,           Spring also includes     the
InterfaceBasedMBeanInfoAssembler      which allows you to constrain the methods and properties that are
exposed based on the set of methods defined in a collection of interfaces.

Although the standard mechanism for exposing MBeans is to use interfaces and a simple naming scheme, the
InterfaceBasedMBeanInfoAssembler extends this functionality by removing the need for naming conventions,
allowing you to use more than one interface and removing the need for your beans to implement the MBean
interfaces.

Consider this interface that is used to define a management interface for the JmxTestBean class that you saw
earlier:

 public interface IJmxTestBean {

     public int add(int x, int y);

     public long myOperation();

     public int getAge();

     public void setAge(int age);

     public void setName(String name);

     public String getName();
 }



This interface defines the methods and properties that will be exposed as operations and attributes on the JMX
MBean. The code below shows how to configure Spring JMX to use this interface as the definition for the
management interface:

 <beans>

     <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
       <property name="beans">
         <map>
           <entry key="bean:name=testBean5" value-ref="testBean"/>
         </map>
       </property>
       <property name="assembler">
         <bean class="org.springframework.jmx.export.assembler.InterfaceBasedMBeanInfoAssembler">
           <property name="managedInterfaces">
             <value>org.springframework.jmx.IJmxTestBean</value>
           </property>
         </bean>
       </property>
     </bean>

     <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
       <property name="name" value="TEST"/>
       <property name="age" value="100"/>
     </bean>

 </beans>




                                          Spring Framework (2.5.6)                                         466
JMX


Here you can see that the InterfaceBasedMBeanInfoAssembler is configured to use the IJmxTestBean
interface when constructing the management interface for any bean. It is important to understand that beans
processed by the InterfaceBasedMBeanInfoAssembler are not required to implement the interface used to
generate the JMX management interface.

In the case above, the IJmxTestBean interface is used to construct all management interfaces for all beans. In
many cases this is not the desired behavior and you may want to use different interfaces for different beans. In
this case, you can pass InterfaceBasedMBeanInfoAssembler a Properties instance via the
interfaceMappings property, where the key of each entry is the bean name and the value of each entry is a
comma-separated list of interface names to use for that bean.

If no management interface is specified through either the managedInterfaces or interfaceMappings
properties, then the InterfaceBasedMBeanInfoAssembler will reflect on the bean and use all of the interfaces
implemented by that bean to create the management interface.


20.3.7. Using MethodNameBasedMBeanInfoAssembler

The MethodNameBasedMBeanInfoAssembler allows you to specify a list of method names that will be exposed
to JMX as attributes and operations. The code below shows a sample configuration for this:

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
     <property name="beans">
       <map>
         <entry key="bean:name=testBean5" value-ref="testBean"/>
       </map>
     </property>
     <property name="assembler">
       <bean class="org.springframework.jmx.export.assembler.MethodNameBasedMBeanInfoAssembler">
         <property name="managedMethods">
           <value>add,myOperation,getName,setName,getAge</value>
         </property>
       </bean>
     </property>
 </bean>



Here you can see that the methods add and myOperation will be exposed as JMX operations and getName(),
setName(String) and getAge() will be exposed as the appropriate half of a JMX attribute. In the code above,
the method mappings apply to beans that are exposed to JMX. To control method exposure on a bean-by-bean
basis, use the methodMappings property of MethodNameMBeanInfoAssembler to map bean names to lists of
method names.


20.4. Controlling the ObjectNames for your beans
Behind the scenes, the MBeanExporter delegates to an implementation of the ObjectNamingStrategy to obtain
ObjectNames for each of the beans it is registering. The default implementation, KeyNamingStrategy, will, by
default, use the key of the beans Map as the ObjectName. In addition, the KeyNamingStrategy can map the key
of the beans Map to an entry in a Properties file (or files) to resolve the ObjectName. In addition to the
KeyNamingStrategy, Spring provides two additional ObjectNamingStrategy implementations: the
IdentityNamingStrategy that builds an ObjectName based on the JVM identity of the bean and the
MetadataNamingStrategy that uses source level metadata to obtain the ObjectName.



20.4.1. Reading ObjectNames from Properties

You can configure your own KeyNamingStrategy instance and configure it to read ObjectNames from a


                                          Spring Framework (2.5.6)                                          467
JMX

Properties   instance rather than use bean key. The KeyNamingStrategy will attempt to locate an entry in the
Properties  with a key corresponding to the bean key. If no entry is found or if the Properties instance is null
then the bean key itself is used.

The code below shows a sample configuration for the KeyNamingStrategy:

 <beans>

    <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
      <property name="beans">
        <map>
          <entry key="testBean" value-ref="testBean"/>
        </map>
      </property>
      <property name="namingStrategy" ref="namingStrategy"/>
    </bean>

    <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
      <property name="name" value="TEST"/>
      <property name="age" value="100"/>
    </bean>

    <bean id="namingStrategy" class="org.springframework.jmx.export.naming.KeyNamingStrategy">
      <property name="mappings">
        <props>
           <prop key="testBean">bean:name=testBean1</prop>
        </props>
      </property>
      <property name="mappingLocations">
        <value>names1.properties,names2.properties</value>
      </property>
    </bean

 </beans>



Here an instance of KeyNamingStrategy is configured with a Properties instance that is merged from the
Properties instance defined by the mapping property and the properties files located in the paths defined by
the mappings property. In this configuration, the testBean bean will be given the ObjectName
bean:name=testBean1 since this is the entry in the Properties instance that has a key corresponding to the
bean key.

If no entry in the Properties instance can be found then the bean key name is used as the ObjectName.


20.4.2. Using the MetadataNamingStrategy

The MetadataNamingStrategy uses the objectName property of the ManagedResource attribute on each bean to
create the ObjectName. The code below shows the configuration for the MetadataNamingStrategy:

 <beans>

    <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
      <property name="beans">
        <map>
          <entry key="testBean" value-ref="testBean"/>
        </map>
      </property>
      <property name="namingStrategy" ref="namingStrategy"/>
    </bean>

    <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
      <property name="name" value="TEST"/>
      <property name="age" value="100"/>
    </bean>

    <bean id="namingStrategy" class="org.springframework.jmx.export.naming.MetadataNamingStrategy">
      <property name="attributeSource" ref="attributeSource"/>
    </bean>

    <bean id="attributeSource"


                                          Spring Framework (2.5.6)                                          468
JMX


          class="org.springframework.jmx.export.metadata.AttributesJmxAttributeSource"/>

    </beans>



If no objectName has been provided for the ManagedResource attribute, then an ObjectName will be created
with the following format: [fully-qualified-package-name]:type=[short-classname],name=[bean-name]. For
example, the generated ObjectName for the following bean would be: com.foo:type=MyClass,name=myBean.

    <bean id="myBean" class="com.foo.MyClass"/>




20.4.3. The <context:mbean-export/> element

If you are using at least Java 5, then a convenience subclass of MBeanExporter is available:
AnnotationMBeanExporter. When defining an instance of this subclass, the namingStrategy, assembler, and
attributeSource configuration is no longer needed, since it will always use standard Java annotation-based
metadata (autodetection is always enabled as well). In fact, an even simpler syntax is supported with the
inclusion of Spring's 'context' namespace in Spring 2.5. Rather than defining an MBeanExporter bean, provide
this single element:

    <context:mbean-export/>



You can provide a reference to a particular MBean server if necessary, and the defaultDomain attribute (a
property of AnnotationMBeanExporter) accepts an alternate value for the generated MBean ObjectNames'
domains. This would be used in place of the fully qualified package name as described in the previous section
on MetadataNamingStrategy.

    <context:mbean-export server="myMBeanServer" default-domain="myDomain"/>


.

               Note
               Do not use interface-based AOP proxies in combination with autodetection of JMX annotations in
               your bean classes. Interface-based proxies 'hide' the target class, which also hides the JMX
               managed resource annotations. Hence, use target-class proxies in that case: through setting the
               'proxy-target-class' flag on <aop:config/>, <tx:annotation-driven/>, etc. Otherwise, your JMX
               beans might be silently ignored at startup...



20.5. JSR-160 Connectors
For remote access, Spring JMX module offers two FactoryBean implementations inside the
org.springframework.jmx.support package for creating both server- and client-side connectors.



20.5.1. Server-side Connectors

To have Spring JMX create, start and expose a JSR-160 JMXConnectorServer use the following configuration:

    <bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactoryBean"/>




                                            Spring Framework (2.5.6)                                      469
JMX


By     default     ConnectorServerFactoryBean          creates   a    JMXConnectorServer    bound     to
"service:jmx:jmxmp://localhost:9875". The serverConnector bean thus exposes the local MBeanServer to
clients through the JMXMP protocol on localhost, port 9875. Note that the JMXMP protocol is marked as
optional by the JSR 160 specification: currently, the main open-source JMX implementation, MX4J, and the
one provided with J2SE 5.0 do not support JMXMP.

To specify another URL and register the JMXConnectorServer itself with the MBeanServer use the serviceUrl
and ObjectName properties respectively:

 <bean id="serverConnector"
       class="org.springframework.jmx.support.ConnectorServerFactoryBean">
   <property name="objectName" value="connector:name=rmi"/>
   <property name="serviceUrl"
             value="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/myconnector"/>
 </bean>



If the ObjectName property is set Spring will automatically register your connector with the MBeanServer under
that ObjectName. The example below shows the full set of parameters which you can pass to the
ConnectorServerFactoryBean when creating a JMXConnector:

 <bean id="serverConnector"
       class="org.springframework.jmx.support.ConnectorServerFactoryBean">
   <property name="objectName" value="connector:name=iiop"/>
   <property name="serviceUrl"
                value="service:jmx:iiop://localhost/jndi/iiop://localhost:900/myconnector"/>
   <property name="threaded" value="true"/>
   <property name="daemon" value="true"/>
   <property name="environment">
     <map>
       <entry key="someKey" value="someValue"/>
     </map>
   </property>
 </bean>



Note that when using a RMI-based connector you need the lookup service (tnameserv or rmiregistry) to be
started in order for the name registration to complete. If you are using Spring to export remote services for you
via RMI, then Spring will already have constructed an RMI registry. If not, you can easily start a registry using
the following snippet of configuration:

 <bean id="registry" class="org.springframework.remoting.rmi.RmiRegistryFactoryBean">
   <property name="port" value="1099"/>
 </bean>




20.5.2. Client-side Connectors

To   create   an   MBeanServerConnectionto a remote              JSR-160     enabled   MBeanServer     use   the
MBeanServerConnectionFactoryBean as shown below:

 <bean id="clientConnector" class="org.springframework.jmx.support.MBeanServerConnectionFactoryBean">
   <property name="serviceUrl" value="service:jmx:rmi://localhost:9875"/>
 </bean>




20.5.3. JMX over Burlap/Hessian/SOAP

JSR-160 permits extensions to the way in which communication is done between the client and the server. The
examples above are using the mandatory RMI-based implementation required by the JSR-160 specification
(IIOP and JRMP) and the (optional) JMXMP. By using other providers or JMX implementations (such as


                                           Spring Framework (2.5.6)                                          470
JMX

MX4J) you can take advantage of protocols like SOAP, Hessian, Burlap over simple HTTP or SSL and others:

 <bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactoryBean">
   <property name="objectName" value="connector:name=burlap"/>
   <property name="serviceUrl" value="service:jmx:burlap://localhost:9874"/>
 </bean>



In the case of the above example, MX4J 3.0.0 was used; see the official MX4J documentation for more
information.


20.6. Accessing MBeans via Proxies
Spring JMX allows you to create proxies that re-route calls to MBeans registered in a local or remote
MBeanServer. These proxies provide you with a standard Java interface through which you can interact with
your MBeans. The code below shows how to configure a proxy for an MBean running in a local MBeanServer:

 <bean id="proxy" class="org.springframework.jmx.access.MBeanProxyFactoryBean">
     <property name="objectName" value="bean:name=testBean"/>
     <property name="proxyInterface" value="org.springframework.jmx.IJmxTestBean"/>
 </bean>



Here you can see that a proxy is created for the MBean registered under the ObjectName: bean:name=testBean.
The set of interfaces that the proxy will implement is controlled by the proxyInterfaces property and the rules
for mapping methods and properties on these interfaces to operations and attributes on the MBean are the same
rules used by the InterfaceBasedMBeanInfoAssembler.

The   MBeanProxyFactoryBean   can create a proxy to any MBean that is accessible via an
MBeanServerConnection. By default, the local MBeanServer is located and used, but you can override this and
provide an MBeanServerConnection pointing to a remote MBeanServer to cater for proxies pointing to remote
MBeans:

 <bean id="clientConnector"
       class="org.springframework.jmx.support.MBeanServerConnectionFactoryBean">
   <property name="serviceUrl" value="service:jmx:rmi://remotehost:9875"/>
 </bean>

 <bean id="proxy" class="org.springframework.jmx.access.MBeanProxyFactoryBean">
   <property name="objectName" value="bean:name=testBean"/>
   <property name="proxyInterface" value="org.springframework.jmx.IJmxTestBean"/>
   <property name="server" ref="clientConnector"/>
 </bean>



Here you can see that we create an MBeanServerConnection pointing to a remote machine using the
MBeanServerConnectionFactoryBean.     This MBeanServerConnection is then passed to the
MBeanProxyFactoryBean via the server property. The proxy that is created will forward all invocations to the
MBeanServer via this MBeanServerConnection.



20.7. Notifications
Spring's JMX offering includes comprehensive support for JMX notifications.


20.7.1. Registering Listeners for Notifications

Spring's JMX support makes it very easy to register any number of NotificationListeners with any number
of MBeans (this includes MBeans exported by Spring's MBeanExporter and MBeans registered via some other

                                          Spring Framework (2.5.6)                                         471
JMX

mechanism). By way of an example, consider the scenario where one would like to be informed (via a
Notification) each and every time an attribute of a target MBean changes.

 package com.example;

 import   javax.management.AttributeChangeNotification;
 import   javax.management.Notification;
 import   javax.management.NotificationFilter;
 import   javax.management.NotificationListener;

 public class ConsoleLoggingNotificationListener
                implements NotificationListener, NotificationFilter {

      public void handleNotification(Notification notification, Object handback) {
          System.out.println(notification);
          System.out.println(handback);
      }

      public boolean isNotificationEnabled(Notification notification) {
          return AttributeChangeNotification.class.isAssignableFrom(notification.getClass());
      }
 }



 <beans>

     <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
       <property name="beans">
         <map>
           <entry key="bean:name=testBean1" value-ref="testBean"/>
         </map>
       </property>
       <property name="notificationListenerMappings">
         <map>
           <entry key="bean:name=testBean1">
             <bean class="com.example.ConsoleLoggingNotificationListener"/>
           </entry>
         </map>
       </property>
     </bean>

     <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
       <property name="name" value="TEST"/>
       <property name="age" value="100"/>
     </bean>

 </beans>



With the above configuration in place, every time a JMX Notification is broadcast from the target MBean
(bean:name=testBean1), the ConsoleLoggingNotificationListener bean that was registered as a listener via
the notificationListenerMappings property will be notified. The ConsoleLoggingNotificationListener
bean can then take whatever action it deems appropriate in response to the Notification.

You can also use straight bean names as the link between exported beans and listeners:

 <beans>

     <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
       <property name="beans">
         <map>
           <entry key="bean:name=testBean1" value-ref="testBean"/>
         </map>
       </property>
       <property name="notificationListenerMappings">
         <map>
           <entry key="testBean">
             <bean class="com.example.ConsoleLoggingNotificationListener"/>
           </entry>
         </map>
       </property>
     </bean>

     <bean id="testBean" class="org.springframework.jmx.JmxTestBean">



                                          Spring Framework (2.5.6)                                  472
JMX

      <property name="name" value="TEST"/>
      <property name="age" value="100"/>
    </bean>

 </beans>



If one wants to register a single NotificationListener instance for all of the beans that the enclosing
MBeanExporter is exporting, one can use the special wildcard '*' (sans quotes) as the key for an entry in the
notificationListenerMappings property map; for example:

 <property name="notificationListenerMappings">
   <map>
     <entry key="*">
       <bean class="com.example.ConsoleLoggingNotificationListener"/>
     </entry>
   </map>
 </property>



If one needs to do the inverse (that is, register a number of distinct listeners against an MBean), then one has to
use     the    notificationListeners          list    property    instead     (and     in    preference   to    the
notificationListenerMappings property). This time, instead of configuring simply a NotificationListener
for a single MBean, one configures NotificationListenerBean instances... a NotificationListenerBean
encapsulates a NotificationListener and the ObjectName (or ObjectNames) that it is to be registered against
in an MBeanServer. The NotificationListenerBean also encapsulates a number of other properties such as a
NotificationFilter and an arbitrary handback object that can be used in advanced JMX notification
scenarios.

The configuration when using NotificationListenerBean instances is not wildly different to what was
presented previously:

 <beans>

    <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
      <property name="beans">
        <map>
          <entry key="bean:name=testBean1" value-ref="testBean"/>
        </map>
      </property>
      <property name="notificationListeners">
          <list>
               <bean class="org.springframework.jmx.export.NotificationListenerBean">
                   <constructor-arg>
                       <bean class="com.example.ConsoleLoggingNotificationListener"/>
                   </constructor-arg>
                   <property name="mappedObjectNames">
                       <list>
                           <value>bean:name=testBean1</value>
                       </list>
                   </property>
               </bean>
          </list>
      </property>
    </bean>

    <bean id="testBean" class="org.springframework.jmx.JmxTestBean">
      <property name="name" value="TEST"/>
      <property name="age" value="100"/>
    </bean>

 </beans>



The above example is equivalent to the first notification example. Lets assume then that we want to be given a
handback object every time a Notification is raised, and that additionally we want to filter out extraneous
Notifications by supplying a NotificationFilter. (For a full discussion of just what a handback object is,
and indeed what a NotificationFilter is, please do consult that section of the JMX specification (1.2)


                                            Spring Framework (2.5.6)                                           473
JMX

entitled 'The JMX Notification Model'.)

 <beans>

   <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
     <property name="beans">
       <map>
         <entry key="bean:name=testBean1" value-ref="testBean1"/>
         <entry key="bean:name=testBean2" value-ref="testBean2"/>
       </map>
     </property>
     <property name="notificationListeners">
         <list>
              <bean class="org.springframework.jmx.export.NotificationListenerBean">
                  <constructor-arg ref="customerNotificationListener"/>
                  <property name="mappedObjectNames">
                      <list>
                          <!-- handles notifications from two distinct MBeans -->
                          <value>bean:name=testBean1</value>
                          <value>bean:name=testBean2</value>
                      </list>
                  </property>
                  <property name="handback">
                      <bean class="java.lang.String">
                          <constructor-arg value="This could be anything..."/>
                      </bean>
                  </property>
                  <property name="notificationFilter" ref="customerNotificationListener"/>
              </bean>
         </list>
     </property>
   </bean>

   <!-- implements both the NotificationListener and NotificationFilter interfaces -->
   <bean id="customerNotificationListener" class="com.example.ConsoleLoggingNotificationListener"/>

   <bean id="testBean1" class="org.springframework.jmx.JmxTestBean">
     <property name="name" value="TEST"/>
     <property name="age" value="100"/>
   </bean>

   <bean id="testBean2" class="org.springframework.jmx.JmxTestBean">
     <property name="name" value="ANOTHER TEST"/>
     <property name="age" value="200"/>
   </bean>

 </beans>




20.7.2. Publishing Notifications

Spring provides support not just for registering to receive Notifications, but also for publishing
Notifications.


            Note
            Please note that this section is really only relevant to Spring managed beans that have been exposed
            as MBeans via an MBeanExporter; any existing, user-defined MBeans should use the standard JMX
            APIs for notification publication.


The key interface in Spring's JMX notification publication support is the NotificationPublisher interface
(defined in the org.springframework.jmx.export.notification package). Any bean that is going to be
exported as an MBean via an MBeanExporter instance can implement the related
NotificationPublisherAware interface to gain access to a NotificationPublisher instance. The
NotificationPublisherAware interface simply supplies an instance of a NotificationPublisher to the
implementing bean via a simple setter method, which the bean can then use to publish Notifications.



                                          Spring Framework (2.5.6)                                          474
JMX


As stated in the Javadoc for the NotificationPublisher class, managed beans that are publishing events via
the NotificationPublisher mechanism are not responsible for the state management of any notification
listeners and the like ... Spring's JMX support will take care of handling all the JMX infrastructure issues. All
one need do as an application developer is implement the NotificationPublisherAware interface and start
publishing events using the supplied NotificationPublisher instance. Note that the NotificationPublisher
will be set after the managed bean has been registered with an MBeanServer.

Using a NotificationPublisher instance is quite straightforward... one simply creates a JMX Notification
instance (or an instance of an appropriate Notification subclass), populates the notification with the data
pertinent to the event that is to be published, and one then invokes the sendNotification(Notification) on
the NotificationPublisher instance, passing in the Notification.

Find below a simple example... in this scenario, exported instances of the JmxTestBean are going to publish a
NotificationEvent every time the add(int, int) operation is invoked.

 package org.springframework.jmx;

 import org.springframework.jmx.export.notification.NotificationPublisherAware;
 import org.springframework.jmx.export.notification.NotificationPublisher;
 import javax.management.Notification;

 public class JmxTestBean implements IJmxTestBean, NotificationPublisherAware {

      private   String name;
      private   int age;
      private   boolean isSuperman;
      private   NotificationPublisher publisher;

      // other getters and setters omitted for clarity

      public int add(int x, int y) {
          int answer = x + y;
          this.publisher.sendNotification(new Notification("add", this, 0));
          return answer;
      }

      public void dontExposeMe() {
          throw new RuntimeException();
      }

      public void setNotificationPublisher(NotificationPublisher notificationPublisher) {
          this.publisher = notificationPublisher;
      }
 }



The NotificationPublisher interface and the machinery to get it all working is one of the nicer features of
Spring's JMX support. It does however come with the price tag of coupling your classes to both Spring and
JMX; as always, the advice here is to be pragmatic... if you need the functionality offered by the
NotificationPublisher and you can accept the coupling to both Spring and JMX, then do so.



20.8. Further Resources
This section contains links to further resources about JMX.


• The JMX homepage at Sun

• The JMX specification (JSR-000003)

• The JMX Remote API specification (JSR-000160)

• The MX4J homepage (an Open Source implementation of various JMX specs)

                                           Spring Framework (2.5.6)                                          475
JMX


• Getting Started with JMX - an introductory article from Sun.




                                          Spring Framework (2.5.6)   476
Chapter 21. JCA CCI

21.1. Introduction
J2EE provides a specification to standardize access to enterprise information systems (EIS): the JCA (Java
Connector Architecture). This specification is divided into several different parts:


• SPI (Service provider interfaces) that the connector provider must implement. These interfaces constitute a
  resource adapter which can be deployed on a J2EE application server. In such a scenario, the server manages
  connection pooling, transaction and security (managed mode). The application server is also responsible for
  managing the configuration, which is held outside the client application. A connector can be used without an
  application server as well; in this case, the application must configure it directly (non-managed mode).

• CCI (Common Client Interface) that an application can use to interact with the connector and thus
  communicate with an EIS. An API for local transaction demarcation is provided as well.

The aim of the Spring CCI support is to provide classes to access a CCI connector in typical Spring style,
leveraging the Spring Framework's general resource and transaction management facilities.

            Note
            The client side of connectors doesn't alway use CCI. Some connectors expose their own APIs, only
            providing JCA resource adapter to use the system contracts of a J2EE container (connection
            pooling, global transactions, security). Spring does not offer special support for such
            connector-specific APIs.



21.2. Configuring CCI

21.2.1. Connector configuration

The base resource to use JCA CCI is the ConnectionFactory interface. The connector used must provide an
implementation of this interface.

To use your connector, you can deploy it on your application server and fetch the ConnectionFactory from the
server's JNDI environment (managed mode). The connector must be packaged as a RAR file (resource adapter
archive) and contain a ra.xml file to describe its deployment characteristics. The actual name of the resource is
specified when you deploy it. To access it within Spring, simply use Spring's JndiObjectFactoryBean to fetch
the factory by its JNDI name.

Another way to use a connector is to embed it in your application (non-managed mode), not using an
application server to deploy and configure it. Spring offers the possibility to configure a connector as a bean,
through a provided FactoryBean (LocalConnectionFactoryBean). In this manner, you only need the connector
library in the classpath (no RAR file and no ra.xml descriptor needed). The library must be extracted from the
connector's RAR file, if necessary.

Once you have got access to your ConnectionFactory instance, you can inject it into your components. These
components can either be coded against the plain CCI API or leverage Spring's support classes for CCI access
(e.g. CciTemplate).


                                           Spring Framework (2.5.6)                                          477
JCA CCI


            Note
            When you use a connector in non-managed mode, you can't use global transactions because the
            resource is never enlisted / delisted in the current global transaction of the current thread. The
            resource is simply not aware of any global J2EE transactions that might be running.



21.2.2. ConnectionFactory configuration in Spring

In order to make connections to the EIS, you need to obtain a ConnectionFactory from the application server
if you are in a managed mode, or directly from Spring if you are in a non-managed mode.

In a managed mode, you access a ConnectionFactory from JNDI; its properties will be configured in the
application server.

 <bean id="eciConnectionFactory" class="org.springframework.jndi.JndiObjectFactoryBean">
   <property name="jndiName" value="eis/cicseci"/>
 </bean>



In non-managed mode, you must configure the ConnectionFactory you want to use in the configuration of
Spring as a JavaBean. The LocalConnectionFactoryBean class offers this setup style, passing in the
ManagedConnectionFactory implementation of your connector, exposing the application-level CCI
ConnectionFactory.

 <bean id="eciManagedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory">
   <property name="serverName" value="TXSERIES"/>
   <property name="connectionURL" value="tcp://localhost/"/>
   <property name="portNumber" value="2006"/>
 </bean>

 <bean id="eciConnectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean">
   <property name="managedConnectionFactory" ref="eciManagedConnectionFactory"/>
 </bean>



            Note
            You can't directly instantiate a specific ConnectionFactory. You need to go through the
            corresponding implementation of the ManagedConnectionFactory interface for your connector.
            This interface is part of the JCA SPI specification.



21.2.3. Configuring CCI connections

JCA CCI allow the developer to configure the connections to the EIS using the ConnectionSpec
implementation of your connector. In order to configure its properties, you need to wrap the target connection
factory with a dedicated adapter, ConnectionSpecConnectionFactoryAdapter. So, the dedicated
ConnectionSpec can be configured with the property connectionSpec (as an inner bean).

This property is not mandatory because the CCI ConnectionFactory interface defines two different methods to
obtain a CCI connection. Some of the ConnectionSpec properties can often be configured in the application
server (in managed mode) or on the corresponding local ManagedConnectionFactory implementation.

 public interface ConnectionFactory implements Serializable, Referenceable {
   ...
   Connection getConnection() throws ResourceException;
   Connection getConnection(ConnectionSpec connectionSpec) throws ResourceException;
   ...


                                          Spring Framework (2.5.6)                                        478
JCA CCI


 }



Spring provides a ConnectionSpecConnectionFactoryAdapter that allows for specifying a ConnectionSpec
instance to use for all operations on a given factory. If the adapter's connectionSpec property is specified, the
adapter uses the getConnection variant without argument, else the one with the ConnectionSpec argument.

 <bean id="managedConnectionFactory"
     class="com.sun.connector.cciblackbox.CciLocalTxManagedConnectionFactory">
   <property name="connectionURL" value="jdbc:hsqldb:hsql://localhost:9001"/>
   <property name="driverName" value="org.hsqldb.jdbcDriver"/>
 </bean>

 <bean id="targetConnectionFactory"
     class="org.springframework.jca.support.LocalConnectionFactoryBean">
   <property name="managedConnectionFactory" ref="managedConnectionFactory"/>
 </bean>

 <bean id="connectionFactory"
     class="org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter">
   <property name="targetConnectionFactory" ref="targetConnectionFactory"/>
   <property name="connectionSpec">
     <bean class="com.sun.connector.cciblackbox.CciConnectionSpec">
       <property name="user" value="sa"/>
       <property name="password" value=""/>
     </bean>
   </property>
 </bean>




21.2.4. Using a single CCI connection

If you want to use a single CCI connection, Spring provides a further ConnectionFactory adapter to manage
this. The SingleConnectionFactory adapter class will open a single connection lazily and close it when this
bean is destroyed at application shutdown. This class will expose special Connection proxies that behave
accordingly, all sharing the same underlying physical connection.

 <bean id="eciManagedConnectionFactory"
     class="com.ibm.connector2.cics.ECIManagedConnectionFactory">
   <property name="serverName" value="TEST"/>
   <property name="connectionURL" value="tcp://localhost/"/>
   <property name="portNumber" value="2006"/>
 </bean>

 <bean id="targetEciConnectionFactory"
     class="org.springframework.jca.support.LocalConnectionFactoryBean">
   <property name="managedConnectionFactory" ref="eciManagedConnectionFactory"/>
 </bean>

 <bean id="eciConnectionFactory"
     class="org.springframework.jca.cci.connection.SingleConnectionFactory">
   <property name="targetConnectionFactory" ref="targetEciConnectionFactory"/>
 </bean>



            Note
            This ConnectionFactory adapter cannot directly be configured with a ConnectionSpec. Use an
            intermediary ConnectionSpecConnectionFactoryAdapter that the SingleConnectionFactory
            talks to if you require a single connection for a specific ConnectionSpec.



21.3. Using Spring's CCI access support


                                           Spring Framework (2.5.6)                                          479
JCA CCI


21.3.1. Record conversion

One of the aims of the JCA CCI support is to provide convenient facilities for manipulating CCI records. The
developer can specify the strategy to create records and extract datas from records, for use with Spring's
CciTemplate. The following interfaces will configure the strategy to use input and output records if you don't
want to work with records directly in your application.

In order to create an input Record, the developer can use a dedicated implementation of the RecordCreator
interface.

 public interface RecordCreator {

     Record createRecord(RecordFactory recordFactory) throws ResourceException, DataAccessException;
 }



As you can see, the createRecord(..) method receives a RecordFactory instance as parameter, which
corresponds to the RecordFactory of the ConnectionFactory used. This reference can be used to create
IndexedRecord or MappedRecord instances. The following sample shows how to use the RecordCreator
interface and indexed/mapped records.

 public class MyRecordCreator implements RecordCreator {

     public Record createRecord(RecordFactory recordFactory) throws ResourceException {
       IndexedRecord input = recordFactory.createIndexedRecord("input");
       input.add(new Integer(id));
       return input;
     }
 }



An output Record can be used to receive data back from the EIS. Hence, a specific implementation of the
RecordExtractor interface can be passed to Spring's CciTemplate for extracting data from the output Record.

 public interface RecordExtractor {

     Object extractData(Record record) throws ResourceException, SQLException, DataAccessException;
 }



The following sample shows how to use the RecordExtractor interface.

 public class MyRecordExtractor implements RecordExtractor {

     public Object extractData(Record record) throws ResourceException {
       CommAreaRecord commAreaRecord = (CommAreaRecord) record;
       String str = new String(commAreaRecord.toByteArray());
       String field1 = string.substring(0,6);
       String field2 = string.substring(6,1);
       return new OutputObject(Long.parseLong(field1), field2);
     }
 }




21.3.2. The CciTemplate

The CciTemplate is the central class of the core CCI support package (org.springframework.jca.cci.core).
It simplifies the use of CCI since it handles the creation and release of resources. This helps to avoid common
errors like forgetting to always close the connection. It cares for the lifecycle of connection and interaction
objects, letting application code focus on generating input records from application data and extracting
application data from output records.



                                          Spring Framework (2.5.6)                                         480
JCA CCI


The JCA CCI specification defines two distinct methods to call operations on an EIS. The CCI Interaction
interface provides two execute method signatures:

 public interface javax.resource.cci.Interaction {
   ...
   boolean execute(InteractionSpec spec, Record input, Record output) throws ResourceException;

     Record execute(InteractionSpec spec, Record input) throws ResourceException;
     ...
 }



Depending on the template method called, CciTemplate will know which execute method to call on the
interaction. In any case, a correctly initialized InteractionSpec instance is mandatory.

CciTemplate.execute(..)    can be used in two ways:


• With direct Record arguments. In this case, you simply need to pass the CCI input record in, and the returned
  object be the corresponding CCI output record.

• With application objects, using record mapping. In this case, you need to provide corresponding
  RecordCreator and RecordExtractor instances.

With the first approach, the following methods of the template will be used. These methods directly correspond
to those on the Interaction interface.

 public class CciTemplate implements CciOperations {

     public Record execute(InteractionSpec spec, Record inputRecord)
         throws DataAccessException { ... }

     public void execute(InteractionSpec spec, Record inputRecord, Record outputRecord)
         throws DataAccessException { ... }

 }



With the second approach, we need to specify the record creation and record extraction strategies as arguments.
The interfaces used are those describe in the previous section on record conversion. The corresponding
CciTemplate methods are the following:

 public class CciTemplate implements CciOperations {

     public Record execute(InteractionSpec spec, RecordCreator inputCreator)
         throws DataAccessException { ... }

     public Object execute(InteractionSpec spec, Record inputRecord, RecordExtractor outputExtractor)
         throws DataAccessException { ... }

     public Object execute(InteractionSpec spec, RecordCreator creator, RecordExtractor extractor)
         throws DataAccessException { ... }

 }



Unless the outputRecordCreator property is set on the template (see the following section), every method will
call the corresponding execute method of the CCI Interaction with two parameters: InteractionSpec and
input Record, receiving an output Record as return value.

CciTemplate  also provides methods to create IndexRecord and MappedRecord outside a RecordCreator
implementation, through its createIndexRecord(..) and createMappedRecord(..) methods. This can be used
within DAO implementations to create Record instances to pass into corresponding CciTemplate.execute(..)
methods.


                                          Spring Framework (2.5.6)                                         481
JCA CCI


 public class CciTemplate implements CciOperations {

     public IndexedRecord createIndexedRecord(String name) throws DataAccessException { ... }

     public MappedRecord createMappedRecord(String name) throws DataAccessException { ... }

 }




21.3.3. DAO support

Spring's CCI support provides a abstract class for DAOs, supporting injection of a ConnectionFactory or a
CciTemplate instances. The name of the class is CciDaoSupport: It provides simple setConnectionFactory
and setCciTemplate methods. Internally, this class will create a CciTemplate instance for a passed-in
ConnectionFactory, exposing it to concrete data access implementations in subclasses.

 public abstract class CciDaoSupport {

     public void setConnectionFactory(ConnectionFactory connectionFactory) { ... }
     public ConnectionFactory getConnectionFactory() { ... }

     public void setCciTemplate(CciTemplate cciTemplate) { ... }
     public CciTemplate getCciTemplate() { ... }

 }




21.3.4. Automatic output record generation

If the connector used only supports the Interaction.execute(..) method with input and output records as
parameters (that is, it requires the desired output record to be passed in instead of returning an appropriate
output record), you can set the outputRecordCreator property of the CciTemplate to automatically generate an
output record to be filled by the JCA connector when the response is received. This record will be then returned
to the caller of the template.

This property simply holds an implementation of the RecordCreator interface, used for that purpose. The
RecordCreator interface has already been discussed in the section entitled Section 21.3.1, “Record
conversion”. The outputRecordCreator property must be directly specified on the CciTemplate. This could be
done in the application code like so:

 cciTemplate.setOutputRecordCreator(new EciOutputRecordCreator());



Or (recommended) in the Spring configuration, if the CciTemplate is configured as a dedicated bean instance:

 <bean id="eciOutputRecordCreator" class="eci.EciOutputRecordCreator"/>

 <bean id="cciTemplate" class="org.springframework.jca.cci.core.CciTemplate">
   <property name="connectionFactory" ref="eciConnectionFactory"/>
   <property name="outputRecordCreator" ref="eciOutputRecordCreator"/>
 </bean>



            Note
            As the CciTemplate class is thread-safe, it will usually be configured as a shared instance.



21.3.5. Summary


                                           Spring Framework (2.5.6)                                         482
JCA CCI


The following table summarizes the mechanisms of the CciTemplate class and the corresponding methods
called on the CCI Interaction interface:


Table 21.1. Usage of Interaction execute methods

  CciTemplate method signature               CciTemplate                   execute method called on the
                                     outputRecordCreator property                CCI Interaction

  Record execute(InteractionSpec,                 not set                 Record execute(InteractionSpec,
             Record)                                                                 Record)

  Record execute(InteractionSpec,                   set                  boolean execute(InteractionSpec,
             Record)                                                             Record, Record)

     void execute(InteractionSpec,                not set                  void execute(InteractionSpec,
           Record, Record)                                                       Record, Record)

     void execute(InteractionSpec,                  set                    void execute(InteractionSpec,
           Record, Record)                                                       Record, Record)

  Record execute(InteractionSpec,                 not set                 Record execute(InteractionSpec,
          RecordCreator)                                                             Record)

  Record execute(InteractionSpec,                   set                    void execute(InteractionSpec,
          RecordCreator)                                                         Record, Record)

  Record execute(InteractionSpec,                 not set                 Record execute(InteractionSpec,
     Record, RecordExtractor)                                                        Record)

  Record execute(InteractionSpec,                   set                    void execute(InteractionSpec,
     Record, RecordExtractor)                                                    Record, Record)

 Record execute(InteractionSpec,                  not set                 Record execute(InteractionSpec,
 RecordCreator, RecordExtractor)                                                     Record)

 Record execute(InteractionSpec,                    set                    void execute(InteractionSpec,
 RecordCreator, RecordExtractor)                                                 Record, Record)



21.3.6. Using a CCI Connection and Interaction directly

CciTemplate  also offers the possibility to work directly with CCI connections and interactions, in the same
manner as JdbcTemplate and JmsTemplate. This is useful when you want to perform multiple operations on a
CCI connection or interaction, for example.

The interface ConnectionCallback provides a CCI Connection as argument, in order to perform custom
operations on it, plus the CCI ConnectionFactory which the Connection was created with. The latter can be
useful for example to get an associated RecordFactory instance and create indexed/mapped records, for
example.

 public interface ConnectionCallback {

     Object doInConnection(Connection connection, ConnectionFactory connectionFactory)
         throws ResourceException, SQLException, DataAccessException;
 }



The interface InteractionCallback provides the CCI Interaction, in order to perform custom operations on

                                         Spring Framework (2.5.6)                                          483
JCA CCI

it, plus the corresponding CCI ConnectionFactory.

 public interface InteractionCallback {

     Object doInInteraction(Interaction interaction, ConnectionFactory connectionFactory)
         throws ResourceException, SQLException, DataAccessException;
 }



              Note
              InteractionSpec    objects can either be shared across multiple template calls or newly created
              inside every callback method. This is completely up to the DAO implementation.



21.3.7. Example for CciTemplate usage

In this section, the usage of the CciTemplate will be shown to acces to a CICS with ECI mode, with the IBM
CICS ECI connector.

Firstly, some initializations on the CCI InteractionSpec must be done to specify which CICS program to
access and how to interact with it.

 ECIInteractionSpec interactionSpec = new ECIInteractionSpec();
 interactionSpec.setFunctionName("MYPROG");
 interactionSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);



Then the program can use CCI via Spring's template and specify mappings between custom objects and CCI
Records.

 public class MyDaoImpl extends CciDaoSupport implements MyDao {

     public OutputObject getData(InputObject input) {
       ECIInteractionSpec interactionSpec = ...;

         OutputObject output = (ObjectOutput) getCciTemplate().execute(interactionSpec,
             new RecordCreator() {
                public Record createRecord(RecordFactory recordFactory) throws ResourceException {
                  return new CommAreaRecord(input.toString().getBytes());
                }
             },
             new RecordExtractor() {
                public Object extractData(Record record) throws ResourceException {
                  CommAreaRecord commAreaRecord = (CommAreaRecord)record;
                  String str = new String(commAreaRecord.toByteArray());
                  String field1 = string.substring(0,6);
                  String field2 = string.substring(6,1);
                  return new OutputObject(Long.parseLong(field1), field2);
                }
             });

         return output;
     }
 }



As discussed previously, callbacks can be used to work directly on CCI connections or interactions.

 public class MyDaoImpl extends CciDaoSupport implements MyDao {

     public OutputObject getData(InputObject input) {
       ObjectOutput output = (ObjectOutput) getCciTemplate().execute(
           new ConnectionCallback() {
             public Object doInConnection(Connection connection, ConnectionFactory factory)
                 throws ResourceException {

                 // do something...



                                           Spring Framework (2.5.6)                                      484
JCA CCI

               }
             });
         }
         return output;
     }
 }



              Note
              With a ConnectionCallback, the Connection used will be managed and closed by the
              CciTemplate, but any interactions created on the connection must be managed by the callback
              implementation.


For a more specific callback, you can implement an InteractionCallback. The passed-in Interaction will be
managed and closed by the CciTemplate in this case.

 public class MyDaoImpl extends CciDaoSupport implements MyDao {

     public String getData(String input) {
       ECIInteractionSpec interactionSpec = ...;

         String output = (String) getCciTemplate().execute(interactionSpec,
             new InteractionCallback() {
               public Object doInInteraction(Interaction interaction, ConnectionFactory factory)
                   throws ResourceException {
                 Record input = new CommAreaRecord(inputString.getBytes());
                 Record output = new CommAreaRecord();
                 interaction.execute(holder.getInteractionSpec(), input, output);
                 return new String(output.toByteArray());
               }
             });

         return output;
     }
 }



For the examples above, the corresponding configuration of the involved Spring beans could look like this in
non-managed mode:

 <bean id="managedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory">
   <property name="serverName" value="TXSERIES"/>
   <property name="connectionURL" value="local:"/>
   <property name="userName" value="CICSUSER"/>
   <property name="password" value="CICS"/>
 </bean>

 <bean id="connectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean">
   <property name="managedConnectionFactory" ref="managedConnectionFactory"/>
 </bean>

 <bean id="component" class="mypackage.MyDaoImpl">
   <property name="connectionFactory" ref="connectionFactory"/>
 </bean>



In managed mode (that is, in a J2EE environment), the configuration could look as follows:

 <bean id="connectionFactory" class="org.springframework.jndi.JndiObjectFactoryBean">
   <property name="jndiName" value="eis/cicseci"/>
 </bean>

 <bean id="component" class="MyDaoImpl">
   <property name="connectionFactory" ref="connectionFactory"/>
 </bean>




                                          Spring Framework (2.5.6)                                      485
JCA CCI



21.4. Modeling CCI access as operation objects
The org.springframework.jca.cci.object package contains support classes that allow you to access the EIS
in a different style: through reusable operation objects, analogous to Spring's JDBC operation objects (see
JDBC chapter). This will usually encapsulate the CCI API: an application-level input object will be passed to
the operation object, so it can construct the input record and then convert the received record data to an
application-level output object and return it.

Note: This approach is internally based on the CciTemplate class and the RecordCreator / RecordExtractor
interfaces, reusing the machinery of Spring's core CCI support.


21.4.1. MappingRecordOperation

MappingRecordOperation       essentially performs the same work as CciTemplate, but represents a specific,
pre-configured operation as an object. It provides two template methods to specify how to convert an input
object to a input record, and how to convert an output record to an output object (record mapping):


• createInputRecord(..) to specify how to convert an input object to an input Record

• extractOutputData(..) to specify how to extract an output object from an output Record

Here are the signatures of these methods:

 public abstract class MappingRecordOperation extends EisOperation {
   ...
   protected abstract Record createInputRecord(RecordFactory recordFactory, Object inputObject)
       throws ResourceException, DataAccessException { ... }

     protected abstract Object extractOutputData(Record outputRecord)
         throws ResourceException, SQLException, DataAccessException { ... }
     ...
 }



Thereafter, in order to execute an EIS operation, you need to use a single execute method, passing in an
application-level input object and receiving an application-level output object as result:

 public abstract class MappingRecordOperation extends EisOperation {
   ...
   public Object execute(Object inputObject) throws DataAccessException {
   ...
 }



As you can see, contrary to the CciTemplate class, this execute(..) method does not have an
InteractionSpec as argument. Instead, the InteractionSpec is global to the operation. The following
constructor must be used to instantiate an operation object with a specific InteractionSpec:

 InteractionSpec spec = ...;
 MyMappingRecordOperation eisOperation = new MyMappingRecordOperation(getConnectionFactory(), spec);
 ...




21.4.2. MappingCommAreaOperation

Some connectors use records based on a COMMAREA which represents an array of bytes containing
parameters to send to the EIS and data returned by it. Spring provides a special operation class for working


                                            Spring Framework (2.5.6)                                     486
JCA CCI


directly on COMMAREA rather than on records. The MappingCommAreaOperation class extends the
MappingRecordOperation class to provide such special COMMAREA support. It implicitly uses the
CommAreaRecord class as input and output record type, and provides two new methods to convert an input
object into an input COMMAREA and the output COMMAREA into an output object.

 public abstract class MappingCommAreaOperation extends MappingRecordOperation {
   ...
   protected abstract byte[] objectToBytes(Object inObject)
       throws IOException, DataAccessException;

     protected abstract Object bytesToObject(byte[] bytes)
         throws IOException, DataAccessException;
     ...
 }




21.4.3. Automatic output record generation

As every MappingRecordOperation subclass is based on CciTemplate internally, the same way to automatically
generate output records as with CciTemplate is available. Every operation object provides a corresponding
setOutputRecordCreator(..) method. For further information, see the section entitled Section 21.3.4,
“Automatic output record generation”.


21.4.4. Summary

The operation object approach uses records in the same manner as the CciTemplate class.


Table 21.2. Usage of Interaction execute methods

 MappingRecordOperation     method        MappingRecordOperation              execute method called on the
             signature                 outputRecordCreator    property             CCI Interaction

       Object execute(Object)                       not set                  Record execute(InteractionSpec,
                                                                                        Record)

       Object execute(Object)                         set                   boolean execute(InteractionSpec,
                                                                                    Record, Record)



21.4.5. Example for MappingRecordOperation usage

In this section, the usage of the MappingRecordOperation will be shown to access a database with the
Blackbox CCI connector.

            Note
            The original version of this connector is provided by the J2EE SDK (version 1.3), available from
            Sun.


Firstly, some initializations on the CCI InteractionSpec must be done to specify which SQL request to
execute. In this sample, we directly define the way to convert the parameters of the request to a CCI record and
the way to convert the CCI result record to an instance of the Person class.

 public class PersonMappingOperation extends MappingRecordOperation {



                                          Spring Framework (2.5.6)                                          487
JCA CCI


     public PersonMappingOperation(ConnectionFactory connectionFactory) {
       setConnectionFactory(connectionFactory);
       CciInteractionSpec interactionSpec = new CciConnectionSpec();
       interactionSpec.setSql("select * from person where person_id=?");
       setInteractionSpec(interactionSpec);
     }

     protected Record createInputRecord(RecordFactory recordFactory, Object inputObject)
         throws ResourceException {
       Integer id = (Integer) inputObject;
       IndexedRecord input = recordFactory.createIndexedRecord("input");
       input.add(new Integer(id));
       return input;
     }

     protected Object extractOutputData(Record outputRecord)
         throws ResourceException, SQLException {
       ResultSet rs = (ResultSet) outputRecord;
       Person person = null;
       if (rs.next()) {
         Person person = new Person();
         person.setId(rs.getInt("person_id"));
         person.setLastName(rs.getString("person_last_name"));
         person.setFirstName(rs.getString("person_first_name"));
       }
       return person;
     }
 }



Then the application can execute the operation object, with the person identifier as argument. Note that
operation object could be set up as shared instance, as it is thread-safe.

 public class MyDaoImpl extends CciDaoSupport implements MyDao {

     public Person getPerson(int id) {
       PersonMappingOperation query = new PersonMappingOperation(getConnectionFactory());
       Person person = (Person) query.execute(new Integer(id));
       return person;
     }
 }



The corresponding configuration of Spring beans could look as follows in non-managed mode:

 <bean id="managedConnectionFactory"
     class="com.sun.connector.cciblackbox.CciLocalTxManagedConnectionFactory">
   <property name="connectionURL" value="jdbc:hsqldb:hsql://localhost:9001"/>
   <property name="driverName" value="org.hsqldb.jdbcDriver"/>
 </bean>

 <bean id="targetConnectionFactory"
     class="org.springframework.jca.support.LocalConnectionFactoryBean">
   <property name="managedConnectionFactory" ref="managedConnectionFactory"/>
 </bean>

 <bean id="connectionFactory"
     class="org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter">
   <property name="targetConnectionFactory" ref="targetConnectionFactory"/>
   <property name="connectionSpec">
     <bean class="com.sun.connector.cciblackbox.CciConnectionSpec">
       <property name="user" value="sa"/>
       <property name="password" value=""/>
     </bean>
   </property>
 </bean>

 <bean id="component" class="MyDaoImpl">
   <property name="connectionFactory" ref="connectionFactory"/>
 </bean>



In managed mode (that is, in a J2EE environment), the configuration could look as follows:



                                          Spring Framework (2.5.6)                                  488
JCA CCI


 <bean id="targetConnectionFactory" class="org.springframework.jndi.JndiObjectFactoryBean">
   <property name="jndiName" value="eis/blackbox"/>
 </bean>

 <bean id="connectionFactory"
     class="org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter">
   <property name="targetConnectionFactory" ref="targetConnectionFactory"/>
   <property name="connectionSpec">
     <bean class="com.sun.connector.cciblackbox.CciConnectionSpec">
       <property name="user" value="sa"/>
       <property name="password" value=""/>
     </bean>
   </property>
 </bean>

 <bean id="component" class="MyDaoImpl">
   <property name="connectionFactory" ref="connectionFactory"/>
 </bean>




21.4.6. Example for MappingCommAreaOperation usage

In this section, the usage of the MappingCommAreaOperation will be shown: accessing a CICS with ECI mode
with the IBM CICS ECI connector.

Firstly, the CCI InteractionSpec needs to be initialized to specify which CICS program to access and how to
interact with it.

 public abstract class EciMappingOperation extends MappingCommAreaOperation {

     public EciMappingOperation(ConnectionFactory connectionFactory, String programName) {
       setConnectionFactory(connectionFactory);
       ECIInteractionSpec interactionSpec = new ECIInteractionSpec(),
       interactionSpec.setFunctionName(programName);
       interactionSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);
       interactionSpec.setCommareaLength(30);
       setInteractionSpec(interactionSpec);
       setOutputRecordCreator(new EciOutputRecordCreator());
     }

     private static class EciOutputRecordCreator implements RecordCreator {
       public Record createRecord(RecordFactory recordFactory) throws ResourceException {
         return new CommAreaRecord();
       }
     }
 }



The abstract EciMappingOperation class can then be subclassed to specify mappings between custom objects
and Records.

 public class MyDaoImpl extends CciDaoSupport implements MyDao {

     public OutputObject getData(Integer id) {
       EciMappingOperation query = new EciMappingOperation(getConnectionFactory(), "MYPROG") {
         protected abstract byte[] objectToBytes(Object inObject) throws IOException {
           Integer id = (Integer) inObject;
           return String.valueOf(id);
         }
         protected abstract Object bytesToObject(byte[] bytes) throws IOException;
           String str = new String(bytes);
           String field1 = str.substring(0,6);
           String field2 = str.substring(6,1);
           String field3 = str.substring(7,1);
           return new OutputObject(field1, field2, field3);
         }
       });

         return (OutputObject) query.execute(new Integer(id));
     }
 }



                                          Spring Framework (2.5.6)                                     489
JCA CCI


The corresponding configuration of Spring beans could look as follows in non-managed mode:

 <bean id="managedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory">
   <property name="serverName" value="TXSERIES"/>
   <property name="connectionURL" value="local:"/>
   <property name="userName" value="CICSUSER"/>
   <property name="password" value="CICS"/>
 </bean>

 <bean id="connectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean">
   <property name="managedConnectionFactory" ref="managedConnectionFactory"/>
 </bean>

 <bean id="component" class="MyDaoImpl">
   <property name="connectionFactory" ref="connectionFactory"/>
 </bean>



In managed mode (that is, in a J2EE environment), the configuration could look as follows:

 <bean id="connectionFactory" class="org.springframework.jndi.JndiObjectFactoryBean">
   <property name="jndiName" value="eis/cicseci"/>
 </bean>

 <bean id="component" class="MyDaoImpl">
   <property name="connectionFactory" ref="connectionFactory"/>
 </bean>




21.5. Transactions
JCA specifies several levels of transaction support for resource adapters. The kind of transactions that your
resource adapter supports is specified in its ra.xml file. There are essentially three options: none (for example
with CICS EPI connector), local transactions (for example with a CICS ECI connector), global transactions (for
example with an IMS connector).

 <connector>

    <resourceadapter>

      <!-- <transaction-support>NoTransaction</transaction-support> -->
      <!-- <transaction-support>LocalTransaction</transaction-support> -->
      <transaction-support>XATransaction</transaction-support>

    <resourceadapter>

 <connector>



For global transactions, you can use Spring's generic transaction infrastructure to demarcate transactions, with
JtaTransactionManager as backend (delegating to the J2EE server's distributed transaction coordinator
underneath).

For local transactions on a single CCI ConnectionFactory, Spring provides a specific transaction management
strategy for CCI, analogous to the DataSourceTransactionManager for JDBC. The CCI API defines a local
transaction    object    and     corresponding   local   transaction   demarcation       methods.   Spring's
CciLocalTransactionManager executes such local CCI transactions, fully compliant with Spring's generic
PlatformTransactionManager abstraction.

 <bean id="eciConnectionFactory" class="org.springframework.jndi.JndiObjectFactoryBean">
   <property name="jndiName" value="eis/cicseci"/>
 </bean>

 <bean id="eciTransactionManager"
     class="org.springframework.jca.cci.connection.CciLocalTransactionManager">
   <property name="connectionFactory" ref="eciConnectionFactory"/>


                                           Spring Framework (2.5.6)                                          490
JCA CCI


 </bean>



Both transaction strategies can be used with any of Spring's transaction demarcation facilities, be it declarative
or programmatic. This is a consequence of Spring's generic PlatformTransactionManager abstraction, which
decouples transaction demarcation from the actual execution strategy. Simply switch between
JtaTransactionManager and CciLocalTransactionManager as needed, keeping your transaction demarcation
as-is.

For more information on Spring's transaction facilities, see the chapter entitled Chapter 9, Transaction
management.




                                           Spring Framework (2.5.6)                                           491
Chapter 22. Email

22.1. Introduction

     Library dependencies

     The following additional jars to be on the classpath of your application in order to be able to use the
     Spring Framework's email library.


     • The JavaMail mail.jar library

     • The JAF activation.jar library

     All of these libraries are available in the Spring-with-dependencies distribution of the Spring Framework
     (in addition to also being freely available on the web).


The Spring Framework provides a helpful utility library for sending email that shields the user from the
specifics of the underlying mailing system and is responsible for low level resource handling on behalf of the
client.

The org.springframework.mail package is the root level package for the Spring Framework's email support.
The central interface for sending emails is the MailSender interface; a simple value object encapsulating the
properties of a simple mail such as from and to (plus many others) is the SimpleMailMessage class. This
package also contains a hierarchy of checked exceptions which provide a higher level of abstraction over the
lower level mail system exceptions with the root exception being MailException. Please refer to the Javadocs
for more information on the rich mail exception hierarchy.

The org.springframework.mail.javamail.JavaMailSender interface adds specialized JavaMail features
such as MIME message support to the MailSender interface (from which it inherits). JavaMailSender also
provides a callback interface for preparation of JavaMail MIME messages, called
org.springframework.mail.javamail.MimeMessagePreparator



22.2. Usage
Let's assume there is a business interface called OrderManager:

 public interface OrderManager {

        void placeOrder(Order order);
 }



Let us also assume that there is a requirement stating that an email message with an order number needs to be
generated and sent to a customer placing the relevant order.


22.2.1. Basic MailSender and SimpleMailMessage usage
 import org.springframework.mail.MailException;
 import org.springframework.mail.MailSender;
 import org.springframework.mail.SimpleMailMessage;



                                            Spring Framework (2.5.6)                                         492
Email


 public class SimpleOrderManager implements OrderManager {

      private MailSender mailSender;
      private SimpleMailMessage templateMessage;

      public void setMailSender(MailSender mailSender) {
          this.mailSender = mailSender;
      }

      public void setTemplateMessage(SimpleMailMessage templateMessage) {
          this.templateMessage = templateMessage;
      }

      public void placeOrder(Order order) {

           // Do the business calculations...

           // Call the collaborators to persist the order...

           // Create a thread safe "copy" of the template message and customize it
           SimpleMailMessage msg = new SimpleMailMessage(this.templateMessage);
           msg.setTo(order.getCustomer().getEmailAddress());
           msg.setText(
                "Dear " + order.getCustomer().getFirstName()
                    + order.getCustomer().getLastName()
                    + ", thank you for placing order. Your order number is "
                    + order.getOrderNumber());
           try{
                this.mailSender.send(msg);
           }
           catch(MailException ex) {
                // simply log it and go on...
                System.err.println(ex.getMessage());
           }
      }
 }



Find below the bean definitions for the above code:

 <bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">
   <property name="host" value="mail.mycompany.com"/>
 </bean>

 <!-- this is a template message that we can pre-load with default state -->
 <bean id="templateMessage" class="org.springframework.mail.SimpleMailMessage">
   <property name="from" value="customerservice@mycompany.com"/>
   <property name="subject" value="Your order"/>
 </bean>

 <bean id="orderManager" class="com.mycompany.businessapp.support.SimpleOrderManager">
   <property name="mailSender" ref="mailSender"/>
   <property name="templateMessage" ref="templateMessage"/>
 </bean>




22.2.2. Using the JavaMailSender and the MimeMessagePreparator

Here is another implementation of OrderManager using the MimeMessagePreparator callback interface. Please
note in this case that the mailSender property is of type JavaMailSender so that we are able to use the
JavaMail MimeMessage class:

 import   javax.mail.Message;
 import   javax.mail.MessagingException;
 import   javax.mail.internet.InternetAddress;
 import   javax.mail.internet.MimeMessage;

 import   javax.mail.internet.MimeMessage;
 import   org.springframework.mail.MailException;
 import   org.springframework.mail.javamail.JavaMailSender;
 import   org.springframework.mail.javamail.MimeMessagePreparator;

 public class SimpleOrderManager implements OrderManager {


                                          Spring Framework (2.5.6)                                   493
Email



         private JavaMailSender mailSender;

         public void setMailSender(JavaMailSender mailSender) {
             this.mailSender = mailSender;
         }

         public void placeOrder(final Order order) {

                // Do the business calculations...

                // Call the collaborators to persist the order...

                MimeMessagePreparator preparator = new MimeMessagePreparator() {

                    public void prepare(MimeMessage mimeMessage) throws Exception {

                         mimeMessage.setRecipient(Message.RecipientType.TO,
                                 new InternetAddress(order.getCustomer().getEmailAddress()));
                         mimeMessage.setFrom(new InternetAddress("mail@mycompany.com"));
                         mimeMessage.setText(
                             "Dear " + order.getCustomer().getFirstName() + " "
                                 + order.getCustomer().getLastName()
                                 + ", thank you for placing order. Your order number is "
                                 + order.getOrderNumber());
                    }
                };
                try {
                    this.mailSender.send(preparator);
                }
                catch (MailException ex) {
                    // simply log it and go on...
                    System.err.println(ex.getMessage());
                }
         }
    }



                 Note
                 The mail code is a crosscutting concern and could well be a candidate for refactoring into a custom
                 Spring AOP aspect, which then could be executed at appropriate joinpoints on the OrderManager
                 target.


The Spring Framework's mail support ships with two MailSender implementations. The standard JavaMail
implementation and the implementation on top of Jason Hunter's MailMessage class that is included in the
com.oreilly.servlet package. Please refer to the relevant Javadocs for more information.



22.3. Using the JavaMail MimeMessageHelper
A       class     that   comes    in   pretty   handy    when
                                                          dealing with JavaMail messages is the
org.springframework.mail.javamail.MimeMessageHelper        class, which shields you from having to use the
verbose JavaMail API. Using the MimeMessageHelper it is pretty easy to create a MimeMessage:

    // of course you would use DI in any real-world cases
    JavaMailSenderImpl sender = new JavaMailSenderImpl();
    sender.setHost("mail.host.com");

    MimeMessage message = sender.createMimeMessage();
    MimeMessageHelper helper = new MimeMessageHelper(message);
    helper.setTo("test@host.com");
    helper.setText("Thank you for ordering!");

    sender.send(message);




                                                Spring Framework (2.5.6)                                        494
Email


22.3.1. Sending attachments and inline resources

Multipart email messages allow for both attachments and inline resources. Examples of inline resources would
be be images or a stylesheet you want to use in your message, but that you don't want displayed as an
attachment.

22.3.1.1. Attachments

The following example shows you how to use the MimeMessageHelper to send an email along with a single
JPEG image attachment.

 JavaMailSenderImpl sender = new JavaMailSenderImpl();
 sender.setHost("mail.host.com");

 MimeMessage message = sender.createMimeMessage();

 // use the true flag to indicate you need a multipart message
 MimeMessageHelper helper = new MimeMessageHelper(message, true);
 helper.setTo("test@host.com");

 helper.setText("Check out this image!");

 // let's attach the infamous windows Sample file (this time copied to c:/)
 FileSystemResource file = new FileSystemResource(new File("c:/Sample.jpg"));
 helper.addAttachment("CoolImage.jpg", file);

 sender.send(message);




22.3.1.2. Inline resources

The following example shows you how to use the MimeMessageHelper to send an email along with an inline
image.

 JavaMailSenderImpl sender = new JavaMailSenderImpl();
 sender.setHost("mail.host.com");

 MimeMessage message = sender.createMimeMessage();

 // use the true flag to indicate you need a multipart message
 MimeMessageHelper helper = new MimeMessageHelper(message, true);
 helper.setTo("test@host.com");

 // use the true flag to indicate the text included is HTML
 helper.setText("<html><body><img src='cid:identifier1234'></body></html>", true);

 // let's include the infamous windows Sample file (this time copied to c:/)
 FileSystemResource res = new FileSystemResource(new File("c:/Sample.jpg"));
 helper.addInline("identifier1234", res);

 sender.send(message);



           Warning
           Inline resources are added to the mime message using the specified Content-ID (identifier1234
           in the above example). The order in which you are adding the text and the resource are very
           important. Be sure to first add the text and after that the resources. If you are doing it the other way
           around, it won't work!



22.3.2. Creating email content using a templating library



                                           Spring Framework (2.5.6)                                            495
Email


The code in the previous examples explicitly has been creating the content of the email message, using methods
calls such as message.setText(..). This is fine for simple cases, and it is okay in the context of the
aforementioned examples, where the intent was to show you the very basics of the API.

In your typical enterprise application though, you are not going to create the content of your emails using the
above approach for a number of reasons.



• Creating HTML-based email content in Java code is tedious and error prone

• There is no clear separation between display logic and business logic

• Changing the display structure of the email content requires writing Java code, recompiling, redeploying...

Typically the approach taken to address these issues is to use a template library such as FreeMarker or Velocity
to define the display structure of email content. This leaves your code tasked only with creating the data that is
to be rendered in the email template and sending the email. It is definitely a best practice for when the content
of your emails becomes even moderately complex, and with the Spring Framework's support classes for
FreeMarker and Velocity becomes quite easy to do. Find below an example of using the Velocity template
library to create email content.

22.3.2.1. A Velocity-based example

To use Velocity to create your email template(s), you will need to have the Velocity libraries available on your
classpath. You will also need to create one or more Velocity templates for the email content that your
application needs. Find below the Velocity template that this example will be using... as you can see it is
HTML-based, and since it is plain text it can be created using your favorite HTML editor without recourse to
having to know Java.

 # in the com/foo/package
 <html>
 <body>
 <h3>Hi ${user.userName}, welcome to the Chipping Sodbury On-the-Hill message boards!</h3>

 <div>
    Your email address is <a href="mailto:${user.emailAddress}">${user.emailAddress}</a>.
 </div>
 </body>

 </html>



Find below some simple code and Spring XML configuration that makes use of the above Velocity template to
create email content and send email(s).

 package com.foo;

 import   org.apache.velocity.app.VelocityEngine;
 import   org.springframework.mail.javamail.JavaMailSender;
 import   org.springframework.mail.javamail.MimeMessageHelper;
 import   org.springframework.mail.javamail.MimeMessagePreparator;
 import   org.springframework.ui.velocity.VelocityEngineUtils;

 import javax.mail.internet.MimeMessage;
 import java.util.HashMap;
 import java.util.Map;

 public class SimpleRegistrationService implements RegistrationService {

     private JavaMailSender mailSender;
     private VelocityEngine velocityEngine;

     public void setMailSender(JavaMailSender mailSender) {



                                           Spring Framework (2.5.6)                                           496
Email


        this.mailSender = mailSender;
    }

    public void setVelocityEngine(VelocityEngine velocityEngine) {
       this.velocityEngine = velocityEngine;
    }

    public void register(User user) {

        // Do the registration logic...

        sendConfirmationEmail(user);
    }

    private void sendConfirmationEmail(final User user) {
       MimeMessagePreparator preparator = new MimeMessagePreparator() {
          public void prepare(MimeMessage mimeMessage) throws Exception {
             MimeMessageHelper message = new MimeMessageHelper(mimeMessage);
             message.setTo(user.getEmailAddress());
             message.setFrom("webmaster@csonth.gov.uk"); // could be parameterized...
             Map model = new HashMap();
             model.put("user", user);
             String text = VelocityEngineUtils.mergeTemplateIntoString(
                velocityEngine, "com/dns/registration-confirmation.vm", model);
             message.setText(text, true);
          }
       };
       this.mailSender.send(preparator);
    }
}



<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
   http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

    <bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">
       <property name="host" value="mail.csonth.gov.uk"/>
    </bean>

    <bean id="registrationService" class="com.foo.SimpleRegistrationService">
       <property name="mailSender" ref="mailSender"/>
       <property name="velocityEngine" ref="velocityEngine"/>
    </bean>

    <bean id="velocityEngine" class="org.springframework.ui.velocity.VelocityEngineFactoryBean">
       <property name="velocityProperties">
          <value>
             resource.loader=class
             class.resource.loader.class=org.apache.velocity.runtime.resource.loader.ClasspathResourceLoader
          </value>
       </property>
    </bean>

</beans>




                                          Spring Framework (2.5.6)                                497
Chapter 23. Scheduling and Thread Pooling

23.1. Introduction
The Spring Framework features integration classes for scheduling support. Currently, Spring supports the
Timer, part of the JDK since 1.3, and the Quartz Scheduler (http://www.opensymphony.com/quartz/). Both
schedulers are set up using a FactoryBean with optional references to Timer or Trigger instances, respectively.
Furthermore, a convenience class for both the Quartz Scheduler and the Timer is available that allows you to
invoke a method of an existing target object (analogous to the normal MethodInvokingFactoryBean operation).
Spring also features classes for thread pooling that abstract away differences between Java SE 1.4, Java SE 5
and Java EE environments.


23.2. Using the OpenSymphony Quartz Scheduler
Quartz uses Trigger, Job and JobDetail objects to realize scheduling of all kinds of jobs. For the basic
concepts behind Quartz, have a look at http://www.opensymphony.com/quartz. For convenience purposes,
Spring offers a couple of classes that simplify the usage of Quartz within Spring-based applications.


23.2.1. Using the JobDetailBean

JobDetail   objects contain all information needed to run a job. The Spring Framework provides a
JobDetailBean that makes the JobDetail more of an actual JavaBean with sensible defaults. Let's have a look
at an example:

 <bean name="exampleJob" class="org.springframework.scheduling.quartz.JobDetailBean">
   <property name="jobClass" value="example.ExampleJob" />
   <property name="jobDataAsMap">
     <map>
       <entry key="timeout" value="5" />
     </map>
   </property>
 </bean>



The job detail bean has all information it needs to run the job (ExampleJob). The timeout is specified in the job
data map. The job data map is available through the JobExecutionContext (passed to you at execution time),
but the JobDetailBean also maps the properties from the job data map to properties of the actual job. So in this
case, if the ExampleJob contains a property named timeout, the JobDetailBean will automatically apply it:

 package example;

 public class ExampleJob extends QuartzJobBean {

     private int timeout;

     /**
       * Setter called after the ExampleJob is instantiated
       * with the value from the JobDetailBean (5)
       */
     public void setTimeout(int timeout) {
        this.timeout = timeout;
     }

     protected void executeInternal(JobExecutionContext ctx) throws JobExecutionException {
         // do the actual work
     }
 }



                                           Spring Framework (2.5.6)                                          498
Scheduling and Thread Pooling


All additional settings from the job detail bean are of course available to you as well.

Note: Using the name and group properties, you can modify the name and the group of the job, respectively. By
default, the name of the job matches the bean name of the job detail bean (in the example above, this is
exampleJob).



23.2.2. Using the MethodInvokingJobDetailFactoryBean

Often you just need to invoke a method on a specific object. Using the MethodInvokingJobDetailFactoryBean
you can do exactly this:

 <bean id="jobDetail" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
   <property name="targetObject" ref="exampleBusinessObject" />
   <property name="targetMethod" value="doIt" />
 </bean>



The above example will result in the doIt method being called on the exampleBusinessObject method (see
below):

 public class ExampleBusinessObject {

     // properties and collaborators

     public void doIt() {
       // do the actual work
     }
 }




 <bean id="exampleBusinessObject" class="examples.ExampleBusinessObject"/>



Using the MethodInvokingJobDetailFactoryBean, you don't need to create one-line jobs that just invoke a
method, and you only need to create the actual business object and wire up the detail object.

By default, Quartz Jobs are stateless, resulting in the possibility of jobs interfering with each other. If you
specify two triggers for the same JobDetail, it might be possible that before the first job has finished, the
second one will start. If JobDetail classes implement the Stateful interface, this won't happen. The second
job will not start before the first one has finished. To make jobs resulting from the
MethodInvokingJobDetailFactoryBean non-concurrent, set the concurrent flag to false.


 <bean id="jobDetail" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
   <property name="targetObject" ref="exampleBusinessObject" />
   <property name="targetMethod" value="doIt" />
   <property name="concurrent" value="false" />
 </bean>



            Note
            By default, jobs will run in a concurrent fashion.



23.2.3. Wiring up jobs using triggers and the SchedulerFactoryBean

We've created job details and jobs. We've also reviewed the convenience bean that allows to you invoke a
method on a specific object. Of course, we still need to schedule the jobs themselves. This is done using


                                            Spring Framework (2.5.6)                                       499
Scheduling and Thread Pooling


triggers and a SchedulerFactoryBean. Several triggers are available within Quartz. Spring offers two
subclassed triggers with convenient defaults: CronTriggerBean and SimpleTriggerBean.

Triggers need to be scheduled. Spring offers a SchedulerFactoryBean that exposes triggers to be set as
properties. SchedulerFactoryBean schedules the actual jobs with those triggers.

Find below a couple of examples:

 <bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean">
     <!-- see the example of method invoking job above -->
     <property name="jobDetail" ref="jobDetail" />
     <!-- 10 seconds -->
     <property name="startDelay" value="10000" />
     <!-- repeat every 50 seconds -->
     <property name="repeatInterval" value="50000" />
 </bean>

 <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean">
     <property name="jobDetail" ref="exampleJob" />
     <!-- run every morning at 6 AM -->
     <property name="cronExpression" value="0 0 6 * * ?" />
 </bean>



Now we've set up two triggers, one running every 50 seconds with a starting delay of 10 seconds and one every
morning at 6 AM. To finalize everything, we need to set up the SchedulerFactoryBean:

 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
     <property name="triggers">
         <list>
             <ref bean="cronTrigger" />
             <ref bean="simpleTrigger" />
         </list>
     </property>
 </bean>



More properties are available for the SchedulerFactoryBean for you to set, such as the calendars used by the
job details, properties to customize Quartz with, etc. Have a look at the SchedulerFactoryBean Javadoc for
more information.


23.3. Using JDK Timer support
The other way to schedule jobs in Spring is to use JDK Timer objects. You can create custom timers or use the
timer that invokes methods. Wiring timers is done using the TimerFactoryBean.


23.3.1. Creating custom timers

Using the TimerTask you can create customer timer tasks, similar to Quartz jobs:

 public class CheckEmailAddresses extends TimerTask {

     private List emailAddresses;

     public void setEmailAddresses(List emailAddresses) {
       this.emailAddresses = emailAddresses;
     }

     public void run() {
       // iterate over all email addresses and archive them
     }
 }




                                          Spring Framework (2.5.6)                                       500
Scheduling and Thread Pooling


Wiring it up is simple:

 <bean id="checkEmail" class="examples.CheckEmailAddress">
     <property name="emailAddresses">
         <list>
             <value>test@springframework.org</value>
             <value>foo@bar.com</value>
             <value>john@doe.net</value>
         </list>
     </property>
 </bean>

 <bean id="scheduledTask" class="org.springframework.scheduling.timer.ScheduledTimerTask">
     <!-- wait 10 seconds before starting repeated execution -->
     <property name="delay" value="10000" />
     <!-- run every 50 seconds -->
     <property name="period" value="50000" />
     <property name="timerTask" ref="checkEmail" />
 </bean>



Note that letting the task only run once can be done by changing the period property to 0 (or a negative value).


23.3.2. Using the MethodInvokingTimerTaskFactoryBean

Similar to the Quartz support, the Timer support also features a component that allows you to periodically
invoke a method:

 <bean id="doIt" class="org.springframework.scheduling.timer.MethodInvokingTimerTaskFactoryBean">
     <property name="targetObject" ref="exampleBusinessObject" />
     <property name="targetMethod" value="doIt" />
 </bean>



The above example will result in the doIt method being called on the exampleBusinessObject (see below):

 public class BusinessObject {

     // properties and collaborators

     public void doIt() {
       // do the actual work
     }
 }



Changing the timerTask reference of the ScheduledTimerTask example to the bean doIt will result in the doIt
method being executed on a fixed schedule.


23.3.3. Wrapping up: setting up the tasks using the TimerFactoryBean

The TimerFactoryBean is similar to the Quartz SchedulerFactoryBean in that it serves the same purpose:
setting up the actual scheduling. The TimerFactoryBean sets up an actual Timer and schedules the tasks it has
references to. You can specify whether or not daemon threads should be used.

 <bean id="timerFactory" class="org.springframework.scheduling.timer.TimerFactoryBean">
     <property name="scheduledTimerTasks">
         <list>
             <!-- see the example above -->
             <ref bean="scheduledTask" />
         </list>
     </property>
 </bean>




                                           Spring Framework (2.5.6)                                         501
Scheduling and Thread Pooling



23.4. The Spring TaskExecutor abstraction

23.4. The Spring TaskExecutor abstraction
Spring 2.0 introduces a new abstraction for dealing with executors. Executors are the Java 5 name for the
concept of thread pools. The "executor" naming is due to the fact that there is no guarantee that the underlying
implementation is actually a pool; an executor may be single-threaded or even synchronous. Spring's
abstraction hides implementation details between Java SE 1.4, Java SE 5 and Java EE environments.

Spring's TaskExecutor interface is identical to the java.util.concurrent.Executor interface. In fact, its
primary reason for existence is to abstract away the need for Java 5 when using thread pools. The interface has
a single method execute(Runnable task) that accepts a task for execution based on the semantics and
configuration of the thread pool.

The TaskExecutor was originally created to give other Spring components an abstraction for thread pooling
where      needed.      Components       such      as    the        ApplicationEventMulticaster,            JMS's
AbstractMessageListenerContainer, and Quartz integration all use the TaskExecutor abstraction to pool
threads. However, if your beans need thread pooling behavior, it is possible to use this abstraction for your own
needs.


23.4.1. TaskExecutor types

There are a number of pre-built implementations of TaskExecutor included with the Spring distribution. In all
likelihood, you shouldn't ever need to implement your own.


• SimpleAsyncTaskExecutor

  This implementation does not reuse any threads, rather it starts up a new thread for each invocation.
  However, it does support a concurrency limit which will block any invocations that are over the limit until a
  slot has been freed up. If you're looking for true pooling, keep scrolling further down the page.

• SyncTaskExecutor

  This implementation doesn't execute invocations asynchronously. Instead, each invocation takes place in the
  calling thread. It is primarily used in situations where mutlithreading isn't necessary such as simple test
  cases.

• ConcurrentTaskExecutor

  This implementation is a wrapper for a Java 5 java.util.concurrent.Executor. There is an alternative,
  ThreadPoolTaskExecutor, that exposes the Executor configuration parameters as bean properties. It is rare
  to need to use the ConcurrentTaskExecutor but if the ThreadPoolTaskExecutor isn't robust enough for your
  needs, the ConcurrentTaskExecutor is an alternative.

• SimpleThreadPoolTaskExecutor

  This implementation is actually a subclass of Quartz's SimpleThreadPool which listens to Spring's lifecycle
  callbacks. This is typically used when you have a threadpool that may need to be shared by both Quartz and
  non-Quartz components.

• ThreadPoolTaskExecutor


                                           Spring Framework (2.5.6)                                          502
Scheduling and Thread Pooling




  It is not possible to use any backport or alternate versions of the java.util.concurrent package with
  this implementation. Both Doug Lea's and Dawid Kurzyniec's implementations use different package
  structures which will prevent them from working correctly.


  This implementation can only be used in a Java 5 environment but is also the most commonly used one in
  that environment. It exposes bean properties for configuring a java.util.concurrent.ThreadPoolExecutor
  and wraps it in a TaskExecutor. If you need something advanced such as a ScheduledThreadPoolExecutor,
  it is recommended that you use a ConcurrentTaskExecutor instead.

• TimerTaskExecutor

  This implementation uses a single TimerTask as its backing implementation. It's different from the
  SyncTaskExecutor in that the method invocations are executed in a separate thread, although they are
  synchronous in that thread.

• WorkManagerTaskExecutor


  CommonJ is a set of specifications jointly developed between BEA and IBM. These specifications are not
  Java EE standards, but are standard across BEA's and IBM's Application Server implementations.


  This implementation uses the CommonJ WorkManager as its backing implementation and is the central
  convenience class for setting up a CommonJ WorkManager reference in a Spring context. Similar to the
  SimpleThreadPoolTaskExecutor, this class implements the WorkManager interface and therefore can be
  used directly as a WorkManager as well.


23.4.2. Using a TaskExecutor

Spring's TaskExecutor implementations are used as simple JavaBeans. In the example below, we define a bean
that uses the ThreadPoolTaskExecutor to asynchronously print out a set of messages.

 import org.springframework.core.task.TaskExecutor;

 public class TaskExecutorExample {

   private class MessagePrinterTask implements Runnable {

       private String message;

       public MessagePrinterTask(String message) {
         this.message = message;
       }

       public void run() {
         System.out.println(message);
       }

   }

   private TaskExecutor taskExecutor;

   public TaskExecutorExample(TaskExecutor taskExecutor) {
     this.taskExecutor = taskExecutor;
   }

   public void printMessages() {
     for(int i = 0; i < 25; i++) {
       taskExecutor.execute(new MessagePrinterTask("Message" + i));


                                          Spring Framework (2.5.6)                                     503
Scheduling and Thread Pooling


         }
     }
 }



As you can see, rather than retrieving a thread from the pool and executing yourself, you add your Runnable to
the queue and the TaskExecutor uses its internal rules to decide when the task gets executed.

To configure the rules that the TaskExecutor will use, simple bean properties have been exposed.

 <bean id="taskExecutor" class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
   <property name="corePoolSize" value="5" />
   <property name="maxPoolSize" value="10" />
   <property name="queueCapacity" value="25" />
 </bean>

 <bean id="taskExecutorExample" class="TaskExecutorExample">
   <constructor-arg ref="taskExecutor" />
 </bean>




                                          Spring Framework (2.5.6)                                        504
Chapter 24. Dynamic language support

24.1. Introduction

     Why only these languages?

     The supported languages were chosen because a) the languages have a lot of traction in the Java
     enterprise community, b) no requests were made for other languages within the Spring 2.0 development
     timeframe, and c) the Spring developers were most familiar with them.

     There is nothing stopping the inclusion of further languages though. If you want to see support for <insert
     your favourite dynamic language here>, you can always raise an issue on Spring's JIRA page (or
     implement such support yourself).


Spring 2.0 introduces comprehensive support for using classes and objects that have been defined using a
dynamic language (such as JRuby) with Spring. This support allows you to write any number of classes in a
supported dynamic language, and have the Spring container transparently instantiate, configure and dependency
inject the resulting objects.

The dynamic languages currently supported are:


• JRuby 0.9 / 1.0

• Groovy 1.0 / 1.5

• BeanShell 2.0

Fully working examples of where this dynamic language support can be immediately useful are described in the
section entitled Section 24.4, “Scenarios”.

Note: Only the specific versions as listed above are supported in Spring 2.5. In particular, JRuby 1.1 (which
introduced many incompatible API changes) is not supported at this point of time.


24.2. A first example
This bulk of this chapter is concerned with describing the dynamic language support in detail. Before diving
into all of the ins and outs of the dynamic language support, let's look at a quick example of a bean defined in a
dynamic language. The dynamic language for this first bean is Groovy (the basis of this example was taken
from the Spring test suite, so if you want to see equivalent examples in any of the other supported languages,
take a look at the source code).

Find below the Messenger interface that the Groovy bean is going to be implementing, and note that this
interface is defined in plain Java. Dependent objects that are injected with a reference to the Messenger won't
know that the underlying implementation is a Groovy script.

 package org.springframework.scripting;

 public interface Messenger {

        String getMessage();
 }


                                             Spring Framework (2.5.6)                                          505
Dynamic language support


Here is the definition of a class that has a dependency on the Messenger interface.

 package org.springframework.scripting;

 public class DefaultBookingService implements BookingService {

      private Messenger messenger;

      public void setMessenger(Messenger messenger) {
          this.messenger = messenger;
      }

      public void processBooking() {
          // use the injected Messenger object...
      }
 }



Here is an implementation of the Messenger interface in Groovy.

 // from the file 'Messenger.groovy'
 package org.springframework.scripting.groovy;

 // import the Messenger interface (written in Java) that is to be implemented
 import org.springframework.scripting.Messenger

 // define the implementation in Groovy
 class GroovyMessenger implements Messenger {

      String message
 }



Finally, here are the bean definitions that will effect the injection of the Groovy-defined Messenger
implementation into an instance of the DefaultBookingService class.

            Note
            To use the custom dynamic language tags to define dynamic-language-backed beans, you need to
            have the XML Schema preamble at the top of your Spring XML configuration file. You also need
            to be using a Spring ApplicationContext implementation as your IoC container. Using the
            dynamic-language-backed beans with a plain BeanFactory implementation is supported, but you
            have to manage the plumbing of the Spring internals to do so.

            For more information on schema-based configuration, see Appendix A, XML Schema-based
            configuration.


 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:lang="http://www.springframework.org/schema/lang"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-2.5.xsd">

      <!-- this is the bean definition for the Groovy-backed Messenger implementation -->
      <lang:groovy id="messenger" script-source="classpath:Messenger.groovy">
          <lang:property name="message" value="I Can Do The Frug" />
      </lang:groovy>

      <!-- an otherwise normal bean that will be injected by the Groovy-backed Messenger -->
      <bean id="bookingService" class="x.y.DefaultBookingService">
          <property name="messenger" ref="messenger" />
      </bean>

 </beans>




                                           Spring Framework (2.5.6)                                 506
Dynamic language support


The bookingService bean (a DefaultBookingService) can now use its private messenger member variable as
normal because the Messenger instance that was injected into it is a Messenger instance. There is nothing
special going on here, just plain Java and plain Groovy.

Hopefully the above XML snippet is self-explanatory, but don't worry unduly if it isn't. Keep reading for the
in-depth detail on the whys and wherefores of the above configuration.


24.3. Defining beans that are backed by dynamic languages
This section describes exactly how you define Spring managed beans in any of the supported dynamic
languages.

Please note that this chapter does not attempt to explain the syntax and idioms of the supported dynamic
languages. For example, if you want to use Groovy to write certain of the classes in your application, then the
assumption is that you already know Groovy. If you need further details about the dynamic languages
themselves, please consult the section entitled Section 24.6, “Further Resources” at the end of this chapter.


24.3.1. Common concepts

The steps involved in using dynamic-language-backed beans are as follows:


1. Write the test for the dynamic language source code (naturally)

2. Then write the dynamic language source code itself :)

3. Define your dynamic-language-backed beans using the appropriate <lang:language/> element in the XML
   configuration (you can of course define such beans programmatically using the Spring API - although you
   will have to consult the source code for directions on how to do this as this type of advanced configuration is
   not covered in this chapter). Note this is an iterative step. You will need at least one bean definition per
   dynamic language source file (although the same dynamic language source file can of course be referenced
   by multiple bean definitions).

The first two steps (testing and writing your dynamic language source files) are beyond the scope of this
chapter. Refer to the language specification and / or reference manual for your chosen dynamic language and
crack on with developing your dynamic language source files. You will first want to read the rest of this chapter
though, as Spring's dynamic language support does make some (small) assumptions about the contents of your
dynamic language source files.

24.3.1.1. The <lang:language/> element


   XML Schema

   All of the configuration examples in this chapter make use of the new XML Schema support that was
   added in Spring 2.0.

   It is possible to forego the use of XML Schema and stick with the old-style DTD based validation of your
   Spring XML files, but then you lose out on the convenience offered by the <lang:language/> element.
   See the Spring test suite for examples of the older style configuration that doesn't require XML
   Schema-based validation (it is quite verbose and doesn't hide any of the underlying Spring
   implementation from you).



                                           Spring Framework (2.5.6)                                           507
Dynamic language support


The final step involves defining dynamic-language-backed bean definitions, one for each bean that you want to
configure (this is no different to normal Java bean configuration). However, instead of specifying the fully
qualified classname of the class that is to be instantiated and configured by the container, you use the
<lang:language/> element to define the dynamic language-backed bean.

Each of the supported languages has a corresponding <lang:language/> element:


• <lang:jruby/> (JRuby)

• <lang:groovy/> (Groovy)

• <lang:bsh/> (BeanShell)

The exact attributes and child elements that are available for configuration depends on exactly which language
the bean has been defined in (the language-specific sections below provide the full lowdown on this).

24.3.1.2. Refreshable beans

One of the (if not the) most compelling value adds of the dynamic language support in Spring is the
'refreshable bean' feature.

A refreshable bean is a dynamic-language-backed bean that with a small amount of configuration, a
dynamic-language-backed bean can monitor changes in its underlying source file resource, and then reload
itself when the dynamic language source file is changed (for example when a developer edits and saves changes
to the file on the filesystem).

This allows a developer to deploy any number of dynamic language source files as part of an application,
configure the Spring container to create beans backed by dynamic language source files (using the mechanisms
described in this chapter), and then later, as requirements change or some other external factor comes into play,
simply edit a dynamic language source file and have any change they make reflected in the bean that is backed
by the changed dynamic language source file. There is no need to shut down a running application (or redeploy
in the case of a web application). The dynamic-language-backed bean so amended will pick up the new state
and logic from the changed dynamic language source file.

            Note
            Please note that this feature is off by default.


Let's take a look at an example to see just how easy it is to start using refreshable beans. To turn on the
refreshable beans feature, you simply have to specify exactly one additional attribute on the <lang:language/>
element of your bean definition. So if we stick with the example from earlier in this chapter, here's what we
would change in the Spring XML configuration to effect refreshable beans:

 <beans>

      <!-- this bean is now 'refreshable' due to the presence of the 'refresh-check-delay' attribute -->
      <lang:groovy id="messenger"
            refresh-check-delay="5000" <!-- switches refreshing on with 5 seconds between checks -->
            script-source="classpath:Messenger.groovy">
          <lang:property name="message" value="I Can Do The Frug" />
      </lang:groovy>

      <bean id="bookingService" class="x.y.DefaultBookingService">
          <property name="messenger" ref="messenger" />
      </bean>

 </beans>



                                             Spring Framework (2.5.6)                                        508
Dynamic language support


That really is all you have to do. The 'refresh-check-delay' attribute defined on the 'messenger' bean
definition is the number of milliseconds after which the bean will be refreshed with any changes made to the
underlying dynamic language source file. You can turn off the refresh behavior by assigning a negative value to
the 'refresh-check-delay' attribute. Remember that, by default, the refresh behavior is disabled. If you don't
want the refresh behavior, then simply don't define the attribute.

If we then run the following application we can exercise the refreshable feature; please do excuse the
'jumping-through-hoops-to-pause-the-execution' shenanigans in this next slice of code. The System.in.read()
call is only there so that the execution of the program pauses while I (the author) go off and edit the underlying
dynamic language source file so that the refresh will trigger on the dynamic-language-backed bean when the
program resumes execution.

 import org.springframework.context.ApplicationContext;
 import org.springframework.context.support.ClassPathXmlApplicationContext;
 import org.springframework.scripting.Messenger;

 public final class Boot {

      public static void main(final String[] args) throws Exception {

          ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml");
          Messenger messenger = (Messenger) ctx.getBean("messenger");
          System.out.println(messenger.getMessage());
          // pause execution while I go off and make changes to the source file...
          System.in.read();
          System.out.println(messenger.getMessage());
      }
 }



Let's assume then, for the purposes of this example, that all calls to the getMessage() method of Messenger
implementations have to be changed such that the message is surrounded by quotes. Below are the changes that
I (the author) make to the Messenger.groovy source file when the execution of the program is paused.

 package org.springframework.scripting

 class GroovyMessenger implements Messenger {

      private String message = "Bingo"

      public String getMessage() {
          // change the implementation to surround the message in quotes
          return "'" + this.message + "'"
      }

      public void setMessage(String message) {
          this.message = message
      }
 }



When the program executes, the output before the input pause will be I Can Do The Frug. After the change to
the source file is made and saved, and the program resumes execution, the result of calling the getMessage()
method on the dynamic-language-backed Messenger implementation will be 'I Can Do The Frug' (notice the
inclusion of the additional quotes).

It is important to understand that changes to a script will not trigger a refresh if the changes occur within the
window of the 'refresh-check-delay' value. It is equally important to understand that changes to the script
are not actually 'picked up' until a method is called on the dynamic-language-backed bean. It is only when a
method is called on a dynamic-language-backed bean that it checks to see if its underlying script source has
changed. Any exceptions relating to refreshing the script (such as encountering a compilation error, or finding
that the script file has been deleted) will result in a fatal exception being propagated to the calling code.

The refreshable bean behavior described above does not apply to dynamic language source files defined using


                                           Spring Framework (2.5.6)                                           509
Dynamic language support

the <lang:inline-script/> element notation (see the section entitled Section 24.3.1.3, “Inline dynamic
language source files”). Additionally, it only applies to beans where changes to the underlying source file can
actually be detected; for example, by code that checks the last modified date of a dynamic language source file
that exists on the filesystem.

24.3.1.3. Inline dynamic language source files

The dynamic language support can also cater for dynamic language source files that are embedded directly in
Spring bean definitions. More specifically, the <lang:inline-script/> element allows you to define dynamic
language source immediately inside a Spring configuration file. An example will perhaps make the inline script
feature crystal clear:

 <lang:groovy id="messenger">
     <lang:inline-script>
 package org.springframework.scripting.groovy;

 import org.springframework.scripting.Messenger

 class GroovyMessenger implements Messenger {

       String message
 }
     </lang:inline-script>
     <lang:property name="message" value="I Can Do The Frug" />
 </lang:groovy>



If we put to one side the issues surrounding whether it is good practice to define dynamic language source
inside a Spring configuration file, the <lang:inline-script/> element can be useful in some scenarios. For
instance, we might want to quickly add a Spring Validator implementation to a Spring MVC Controller.
This is but a moment's work using inline source. (See the section entitled Section 24.4.2, “Scripted Validators”
for such an example.)

Find below an example of defining the source for a JRuby-based bean directly in a Spring XML configuration
file using the inline: notation. (Notice the use of the &lt; characters to denote a '<' character. In such a case
surrounding the inline source in a <![CDATA[]]> region might be better.)

 <lang:jruby id="messenger" script-interfaces="org.springframework.scripting.Messenger">
     <lang:inline-script>
 require 'java'

 include_class 'org.springframework.scripting.Messenger'

 class RubyMessenger &lt; Messenger

  def setMessage(message)
   @@message = message
  end

  def getMessage
   @@message
  end

 end
     </lang:inline-script>
     <lang:property name="message" value="Hello World!" />
 </lang:jruby>




24.3.1.4. Understanding Constructor Injection in the context of dynamic-language-backed
beans

There is one very important thing to be aware of with regard to Spring's dynamic language support. Namely, it
is not (currently) possible to supply constructor arguments to dynamic-language-backed beans (and hence
constructor-injection is not available for dynamic-language-backed beans). In the interests of making this

                                           Spring Framework (2.5.6)                                          510
Dynamic language support

special handling of constructors and properties 100% clear, the following mixture of code and configuration
will not work.

 // from the file 'Messenger.groovy'
 package org.springframework.scripting.groovy;

 import org.springframework.scripting.Messenger

 class GroovyMessenger implements Messenger {

        GroovyMessenger() {}

        // this constructor is not available for Constructor Injection
        GroovyMessenger(String message) {
            this.message = message;
        }

        String message

        String anotherMessage
 }



 <lang:groovy id="badMessenger"
     script-source="classpath:Messenger.groovy">

        <!-- this next constructor argument will *not* be injected into the GroovyMessenger -->
        <!--     in fact, this isn't even allowed according to the schema -->
        <constructor-arg value="This will *not* work" />

        <!-- only property values are injected into the dynamic-language-backed object -->
        <lang:property name="anotherMessage" value="Passed straight through to the dynamic-language-backed object" /

 </lang>



In practice this limitation is not as significant as it first appears since setter injection is the injection style
favored by the overwhelming majority of developers anyway (let's leave the discussion as to whether that is a
good thing to another day).


24.3.2. JRuby beans

     The JRuby library dependencies

     The JRuby scripting support in Spring requires the following libraries to be on the classpath of your
     application. (The versions listed just happen to be the versions that the Spring team used in the
     development of the JRuby scripting support; you may well be able to use another version of a specific
     library.)


     • jruby.jar

     • cglib-nodep-2.1_3.jar



From the JRuby homepage...
“ JRuby is an 100% pure-Java implementation of the Ruby programming language. ”

In keeping with the Spring philosophy of offering choice, Spring's dynamic language support also supports
beans defined in the JRuby language. The JRuby language is based on the quite intuitive Ruby language, and
has support for inline regular expressions, blocks (closures), and a whole host of other features that do make
solutions for some domain problems a whole lot easier to develop.



                                            Spring Framework (2.5.6)                                           511
Dynamic language support


The implementation of the JRuby dynamic language support in Spring is interesting in that what happens is
this: Spring creates a JDK dynamic proxy implementing all of the interfaces that are specified in the
'script-interfaces' attribute value of the <lang:ruby> element (this is why you must supply at least one
interface in the value of the attribute, and (accordingly) program to interfaces when using JRuby-backed
beans).

Let us look at a fully working example of using a JRuby-based bean. Here is the JRuby implementation of the
Messenger interface that was defined earlier in this chapter (for your convenience it is repeated below).

 package org.springframework.scripting;

 public interface Messenger {

       String getMessage();
 }



 require 'java'

 class RubyMessenger
     include org.springframework.scripting.Messenger

       def setMessage(message)
           @@message = message
       end

       def getMessage
           @@message
       end
 end

 # this last line is not essential (but see below)
 RubyMessenger.new



And here is the Spring XML that defines an instance of the RubyMessenger JRuby bean.

 <lang:jruby id="messageService"
             script-interfaces="org.springframework.scripting.Messenger"
             script-source="classpath:RubyMessenger.rb">

       <lang:property name="message" value="Hello World!" />

 </lang:jruby>



Take note of the last line of that JRuby source ('RubyMessenger.new'). When using JRuby in the context of
Spring's dynamic language support, you are encouraged to instantiate and return a new instance of the JRuby
class that you want to use as a dynamic-language-backed bean as the result of the execution of your JRuby
source. You can achieve this by simply instantiating a new instance of your JRuby class on the last line of the
source file like so:

 require 'java'

 include_class 'org.springframework.scripting.Messenger'

 # class definition same as above...

 # instantiate and return a new instance of the RubyMessenger class
 RubyMessenger.new



If you forget to do this, it is not the end of the world; this will however result in Spring having to trawl
(reflectively) through the type representation of your JRuby class looking for a class to instantiate. In the grand
scheme of things this will be so fast that you'll never notice it, but it is something that can be avoided by simply
having a line such as the one above as the last line of your JRuby script. If you don't supply such a line, or if


                                            Spring Framework (2.5.6)                                            512
Dynamic language support


Spring cannot find a JRuby class in your script to instantiate then an opaque ScriptCompilationException
will be thrown immediately after the source is executed by the JRuby interpreter. The key text that identifies
this as the root cause of an exception can be found immediately below (so if your Spring container throws the
following exception when creating your dynamic-language-backed bean and the following text is there in the
corresponding stacktrace, this will hopefully allow you to identify and then easily rectify the issue):
org.springframework.scripting.ScriptCompilationException:              Compilation      of    JRuby    script
returned ''

To rectify this, simply instantiate a new instance of whichever class you want to expose as a
JRuby-dynamic-language-backed bean (as shown above). Please also note that you can actually define as many
classes and objects as you want in your JRuby script; what is important is that the source file as a whole must
return an object (for Spring to configure).

See the section entitled Section 24.4, “Scenarios” for some scenarios where you might want to use JRuby-based
beans.


24.3.3. Groovy beans

     The Groovy library dependencies

     The Groovy scripting support in Spring requires the following libraries to be on the classpath of your
     application.


     • groovy-1.5.5.jar

     • asm-2.2.2.jar

     • antlr-2.7.6.jar



From the Groovy homepage...
“ Groovy is an agile dynamic language for the Java 2 Platform that has many of the features that people like so
much in languages like Python, Ruby and Smalltalk, making them available to Java developers using a
Java-like syntax. ”

If you have read this chapter straight from the top, you will already have seen an example of a
Groovy-dynamic-language-backed bean. Let's look at another example (again using an example from the
Spring test suite).

 package org.springframework.scripting;

 public interface Calculator {

        int add(int x, int y);
 }



Here is an implementation of the Calculator interface in Groovy.

 // from the file 'calculator.groovy'
 package org.springframework.scripting.groovy

 class GroovyCalculator implements Calculator {

        int add(int x, int y) {
            x + y
        }



                                           Spring Framework (2.5.6)                                        513
Dynamic language support

 }



 <-- from the file 'beans.xml' -->
 <beans>
     <lang:groovy id="calculator" script-source="classpath:calculator.groovy"/>
 </beans>



Lastly, here is a small application to exercise the above configuration.

 package org.springframework.scripting;

 import org.springframework.context.ApplicationContext;
 import org.springframework.context.support.ClassPathXmlApplicationContext;

 public class Main {

      public static void Main(String[] args) {
          ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml");
          Calculator calc = (Calculator) ctx.getBean("calculator");
          System.out.println(calc.add(2, 8));
      }
 }



The resulting output from running the above program will be (unsurprisingly) 10. (Exciting example, huh?
Remember that the intent is to illustrate the concept. Please consult the dynamic language showcase project for
a more complex example, or indeed the section entitled Section 24.4, “Scenarios” later in this chapter).

It is important that you do not define more than one class per Groovy source file. While this is perfectly legal in
Groovy, it is (arguably) a bad practice: in the interests of a consistent approach, you should (in the opinion of
this author) respect the standard Java conventions of one (public) class per source file.

24.3.3.1. Customising Groovy objects via a callback

The GroovyObjectCustomizer interface is a callback that allows you to hook additional creation logic into the
process of creating a Groovy-backed bean. For example, implementations of this interface could invoke any
required initialization method(s), or set some default property values, or specify a custom MetaClass.

 public interface GroovyObjectCustomizer {

     void customize(GroovyObject goo);
 }



The Spring Framework will instantiate an instance of your Groovy-backed bean, and will then pass the created
GroovyObject to the specified GroovyObjectCustomizer if one has been defined. You can do whatever you
like with the supplied GroovyObject reference: it is expected that the setting of a custom MetaClass is what
most folks will want to do with this callback, and you can see an example of doing that below.

 public final class SimpleMethodTracingCustomizer implements GroovyObjectCustomizer {

     public void customize(GroovyObject goo) {
        DelegatingMetaClass metaClass = new DelegatingMetaClass(goo.getMetaClass()) {

           public Object invokeMethod(Object object, String methodName, Object[] arguments) {
              System.out.println("Invoking '" + methodName + "'.");
              return super.invokeMethod(object, methodName, arguments);
           }
         };
         metaClass.initialize();
         goo.setMetaClass(metaClass);
     }
 }




                                            Spring Framework (2.5.6)                                           514
Dynamic language support


A full discussion of meta-programming in Groovy is beyond the scope of the Spring reference manual. Consult
the relevant section of the Groovy reference manual, or do a search online: there are plenty of articles
concerning this topic. Actually making use of a GroovyObjectCustomizer is easy if you are using the Spring
2.0 namespace support.

 <!-- define the GroovyObjectCustomizer just like any other bean -->
 <bean id="tracingCustomizer" class="example.SimpleMethodTracingCustomizer" />

     <!-- ... and plug it into the desired Groovy bean via the 'customizer-ref' attribute -->
     <lang:groovy id="calculator"
        script-source="classpath:org/springframework/scripting/groovy/Calculator.groovy"
        customizer-ref="tracingCustomizer" />



If you are not using the Spring 2.0 namespace support, you can still use the GroovyObjectCustomizer
functionality.

 <bean id="calculator" class="org.springframework.scripting.groovy.GroovyScriptFactory">
       <constructor-arg value="classpath:org/springframework/scripting/groovy/Calculator.groovy"/>
       <!-- define the GroovyObjectCustomizer (as an inner bean) -->
       <constructor-arg>
          <bean id="tracingCustomizer" class="example.SimpleMethodTracingCustomizer" />
       </constructor-arg>
 </bean>

 <bean class="org.springframework.scripting.support.ScriptFactoryPostProcessor"/>




24.3.4. BeanShell beans

  The BeanShell library dependencies

  The BeanShell scripting support in Spring requires the following libraries to be on the classpath of your
  application.


  • bsh-2.0b4.jar

  • cglib-nodep-2.1_3.jar

  All of these libraries are available in the Spring-with-dependencies distribution of Spring (in addition to
  also being freely available on the web).


From the BeanShell homepage...
“ BeanShell is a small, free, embeddable Java source interpreter with dynamic language features, written in
Java. BeanShell dynamically executes standard Java syntax and extends it with common scripting conveniences
such as loose types, commands, and method closures like those in Perl and JavaScript. ”

In contrast to Groovy, BeanShell-backed bean definitions require some (small) additional configuration. The
implementation of the BeanShell dynamic language support in Spring is interesting in that what happens is this:
Spring creates a JDK dynamic proxy implementing all of the interfaces that are specified in the
'script-interfaces' attribute value of the <lang:bsh> element (this is why you must supply at least one
interface in the value of the attribute, and (accordingly) program to interfaces when using BeanShell-backed
beans). This means that every method call on a BeanShell-backed object is going through the JDK dynamic
proxy invocation mechanism.

Let's look at a fully working example of using a BeanShell-based bean that implements the Messenger interface



                                          Spring Framework (2.5.6)                                          515
Dynamic language support

that was defined earlier in this chapter (repeated below for your convenience).

 package org.springframework.scripting;

 public interface Messenger {

      String getMessage();
 }



Here is the BeanShell 'implementation' (the term is used loosely here) of the Messenger interface.

 String message;

 String getMessage() {
     return message;
 }

 void setMessage(String aMessage) {
     message = aMessage;
 }



And here is the Spring XML that defines an 'instance' of the above 'class' (again, the term is used very loosely
here).

 <lang:bsh id="messageService" script-source="classpath:BshMessenger.bsh"
     script-interfaces="org.springframework.scripting.Messenger">

     <lang:property name="message" value="Hello World!" />
 </lang:bsh>



See the section entitled Section 24.4, “Scenarios” for some scenarios where you might want to use
BeanShell-based beans.


24.4. Scenarios
The possible scenarios where defining Spring managed beans in a scripting language would be beneficial are,
of course, many and varied. This section describes two possible use cases for the dynamic language support in
Spring.


24.4.1. Scripted Spring MVC Controllers

One group of classes that may benefit from using dynamic-language-backed beans is that of Spring MVC
controllers. In pure Spring MVC applications, the navigational flow through a web application is to a large
extent determined by code encapsulated within your Spring MVC controllers. As the navigational flow and
other presentation layer logic of a web application needs to be updated to respond to support issues or changing
business requirements, it may well be easier to effect any such required changes by editing one or more
dynamic language source files and seeing those changes being immediately reflected in the state of a running
application.

Remember that in the lightweight architectural model espoused by projects such as Spring, you are typically
aiming to have a really thin presentation layer, with all the meaty business logic of an application being
contained in the domain and service layer classes. Developing Spring MVC controllers as
dynamic-language-backed beans allows you to change presentation layer logic by simply editing and saving
text files; any changes to such dynamic language source files will (depending on the configuration)
automatically be reflected in the beans that are backed by dynamic language source files.




                                           Spring Framework (2.5.6)                                         516
Dynamic language support


            Note
            In order to effect this automatic 'pickup' of any changes to dynamic-language-backed beans, you
            will have had to enable the 'refreshable beans' functionality. See the section entitle
            Section 24.3.1.2, “Refreshable beans” for a full treatment of this feature.


Find below an example of an org.springframework.web.servlet.mvc.Controller implemented using the
Groovy dynamic language.

 // from the file '/WEB-INF/groovy/FortuneController.groovy'
 package org.springframework.showcase.fortune.web

 import   org.springframework.showcase.fortune.service.FortuneService
 import   org.springframework.showcase.fortune.domain.Fortune
 import   org.springframework.web.servlet.ModelAndView
 import   org.springframework.web.servlet.mvc.Controller

 import javax.servlet.http.HttpServletRequest
 import javax.servlet.http.HttpServletResponse

 class FortuneController implements Controller {

      @Property FortuneService fortuneService

      ModelAndView handleRequest(
              HttpServletRequest request, HttpServletResponse httpServletResponse) {

           return new ModelAndView("tell", "fortune", this.fortuneService.tellFortune())
      }
 }



 <lang:groovy id="fortune"
              refresh-check-delay="3000"
              script-source="/WEB-INF/groovy/FortuneController.groovy">
     <lang:property name="fortuneService" ref="fortuneService"/>
 </lang:groovy>




24.4.2. Scripted Validators

Another area of application development with Spring that may benefit from the flexibility afforded by
dynamic-language-backed beans is that of validation. It may be easier to express complex validation logic using
a loosely typed dynamic language (that may also have support for inline regular expressions) as opposed to
regular Java.

Again, developing validators as dynamic-language-backed beans allows you to change validation logic by
simply editing and saving a simple text file; any such changes will (depending on the configuration)
automatically be reflected in the execution of a running application and would not require the restart of an
application.

            Note
            Please note that in order to effect the automatic 'pickup' of any changes to
            dynamic-language-backed beans, you will have had to enable the 'refreshable beans' feature. See
            the section entitled Section 24.3.1.2, “Refreshable beans” for a full and detailed treatment of this
            feature.


Find below an example of a Spring org.springframework.validation.Validator implemented using the
Groovy dynamic language. (See the section entitled Section 5.2, “Validation using Spring's Validator


                                          Spring Framework (2.5.6)                                          517
Dynamic language support

interface” for a discussion of the Validator interface.)

 import org.springframework.validation.Validator
 import org.springframework.validation.Errors
 import org.springframework.beans.TestBean

 class TestBeanValidator implements Validator {

      boolean supports(Class clazz) {
          return TestBean.class.isAssignableFrom(clazz)
      }

      void validate(Object bean, Errors errors) {
          if(bean.name?.trim()?.size() > 0) {
              return
          }
          errors.reject("whitespace", "Cannot be composed wholly of whitespace.")
      }
 }




24.5. Bits and bobs
This last section contains some bits and bobs related to the dynamic language support.


24.5.1. AOP - advising scripted beans

It is possible to use the Spring AOP framework to advise scripted beans. The Spring AOP framework actually
is unaware that a bean that is being advised might be a scripted bean, so all of the AOP use cases and
functionality that you may be using or aim to use will work with scripted beans. There is just one (small) thing
that you need to be aware of when advising scripted beans... you cannot use class-based proxies, you must use
interface-based proxies.

You are of course not just limited to advising scripted beans... you can also write aspects themselves in a
supported dynamic language and use such beans to advise other Spring beans. This really would be an
advanced use of the dynamic language support though.


24.5.2. Scoping

In case it is not immediately obvious, scripted beans can of course be scoped just like any other bean. The
scope attribute on the various <lang:language/> elements allows you to control the scope of the underlying
scripted bean, just as it does with a regular bean. (The default scope is singleton, just as it is with 'regular'
beans.)

Find below an example of using the scope attribute to define a Groovy bean scoped as a prototype.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:lang="http://www.springframework.org/schema/lang"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-2.5.xsd">

      <lang:groovy id="messenger" script-source="classpath:Messenger.groovy" scope="prototype">
          <lang:property name="message" value="I Can Do The RoboCop" />
      </lang:groovy>

      <bean id="bookingService" class="x.y.DefaultBookingService">
          <property name="messenger" ref="messenger" />
      </bean>

 </beans>



                                           Spring Framework (2.5.6)                                          518
Dynamic language support


See the section entitled Section 3.4, “Bean scopes” in Chapter 3, The IoC container for a fuller discussion of
the scoping support in the Spring Framework.


24.6. Further Resources
Find below links to further resources about the various dynamic languages described in this chapter.


• The JRuby homepage

• The Groovy homepage

• The BeanShell homepage

Some of the more active members of the Spring community have also added support for a number of additional
dynamic languages above and beyond the ones covered in this chapter. While it is possible that such third party
contributions may be added to the list of languages supported by the main Spring distribution, your best bet for
seeing if your favourite scripting language is supported is the Spring Modules project.




                                          Spring Framework (2.5.6)                                          519
Chapter 25. Annotations and Source Level Metadata
Support

25.1. Introduction
Source-level metadata is the addition of attributes or annotations to program elements - usually, classes and/or
methods.

For example, we might add metadata to a class as follows:

 /**
  * Normal comments here
  * @@org.springframework.transaction.interceptor.DefaultTransactionAttribute()
  */
 public class PetStoreImpl implements PetStoreFacade, OrderService {



We could add metadata to a method as follows:

 /**
   * Normal comments here
   * @@org.springframework.transaction.interceptor.RuleBasedTransactionAttribute()
   * @@org.springframework.transaction.interceptor.RollbackRuleAttribute(Exception.class)
   * @@org.springframework.transaction.interceptor.NoRollbackRuleAttribute("ServletException")
   */
 public void echoException(Exception ex) throws Exception {
      ....
 }



Both of these examples use Jakarta Commons Attributes syntax.

Source-level metadata was introduced to the mainstream by XDoclet (in the Java world) and by the release of
Microsoft's .NET platform, which uses source-level attributes to control transactions, pooling and other
behavior.

The value in this approach has been recognized in the J2EE community. For example, it's much less verbose
than the traditional XML deployment descriptors used exclusively by EJB. While it is desirable to externalize
some things from program source code, some important enterprise settings - notably transaction characteristics
- arguably belong in program source. Contrary to the assumptions of the EJB spec, it seldom makes sense to
modify the transactional characteristics of a method (although parameters like transaction timeouts might
change!).

Although metadata attributes are typically used mainly by framework infrastructure to describe the services
application classes require, it should also be possible for metadata attributes to be queried at runtime. This is a
key distinction from solutions such as XDoclet, which view metadata primarily as a way of generating code
such as EJB artefacts.

There are a number of solutions in this space, including:


• Standard Java Annotations: the standard Java metadata implementation (developed as JSR-175 and
  available in Java 5). Spring has specific Java 5 annotations for transactional demarcation, JMX, and aspects
  (to be precise they are AspectJ annotations). However, since Spring supports Java 1.4 as well, a solution for
  said JVM versions is needed too. Spring metadata support provides such a solution.

• XDoclet: well-established solution, primarily intended for code generation.

                                            Spring Framework (2.5.6)                                           520
Annotations and Source Level Metadata Support


• Various open source attribute implementations, for Java 1.4, of which Commons Attributes is the most
  complete implementation. All these require a special pre- or post-compilation step.



25.2. Spring's metadata support
In keeping with its provision of abstractions over important concepts, Spring provides a facade to metadata
implementations, in the form of the org.springframework.metadata.Attributes interface. Such a facade
adds value for several reasons:


• Even though Java 5 provides metadata support at language level, there will still be value in providing such an
  abstraction:

  • Java 5 metadata is static. It is associated with a class at compile time, and cannot be changed in a deployed
    environment (annotation state can actually be changed at runtime using reflection, but doing so would
    really be a bad practice). There is a need for hierarchical metadata, providing the ability to override certain
    attribute values in deployment - for example, in an XML file.

  • Java 5 metadata is returned through the Java reflection API. This makes it impossible to mock during test
    time. Spring provides a simple interface to allow this.

  • There will be a need for metadata support in 1.3 and 1.4 applications for at least two years. Spring aims to
    provide working solutions now; forcing the use of Java 5 is not an option in such an important area.

• Current metadata APIs, such as Commons Attributes (used by Spring 1.0-1.2) are hard to test. Spring
  provides a simple metadata interface that is much easier to mock.

The Spring Attributes interface looks like this:

 public interface Attributes {

      Collection getAttributes(Class targetClass);

      Collection getAttributes(Class targetClass, Class filter);

      Collection getAttributes(Method targetMethod);

      Collection getAttributes(Method targetMethod, Class filter);

      Collection getAttributes(Field targetField);

      Collection getAttributes(Field targetField, Class filter);
 }



This is a lowest common denominator interface. JSR-175 offers more capabilities than this, such as attributes
on method arguments.

Note that this interface offers Object attributes, like .NET. This distinguishes it from attribute systems such as
that of Nanning Aspects, which offer only String attributes. There is a significant advantage in supporting
Object attributes, namely that it enables attributes to participate in class hierarchies and allows such attributes
to react intelligently to their configuration parameters.

With most attribute providers, attribute classes are configured via constructor arguments or JavaBean
properties. Commons Attributes supports both.

As with all Spring abstraction APIs, Attributes is an interface. This makes it easy to mock attribute
implementations for unit tests.


                                            Spring Framework (2.5.6)                                           521
Annotations and Source Level Metadata Support



25.3. Annotations
The Spring Framework ships with a number of custom Java 5+ annotations.


25.3.1. @Required

The @Required annotation in the org.springframework.beans.factory.annotation package can be used to
mark a property as being 'required-to-be-set' (i.e. an annotated (setter) method of a class must be configured to
be dependency injected with a value), else an Exception will be thrown by the container at runtime.

The best way to illustrate the usage of this annotation is to show an example:

 public class SimpleMovieLister {

      // the SimpleMovieLister has a dependency on the MovieFinder
      private MovieFinder movieFinder;

      // a setter method so that the Spring container can 'inject' a MovieFinder
      @Required
      public void setMovieFinder(MovieFinder movieFinder) {
          this.movieFinder = movieFinder;
      }

      // business logic that actually 'uses' the injected MovieFinder is omitted...
 }



Hopefully the above class definition reads easy on the eye. Any and all BeanDefinitions for the
SimpleMovieLister class must be provided with a value.

Let's look at an example of some XML configuration that will not pass validation.

 <bean id="movieLister" class="x.y.SimpleMovieLister">
     <!-- whoops, no MovieFinder is set (and this property is @Required) -->
 </bean>



At runtime the following message will be generated by the Spring container (the rest of the stack trace has been
truncated).

 Exception in thread "main" java.lang.IllegalArgumentException:
     Property 'movieFinder' is required for bean 'movieLister'.



There is one last little (small, tiny) piece of Spring configuration that is required to actually 'switch on' this
behavior. Simply annotating the 'setter' properties of your classes is not enough to get this behavior. You need
to enable a component that is aware of the @Required annotation and that can process it appropriately.

This component is the RequiredAnnotationBeanPostProcessor class. This is a special BeanPostProcessor
implementation that is @Required-aware and actually provides the 'blow up if this required property has not
been set' logic. It is very easy to configure; simply drop the following bean definition into your Spring XML
configuration.

 <bean class="org.springframework.beans.factory.annotation.RequiredAnnotationBeanPostProcessor"/>



Finally, one can configure an instance of the RequiredAnnotationBeanPostProcessor class to look for
another Annotation type. This is great if you already have your own @Required-style annotation. Simply plug
it into the definition of a RequiredAnnotationBeanPostProcessor and you are good to go.



                                           Spring Framework (2.5.6)                                           522
Annotations and Source Level Metadata Support


By way of an example, let's suppose you (or your organization / team) have defined an attribute called @
Mandatory. You can make a RequiredAnnotationBeanPostProcessor instance @Mandatory-aware like so:

 <bean class="org.springframework.beans.factory.annotation.RequiredAnnotationBeanPostProcessor">
     <property name="requiredAnnotationType" value="your.company.package.Mandatory"/>
 </bean>



Here is the source code for the @Mandatory annotation. You will need to ensure that your custom annotation
type is itself annotated with appropriate annotations for its target and runtime retention policy.

 package your.company.package;

 import   java.lang.annotation.ElementType;
 import   java.lang.annotation.Retention;
 import   java.lang.annotation.RetentionPolicy;
 import   java.lang.annotation.Target;

 @Retention(RetentionPolicy.RUNTIME)
 @Target(ElementType.METHOD)
 public @interface Mandatory {
 }




25.3.2. Other @Annotations in Spring

Annotations are also used in a number of other places throughout Spring. Rather than being described here,
these annotations are described in that section or chapter of the reference documentation to which they are most
relevant.


• Section 9.5.6, “Using @Transactional”

• Section 6.8.1, “Using AspectJ to dependency inject domain objects with Spring”

• Section 6.2, “@AspectJ support”

• Section 3.11, “Annotation-based configuration”

• Section 3.12, “Classpath scanning for managed components”



25.4. Integration with Jakarta Commons Attributes
Presently Spring supports only Jakarta Commons Attributes out of the box, although it is easy to provide
implementations of the org.springframework.metadata.Attributes interface for other metadata providers.

Commons Attributes 2.2 (http://jakarta.apache.org/commons/attributes/) is a capable attributes solution. It
supports attribute configuration via constructor arguments and JavaBean properties, which offers better
self-documentation in attribute definitions. (Support for JavaBean properties was added at the request of the
Spring team.)

We've already seen two examples of Commons Attributes attributes definitions. In general, we will need to
express:


• The name of the attribute class. This can be a fully qualified name (FQN), as shown above. If the relevant
  attribute class has already been imported, the FQN isn't required. It's also possible to specify "attribute
  packages" in attribute compiler configuration.


                                          Spring Framework (2.5.6)                                          523
Annotations and Source Level Metadata Support


• Any necessary parameterization. This is done via constructor arguments or JavaBean properties.

Bean properties look as follows:

 /**
  * @@MyAttribute(myBooleanJavaBeanProperty=true)
  */



It's possible to combine constructor arguments and JavaBean properties (as in Spring IoC).

Because, unlike Java 1.5 attributes, Commons Attributes is not integrated with the Java language, it is
necessary to run a special attribute compilation step as part of the build process.

To run Commons Attributes as part of the build process, you will need to do the following:

1. Copy the necessary library jars to $ANT_HOME/lib. Four Jars are required, and all are distributed with Spring:


• the Commons Attributes compiler jar and API jar

• xJavadoc.jar from XDoclet

• commons-collections.jar from Jakarta Commons

2. Import the Commons Attributes ant tasks into your project build script, as follows:

 <taskdef resource="org/apache/commons/attributes/anttasks.properties"/>



3. Next, define an attribute compilation task, which will use the Commons Attributes attribute-compiler task to
"compile" the attributes in the source. This process results in the generation of additional sources, to a location
specified by the destdir attribute. Here we show the use of a temporary directory for storing the generated
files:

 <target name="compileAttributes">

    <attribute-compiler destdir="${commons.attributes.tempdir}">
      <fileset dir="${src.dir}" includes="**/*.java"/>
    </attribute-compiler>

 </target>



The compile target that runs javac over the sources should depend on this attribute compilation task, and must
also compile the generated sources, which we output to our destination temporary directory. If there are syntax
errors in your attribute definitions, they will normally be caught by the attribute compiler. However, if the
attribute definitions are syntactically plausible, but specify invalid types or class names, the compilation of the
generated attribute classes may fail. In this case, you can look at the generated classes to establish the cause of
the problem.
Commons Attributes also provides Maven support. Please refer to Commons Attributes documentation for
further information.

While this attribute compilation process may look complex, in fact it's a one-off cost. Once set up, attribute
compilation is incremental, so it doesn't usually noticeably slow the build process. And once the compilation
process is set up, you may find that use of attributes as described in this chapter can save you a lot of time in
other areas.

If you require attribute indexing support (only currently required by Spring for attribute-targeted web


                                            Spring Framework (2.5.6)                                           524
Annotations and Source Level Metadata Support


controllers, discussed below), you will need an additional step, which must be performed on a jar file of your
compiled classes. In this additional step, Commons Attributes will create an index of all the attributes defined
on your sources, for efficient lookup at runtime. The step looks like this:

 <attribute-indexer jarFile="myCompiledSources.jar">

      <classpath refid="master-classpath"/>

 </attribute-indexer>


See the /attributes directory of the Spring JPetStore sample application for an example of this build process.
You can take the build script it contains and modify it for your own projects.

If your unit tests depend on attributes, try to express the dependency on the Spring Attributes abstraction, rather
than Commons Attributes. Not only is this more portable - for example, your tests will still work if you switch
to Java 1.5 attributes in future - it simplifies testing. Also, Commons Attributes is a static API, while Spring
provides a metadata interface that you can easily mock.


25.5. Metadata and Spring AOP autoproxying
The most important uses of metadata attributes are in conjunction with Spring AOP. This provides a .NET-like
programming model, where declarative services are automatically provided to application objects that declare
metadata attributes. Such metadata attributes can be supported out of the box by the framework, as in the case
of declarative transaction management, or can be custom.


25.5.1. Fundamentals

This builds on the Spring AOP autoproxy functionality. Configuration might look like this:

 <bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

 <bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">
   <property name="transactionInterceptor" ref="txInterceptor" />
 </bean>

 <bean id="txInterceptor" class="org.springframework.transaction.interceptor.TransactionInterceptor">
   <property name="transactionManager" ref="transactionManager" />
   <property name="transactionAttributeSource">
     <bean class="org.springframework.transaction.interceptor.AttributesTransactionAttributeSource">
       <property name="attributes" ref="attributes" />
     </bean>
   </property>
 </bean>

 <bean id="attributes" class="org.springframework.metadata.commons.CommonsAttributes" />



The basic concepts here should be familiar from the discussion of autoproxying in the AOP chapter.

The most important bean definitions are the auto-proxy creator and the advisor. Note that the actual bean names
are not important; what matters is their class.

The                       bean                       definition                      of                   class
org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator will automatically
advise ("auto-proxy") all bean instances in the current factory based on matching advisor implementations. This
class knows nothing about attributes, but relies on advisors' pointcuts matching. The pointcuts, however, do
know about attributes.

Thus we simply need an AOP advisor that will provide declarative transaction management based on attributes.


                                            Spring Framework (2.5.6)                                           525
Annotations and Source Level Metadata Support


It is possible to add arbitrary custom advisor implementations as well, and they will also be evaluated and
applied automatically. (You can use advisors whose pointcuts match on criteria besides attributes in the same
autoproxy configuration, if necessary.)

Finally, the attributes bean is the Commons Attributes Attributes implementation. Replace it with another
implementation of the org.springframework.metadata.Attributes interface to source attributes from a
different source.


25.5.2. Declarative transaction management

The most common use of source-level attributes is to provide declarative transaction management. Once the
bean definitions shown above are in place, you can define any number of application objects requiring
declarative transactions. Only those classes or methods with transaction attributes will be given transaction
advice. You need to do nothing except define the required transaction attributes.

Please note that you can specify transaction attributes at either class or method level. Class-level attributes, if
specified, will be "inherited" by all methods whereas method attributes will wholly override any class-level
attributes.




                                            Spring Framework (2.5.6)                                           526
Appendix A. XML Schema-based
configuration
A.1. Introduction
This appendix details the XML Schema-based configuration introduced in Spring 2.0.

   DTD support?

   Authoring Spring configuration files using the older DTD style is still fully supported.

   Nothing will break if you forego the use of the new XML Schema-based approach to authoring Spring
   XML configuration files. All that you lose out on is the opportunity to have more succinct and clearer
   configuration. Regardless of whether the XML configuration is DTD- or Schema-based, in the end it all
   boils down to the same object model in the container (namely one or more BeanDefinition instances).


The central motivation for moving to XML Schema based configuration files was to make Spring XML
configuration easier. The 'classic' <bean/>-based approach is good, but its generic-nature comes with a price in
terms of configuration overhead.

From the Spring IoC containers point-of-view, everything is a bean. That's great news for the Spring IoC
container, because if everything is a bean then everything can be treated in the exact same fashion. The same,
however, is not true from a developer's point-of-view. The objects defined in a Spring XML configuration file
are not all generic, vanilla beans. Usually, each bean requires some degree of specific configuration.

Spring 2.0's new XML Schema-based configuration addresses this issue. The <bean/> element is still present,
and if you wanted to, you could continue to write the exact same style of Spring XML configuration using only
<bean/> elements. The new XML Schema-based configuration does, however, make Spring XML
configuration files substantially clearer to read. In addition, it allows you to express the intent of a bean
definition.

The key thing to remember is that the new custom tags work best for infrastructure or integration beans: for
example, AOP, collections, transactions, integration with 3rd-party frameworks such as Mule, etc., while the
existing bean tags are best suited to application-specific beans, such as DAOs, service layer objects, validators,
etc.

The examples included below will hopefully convince you that the inclusion of XML Schema support in Spring
2.0 was a good idea. The reception in the community has been encouraging; also, please note the fact that this
new configuration mechanism is totally customisable and extensible. This means you can write your own
domain-specific configuration tags that would better represent your application's domain; the process involved
in doing so is covered in the appendix entitled Appendix B, Extensible XML authoring.


A.2. XML Schema-based configuration

A.2.1. Referencing the schemas


                                           Spring Framework (2.5.6)                                           527
XML Schema-based configuration


To switch over from the DTD-style to the new XML Schema-style, you need to make the following change.

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"
     "http://www.springframework.org/dtd/spring-beans-2.0.dtd">

 <beans>

 <!-- <bean/> definitions here -->

 </beans>



The equivalent file in the XML Schema-style would be...

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <!-- <bean/> definitions here -->

 </beans>



            Note
            The 'xsi:schemaLocation' fragment is not actually required, but can be included to reference a
            local copy of a schema (which can be useful during development).


The above Spring XML configuration fragment is boilerplate that you can copy and paste (!) and then plug
<bean/> definitions into like you have always done. However, the entire point of switching over is to take
advantage of the new Spring 2.0 XML tags since they make configuration easier. The section entitled
Section A.2.2, “The util schema” demonstrates how you can start immediately by using some of the more
common utility tags.

The rest of this chapter is devoted to showing examples of the new Spring XML Schema based configuration,
with at least one example for every new tag. The format follows a before and after style, with a before snippet
of XML showing the old (but still 100% legal and supported) style, followed immediately by an after example
showing the equivalent in the new XML Schema-based style.


A.2.2. The util schema

First up is coverage of the util tags. As the name implies, the util tags deal with common, utility
configuration issues, such as configuring collections, referencing constants, and suchlike.

To use the tags in the util schema, you need to have the following preamble at the top of your Spring XML
configuration file; the emboldened text in the snippet below references the correct schema so that the tags in the
util namespace are available to you.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:util="http://www.springframework.org/schema/util"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util-2.5.xsd">

 <!-- <bean/> definitions here -->



                                           Spring Framework (2.5.6)                                           528
XML Schema-based configuration

 </beans>




A.2.2.1. <util:constant/>

Before...

 <bean id="..." class="...">
   <property name="isolation">
     <bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
     class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />
   </property>
 </bean>



The above configuration uses a Spring FactoryBean implementation, the FieldRetrievingFactoryBean, to set
the   value     of   the     'isolation'      property     on    a     bean    to the value   of     the
'java.sql.Connection.TRANSACTION_SERIALIZABLE' constant. This is all well and good, but it is a tad
verbose and (unneccessarily) exposes Spring's internal plumbing to the end user.

The following XML Schema-based version is more concise and clearly expresses the developer's intent ('inject
this constant value'), and it just reads better.

 <bean id="..." class="...">
   <property name="isolation">
     <util:constant static-field="java.sql.Connection.TRANSACTION_SERIALIZABLE"/>
   </property>
 </bean>



A.2.2.1.1. Setting a bean property or constructor arg from a field value
FieldRetrievingFactoryBean       is a FactoryBean which retrieves a static or non-static field value. It is
typically used for retrieving public static final constants, which may then be used to set a property value or
constructor arg for another bean.

Find below an example which shows how a static field is exposed, by using the staticField property:

 <bean id="myField"
         class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">
   <property name="staticField" value="java.sql.Connection.TRANSACTION_SERIALIZABLE"/>
 </bean>



There is also a convenience usage form where the static field is specified as the bean name:

 <bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
     class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean"/>



This does mean that there is no longer any choice in what the bean id is (so any other bean that refers to it will
also have to use this longer name), but this form is very concise to define, and very convenient to use as an
inner bean since the id doesn't have to be specified for the bean reference:

 <bean id="..." class="...">
   <property name="isolation">
     <bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
           class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />
   </property>
 </bean>



It is also possible to access a non-static (instance) field of another bean, as described in the API documentation
for the FieldRetrievingFactoryBean class.

                                           Spring Framework (2.5.6)                                           529
XML Schema-based configuration


Injecting enum values into beans as either property or constructor arguments is very easy to do in Spring, in
that you don't actually have to do anything or know anything about the Spring internals (or even about classes
such as the FieldRetrievingFactoryBean). Let's look at an example to see how easy injecting an enum value
is; consider this JDK 5 enum:

  package javax.persistence;

  public enum PersistenceContextType {

      TRANSACTION,
      EXTENDED

  }



Now consider a setter of type PersistenceContextType:

  package example;

  public class Client {

      private PersistenceContextType persistenceContextType;

      public void setPersistenceContextType(PersistenceContextType type) {
          this.persistenceContextType = type;
      }
  }



.. and the corresponding bean definition:

  <bean class="example.Client">
      <property name="persistenceContextType" value="TRANSACTION" />
  </bean>



This works for classic type-safe emulated enums (on JDK 1.4 and JDK 1.3) as well; Spring will automatically
attempt to match the string property value to a constant on the enum class.

A.2.2.2. <util:property-path/>

Before...

  <!-- target bean to be referenced by name -->
  <bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype">
    <property name="age" value="10"/>
    <property name="spouse">
      <bean class="org.springframework.beans.TestBean">
        <property name="age" value="11"/>
      </bean>
    </property>
  </bean>

  <!-- will result in 10, which is the value of property 'age' of bean 'testBean' -->
  <bean id="testBean.age" class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>



The above configuration uses a Spring FactoryBean implementation, the PropertyPathFactoryBean, to create
a bean (of type int) called 'testBean.age' that has a value equal to the 'age' property of the 'testBean'
bean.

After...

  <!-- target bean to be referenced by name -->
  <bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype">
    <property name="age" value="10"/>
    <property name="spouse">


                                            Spring Framework (2.5.6)                                      530
XML Schema-based configuration

     <bean class="org.springframework.beans.TestBean">
       <property name="age" value="11"/>
     </bean>
   </property>
 </bean>

 <!-- will result in 10, which is the value of property 'age' of bean 'testBean' -->
 <util:property-path id="name" path="testBean.age"/>



The value of the 'path' attribute of the <property-path/> tag follows the form 'beanName.beanProperty'.

A.2.2.2.1. Using <util:property-path/> to set a bean property or
constructor-argument
PropertyPathFactoryBean      is a FactoryBean that evaluates a property path on a given target object. The target
object can be specified directly or via a bean name. This value may then be used in another bean definition as a
property value or constructor argument.

Here's an example where a path is used against another bean, by name:

 // target bean to be referenced by name
 <bean id="person" class="org.springframework.beans.TestBean" scope="prototype">
   <property name="age" value="10"/>
   <property name="spouse">
     <bean class="org.springframework.beans.TestBean">
       <property name="age" value="11"/>
     </bean>
   </property>
 </bean>

 // will result in 11, which is the value of property 'spouse.age' of bean 'person'
 <bean id="theAge"
     class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
   <property name="targetBeanName" value="person"/>
   <property name="propertyPath" value="spouse.age"/>
 </bean>



In this example, a path is evaluated against an inner bean:

 <!-- will result in 12, which is the value of property 'age' of the inner bean -->
 <bean id="theAge"
     class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
   <property name="targetObject">
     <bean class="org.springframework.beans.TestBean">
       <property name="age" value="12"/>
     </bean>
   </property>
   <property name="propertyPath" value="age"/>
 </bean>



There is also a shortcut form, where the bean name is the property path.

 <!-- will result in 10, which is the value of property 'age' of bean 'person' -->
 <bean id="person.age"
     class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>



This form does mean that there is no choice in the name of the bean. Any reference to it will also have to use
the same id, which is the path. Of course, if used as an inner bean, there is no need to refer to it at all:

 <bean id="..." class="...">
   <property name="age">
     <bean id="person.age"
         class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>
   </property>
 </bean>



                                           Spring Framework (2.5.6)                                          531
XML Schema-based configuration


The result type may be specifically set in the actual definition. This is not necessary for most use cases, but can
be of use for some. Please see the Javadocs for more info on this feature.

A.2.2.3. <util:properties/>

Before...

  <!-- creates a java.util.Properties instance with values loaded from the supplied location -->
  <bean id="jdbcConfiguration" class="org.springframework.beans.factory.config.PropertiesFactoryBean">
    <property name="location" value="classpath:com/foo/jdbc-production.properties"/>
  </bean>



The above configuration uses a Spring FactoryBean implementation, the PropertiesFactoryBean, to
instantiate a java.util.Properties instance with values loaded from the supplied Resource location).

After...

  <!-- creates a java.util.Properties instance with values loaded from the supplied location -->
  <util:properties id="jdbcConfiguration" location="classpath:com/foo/jdbc-production.properties"/>




A.2.2.4. <util:list/>

Before...

  <!-- creates a java.util.List instance with values loaded from the supplied 'sourceList' -->
  <bean id="emails" class="org.springframework.beans.factory.config.ListFactoryBean">
    <property name="sourceList">
        <list>
          <value>pechorin@hero.org</value>
          <value>raskolnikov@slums.org</value>
          <value>stavrogin@gov.org</value>
          <value>porfiry@gov.org</value>
        </list>
    </property>
  </bean>



The above configuration uses a Spring FactoryBean implementation, the ListFactoryBean, to create a
java.util.List instance initialized with values taken from the supplied 'sourceList'.

After...

  <!-- creates a java.util.List instance with values loaded from the supplied 'sourceList' -->
  <util:list id="emails">
      <value>pechorin@hero.org</value>
      <value>raskolnikov@slums.org</value>
      <value>stavrogin@gov.org</value>
      <value>porfiry@gov.org</value>
  </util:list>



You can also explicitly control the exact type of List that will be instantiated and populated via the use of the
'list-class' attribute on the <util:list/> element. For example, if we really need a java.util.LinkedList
to be instantiated, we could use the following configuration:

  <util:list id="emails" list-class="java.util.LinkedList">
      <value>jackshaftoe@vagabond.org</value>
      <value>eliza@thinkingmanscrumpet.org</value>
      <value>vanhoek@pirate.org</value>
      <value>d'Arcachon@nemesis.org</value>
  </util:list>




                                            Spring Framework (2.5.6)                                           532
XML Schema-based configuration


If no 'list-class' attribute is supplied, a List implementation will be chosen by the container.

Finally, you can also control the merging behavior using the 'merge' attribute of the <util:list/> element;
collection merging is described in more detail in the section entitled Section 3.3.2.4.1, “Collection merging”.

A.2.2.5. <util:map/>

Before...

  <!-- creates a java.util.Map instance with values loaded from the supplied 'sourceMap' -->
  <bean id="emails" class="org.springframework.beans.factory.config.MapFactoryBean">
    <property name="sourceMap">
        <map>
          <entry key="pechorin" value="pechorin@hero.org"/>
          <entry key="raskolnikov" value="raskolnikov@slums.org"/>
          <entry key="stavrogin" value="stavrogin@gov.org"/>
          <entry key="porfiry" value="porfiry@gov.org"/>
        </map>
    </property>
  </bean>



The above configuration uses a Spring FactoryBean implementation, the MapFactoryBean, to create a
java.util.Map instance initialized with key-value pairs taken from the supplied 'sourceMap'.

After...

  <!-- creates a java.util.Map instance with values loaded from the supplied 'sourceMap' -->
  <util:map id="emails">
      <entry key="pechorin" value="pechorin@hero.org"/>
      <entry key="raskolnikov" value="raskolnikov@slums.org"/>
      <entry key="stavrogin" value="stavrogin@gov.org"/>
      <entry key="porfiry" value="porfiry@gov.org"/>
  </util:map>



You can also explicitly control the exact type of Map that will be instantiated and populated via the use of the
'map-class' attribute on the <util:map/> element. For example, if we really need a java.util.TreeMap to be
instantiated, we could use the following configuration:

  <util:map id="emails" map-class="java.util.TreeMap">
      <entry key="pechorin" value="pechorin@hero.org"/>
      <entry key="raskolnikov" value="raskolnikov@slums.org"/>
      <entry key="stavrogin" value="stavrogin@gov.org"/>
      <entry key="porfiry" value="porfiry@gov.org"/>
  </util:map>



If no 'map-class' attribute is supplied, a Map implementation will be chosen by the container.

Finally, you can also control the merging behavior using the 'merge' attribute of the <util:map/> element;
collection merging is described in more detail in the section entitled Section 3.3.2.4.1, “Collection merging”.

A.2.2.6. <util:set/>

Before...

  <!-- creates a java.util.Set instance with values loaded from the supplied 'sourceSet' -->
  <bean id="emails" class="org.springframework.beans.factory.config.SetFactoryBean">
    <property name="sourceSet">
        <set>
          <value>pechorin@hero.org</value>
          <value>raskolnikov@slums.org</value>
          <value>stavrogin@gov.org</value>
          <value>porfiry@gov.org</value>
        </set>


                                          Spring Framework (2.5.6)                                          533
XML Schema-based configuration

    </property>
  </bean>



The above configuration uses a Spring FactoryBean implementation, the SetFactoryBean, to create a
java.util.Set instance initialized with values taken from the supplied 'sourceSet'.

After...

  <!-- creates a java.util.Set instance with values loaded from the supplied 'sourceSet' -->
  <util:set id="emails">
      <value>pechorin@hero.org</value>
      <value>raskolnikov@slums.org</value>
      <value>stavrogin@gov.org</value>
      <value>porfiry@gov.org</value>
  </util:set>



You can also explicitly control the exact type of Set that will be instantiated and populated via the use of the
'set-class' attribute on the <util:set/> element. For example, if we really need a java.util.TreeSet to be
instantiated, we could use the following configuration:

  <util:set id="emails" set-class="java.util.TreeSet">
      <value>pechorin@hero.org</value>
      <value>raskolnikov@slums.org</value>
      <value>stavrogin@gov.org</value>
      <value>porfiry@gov.org</value>
  </util:set>



If no 'set-class' attribute is supplied, a Set implementation will be chosen by the container.

Finally, you can also control the merging behavior using the 'merge' attribute of the <util:set/> element;
collection merging is described in more detail in the section entitled Section 3.3.2.4.1, “Collection merging”.


A.2.3. The jee schema

The jee tags deal with JEE (Java Enterprise Edition)-related configuration issues, such as looking up a JNDI
object and defining EJB references.

To use the tags in the jee schema, you need to have the following preamble at the top of your Spring XML
configuration file; the emboldened text in the following snippet references the correct schema so that the tags in
the jee namespace are available to you.

  <?xml version="1.0" encoding="UTF-8"?>
  <beans xmlns="http://www.springframework.org/schema/beans"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xmlns:jee="http://www.springframework.org/schema/jee"
         xsi:schemaLocation="
  http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
  http://www.springframework.org/schema/jee http://www.springframework.org/schema/jee/spring-jee-2.5.xsd">

  <!-- <bean/> definitions here -->

  </beans>




A.2.3.1. <jee:jndi-lookup/> (simple)

Before...

  <bean id="dataSource" class="org.springframework.jndi.JndiObjectFactoryBean">
      <property name="jndiName" value="jdbc/MyDataSource"/>
  </bean>



                                           Spring Framework (2.5.6)                                           534
XML Schema-based configuration

  <bean id="userDao" class="com.foo.JdbcUserDao">
      <!-- Spring will do the cast automatically (as usual) -->
      <property name="dataSource" ref="dataSource"/>
  </bean>



After...

  <jee:jndi-lookup id="dataSource" jndi-name="jdbc/MyDataSource"/>

  <bean id="userDao" class="com.foo.JdbcUserDao">
      <!-- Spring will do the cast automatically (as usual) -->
      <property name="dataSource" ref="dataSource"/>
  </bean>




A.2.3.2. <jee:jndi-lookup/> (with single JNDI environment setting)

Before...

  <bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
      <property name="jndiName" value="jdbc/MyDataSource"/>
      <property name="jndiEnvironment">
          <props>
              <prop key="foo">bar</prop>
          </props>
      </property>
  </bean>



After...

  <jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource">
      <jee:environment>foo=bar</jee:environment>
  </jee:jndi-lookup>




A.2.3.3. <jee:jndi-lookup/> (with multiple JNDI environment settings)

Before...

  <bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
      <property name="jndiName" value="jdbc/MyDataSource"/>
      <property name="jndiEnvironment">
          <props>
              <prop key="foo">bar</prop>
              <prop key="ping">pong</prop>
          </props>
      </property>
  </bean>



After...

  <jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource">
      <!-- newline-separated, key-value pairs for the environment (standard Properties format) -->
      <jee:environment>
          foo=bar
          ping=pong
      </jee:environment>
  </jee:jndi-lookup>




A.2.3.4. <jee:jndi-lookup/> (complex)

Before...

  <bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">


                                        Spring Framework (2.5.6)                                     535
XML Schema-based configuration


      <property   name="jndiName" value="jdbc/MyDataSource"/>
      <property   name="cache" value="true"/>
      <property   name="resourceRef" value="true"/>
      <property   name="lookupOnStartup" value="false"/>
      <property   name="expectedType" value="com.myapp.DefaultFoo"/>
      <property   name="proxyInterface" value="com.myapp.Foo"/>
  </bean>



After...

  <jee:jndi-lookup id="simple"
               jndi-name="jdbc/MyDataSource"
               cache="true"
               resource-ref="true"
               lookup-on-startup="false"
               expected-type="com.myapp.DefaultFoo"
               proxy-interface="com.myapp.Foo"/>




A.2.3.5. <jee:local-slsb/> (simple)

The <jee:local-slsb/> tag configures a reference to an EJB Stateless SessionBean.

Before...

  <bean id="simple"
        class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">
    <property name="jndiName" value="ejb/RentalServiceBean"/>
    <property name="businessInterface" value="com.foo.service.RentalService"/>
  </bean>



After...

  <jee:local-slsb id="simpleSlsb" jndi-name="ejb/RentalServiceBean"
      business-interface="com.foo.service.RentalService"/>




A.2.3.6. <jee:local-slsb/> (complex)

  <bean id="complexLocalEjb"
        class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">
    <property name="jndiName" value="ejb/RentalServiceBean"/>
    <property name="businessInterface" value="com.foo.service.RentalService"/>
    <property name="cacheHome" value="true"/>
    <property name="lookupHomeOnStartup" value="true"/>
    <property name="resourceRef" value="true"/>
  </bean>



After...

  <jee:local-slsb id="complexLocalEjb"
      jndi-name="ejb/RentalServiceBean"
      business-interface="com.foo.service.RentalService"
      cache-home="true"
      lookup-home-on-startup="true"
      resource-ref="true">




A.2.3.7. <jee:remote-slsb/>

The <jee:remote-slsb/> tag configures a reference to a remote EJB Stateless SessionBean.

Before...


                                         Spring Framework (2.5.6)                          536
XML Schema-based configuration


  <bean id="complexRemoteEjb"
        class="org.springframework.ejb.access.SimpleRemoteStatelessSessionProxyFactoryBean">
    <property name="jndiName" value="ejb/MyRemoteBean"/>
    <property name="businessInterface" value="com.foo.service.RentalService"/>
    <property name="cacheHome" value="true"/>
    <property name="lookupHomeOnStartup" value="true"/>
    <property name="resourceRef" value="true"/>
    <property name="homeInterface" value="com.foo.service.RentalService"/>
    <property name="refreshHomeOnConnectFailure" value="true"/>
  </bean>



After...

  <jee:remote-slsb id="complexRemoteEjb"
      jndi-name="ejb/MyRemoteBean"
      business-interface="com.foo.service.RentalService"
      cache-home="true"
      lookup-home-on-startup="true"
      resource-ref="true"
      home-interface="com.foo.service.RentalService"
      refresh-home-on-connect-failure="true">




A.2.4. The lang schema

The lang tags deal with exposing objects that have been written in a dynamic language such as JRuby or
Groovy as beans in the Spring container.

These tags (and the dynamic language support) are comprehensively covered in the chapter entitled Chapter 24,
Dynamic language support. Please do consult that chapter for full details on this support and the lang tags
themselves.

In the interest of completeness, to use the tags in the lang schema, you need to have the following preamble at
the top of your Spring XML configuration file; the emboldened text in the following snippet references the
correct schema so that the tags in the lang namespace are available to you.

  <?xml version="1.0" encoding="UTF-8"?>
  <beans xmlns="http://www.springframework.org/schema/beans"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xmlns:lang="http://www.springframework.org/schema/lang"
         xsi:schemaLocation="
  http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
  http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-2.5.xsd">

  <!-- <bean/> definitions here -->

  </beans>




A.2.5. The jms schema

The jms tags deal with configuring JMS-related beans such as Spring's MessageListenerContainers. These tags
are detailed in the section of the JMS chapter entitled Section 19.6, “JMS Namespace Support”. Please do
consult that chapter for full details on this support and the jms tags themselves.

In the interest of completeness, to use the tags in the jms schema, you need to have the following preamble at
the top of your Spring XML configuration file; the emboldened text in the following snippet references the
correct schema so that the tags in the jms namespace are available to you.

  <?xml version="1.0" encoding="UTF-8"?>
  <beans xmlns="http://www.springframework.org/schema/beans"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xmlns:jms="http://www.springframework.org/schema/jms"


                                          Spring Framework (2.5.6)                                         537
XML Schema-based configuration

        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/jms http://www.springframework.org/schema/jms/spring-jms-2.5.xsd">

 <!-- <bean/> definitions here -->

 </beans>




A.2.6. The tx (transaction) schema

The tx tags deal with configuring all of those beans in Spring's comprehensive support for transactions. These
tags are covered in the chapter entitled Chapter 9, Transaction management.

            Tip
            You are strongly encouraged to look at the 'spring-tx-2.5.xsd' file that ships with the Spring
            distribution. This file is (of course), the XML Schema for Spring's transaction configuration, and
            covers all of the various tags in the tx namespace, including attribute defaults and suchlike. This
            file is documented inline, and thus the information is not repeated here in the interests of adhering
            to the DRY (Don't Repeat Yourself) principle.


In the interest of completeness, to use the tags in the tx schema, you need to have the following preamble at the
top of your Spring XML configuration file; the emboldened text in the following snippet references the correct
schema so that the tags in the tx namespace are available to you.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
            xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
            xmlns:aop="http://www.springframework.org/schema/aop"
            xmlns:tx="http://www.springframework.org/schema/tx"
            xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <!-- <bean/> definitions here -->

 </beans>



            Note
            Often when using the tags in the tx namespace you will also be using the tags from the aop
            namespace (since the declarative transaction support in Spring is implemented using AOP). The
            above XML snippet contains the relevant lines needed to reference the aop schema so that the tags
            in the aop namespace are available to you.



A.2.7. The aop schema

The aop tags deal with configuring all things AOP in Spring: this includes Spring's own proxy-based AOP
framework and Spring's integration with the AspectJ AOP framework. These tags are comprehensively covered
in the chapter entitled Chapter 6, Aspect Oriented Programming with Spring.

In the interest of completeness, to use the tags in the aop schema, you need to have the following preamble at
the top of your Spring XML configuration file; the emboldened text in the following snippet references the
correct schema so that the tags in the aop namespace are available to you.



                                           Spring Framework (2.5.6)                                          538
XML Schema-based configuration


 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
            xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
            xmlns:aop="http://www.springframework.org/schema/aop"
            xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <!-- <bean/> definitions here -->

 </beans>




A.2.8. The context schema

The context tags deal with ApplicationContext configuration that relates to plumbing - that is, not usually
beans that are important to an end-user but rather beans that do a lot of grunt work in Spring, such as
BeanfactoryPostProcessors. The following snippet references the correct schema so that the tags in the
context namespace are available to you.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
            xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
            xmlns:context="http://www.springframework.org/schema/context"
            xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.x

 <!-- <bean/> definitions here -->

 </beans>



            Note
            The context schema was only introduced in Spring 2.5.


A.2.8.1. <property-placeholder/>

This element activates the replacement of ${...} placeholders, resolved against the specified properties file (as
a Spring resource location). This element is a convenience mechanism that sets up a
PropertyPlaceholderConfigurer         for     you;    if    you      need    more      control     over       the
PropertyPlaceholderConfigurer, just define one yourself explicitly.


A.2.8.2. <annotation-config/>

Activates the Spring infrastructure for various annotations to be detected in bean classes: Spring's @Required
and @Autowired, as well as JSR 250's @PostConstruct, @PreDestroy and @Resource (if available), and JPA's
@PersistenceContext and @PersistenceUnit (if available). Alternatively, you can choose to activate the
individual BeanPostProcessors for those annotations explictly.

            Note
            This element does not activate processing of Spring's @Transactional annotation. Use the
            <tx:annotation-driven/> element for that purpose.



A.2.8.3. <component-scan/>



                                           Spring Framework (2.5.6)                                          539
XML Schema-based configuration


This element is detailed in the section entitled Section 3.11, “Annotation-based configuration”.

A.2.8.4. <load-time-weaver/>

This element is detailed in the section entitled Section 6.8.4, “Load-time weaving with AspectJ in the Spring
Framework”.

A.2.8.5. <spring-configured/>

This element is detailed in the section entitled Section 6.8.1, “Using AspectJ to dependency inject domain
objects with Spring”.

A.2.8.6. <mbean-export/>

This element is detailed in the section entitled Section 20.4.3, “The <context:mbean-export/> element”.


A.2.9. The tool schema

The tool tags are for use when you want to add tooling-specific metadata to your custom configuration
elements. This metadata can then be consumed by tools that are aware of this metadata, and the tools can then
do pretty much whatever they want with it (validation, etc.).

The tool tags are not documented in this release of Spring as they are currently undergoing review. If you are a
third party tool vendor and you would like to contribute to this review process, then do mail the Spring mailing
list. The currently supported tool tags can be found in the file 'spring-tool-2.5.xsd' in the
'src/org/springframework/beans/factory/xml' directory of the Spring source distribution.



A.2.10. The beans schema

Last but not least we have the tags in the beans schema. These are the same tags that have been in Spring since
the very dawn of the framework. Examples of the various tags in the beans schema are not shown here because
they are quite comprehensively covered in the section entitled Section 3.3.2, “Dependencies and configuration
in detail” (and indeed in that entire chapter).

One thing that is new to the beans tags themselves in Spring 2.0 is the idea of arbitrary bean metadata. In
Spring 2.0 it is now possible to add zero or more key / value pairs to <bean/> XML definitions. What, if
anything, is done with this extra metadata is totally up to your own custom logic (and so is typically only of use
if you are writing your own custom tags as described in the appendix entitled Appendix B, Extensible XML
authoring).

Find below an example of the <meta/> tag in the context of a surrounding <bean/> (please note that without
any logic to interpret it the metadata is effectively useless as-is).

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

      <bean id="foo" class="x.y.Foo">
          <meta key="cacheName" value="foo"/>
          <property name="name" value="Rick"/>
      </bean>

 </beans>




                                           Spring Framework (2.5.6)                                           540
XML Schema-based configuration


In the case of the above example, you would assume that there is some logic that will consume the bean
definition and set up some caching infrastructure using the supplied metadata.


A.3. Setting up your IDE
This final section documents the steps involved in setting up a number of popular Java IDEs to effect the easier
editing of Spring's XML Schema-based configuration files. If your favourite Java IDE or editor is not included
in the list of documented IDEs, then please do raise an issue and an example with your favorite IDE/editor may
be included in the next release.


A.3.1. Setting up Eclipse

The following steps illustrate setting up Eclipse to be XSD-aware. The assumption in the following steps is that
you already have an Eclipse project open (either a brand new project or an already existing one).

            Note
            The following steps were created using Eclipse 3.2. The setup will probably be the same (or
            similar) on an earlier or later version of Eclipse.



1.   Step One

     Create a new XML file. You can name this file whatever you want. In the example below, the file is
     named 'context.xml'. Copy and paste the following text into the file so that it matches the screenshot.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:util="http://www.springframework.org/schema/util"
        xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util-2.5.xsd">

 </beans>




2.   Step Two

     As can be seen in the above screenshot (unless you have a customised version of Eclipse with the correct
     plugins) the XML file will be treated as plain text. There is no XML editing support out of the box in
     Eclipse, and as such there is not even any syntax highlighting of elements and attributes. To address this,



                                          Spring Framework (2.5.6)                                          541
XML Schema-based configuration



      you will have to install an XML editor plugin for Eclipse...


      Table A.1. Eclipse XML editors

                      XML Editor                                                  Link

                                                          http://www.eclipse.org/webtools/
The Eclipse Web Tools Platform (WTP)

                                                          http://eclipse-plugins.2y.net/eclipse/plugins.jsp?category=XML
A list of Eclipse XML plugins



     Contributing documentation...

     Patches showing how to configure an Eclipse XML editor are welcomed. Any such contributions are best
     submitted as patches via the Spring Framework JIRA Issue Tracker and may be featured in the next
     release.


      Unfortunately, precisely because there is no standard XML editor for Eclipse, there are (bar the one
      below) no further steps showing you how to configure XML Schema support in Eclipse... each XML
      editor plugin would require its very own dedicated section, and this is Spring reference documentation, not
      Eclipse XML editor documentation. You will have to read the documentation that comes with your XML
      editor plugin (good luck there) and figure it out for yourself.

3.    Spring IDE

      There is a dedicated Spring Framework plugin for Eclipse called Spring IDE and it is pretty darn cool.
      (There's a considered and non-biased opinion for you!) This plugin makes using Spring even easier, and it
      has more than just support for the core Spring Framework... Spring Web Flow is supported too. Details of
      how to install Spring IDE can be found on the Spring IDE installation page.




                                            Spring Framework (2.5.6)                                         542
XML Schema-based configuration




4.   Web Tools Platform (WTP) for Eclipse

     If you are using the Web Tools Platform (WTP) for Eclipse, you don't need to do anything other than open
     a Spring XML configuration file using the WTP platform's XML editor. As can be seen in the screenshot
     below, you immediately get some slick IDE-level support for autocompleting tags and suchlike.




                                         Spring Framework (2.5.6)                                        543
XML Schema-based configuration


A.3.2. Setting up IntelliJ IDEA

The following steps illustrate setting up the IntelliJ IDEA IDE to be XSD-aware. The assumption in the
following steps is that you already have an IDEA project open (either a brand new project or an already
existing one).

Repeat as required for setting up IDEA to reference the other Spring XSD files.


1.   Step One

     Create a new XML file (you can name this file whatever you want). In the example below, the file is
     named 'context.xml'. Copy and paste the following text into the file so that it matches the screenshot.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:util="http://www.springframework.org/schema/util"
        xsi:schemaLocation="
        http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.
        http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util-2.5.xsd

 </beans>




2.   Step Two

     As can be seen in the above screenshot, the XML file has a number of nasty red contextual error markers.
     To rectify this, IDEA has to be made aware of the location of the referenced XSD namespace(s).

     To do this, simply position the cursor over the squiggly red area (see the screenshot below); then press the
     Alt-Enter keystroke combination, and press the Enter key again when the popup becomes active to fetch
     the external resource.




3.   Step Three



                                           Spring Framework (2.5.6)                                          544
XML Schema-based configuration



     If the external resource could not be fetched (maybe no active Internet connection is available), you can
     manually configure the resource to reference a local copy of the XSD file. Simply open up the 'Settings'
     dialog (using the Ctrl-A-S keystroke combination or via the 'File|Settings' menu), and click on the
     'Resources' button.




4.   Step Four

     As can be seen in the following screenshot, this will bring up a dialog that allows you to add an explicit
     reference to a local copy of the util schema file. (You can find all of the various Spring XSD files in the
     'src' directory of the Spring distribution.)




                                          Spring Framework (2.5.6)                                          545
XML Schema-based configuration




5.   Step Five

     Clicking the 'Add' button will bring up another dialog that allows you to explicitly to associate a
     namespace URI with the path to the relevant XSD file. As can be seen in the following screenshot, the
     'http://www.springframework.org/schema/util' namespace is being associated with the file resource
     'C:benchspringsrcorgspringframeworkbeansfactoryxmlspring-util-2.5.xsd'.




6.   Step Six

     Exiting out of the nested dialogs by clicking the 'OK' button will then bring back the main editing
     window, and as can be seen in the following screenshot, the contextual error markers have disappeared;
     typing the '<' character into the editing window now also brings up a handy dropdown box that contains
     all of the imported tags from the util namespace.




                                         Spring Framework (2.5.6)                                      546
XML Schema-based configuration




A.3.3. Integration issues

This final section details integration issues that may arise when you switch over to using the above XSD-style
for Spring 2.0 configuration.

This section is quite small at the moment (and hopefully it will stay that way). It has been included in the
Spring documentation as a convenience to Spring users so that if you encounter an issue when switching over
to the XSD-style in some specific environment you can refer to this section for the authoritative answer.

A.3.3.1. XML parsing errors in the Resin v.3 application server

If you are using the XSD-style for Spring 2.0 XML configuration and deploying to v.3 of Caucho's Resin
application server, you will need to set some configuration options prior to startup so that an XSD-aware parser
is available to Spring.

Please do read this resource, http://www.caucho.com/resin-3.0/xml/jaxp.xtp#xerces, for further details.




                                           Spring Framework (2.5.6)                                         547
Appendix B. Extensible XML authoring
B.1. Introduction
Since version 2.0, Spring has featured a mechanism for schema-based extensions to the basic Spring XML
format for defining and configuring beans. This section is devoted to detailing how you would go about writing
your own custom XML bean definition parsers and integrating such parsers into the Spring IoC container.

To facilitate the authoring of configuration files using a schema-aware XML editor, Spring's extensible XML
configuration mechanism is based on XML Schema. If you are not familiar with Spring's current XML
configuration extensions that come with the standard Spring distribution, please first read the appendix entitled
Appendix A, XML Schema-based configuration.

Creating new XML configuration extensions can be done by following these (relatively) simple steps:



1. Authoring an XML schema to describe your custom element(s).

2. Coding a custom NamespaceHandler implementation (this is an easy step, don't worry).

3. Coding one or more BeanDefinitionParser implementations (this is where the real work is done).

4. Registering the above artifacts with Spring (this too is an easy step).

What follows is a description of each of these steps. For the example, we will create an XML extension (a
custom XML element) that allows us to configure objects of the type SimpleDateFormat (from the java.text
package) in an easy manner. When we are done, we will be able to define bean definitions of type
SimpleDateFormat like this:

 <myns:dateformat id="dateFormat"
     pattern="yyyy-MM-dd HH:mm"
     lenient="true"/>



(Don't worry about the fact that this example is very simple; much more detailed examples follow afterwards.
The intent in this first simple example is to walk you through the basic steps involved.)


B.2. Authoring the schema
Creating an XML configuration extension for use with Spring's IoC container starts with authoring an XML
Schema to describe the extension. What follows is the schema we'll use to configure SimpleDateFormat
objects.

 <!-- myns.xsd (inside package org/springframework/samples/xml) -->

 <?xml version="1.0" encoding="UTF-8"?>
 <xsd:schema xmlns="http://www.mycompany.com/schema/myns"
     xmlns:xsd="http://www.w3.org/2001/XMLSchema"
     xmlns:beans="http://www.springframework.org/schema/beans"
     targetNamespace="http://www.mycompany.com/schema/myns"
     elementFormDefault="qualified"
     attributeFormDefault="unqualified">

     <xsd:import namespace="http://www.springframework.org/schema/beans"/>

     <xsd:element name="dateformat">


                                            Spring Framework (2.5.6)                                         548
Extensible XML authoring

        <xsd:complexType>
           <xsd:complexContent>
              <xsd:extension base="beans:identifiedType">
                 <xsd:attribute name="lenient" type="xsd:boolean"/>
                 <xsd:attribute name="pattern" type="xsd:string" use="required"/>
              </xsd:extension>
           </xsd:complexContent>
        </xsd:complexType>
     </xsd:element>

 </xsd:schema>



(The emphasized line contains an extension base for all tags that will be identifiable (meaning they have an id
attribute that will be used as the bean identifier in the container). We are able to use this attribute because we
imported the Spring-provided 'beans' namespace.)

The above schema will be used to configure SimpleDateFormat objects, directly in an XML application context
file using the <myns:dateformat/> element.

 <myns:dateformat id="dateFormat"
     pattern="yyyy-MM-dd HH:mm"
     lenient="true"/>



Note that after we've created the infrastructure classes, the above snippet of XML will essentially be exactly the
same as the following XML snippet. In other words, we're just creating a bean in the container, identified by the
name 'dateFormat' of type SimpleDateFormat, with a couple of properties set.

 <bean id="dateFormat" class="java.text.SimpleDateFormat">
     <constructor-arg value="yyyy-HH-dd HH:mm"/>
     <property name="lenient" value="true"/>
 </bean>



            Note
            The schema-based approach to creating configuration format allows for tight integration with an
            IDE that has a schema-aware XML editor. Using a properly authored schema, you can use
            autocompletion to have a user choose between several configuration options defined in the
            enumeration.



B.3. Coding a NamespaceHandler
In addition to the schema, we need a NamespaceHandler that will parse all elements of this specific namespace
Spring encounters while parsing configuration files. The NamespaceHandler should in our case take care of the
parsing of the myns:dateformat element.

The NamespaceHandler interface is pretty simple in that it features just three methods:

• init() - allows for initialization of the NamespaceHandler and will be called by Spring before the handler is
  used
• BeanDefinition parse(Element, ParserContext) - called when Spring encounters a top-level element
  (not nested inside a bean definition or a different namespace). This method can register bean definitions itself
  and/or return a bean definition.
• BeanDefinitionHolder decorate(Node, BeanDefinitionHolder, ParserContext) - called when Spring
  encounters an attribute or nested element of a different namespace. The decoration of one or more bean
  definitions is used for example with the out-of-the-box scopes Spring 2.0 supports. We'll start by
  highlighting a simple example, without using decoration, after which we will show decoration in a somewhat

                                           Spring Framework (2.5.6)                                           549
Extensible XML authoring

  more advanced example.

Although it is perfectly possible to code your own NamespaceHandler for the entire namespace (and hence
provide code that parses each and every element in the namespace), it is often the case that each top-level XML
element in a Spring XML configuration file results in a single bean definition (as in our case, where a single
<myns:dateformat/> element results in a single SimpleDateFormat bean definition). Spring features a number
of convenience classes that support this scenario. In this example, we'll make use the
NamespaceHandlerSupport class:

 package org.springframework.samples.xml;

 import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

 public class MyNamespaceHandler extends NamespaceHandlerSupport {

      public void init() {
          registerBeanDefinitionParser("dateformat", new SimpleDateFormatBeanDefinitionParser());
      }
 }



The observant reader will notice that there isn't actually a whole lot of parsing logic in this class. Indeed... the
NamespaceHandlerSupport class has a built in notion of delegation. It supports the registration of any number
of BeanDefinitionParser instances, to which it will delegate to when it needs to parse an element in its
namespace. This clean separation of concerns allows a NamespaceHandler to handle the orchestration of the
parsing of all of the custom elements in its namespace, while delegating to BeanDefinitionParsers to do the
grunt work of the XML parsing; this means that each BeanDefinitionParser will contain just the logic for
parsing a single custom element, as we can see in the next step


B.4. Coding a BeanDefinitionParser
A BeanDefinitionParser will be used if the NamespaceHandler encounters an XML element of the type that
has been mapped to the specific bean definition parser (which is 'dateformat' in this case). In other words, the
BeanDefinitionParser is responsible for parsing one distinct top-level XML element defined in the schema.
In the parser, we'll have access to the XML element (and thus its subelements too) so that we can parse our
custom XML content, as can be seen in the following example:

 package org.springframework.samples.xml;

 import   org.springframework.beans.factory.support.BeanDefinitionBuilder;
 import   org.springframework.beans.factory.xml.AbstractSingleBeanDefinitionParser;
 import   org.springframework.util.StringUtils;
 import   org.w3c.dom.Element;

 import java.text.SimpleDateFormat;

 public class SimpleDateFormatBeanDefinitionParser extends AbstractSingleBeanDefinitionParser { ‚

     protected Class getBeanClass(Element element) {
        return SimpleDateFormat.class; ƒ
     }

     protected void doParse(Element element, BeanDefinitionBuilder bean) {
        // this will never be null since the schema explicitly requires that a value be supplied
        String pattern = element.getAttribute("pattern");
        bean.addConstructorArg(pattern);

          // this however is an optional property
          String lenient = element.getAttribute("lenient");
          if (StringUtils.hasText(lenient)) {
             bean.addPropertyValue("lenient", Boolean.valueOf(lenient));
          }
     }
 }




                                            Spring Framework (2.5.6)                                            550
Extensible XML authoring

‚    We use the Spring-provided AbstractSingleBeanDefinitionParser to handle a lot of the basic grunt
     work of creating a single BeanDefinition.
ƒ    We supply the AbstractSingleBeanDefinitionParser superclass with the type that our single
     BeanDefinition will represent.

In this simple case, this is all that we need to do. The creation of our single BeanDefinition is handled by the
AbstractSingleBeanDefinitionParser superclass, as is the extraction and setting of the bean definition's
unique identifier.


B.5. Registering the handler and the schema
The coding is finished! All that remains to be done is to somehow make the Spring XML parsing infrastructure
aware of our custom element; we do this by registering our custom namespaceHandler and custom XSD file in
two special purpose properties files. These properties files are both placed in a 'META-INF' directory in your
application, and can, for example, be distributed alongside your binary classes in a JAR file. The Spring XML
parsing infrastructurewill automatically pick up your new extension by consuming these special properties files,
the formats of which are detailed below.


B.5.1. 'META-INF/spring.handlers'

The properties file called 'spring.handlers' contains a mapping of XML Schema URIs to namespace handler
classes. So for our example, we need to write the following:

 http://www.mycompany.com/schema/myns=org.springframework.samples.xml.MyNamespaceHandler



(The ':' character is a valid delimiter in the Java properties format, and so the ':' character in the URI needs
to be escaped with a backslash.)

The first part (the key) of the key-value pair is the URI associated with your custom namespace extension, and
needs to match exactly the value of the 'targetNamespace' attribute as specified in your custom XSD schema.


B.5.2. 'META-INF/spring.schemas'

The properties file called 'spring.schemas' contains a mapping of XML Schema locations (referred to along
with the schema declaration in XML files that use the schema as part of the 'xsi:schemaLocation' attribute)
to classpath resources. This file is needed to prevent Spring from absolutely having to use a default
EntityResolver that requires Internet access to retrieve the schema file. If you specify the mapping in this
properties file, Spring will search for the schema on the classpath (in this case 'myns.xsd' in the
'org.springframework.samples.xml' package):

 http://www.mycompany.com/schema/myns/myns.xsd=org/springframework/samples/xml/myns.xsd



The upshot of this is that you are encouraged to deploy your XSD file(s) right alongside the NamespaceHandler
and BeanDefinitionParser classes on the classpath.


B.6. Using a custom extension in your Spring XML
configuration
Using a custom extension that you yourself have implemented is no different from using one of the 'custom'


                                          Spring Framework (2.5.6)                                          551
Extensible XML authoring


extensions that Spring provides straight out of the box. Find below an example of using the custom
<dateformat/> element developed in the previous steps in a Spring XML configuration file.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:myns="http://www.mycompany.com/schema/myns"
       xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.mycompany.com/schema/myns http://www.mycompany.com/schema/myns/myns.xsd">

     <!-- as a top-level bean -->
     <myns:dateformat id="defaultDateFormat" pattern="yyyy-MM-dd HH:mm" lenient="true"/>

     <bean id="jobDetailTemplate" abstract="true">
        <property name="dateFormat">
           <!-- as an inner bean -->
           <myns:dateformat pattern="HH:mm MM-dd-yyyy"/>
        </property>
     </bean>

 </beans>




B.7. Meatier examples
Find below some much meatier examples of custom XML extensions.


B.7.1. Nesting custom tags within custom tags

This example illustrates how you might go about writing the various artifacts required to satisfy a target of the
following configuration:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:foo="http://www.foo.com/schema/component"
       xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.foo.com/schema/component http://www.foo.com/schema/component/component.xsd">

     <foo:component id="bionic-family" name="Bionic-1">
        <foo:component name="Sport-1"/>
        <foo:component name="Rock-1"/>
     </foo:component>

 </beans>



The above configuration actually nests custom extensions within each other. The class that is actually
configured by the above <foo:component/> element is the Component class (shown directly below). Notice
how the Component class does not expose a setter method for the 'components' property; this makes it hard (or
rather impossible) to configure a bean definition for the Component class using setter injection.

 package com.foo;

 import java.util.ArrayList;
 import java.util.List;

 public class Component {

     private String name;
     private List components = new ArrayList();

     // mmm, there is no setter method for the 'components'
     public void addComponent(Component component) {
        this.components.add(component);


                                           Spring Framework (2.5.6)                                          552
Extensible XML authoring

     }

     public List getComponents() {
        return components;
     }

     public String getName() {
        return name;
     }

     public void setName(String name) {
        this.name = name;
     }
 }



The typical solution to this issue is to create a custom FactoryBean that exposes a setter property for the
'components' property.

 package com.foo;

 import org.springframework.beans.factory.FactoryBean;

 import java.util.Iterator;
 import java.util.List;

 public class ComponentFactoryBean implements FactoryBean {

     private Component parent;
     private List children;

     public void setParent(Component parent) {
        this.parent = parent;
     }

     public void setChildren(List children) {
        this.children = children;
     }

     public Object getObject() throws Exception {
        if (this.children != null && this.children.size() > 0) {
           for (Iterator it = children.iterator(); it.hasNext();) {
              Component childComponent = (Component) it.next();
              this.parent.addComponent(childComponent);
           }
        }
        return this.parent;
     }

     public Class getObjectType() {
        return Component.class;
     }

     public boolean isSingleton() {
        return true;
     }
 }



This is all very well, and does work nicely, but exposes a lot of Spring plumbing to the end user. What we are
going to do is write a custom extension that hides away all of this Spring plumbing. If we stick to the steps
described previously, we'll start off by creating the XSD schema to define the structure of our custom tag.

 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

 <xsd:schema xmlns="http://www.foo.com/schema/component"
          xmlns:xsd="http://www.w3.org/2001/XMLSchema"
          targetNamespace="http://www.foo.com/schema/component"
          elementFormDefault="qualified"
          attributeFormDefault="unqualified">

     <xsd:element name="component">
        <xsd:complexType>
           <xsd:choice minOccurs="0" maxOccurs="unbounded">
              <xsd:element ref="component"/>


                                          Spring Framework (2.5.6)                                        553
Extensible XML authoring


           </xsd:choice>
           <xsd:attribute name="id" type="xsd:ID"/>
           <xsd:attribute name="name" use="required" type="xsd:string"/>
        </xsd:complexType>
     </xsd:element>

 </xsd:schema>



We'll then create a custom NamespaceHandler.

 package com.foo;

 import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

 public class ComponentNamespaceHandler extends NamespaceHandlerSupport {

     public void init() {
        registerBeanDefinitionParser("component", new ComponentBeanDefinitionParser());
     }
 }



Next up is the custom BeanDefinitionParser. Remember that what we are creating is a BeanDefinition
describing a ComponentFactoryBean.

 package com.foo;

 import   org.springframework.beans.factory.support.AbstractBeanDefinition;
 import   org.springframework.beans.factory.support.BeanDefinitionBuilder;
 import   org.springframework.beans.factory.support.ManagedList;
 import   org.springframework.beans.factory.xml.AbstractBeanDefinitionParser;
 import   org.springframework.beans.factory.xml.ParserContext;
 import   org.springframework.util.xml.DomUtils;
 import   org.w3c.dom.Element;

 import java.util.List;

 public class ComponentBeanDefinitionParser extends AbstractBeanDefinitionParser {

     protected AbstractBeanDefinition parseInternal(Element element, ParserContext parserContext) {
        BeanDefinitionBuilder factory = BeanDefinitionBuilder.rootBeanDefinition(ComponentFactoryBean.class);
        BeanDefinitionBuilder parent = parseComponent(element);
        factory.addPropertyValue("parent", parent.getBeanDefinition());

          List childElements = DomUtils.getChildElementsByTagName(element, "component");
          if (childElements != null && childElements.size() > 0) {
             parseChildComponents(childElements, factory);
          }
          return factory.getBeanDefinition();
     }

     private static BeanDefinitionBuilder parseComponent(Element element) {
        BeanDefinitionBuilder component = BeanDefinitionBuilder.rootBeanDefinition(Component.class);
        component.addPropertyValue("name", element.getAttribute("name"));
        return component;
     }

     private static void parseChildComponents(List childElements, BeanDefinitionBuilder factory) {
        ManagedList children = new ManagedList(childElements.size());
        for (int i = 0; i < childElements.size(); ++i) {
           Element childElement = (Element) childElements.get(i);
           BeanDefinitionBuilder child = parseComponent(childElement);
           children.add(child.getBeanDefinition());
        }
        factory.addPropertyValue("children", children);
     }
 }



Lastly, the various artifacts need to be registered with the Spring XML infrastructure.

 # in 'META-INF/spring.handlers'
 http://www.foo.com/schema/component=com.foo.ComponentNamespaceHandler


                                           Spring Framework (2.5.6)                                  554
Extensible XML authoring


 # in 'META-INF/spring.schemas'
 http://www.foo.com/schema/component/component.xsd=com/foo/component.xsd




B.7.2. Custom attributes on 'normal' elements

Writing your own custom parser and the associated artifacts isn't hard, but sometimes it is not the right thing to
do. Consider the scenario where you need to add metadata to already existing bean definitions. In this case you
certainly don't want to have to go off and write your own entire custom extension; rather you just want to add
an additional attribute to the existing bean definition element.

By way of another example, let's say that the service class that you are defining a bean definition for a service
object that will (unknown to it) be accessing a clustered JCache, and you want to ensure that the named JCache
instance is eagerly started within the surrounding cluster:

 <bean id="checkingAccountService" class="com.foo.DefaultCheckingAccountService"
       jcache:cache-name="checking.account">
    <!-- other dependencies here... -->
 </bean>



What we are going to do here is create another BeanDefinition when the 'jcache:cache-name' attribute is
parsed; this BeanDefinition will then initialize the named JCache for us. We will also modify the existing
BeanDefinition for the 'checkingAccountService' so that it will have a dependency on this new
JCache-initializing BeanDefinition.

 package com.foo;

 public class JCacheInitializer {

     private String name;

     public JCacheInitializer(String name) {
        this.name = name;
     }

     public void initialize() {
        // lots of JCache API calls to initialize the named cache...
     }
 }



Now onto the custom extension. Firstly, the authoring of the XSD schema describing the custom attribute (quite
easy in this case).

 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

 <xsd:schema xmlns="http://www.foo.com/schema/jcache"
             xmlns:xsd="http://www.w3.org/2001/XMLSchema"
             targetNamespace="http://www.foo.com/schema/jcache"
             elementFormDefault="qualified">

     <xsd:attribute name="cache-name" type="xsd:string"/>

 </xsd:schema>



Next, the associated NamespaceHandler.

 package com.foo;

 import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

 public class JCacheNamespaceHandler extends NamespaceHandlerSupport {

     public void init() {


                                           Spring Framework (2.5.6)                                           555
Extensible XML authoring


          super.registerBeanDefinitionDecoratorForAttribute("cache-name",
                new JCacheInitializingBeanDefinitionDecorator());
     }
 }



Next, the parser. Note that in this case, because we are going to be parsing an XML attribute, we write a
BeanDefinitionDecorator rather than a BeanDefinitionParser.

 package com.foo;

 import   org.springframework.beans.factory.config.BeanDefinitionHolder;
 import   org.springframework.beans.factory.support.AbstractBeanDefinition;
 import   org.springframework.beans.factory.support.BeanDefinitionBuilder;
 import   org.springframework.beans.factory.xml.BeanDefinitionDecorator;
 import   org.springframework.beans.factory.xml.ParserContext;
 import   org.w3c.dom.Attr;
 import   org.w3c.dom.Node;

 import java.util.ArrayList;
 import java.util.Arrays;
 import java.util.List;

 public class JCacheInitializingBeanDefinitionDecorator implements BeanDefinitionDecorator {

     private static final String[] EMPTY_STRING_ARRAY = new String[0];

     public BeanDefinitionHolder decorate(
           Node source, BeanDefinitionHolder holder, ParserContext ctx) {
        String initializerBeanName = registerJCacheInitializer(source, ctx);
        createDependencyOnJCacheInitializer(holder, initializerBeanName);
        return holder;
     }

     private void createDependencyOnJCacheInitializer(BeanDefinitionHolder holder, String initializerBeanName) {
        AbstractBeanDefinition definition = ((AbstractBeanDefinition) holder.getBeanDefinition());
        String[] dependsOn = definition.getDependsOn();
        if (dependsOn == null) {
           dependsOn = new String[]{initializerBeanName};
        } else {
           List dependencies = new ArrayList(Arrays.asList(dependsOn));
           dependencies.add(initializerBeanName);
           dependsOn = (String[]) dependencies.toArray(EMPTY_STRING_ARRAY);
        }
        definition.setDependsOn(dependsOn);
     }

     private String registerJCacheInitializer(Node source, ParserContext ctx) {
        String cacheName = ((Attr) source).getValue();
        String beanName = cacheName + "-initializer";
        if (!ctx.getRegistry().containsBeanDefinition(beanName)) {
           BeanDefinitionBuilder initializer = BeanDefinitionBuilder.rootBeanDefinition(JCacheInitializer.class);
           initializer.addConstructorArg(cacheName);
           ctx.getRegistry().registerBeanDefinition(beanName, initializer.getBeanDefinition());
        }
        return beanName;
     }
 }



Lastly, the various artifacts need to be registered with the Spring XML infrastructure.

 # in 'META-INF/spring.handlers'
 http://www.foo.com/schema/jcache=com.foo.JCacheNamespaceHandler



 # in 'META-INF/spring.schemas'
 http://www.foo.com/schema/jcache/jcache.xsd=com/foo/jcache.xsd




B.8. Further Resources

                                           Spring Framework (2.5.6)                                  556
Extensible XML authoring


Find below links to further resources concerning XML Schema and the extensible XML support described in
this chapter.


• The XML Schema Part 1: Structures Second Edition

• The XML Schema Part 2: Datatypes Second Edition




                                       Spring Framework (2.5.6)                                    557
Appendix C. spring-beans-2.0.dtd
<!--
        Spring XML Beans DTD, version 2.0
        Authors: Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu, Rob Harrop

        This defines a simple and consistent way of creating a namespace
        of JavaBeans objects, managed by a Spring BeanFactory, read by
        XmlBeanDefinitionReader (with DefaultBeanDefinitionDocumentReader).

        This document type is used by most Spring functionality, including
        web application contexts, which are based on bean factories.

        Each "bean" element in this document defines a JavaBean.
        Typically the bean class is specified, along with JavaBean properties
        and/or constructor arguments.

        A bean instance can be a "singleton" (shared instance) or a "prototype"
        (independent instance). Further scopes can be provided by extended
        bean factories, for example in a web environment.

        References among beans are supported, that is, setting a JavaBean property
        or a constructor argument to refer to another bean in the same factory
        (or an ancestor factory).

        As alternative to bean references, "inner bean definitions" can be used.
        Singleton flags of such inner bean definitions are effectively ignored:
        Inner beans are typically anonymous prototypes.

        There is also support for lists, sets, maps, and java.util.Properties
        as bean property types or constructor argument types.

        For simple purposes, this DTD is sufficient. As of Spring 2.0,
        XSD-based bean definitions are supported as more powerful alternative.

        XML documents that conform to this DTD should declare the following doctype:

        <!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"
                "http://www.springframework.org/dtd/spring-beans-2.0.dtd">
-->


<!--
        The document root. A document can contain bean definitions only,
        imports only, or a mixture of both (typically with imports first).
-->
<!ELEMENT beans (
        description?,
        (import | alias | bean)*
)>

<!--
        Default values for all bean definitions. Can be overridden at
        the "bean" level. See those attribute definitions for details.
-->
<!ATTLIST   beans   default-lazy-init (true | false) "false">
<!ATTLIST   beans   default-autowire (no | byName | byType | constructor | autodetect) "no">
<!ATTLIST   beans   default-dependency-check (none | objects | simple | all) "none">
<!ATTLIST   beans   default-init-method CDATA #IMPLIED>
<!ATTLIST   beans   default-destroy-method CDATA #IMPLIED>
<!ATTLIST   beans   default-merge (true | false) "false">

<!--
        Element containing informative text describing the purpose of the enclosing
        element. Always optional.
        Used primarily for user documentation of XML bean definition documents.
-->
<!ELEMENT description (#PCDATA)>


<!--
        Specifies an XML bean definition resource to import.
-->
<!ELEMENT import EMPTY>



                                         Spring Framework (2.5.6)                              558
spring-beans-2.0.dtd




<!--
       The relative resource location of the XML bean definition file to import,
       for example "myImport.xml" or "includes/myImport.xml" or "../myImport.xml".
-->
<!ATTLIST import resource CDATA #REQUIRED>


<!--
        Defines an alias for a bean, which can reside in a different definition file.
-->
<!ELEMENT alias EMPTY>

<!--
        The name of the bean to define an alias for.
-->
<!ATTLIST alias name CDATA #REQUIRED>

<!--
        The alias name to define for the bean.
-->
<!ATTLIST alias alias CDATA #REQUIRED>

<!--
  Allows for arbitrary metadata to be attached to a bean definition.
-->
<!ELEMENT meta EMPTY>

<!--
  Specifies the key name of the metadata parameter being defined.
-->
<!ATTLIST meta key CDATA #REQUIRED>

<!--
  Specifies the value of the metadata parameter being defined as a String.
-->
<!ATTLIST meta value CDATA #REQUIRED>

<!--
       Defines a single (usually named) bean.

       A bean definition may contain nested tags for constructor arguments,
       property values, lookup methods, and replaced methods. Mixing constructor
       injection and setter injection on the same bean is explicitly supported.
-->
<!ELEMENT bean (
        description?,
        (meta | constructor-arg | property | lookup-method | replaced-method)*
)>

<!--
       Beans can be identified by an id, to enable reference checking.

       There are constraints on a valid XML id: if you want to reference your bean
       in Java code using a name that's illegal as an XML id, use the optional
       "name" attribute. If neither is given, the bean class name is used as id
       (with an appended counter like "#2" if there is already a bean with that name).
-->
<!ATTLIST bean id ID #IMPLIED>

<!--
       Optional. Can be used to create one or more aliases illegal in an id.
       Multiple aliases can be separated by any number of spaces, commas, or
       semi-colons (or indeed any mixture of the three).
-->
<!ATTLIST bean name CDATA #IMPLIED>

<!--
       Each bean definition must specify the fully qualified name of the class,
       except if it pure serves as parent for child bean definitions.
-->
<!ATTLIST bean class CDATA #IMPLIED>

<!--
       Optionally specify a parent bean definition.

       Will use the bean class of the parent if none specified, but can


                                       Spring Framework (2.5.6)                          559
spring-beans-2.0.dtd




       also override it. In the latter case, the child bean class must be
       compatible with the parent, i.e. accept the parent's property values
       and constructor argument values, if any.

       A child bean definition will inherit constructor argument values,
       property values and method overrides from the parent, with the option
       to add new values. If init method, destroy method, factory bean and/or factory
       method are specified, they will override the corresponding parent settings.

       The remaining settings will always be taken from the child definition:
       depends on, autowire mode, dependency check, scope, lazy init.
-->
<!ATTLIST bean parent CDATA #IMPLIED>

<!--
       The scope of this bean: typically "singleton" (one shared instance,
       which will be returned by all calls to getBean() with the id),
       or "prototype" (independent instance resulting from each call to
       getBean(). Default is "singleton".

       Singletons are most commonly used, and are ideal for multi-threaded
       service objects. Further scopes, such as "request" or "session",
       might be supported by extended bean factories (for example, in a
       web environment).

       Note: This attribute will not be inherited by child bean definitions.
       Hence, it needs to be specified per concrete bean definition.

       Inner bean definitions inherit the singleton status of their containing
       bean definition, unless explicitly specified: The inner bean will be a
       singleton if the containing bean is a singleton, and a prototype if
       the containing bean has any other scope.
-->
<!ATTLIST bean scope CDATA #IMPLIED>

<!--
       Is this bean "abstract", i.e. not meant to be instantiated itself but
       rather just serving as parent for concrete child bean definitions.
       Default is "false". Specify "true" to tell the bean factory to not try to
       instantiate that particular bean in any case.

       Note: This attribute will not be inherited by child bean definitions.
       Hence, it needs to be specified per abstract bean definition.
-->
<!ATTLIST bean abstract (true | false) #IMPLIED>

<!--
       If this bean should be lazily initialized.
       If false, it will get instantiated on startup by bean factories
       that perform eager initialization of singletons.

       Note: This attribute will not be inherited by child bean definitions.
       Hence, it needs to be specified per concrete bean definition.
-->
<!ATTLIST bean lazy-init (true | false | default) "default">

<!--
  Indicates whether or not this bean should be considered when looking
  for candidates to satisfy another beans autowiring requirements.
-->
<!ATTLIST bean autowire-candidate (true | false) #IMPLIED>

<!--
       Optional attribute controlling whether to "autowire" bean properties.
       This is an automagical process in which bean references don't need to be coded
       explicitly in the XML bean definition file, but Spring works out dependencies.

       There are 5 modes:

       1. "no"
       The traditional Spring default. No automagical wiring. Bean references
       must be defined in the XML file via the <ref> element. We recommend this
       in most cases as it makes documentation more explicit.

       2. "byName"
       Autowiring by property name. If a bean of class Cat exposes a dog property,
       Spring will try to set this to the value of the bean "dog" in the current factory.


                                        Spring Framework (2.5.6)                            560
spring-beans-2.0.dtd




       If there is no matching bean by name, nothing special happens;
       use dependency-check="objects" to raise an error in that case.

       3. "byType"
       Autowiring if there is exactly one bean of the property type in the bean factory.
       If there is more than one, a fatal error is raised, and you can't use byType
       autowiring for that bean. If there is none, nothing special happens;
       use dependency-check="objects" to raise an error in that case.

       4. "constructor"
       Analogous to "byType" for constructor arguments. If there isn't exactly one bean
       of the constructor argument type in the bean factory, a fatal error is raised.

       5. "autodetect"
       Chooses "constructor" or "byType" through introspection of the bean class.
       If a default constructor is found, "byType" gets applied.

       The latter two are similar to PicoContainer and make bean factories simple to
       configure for small namespaces, but doesn't work as well as standard Spring
       behaviour for bigger applications.

       Note that explicit dependencies, i.e. "property" and "constructor-arg" elements,
       always override autowiring. Autowire behavior can be combined with dependency
       checking, which will be performed after all autowiring has been completed.

       Note: This attribute will not be inherited by child bean definitions.
       Hence, it needs to be specified per concrete bean definition.
-->
<!ATTLIST bean autowire (no | byName | byType | constructor | autodetect | default) "default">

<!--
       Optional attribute controlling whether to check whether all this
       beans dependencies, expressed in its properties, are satisfied.
       Default is no dependency checking.

       "simple" type dependency checking includes primitives and String;
       "objects" includes collaborators (other beans in the factory);
       "all" includes both types of dependency checking.

       Note: This attribute will not be inherited by child bean definitions.
       Hence, it needs to be specified per concrete bean definition.
-->
<!ATTLIST bean dependency-check (none | objects | simple | all | default) "default">

<!--
       The names of the beans that this bean depends on being initialized.
       The bean factory will guarantee that these beans get initialized before.

       Note that dependencies are normally expressed through bean properties or
       constructor arguments. This property should just be necessary for other kinds
       of dependencies like statics (*ugh*) or database preparation on startup.

       Note: This attribute will not be inherited by child bean definitions.
       Hence, it needs to be specified per concrete bean definition.
-->
<!ATTLIST bean depends-on CDATA #IMPLIED>

<!--
       Optional attribute for the name of the custom initialization method
       to invoke after setting bean properties. The method must have no arguments,
       but may throw any exception.
-->
<!ATTLIST bean init-method CDATA #IMPLIED>

<!--
       Optional attribute for the name of the custom destroy method to invoke
       on bean factory shutdown. The method must have no arguments,
       but may throw any exception.

       Note: Only invoked on beans whose lifecycle is under full control
       of the factory - which is always the case for singletons, but not
       guaranteed for any other scope.
-->
<!ATTLIST bean destroy-method CDATA #IMPLIED>

<!--
       Optional attribute specifying the name of a factory method to use to


                                     Spring Framework (2.5.6)                                    561
spring-beans-2.0.dtd




       create this object. Use constructor-arg elements to specify arguments
       to the factory method, if it takes arguments. Autowiring does not apply
       to factory methods.

       If the "class" attribute is present, the factory method will be a static
       method on the class specified by the "class" attribute on this bean
       definition. Often this will be the same class as that of the constructed
       object - for example, when the factory method is used as an alternative
       to a constructor. However, it may be on a different class. In that case,
       the created object will *not* be of the class specified in the "class"
       attribute. This is analogous to FactoryBean behavior.

       If the "factory-bean" attribute is present, the "class" attribute is not
       used, and the factory method will be an instance method on the object
       returned from a getBean call with the specified bean name. The factory
       bean may be defined as a singleton or a prototype.

       The factory method can have any number of arguments. Autowiring is not
       supported. Use indexed constructor-arg elements in conjunction with the
       factory-method attribute.

       Setter Injection can be used in conjunction with a factory method.
       Method Injection cannot, as the factory method returns an instance,
       which will be used when the container creates the bean.
-->
<!ATTLIST bean factory-method CDATA #IMPLIED>

<!--
       Alternative to class attribute for factory-method usage.
       If this is specified, no class attribute should be used.
       This should be set to the name of a bean in the current or
       ancestor factories that contains the relevant factory method.
       This allows the factory itself to be configured using Dependency
       Injection, and an instance (rather than static) method to be used.
-->
<!ATTLIST bean factory-bean CDATA #IMPLIED>

<!--
       Bean definitions can specify zero or more constructor arguments.
       This is an alternative to "autowire constructor".
       Arguments correspond to either a specific index of the constructor argument
       list or are supposed to be matched generically by type.

       Note: A single generic argument value will just be used once, rather than
       potentially matched multiple times (as of Spring 1.1).

       constructor-arg elements are also used in conjunction with the factory-method
       element to construct beans using static or instance factory methods.
-->
<!ELEMENT constructor-arg (
        description?,
        (bean | ref | idref | value | null | list | set | map | props)?
)>

<!--
       The constructor-arg tag can have an optional index attribute,
       to specify the exact index in the constructor argument list. Only needed
       to avoid ambiguities, e.g. in case of 2 arguments of the same type.
-->
<!ATTLIST constructor-arg index CDATA #IMPLIED>

<!--
       The constructor-arg tag can have an optional type attribute,
       to specify the exact type of the constructor argument. Only needed
       to avoid ambiguities, e.g. in case of 2 single argument constructors
       that can both be converted from a String.
-->
<!ATTLIST constructor-arg type CDATA #IMPLIED>

<!--
  A short-cut alternative to a child element "ref bean=".
-->
<!ATTLIST constructor-arg ref CDATA #IMPLIED>

<!--
  A short-cut alternative to a child element "value".
-->


                                     Spring Framework (2.5.6)                          562
spring-beans-2.0.dtd




<!ATTLIST constructor-arg value CDATA #IMPLIED>


<!--
       Bean definitions can have zero or more properties.
       Property elements correspond to JavaBean setter methods exposed
       by the bean classes. Spring supports primitives, references to other
       beans in the same or related factories, lists, maps and properties.
-->
<!ELEMENT property (
        description?, meta*,
        (bean | ref | idref | value | null | list | set | map | props)?
)>

<!--
       The property name attribute is the name of the JavaBean property.
       This follows JavaBean conventions: a name of "age" would correspond
       to setAge()/optional getAge() methods.
-->
<!ATTLIST property name CDATA #REQUIRED>

<!--
  A short-cut alternative to a child element "ref bean=".
-->
<!ATTLIST property ref CDATA #IMPLIED>

<!--
  A short-cut alternative to a child element "value".
-->
<!ATTLIST property value CDATA #IMPLIED>


<!--
       A lookup method causes the IoC container to override the given method and return
       the bean with the name given in the bean attribute. This is a form of Method Injection.
       It's particularly useful as an alternative to implementing the BeanFactoryAware
       interface, in order to be able to make getBean() calls for non-singleton instances
       at runtime. In this case, Method Injection is a less invasive alternative.
-->
<!ELEMENT lookup-method EMPTY>

<!--
        Name of a lookup method. This method should take no arguments.
-->
<!ATTLIST lookup-method name CDATA #IMPLIED>

<!--
       Name of the bean in the current or ancestor factories that the lookup method
       should resolve to. Often this bean will be a prototype, in which case the
       lookup method will return a distinct instance on every invocation. This
       is useful for single-threaded objects.
-->
<!ATTLIST lookup-method bean CDATA #IMPLIED>


<!--
       Similar to the lookup method mechanism, the replaced-method element is used to control
       IoC container method overriding: Method Injection. This mechanism allows the overriding
       of a method with arbitrary code.
-->
<!ELEMENT replaced-method (
        (arg-type)*
)>

<!--
       Name of the method whose implementation should be replaced by the IoC container.
       If this method is not overloaded, there's no need to use arg-type subelements.
       If this method is overloaded, arg-type subelements must be used for all
       override definitions for the method.
-->
<!ATTLIST replaced-method name CDATA #IMPLIED>

<!--
       Bean name of an implementation of the MethodReplacer interface in the current
       or ancestor factories. This may be a singleton or prototype bean. If it's
       a prototype, a new instance will be used for each method replacement.
       Singleton usage is the norm.


                                     Spring Framework (2.5.6)                                    563
spring-beans-2.0.dtd




-->
<!ATTLIST replaced-method replacer CDATA #IMPLIED>

<!--
       Subelement of replaced-method identifying an argument for a replaced method
       in the event of method overloading.
-->
<!ELEMENT arg-type (#PCDATA)>

<!--
       Specification of the type of an overloaded method argument as a String.
       For convenience, this may be a substring of the FQN. E.g. all the
       following would match "java.lang.String":
       - java.lang.String
       - String
       - Str

       As the number of arguments will be checked also, this convenience can often
       be used to save typing.
-->
<!ATTLIST arg-type match CDATA #IMPLIED>


<!--
       Defines a reference to another bean in this factory or an external
       factory (parent or included factory).
-->
<!ELEMENT ref EMPTY>

<!--
       References must specify a name of the target bean.
       The "bean" attribute can reference any name from any bean in the context,
       to be checked at runtime.
       Local references, using the "local" attribute, have to use bean ids;
       they can be checked by this DTD, thus should be preferred for references
       within the same bean factory XML file.
-->
<!ATTLIST ref bean CDATA #IMPLIED>
<!ATTLIST ref local IDREF #IMPLIED>
<!ATTLIST ref parent CDATA #IMPLIED>


<!--
       Defines a string property value, which must also be the id of another
       bean in this factory or an external factory (parent or included factory).
       While a regular 'value' element could instead be used for the same effect,
       using idref in this case allows validation of local bean ids by the XML
       parser, and name completion by supporting tools.
-->
<!ELEMENT idref EMPTY>

<!--
       ID refs must specify a name of the target bean.
       The "bean" attribute can reference any name from any bean in the context,
       potentially to be checked at runtime by bean factory implementations.
       Local references, using the "local" attribute, have to use bean ids;
       they can be checked by this DTD, thus should be preferred for references
       within the same bean factory XML file.
-->
<!ATTLIST idref bean CDATA #IMPLIED>
<!ATTLIST idref local IDREF #IMPLIED>


<!--
       Contains a string representation of a property value.
       The property may be a string, or may be converted to the required
       type using the JavaBeans PropertyEditor machinery. This makes it
       possible for application developers to write custom PropertyEditor
       implementations that can convert strings to arbitrary target objects.

       Note that this is recommended for simple objects only.
       Configure more complex objects by populating JavaBean
       properties with references to other beans.
-->
<!ELEMENT value (#PCDATA)>

<!--


                                        Spring Framework (2.5.6)                     564
spring-beans-2.0.dtd




       The value tag can have an   optional type attribute, to specify the
       exact type that the value   should be converted to. Only needed
       if the type of the target   property or constructor argument is
       too generic: for example,   in case of a collection element.
-->
<!ATTLIST value type CDATA #IMPLIED>

<!--
       Denotes a Java null value. Necessary because an empty "value" tag
       will resolve to an empty String, which will not be resolved to a
       null value unless a special PropertyEditor does so.
-->
<!ELEMENT null (#PCDATA)>


<!--
       A list can contain multiple inner bean, ref, collection, or value elements.
       Java lists are untyped, pending generics support in Java 1.5,
       although references will be strongly typed.
       A list can also map to an array type. The necessary conversion
       is automatically performed by the BeanFactory.
-->
<!ELEMENT list (
        (bean | ref | idref | value | null | list | set | map | props)*
)>

<!--
        Enable/disable merging for collections when using parent/child beans.
-->
<!ATTLIST list merge (true | false | default) "default">

<!--
        Specify the default Java type for nested values.
-->
<!ATTLIST list value-type CDATA #IMPLIED>


<!--
       A set can contain multiple inner bean, ref, collection, or value elements.
       Java sets are untyped, pending generics support in Java 1.5,
       although references will be strongly typed.
-->
<!ELEMENT set (
        (bean | ref | idref | value | null | list | set | map | props)*
)>

<!--
        Enable/disable merging for collections when using parent/child beans.
-->
<!ATTLIST set merge (true | false | default) "default">

<!--
        Specify the default Java type for nested values.
-->
<!ATTLIST set value-type CDATA #IMPLIED>


<!--
       A Spring map is a mapping from a string key to object.
       Maps may be empty.
-->
<!ELEMENT map (
        (entry)*
)>

<!--
        Enable/disable merging for collections when using parent/child beans.
-->
<!ATTLIST map merge (true | false | default) "default">

<!--
        Specify the default Java type for nested entry keys.
-->
<!ATTLIST map key-type CDATA #IMPLIED>

<!--
       Specify the default Java type for nested entry values.


                                       Spring Framework (2.5.6)                      565
spring-beans-2.0.dtd




-->
<!ATTLIST map value-type CDATA #IMPLIED>

<!--
        A map entry can be an inner bean, ref, value, or collection.
        The key of the entry is given by the "key" attribute or child element.
-->
<!ELEMENT entry (
   key?,
         (bean | ref | idref | value | null | list | set | map | props)?
)>

<!--
        Each map element must specify its key as attribute or as child element.
        A key attribute is always a String value.
-->
<!ATTLIST entry key CDATA #IMPLIED>

<!--
  A short-cut alternative to a "key" element with a "ref bean=" child element.
-->
<!ATTLIST entry key-ref CDATA #IMPLIED>

<!--
  A short-cut alternative to a child element "value".
-->
<!ATTLIST entry value CDATA #IMPLIED>

<!--
  A short-cut alternative to a child element "ref bean=".
-->
<!ATTLIST entry value-ref CDATA #IMPLIED>

<!--
        A key element can contain an inner bean, ref, value, or collection.
-->
<!ELEMENT key (
        (bean | ref | idref | value | null | list | set | map | props)
)>


<!--
        Props elements differ from map elements in that values must be strings.
        Props may be empty.
-->
<!ELEMENT props (
        (prop)*
)>

<!--
        Enable/disable merging for collections when using parent/child beans.
-->
<!ATTLIST props merge (true | false | default) "default">

<!--
        Element content is the string value of the property.
        Note that whitespace is trimmed off to avoid unwanted whitespace
        caused by typical XML formatting.
-->
<!ELEMENT prop (#PCDATA)>

<!--
        Each property element must specify its key.
-->
<!ATTLIST prop key CDATA #REQUIRED>




                                      Spring Framework (2.5.6)                    566
Appendix D. spring.tld
D.1. Introduction
One of the view technologies you can use with the Spring Framework is Java Server Pages (JSPs). To help you
implement views using Java Server Pages the Spring Framework provides you with some tags for evaluating
errors, setting themes and outputting internationalized messages.

Please note that the various tags generated by this form tag library are compliant with the XHTML-1.0-Strict
specification and attendant DTD.

This appendix describes the spring.tld tag library.


• Section D.2, “The bind tag”

• Section D.3, “The escapeBody tag”

• Section D.4, “The hasBindErrors tag”

• Section D.5, “The htmlEscape tag”

• Section D.6, “The message tag”

• Section D.7, “The nestedPath tag”

• Section D.8, “The theme tag”

• Section D.9, “The transform tag”



D.2. The bind tag
Provides BindStatus object for the given bind path. The HTML escaping flag participates in a page-wide or
application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape" context-param in web.xml).


Table D.1. Attributes

             Attribute                           Required?                    Runtime Expression?


            htmlEscape                                false                             true


         ignoreNestedPath                             false                             true


                path                                  true                              true




D.3. The escapeBody tag


                                          Spring Framework (2.5.6)                                      567
spring.tld


Escapes its enclosed body content, applying HTML escaping and/or JavaScript escaping. The HTML escaping
flag participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape"
context-param in web.xml).


Table D.2. Attributes

             Attribute                          Required?                     Runtime Expression?


            htmlEscape                             false                                true


         javaScriptEscape                          false                                true




D.4. The hasBindErrors tag
Provides Errors instance in case of bind errors. The HTML escaping flag participates in a page-wide or
application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape" context-param in web.xml).


Table D.3. Attributes

             Attribute                          Required?                     Runtime Expression?


            htmlEscape                             false                                true


               name                                 true                                true




D.5. The htmlEscape tag
Sets default HTML escape value for the current page. Overrides a "defaultHtmlEscape" context-param in
web.xml, if any.


Table D.4. Attributes

             Attribute                          Required?                     Runtime Expression?


        defaultHtmlEscape                           true                                true




D.6. The message tag
Retrieves the message with the given code, or text if code isn't resolvable. The HTML escaping flag
participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape"
context-param in web.xml).




                                         Spring Framework (2.5.6)                                       568
spring.tld



Table D.5. Attributes

              Attribute                             Required?               Runtime Expression?


             arguments                                    false                      true


         argumentSeparator                                false                      true


                code                                      false                      true


             htmlEscape                                   false                      true


          javaScriptEscape                                false                      true


              message                                     false                      true


                scope                                     false                      true


                 text                                     false                      true


                 var                                      false                      true




D.7. The nestedPath tag
Sets a nested path to be used by the bind tag's path.


Table D.6. Attributes

              Attribute                             Required?               Runtime Expression?


                 path                                     true                       true




D.8. The theme tag
Retrieves the theme message with the given code, or text if code isn't resolvable. The HTML escaping flag
participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape"
context-param in web.xml).


Table D.7. Attributes

              Attribute                             Required?               Runtime Expression?


             arguments                                    false                      true

                                            Spring Framework (2.5.6)                                 569
spring.tld

             Attribute                           Required?                     Runtime Expression?


        argumentSeparator                           false                               true


               code                                 false                               true


            htmlEscape                              false                               true


         javaScriptEscape                           false                               true


              message                               false                               true


               scope                                false                               true


                text                                false                               true


                var                                 false                               true




D.9. The transform tag
Provides transformation of variables to Strings, using an appropriate custom PropertyEditor from BindTag (can
only be used inside BindTag). The HTML escaping flag participates in a page-wide or application-wide setting
(i.e. by HtmlEscapeTag or a 'defaultHtmlEscape' context-param in web.xml).


Table D.8. Attributes

             Attribute                           Required?                     Runtime Expression?


            htmlEscape                              false                               true


               scope                                false                               true


               value                                true                                true


                var                                 false                               true




                                         Spring Framework (2.5.6)                                        570
Appendix E. spring-form.tld
E.1. Introduction
One of the view technologies you can use with the Spring Framework is Java Server Pages (JSPs). To help you
implement views using Java Server Pages the Spring Framework provides you with some tags for evaluating
errors, setting themes and outputting internationalized messages.

Please note that the various tags generated by this form tag library are compliant with the XHTML-1.0-Strict
specification and attendant DTD.

This appendix describes the spring-form.tld tag library.


• Section E.2, “The checkbox tag”

• Section E.3, “The checkboxes tag”

• Section E.4, “The errors tag”

• Section E.5, “The form tag”

• Section E.6, “The hidden tag”

• Section E.7, “The input tag”

• Section E.8, “The label tag”

• Section E.9, “The option tag”

• Section E.10, “The options tag”

• Section E.11, “The password tag”

• Section E.12, “The radiobutton tag”

• Section E.13, “The radiobuttons tag”

• Section E.14, “The select tag”

• Section E.15, “The textarea tag”



E.2. The checkbox tag
Renders an HTML 'input' tag with type 'checkbox'.


Table E.1. Attributes

             Attribute                          Required?                     Runtime Expression?


             accesskey                              false                               true



                                         Spring Framework (2.5.6)                                       571
spring-form.tld

 Attribute            Required?            Runtime Expression?


  cssClass                false                   true


cssErrorClass             false                   true


  cssStyle                false                   true


     dir                  false                   true


  disabled                false                   true


 htmlEscape               false                   true


     id                   false                   true


    label                 false                   true


    lang                  false                   true


   onblur                 false                   true


 onchange                 false                   true


   onclick                false                   true


 ondblclick               false                   true


  onfocus                 false                   true


 onkeydown                false                   true


 onkeypress               false                   true


  onkeyup                 false                   true


onmousedown               false                   true


onmousemove               false                   true


onmouseout                false                   true


onmouseover               false                   true


 onmouseup                false                   true


                Spring Framework (2.5.6)                         572
spring-form.tld

             Attribute                          Required?           Runtime Expression?


               path                                 true                   true


             tabindex                              false                   true


                title                              false                   true


               value                               false                   true




E.3. The checkboxes tag
Renders multiple HTML 'input' tags with type 'checkbox'.


Table E.2. Attributes

             Attribute                          Required?           Runtime Expression?


             accesskey                             false                   true


             cssClass                              false                   true


           cssErrorClass                           false                   true


              cssStyle                             false                   true


             delimiter                             false                   true


                dir                                false                   true


              disabled                             false                   true


              element                              false                   true


            htmlEscape                             false                   true


                 id                                false                   true


             itemLabel                             false                   true


               items                                true                   true


             itemValue                             false                   true


                                         Spring Framework (2.5.6)                         573
spring-form.tld

             Attribute                          Required?            Runtime Expression?


                lang                                false                   true


               onblur                               false                   true


             onchange                               false                   true


              onclick                               false                   true


             ondblclick                             false                   true


              onfocus                               false                   true


            onkeydown                               false                   true


            onkeypress                              false                   true


              onkeyup                               false                   true


           onmousedown                              false                   true


           onmousemove                              false                   true


            onmouseout                              false                   true


           onmouseover                              false                   true


            onmouseup                               false                   true


                path                                true                    true


              tabindex                              false                   true


                title                               false                   true




E.4. The errors tag
Renders field errors in an HTML 'span' tag.


Table E.3. Attributes

             Attribute                          Required?            Runtime Expression?



                                          Spring Framework (2.5.6)                         574
spring-form.tld

 Attribute          Required?            Runtime Expression?


  cssClass              false                   true


  cssStyle              false                   true


  delimiter             false                   true


     dir                false                   true


  element               false                   true


 htmlEscape             false                   true


     id                 false                   true


    lang                false                   true


  onclick               false                   true


 ondblclick             false                   true


 onkeydown              false                   true


 onkeypress             false                   true


  onkeyup               false                   true


onmousedown             false                   true


onmousemove             false                   true


onmouseout              false                   true


onmouseover             false                   true


 onmouseup              false                   true


    path                false                   true


  tabindex              false                   true


    title               false                   true




              Spring Framework (2.5.6)                         575
spring-form.tld



E.5. The form tag
Renders an HTML 'form' tag and exposes a binding path to inner tags for binding.


Table E.4. Attributes

             Attribute                           Required?                     Runtime Expression?


           acceptCharset                            false                             true


               action                               false                             true


           autocomplete                             false                             true


          commandName                               false                             true


              cssClass                              false                             true


              cssStyle                              false                             true


                dir                                 false                             true


              enctype                               false                             true


            htmlEscape                              false                             true


                 id                                 false                             true


                lang                                false                             true


              method                                false                             true


          modelAttribute                            false                             true


               name                                 false                             true


              onclick                               false                             true


             ondblclick                             false                             true


            onkeydown                               false                             true


            onkeypress                              false                             true


              onkeyup                               false                             true

                                         Spring Framework (2.5.6)                                    576
spring-form.tld

             Attribute                           Required?              Runtime Expression?


           onmousedown                               false                     true


           onmousemove                               false                     true


            onmouseout                               false                     true


           onmouseover                               false                     true


            onmouseup                                false                     true


              onreset                                false                     true


             onsubmit                                false                     true


               target                                false                     true


                title                                false                     true




E.6. The hidden tag
Renders an HTML 'input' tag with type 'hidden' using the bound value.


Table E.5. Attributes

             Attribute                           Required?              Runtime Expression?


            htmlEscape                               false                     true


                 id                                  false                     true


                path                                 true                      true




E.7. The input tag
Renders an HTML 'input' tag with type 'text' using the bound value.


Table E.6. Attributes

             Attribute                           Required?              Runtime Expression?


             accesskey                               false                     true

                                          Spring Framework (2.5.6)                            577
spring-form.tld

 Attribute            Required?            Runtime Expression?


     alt                  false                   true


autocomplete              false                   true


  cssClass                false                   true


cssErrorClass             false                   true


  cssStyle                false                   true


     dir                  false                   true


  disabled                false                   true


 htmlEscape               false                   true


     id                   false                   true


    lang                  false                   true


 maxlength                false                   true


   onblur                 false                   true


 onchange                 false                   true


   onclick                false                   true


 ondblclick               false                   true


  onfocus                 false                   true


 onkeydown                false                   true


 onkeypress               false                   true


  onkeyup                 false                   true


onmousedown               false                   true


onmousemove               false                   true




                Spring Framework (2.5.6)                         578
spring-form.tld

             Attribute                               Required?       Runtime Expression?


            onmouseout                                 false                true


           onmouseover                                 false                true


            onmouseup                                  false                true


              onselect                                 false                true


                path                                   true                 true


              readonly                                 false                true


                size                                   false                true


              tabindex                                 false                true


                title                                  false                true




E.8. The label tag
Renders a form field label in an HTML 'label' tag.


Table E.7. Attributes

             Attribute                               Required?       Runtime Expression?


              cssClass                                 false                true


           cssErrorClass                               false                true


              cssStyle                                 false                true


                 dir                                   false                true


                 for                                   false                true


            htmlEscape                                 false                true


                 id                                    false                true


                lang                                   false                true



                                          Spring Framework (2.5.6)                         579
spring-form.tld

             Attribute                           Required?                       Runtime Expression?


              onclick                                false                              true


             ondblclick                              false                              true


            onkeydown                                false                              true


            onkeypress                               false                              true


              onkeyup                                false                              true


           onmousedown                               false                              true


           onmousemove                               false                              true


            onmouseout                               false                              true


           onmouseover                               false                              true


            onmouseup                                false                              true


                path                                 true                               true


              tabindex                               false                              true


                title                                false                              true




E.9. The option tag
Renders a single HTML 'option'. Sets 'selected' as appropriate based on bound value.


Table E.8. Attributes

             Attribute                           Required?                       Runtime Expression?


              cssClass                               false                              true


           cssErrorClass                             false                              true


              cssStyle                               false                              true


                 dir                                 false                              true



                                          Spring Framework (2.5.6)                                     580
spring-form.tld

             Attribute                            Required?                       Runtime Expression?


              disabled                                false                                  true


            htmlEscape                                false                                  true


                 id                                   false                                  true


                label                                 false                                  true


                lang                                  false                                  true


               onclick                                false                                  true


             ondblclick                               false                                  true


            onkeydown                                 false                                  true


             onkeypress                               false                                  true


              onkeyup                                 false                                  true


           onmousedown                                false                                  true


           onmousemove                                false                                  true


            onmouseout                                false                                  true


            onmouseover                               false                                  true


             onmouseup                                false                                  true


              tabindex                                false                                  true


                title                                 false                                  true


                value                                 true                                   true




E.10. The options tag
Renders a list of HTML 'option' tags. Sets 'selected' as appropriate based on bound value.


Table E.9. Attributes


                                           Spring Framework (2.5.6)                                     581
spring-form.tld

 Attribute            Required?            Runtime Expression?


  cssClass                false                   true


cssErrorClass             false                   true


  cssStyle                false                   true


     dir                  false                   true


  disabled                false                   true


 htmlEscape               false                   true


     id                   false                   true


 itemLabel                false                   true


   items                  true                    true


 itemValue                false                   true


    lang                  false                   true


   onclick                false                   true


 ondblclick               false                   true


 onkeydown                false                   true


 onkeypress               false                   true


  onkeyup                 false                   true


onmousedown               false                   true


onmousemove               false                   true


onmouseout                false                   true


onmouseover               false                   true


 onmouseup                false                   true


  tabindex                false                   true


                Spring Framework (2.5.6)                         582
spring-form.tld

             Attribute                          Required?                 Runtime Expression?


                title                              false                         true




E.11. The password tag
Renders an HTML 'input' tag with type 'password' using the bound value.


Table E.10. Attributes

             Attribute                          Required?                 Runtime Expression?


             accesskey                             false                         true


                alt                                false                         true


           autocomplete                            false                         true


             cssClass                              false                         true


           cssErrorClass                           false                         true


              cssStyle                             false                         true


                dir                                false                         true


              disabled                             false                         true


            htmlEscape                             false                         true


                 id                                false                         true


               lang                                false                         true


            maxlength                              false                         true


              onblur                               false                         true


             onchange                              false                         true


              onclick                              false                         true


            ondblclick                             false                         true


                                         Spring Framework (2.5.6)                               583
spring-form.tld

             Attribute                            Required?          Runtime Expression?


              onfocus                                 false                 true


            onkeydown                                 false                 true


            onkeypress                                false                 true


              onkeyup                                 false                 true


           onmousedown                                false                 true


           onmousemove                                false                 true


            onmouseout                                false                 true


           onmouseover                                false                 true


            onmouseup                                 false                 true


              onselect                                false                 true


                path                                  true                  true


              readonly                                false                 true


           showPassword                               false                 true


                size                                  false                 true


              tabindex                                false                 true


                title                                 false                 true




E.12. The radiobutton tag
Renders an HTML 'input' tag with type 'radio'.


Table E.11. Attributes

             Attribute                            Required?          Runtime Expression?


             accesskey                                false                 true



                                          Spring Framework (2.5.6)                         584
spring-form.tld

 Attribute            Required?            Runtime Expression?


  cssClass                false                   true


cssErrorClass             false                   true


  cssStyle                false                   true


     dir                  false                   true


  disabled                false                   true


 htmlEscape               false                   true


     id                   false                   true


    label                 false                   true


    lang                  false                   true


   onblur                 false                   true


 onchange                 false                   true


   onclick                false                   true


 ondblclick               false                   true


  onfocus                 false                   true


 onkeydown                false                   true


 onkeypress               false                   true


  onkeyup                 false                   true


onmousedown               false                   true


onmousemove               false                   true


onmouseout                false                   true


onmouseover               false                   true


 onmouseup                false                   true


                Spring Framework (2.5.6)                         585
spring-form.tld

             Attribute                           Required?           Runtime Expression?


                path                                    true                true


              tabindex                                  false               true


                title                                   false               true


               value                                    false               true




E.13. The radiobuttons tag
Renders multiple HTML 'input' tags with type 'radio'.


Table E.12. Attributes

             Attribute                           Required?           Runtime Expression?


             accesskey                                  false               true


              cssClass                                  false               true


           cssErrorClass                                false               true


              cssStyle                                  false               true


              delimiter                                 false               true


                 dir                                    false               true


              disabled                                  false               true


              element                                   false               true


            htmlEscape                                  false               true


                 id                                     false               true


             itemLabel                                  false               true


               items                                    true                true


             itemValue                                  false               true


                                          Spring Framework (2.5.6)                         586
spring-form.tld

             Attribute                           Required?                       Runtime Expression?


                lang                                false                               true


               onblur                               false                               true


             onchange                               false                               true


              onclick                               false                               true


             ondblclick                             false                               true


              onfocus                               false                               true


            onkeydown                               false                               true


            onkeypress                              false                               true


              onkeyup                               false                               true


           onmousedown                              false                               true


           onmousemove                              false                               true


            onmouseout                              false                               true


           onmouseover                              false                               true


            onmouseup                               false                               true


                path                                true                                true


              tabindex                              false                               true


                title                               false                               true




E.14. The select tag
Renders an HTML 'select' element. Supports databinding to the selected option.


Table E.13. Attributes

             Attribute                           Required?                       Runtime Expression?



                                          Spring Framework (2.5.6)                                     587
spring-form.tld

 Attribute            Required?            Runtime Expression?


 accesskey                false                   true


  cssClass                false                   true


cssErrorClass             false                   true


  cssStyle                false                   true


     dir                  false                   true


  disabled                false                   true


 htmlEscape               false                   true


     id                   false                   true


 itemLabel                false                   true


   items                  false                   true


 itemValue                false                   true


    lang                  false                   true


  multiple                false                   true


   onblur                 false                   true


 onchange                 false                   true


   onclick                false                   true


 ondblclick               false                   true


  onfocus                 false                   true


 onkeydown                false                   true


 onkeypress               false                   true


  onkeyup                 false                   true


onmousedown               false                   true


                Spring Framework (2.5.6)                         588
spring-form.tld

            Attribute               Required?            Runtime Expression?


          onmousemove                   false                   true


           onmouseout                   false                   true


           onmouseover                  false                   true


            onmouseup                   false                   true


               path                     true                    true


               size                     false                   true


             tabindex                   false                   true


               title                    false                   true




E.15. The textarea tag
Renders an HTML 'textarea'.


Table E.14. Attributes

            Attribute               Required?            Runtime Expression?


            accesskey                   false                   true


               cols                     false                   true


             cssClass                   false                   true


           cssErrorClass                false                   true


             cssStyle                   false                   true


                dir                     false                   true


             disabled                   false                   true


           htmlEscape                   false                   true


                id                      false                   true


                              Spring Framework (2.5.6)                         589
spring-form.tld

 Attribute          Required?            Runtime Expression?


    lang                false                   true


   onblur               false                   true


 onchange               false                   true


  onclick               false                   true


 ondblclick             false                   true


  onfocus               false                   true


 onkeydown              false                   true


 onkeypress             false                   true


  onkeyup               false                   true


onmousedown             false                   true


onmousemove             false                   true


onmouseout              false                   true


onmouseover             false                   true


 onmouseup              false                   true


  onselect              false                   true


    path                true                    true


  readonly              false                   true


   rows                 false                   true


  tabindex              false                   true


    title               false                   true




              Spring Framework (2.5.6)                         590

More Related Content

PDF
Spring Reference
PDF
Hibernate Reference
PDF
Hibernate reference
PDF
Hibernate Reference
PDF
Postgresql 8.4.0-us
PDF
Castor Reference Guide 1 3 1
PDF
PDF
Seam reference
Spring Reference
Hibernate Reference
Hibernate reference
Hibernate Reference
Postgresql 8.4.0-us
Castor Reference Guide 1 3 1
Seam reference

What's hot (18)

PDF
Tortoise svn 1.7-en
PDF
Spring webflow-reference
PDF
IPv6 Deployment Guide
PDF
Os Property documentation
PDF
Introduction to objectual philosophy
PDF
Cinelerra Video Editing Manual
PDF
Load runner generator
PDF
Spring 2.0 技術手冊目錄
PDF
What's New in ZW3D 2012 v1.0
 
PDF
cs-2002-01
PDF
Cesvip 2010 first_linux_module
PDF
Final Design Document 1
PDF
Dive into greasemonkey (español)
PDF
Mvc music store tutorial - v2.0
PDF
Documentation de Doctrine ORM
PDF
Seam reference guide
PDF
RHEL-7 Administrator Guide for RedHat 7
PDF
Threading
Tortoise svn 1.7-en
Spring webflow-reference
IPv6 Deployment Guide
Os Property documentation
Introduction to objectual philosophy
Cinelerra Video Editing Manual
Load runner generator
Spring 2.0 技術手冊目錄
What's New in ZW3D 2012 v1.0
 
cs-2002-01
Cesvip 2010 first_linux_module
Final Design Document 1
Dive into greasemonkey (español)
Mvc music store tutorial - v2.0
Documentation de Doctrine ORM
Seam reference guide
RHEL-7 Administrator Guide for RedHat 7
Threading
Ad

Viewers also liked (7)

PDF
Definiciones sepsis. pccm 2005
PDF
I M P P L E S C I A
ODT
Il Canto Di Calipso
ODT
Ontologia Del Mito
PDF
Hype vs. Reality: The AI Explainer
PDF
Study: The Future of VR, AR and Self-Driving Cars
Definiciones sepsis. pccm 2005
I M P P L E S C I A
Il Canto Di Calipso
Ontologia Del Mito
Hype vs. Reality: The AI Explainer
Study: The Future of VR, AR and Self-Driving Cars
Ad

Similar to Spring Reference (20)

PPTX
Spring (1)
PPTX
Spring Basics
PDF
Spring 2
PPT
Spring, web service, web server, eclipse by a introduction sandesh sharma
PPTX
Spring framework
PDF
Overview chap1
PDF
Spring Framework Upgrade
PPTX
PDF
spring-framework-reference
PPT
Spring talk111204
PPTX
Java Spring framework, Dependency Injection, DI, IoC, Inversion of Control
PPT
Spring framework
PPTX
Introduction to Spring Framework
PPTX
Spring Framework Essentials
PDF
Introduction to Spring Framework
PPT
Spring frame work
PPT
Spring Basics
PDF
스프링 프레임워크
PDF
Getting Started With Spring Framework J Sharma Ashish Sarin
PPTX
Skillwise-Spring framework 1
Spring (1)
Spring Basics
Spring 2
Spring, web service, web server, eclipse by a introduction sandesh sharma
Spring framework
Overview chap1
Spring Framework Upgrade
spring-framework-reference
Spring talk111204
Java Spring framework, Dependency Injection, DI, IoC, Inversion of Control
Spring framework
Introduction to Spring Framework
Spring Framework Essentials
Introduction to Spring Framework
Spring frame work
Spring Basics
스프링 프레임워크
Getting Started With Spring Framework J Sharma Ashish Sarin
Skillwise-Spring framework 1

Spring Reference

  • 1. The Spring Framework - Reference Documentation Version 2.5.6 Copyright © 2004-2008 Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu, Rob Harrop, Thomas Risberg, Darren Davison, Dmitriy Kopylenko, Mark Pollack, Thierry Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer, John Lewis, Costin Leau, Mark Fisher, Sam Brannen, Ramnivas Laddad, Arjen Poutsma Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.
  • 2. Preface................................................................................................................................................ v x 1.Introduction ...................................................................................................................................16 1.1.Overview..............................................................................................................................16 1.2.Usagescenarios ....................................................................................................................18 2. What's new in Spring 2.0 and 2.5? ................................................................................................. 21 2.1.Introduction ..........................................................................................................................21 2.2. The Inversion of Control (IoC) container ................................................................................ 21 2.2.1.Newbeanscopes ........................................................................................................21 2.2.2.EasierXMLconfiguration...........................................................................................22 2.2.3.ExtensibleXMLauthoring ..........................................................................................22 2.2.4.Annotation-drivenconfiguration..................................................................................22 2.2.5. Autodetecting components in the classpath .................................................................. 22 2.3. Aspect Oriented Programming (AOP) ....................................................................................23 2.3.1. Easier AOP XML configuration ..................................................................................23 2.3.2. Support for @AspectJ aspects .....................................................................................23 2.3.3. Support for bean name pointcut element ...................................................................... 23 2.3.4. Support for AspectJ load-time weaving ........................................................................ 23 2.4.TheMiddleTier ....................................................................................................................23 2.4.1. Easier configuration of declarative transactions in XML ............................................... 23 2.4.2. Full WebSphere transaction management support ......................................................... 24 2.4.3.JPA ...........................................................................................................................24 2.4.4.AsynchronousJMS.....................................................................................................24 2.4.5.JDBC ........................................................................................................................24 2.5.TheWebTier ........................................................................................................................25 2.5.1. Sensible defaulting in Spring MVC ............................................................................. 25 2.5.2.Portletframework.......................................................................................................25 2.5.3.Annotation-basedcontrollers .......................................................................................25 2.5.4. A form tag library for Spring MVC ............................................................................. 25 2.5.5.Tiles2support ...........................................................................................................25 2.5.6.JSF1.2support ..........................................................................................................26 2.5.7.JAX-WSsupport ........................................................................................................26 2.6.Everythingelse .....................................................................................................................26 2.6.1.Dynamiclanguagesupport ..........................................................................................26 2.6.2.Enhancedtestingsupport ............................................................................................26 2.6.3.JMXsupport ..............................................................................................................26 2.6.4. Deploying a Spring application context as JCA adapter ................................................. 27 2.6.5.Taskscheduling .........................................................................................................27 2.6.6. Java 5 (Tiger) support .................................................................................................27 2.7. Migrating to Spring 2.5 ..........................................................................................................27 2.7.1.Changes.....................................................................................................................28 2.8.Updatedsampleapplications ..................................................................................................30 2.9.Improveddocumentation .......................................................................................................30 I.CoreTechnologies ............................................................................................................................31 3.TheIoCcontainer ..................................................................................................................32 3.1.Introduction ..................................................................................................................32 3.2. Basics - containers and beans ......................................................................................... 32 3.2.1.Thecontainer .....................................................................................................33 3.2.2.Instantiatingacontainer ......................................................................................34 3.2.3.Thebeans ..........................................................................................................35 3.2.4.Usingthecontainer .............................................................................................39 3.3.Dependencies................................................................................................................40 3.3.1.Injectingdependencies ........................................................................................40 Spring Framework (2.5.6) ii
  • 3. The Spring Framework - Reference Documentation 3.3.2. Dependencies and configuration in detail ............................................................. 45 3.3.3.Using depends-on ..............................................................................................54 3.3.4.Lazily-instantiatedbeans.....................................................................................54 3.3.5.Autowiringcollaborators ....................................................................................55 3.3.6.Checkingfordependencies..................................................................................57 3.3.7.MethodInjection ................................................................................................58 3.4.Beanscopes ..................................................................................................................61 3.4.1.Thesingletonscope ............................................................................................62 3.4.2.Theprototypescope ...........................................................................................63 3.4.3. Singleton beans with prototype-bean dependencies ............................................... 64 3.4.4.Theotherscopes .................................................................................................64 3.4.5.Customscopes ...................................................................................................68 3.5. Customizing the nature of a bean .................................................................................... 70 3.5.1.Lifecyclecallbacks .............................................................................................70 3.5.2. Knowing who you are .........................................................................................74 3.6.Beandefinitioninheritance ............................................................................................76 3.7.Containerextensionpoints .............................................................................................77 3.7.1. Customizing beans using BeanPostProcessors ....................................................78 3.7.2. Customizing configuration metadata with BeanFactoryPostProcessors ............... 80 3.7.3. Customizing instantiation logic using FactoryBeans ............................................ 83 3.8.The ApplicationContext ..............................................................................................84 3.8.1. BeanFactory or ApplicationContext? ................................................................84 3.8.2.Internationalizationusing MessageSources ..........................................................85 3.8.3.Events ...............................................................................................................88 3.8.4. Convenient access to low-level resources ............................................................. 89 3.8.5. Convenient ApplicationContext instantiation for web applications ...................... 90 3.9. Glue code and the evil singleton ..................................................................................... 91 3.10. Deploying a Spring ApplicationContext as a J2EE RAR file .......................................... 91 3.11.Annotation-basedconfiguration....................................................................................92 3.11.1.@Required ........................................................................................................93 3.11.2.@Autowired ......................................................................................................93 3.11.3. Fine-tuning annotation-based autowiring with qualifiers ..................................... 95 3.11.4.CustomAutowireConfigurer .............................................................................99 3.11.5.@Resource ........................................................................................................100 3.11.6. @PostConstruct and @PreDestroy ....................................................................101 3.12. Classpath scanning for managed components ................................................................ 102 3.12.1. @Component and further stereotype annotations ................................................... 102 3.12.2.Auto-detectingcomponents ...............................................................................102 3.12.3. Using filters to customize scanning .................................................................... 103 3.12.4.Namingautodetectedcomponents ......................................................................104 3.12.5. Providing a scope for autodetected components .................................................. 105 3.12.6. Providing qualifier metadata with annotations .................................................... 105 3.13.Registeringa LoadTimeWeaver .....................................................................................106 4.Resources ...............................................................................................................................107 4.1.Introduction ..................................................................................................................107 4.2.The Resource interface ..................................................................................................107 4.3.Built-in Resource implementations ................................................................................108 4.3.1.UrlResource ......................................................................................................108 4.3.2.ClassPathResource ...........................................................................................108 4.3.3.FileSystemResource ..........................................................................................109 4.3.4.ServletContextResource ...................................................................................109 4.3.5.InputStreamResource ........................................................................................109 Spring Framework (2.5.6) iii
  • 4. The Spring Framework - Reference Documentation 4.3.6.ByteArrayResource ...........................................................................................109 4.4.The ResourceLoader .....................................................................................................109 4.5.The ResourceLoaderAware interface ..............................................................................110 4.6. Resources asdependencies ............................................................................................111 4.7. Application contexts and Resource paths ........................................................................ 111 4.7.1.Constructingapplicationcontexts ........................................................................111 4.7.2. Wildcards in application context constructor resource paths .................................. 112 4.7.3. FileSystemResource caveats ..............................................................................114 5. Validation, Data-binding, the BeanWrapper, and PropertyEditors .......................................... 116 5.1.Introduction ..................................................................................................................116 5.2. Validation using Spring's Validator interface ................................................................. 116 5.3. Resolving codes to error messages ................................................................................. 118 5.4. Bean manipulation and the BeanWrapper ........................................................................ 118 5.4.1. Setting and getting basic and nested properties ..................................................... 118 5.4.2.Built-inPropertyEditorimplementations ..............................................................120 6. Aspect Oriented Programming with Spring ........................................................................... 126 6.1.Introduction ..................................................................................................................126 6.1.1.AOPconcepts ....................................................................................................126 6.1.2. Spring AOP capabilities and goals ....................................................................... 128 6.1.3.AOPProxies ......................................................................................................129 6.2.@AspectJsupport .........................................................................................................129 6.2.1.Enabling@AspectJSupport ................................................................................129 6.2.2.Declaringanaspect.............................................................................................130 6.2.3.Declaringapointcut ...........................................................................................130 6.2.4.Declaringadvice ................................................................................................136 6.2.5.Introductions......................................................................................................142 6.2.6.Aspectinstantiationmodels .................................................................................143 6.2.7.Example ............................................................................................................143 6.3.Schema-basedAOPsupport ...........................................................................................145 6.3.1.Declaringanaspect.............................................................................................145 6.3.2.Declaringapointcut ...........................................................................................145 6.3.3.Declaringadvice ................................................................................................147 6.3.4.Introductions......................................................................................................151 6.3.5.Aspectinstantiationmodels .................................................................................152 6.3.6.Advisors ............................................................................................................152 6.3.7.Example ............................................................................................................153 6.4. Choosing which AOP declaration style to use ................................................................. 154 6.4.1. Spring AOP or full AspectJ? ............................................................................... 154 6.4.2. @AspectJ or XML for Spring AOP? .................................................................... 155 6.5.Mixingaspecttypes .......................................................................................................156 6.6.Proxyingmechanisms....................................................................................................156 6.6.1.UnderstandingAOPproxies ................................................................................157 6.7. Programmatic creation of @AspectJ Proxies ................................................................... 159 6.8. Using AspectJ with Spring applications .......................................................................... 159 6.8.1. Using AspectJ to dependency inject domain objects with Spring ............................ 159 6.8.2. Other Spring aspects for AspectJ ......................................................................... 162 6.8.3. Configuring AspectJ aspects using Spring IoC ..................................................... 163 6.8.4. Load-time weaving with AspectJ in the Spring Framework ................................... 163 6.9.FurtherResources .........................................................................................................170 7.SpringAOPAPIs ...................................................................................................................171 7.1.Introduction ..................................................................................................................171 7.2. Pointcut API in Spring ...................................................................................................171 Spring Framework (2.5.6) iv
  • 5. The Spring Framework - Reference Documentation 7.2.1.Concepts............................................................................................................171 7.2.2.Operationsonpointcuts ......................................................................................172 7.2.3.AspectJexpressionpointcuts ...............................................................................172 7.2.4.Conveniencepointcutimplementations ................................................................172 7.2.5.Pointcutsuperclasses ..........................................................................................174 7.2.6.Custompointcuts................................................................................................174 7.3. Advice API in Spring ....................................................................................................174 7.3.1.Advicelifecycles ................................................................................................174 7.3.2. Advice types in Spring ........................................................................................175 7.4. Advisor API in Spring ...................................................................................................180 7.5. Using the ProxyFactoryBean to create AOP proxies ........................................................ 180 7.5.1.Basics................................................................................................................180 7.5.2.JavaBeanproperties ............................................................................................181 7.5.3. JDK- and CGLIB-based proxies ..........................................................................182 7.5.4.Proxyinginterfaces .............................................................................................183 7.5.5.Proxyingclasses .................................................................................................184 7.5.6.Using'global'advisors ........................................................................................185 7.6.Conciseproxydefinitions ..............................................................................................185 7.7. Creating AOP proxies programmatically with the ProxyFactory ....................................... 186 7.8.Manipulatingadvisedobjects .........................................................................................187 7.9. Using the "autoproxy" facility ........................................................................................188 7.9.1.Autoproxybeandefinitions .................................................................................188 7.9.2.Usingmetadata-drivenauto-proxying ..................................................................190 7.10.UsingTargetSources ...................................................................................................192 7.10.1. Hot swappable target sources .............................................................................192 7.10.2.Poolingtargetsources .......................................................................................193 7.10.3.Prototypetargetsources ....................................................................................194 7.10.4. ThreadLocal targetsources ...............................................................................194 7.11. Defining new Advice types ..........................................................................................195 7.12.Furtherresources .........................................................................................................195 8.Testing ...................................................................................................................................196 8.1.Introduction ..................................................................................................................196 8.2.Unittesting ...................................................................................................................196 8.2.1.Mockobjects......................................................................................................196 8.2.2. Unit testing support classes .................................................................................197 8.3.Integrationtesting .........................................................................................................197 8.3.1.Overview ...........................................................................................................197 8.3.2. Which support framework to use ......................................................................... 198 8.3.3.Commongoals ...................................................................................................198 8.3.4.JDBCtestingsupport ..........................................................................................200 8.3.5.Commonannotations ..........................................................................................200 8.3.6. JUnit 3.8 legacy support ......................................................................................202 8.3.7.SpringTestContextFramework ...........................................................................206 8.3.8.PetClinicexample ..............................................................................................216 8.4.FurtherResources .........................................................................................................218 II. Middle Tier Data Access ..................................................................................................................219 9.Transactionmanagement .......................................................................................................220 9.1.Introduction ..................................................................................................................220 9.2.Motivations ..................................................................................................................220 9.3.Keyabstractions............................................................................................................222 9.4. Resource synchronization with transactions ....................................................................224 9.4.1.High-levelapproach ...........................................................................................224 Spring Framework (2.5.6) v
  • 6. The Spring Framework - Reference Documentation 9.4.2.Low-levelapproach ............................................................................................225 9.4.3.TransactionAwareDataSourceProxy ...................................................................225 9.5.Declarativetransactionmanagement ...............................................................................226 9.5.1. Understanding the Spring Framework's declarative transaction implementation ...... 227 9.5.2.Afirstexample ...................................................................................................227 9.5.3.Rollingback.......................................................................................................230 9.5.4. Configuring different transactional semantics for different beans ........................... 232 9.5.5. <tx:advice/> settings ........................................................................................233 9.5.6.Using @Transactional .......................................................................................234 9.5.7.Transactionpropagation......................................................................................239 9.5.8.Advisingtransactionaloperations ........................................................................240 9.5.9. Using @Transactional with AspectJ ...................................................................243 9.6.Programmatictransactionmanagement ...........................................................................243 9.6.1.Usingthe TransactionTemplate .........................................................................244 9.6.2.Usingthe PlatformTransactionManager .............................................................245 9.7. Choosing between programmatic and declarative transaction management ........................ 246 9.8.Applicationserver-specificintegration............................................................................246 9.8.1.IBMWebSphere ................................................................................................247 9.8.2.BEAWebLogic ..................................................................................................247 9.8.3.OracleOC4J ......................................................................................................247 9.9. Solutions to common problems ......................................................................................247 9.9.1. Use of the wrong transaction manager for a specific DataSource ........................... 247 9.10.FurtherResources........................................................................................................248 10.DAOsupport ........................................................................................................................249 10.1.Introduction ................................................................................................................249 10.2.Consistentexceptionhierarchy .....................................................................................249 10.3. Consistent abstract classes for DAO support ................................................................. 250 11. Data access using JDBC .......................................................................................................251 11.1.Introduction ................................................................................................................251 11.1.1.Choosingastyle ...............................................................................................251 11.1.2.Thepackagehierarchy ......................................................................................252 11.2. Using the JDBC Core classes to control basic JDBC processing and error handling ......... 252 11.2.1.JdbcTemplate ..................................................................................................252 11.2.2.NamedParameterJdbcTemplate ..........................................................................255 11.2.3.SimpleJdbcTemplate ........................................................................................257 11.2.4.DataSource ......................................................................................................258 11.2.5.SQLExceptionTranslator .................................................................................259 11.2.6.Executingstatements ........................................................................................260 11.2.7.RunningQueries...............................................................................................260 11.2.8.Updatingthedatabase .......................................................................................261 11.2.9.Retrievingauto-generatedkeys ..........................................................................261 11.3.Controllingdatabaseconnections .................................................................................262 11.3.1.DataSourceUtils .............................................................................................262 11.3.2.SmartDataSource .............................................................................................262 11.3.3.AbstractDataSource ........................................................................................262 11.3.4.SingleConnectionDataSource ..........................................................................262 11.3.5.DriverManagerDataSource ...............................................................................262 11.3.6.TransactionAwareDataSourceProxy .................................................................263 11.3.7.DataSourceTransactionManager ......................................................................263 11.3.8.NativeJdbcExtractor .........................................................................................263 11.4.JDBCbatchoperations ................................................................................................264 11.4.1. Batch operations with the JdbcTemplate ............................................................. 264 Spring Framework (2.5.6) vi
  • 7. The Spring Framework - Reference Documentation 11.4.2. Batch operations with the SimpleJdbcTemplate .................................................. 265 11.5. Simplifying JDBC operations with the SimpleJdbc classes ............................................. 266 11.5.1. Inserting data using SimpleJdbcInsert ................................................................266 11.5.2. Retrieving auto-generated keys using SimpleJdbcInsert ....................................... 266 11.5.3. Specifying the columns to use for a SimpleJdbcInsert ......................................... 267 11.5.4. Using SqlParameterSource to provide parameter values ...................................... 267 11.5.5. Calling a stored procedure using SimpleJdbcCall ................................................ 268 11.5.6. Declaring parameters to use for a SimpleJdbcCall ............................................... 270 11.5.7. How to define SqlParameters .............................................................................271 11.5.8. Calling a stored function using SimpleJdbcCall .................................................. 271 11.5.9. Returning ResultSet/REF Cursor from a SimpleJdbcCall ..................................... 272 11.6. Modeling JDBC operations as Java objects ................................................................... 273 11.6.1.SqlQuery..........................................................................................................273 11.6.2.MappingSqlQuery .............................................................................................273 11.6.3.SqlUpdate ........................................................................................................274 11.6.4.StoredProcedure .............................................................................................275 11.6.5.SqlFunction ....................................................................................................278 11.7. Common issues with parameter and data value handling ................................................ 278 11.7.1. Providing SQL type information for parameters .................................................. 278 11.7.2. Handling BLOB and CLOB objects ................................................................... 278 11.7.3. Passing in lists of values for IN clause ............................................................... 280 11.7.4. Handling complex types for stored procedure calls ............................................. 280 12. Object Relational Mapping (ORM) data access .................................................................... 282 12.1.Introduction ................................................................................................................282 12.2.Hibernate ....................................................................................................................283 12.2.1.Resourcemanagement ......................................................................................283 12.2.2. SessionFactory setup in a Spring container ....................................................... 284 12.2.3.The HibernateTemplate ...................................................................................284 12.2.4. Implementing Spring-based DAOs without callbacks .......................................... 286 12.2.5. Implementing DAOs based on plain Hibernate 3 API .......................................... 286 12.2.6.Programmatictransactiondemarcation ...............................................................287 12.2.7.Declarativetransactiondemarcation ...................................................................288 12.2.8.Transactionmanagementstrategies ....................................................................289 12.2.9. Container resources versus local resources ......................................................... 291 12.2.10. Spurious application server warnings when using Hibernate .............................. 292 12.3.JDO............................................................................................................................293 12.3.1. PersistenceManagerFactory setup ...................................................................293 12.3.2. JdoTemplate and JdoDaoSupport ......................................................................294 12.3.3. Implementing DAOs based on the plain JDO API ............................................... 294 12.3.4.Transactionmanagement...................................................................................296 12.3.5.JdoDialect ......................................................................................................297 12.4.OracleTopLink ...........................................................................................................297 12.4.1. SessionFactory abstraction ..............................................................................298 12.4.2. TopLinkTemplate and TopLinkDaoSupport ........................................................298 12.4.3. Implementing DAOs based on plain TopLink API .............................................. 300 12.4.4.Transactionmanagement...................................................................................301 12.5.iBATISSQLMaps ......................................................................................................302 12.5.1. Setting up the SqlMapClient .............................................................................302 12.5.2. Using SqlMapClientTemplate and SqlMapClientDaoSupport .............................303 12.5.3. Implementing DAOs based on plain iBATIS API ............................................... 304 12.6.JPA ............................................................................................................................304 12.6.1. JPA setup in a Spring environment .................................................................... 305 Spring Framework (2.5.6) vii
  • 8. The Spring Framework - Reference Documentation 12.6.2. JpaTemplate and JpaDaoSupport ......................................................................310 12.6.3. Implementing DAOs based on plain JPA ............................................................ 311 12.6.4.ExceptionTranslation .......................................................................................313 12.7.TransactionManagement .............................................................................................313 12.8.JpaDialect .................................................................................................................314 III.TheWeb........................................................................................................................................315 13.WebMVCframework ..........................................................................................................316 13.1.Introduction ................................................................................................................316 13.1.1. Pluggability of other MVC implementations ....................................................... 317 13.1.2. Features of Spring Web MVC ........................................................................... 317 13.2.The DispatcherServlet ..............................................................................................318 13.3.Controllers..................................................................................................................322 13.3.1. AbstractController and WebContentGenerator ...............................................323 13.3.2.Othersimplecontrollers ....................................................................................324 13.3.3.The MultiActionController ............................................................................324 13.3.4.Commandcontrollers ........................................................................................327 13.4.Handlermappings .......................................................................................................328 13.4.1.BeanNameUrlHandlerMapping............................................................................328 13.4.2.SimpleUrlHandlerMapping ...............................................................................329 13.4.3. Intercepting requests - the HandlerInterceptor interface ................................... 330 13.5. Views and resolving them ............................................................................................331 13.5.1. Resolving views - the ViewResolver interface .................................................... 332 13.5.2.ChainingViewResolvers ...................................................................................333 13.5.3.Redirectingtoviews .........................................................................................334 13.6.Usinglocales ..............................................................................................................335 13.6.1.AcceptHeaderLocaleResolver ..........................................................................335 13.6.2.CookieLocaleResolver ....................................................................................335 13.6.3.SessionLocaleResolver ...................................................................................336 13.6.4.LocaleChangeInterceptor ...............................................................................336 13.7.Usingthemes ..............................................................................................................337 13.7.1.Introduction .....................................................................................................337 13.7.2.Definingthemes ...............................................................................................337 13.7.3.Themeresolvers ...............................................................................................337 13.8. Spring's multipart (fileupload) support ..........................................................................338 13.8.1.Introduction .....................................................................................................338 13.8.2.Usingthe MultipartResolver ...........................................................................338 13.8.3. Handling a file upload in a form ........................................................................ 339 13.9.Handlingexceptions ....................................................................................................341 13.10.Conventionoverconfiguration ...................................................................................342 13.10.1. The Controller - ControllerClassNameHandlerMapping ...................................342 13.10.2. The Model - ModelMap (ModelAndView) ............................................................ 343 13.10.3. The View - RequestToViewNameTranslator .....................................................344 13.11.Annotation-basedcontrollerconfiguration ...................................................................345 13.11.1. Setting up the dispatcher for annotation support ................................................ 346 13.11.2. Defining a controller with @Controller ........................................................... 346 13.11.3. Mapping requests with @RequestMapping .........................................................347 13.11.4. Supported handler method arguments and return types ...................................... 349 13.11.5. Binding request parameters to method parameters with @RequestParam .............. 350 13.11.6. Providing a link to data from the model with @ModelAttribute ......................... 351 13.11.7. Specifying attributes to store in a Session with @SessionAttributes ................. 351 13.11.8.Customizing WebDataBinder initialization ........................................................352 13.12.FurtherResources ......................................................................................................352 Spring Framework (2.5.6) viii
  • 9. The Spring Framework - Reference Documentation 14.Viewtechnologies .................................................................................................................354 14.1.Introduction ................................................................................................................354 14.2.JSP&JSTL ................................................................................................................354 14.2.1.Viewresolvers .................................................................................................354 14.2.2. 'Plain-old' JSPs versus JSTL ..............................................................................354 14.2.3. Additional tags facilitating development ............................................................355 14.2.4. Using Spring's form tag library .......................................................................... 355 14.3.Tiles ...........................................................................................................................363 14.3.1.Dependencies ...................................................................................................363 14.3.2. How to integrate Tiles .......................................................................................363 14.4.Velocity&FreeMarker ................................................................................................365 14.4.1.Dependencies ...................................................................................................365 14.4.2.Contextconfiguration .......................................................................................365 14.4.3.Creatingtemplates ............................................................................................366 14.4.4.Advancedconfiguration ....................................................................................366 14.4.5. Bind support and form handling ......................................................................... 367 14.5.XSLT .........................................................................................................................372 14.5.1.MyFirstWords ................................................................................................373 14.5.2.Summary .........................................................................................................375 14.6.Documentviews(PDF/Excel) ......................................................................................375 14.6.1.Introduction .....................................................................................................375 14.6.2.Configurationandsetup ....................................................................................375 14.7.JasperReports..............................................................................................................378 14.7.1.Dependencies ...................................................................................................378 14.7.2.Configuration ...................................................................................................378 14.7.3.Populatingthe ModelAndView ............................................................................380 14.7.4.WorkingwithSub-Reports ................................................................................381 14.7.5.ConfiguringExporterParameters .......................................................................382 15. Integrating with other web frameworks ............................................................................... 383 15.1.Introduction ................................................................................................................383 15.2.Commonconfiguration ................................................................................................383 15.3. JavaServer Faces 1.1 and 1.2 ........................................................................................ 385 15.3.1.DelegatingVariableResolver(JSF1.1/1.2) ..........................................................385 15.3.2.SpringBeanVariableResolver(JSF1.1/1.2) .........................................................386 15.3.3.SpringBeanFacesELResolver(JSF1.2+) ............................................................386 15.3.4.FacesContextUtils ............................................................................................386 15.4. Apache Struts 1.x and 2.x ............................................................................................ 386 15.4.1.ContextLoaderPlugin ........................................................................................387 15.4.2.ActionSupportClasses ......................................................................................389 15.5.WebWork2.x..............................................................................................................389 15.6. Tapestry 3.x and 4.x ....................................................................................................390 15.6.1.InjectingSpring-managedbeans ........................................................................390 15.7.FurtherResources........................................................................................................396 16.PortletMVCFramework .....................................................................................................397 16.1.Introduction ................................................................................................................397 16.1.1. Controllers - The C in MVC .............................................................................. 398 16.1.2. Views - The V in MVC ..................................................................................... 398 16.1.3.Web-scopedbeans ............................................................................................398 16.2.The DispatcherPortlet ..............................................................................................398 16.3.The ViewRendererServlet ..........................................................................................400 16.4.Controllers..................................................................................................................401 16.4.1. AbstractController and PortletContentGenerator ........................................402 Spring Framework (2.5.6) ix
  • 10. The Spring Framework - Reference Documentation 16.4.2.Othersimplecontrollers ....................................................................................403 16.4.3.CommandControllers .......................................................................................403 16.4.4.PortletWrappingController............................................................................404 16.5.Handlermappings .......................................................................................................404 16.5.1.PortletModeHandlerMapping............................................................................405 16.5.2.ParameterHandlerMapping ...............................................................................405 16.5.3.PortletModeParameterHandlerMapping ............................................................405 16.5.4.Adding HandlerInterceptors...........................................................................406 16.5.5.HandlerInterceptorAdapter............................................................................406 16.5.6.ParameterMappingInterceptor ........................................................................407 16.6. Views and resolving them ............................................................................................407 16.7. Multipart (file upload) support .....................................................................................407 16.7.1.Usingthe PortletMultipartResolver ..............................................................408 16.7.2. Handling a file upload in a form ........................................................................ 408 16.8.Handlingexceptions ....................................................................................................411 16.9.Annotation-basedcontrollerconfiguration ....................................................................411 16.9.1. Setting up the dispatcher for annotation support .................................................. 411 16.9.2. Defining a controller with @Controller ............................................................. 412 16.9.3. Mapping requests with @RequestMapping ...........................................................412 16.9.4. Supported handler method arguments ................................................................413 16.9.5. Binding request parameters to method parameters with @RequestParam ............... 415 16.9.6. Providing a link to data from the model with @ModelAttribute ........................... 415 16.9.7. Specifying attributes to store in a Session with @SessionAttributes ................... 416 16.9.8.Customizing WebDataBinder initialization ..........................................................416 16.10.Portletapplicationdeployment ...................................................................................417 IV.Integration.....................................................................................................................................418 17. Remoting and web services using Spring .............................................................................. 419 17.1.Introduction ................................................................................................................419 17.2. Exposing services using RMI .......................................................................................420 17.2.1. Exporting the service using the RmiServiceExporter ......................................... 420 17.2.2. Linking in the service at the client ..................................................................... 421 17.3. Using Hessian or Burlap to remotely call services via HTTP .......................................... 421 17.3.1. Wiring up the DispatcherServlet for Hessian and co. ....................................... 421 17.3.2. Exposing your beans by using the HessianServiceExporter .............................. 422 17.3.3. Linking in the service on the client .................................................................... 422 17.3.4.UsingBurlap ....................................................................................................423 17.3.5. Applying HTTP basic authentication to a service exposed through Hessian or Burlap......................................................................................................................... 234 17.4. Exposing services using HTTP invokers ....................................................................... 423 17.4.1. Exposing the service object ...............................................................................424 17.4.2. Linking in the service at the client ..................................................................... 424 17.5.Webservices ...............................................................................................................425 17.5.1. Exposing servlet-based web services using JAX-RPC ......................................... 425 17.5.2. Accessing web services using JAX-RPC ............................................................ 426 17.5.3. Registering JAX-RPC Bean Mappings ...............................................................427 17.5.4. Registering your own JAX-RPC Handler ........................................................... 428 17.5.5. Exposing servlet-based web services using JAX-WS .......................................... 428 17.5.6. Exporting standalone web services using JAX-WS ............................................. 429 17.5.7. Exporting web services using the JAX-WS RI's Spring support ........................... 430 17.5.8. Accessing web services using JAX-WS .............................................................. 430 17.5.9. Exposing web services using XFire .................................................................... 431 17.6.JMS............................................................................................................................432 Spring Framework (2.5.6) x
  • 11. The Spring Framework - Reference Documentation 17.6.1.Server-sideconfiguration ..................................................................................432 17.6.2.Client-sideconfiguration ...................................................................................433 17.7. Auto-detection is not implemented for remote interfaces ................................................ 434 17.8. Considerations when choosing a technology .................................................................. 434 18. Enterprise Java Beans (EJB) integration .............................................................................. 435 18.1.Introduction ................................................................................................................435 18.2.AccessingEJBs ...........................................................................................................435 18.2.1.Concepts ..........................................................................................................435 18.2.2.AccessinglocalSLSBs .....................................................................................435 18.2.3.AccessingremoteSLSBs ..................................................................................437 18.2.4. Accessing EJB 2.x SLSBs versus EJB 3 SLSBs .................................................. 437 18.3. Using Spring's EJB implementation support classes ....................................................... 438 18.3.1. EJB 2.x base classes .........................................................................................438 18.3.2. EJB 3 injection interceptor ................................................................................439 19. JMS (Java Message Service) .................................................................................................441 19.1.Introduction ................................................................................................................441 19.2.UsingSpringJMS .......................................................................................................442 19.2.1.JmsTemplate ....................................................................................................442 19.2.2.Connections .....................................................................................................442 19.2.3.DestinationManagement...................................................................................443 19.2.4.MessageListenerContainers .............................................................................443 19.2.5.Transactionmanagement...................................................................................444 19.3.Sendinga Message .......................................................................................................445 19.3.1.UsingMessageConverters ................................................................................446 19.3.2. SessionCallback and ProducerCallback ..........................................................446 19.4.Receivingamessage ....................................................................................................447 19.4.1.SynchronousReception.....................................................................................447 19.4.2. Asynchronous Reception - Message-Driven POJOs ............................................ 447 19.4.3.The SessionAwareMessageListener interface ....................................................448 19.4.4.The MessageListenerAdapter ..........................................................................448 19.4.5. Processing messages within transactions ............................................................450 19.5. Support for JCA Message Endpoints ............................................................................. 450 19.6.JMSNamespaceSupport .............................................................................................452 20.JMX .....................................................................................................................................456 20.1.Introduction ................................................................................................................456 20.2. Exporting your beans to JMX ....................................................................................... 456 20.2.1.Creatingan MBeanServer ..................................................................................457 20.2.2. Reusing an existing MBeanServer ......................................................................458 20.2.3.Lazy-initializedMBeans ...................................................................................458 20.2.4. Automatic registration of MBeans .....................................................................459 20.2.5. Controlling the registration behavior ..................................................................459 20.3. Controlling the management interface of your beans ...................................................... 460 20.3.1.The MBeanInfoAssembler Interface ...................................................................460 20.3.2.Usingsource-Levelmetadata .............................................................................460 20.3.3. Using JDK 5.0 Annotations ...............................................................................462 20.3.4.Source-LevelMetadataTypes ...........................................................................464 20.3.5.The AutodetectCapableMBeanInfoAssembler interface ......................................465 20.3.6. Defining management interfaces using Java interfaces ........................................ 466 20.3.7.Using MethodNameBasedMBeanInfoAssembler ....................................................467 20.4. Controlling the ObjectNames for your beans .................................................................. 467 20.4.1. Reading ObjectNames from Properties .............................................................467 20.4.2.Usingthe MetadataNamingStrategy ..................................................................468 Spring Framework (2.5.6) xi
  • 12. The Spring Framework - Reference Documentation 20.4.3.The <context:mbean-export/> element ............................................................469 20.5.JSR-160Connectors ....................................................................................................469 20.5.1.Server-sideConnectors .....................................................................................469 20.5.2.Client-sideConnectors ......................................................................................470 20.5.3.JMXoverBurlap/Hessian/SOAP .......................................................................470 20.6. Accessing MBeans via Proxies .....................................................................................471 20.7.Notifications ...............................................................................................................471 20.7.1. Registering Listeners for Notifications ...............................................................471 20.7.2.PublishingNotifications ....................................................................................474 20.8.FurtherResources........................................................................................................475 21.JCACCI ..............................................................................................................................477 21.1.Introduction ................................................................................................................477 21.2.ConfiguringCCI .........................................................................................................477 21.2.1.Connectorconfiguration....................................................................................477 21.2.2. ConnectionFactory configuration in Spring .......................................................478 21.2.3.ConfiguringCCIconnections ............................................................................478 21.2.4. Using a single CCI connection ........................................................................... 479 21.3. Using Spring's CCI access support ................................................................................ 479 21.3.1.Recordconversion ............................................................................................480 21.3.2.The CciTemplate ..............................................................................................480 21.3.3.DAOsupport ....................................................................................................482 21.3.4. Automatic output record generation ...................................................................482 21.3.5.Summary .........................................................................................................482 21.3.6. Using a CCI Connection and Interaction directly ............................................ 483 21.3.7. Example for CciTemplate usage ........................................................................484 21.4. Modeling CCI access as operation objects ..................................................................... 486 21.4.1.MappingRecordOperation .................................................................................486 21.4.2.MappingCommAreaOperation .............................................................................486 21.4.3. Automatic output record generation ...................................................................487 21.4.4.Summary .........................................................................................................487 21.4.5. Example for MappingRecordOperation usage ....................................................487 21.4.6. Example for MappingCommAreaOperation usage .................................................489 21.5.Transactions................................................................................................................490 22.Email....................................................................................................................................492 22.1.Introduction ................................................................................................................492 22.2.Usage .........................................................................................................................492 22.2.1. Basic MailSender and SimpleMailMessage usage ............................................... 492 22.2.2. Using the JavaMailSender and the MimeMessagePreparator .............................. 493 22.3. Using the JavaMail MimeMessageHelper .......................................................................494 22.3.1. Sending attachments and inline resources ........................................................... 495 22.3.2. Creating email content using a templating library ............................................... 495 23. Scheduling and Thread Pooling ............................................................................................498 23.1.Introduction ................................................................................................................498 23.2. Using the OpenSymphony Quartz Scheduler ................................................................. 498 23.2.1.UsingtheJobDetailBean ...................................................................................498 23.2.2.Usingthe MethodInvokingJobDetailFactoryBean .............................................499 23.2.3. Wiring up jobs using triggers and the SchedulerFactoryBean ............................. 499 23.3. Using JDK Timer support ............................................................................................500 23.3.1.Creatingcustomtimers .....................................................................................500 23.3.2.Usingthe MethodInvokingTimerTaskFactoryBean .............................................501 23.3.3. Wrapping up: setting up the tasks using the TimerFactoryBean ........................... 501 23.4. The Spring TaskExecutor abstraction ...........................................................................501 Spring Framework (2.5.6) xii
  • 13. The Spring Framework - Reference Documentation 23.4.1. TaskExecutor types ..........................................................................................502 23.4.2.Usinga TaskExecutor ......................................................................................503 24.Dynamiclanguagesupport ...................................................................................................505 24.1.Introduction ................................................................................................................505 24.2.Afirstexample............................................................................................................505 24.3. Defining beans that are backed by dynamic languages ................................................... 507 24.3.1.Commonconcepts ............................................................................................507 24.3.2.JRubybeans .....................................................................................................511 24.3.3.Groovybeans ...................................................................................................513 24.3.4.BeanShellbeans ...............................................................................................515 24.4.Scenarios ....................................................................................................................516 24.4.1. Scripted Spring MVC Controllers ......................................................................516 24.4.2.ScriptedValidators ...........................................................................................517 24.5.Bitsandbobs ..............................................................................................................518 24.5.1. AOP - advising scripted beans ........................................................................... 518 24.5.2.Scoping............................................................................................................518 24.6.FurtherResources........................................................................................................519 25. Annotations and Source Level Metadata Support ................................................................ 520 25.1.Introduction ................................................................................................................520 25.2.Spring'smetadatasupport ............................................................................................521 25.3.Annotations ................................................................................................................522 25.3.1.@Required ........................................................................................................522 25.3.2. Other @Annotations in Spring ...........................................................................523 25.4. Integration with Jakarta Commons Attributes ................................................................ 523 25.5. Metadata and Spring AOP autoproxying ....................................................................... 525 25.5.1.Fundamentals ...................................................................................................525 25.5.2.Declarativetransactionmanagement ..................................................................526 A.XMLSchema-basedconfiguration ...................................................................................................527 A.1.Introduction .........................................................................................................................527 A.2.XMLSchema-basedconfiguration ........................................................................................527 A.2.1.Referencingtheschemas ............................................................................................527 A.2.2.The util schema .......................................................................................................528 A.2.3.The jee schema .........................................................................................................534 A.2.4.The lang schema .......................................................................................................537 A.2.5.The jms schema .........................................................................................................537 A.2.6. The tx (transaction) schema .......................................................................................538 A.2.7.The aop schema .........................................................................................................538 A.2.8.The context schema ..................................................................................................539 A.2.9.The tool schema .......................................................................................................540 A.2.10.The beans schema ...................................................................................................540 A.3. Setting up your IDE ..............................................................................................................541 A.3.1.SettingupEclipse ......................................................................................................541 A.3.2. Setting up IntelliJ IDEA .............................................................................................544 A.3.3.Integrationissues .......................................................................................................547 B.ExtensibleXMLauthoring ...............................................................................................................548 B.1.Introduction .........................................................................................................................548 B.2.Authoringtheschema ...........................................................................................................548 B.3.Codinga NamespaceHandler .................................................................................................549 B.4.Codinga BeanDefinitionParser ..........................................................................................550 B.5. Registering the handler and the schema .................................................................................. 551 B.5.1.'META-INF/spring.handlers' ...................................................................................551 B.5.2.'META-INF/spring.schemas' .....................................................................................551 Spring Framework (2.5.6) xiii
  • 14. The Spring Framework - Reference Documentation B.6. Using a custom extension in your Spring XML configuration .................................................. 551 B.7.Meatierexamples .................................................................................................................552 B.7.1. Nesting custom tags within custom tags ...................................................................... 552 B.7.2. Custom attributes on 'normal' elements ........................................................................ 555 B.8.FurtherResources .................................................................................................................556 C.spring-beans-2.0.dtd ...................................................................................................................558 D.spring.tld ........................................................................................................................................567 D.1.Introduction .........................................................................................................................567 D.2.The bind tag ........................................................................................................................567 D.3.The escapeBody tag ..............................................................................................................567 D.4.The hasBindErrors tag ........................................................................................................568 D.5.The htmlEscape tag ..............................................................................................................568 D.6.The message tag ...................................................................................................................568 D.7.The nestedPath tag ..............................................................................................................569 D.8.The theme tag.......................................................................................................................569 D.9.The transform tag ...............................................................................................................570 E.spring-form.tld ................................................................................................................................571 E.1.Introduction..........................................................................................................................571 E.2.The checkbox tag ..................................................................................................................571 E.3.The checkboxes tag ..............................................................................................................573 E.4.The errors tag .....................................................................................................................574 E.5.The form tag .........................................................................................................................576 E.6.The hidden tag .....................................................................................................................577 E.7.The input tag .......................................................................................................................577 E.8.The label tag .......................................................................................................................579 E.9.The option tag .....................................................................................................................580 E.10.The options tag ..................................................................................................................581 E.11.The password tag ................................................................................................................583 E.12.The radiobutton tag...........................................................................................................584 E.13.The radiobuttons tag .........................................................................................................586 E.14.The select tag ...................................................................................................................587 E.15.The textarea tag ................................................................................................................589 Spring Framework (2.5.6) xiv
  • 15. Preface Developing software applications is hard enough even with good tools and technologies. Implementing applications using platforms which promise everything but turn out to be heavy-weight, hard to control and not very efficient during the development cycle makes it even harder. Spring provides a light-weight solution for building enterprise-ready applications, while still supporting the possibility of using declarative transaction management, remote access to your logic using RMI or web services, and various options for persisting your data to a database. Spring provides a full-featured MVC framework, and transparent ways of integrating AOP into your software. Spring could potentially be a one-stop-shop for all your enterprise applications; however, Spring is modular, allowing you to use just those parts of it that you need, without having to bring in the rest. You can use the IoC container, with Struts on top, but you could also choose to use just the Hibernate integration code or the JDBC abstraction layer. Spring has been (and continues to be) designed to be non-intrusive, meaning dependencies on the framework itself are generally none (or absolutely minimal, depending on the area of use). This document provides a reference guide to Spring's features. Since this document is still to be considered very much work-in-progress, if you have any requests or comments, please post them on the user mailing list or on the support forums at http://forum.springframework.org/. Before we go on, a few words of gratitude are due to Christian Bauer (of the Hibernate team), who prepared and adapted the DocBook-XSL software in order to be able to create Hibernate's reference guide, thus also allowing us to create this one. Also thanks to Russell Healy for doing an extensive and valuable review of some of the material. Spring Framework (2.5.6) xv
  • 16. Chapter 1. Introduction Background In early 2004, Martin Fowler asked the readers of his site: when talking about Inversion of Control: “the question is, what aspect of control are [they] inverting?”. Fowler then suggested renaming the principle (or at least giving it a more self-explanatory name), and started to use the term Dependency Injection. His article then continued to explain the ideas underpinning the Inversion of Control (IoC) and Dependency Injection (DI) principle. If you need a decent insight into IoC and DI, please do refer to said article : http://martinfowler.com/articles/injection.html. Java applications (a loose term which runs the gamut from constrained applets to full-fledged n-tier server-side enterprise applications) typically are composed of a number of objects that collaborate with one another to form the application proper. The objects in an application can thus be said to have dependencies between themselves. The Java language and platform provides a wealth of functionality for architecting and building applications, ranging all the way from the very basic building blocks of primitive types and classes (and the means to define new classes), to rich full-featured application servers and web frameworks. One area that is decidedly conspicuous by its absence is any means of taking the basic building blocks and composing them into a coherent whole; this area has typically been left to the purvey of the architects and developers tasked with building an application (or applications). Now to be fair, there are a number of design patterns devoted to the business of composing the various classes and object instances that makeup an all-singing, all-dancing application. Design patterns such as Factory, Abstract Factory, Builder, Decorator, and Service Locator (to name but a few) have widespread recognition and acceptance within the software development industry (presumably that is why these patterns have been formalized as patterns in the first place). This is all very well, but these patterns are just that: best practices given a name, typically together with a description of what the pattern does, where the pattern is typically best applied, the problems that the application of the pattern addresses, and so forth. Notice that the last paragraph used the phrase “... a description of what the pattern does...”; pattern books and wikis are typically listings of such formalized best practice that you can certainly take away, mull over, and then implement yourself in your application. The IoC component of the Spring Framework addresses the enterprise concern of taking the classes, objects, and services that are to compose an application, by providing a formalized means of composing these various disparate components into a fully working application ready for use. The Spring Framework takes best practices that have been proven over the years in numerous applications and formalized as design patterns, and actually codifies these patterns as first class objects that you as an architect and developer can take away and integrate into your own application(s). This is a Very Good Thing Indeed as attested to by the numerous organizations and institutions that have used the Spring Framework to engineer robust, maintainable applications. 1.1. Overview The Spring Framework contains a lot of features, which are well-organized in six modules shown in the diagram below. This chapter discusses each of the modules in turn. Spring Framework (2.5.6) 16
  • 17. Introduction Overview of the Spring Framework Spring Framework (2.5.6) 17
  • 18. Introduction The Core package is the most fundamental part of the framework and provides the IoC and Dependency Injection features. The basic concept here is the BeanFactory, which provides a sophisticated implementation of the factory pattern which removes the need for programmatic singletons and allows you to decouple the configuration and specification of dependencies from your actual program logic. The Context package build on the solid base provided by the Core package: it provides a way to access objects in a framework-style manner in a fashion somewhat reminiscent of a JNDI-registry. The context package inherits its features from the beans package and adds support for internationalization (I18N) (using for example resource bundles), event-propagation, resource-loading, and the transparent creation of contexts by, for example, a servlet container. The DAO package provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding and parsing of database-vendor specific error codes. Also, the JDBC package provides a way to do programmatic as well as declarative transaction management, not only for classes implementing special interfaces, but for all your POJOs (plain old Java objects). The ORM package provides integration layers for popular object-relational mapping APIs, including JPA, JDO, Hibernate, and iBatis. Using the ORM package you can use all those O/R-mappers in combination with all the other features Spring offers, such as the simple declarative transaction management feature mentioned previously. Spring's AOP package provides an AOP Alliance-compliant aspect-oriented programming implementation allowing you to define, for example, method-interceptors and pointcuts to cleanly decouple code implementing functionality that should logically speaking be separated. Using source-level metadata functionality you can also incorporate all kinds of behavioral information into your code, in a manner similar to that of .NET attributes. Spring's Web package provides basic web-oriented integration features, such as multipart file-upload functionality, the initialization of the IoC container using servlet listeners and a web-oriented application context. When using Spring together with WebWork or Struts, this is the package to integrate with. Spring's MVC package provides a Model-View-Controller (MVC) implementation for web-applications. Spring's MVC framework is not just any old implementation; it provides a clean separation between domain model code and web forms, and allows you to use all the other features of the Spring Framework. 1.2. Usage scenarios With the building blocks described above you can use Spring in all sorts of scenarios, from applets up to fully-fledged enterprise applications using Spring's transaction management functionality and web framework integration. Spring Framework (2.5.6) 18
  • 19. Introduction Typical full-fledged Spring web application By using Spring's declarative transaction management features the web application is fully transactional, just as it would be when using container managed transactions as provided by Enterprise JavaBeans. All your custom business logic can be implemented using simple POJOs, managed by Spring's IoC container. Additional services include support for sending email, and validation that is independent of the web layer enabling you to choose where to execute validation rules. Spring's ORM support is integrated with JPA, Hibernate, JDO and iBatis; for example, when using Hibernate, you can continue to use your existing mapping files and standard Hibernate SessionFactory configuration. Form controllers seamlessly integrate the web-layer with the domain model, removing the need for ActionForms or other classes that transform HTTP parameters to values for your domain model. Spring middle-tier using a third-party web framework Sometimes the current circumstances do not allow you to completely switch to a different framework. The Spring Framework (2.5.6) 19
  • 20. Introduction Spring Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing front-ends built using WebWork, Struts, Tapestry, or other UI frameworks can be integrated perfectly well with a Spring-based middle-tier, allowing you to use the transaction features that Spring offers. The only thing you need to do is wire up your business logic using an ApplicationContext and integrate your web layer using a WebApplicationContext. Remoting usage scenario When you need to access existing code via web services, you can use Spring's Hessian-, Burlap-, Rmi- or JaxRpcProxyFactory classes. Enabling remote access to existing applications suddenly is not that hard anymore. EJBs - Wrapping existing POJOs The Spring Framework also provides an access- and abstraction- layer for Enterprise JavaBeans, enabling you to reuse your existing POJOs and wrap them in Stateless Session Beans, for use in scalable, failsafe web applications that might need declarative security. Spring Framework (2.5.6) 20
  • 21. Chapter 2. What's new in Spring 2.0 and 2.5? 2.1. Introduction If you have been using the Spring Framework for some time, you will be aware that Spring has undergone two major revisions: Spring 2.0, released in October 2006, and Spring 2.5, released in November 2007. Java SE and Java EE Support The Spring Framework continues to be compatible with all versions of Java since (and including) Java 1.4.2. This means that Java 1.4.2, Java 5 and Java 6 are supported, although some advanced functionality of the Spring Framework will not be available to you if you are committed to using Java 1.4.2. Spring 2.5 introduces dedicated support for Java 6, after Spring 2.0's in-depth support for Java 5 throughout the framework. Furthermore, Spring remains compatible with J2EE 1.3 and higher, while at the same time introducing dedicated support for Java EE 5. This means that Spring can be consistently used on application servers such as BEA WebLogic 8.1, 9.0, 9.2 and 10, IBM WebSphere 5.1, 6.0, 6.1 and 7, Oracle OC4J 10.1.3 and 11, JBoss 3.2, 4.0, 4.2 and 5.0, as well as Tomcat 4.1, 5.0, 5.5 and 6.0, Jetty 4.2, 5.1 and 6.1, Resin 2.1, 3.0 and 3.1 and GlassFish V1 and V2. NOTE: We generally recommend using the most recent version of each application server generation. In particular, make sure you are using BEA WebLogic 8.1 SP6 or higher and WebSphere 6.0.2.19 / 6.1.0.9 or higher, respectively, when using those WebLogic and WebSphere generations with Spring 2.5. This chapter is a guide to the new and improved features of Spring 2.0 and 2.5. It is intended to provide a high-level summary so that seasoned Spring architects and developers can become immediately familiar with the new Spring 2.x functionality. For more in-depth information on the features, please refer to the corresponding sections hyperlinked from within this chapter. 2.2. The Inversion of Control (IoC) container One of the areas that contains a considerable number of 2.0 and 2.5 improvements is Spring's IoC container. 2.2.1. New bean scopes Previous versions of Spring had IoC container level support for exactly two distinct bean scopes (singleton and prototype). Spring 2.0 improves on this by not only providing a number of additional scopes depending on the environment in which Spring is being deployed (for example, request and session scoped beans in a web environment), but also by providing integration points so that Spring users can create their own scopes. It should be noted that although the underlying (and internal) implementation for singleton- and prototype-scoped beans has been changed, this change is totally transparent to the end user... no existing configuration needs to change, and no existing configuration will break. Both the new and the original scopes are detailed in the section entitled Section 3.4, “Bean scopes”. Spring Framework (2.5.6) 21
  • 22. What's new in Spring 2.0 and 2.5? 2.2.2. Easier XML configuration Spring XML configuration is now even easier, thanks to the advent of the new XML configuration syntax based on XML Schema. If you want to take advantage of the new tags that Spring provides (and the Spring team certainly suggest that you do because they make configuration less verbose and easier to read), then do read the section entitled Appendix A, XML Schema-based configuration. On a related note, there is a new, updated DTD for Spring 2.0 that you may wish to reference if you cannot take advantage of the XML Schema-based configuration. The DOCTYPE declaration is included below for your convenience, but the interested reader should definitely read the 'spring-beans-2.0.dtd' DTD included in the 'dist/resources' directory of the Spring 2.5 distribution. <!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN" "http://www.springframework.org/dtd/spring-beans-2.0.dtd"> 2.2.3. Extensible XML authoring Not only is XML configuration easier to write, it is now also extensible. What 'extensible' means in this context is that you, as an application developer, or (more likely) as a third party framework or product vendor, can write custom tags that other developers can then plug into their own Spring configuration files. This allows you to have your own domain specific language (the term is used loosely here) of sorts be reflected in the specific configuration of your own components. Implementing custom Spring tags may not be of interest to every single application developer or enterprise architect using Spring in their own projects. We expect third-party vendors to be highly interested in developing custom configuration tags for use in Spring configuration files. The extensible configuration mechanism is documented in Appendix B, Extensible XML authoring. 2.2.4. Annotation-driven configuration Spring 2.0 introduced support for various annotations for configuration purposes, such as @Transactional, @Required and @PersistenceContext /@PersistenceUnit. Spring 2.5 introduces support for a complete set of configuration annotations: @Autowired in combination with support for the JSR-250 annotations @Resource, @PostConstruct and @PreDestroy . Annotation-driven bean configuration is discussed in Section 3.11, “Annotation-based configuration”. Check out annotation support for Spring MVC as well: Section 2.5.3, “Annotation-based controllers” 2.2.5. Autodetecting components in the classpath Spring 2.5 introduces support component scanning: autodetecting annotated components in the classpath. Typically, such component classes will be annotated with stereotypes such as @Component, @Repository, @Service, @Controller. Depending on the application context configuration, such component classes will be autodetected and turned into Spring bean definitions, not requiring explicit configuration for each such bean. Annotation-driven bean configuration is discussed in Section 3.12.1, “@Component and further stereotype annotations”. Spring Framework (2.5.6) 22
  • 23. What's new in Spring 2.0 and 2.5? 2.3. Aspect Oriented Programming (AOP) Spring 2.0 has a much improved AOP offering. The Spring AOP framework itself is markedly easier to configure in XML, and significantly less verbose as a result; and Spring 2.0 integrates with the AspectJ pointcut language and @AspectJ aspect declaration style. The chapter entitled Chapter 6, Aspect Oriented Programming with Spring is dedicated to describing this new support. 2.3.1. Easier AOP XML configuration Spring 2.0 introduces new schema support for defining aspects backed by regular Java objects. This support takes advantage of the AspectJ pointcut language and offers fully typed advice (i.e. no more casting and Object[] argument manipulation). Details of this support can be found in the section entitled Section 6.3, “Schema-based AOP support”. 2.3.2. Support for @AspectJ aspects Spring 2.0 also supports aspects defined using the @AspectJ annotations. These aspects can be shared between AspectJ and Spring AOP, and require (honestly!) only some simple configuration. Said support for @AspectJ aspects is discussed in Section 6.2, “@AspectJ support”. 2.3.3. Support for bean name pointcut element Spring 2.5 introduces support for the bean(...) pointcut element, matching specific named beans according to Spring-defined bean names. See Section 6.2.3.1, “Supported Pointcut Designators” for details. 2.3.4. Support for AspectJ load-time weaving Spring 2.5 introduces explicit support AspectJ load-time weaving, as alternative to the proxy-based AOP framework. The new context:load-time-weaver configuration element automatically activates AspectJ aspects as defined in AspectJ's META-INF/aop.xml descriptor, applying them to the current application context through registering a transformer with the underlying ClassLoader. Note that this only works in environments with class transformation support. Check out Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework” for the capabilities and limitations. 2.4. The Middle Tier 2.4.1. Easier configuration of declarative transactions in XML The way that transactions are configured in Spring 2.0 has been changed significantly. The previous 1.2.x style of configuration continues to be valid (and supported), but the new style is markedly less verbose and is the recommended style. Spring 2.0 also ships with an AspectJ aspects library that you can use to make pretty much any object transactional - even objects not created by the Spring IoC container. Spring 2.5 supports convenient annotation-driven transaction management in combination with load-time weaving, through the use of context:load-time-weaver in combination with tx:annotation-driven mode="aspectj". The chapter entitled Chapter 9, Transaction management contains all of the details. Spring Framework (2.5.6) 23
  • 24. What's new in Spring 2.0 and 2.5? 2.4.2. Full WebSphere transaction management support Spring 2.5 explicitly supports IBM's WebSphere Application Server, in particular with respect to WebSphere's transaction manager. Transaction suspension is now fully supported through the use of WebSphere's new UOWManager API, which is available on WAS 6.0.2.19+ and 6.0.1.9+. So if you run a Spring-based application on the WebSphere Application Server, we highly recommend to use Spring 2.5's WebSphereUowTransactionManager as your PlatformTransactionManager of choice. This is also IBM's official recommendation. For automatic detection of the underlying JTA-based transaction platform, consider the use of Spring 2.5's new tx:jta-transaction-manager configuration element. This will autodetect BEA WebLogic and IBM WebSphere, registering the appropriate PlatformTransactionManager. 2.4.3. JPA Spring 2.0 ships with a JPA abstraction layer that is similar in intent to Spring's JDBC abstraction layer in terms of scope and general usage patterns. If you are interested in using a JPA-implementation as the backbone of your persistence layer, the section entitled Section 12.6, “JPA” is dedicated to detailing Spring's support and value-add in this area. Spring 2.5 upgrades its OpenJPA support to OpenJPA 1.0, with support for advanced features such as savepoints. 2.4.4. Asynchronous JMS Prior to Spring 2.0, Spring's JMS offering was limited to sending messages and the synchronous receiving of messages. This functionality (encapsulated in the JmsTemplate class) is great, but it doesn't address the requirement for the asynchronous receiving of messages. Spring 2.0 now ships with full support for the reception of messages in an asynchronous fashion, as detailed in the section entitled Section 19.4.2, “Asynchronous Reception - Message-Driven POJOs”. As of Spring 2.5, the JCA style of setting up asynchronous message listeners is supported as well, through the GenericMessageEndpointManager facility. This is an alternative to the standard JMS listener facility, allowing closer integration with message brokers such as ActiveMQ and JORAM. See Section 19.5, “Support for JCA Message Endpoints”. Spring 2.5 also introduces an XML namespace for simplifying JMS configuration, offering concise configuration of a large numbers of listeners. This namespace supports both the standard JMS listener facility as well as the JCA setup style, with minimal changes in the configuration. See Section 19.6, “JMS Namespace Support”. 2.4.5. JDBC There are some small (but nevertheless notable) new classes in the Spring Framework's JDBC support library. The first, NamedParameterJdbcTemplate, provides support for programming JDBC statements using named parameters (as opposed to programming JDBC statements using only classic placeholder ('?') arguments. Another of the new classes, the SimpleJdbcTemplate, is aimed at making using the JdbcTemplate even easier to use when you are developing against Java 5+ (Tiger). Spring Framework (2.5.6) 24
  • 25. What's new in Spring 2.0 and 2.5? Spring 2.5 significantly extends the functionality of SimpleJdbcTemplate and introduces SimpleJdbcCall and SimpleJdbcInsert operation objects. 2.5. The Web Tier The web tier support has been substantially improved and expanded in Spring 2.0, with annotation-based controllers introduced in Spring 2.5. 2.5.1. Sensible defaulting in Spring MVC For a lot of projects, sticking to established conventions and having reasonable defaults is just what the projects need... this theme of convention-over-configuration now has explicit support in Spring MVC. What this means is that if you establish a set of naming conventions for your Controllers and views, you can substantially cut down on the amount of XML configuration that is required to setup handler mappings, view resolvers, ModelAndView instances, etc. This is a great boon with regards to rapid prototyping, and can also lend a degree of (always good-to-have) consistency across a codebase. Spring MVC's convention-over-configuration support is detailed in the section entitled Section 13.10, “Convention over configuration” 2.5.2. Portlet framework Spring 2.0 ships with a Portlet framework that is conceptually similar to the Spring MVC framework. Detailed coverage of the Spring Portlet framework can be found in the section entitled Chapter 16, Portlet MVC Framework. 2.5.3. Annotation-based controllers Spring 2.5 introduces an annotation-based programming model for MVC controllers, using annotations such as @RequestMapping, @RequestParam, @ModelAttribute, etc. This annotation support is available for both Servlet MVC and Portlet MVC. Controllers implemented in this style do not have to extend specific base classes or implement specific interfaces. Furthermore, they do not usually have direct dependencies on Servlet or Portlet API's, although they can easily get access to Servlet or Portlet facilities if desired. For further details, see Section 13.11, “Annotation-based controller configuration”. 2.5.4. A form tag library for Spring MVC A rich JSP tag library for Spring MVC was the JIRA issue that garnered the most votes from Spring users (by a wide margin). Spring 2.0 ships with a full featured JSP tag library that makes the job of authoring JSP pages much easier when using Spring MVC; the Spring team is confident it will satisfy all of those developers who voted for the issue on JIRA. The new tag library is itself covered in the section entitled Section 14.2.4, “Using Spring's form tag library”, and a quick reference to all of the new tags can be found in the appendix entitled Appendix E, spring-form.tld. 2.5.5. Tiles 2 support Spring 2.5 ships support for Tiles 2, the next generation of the popular Tiles templating framework. This Spring Framework (2.5.6) 25
  • 26. What's new in Spring 2.0 and 2.5? supersedes Spring's former support for Tiles 1, as included in Struts 1.x. See Section 14.3, “Tiles” for details. 2.5.6. JSF 1.2 support Spring 2.5 supports JSF 1.2, providing a JSF 1.2 variant of Spring's DelegatingVariableResolver in the form of the new SpringBeanFacesELResolver. 2.5.7. JAX-WS support Spring 2.5 fully supports JAX-WS 2.0/2.1, as included in Java 6 and Java EE 5. JAX-WS is the successor of JAX-RPC, allowing access to WSDL/SOAP-based web services as well as JAX-WS style exposure of web services. 2.6. Everything else This final section outlines all of the other new and improved Spring 2.0/2.5 features and functionality. 2.6.1. Dynamic language support Spring 2.0 introduced support for beans written in languages other than Java, with the currently supported dynamic languages being JRuby, Groovy and BeanShell. This dynamic language support is comprehensively detailed in the section entitled Chapter 24, Dynamic language support. Spring 2.5 refines the dynamic languages support with autowiring and support for the recently released JRuby 1.0. 2.6.2. Enhanced testing support Spring 2.5 introduces the Spring TestContext Framework which provides annotation-driven unit and integration testing support that is agnostic of the actual testing framework in use. The same techniques and annotation-based configuration used in, for example, a JUnit 3.8 environment can also be applied to tests written with JUnit 4.4, TestNG, etc. In addition to providing generic and extensible testing infrastructure, the Spring TestContext Framework provides out-of-the-box support for Spring-specific integration testing functionality such as context management and caching, dependency injection of test fixtures, and transactional test management with default rollback semantics. To discover how this new testing support can assist you with writing unit and integration tests, consult Section 8.3.7, “Spring TestContext Framework” of the revised testing chapter. 2.6.3. JMX support The Spring Framework 2.0 has support for Notifications; it is also possible to exercise declarative control over the registration behavior of MBeans with an MBeanServer. • Section 20.7, “Notifications” • Section 20.2.5, “Controlling the registration behavior” Spring Framework (2.5.6) 26
  • 27. What's new in Spring 2.0 and 2.5? Furthermore, Spring 2.5 provides a context:mbean-export configuration element for convenient registration of annotated bean classes, detecting Spring's @ManagedResource annotation. 2.6.4. Deploying a Spring application context as JCA adapter Spring 2.5 supports the deployment of a Spring application context as JCA resource adapter, packaged as a JCA RAR file. This allows headless application modules to be deployed into J2EE servers, getting access to all the server's infrastructure e.g. for executing scheduled tasks, listening for incoming messages, etc. 2.6.5. Task scheduling Spring 2.0 offers an abstraction around the scheduling of tasks. For the interested developer, the section entitled Section 23.4, “The Spring TaskExecutor abstraction” contains all of the details. The TaskExecutor abstraction is used throughout the framework itself as well, e.g. for the asynchronous JMS support. In Spring 2.5, it is also used in the JCA environment support. 2.6.6. Java 5 (Tiger) support Find below pointers to documentation describing some of the new Java 5 support in Spring 2.0 and 2.5. • Section 3.11, “Annotation-based configuration” • Section 25.3.1, “@Required” • Section 9.5.6, “Using @Transactional” • Section 11.2.3, “SimpleJdbcTemplate” • Section 12.6, “JPA” • Section 6.2, “@AspectJ support” • Section 6.8.1, “Using AspectJ to dependency inject domain objects with Spring” 2.7. Migrating to Spring 2.5 This final section details issues that may arise during any migration from Spring 1.2/2.0 to Spring 2.5. Upgrading to Spring 2.5 from a Spring 2.0.x application should simply be a matter of dropping the Spring 2.5 jar into the appropriate location in your application's directory structure. We highly recommend upgrading to Spring 2.5 from any Spring 2.0 application that runs on JDK 1.4.2 or higher, in particular when running on Java 5 or higher, leveraging the significant configuration conveniences and performance improvements that Spring 2.5 has to offer. Whether an upgrade from Spring 1.2.x will be as seamless depends on how much of the Spring APIs you are using in your code. Spring 2.0 removed pretty much all of the classes and methods previously marked as deprecated in the Spring 1.2.x codebase, so if you have been using such classes and methods, you will of course have to use alternative classes and methods (some of which are summarized below). With regards to configuration, Spring 1.2.x style XML configuration is 100%, satisfaction-guaranteed Spring Framework (2.5.6) 27
  • 28. What's new in Spring 2.0 and 2.5? compatible with the Spring 2.5 library. Of course if you are still using the Spring 1.2.x DTD, then you won't be able to take advantage of some of the new Spring 2.0 functionality (such as scopes and easier AOP and transaction configuration), but nothing will blow up. The suggested migration strategy is to drop in the Spring 2.5 jar(s) to benefit from the improved code present in the release (bug fixes, optimizations, etc.). You can then, on an incremental basis, choose to start using the new Spring 2.5 features and configuration. For example, you could choose to start configuring just your aspects in the new Spring 2 style; it is perfectly valid to have 90% of your configuration using the old-school Spring 1.2.x configuration (which references the 1.2.x DTD), and have the other 10% using the new Spring 2 configuration (which references the 2.0/2.5 DTD or XSD). Bear in mind that you are not forced to upgrade your XML configuration should you choose to drop in the Spring 2.5 libraries. 2.7.1. Changes For a comprehensive list of changes, consult the 'changelog.txt' file that is located in the top level directory of the Spring Framework distribution. 2.7.1.1. Supported JDK versions As of Spring 2.5, support for JDK 1.3 has been removed, following Sun's official deprecation of JDK 1.3 in late 2006. If you haven't done so already, upgrade to JDK 1.4.2 or higher. If you need to stick with an application server that only supports JDK 1.3, such as WebSphere 4.0 or 5.0, we recommend using the Spring Framework version 2.0.7/2.0.8 which still supports JDK 1.3. 2.7.1.2. Jar packaging in Spring 2.5 As of Spring 2.5, Spring Web MVC is no longer part of the 'spring.jar' file. Spring MVC can be found in 'spring-webmvc.jar' and 'spring-webmvc-portlet.jar' in the lib/modules directory of the distribution. Furthermore, the Struts 1.x support has been factored out into 'spring-webmvc-struts.jar'. Note: The commonly used Spring's DispatcherServlet is part of Spring's Web MVC framework. As a consequence, you need to add 'spring-webmvc.jar' (or 'spring-webmvc-portlet/struts.jar') to a 'spring.jar' scenario, even if you are just using DispatcherServlet for remoting purposes (e.g. exporting Hessian or HTTP invoker services). Spring 2.0's 'spring-jmx.jar' and 'spring-remoting.jar' have been merged into Spring 2.5's 'spring-context.jar' (for the JMX and non-HTTP remoting support) and partly into 'spring-web.jar' (for the HTTP remoting support). Spring 2.0's 'spring-support.jar' has been renamed to 'spring-context-support.jar', expressing the actual support relationship more closely. 'spring-portlet.jar' has been renamed to 'spring-webmvc-portlet.jar', since it is technically a submodule of Spring's Web MVC framework. Analogously, 'spring-struts.jar' has been renamed to 'spring-webmvc-struts.jar'. Spring 2.0's 'spring-jdo.jar', 'spring-jpa.jar', 'spring-hibernate3.jar', 'spring-toplink.jar' and 'spring-ibatis.jar' have been combined into Spring 2.5's coarse-granular 'spring-orm.jar'. Spring 2.5's 'spring-test.jar' supersedes the previous 'spring-mock.jar', indicating the stronger focus on the test context framework. Note that 'spring-test.jar' contains everything 'spring-mock.jar' contained in previous Spring versions; hence it can be used as a straightforward replacement for unit and integration testing purposes. Spring Framework (2.5.6) 28
  • 29. What's new in Spring 2.0 and 2.5? Spring 2.5's 'spring-tx.jar' supersedes the previous 'spring-dao.jar' and 'spring-jca.jar' files, indicating the stronger focus on the transaction framework. Spring 2.5 ships its framework jars as OSGi-compliant bundles out of the box. This facilitates use of Spring in OSGi environments, not requiring custom packaging anymore. 2.7.1.3. XML configuration Spring 2.0 ships with XSDs that describe Spring's XML metadata format in a much richer fashion than the DTD that shipped with previous versions. The old DTD is still fully supported, but if possible you are encouraged to reference the XSD files at the top of your bean definition files. One thing that has changed in a (somewhat) breaking fashion is the way that bean scopes are defined. If you are using the Spring 1.2 DTD you can continue to use the 'singleton' attribute. You can however choose to reference the new Spring 2.0 DTD which does not permit the use of the 'singleton' attribute, but rather uses the 'scope' attribute to define the bean lifecycle scope. 2.7.1.4. Deprecated classes and methods A number of classes and methods that previously were marked as @deprecated have been removed from the Spring 2.0 codebase. The Spring team decided that the 2.0 release marked a fresh start of sorts, and that any deprecated 'cruft' was better excised now instead of continuing to haunt the codebase for the foreseeable future. As mentioned previously, for a comprehensive list of changes, consult the 'changelog.txt' file that is located in the top level directory of the Spring Framework distribution. The following classes/interfaces have been removed as of Spring 2.0: • ResultReader : Use the RowMapper interface instead. • BeanFactoryBootstrap : Consider using a BeanFactoryLocator or a custom bootstrap class instead. 2.7.1.5. Apache OJB As of Spring 2.0, support for Apache OJB was totally removed from the main Spring source tree. The Apache OJB integration library is still available, but can be found in its new home in the Spring Modules project. 2.7.1.6. iBATIS Please note that support for iBATIS SQL Maps 1.3 has been removed. If you haven't done so already, upgrade to iBATIS SQL Maps 2.3. 2.7.1.7. Hibernate As of Spring 2.5, support for Hibernate 2.1 and Hibernate 3.0 has been removed. If you haven't done so already, upgrade to Hibernate 3.1 or higher. If you need to stick with Hibernate 2.1 or 3.0 for the time being, we recommend to keep using the Spring Framework version 2.0.7/2.0.8 which still supports those versions of Hibernate. 2.7.1.8. JDO As of Spring 2.5, support for JDO 1.0 has been removed. If you haven't done so already, upgrade to JDO 2.0 or Spring Framework (2.5.6) 29
  • 30. What's new in Spring 2.0 and 2.5? higher. If you need to stick with JDO 1.0 for the time being, we recommend to keep using the Spring Framework version 2.0.7/2.0.8 which still supports that version of JDO. 2.7.1.9. UrlFilenameViewController Since Spring 2.0, the view name that is determined by the UrlFilenameViewController now takes into account the nested path of the request. This is a breaking change from the original contract of the UrlFilenameViewController, and means that if you are upgrading from Spring 1.x to Spring 2.x and you are using this class you might have to change your Spring Web MVC configuration slightly. Refer to the class level Javadocs of the UrlFilenameViewController to see examples of the new contract for view name determination. 2.8. Updated sample applications A number of the sample applications have also been updated to showcase the new and improved features of Spring 2.0. So do take the time to investigate them. The aforementioned sample applications can be found in the 'samples' directory of the full Spring distribution ('spring-with-dependencies.[zip|tar.gz]'). Spring 2.5 features revised versions of the PetClinic and PetPortal sample applications, reengineered from the ground up for leveraging Spring 2.5's annotation configuration features. It also uses Java 5 autoboxing, generics, varargs and the enhanced for loop. A Java 5 or 6 SDK is now required to build and run the sample. Check out PetClinic and PetPortal to get an impression of what Spring 2.5 has to offer! 2.9. Improved documentation The Spring reference documentation has also substantially been updated to reflect all of the above features new in Spring 2.0 and 2.5. While every effort has been made to ensure that there are no errors in this documentation, some errors may nevertheless have crept in. If you do spot any typos or even more serious errors, and you can spare a few cycles during lunch, please do bring the error to the attention of the Spring team by raising an issue. Special thanks to Arthur Loder for his tireless proofreading of the Spring Framework reference documentation and JavaDocs. Spring Framework (2.5.6) 30
  • 31. Part I. Core Technologies This initial part of the reference documentation covers all of those technologies that are absolutely integral to the Spring Framework. Foremost amongst these is the Spring Framework's Inversion of Control (IoC) container. A thorough treatment of the Spring Framework's IoC container is closely followed by comprehensive coverage of Spring's Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP framework, which is conceptually easy to understand, and which successfully addresses the 80% sweet spot of AOP requirements in Java enterprise programming. Coverage of Spring's integration with AspectJ (currently the richest - in terms of features - and certainly most mature AOP implementation in the Java enterprise space) is also provided. Finally, the adoption of the test-driven-development (TDD) approach to software development is certainly advocated by the Spring team, and so coverage of Spring's support for integration testing is covered (alongside best practices for unit testing). The Spring team have found that the correct use of IoC certainly does make both unit and integration testing easier (in that the presence of setter methods and appropriate constructors on classes makes them easier to wire together on a test without having to set up service locator registries and suchlike)... the chapter dedicated solely to testing will hopefully convince you of this as well. • Chapter 3, The IoC container • Chapter 4, Resources • Chapter 5, Validation, Data-binding, the BeanWrapper, and PropertyEditors • Chapter 6, Aspect Oriented Programming with Spring • Chapter 7, Spring AOP APIs • Chapter 8, Testing Spring Framework (2.5.6) 31
  • 32. Chapter 3. The IoC container 3.1. Introduction This chapter covers the Spring Framework's implementation of the Inversion of Control (IoC) 1 principle. BeanFactory or ApplicationContext? Users are sometimes unsure whether a BeanFactory or an ApplicationContext is best suited for use in a particular situation. A BeanFactory pretty much just instantiates and configures beans. An ApplicationContext also does that, and it provides the supporting infrastructure to enable lots of enterprise-specific features such as transactions and AOP. In short, favor the use of an ApplicationContext. (For the specific details behind this recommendation, see this section.) The org.springframework.beans and org.springframework.context packages provide the basis for the Spring Framework's IoC container. The BeanFactory interface provides an advanced configuration mechanism capable of managing objects of any nature. The ApplicationContext interface builds on top of the BeanFactory (it is a sub-interface) and adds other functionality such as easier integration with Spring's AOP features, message resource handling (for use in internationalization), event propagation, and application-layer specific contexts such as the WebApplicationContext for use in web applications. In short, the BeanFactory provides the configuration framework and basic functionality, while the ApplicationContext adds more enterprise-centric functionality to it. The ApplicationContext is a complete superset of the BeanFactory, and any description of BeanFactory capabilities and behavior is to be considered to apply to the ApplicationContext as well. This chapter is divided into two parts, with the first part covering the basic principles that apply to both the BeanFactory and ApplicationContext, and with the second part covering those features that apply only to the ApplicationContext interface. 3.2. Basics - containers and beans In Spring, those objects that form the backbone of your application and that are managed by the Spring IoC container are referred to as beans. A bean is simply an object that is instantiated, assembled and otherwise managed by a Spring IoC container; other than that, there is nothing special about a bean (it is in all other respects one of probably many objects in your application). These beans, and the dependencies between them, are reflected in the configuration metadata used by a container. Why... bean? The motivation for using the name 'bean', as opposed to 'component' or 'object' is rooted in the origins of the Spring Framework itself (it arose partly as a response to the complexity of Enterprise JavaBeans). 1 See the section entitled Background Spring Framework (2.5.6) 32
  • 33. The IoC container 3.2.1. The container The org.springframework.beans.factory.BeanFactory is the actual representation of the Spring IoC container that is responsible for containing and otherwise managing the aforementioned beans. The BeanFactory interface is the central IoC container interface in Spring. Its responsibilities include instantiating or sourcing application objects, configuring such objects, and assembling the dependencies between these objects. There are a number of implementations of the BeanFactory interface that come supplied straight out-of-the-box with Spring. The most commonly used BeanFactory implementation is the XmlBeanFactory class. This implementation allows you to express the objects that compose your application, and the doubtless rich interdependencies between such objects, in terms of XML. The XmlBeanFactory takes this XML configuration metadata and uses it to create a fully configured system or application. The Spring IoC container 3.2.1.1. Configuration metadata As can be seen in the above image, the Spring IoC container consumes some form of configuration metadata; this configuration metadata is nothing more than how you (as an application developer) inform the Spring container as to how to “instantiate, configure, and assemble [the objects in your application]”. This configuration metadata is typically supplied in a simple and intuitive XML format. When using XML-based configuration metadata, you write bean definitions for those beans that you want the Spring IoC container to manage, and then let the container do its stuff. Note XML-based metadata is by far the most commonly used form of configuration metadata. It is not however the only form of configuration metadata that is allowed. The Spring IoC container itself is totally decoupled from the format in which this configuration metadata is actually written. The Spring Framework (2.5.6) 33
  • 34. The IoC container XML-based configuration metadata format really is simple though, and so the majority of this chapter will use the XML format to convey key concepts and features of the Spring IoC container. You can find details of another form of metadata that the Spring container can consume in the section entitled Section 3.11, “Annotation-based configuration” Resources The location path or paths supplied to an ApplicationContext constructor are actually resource strings that allow the container to load configuration metadata from a variety of external resources such as the local file system, from the Java CLASSPATH, etc. Once you have learned about Spring's IoC container, you may wish to learn a little more about Spring's Resource abstraction, as described in the chapter entitled Chapter 4, Resources. In the vast majority of application scenarios, explicit user code is not required to instantiate one or more instances of a Spring IoC container. For example, in a web application scenario, a simple eight (or so) lines of boilerplate J2EE web descriptor XML in the web.xml file of the application will typically suffice (see Section 3.8.5, “Convenient ApplicationContext instantiation for web applications”). Spring configuration consists of at least one bean definition that the container must manage, but typically there will be more than one bean definition. When using XML-based configuration metadata, these beans are configured as <bean/> elements inside a top-level <beans/> element. These bean definitions correspond to the actual objects that make up your application. Typically you will have bean definitions for your service layer objects, your data access objects (DAOs), presentation objects such as Struts Action instances, infrastructure objects such as Hibernate SessionFactories, JMS Queues, and so forth. Typically one does not configure fine-grained domain objects in the container, because it is usually the responsibility of DAOs and business logic to create/load domain objects. Find below an example of the basic structure of XML-based configuration metadata. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean id="..." class="..."> <!-- collaborators and configuration for this bean go here --> </bean> <bean id="..." class="..."> <!-- collaborators and configuration for this bean go here --> </bean> <!-- more bean definitions go here --> </beans> 3.2.2. Instantiating a container Instantiating a Spring IoC container is straightforward. ApplicationContext context = new ClassPathXmlApplicationContext( new String[] {"services.xml", "daos.xml"}); Spring Framework (2.5.6) 34
  • 35. The IoC container // an ApplicationContext is also a BeanFactory (via inheritance) BeanFactory factory = context; 3.2.2.1. Composing XML-based configuration metadata It can often be useful to split up container definitions into multiple XML files. One way to then load an application context which is configured from all these XML fragments is to use the application context constructor which takes multiple Resource locations. With a bean factory, a bean definition reader can be used multiple times to read definitions from each file in turn. Generally, the Spring team prefers the above approach, since it keeps container configuration files unaware of the fact that they are being combined with others. An alternate approach is to use one or more occurrences of the <import/> element to load bean definitions from another file (or files). Let's look at a sample: <beans> <import resource="services.xml"/> <import resource="resources/messageSource.xml"/> <import resource="/resources/themeSource.xml"/> <bean id="bean1" class="..."/> <bean id="bean2" class="..."/> </beans> In this example, external bean definitions are being loaded from 3 files, services.xml, messageSource.xml, and themeSource.xml. All location paths are considered relative to the definition file doing the importing, so services.xml in this case must be in the same directory or classpath location as the file doing the importing, while messageSource.xml and themeSource.xml must be in a resources location below the location of the importing file. As you can see, a leading slash is actually ignored, but given that these are considered relative paths, it is probably better form not to use the slash at all. The contents of the files being imported must be valid XML bean definition files according to the Spring Schema or DTD, including the top level <beans/> element. Note It is possible to reference files in parent directories using a relative "../" path. However, this is not recommended because it creates a dependency on a file that is outside the current application. This is in particular not recommended for "classpath:" URLs (e.g. "classpath:../services.xml") where the runtime resolution process will pick the "nearest" classpath root and then look into its parent directory. This is fragile since classpath configuration changes may lead to a different directory being picked. Note that you can always use fully qualified resource locations instead of relative paths: e.g. "file:C:/config/services.xml" or "classpath:/config/services.xml". However, be aware that you are coupling your application's configuration to specific absolute locations then. It is generally preferable to keep an indirection for such absolute locations, e.g. through "${...}" placeholders that are resolved against JVM system properties at runtime. 3.2.3. The beans A Spring IoC container manages one or more beans. These beans are created using the configuration metadata that has been supplied to the container (typically in the form of XML <bean/> definitions). Within the container itself, these bean definitions are represented as BeanDefinition objects, which contain Spring Framework (2.5.6) 35
  • 36. The IoC container (among other information) the following metadata: • a package-qualified class name: typically this is the actual implementation class of the bean being defined. • bean behavioral configuration elements, which state how the bean should behave in the container (scope, lifecycle callbacks, and so forth). • references to other beans which are needed for the bean to do its work; these references are also called collaborators or dependencies. • other configuration settings to set in the newly created object. An example would be the number of connections to use in a bean that manages a connection pool, or the size limit of the pool. The concepts listed above directly translate to a set of properties that each bean definition consists of. Some of these properties are listed below, along with a link to further documentation about each of them. Table 3.1. The bean definition Feature Explained in... class Section 3.2.3.2, “Instantiating beans” name Section 3.2.3.1, “Naming beans” scope Section 3.4, “Bean scopes” constructor arguments Section 3.3.1, “Injecting dependencies” properties Section 3.3.1, “Injecting dependencies” autowiring mode Section 3.3.5, “Autowiring collaborators” dependency checking mode Section 3.3.6, “Checking for dependencies” lazy-initialization mode Section 3.3.4, “Lazily-instantiated beans” initialization method Section 3.5.1.1, “Initialization callbacks” destruction method Section 3.5.1.2, “Destruction callbacks” Besides bean definitions which contain information on how to create a specific bean, certain BeanFactory implementations also permit the registration of existing objects that have been created outside the factory (by user code). The DefaultListableBeanFactory class supports this through the registerSingleton(..) method. (Typical applications solely work with beans defined through metadata bean definitions though.) 3.2.3.1. Naming beans Spring Framework (2.5.6) 36
  • 37. The IoC container Bean naming conventions The convention (at least amongst the Spring development team) is to use the standard Java convention for instance field names when naming beans. That is, bean names start with a lowercase letter, and are camel-cased from then on. Examples of such names would be (without quotes) 'accountManager', 'accountService', 'userDao', 'loginController', and so forth. Adopting a consistent way of naming your beans will go a long way towards making your configuration easier to read and understand; adopting such naming standards is not hard to do, and if you are using Spring AOP it can pay off handsomely when it comes to applying advice to a set of beans related by name. Every bean has one or more ids (also called identifiers, or names; these terms refer to the same thing). These ids must be unique within the container the bean is hosted in. A bean will almost always have only one id, but if a bean has more than one id, the extra ones can essentially be considered aliases. When using XML-based configuration metadata, you use the 'id' or 'name' attributes to specify the bean identifier(s). The 'id' attribute allows you to specify exactly one id, and as it is a real XML element ID attribute, the XML parser is able to do some extra validation when other elements reference the id; as such, it is the preferred way to specify a bean id. However, the XML specification does limit the characters which are legal in XML IDs. This is usually not a constraint, but if you have a need to use one of these special XML characters, or want to introduce other aliases to the bean, you may also or instead specify one or more bean ids, separated by a comma (,), semicolon (;), or whitespace in the 'name' attribute. Please note that you are not required to supply a name for a bean. If no name is supplied explicitly, the container will generate a unique name for that bean. The motivations for not supplying a name for a bean will be discussed later (one use case is inner beans). 3.2.3.1.1. Aliasing beans In a bean definition itself, you may supply more than one name for the bean, by using a combination of up to one name specified via the id attribute, and any number of other names via the name attribute. All these names can be considered equivalent aliases to the same bean, and are useful for some situations, such as allowing each component used in an application to refer to a common dependency using a bean name that is specific to that component itself. Having to specify all aliases when the bean is actually defined is not always adequate however. It is sometimes desirable to introduce an alias for a bean which is defined elsewhere. In XML-based configuration metadata this may be accomplished via the use of the <alias/> element. <alias name="fromName" alias="toName"/> In this case, a bean in the same container which is named 'fromName', may also after the use of this alias definition, be referred to as 'toName'. As a concrete example, consider the case where component A defines a DataSource bean called componentA-dataSource, in its XML fragment. Component B would however like to refer to the DataSource as componentB-dataSource in its XML fragment. And the main application, MyApp, defines its own XML fragment and assembles the final application context from all three fragments, and would like to refer to the DataSource as myApp-dataSource. This scenario can be easily handled by adding to the MyApp XML fragment the following standalone aliases: Spring Framework (2.5.6) 37
  • 38. The IoC container <alias name="componentA-dataSource" alias="componentB-dataSource"/> <alias name="componentA-dataSource" alias="myApp-dataSource" /> Now each component and the main application can refer to the dataSource via a name that is unique and guaranteed not to clash with any other definition (effectively there is a namespace), yet they refer to the same bean. 3.2.3.2. Instantiating beans Inner class names If for whatever reason you want to configure a bean definition for a static inner class, you have to use the binary name of the inner class. For example, if you have a class called Foo in the com.example package, and this Foo class has a static inner class called Bar, the value of the 'class' attribute on a bean definition would be... com.example.Foo$Bar Notice the use of the $ character in the name to separate the inner class name from the outer class name. A bean definition essentially is a recipe for creating one or more objects. The container looks at the recipe for a named bean when asked, and uses the configuration metadata encapsulated by that bean definition to create (or acquire) an actual object. If you are using XML-based configuration metadata, you can specify the type (or class) of object that is to be instantiated using the 'class' attribute of the <bean/> element. This 'class' attribute (which internally eventually boils down to being a Class property on a BeanDefinition instance) is normally mandatory (see Section 3.2.3.2.3, “Instantiation using an instance factory method” and Section 3.6, “Bean definition inheritance” for the two exceptions) and is used for one of two purposes. The class property specifies the class of the bean to be constructed in the common case where the container itself directly creates the bean by calling its constructor reflectively (somewhat equivalent to Java code using the 'new' operator). In the less common case where the container invokes a static, factory method on a class to create the bean, the class property specifies the actual class containing the static factory method that is to be invoked to create the object (the type of the object returned from the invocation of the static factory method may be the same class or another class entirely, it doesn't matter). 3.2.3.2.1. Instantiation using a constructor When creating a bean using the constructor approach, all normal classes are usable by and compatible with Spring. That is, the class being created does not need to implement any specific interfaces or be coded in a specific fashion. Just specifying the bean class should be enough. However, depending on what type of IoC you are going to use for that specific bean, you may need a default (empty) constructor. Additionally, the Spring IoC container isn't limited to just managing true JavaBeans, it is also able to manage virtually any class you want it to manage. Most people using Spring prefer to have actual JavaBeans (having just a default (no-argument) constructor and appropriate setters and getters modeled after the properties) in the container, but it is also possible to have more exotic non-bean-style classes in your container. If, for example, you need to use a legacy connection pool that absolutely does not adhere to the JavaBean specification, Spring can manage it as well. When using XML-based configuration metadata you can specify your bean class like so: Spring Framework (2.5.6) 38
  • 39. The IoC container <bean id="exampleBean" class="examples.ExampleBean"/> <bean name="anotherExample" class="examples.ExampleBeanTwo"/> The mechanism for supplying arguments to the constructor (if required), or setting properties of the object instance after it has been constructed, is described shortly. 3.2.3.2.2. Instantiation using a static factory method When defining a bean which is to be created using a static factory method, along with the class attribute which specifies the class containing the static factory method, another attribute named factory-method is needed to specify the name of the factory method itself. Spring expects to be able to call this method (with an optional list of arguments as described later) and get back a live object, which from that point on is treated as if it had been created normally via a constructor. One use for such a bean definition is to call static factories in legacy code. The following example shows a bean definition which specifies that the bean is to be created by calling a factory-method. Note that the definition does not specify the type (class) of the returned object, only the class containing the factory method. In this example, the createInstance() method must be a static method. <bean id="exampleBean" class="examples.ExampleBean2" factory-method="createInstance"/> The mechanism for supplying (optional) arguments to the factory method, or setting properties of the object instance after it has been returned from the factory, will be described shortly. 3.2.3.2.3. Instantiation using an instance factory method In a fashion similar to instantiation via a static factory method, instantiation using an instance factory method is where a non-static method of an existing bean from the container is invoked to create a new bean. To use this mechanism, the 'class' attribute must be left empty, and the 'factory-bean' attribute must specify the name of a bean in the current (or parent/ancestor) container that contains the instance method that is to be invoked to create the object. The name of the factory method itself must be set using the 'factory-method' attribute. <!-- the factory bean, which contains a method called createInstance() --> <bean id="serviceLocator" class="com.foo.DefaultServiceLocator"> <!-- inject any dependencies required by this locator bean --> </bean> <!-- the bean to be created via the factory bean --> <bean id="exampleBean" factory-bean="serviceLocator" factory-method="createInstance"/> Although the mechanisms for setting bean properties are still to be discussed, one implication of this approach is that the factory bean itself can be managed and configured via DI. Note When the Spring documentation makes mention of a 'factory bean', this will be a reference to a bean that is configured in the Spring container that will create objects via an instance or static factory method. When the documentation mentions a FactoryBean (notice the capitalization) this is a reference to a Spring-specific FactoryBean . 3.2.4. Using the container Spring Framework (2.5.6) 39
  • 40. The IoC container A BeanFactory is essentially nothing more than the interface for an advanced factory capable of maintaining a registry of different beans and their dependencies. The BeanFactory enables you to read bean definitions and access them using the bean factory. When using just the BeanFactory you would create one and read in some bean definitions in the XML format as follows: Resource res = new FileSystemResource("beans.xml"); BeanFactory factory = new XmlBeanFactory(res); Basically that is all there is to it. Using getBean(String) you can retrieve instances of your beans; the client-side view of the BeanFactory is simple. The BeanFactory interface has just a few other methods, but ideally your application code should never use them... indeed, your application code should have no calls to the getBean(String) method at all, and thus no dependency on Spring APIs at all. 3.3. Dependencies Your typical enterprise application is not made up of a single object (or bean in the Spring parlance). Even the simplest of applications will no doubt have at least a handful of objects that work together to present what the end-user sees as a coherent application. This next section explains how you go from defining a number of bean definitions that stand-alone, each to themselves, to a fully realized application where objects work (or collaborate) together to achieve some goal (usually an application that does what the end-user wants). 3.3.1. Injecting dependencies The basic principle behind Dependency Injection (DI) is that objects define their dependencies (that is to say the other objects they work with) only through constructor arguments, arguments to a factory method, or properties which are set on the object instance after it has been constructed or returned from a factory method. Then, it is the job of the container to actually inject those dependencies when it creates the bean. This is fundamentally the inverse, hence the name Inversion of Control (IoC), of the bean itself being in control of instantiating or locating its dependencies on its own using direct construction of classes, or something like the Service Locator pattern. It becomes evident upon usage that code gets much cleaner when the DI principle is applied, and reaching a higher grade of decoupling is much easier when objects do not look up their dependencies, but are provided with them (and additionally do not even know where the dependencies are located and of what concrete class they are). DI exists in two major variants, namely Constructor Injection and Setter Injection. 3.3.1.1. Constructor Injection Constructor-based DI is effected by invoking a constructor with a number of arguments, each representing a dependency. Additionally, calling a static factory method with specific arguments to construct the bean, can be considered almost equivalent, and the rest of this text will consider arguments to a constructor and arguments to a static factory method similarly. Find below an example of a class that could only be dependency injected using constructor injection. Notice that there is nothing special about this class. public class SimpleMovieLister { // the SimpleMovieLister has a dependency on a MovieFinder private MovieFinder movieFinder; // a constructor so that the Spring container can 'inject' a MovieFinder public SimpleMovieLister(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // business logic that actually 'uses' the injected MovieFinder is omitted... Spring Framework (2.5.6) 40
  • 41. The IoC container } 3.3.1.1.1. Constructor Argument Resolution Constructor argument resolution matching occurs using the argument's type. If there is no potential for ambiguity in the constructor arguments of a bean definition, then the order in which the constructor arguments are defined in a bean definition is the order in which those arguments will be supplied to the appropriate constructor when it is being instantiated. Consider the following class: package x.y; public class Foo { public Foo(Bar bar, Baz baz) { // ... } } There is no potential for ambiguity here (assuming of course that Bar and Baz classes are not related in an inheritance hierarchy). Thus the following configuration will work just fine, and you do not need to specify the constructor argument indexes and / or types explicitly. <beans> <bean name="foo" class="x.y.Foo"> <constructor-arg> <bean class="x.y.Bar"/> </constructor-arg> <constructor-arg> <bean class="x.y.Baz"/> </constructor-arg> </bean> </beans> When another bean is referenced, the type is known, and matching can occur (as was the case with the preceding example). When a simple type is used, such as <value>true<value>, Spring cannot determine the type of the value, and so cannot match by type without help. Consider the following class: package examples; public class ExampleBean { // No. of years to the calculate the Ultimate Answer private int years; // The Answer to Life, the Universe, and Everything private String ultimateAnswer; public ExampleBean(int years, String ultimateAnswer) { this.years = years; this.ultimateAnswer = ultimateAnswer; } } 3.3.1.1.1.1. Constructor Argument Type Matching The above scenario can use type matching with simple types by explicitly specifying the type of the constructor argument using the 'type' attribute. For example: <bean id="exampleBean" class="examples.ExampleBean"> <constructor-arg type="int" value="7500000"/> <constructor-arg type="java.lang.String" value="42"/> </bean> Spring Framework (2.5.6) 41
  • 42. The IoC container 3.3.1.1.1.2. Constructor Argument Index Constructor arguments can have their index specified explicitly by use of the index attribute. For example: <bean id="exampleBean" class="examples.ExampleBean"> <constructor-arg index="0" value="7500000"/> <constructor-arg index="1" value="42"/> </bean> As well as solving the ambiguity problem of multiple simple values, specifying an index also solves the problem of ambiguity where a constructor may have two arguments of the same type. Note that the index is 0 based. 3.3.1.2. Setter Injection Setter-based DI is realized by calling setter methods on your beans after invoking a no-argument constructor or no-argument static factory method to instantiate your bean. Find below an example of a class that can only be dependency injected using pure setter injection. Note that there is nothing special about this class... it is plain old Java. public class SimpleMovieLister { // the SimpleMovieLister has a dependency on the MovieFinder private MovieFinder movieFinder; // a setter method so that the Spring container can 'inject' a MovieFinder public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // business logic that actually 'uses' the injected MovieFinder is omitted... } Constructor- or Setter-based DI? The Spring team generally advocates the usage of setter injection, since a large number of constructor arguments can get unwieldy, especially when some properties are optional. The presence of setter methods also makes objects of that class amenable to being re-configured (or re-injected) at some later time (for management via JMX MBeans is a particularly compelling use case). Constructor-injection is favored by some purists though (and with good reason). Supplying all of an object's dependencies means that that object is never returned to client (calling) code in a less than totally initialized state. The flip side is that the object becomes less amenable to re-configuration (or re-injection). There is no hard and fast rule here. Use whatever type of DI makes the most sense for a particular class; sometimes, when dealing with third party classes to which you do not have the source, the choice will already have been made for you - a legacy class may not expose any setter methods, and so constructor injection will be the only type of DI available to you. The BeanFactory supports both of these variants for injecting dependencies into beans it manages. (It in fact also supports injecting setter-based dependencies after some dependencies have already been supplied via the constructor approach.) The configuration for the dependencies comes in the form of a BeanDefinition, which is used together with PropertyEditor instances to know how to convert properties from one format to another. However, most users of Spring will not be dealing with these classes directly (that is programmatically), but Spring Framework (2.5.6) 42
  • 43. The IoC container rather with an XML definition file which will be converted internally into instances of these classes, and used to load an entire Spring IoC container instance. Bean dependency resolution generally happens as follows: 1. The BeanFactory is created and initialized with a configuration which describes all the beans. (Most Spring users use a BeanFactory or ApplicationContext implementation that supports XML format configuration files.) 2. Each bean has dependencies expressed in the form of properties, constructor arguments, or arguments to the static-factory method when that is used instead of a normal constructor. These dependencies will be provided to the bean, when the bean is actually created. 3. Each property or constructor argument is either an actual definition of the value to set, or a reference to another bean in the container. 4. Each property or constructor argument which is a value must be able to be converted from whatever format it was specified in, to the actual type of that property or constructor argument. By default Spring can convert a value supplied in string format to all built-in types, such as int, long, String, boolean, etc. The Spring container validates the configuration of each bean as the container is created, including the validation that properties which are bean references are actually referring to valid beans. However, the bean properties themselves are not set until the bean is actually created. For those beans that are singleton-scoped and set to be pre-instantiated (such as singleton beans in an ApplicationContext), creation happens at the time that the container is created, but otherwise this is only when the bean is requested. When a bean actually has to be created, this will potentially cause a graph of other beans to be created, as its dependencies and its dependencies' dependencies (and so on) are created and assigned. Circular dependencies If you are using predominantly constructor injection it is possible to write and configure your classes and beans such that an unresolvable circular dependency scenario is created. Consider the scenario where you have class A, which requires an instance of class B to be provided via constructor injection, and class B, which requires an instance of class A to be provided via constructor injection. If you configure beans for classes A and B to be injected into each other, the Spring IoC container will detect this circular reference at runtime, and throw a BeanCurrentlyInCreationException. One possible solution to this issue is to edit the source code of some of your classes to be configured via setters instead of via constructors. Another solution is not to use constructor injection and stick to setter injection only. In other words, while it should generally be avoided in all but the rarest of circumstances, it is possible to configure circular dependencies with setter injection. Unlike the typical case (with no circular dependencies), a circular dependency between bean A and bean B will force one of the beans to be injected into the other prior to being fully initialized itself (a classic chicken/egg scenario). You can generally trust Spring to do the right thing. It will detect misconfiguration issues, such as references to non-existent beans and circular dependencies, at container load-time. It will actually set properties and resolve dependencies as late as possible, which is when the bean is actually created. This means that a Spring container which has loaded correctly can later generate an exception when you request a bean if there is a problem creating that bean or one of its dependencies. This could happen if the bean throws an exception as a result of a Spring Framework (2.5.6) 43
  • 44. The IoC container missing or invalid property, for example. This potentially delayed visibility of some configuration issues is why ApplicationContext implementations by default pre-instantiate singleton beans. At the cost of some upfront time and memory to create these beans before they are actually needed, you find out about configuration issues when the ApplicationContext is created, not later. If you wish, you can still override this default behavior and set any of these singleton beans to lazy-initialize (that is not be pre-instantiated). If no circular dependencies are involved (see sidebar for a discussion of circular dependencies), when one or more collaborating beans are being injected into a dependent bean, each collaborating bean is totally configured prior to being passed (via one of the DI flavors) to the dependent bean. This means that if bean A has a dependency on bean B, the Spring IoC container will totally configure bean B prior to invoking the setter method on bean A; you can read 'totally configure' to mean that the bean will be instantiated (if not a pre-instantiated singleton), all of its dependencies will be set, and the relevant lifecycle methods (such as a configured init method or the IntializingBean callback method) will all be invoked. 3.3.1.3. Some examples First, an example of using XML-based configuration metadata for setter-based DI. Find below a small part of a Spring XML configuration file specifying some bean definitions. <bean id="exampleBean" class="examples.ExampleBean"> <!-- setter injection using the nested <ref/> element --> <property name="beanOne"><ref bean="anotherExampleBean"/></property> <!-- setter injection using the neater 'ref' attribute --> <property name="beanTwo" ref="yetAnotherBean"/> <property name="integerProperty" value="1"/> </bean> <bean id="anotherExampleBean" class="examples.AnotherBean"/> <bean id="yetAnotherBean" class="examples.YetAnotherBean"/> public class ExampleBean { private AnotherBean beanOne; private YetAnotherBean beanTwo; private int i; public void setBeanOne(AnotherBean beanOne) { this.beanOne = beanOne; } public void setBeanTwo(YetAnotherBean beanTwo) { this.beanTwo = beanTwo; } public void setIntegerProperty(int i) { this.i = i; } } As you can see, setters have been declared to match against the properties specified in the XML file. Find below an example of using constructor-based DI. <bean id="exampleBean" class="examples.ExampleBean"> <!-- constructor injection using the nested <ref/> element --> <constructor-arg> <ref bean="anotherExampleBean"/> </constructor-arg> <!-- constructor injection using the neater 'ref' attribute --> <constructor-arg ref="yetAnotherBean"/> <constructor-arg type="int" value="1"/> Spring Framework (2.5.6) 44
  • 45. The IoC container </bean> <bean id="anotherExampleBean" class="examples.AnotherBean"/> <bean id="yetAnotherBean" class="examples.YetAnotherBean"/> public class ExampleBean { private AnotherBean beanOne; private YetAnotherBean beanTwo; private int i; public ExampleBean( AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) { this.beanOne = anotherBean; this.beanTwo = yetAnotherBean; this.i = i; } } As you can see, the constructor arguments specified in the bean definition will be used to pass in as arguments to the constructor of the ExampleBean. Now consider a variant of this where instead of using a constructor, Spring is told to call a static factory method to return an instance of the object: <bean id="exampleBean" class="examples.ExampleBean" factory-method="createInstance"> <constructor-arg ref="anotherExampleBean"/> <constructor-arg ref="yetAnotherBean"/> <constructor-arg value="1"/> </bean> <bean id="anotherExampleBean" class="examples.AnotherBean"/> <bean id="yetAnotherBean" class="examples.YetAnotherBean"/> public class ExampleBean { // a private constructor private ExampleBean(...) { ... } // a static factory method; the arguments to this method can be // considered the dependencies of the bean that is returned, // regardless of how those arguments are actually used. public static ExampleBean createInstance ( AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) { ExampleBean eb = new ExampleBean (...); // some other operations... return eb; } } Note that arguments to the static factory method are supplied via <constructor-arg/> elements, exactly the same as if a constructor had actually been used. Also, it is important to realize that the type of the class being returned by the factory method does not have to be of the same type as the class which contains the static factory method, although in this example it is. An instance (non-static) factory method would be used in an essentially identical fashion (aside from the use of the factory-bean attribute instead of the class attribute), so details will not be discussed here. 3.3.2. Dependencies and configuration in detail As mentioned in the previous section, bean properties and constructor arguments can be defined as either Spring Framework (2.5.6) 45
  • 46. The IoC container references to other managed beans (collaborators), or values defined inline. Spring's XML-based configuration metadata supports a number of sub-element types within its <property/> and <constructor-arg/> elements for just this purpose. 3.3.2.1. Straight values (primitives, Strings, etc.) The <value/> element specifies a property or constructor argument as a human-readable string representation. As mentioned previously, JavaBeans PropertyEditors are used to convert these string values from a String to the actual type of the property or argument. <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close"> <!-- results in a setDriverClassName(String) call --> <property name="driverClassName"> <value>com.mysql.jdbc.Driver</value> </property> <property name="url"> <value>jdbc:mysql://localhost:3306/mydb</value> </property> <property name="username"> <value>root</value> </property> <property name="password"> <value>masterkaoli</value> </property> </bean> The <property/> and <constructor-arg/> elements also support the use of the 'value' attribute, which can lead to much more succinct configuration. When using the 'value' attribute, the above bean definition reads like so: <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close"> <!-- results in a setDriverClassName(String) call --> <property name="driverClassName" value="com.mysql.jdbc.Driver"/> <property name="url" value="jdbc:mysql://localhost:3306/mydb"/> <property name="username" value="root"/> <property name="password" value="masterkaoli"/> </bean> The Spring team generally prefer the attribute style over the use of nested <value/> elements. If you are reading this reference manual straight through from top to bottom (wow!) then we are getting slightly ahead of ourselves here, but you can also configure a java.util.Properties instance like so: <bean id="mappings" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> <!-- typed as a java.util.Properties --> <property name="properties"> <value> jdbc.driver.className=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3306/mydb </value> </property> </bean> Can you see what is happening? The Spring container is converting the text inside the <value/> element into a java.util.Properties instance using the JavaBeans PropertyEditor mechanism. This is a nice shortcut, and is one of a few places where the Spring team do favor the use of the nested <value/> element over the 'value' attribute style. 3.3.2.1.1. The idref element Spring Framework (2.5.6) 46
  • 47. The IoC container The idref element is simply an error-proof way to pass the id of another bean in the container (to a <constructor-arg/> or <property/> element). <bean id="theTargetBean" class="..."/> <bean id="theClientBean" class="..."> <property name="targetName"> <idref bean="theTargetBean" /> </property> </bean> The above bean definition snippet is exactly equivalent (at runtime) to the following snippet: <bean id="theTargetBean" class="..." /> <bean id="client" class="..."> <property name="targetName" value="theTargetBean" /> </bean> The main reason the first form is preferable to the second is that using the idref tag allows the container to validate at deployment time that the referenced, named bean actually exists. In the second variation, no validation is performed on the value that is passed to the 'targetName' property of the 'client' bean. Any typo will only be discovered (with most likely fatal results) when the 'client' bean is actually instantiated. If the 'client' bean is a prototype bean, this typo (and the resulting exception) may only be discovered long after the container is actually deployed. Additionally, if the bean being referred to is in the same XML unit, and the bean name is the bean id, the 'local' attribute may be used, which allows the XML parser itself to validate the bean id even earlier, at XML document parse time. <property name="targetName"> <!-- a bean with an id of 'theTargetBean' must exist; otherwise an XML exception will be thrown --> <idref local="theTargetBean"/> </property> By way of an example, one common place (at least in pre-Spring 2.0 configuration) where the <idref/> element brings value is in the configuration of AOP interceptors in a ProxyFactoryBean bean definition. If you use <idref/> elements when specifying the interceptor names, there is no chance of inadvertently misspelling an interceptor id. 3.3.2.2. References to other beans (collaborators) The ref element is the final element allowed inside a <constructor-arg/> or <property/> definition element. It is used to set the value of the specified property to be a reference to another bean managed by the container (a collaborator). As mentioned in a previous section, the referred-to bean is considered to be a dependency of the bean who's property is being set, and will be initialized on demand as needed (if it is a singleton bean it may have already been initialized by the container) before the property is set. All references are ultimately just a reference to another object, but there are 3 variations on how the id/name of the other object may be specified, which determines how scoping and validation is handled. Specifying the target bean by using the bean attribute of the <ref/> tag is the most general form, and will allow creating a reference to any bean in the same container (whether or not in the same XML file), or parent container. The value of the 'bean' attribute may be the same as either the 'id' attribute of the target bean, or one of the values in the 'name' attribute of the target bean. <ref bean="someBean"/> Spring Framework (2.5.6) 47
  • 48. The IoC container Specifying the target bean by using the local attribute leverages the ability of the XML parser to validate XML id references within the same file. The value of the local attribute must be the same as the id attribute of the target bean. The XML parser will issue an error if no matching element is found in the same file. As such, using the local variant is the best choice (in order to know about errors as early as possible) if the target bean is in the same XML file. <ref local="someBean"/> Specifying the target bean by using the 'parent' attribute allows a reference to be created to a bean which is in a parent container of the current container. The value of the 'parent' attribute may be the same as either the 'id' attribute of the target bean, or one of the values in the 'name' attribute of the target bean, and the target bean must be in a parent container to the current one. The main use of this bean reference variant is when you have a hierarchy of containers and you want to wrap an existing bean in a parent container with some sort of proxy which will have the same name as the parent bean. <!-- in the parent context --> <bean id="accountService" class="com.foo.SimpleAccountService"> <!-- insert dependencies as required as here --> </bean> <!-- in the child (descendant) context --> <bean id="accountService" <-- notice that the name of this bean is the same as the name of the 'parent' bean class="org.springframework.aop.framework.ProxyFactoryBean"> <property name="target"> <ref parent="accountService"/> <-- notice how we refer to the parent bean </property> <!-- insert other configuration and dependencies as required as here --> </bean> 3.3.2.3. Inner beans A <bean/> element inside the <property/> or <constructor-arg/> elements is used to define a so-called inner bean. An inner bean definition does not need to have any id or name defined, and it is best not to even specify any id or name value because the id or name value simply will be ignored by the container. <bean id="outer" class="..."> <!-- instead of using a reference to a target bean, simply define the target bean inline --> <property name="target"> <bean class="com.example.Person"> <!-- this is the inner bean --> <property name="name" value="Fiona Apple"/> <property name="age" value="25"/> </bean> </property> </bean> Note that in the specific case of inner beans, the 'scope' flag and any 'id' or 'name' attribute are effectively ignored. Inner beans are always anonymous and they are always scoped as prototypes. Please also note that it is not possible to inject inner beans into collaborating beans other than the enclosing bean. 3.3.2.4. Collections The <list/>, <set/>, <map/>, and <props/> elements allow properties and arguments of the Java Collection type List, Set, Map, and Properties, respectively, to be defined and set. <bean id="moreComplexObject" class="example.ComplexObject"> <!-- results in a setAdminEmails(java.util.Properties) call --> <property name="adminEmails"> <props> <prop key="administrator">administrator@example.org</prop> Spring Framework (2.5.6) 48
  • 49. The IoC container <prop key="support">support@example.org</prop> <prop key="development">development@example.org</prop> </props> </property> <!-- results in a setSomeList(java.util.List) call --> <property name="someList"> <list> <value>a list element followed by a reference</value> <ref bean="myDataSource" /> </list> </property> <!-- results in a setSomeMap(java.util.Map) call --> <property name="someMap"> <map> <entry> <key> <value>an entry</value> </key> <value>just some string</value> </entry> <entry> <key> <value>a ref</value> </key> <ref bean="myDataSource" /> </entry> </map> </property> <!-- results in a setSomeSet(java.util.Set) call --> <property name="someSet"> <set> <value>just some string</value> <ref bean="myDataSource" /> </set> </property> </bean> Note The nested element style used this initial example tends to become quite verbose. Fortunately, there are attribute shortcuts for most elements, which you can read about in Section 3.3.2.6, “Shortcuts and other convenience options for XML-based configuration metadata”. Note that the value of a map key or value, or a set value, can also again be any of the following elements: bean | ref | idref | list | set | map | props | value | null 3.3.2.4.1. Collection merging As of Spring 2.0, the container also supports the merging of collections. This allows an application developer to define a parent-style <list/>, <map/>, <set/> or <props/> element, and have child-style <list/>, <map/>, <set/> or <props/> elements inherit and override values from the parent collection; that is to say the child collection's values will be the result obtained from the merging of the elements of the parent and child collections, with the child's collection elements overriding values specified in the parent collection. Please note that this section on merging makes use of the parent-child bean mechanism. This concept has not yet been introduced, so readers unfamiliar with the concept of parent and child bean definitions may wish to read the relevant section before continuing. Find below an example of the collection merging feature: <beans> <bean id="parent" abstract="true" class="example.ComplexObject"> <property name="adminEmails"> <props> Spring Framework (2.5.6) 49
  • 50. The IoC container <prop key="administrator">administrator@example.com</prop> <prop key="support">support@example.com</prop> </props> </property> </bean> <bean id="child" parent="parent"> <property name="adminEmails"> <!-- the merge is specified on the *child* collection definition --> <props merge="true"> <prop key="sales">sales@example.com</prop> <prop key="support">support@example.co.uk</prop> </props> </property> </bean> <beans> Notice the use of the merge=true attribute on the <props/> element of the adminEmails property of the child bean definition. When the child bean is actually resolved and instantiated by the container, the resulting instance will have an adminEmails Properties collection that contains the result of the merging of the child's adminEmails collection with the parent's adminEmails collection. administrator=administrator@example.com sales=sales@example.com support=support@example.co.uk Notice how the child Properties collection's value set will have inherited all the property elements from the parent <props/>. Notice also how the child's value for the support value overrides the value in the parent collection. This merging behavior applies similarly to the <list/>, <map/>, and <set/> collection types. In the specific case of the <list/> element, the semantics associated with the List collection type, that is the notion of an ordered collection of values, is maintained; the parent's values will precede all of the child list's values. In the case of the Map, Set, and Properties collection types, there is no notion of ordering and hence no ordering semantics are in effect for the collection types that underlie the associated Map, Set and Properties implementation types used internally by the container. Finally, some minor notes about the merging support are in order; you cannot merge different collection types (e.g. a Map and a List), and if you do attempt to do so an appropriate Exception will be thrown; and in case it is not immediately obvious, the 'merge' attribute must be specified on the lower level, inherited, child definition; specifying the 'merge' attribute on a parent collection definition is redundant and will not result in the desired merging; and (lastly), please note that this merging feature is only available in Spring 2.0 (and later versions). 3.3.2.4.2. Strongly-typed collection (Java 5+ only) If you are using Java 5 or Java 6, you will be aware that it is possible to have strongly typed collections (using generic types). That is, it is possible to declare a Collection type such that it can only contain String elements (for example). If you are using Spring to dependency inject a strongly-typed Collection into a bean, you can take advantage of Spring's type-conversion support such that the elements of your strongly-typed Collection instances will be converted to the appropriate type prior to being added to the Collection. public class Foo { private Map<String, Float> accounts; public void setAccounts(Map<String, Float> accounts) { this.accounts = accounts; } } Spring Framework (2.5.6) 50
  • 51. The IoC container <beans> <bean id="foo" class="x.y.Foo"> <property name="accounts"> <map> <entry key="one" value="9.99"/> <entry key="two" value="2.75"/> <entry key="six" value="3.99"/> </map> </property> </bean> </beans> When the 'accounts' property of the 'foo' bean is being prepared for injection, the generics information about the element type of the strongly-typed Map<String, Float> is actually available via reflection, and so Spring's type conversion infrastructure will actually recognize the various value elements as being of type Float and so the string values '9.99', '2.75', and '3.99' will be converted into an actual Float type. 3.3.2.5. Nulls The <null/> element is used to handle null values. Spring treats empty arguments for properties and the like as empty Strings. The following XML-based configuration metadata snippet results in the email property being set to the empty String value ("") <bean class="ExampleBean"> <property name="email"><value/></property> </bean> This is equivalent to the following Java code: exampleBean.setEmail(""). The special <null> element may be used to indicate a null value. For example: <bean class="ExampleBean"> <property name="email"><null/></property> </bean> The above configuration is equivalent to the following Java code: exampleBean.setEmail(null). 3.3.2.6. Shortcuts and other convenience options for XML-based configuration metadata The configuration metadata shown so far is a tad verbose. That is why there are several options available for you to limit the amount of XML you have to write to configure your components. The first is a shortcut to define values and references to other beans as part of a <property/> definition. The second is slightly different format of specifying properties altogether. 3.3.2.6.1. XML-based configuration metadata shortcuts The <property/>, <constructor-arg/>, and <entry/> elements all support a 'value' attribute which may be used instead of embedding a full <value/> element. Therefore, the following: <property name="myProperty"> <value>hello</value> </property> <constructor-arg> <value>hello</value> </constructor-arg> <entry key="myKey"> <value>hello</value> Spring Framework (2.5.6) 51
  • 52. The IoC container </entry> are equivalent to: <property name="myProperty" value="hello"/> <constructor-arg value="hello"/> <entry key="myKey" value="hello"/> The <property/> and <constructor-arg/> elements support a similar shortcut 'ref' attribute which may be used instead of a full nested <ref/> element. Therefore, the following: <property name="myProperty"> <ref bean="myBean"> </property> <constructor-arg> <ref bean="myBean"> </constructor-arg> ... are equivalent to: <property name="myProperty" ref="myBean"/> <constructor-arg ref="myBean"/> Note however that the shortcut form is equivalent to a <ref bean="xxx"> element; there is no shortcut for <ref local="xxx">. To enforce a strict local reference, you must use the long form. Finally, the entry element allows a shortcut form to specify the key and/or value of the map, in the form of the 'key' / 'key-ref' and 'value' / 'value-ref' attributes. Therefore, the following: <entry> <key> <ref bean="myKeyBean" /> </key> <ref bean="myValueBean" /> </entry> is equivalent to: <entry key-ref="myKeyBean" value-ref="myValueBean"/> Again, the shortcut form is equivalent to a <ref bean="xxx"> element; there is no shortcut for <ref local="xxx">. 3.3.2.6.2. The p-namespace and how to use it to configure properties The second option you have to limit the amount of XML you have to write to configure your components is to use the special "p-namespace". Spring 2.0 and later features support for extensible configuration formats using namespaces. Those namespaces are all based on an XML Schema definition. In fact, the beans configuration format that you've been reading about is defined in an XML Schema document. Spring Framework (2.5.6) 52
  • 53. The IoC container One special namespace is not defined in an XSD file, and only exists in the core of Spring itself. The so-called p-namespace doesn't need a schema definition and is an alternative way of configuring your properties differently than the way you have seen so far. Instead of using nested <property/> elements, using the p-namespace you can use attributes as part of the bean element that describe your property values. The values of the attributes will be taken as the values for your properties. The following two XML snippets boil down to the same thing in the end: the first is using the standard XML format whereas the second example is using the p-namespace. <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean name="classic" class="com.example.ExampleBean"> <property name="email" value="foo@bar.com/> </bean> <bean name="p-namespace" class="com.example.ExampleBean" p:email="foo@bar.com"/> </beans> As you can see, we are including an attribute in the p-namespace called email in the bean definition - this is telling Spring that it should include a property declaration. As previously mentioned, the p-namespace doesn't have a schema definition, so the name of the attribute can be set to whatever name your property has. This next example includes two more bean definitions that both have a reference to another bean: <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean name="john-classic" class="com.example.Person"> <property name="name" value="John Doe"/> <property name="spouse" ref="jane"/> </bean> <bean name="john-modern" class="com.example.Person" p:name="John Doe" p:spouse-ref="jane"/> <bean name="jane" class="com.example.Person"> <property name="name" value="Jane Doe"/> </bean> </beans> As you can see, this example doesn't only include a property value using the p-namespace, but also uses a special format to declare property references. Whereas the first bean definition uses <property name="spouse" ref="jane"/> to create a reference from bean john to bean jane, the second bean definition uses p:spouse-ref="jane" as an attribute to do the exact same thing. In this case 'spouse' is the property name whereas the '-ref' part indicates that this is not a straight value but rather a reference to another bean. Note Please note that the p-namespace is not quite as flexible as the standard XML format - for example particular, the 'special' format used to declare property references will clash with properties that end in 'Ref', whereas the standard XML format would have no problem there. We recommend that you choose carefully which approach you are going to use in your projects. You should also Spring Framework (2.5.6) 53
  • 54. The IoC container communicate this to your team members so you won't end up with XML documents using all three approaches at the same time. This will prevent people from not understanding the application because of different ways of configuring it, and will add to the overall consistency of your codebase. 3.3.2.7. Compound property names Compound or nested property names are perfectly legal when setting bean properties, as long as all components of the path except the final property name are not null. Consider the following bean definition... <bean id="foo" class="foo.Bar"> <property name="fred.bob.sammy" value="123" /> </bean> The foo bean has a fred property which has a bob property, which has a sammy property, and that final sammy property is being set to the value 123. In order for this to work, the fred property of foo, and the bob property of fred must not be null be non-null after the bean is constructed, or a NullPointerException will be thrown. 3.3.3. Using depends-on For most situations, the fact that a bean is a dependency of another is expressed by the fact that one bean is set as a property of another. This is typically accomplished with the <ref/> element in XML-based configuration metadata. For the relatively infrequent situations where dependencies between beans are less direct (for example, when a static initializer in a class needs to be triggered, such as database driver registration), the 'depends-on' attribute may be used to explicitly force one or more beans to be initialized before the bean using this element is initialized. Find below an example of using the 'depends-on' attribute to express a dependency on a single bean. <bean id="beanOne" class="ExampleBean" depends-on="manager"/> <bean id="manager" class="ManagerBean" /> If you need to express a dependency on multiple beans, you can supply a list of bean names as the value of the 'depends-on' attribute, with commas, whitespace and semicolons all valid delimiters, like so: <bean id="beanOne" class="ExampleBean" depends-on="manager,accountDao"> <property name="manager" ref="manager" /> </bean> <bean id="manager" class="ManagerBean" /> <bean id="accountDao" class="x.y.jdbc.JdbcAccountDao" /> Note The 'depends-on' attribute at the bean definition level is used not only to specify an initialization time dependency, but also to specify the corresponding destroy time dependency (in the case of singleton beans only). Dependent beans that define a 'depends-on' relationship with a given bean will be destroyed first - prior to the given bean itself being destroyed. As a consequence, 'depends-on' may be used to control shutdown order too. 3.3.4. Lazily-instantiated beans Spring Framework (2.5.6) 54
  • 55. The IoC container The default behavior for ApplicationContext implementations is to eagerly pre-instantiate all singleton beans at startup. Pre-instantiation means that an ApplicationContext will eagerly create and configure all of its singleton beans as part of its initialization process. Generally this is a good thing, because it means that any errors in the configuration or in the surrounding environment will be discovered immediately (as opposed to possibly hours or even days down the line). However, there are times when this behavior is not what is wanted. If you do not want a singleton bean to be pre-instantiated when using an ApplicationContext, you can selectively control this by marking a bean definition as lazy-initialized. A lazily-initialized bean indicates to the IoC container whether or not a bean instance should be created at startup or when it is first requested. When configuring beans via XML, this lazy loading is controlled by the 'lazy-init' attribute on the <bean/> element; for example: <bean id="lazy" class="com.foo.ExpensiveToCreateBean" lazy-init="true"/> <bean name="not.lazy" class="com.foo.AnotherBean"/> When the above configuration is consumed by an ApplicationContext, the bean named 'lazy' will not be eagerly pre-instantiated when the ApplicationContext is starting up, whereas the 'not.lazy' bean will be eagerly pre-instantiated. One thing to understand about lazy-initialization is that even though a bean definition may be marked up as being lazy-initialized, if the lazy-initialized bean is the dependency of a singleton bean that is not lazy-initialized, when the ApplicationContext is eagerly pre-instantiating the singleton, it will have to satisfy all of the singletons dependencies, one of which will be the lazy-initialized bean! So don't be confused if the IoC container creates one of the beans that you have explicitly configured as lazy-initialized at startup; all that means is that the lazy-initialized bean is being injected into a non-lazy-initialized singleton bean elsewhere. It is also possible to control lazy-initialization at the container level by using the 'default-lazy-init' attribute on the <beans/> element; for example: <beans default-lazy-init="true"> <!-- no beans will be pre-instantiated... --> </beans> 3.3.5. Autowiring collaborators The Spring container is able to autowire relationships between collaborating beans. This means that it is possible to automatically let Spring resolve collaborators (other beans) for your bean by inspecting the contents of the BeanFactory. The autowiring functionality has five modes. Autowiring is specified per bean and can thus be enabled for some beans, while other beans will not be autowired. Using autowiring, it is possible to reduce or eliminate the need to specify properties or constructor arguments, thus saving a significant amount of typing. 2 When using XML-based configuration metadata, the autowire mode for a bean definition is specified by using the autowire attribute of the <bean/> element. The following values are allowed: Table 3.2. Autowiring modes Mode Explanation no No autowiring at all. Bean references must be defined via a ref element. This is the default, and changing this is discouraged for larger deployments, since explicitly 2 See the section entitled Section 3.3.1, “Injecting dependencies” Spring Framework (2.5.6) 55
  • 56. The IoC container Mode Explanation specifying collaborators gives greater control and clarity. To some extent, it is a form of documentation about the structure of a system. byName Autowiring by property name. This option will inspect the container and look for a bean named exactly the same as the property which needs to be autowired. For example, if you have a bean definition which is set to autowire by name, and it contains a master property (that is, it has a setMaster(..) method), Spring will look for a bean definition named master, and use it to set the property. byType Allows a property to be autowired if there is exactly one bean of the property type in the container. If there is more than one, a fatal exception is thrown, and this indicates that you may not use byType autowiring for that bean. If there are no matching beans, nothing happens; the property is not set. If this is not desirable, setting the dependency-check="objects" attribute value specifies that an error should be thrown in this case. constructor This is analogous to byType, but applies to constructor arguments. If there isn't exactly one bean of the constructor argument type in the container, a fatal error is raised. autodetect Chooses constructor or byType through introspection of the bean class. If a default constructor is found, the byType mode will be applied. Note that explicit dependencies in property and constructor-arg settings always override autowiring. Please also note that it is not currently possible to autowire so-called simple properties such as primitives, Strings, and Classes (and arrays of such simple properties). (This is by-design and should be considered a feature.) When using either the byType or constructor autowiring mode, it is possible to wire arrays and typed-collections. In such cases all autowire candidates within the container that match the expected type will be provided to satisfy the dependency. Strongly-typed Maps can even be autowired if the expected key type is String. An autowired Map's values will consist of all bean instances that match the expected type, and the Map's keys will contain the corresponding bean names. Autowire behavior can be combined with dependency checking, which will be performed after all autowiring has been completed. It is important to understand the various advantages and disadvantages of autowiring. Some advantages of autowiring include: • Autowiring can significantly reduce the volume of configuration required. However, mechanisms such as the use of a bean template (discussed elsewhere in this chapter) are also valuable in this regard. • Autowiring can cause configuration to keep itself up to date as your objects evolve. For example, if you need to add an additional dependency to a class, that dependency can be satisfied automatically without the need to modify configuration. Thus there may be a strong case for autowiring during development, without ruling out the option of switching to explicit wiring when the code base becomes more stable. Some disadvantages of autowiring: • Autowiring is more magical than explicit wiring. Although, as noted in the above table, Spring is careful to Spring Framework (2.5.6) 56
  • 57. The IoC container avoid guessing in case of ambiguity which might have unexpected results, the relationships between your Spring-managed objects are no longer documented explicitly. • Wiring information may not be available to tools that may generate documentation from a Spring container. Another issue to consider when autowiring by type is that multiple bean definitions within the container may match the type specified by the setter method or constructor argument to be autowired. For arrays, collections, or Maps, this is not necessarily a problem. However for dependencies that expect a single value, this ambiguity will not be arbitrarily resolved. Instead, if no unique bean definition is available, an Exception will be thrown. You do have several options when confronted with this scenario. First, you may abandon autowiring in favor of explicit wiring. Second, you may designate that certain bean definitions are never to be considered as candidates by setting their 'autowire-candidate' attributes to 'false' as described in the next section. Third, you may designate a single bean definition as the primary candidate by setting the 'primary' attribute of its <bean/> element to 'true'. Finally, if you are using at least Java 5, you may be interested in exploring the more fine-grained control available with annotation-based configuration as described in the section entitled Section 3.11, “Annotation-based configuration”. When deciding whether to use autowiring, there is no wrong or right answer in all cases. A degree of consistency across a project is best though; for example, if autowiring is not used in general, it might be confusing to developers to use it just to wire one or two bean definitions. 3.3.5.1. Excluding a bean from being available for autowiring You can also (on a per-bean basis) totally exclude a bean from being an autowire candidate. When configuring beans using Spring's XML format, the 'autowire-candidate' attribute of the <bean/> element can be set to 'false'; this has the effect of making the container totally exclude that specific bean definition from being available to the autowiring infrastructure. Another option is to limit autowire candidates based on pattern-matching against bean names. The top-level <beans/> element accepts one or more patterns within its 'default-autowire-candidates' attribute. For example, to limit autowire candidate status to any bean whose name ends with 'Repository', provide a value of '*Repository'. To provide multiple patterns, define them in a comma-separated list. Note that an explicit value of 'true' or 'false' for a bean definition's 'autowire-candidate' attribute always takes precedence, and for such beans, the pattern matching rules will not apply. These techniques can be useful when you have one or more beans that you absolutely never ever want to have injected into other beans via autowiring. It does not mean that an excluded bean cannot itself be configured using autowiring... it can, it is rather that it itself will not be considered as a candidate for autowiring other beans. 3.3.6. Checking for dependencies The Spring IoC container also has the ability to check for the existence of unresolved dependencies of a bean deployed into the container. These are JavaBeans properties of the bean, which do not have actual values set for them in the bean definition, or alternately provided automatically by the autowiring feature. This feature is sometimes useful when you want to ensure that all properties (or all properties of a certain type) are set on a bean. Of course, in many cases a bean class will have default values for many properties, or some properties do not apply to all usage scenarios, so this feature is of limited use. Dependency checking can also be enabled and disabled per bean, just as with the autowiring functionality. The default is to not check dependencies. Dependency checking can be handled in several different modes. When using XML-based configuration metadata, this is specified via the 'dependency-check' attribute in a bean definition, which may Spring Framework (2.5.6) 57
  • 58. The IoC container have the following values. Table 3.3. Dependency checking modes Mode Explanation none No dependency checking. Properties of the bean which have no value specified for them are simply not set. simple Dependency checking is performed for primitive types and collections (everything except collaborators). object Dependency checking is performed for collaborators only. all Dependency checking is done for collaborators, primitive types and collections. If you are using Java 5 and thus have access to source-level annotations, you may find the section entitled Section 25.3.1, “@Required” to be of interest. 3.3.7. Method Injection For most application scenarios, the majority of the beans in the container will be singletons. When a singleton bean needs to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with another non-singleton bean, the typical and common approach of handling this dependency by defining one bean to be a property of the other is quite adequate. There is a problem when the bean lifecycles are different. Consider a singleton bean A which needs to use a non-singleton (prototype) bean B, perhaps on each method invocation on A. The container will only create the singleton bean A once, and thus only get the opportunity to set the properties once. There is no opportunity for the container to provide bean A with a new instance of bean B every time one is needed. One solution to this issue is to forego some inversion of control. Bean A can be made aware of the container by implementing the BeanFactoryAware interface, and use programmatic means to ask the container via a getBean("B") call for (a typically new) bean B instance every time it needs it. Find below an admittedly somewhat contrived example of this approach: // a class that uses a stateful Command-style class to perform some processing package fiona.apple; // lots of Spring-API imports import org.springframework.beans.BeansException; import org.springframework.beans.factory.BeanFactory; import org.springframework.beans.factory.BeanFactoryAware; public class CommandManager implements BeanFactoryAware { private BeanFactory beanFactory; public Object process(Map commandState) { // grab a new instance of the appropriate Command Command command = createCommand(); // set the state on the (hopefully brand new) Command instance command.setState(commandState); return command.execute(); } // the Command returned here could be an implementation that executes asynchronously, or whatever protected Command createCommand() { return (Command) this.beanFactory.getBean("command"); // notice the Spring API dependency Spring Framework (2.5.6) 58
  • 59. The IoC container } public void setBeanFactory(BeanFactory beanFactory) throws BeansException { this.beanFactory = beanFactory; } } The above example is generally not a desirable solution since the business code is then aware of and coupled to the Spring Framework. Method Injection, a somewhat advanced feature of the Spring IoC container, allows this use case to be handled in a clean fashion. 3.3.7.1. Lookup method injection Isn't this Method Injection... ... somewhat like Tapestry 4.0's pages, where folks wrote abstract properties that Tapestry would override at runtime with implementations that did stuff? It sure is (well, somewhat). You can read more about the motivation for Method Injection in this blog entry. Lookup method injection refers to the ability of the container to override methods on container managed beans, to return the result of looking up another named bean in the container. The lookup will typically be of a prototype bean as in the scenario described above. The Spring Framework implements this method injection by dynamically generating a subclass overriding the method, using bytecode generation via the CGLIB library. So if you look at the code from previous code snippet (the CommandManager class), the Spring container is going to dynamically override the implementation of the createCommand() method. Your CommandManager class is not going to have any Spring dependencies, as can be seen in this reworked example below: package fiona.apple; // no more Spring imports! public abstract class CommandManager { public Object process(Object commandState) { // grab a new instance of the appropriate Command interface Command command = createCommand(); // set the state on the (hopefully brand new) Command instance command.setState(commandState); return command.execute(); } // okay... but where is the implementation of this method? protected abstract Command createCommand(); } In the client class containing the method to be injected (the CommandManager in this case), the method that is to be 'injected' must have a signature of the following form: <public|protected> [abstract] <return-type> theMethodName(no-arguments); If the method is abstract, the dynamically-generated subclass will implement the method. Otherwise, the dynamically-generated subclass will override the concrete method defined in the original class. Let's look at an example: <!-- a stateful bean deployed as a prototype (non-singleton) --> <bean id="command" class="fiona.apple.AsyncCommand" scope="prototype"> <!-- inject dependencies here as required --> </bean> Spring Framework (2.5.6) 59
  • 60. The IoC container <!-- commandProcessor uses statefulCommandHelper --> <bean id="commandManager" class="fiona.apple.CommandManager"> <lookup-method name="createCommand" bean="command"/> </bean> The bean identified as commandManager will call its own method createCommand() whenever it needs a new instance of the command bean. It is important to note that the person deploying the beans must be careful to deploy the command bean as a prototype (if that is actually what is needed). If it is deployed as a singleton, the same instance of the command bean will be returned each time! Please be aware that in order for this dynamic subclassing to work, you will need to have the CGLIB jar(s) on your classpath. Additionally, the class that the Spring container is going to subclass cannot be final, and the method that is being overridden cannot be final either. Also, testing a class that has an abstract method can be somewhat odd in that you will have to subclass the class yourself and supply a stub implementation of the abstract method. Finally, objects that have been the target of method injection cannot be serialized. Tip The interested reader may also find the ServiceLocatorFactoryBean (in the org.springframework.beans.factory.config package) to be of use; the approach is similar to that of the ObjectFactoryCreatingFactoryBean, but it allows you to specify your own lookup interface as opposed to having to use a Spring-specific lookup interface such as the ObjectFactory. Consult the (copious) Javadoc for the ServiceLocatorFactoryBean for a full treatment of this alternative approach (that does reduce the coupling to Spring). 3.3.7.2. Arbitrary method replacement A less commonly useful form of method injection than Lookup Method Injection is the ability to replace arbitrary methods in a managed bean with another method implementation. Users may safely skip the rest of this section (which describes this somewhat advanced feature), until this functionality is actually needed. When using XML-based configuration metadata, the replaced-method element may be used to replace an existing method implementation with another, for a deployed bean. Consider the following class, with a method computeValue, which we want to override: public class MyValueCalculator { public String computeValue(String input) { // some real code... } // some other methods... } A class implementing the org.springframework.beans.factory.support.MethodReplacer interface provides the new method definition. /** meant to be used to override the existing computeValue(String) implementation in MyValueCalculator */ public class ReplacementComputeValue implements MethodReplacer { public Object reimplement(Object o, Method m, Object[] args) throws Throwable { // get the input value, work with it, and return a computed result String input = (String) args[0]; ... return ...; } Spring Framework (2.5.6) 60
  • 61. The IoC container } The bean definition to deploy the original class and specify the method override would look like this: <bean id="myValueCalculator class="x.y.z.MyValueCalculator"> <!-- arbitrary method replacement --> <replaced-method name="computeValue" replacer="replacementComputeValue"> <arg-type>String</arg-type> </replaced-method> </bean> <bean id="replacementComputeValue" class="a.b.c.ReplacementComputeValue"/> One or more contained <arg-type/> elements within the <replaced-method/> element may be used to indicate the method signature of the method being overridden. Note that the signature for the arguments is actually only needed in the case that the method is actually overloaded and there are multiple variants within the class. For convenience, the type string for an argument may be a substring of the fully qualified type name. For example, all the following would match java.lang.String. java.lang.String String Str Since the number of arguments is often enough to distinguish between each possible choice, this shortcut can save a lot of typing, by allowing you to type just the shortest string that will match an argument type. 3.4. Bean scopes When you create a bean definition what you are actually creating is a recipe for creating actual instances of the class defined by that bean definition. The idea that a bean definition is a recipe is important, because it means that, just like a class, you can potentially have many object instances created from a single recipe. You can control not only the various dependencies and configuration values that are to be plugged into an object that is created from a particular bean definition, but also the scope of the objects created from a particular bean definition. This approach is very powerful and gives you the flexibility to choose the scope of the objects you create through configuration instead of having to 'bake in' the scope of an object at the Java class level. Beans can be defined to be deployed in one of a number of scopes: out of the box, the Spring Framework supports exactly five scopes (of which three are available only if you are using a web-aware ApplicationContext). The scopes supported out of the box are listed below: Table 3.4. Bean scopes Scope Description singleton Scopes a single bean definition to a single object instance per Spring IoC container. prototype Scopes a single bean definition to any number of object instances. request Scopes a single bean definition to the lifecycle of a Spring Framework (2.5.6) 61
  • 62. The IoC container Scope Description single HTTP request; that is each and every HTTP request will have its own instance of a bean created off the back of a single bean definition. Only valid in the context of a web-aware Spring ApplicationContext. session Scopes a single bean definition to the lifecycle of a HTTP Session. Only valid in the context of a web-aware Spring ApplicationContext. global session Scopes a single bean definition to the lifecycle of a global HTTP Session. Typically only valid when used in a portlet context. Only valid in the context of a web-aware Spring ApplicationContext. 3.4.1. The singleton scope When a bean is a singleton, only one shared instance of the bean will be managed, and all requests for beans with an id or ids matching that bean definition will result in that one specific bean instance being returned by the Spring container. To put it another way, when you define a bean definition and it is scoped as a singleton, then the Spring IoC container will create exactly one instance of the object defined by that bean definition. This single instance will be stored in a cache of such singleton beans, and all subsequent requests and references for that named bean will result in the cached object being returned. Please be aware that Spring's concept of a singleton bean is quite different from the Singleton pattern as defined in the seminal Gang of Four (GoF) patterns book. The GoF Singleton hard codes the scope of an object such that one and only one instance of a particular class will ever be created per ClassLoader. The scope of the Spring singleton is best described as per container and per bean. This means that if you define one bean for a Spring Framework (2.5.6) 62
  • 63. The IoC container particular class in a single Spring container, then the Spring container will create one and only one instance of the class defined by that bean definition. The singleton scope is the default scope in Spring. To define a bean as a singleton in XML, you would write configuration like so: <bean id="accountService" class="com.foo.DefaultAccountService"/> <!-- the following is equivalent, though redundant (singleton scope is the default); using spring-beans-2.0.dtd --> <bean id="accountService" class="com.foo.DefaultAccountService" scope="singleton"/> <!-- the following is equivalent and preserved for backward compatibility in spring-beans.dtd --> <bean id="accountService" class="com.foo.DefaultAccountService" singleton="true"/> 3.4.2. The prototype scope The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance every time a request for that specific bean is made (that is, it is injected into another bean or it is requested via a programmatic getBean() method call on the container). As a rule of thumb, you should use the prototype scope for all beans that are stateful, while the singleton scope should be used for stateless beans. The following diagram illustrates the Spring prototype scope. Please note that a DAO would not typically be configured as a prototype, since a typical DAO would not hold any conversational state; it was just easier for this author to reuse the core of the singleton diagram. To define a bean as a prototype in XML, you would write configuration like so: <!-- using spring-beans-2.0.dtd --> <bean id="accountService" class="com.foo.DefaultAccountService" scope="prototype"/> <!-- the following is equivalent and preserved for backward compatibility in spring-beans.dtd --> <bean id="accountService" class="com.foo.DefaultAccountService" singleton="false"/> There is one quite important thing to be aware of when deploying a bean in the prototype scope, in that the lifecycle of the bean changes slightly. Spring does not manage the complete lifecycle of a prototype bean: the container instantiates, configures, decorates and otherwise assembles a prototype object, hands it to the client and then has no further knowledge of that prototype instance. This means that while initialization lifecycle callback methods will be called on all objects regardless of scope, in the case of prototypes, any configured destruction lifecycle callbacks will not be called. It is the responsibility of the client code to clean up prototype Spring Framework (2.5.6) 63
  • 64. The IoC container scoped objects and release any expensive resources that the prototype bean(s) are holding onto. (One possible way to get the Spring container to release resources used by prototype-scoped beans is through the use of a custom bean post-processor which would hold a reference to the beans that need to be cleaned up.) In some respects, you can think of the Spring containers role when talking about a prototype-scoped bean as somewhat of a replacement for the Java 'new' operator. All lifecycle aspects past that point have to be handled by the client. (The lifecycle of a bean in the Spring container is further described in the section entitled Section 3.5.1, “Lifecycle callbacks”.) 3.4.3. Singleton beans with prototype-bean dependencies When using singleton-scoped beans that have dependencies on beans that are scoped as prototypes, please be aware that dependencies are resolved at instantiation time. This means that if you dependency inject a prototype-scoped bean into a singleton-scoped bean, a brand new prototype bean will be instantiated and then dependency injected into the singleton bean... but that is all. That exact same prototype instance will be the sole instance that is ever supplied to the singleton-scoped bean, which is fine if that is what you want. However, sometimes what you actually want is for the singleton-scoped bean to be able to acquire a brand new instance of the prototype-scoped bean again and again and again at runtime. In that case it is no use just dependency injecting a prototype-scoped bean into your singleton bean, because as explained above, that only happens once when the Spring container is instantiating the singleton bean and resolving and injecting its dependencies. If you are in the scenario where you need to get a brand new instance of a (prototype) bean again and again and again at runtime, you are referred to the section entitled Section 3.3.7, “Method Injection” Backwards compatibility note: specifying the lifecycle scope in XML If you are referencing the 'spring-beans.dtd' DTD in a bean definition file(s), and you are being explicit about the lifecycle scope of your beans you must use the "singleton" attribute to express the lifecycle scope (remembering that the singleton lifecycle scope is the default). If you are referencing the 'spring-beans-2.0.dtd' DTD or the Spring 2.0 XSD schema, then you will need to use the "scope" attribute (because the "singleton" attribute was removed from the definition of the new DTD and XSD files in favor of the "scope" attribute). To be totally clear about this, this means that if you use the "singleton" attribute in an XML bean definition then you must be referencing the 'spring-beans.dtd' DTD in that file. If you are using the "scope" attribute then you must be referencing either the 'spring-beans-2.0.dtd' DTD or the 'spring-beans-2.5.xsd' XSD in that file. 3.4.4. The other scopes The other scopes, namely request, session, and global session are for use only in web-based applications (and can be used irrespective of which particular web application framework you are using, if indeed any). In the interest of keeping related concepts together in one place in the reference documentation, these scopes are described here. Note The scopes that are described in the following paragraphs are only available if you are using a web-aware Spring ApplicationContext implementation (such as XmlWebApplicationContext). If you try using these next scopes with regular Spring IoC containers such as the XmlBeanFactory or ClassPathXmlApplicationContext, you will get an IllegalStateException complaining about an unknown bean scope. Spring Framework (2.5.6) 64
  • 65. The IoC container 3.4.4.1. Initial web configuration In order to support the scoping of beans at the request, session, and global session levels (web-scoped beans), some minor initial configuration is required before you can set about defining your bean definitions. Please note that this extra setup is not required if you just want to use the 'standard' scopes (namely singleton and prototype). Now as things stand, there are a couple of ways to effect this initial setup depending on your particular Servlet environment... If you are accessing scoped beans within Spring Web MVC, i.e. within a request that is processed by the Spring DispatcherServlet, or DispatcherPortlet, then no special setup is necessary: DispatcherServlet and DispatcherPortlet already expose all relevant state. When using a Servlet 2.4+ web container, with requests processed outside of Spring's DispatcherServlet (e.g. when using JSF or Struts), you need to add the following javax.servlet.ServletRequestListener to the declarations in your web application's 'web.xml' file. <web-app> ... <listener> <listener-class>org.springframework.web.context.request.RequestContextListener</listener-class> </listener> ... </web-app> If you are using an older web container (Servlet 2.3), you will need to use the provided javax.servlet.Filter implementation. Find below a snippet of XML configuration that has to be included in the 'web.xml' file of your web application if you want to have access to web-scoped beans in requests outside of Spring's DispatcherServlet on a Servlet 2.3 container. (The filter mapping depends on the surrounding web application configuration and so you will have to change it as appropriate.) <web-app> .. <filter> <filter-name>requestContextFilter</filter-name> <filter-class>org.springframework.web.filter.RequestContextFilter</filter-class> </filter> <filter-mapping> <filter-name>requestContextFilter</filter-name> <url-pattern>/*</url-pattern> </filter-mapping> ... </web-app> That's it. DispatcherServlet, RequestContextListener and RequestContextFilter all do exactly the same thing, namely bind the HTTP request object to the Thread that is servicing that request. This makes beans that are request- and session-scoped available further down the call chain. 3.4.4.2. The request scope Consider the following bean definition: <bean id="loginAction" class="com.foo.LoginAction" scope="request"/> With the above bean definition in place, the Spring container will create a brand new instance of the LoginAction bean using the 'loginAction' bean definition for each and every HTTP request. That is, the 'loginAction' bean will be effectively scoped at the HTTP request level. You can change or dirty the internal Spring Framework (2.5.6) 65
  • 66. The IoC container state of the instance that is created as much as you want, safe in the knowledge that other requests that are also using instances created off the back of the same 'loginAction' bean definition will not be seeing these changes in state since they are particular to an individual request. When the request is finished processing, the bean that is scoped to the request will be discarded. 3.4.4.3. The session scope Consider the following bean definition: <bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/> With the above bean definition in place, the Spring container will create a brand new instance of the UserPreferences bean using the 'userPreferences' bean definition for the lifetime of a single HTTP Session. In other words, the 'userPreferences' bean will be effectively scoped at the HTTP Session level. Just like request-scoped beans, you can change the internal state of the instance that is created as much as you want, safe in the knowledge that other HTTP Session instances that are also using instances created off the back of the same 'userPreferences' bean definition will not be seeing these changes in state since they are particular to an individual HTTP Session. When the HTTP Session is eventually discarded, the bean that is scoped to that particular HTTP Session will also be discarded. 3.4.4.4. The global session scope Consider the following bean definition: <bean id="userPreferences" class="com.foo.UserPreferences" scope="globalSession"/> The global session scope is similar to the standard HTTP Session scope (described immediately above), and really only makes sense in the context of portlet-based web applications. The portlet specification defines the notion of a global Session that is shared amongst all of the various portlets that make up a single portlet web application. Beans defined at the global session scope are scoped (or bound) to the lifetime of the global portlet Session. Please note that if you are writing a standard Servlet-based web application and you define one or more beans as having global session scope, the standard HTTP Session scope will be used, and no error will be raised. 3.4.4.5. Scoped beans as dependencies Being able to define a bean scoped to a HTTP request or Session (or indeed a custom scope of your own devising) is all very well, but one of the main value-adds of the Spring IoC container is that it manages not only the instantiation of your objects (beans), but also the wiring up of collaborators (or dependencies). If you want to inject a (for example) HTTP request scoped bean into another bean, you will need to inject an AOP proxy in place of the scoped bean. That is, you need to inject a proxy object that exposes the same public interface as the scoped object, but that is smart enough to be able to retrieve the real, target object from the relevant scope (for example a HTTP request) and delegate method calls onto the real object. Note You do not need to use the <aop:scoped-proxy/> in conjunction with beans that are scoped as singletons or prototypes. It is an error to try to create a scoped proxy for a singleton bean (and the resulting BeanCreationException will certainly set you straight in this regard). Let's look at the configuration that is required to effect this; the configuration is not hugely complex (it takes Spring Framework (2.5.6) 66
  • 67. The IoC container just one line), but it is important to understand the “why” as well as the “how” behind it. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <!-- a HTTP Session-scoped bean exposed as a proxy --> <bean id="userPreferences" class="com.foo.UserPreferences" scope="session"> <!-- this next element effects the proxying of the surrounding bean --> <aop:scoped-proxy/> </bean> <!-- a singleton-scoped bean injected with a proxy to the above bean --> <bean id="userService" class="com.foo.SimpleUserService"> <!-- a reference to the proxied 'userPreferences' bean --> <property name="userPreferences" ref="userPreferences"/> </bean> </beans> To create such a proxy, you need only to insert a child <aop:scoped-proxy/> element into a scoped bean definition (you may also need the CGLIB library on your classpath so that the container can effect class-based proxying; you will also need to be using Appendix A, XML Schema-based configuration). So, just why do you need this <aop:scoped-proxy/> element in the definition of beans scoped at the request, session, globalSession and 'insert your custom scope here' level? The reason is best explained by picking apart the following bean definition (please note that the following 'userPreferences' bean definition as it stands is incomplete): <bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/> <bean id="userManager" class="com.foo.UserManager"> <property name="userPreferences" ref="userPreferences"/> </bean> From the above configuration it is evident that the singleton bean 'userManager' is being injected with a reference to the HTTP Session-scoped bean 'userPreferences'. The salient point here is that the 'userManager' bean is a singleton... it will be instantiated exactly once per container, and its dependencies (in this case only one, the 'userPreferences' bean) will also only be injected (once!). This means that the 'userManager' will (conceptually) only ever operate on the exact same 'userPreferences' object, that is the one that it was originally injected with. This is not what you want when you inject a HTTP Session-scoped bean as a dependency into a collaborating object (typically). Rather, what we do want is a single 'userManager' object, and then, for the lifetime of a HTTP Session, we want to see and use a 'userPreferences' object that is specific to said HTTP Session. Rather what you need then is to inject some sort of object that exposes the exact same public interface as the UserPreferences class (ideally an object that is a UserPreferences instance) and that is smart enough to be able to go off and fetch the real UserPreferences object from whatever underlying scoping mechanism we have chosen (HTTP request, Session, etc.). We can then safely inject this proxy object into the 'userManager' bean, which will be blissfully unaware that the UserPreferences reference that it is holding onto is a proxy. In the case of this example, when a UserManager instance invokes a method on the dependency-injected UserPreferences object, it is really invoking a method on the proxy... the proxy will then go off and fetch the real UserPreferences object from (in this case) the HTTP Session, and delegate the method invocation onto the retrieved real UserPreferences object. That is why you need the following, correct and complete, configuration when injecting request-, session-, Spring Framework (2.5.6) 67
  • 68. The IoC container and globalSession-scoped beans into collaborating objects: <bean id="userPreferences" class="com.foo.UserPreferences" scope="session"> <aop:scoped-proxy/> </bean> <bean id="userManager" class="com.foo.UserManager"> <property name="userPreferences" ref="userPreferences"/> </bean> 3.4.4.5.1. Choosing the type of proxy created By default, when the Spring container is creating a proxy for a bean that is marked up with the <aop:scoped-proxy/> element, a CGLIB-based class proxy will be created. This means that you need to have the CGLIB library on the classpath of your application. Note: CGLIB proxies will only intercept public method calls! Do not call non-public methods on such a proxy; they will not be delegated to the scoped target object. You can choose to have the Spring container create 'standard' JDK interface-based proxies for such scoped beans by specifying 'false' for the value of the 'proxy-target-class' attribute of the <aop:scoped-proxy/> element. Using JDK interface-based proxies does mean that you don't need any additional libraries on your application's classpath to effect such proxying, but it does mean that the class of the scoped bean must implement at least one interface, and all of the collaborators into which the scoped bean is injected must be referencing the bean via one of its interfaces. <!-- DefaultUserPreferences implements the UserPreferences interface --> <bean id="userPreferences" class="com.foo.DefaultUserPreferences" scope="session"> <aop:scoped-proxy proxy-target-class="false"/> </bean> <bean id="userManager" class="com.foo.UserManager"> <property name="userPreferences" ref="userPreferences"/> </bean> The section entitled Section 6.6, “Proxying mechanisms” may also be of some interest with regard to understanding the nuances of choosing whether class-based or interface-based proxying is right for you. 3.4.5. Custom scopes As of Spring 2.0, the bean scoping mechanism in Spring is extensible. This means that you are not limited to just the bean scopes that Spring provides out of the box; you can define your own scopes, or even redefine the existing scopes (although that last one would probably be considered bad practice - please note that you cannot override the built-in singleton and prototype scopes). 3.4.5.1. Creating your own custom scope Scopes are defined by the org.springframework.beans.factory.config.Scope interface. This is the interface that you will need to implement in order to integrate your own custom scope(s) into the Spring container, and is described in detail below. You may wish to look at the Scope implementations that are supplied with the Spring Framework itself for an idea of how to go about implementing your own. The Scope Javadoc explains the main class to implement when you need your own scope in more detail too. The Scope interface has four methods dealing with getting objects from the scope, removing them from the scope and allowing them to be 'destroyed' if needed. The first method should return the object from the underlying scope. The session scope implementation for Spring Framework (2.5.6) 68
  • 69. The IoC container example will return the session-scoped bean (and if it does not exist, return a new instance of the bean, after having bound it to the session for future reference). Object get(String name, ObjectFactory objectFactory) The second method should remove the object from the underlying scope. The session scope implementation for example, removes the session-scoped bean from the underlying session. The object should be returned (you are allowed to return null if the object with the specified name wasn't found) Object remove(String name) The third method is used to register callbacks the scope should execute when it is destroyed or when the specified object in the scope is destroyed. Please refer to the Javadoc or a Spring scope implementation for more information on destruction callbacks. void registerDestructionCallback(String name, Runnable destructionCallback) The last method deals with obtaining the conversation identifier for the underlying scope. This identifier is different for each scope. For a session for example, this can be the session identifier. String getConversationId() 3.4.5.2. Using a custom scope After you have written and tested one or more custom Scope implementations, you then need to make the Spring container aware of your new scope(s). The central method to register a new Scope with the Spring container is declared on the ConfigurableBeanFactory interface (implemented by most of the concrete BeanFactory implementations that ship with Spring); this central method is displayed below: void registerScope(String scopeName, Scope scope); The first argument to the registerScope(..) method is the unique name associated with a scope; examples of such names in the Spring container itself are 'singleton' and 'prototype'. The second argument to the registerScope(..) method is an actual instance of the custom Scope implementation that you wish to register and use. Let's assume that you have written your own custom Scope implementation, and you have registered it like so: // note: the ThreadScope class does not ship with the Spring Framework Scope customScope = new ThreadScope(); beanFactory.registerScope("thread", customScope); You can then create bean definitions that adhere to the scoping rules of your custom Scope like so: <bean id="..." class="..." scope="thread"/> If you have your own custom Scope implementation(s), you are not just limited to only programmatic registration of the custom scope(s). You can also do the Scope registration declaratively, using the CustomScopeConfigurer class. The declarative registration of custom Scope implementations using the CustomScopeConfigurer class is shown below: Spring Framework (2.5.6) 69
  • 70. The IoC container <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer"> <property name="scopes"> <map> <entry key="thread"> <bean class="com.foo.ThreadScope"/> </entry> </map> </property> </bean> <bean id="bar" class="x.y.Bar" scope="thread"> <property name="name" value="Rick"/> <aop:scoped-proxy/> </bean> <bean id="foo" class="x.y.Foo"> <property name="bar" ref="bar"/> </bean> </beans> Note Note that, when placing a <aop:scoped-proxy/> in a FactoryBean implementation, it is the factory bean itself that is scoped, not the object returned from getObject(). 3.5. Customizing the nature of a bean 3.5.1. Lifecycle callbacks The Spring Framework provides several callback interfaces to change the behavior of your bean in the container; they include InitializingBean and DisposableBean. Implementing these interfaces will result in the container calling afterPropertiesSet() for the former and destroy() for the latter to allow the bean to perform certain actions upon initialization and destruction. Internally, the Spring Framework uses BeanPostProcessor implementations to process any callback interfaces it can find and call the appropriate methods. If you need custom features or other lifecycle behavior Spring doesn't offer out-of-the-box, you can implement a BeanPostProcessor yourself. More information about this can be found in the section entitled Section 3.7, “Container extension points”. All the different lifecycle callback interfaces are described below. In one of the appendices, you can find diagrams that show how Spring manages beans, how those lifecycle features change the nature of your beans, and how they are managed. 3.5.1.1. Initialization callbacks Implementing the org.springframework.beans.factory.InitializingBean interface allows a bean to perform initialization work after all necessary properties on the bean have been set by the container. The InitializingBean interface specifies exactly one method: void afterPropertiesSet() throws Exception; Spring Framework (2.5.6) 70
  • 71. The IoC container Generally, the use of the InitializingBean interface can be avoided and is actually discouraged since it unnecessarily couples the code to Spring. As an alternative, bean definitions provide support for a generic initialization method to be specified. In the case of XML-based configuration metadata, this is done using the 'init-method' attribute. For example, the following definition: <bean id="exampleInitBean" class="examples.ExampleBean" init-method="init"/> public class ExampleBean { public void init() { // do some initialization work } } ...is exactly the same as... <bean id="exampleInitBean" class="examples.AnotherExampleBean"/> public class AnotherExampleBean implements InitializingBean { public void afterPropertiesSet() { // do some initialization work } } ... but does not couple the code to Spring. 3.5.1.2. Destruction callbacks Implementing the org.springframework.beans.factory.DisposableBean interface allows a bean to get a callback when the container containing it is destroyed. The DisposableBean interface specifies a single method: void destroy() throws Exception; Generally, the use of the DisposableBean callback interface can be avoided and is actually discouraged since it unnecessarily couples the code to Spring. As an alternative, bean definitions provide support for a generic destroy method to be specified. When using XML-based configuration metadata this is done via the 'destroy-method' attribute on the <bean/>. For example, the following definition: <bean id="exampleInitBean" class="examples.ExampleBean" destroy-method="cleanup"/> public class ExampleBean { public void cleanup() { // do some destruction work (like releasing pooled connections) } } ...is exactly the same as... <bean id="exampleInitBean" class="examples.AnotherExampleBean"/> public class AnotherExampleBean implements DisposableBean { public void destroy() { // do some destruction work (like releasing pooled connections) Spring Framework (2.5.6) 71
  • 72. The IoC container } } ... but does not couple the code to Spring. 3.5.1.3. Default initialization & destroy methods When writing initialization and destroy method callbacks that do not use the Spring-specific InitializingBean and DisposableBean callback interfaces, one typically finds oneself writing methods with names such as init(), initialize(), dispose(), etc. The names of such lifecycle callback methods are (hopefully!) standardized across a project so that all developers on a team use the same method names and thus ensure some level of consistency. The Spring container can be configured to 'look' for named initialization and destroy callback method names on every bean. This means that you, as an application developer, can simply write your application classes, use a convention of having an initialization callback called init(), and then (without having to configure each and every bean with, in the case of XML-based configuration, an 'init-method="init"' attribute) be safe in the knowledge that the Spring IoC container will call that method when the bean is being created (and in accordance with the standard lifecycle callback contract described previously). Let's look at an example to make the use of this feature completely clear. For the sake of the example, let us say that one of the coding conventions on a project is that all initialization callback methods are to be named init() and that destroy callback methods are to be called destroy(). This leads to classes like so... public class DefaultBlogService implements BlogService { private BlogDao blogDao; public void setBlogDao(BlogDao blogDao) { this.blogDao = blogDao; } // this is (unsurprisingly) the initialization callback method public void init() { if (this.blogDao == null) { throw new IllegalStateException("The [blogDao] property must be set."); } } } <beans default-init-method="init"> <bean id="blogService" class="com.foo.DefaultBlogService"> <property name="blogDao" ref="blogDao" /> </bean> </beans> Notice the use of the 'default-init-method' attribute on the top-level <beans/> element. The presence of this attribute means that the Spring IoC container will recognize a method called 'init' on beans as being the initialization method callback, and when a bean is being created and assembled, if the bean's class has such a method, it will be invoked at the appropriate time. Destroy method callbacks are configured similarly (in XML that is) using the 'default-destroy-method' attribute on the top-level <beans/> element. The use of this feature can save you the (small) housekeeping chore of specifying an initialization and destroy method callback on each and every bean, and it is great for enforcing a consistent naming convention for initialization and destroy method callbacks, as consistency is something that should always be aimed for. Spring Framework (2.5.6) 72
  • 73. The IoC container Consider the case where you have some existing beans where the underlying classes already have initialization callback methods that are named at variance with the convention. You can always override the default by specifying (in XML that is) the method name using the 'init-method' and 'destroy-method' attributes on the <bean/> element itself. Finally, please be aware that the Spring container guarantees that a configured initialization callback is called immediately after a bean has been supplied with all of its dependencies. This means that the initialization callback will be called on the raw bean reference, which means that any AOP interceptors or suchlike that will ultimately be applied to the bean will not yet be in place. A target bean is fully created first, then an AOP proxy (for example) with its interceptor chain is applied. Note that, if the target bean and the proxy are defined separately, your code can even interact with the raw target bean, bypassing the proxy. Hence, it would be very inconsistent to apply the interceptors to the init method, since that would couple the lifecycle of the target bean with its proxy/interceptors and leave strange semantics when talking to the raw target bean directly. 3.5.1.4. Combining lifecycle mechanisms As of Spring 2.5, there are three options for controlling bean lifecycle behavior: the InitializingBean and DisposableBean callback interfaces; custom init() and destroy() methods; and the @PostConstruct and @PreDestroy annotations. When combining different lifecycle mechanisms - for example, in a class hierarchy in which various lifecycle mechanisms are in use - developers should be aware of the order in which these mechanisms are applied. The following is the ordering for initialization methods: • Methods annotated with @PostConstruct • afterPropertiesSet() as defined by the InitializingBean callback interface • A custom configured init() method Destroy methods are called in the same order: • Methods annotated with @PreDestroy • destroy() as defined by the DisposableBean callback interface • A custom configured destroy() method Note If multiple lifecycle mechanisms are configured for a given bean, and each mechanism is configured with a different method name, then each configured method will be executed in the order listed above; however, if the same method name is configured - for example, init() for an initialization method - for more than one of the aforementioned lifecycle mechanisms, that method will only be executed once. 3.5.1.5. Shutting down the Spring IoC container gracefully in non-web applications Note This next section does not apply to web applications (in case the title of this section did not make that abundantly clear). Spring's web-based ApplicationContext implementations already have Spring Framework (2.5.6) 73
  • 74. The IoC container code in place to handle shutting down the Spring IoC container gracefully when the relevant web application is being shutdown. If you are using Spring's IoC container in a non-web application environment, for example in a rich client desktop environment, and you want the container to shutdown gracefully and call the relevant destroy callbacks on your singleton beans, you will need to register a shutdown hook with the JVM. This is quite easy to do (see below), and will ensure that your Spring IoC container shuts down gracefully and that all resources held by your singletons are released. Of course it is still up to you to both configure the destroy callbacks for your singletons and implement such destroy callbacks correctly. So to register a shutdown hook that enables the graceful shutdown of the relevant Spring IoC container, you simply need to call the registerShutdownHook() method that is declared on the AbstractApplicationContext class. To wit... import org.springframework.context.support.AbstractApplicationContext; import org.springframework.context.support.ClassPathXmlApplicationContext; public final class Boot { public static void main(final String[] args) throws Exception { AbstractApplicationContext ctx = new ClassPathXmlApplicationContext(new String []{"beans.xml"}); // add a shutdown hook for the above context... ctx.registerShutdownHook(); // app runs here... // main method exits, hook is called prior to the app shutting down... } } 3.5.2. Knowing who you are 3.5.2.1. BeanFactoryAware A class which implements the org.springframework.beans.factory.BeanFactoryAware interface is provided with a reference to the BeanFactory that created it, when it is created by that BeanFactory. public interface BeanFactoryAware { void setBeanFactory(BeanFactory beanFactory) throws BeansException; } This allows beans to manipulate the BeanFactory that created them programmatically, through the BeanFactory interface, or by casting the reference to a known subclass of this which exposes additional functionality. Primarily this would consist of programmatic retrieval of other beans. While there are cases when this capability is useful, it should generally be avoided, since it couples the code to Spring and does not follow the Inversion of Control style, where collaborators are provided to beans as properties. An alternative option that is equivalent in effect to the BeanFactoryAware-based approach is to use the org.springframework.beans.factory.config.ObjectFactoryCreatingFactoryBean. (It should be noted that this approach still does not reduce the coupling to Spring, but it does not violate the central principle of IoC as much as the BeanFactoryAware-based approach.) The ObjectFactoryCreatingFactoryBean is a FactoryBean implementation that returns a reference to an object (factory) that can in turn be used to effect a bean lookup. The ObjectFactoryCreatingFactoryBean Spring Framework (2.5.6) 74
  • 75. The IoC container class does itself implement the BeanFactoryAware interface; what client beans are actually injected with is an instance of the ObjectFactory interface. This is a Spring-specific interface (and hence there is still no total decoupling from Spring), but clients can then use the ObjectFactory's getObject() method to effect the bean lookup (under the hood the ObjectFactory implementation instance that is returned simply delegates down to a BeanFactory to actually lookup a bean by name). All that you need to do is supply the ObjectFactoryCreatingFactoryBean with the name of the bean that is to be looked up. Let's look at an example: package x.y; public class NewsFeed { private String news; public void setNews(String news) { this.news = news; } public String getNews() { return this.toString() + ": '" + news + "'"; } } package x.y; import org.springframework.beans.factory.ObjectFactory; public class NewsFeedManager { private ObjectFactory factory; public void setFactory(ObjectFactory factory) { this.factory = factory; } public void printNews() { // here is where the lookup is performed; note that there is no // need to hard code the name of the bean that is being looked up... NewsFeed news = (NewsFeed) factory.getObject(); System.out.println(news.getNews()); } } Find below the XML configuration to wire together the above classes using the ObjectFactoryCreatingFactoryBean approach. <beans> <bean id="newsFeedManager" class="x.y.NewsFeedManager"> <property name="factory"> <bean class="org.springframework.beans.factory.config.ObjectFactoryCreatingFactoryBean"> <property name="targetBeanName"> <idref local="newsFeed" /> </property> </bean> </property> </bean> <bean id="newsFeed" class="x.y.NewsFeed" scope="prototype"> <property name="news" value="... that's fit to print!" /> </bean> </beans> And here is a small driver program to test the fact that new (prototype) instances of the newsFeed bean are actually being returned for each call to the injected ObjectFactory inside the NewsFeedManager's printNews() method. import org.springframework.context.ApplicationContext; import org.springframework.context.support.ClassPathXmlApplicationContext; Spring Framework (2.5.6) 75
  • 76. The IoC container import x.y.NewsFeedManager; public class Main { public static void main(String[] args) throws Exception { ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml"); NewsFeedManager manager = (NewsFeedManager) ctx.getBean("newsFeedManager"); manager.printNews(); manager.printNews(); } } The output from running the above program will look like so (results will of course vary on your machine). x.y.NewsFeed@1292d26: '... that's fit to print!' x.y.NewsFeed@5329c5: '... that's fit to print!' As of Spring 2.5, you can rely upon autowiring of the BeanFactory as yet another alternative to implementing the BeanFactoryAware interface. The "traditional" constructor and byType autowiring modes (as described in the section entitled Section 3.3.5, “Autowiring collaborators”) are now capable of providing a dependency of type BeanFactory for either a constructor argument or setter method parameter respectively. For more flexibility (including the ability to autowire fields and multiple parameter methods), consider using the new annotation-based autowiring features. In that case, the BeanFactory will be autowired into a field, constructor argument, or method parameter that is expecting the BeanFactory type as long as the field, constructor, or method in question carries the @Autowired annotation. For more information, see the section entitled Section 3.11.2, “@Autowired”. 3.5.2.2. BeanNameAware If a bean implements the org.springframework.beans.factory.BeanNameAware interface and is deployed in a BeanFactory, the BeanFactory will call the bean through this interface to inform the bean of the name it was deployed under. The callback will be invoked after population of normal bean properties but before an initialization callback like InitializingBean's afterPropertiesSet or a custom init-method. 3.6. Bean definition inheritance A bean definition potentially contains a large amount of configuration information, including container specific information (for example initialization method, static factory method name, and so forth) and constructor arguments and property values. A child bean definition is a bean definition that inherits configuration data from a parent definition. It is then able to override some values, or add others, as needed. Using parent and child bean definitions can potentially save a lot of typing. Effectively, this is a form of templating. When working with a BeanFactory programmatically, child bean definitions are represented by the ChildBeanDefinition class. Most users will never work with them on this level, instead configuring bean definitions declaratively in something like the XmlBeanFactory. When using XML-based configuration metadata a child bean definition is indicated simply by using the 'parent' attribute, specifying the parent bean as the value of this attribute. <bean id="inheritedTestBean" abstract="true" class="org.springframework.beans.TestBean"> <property name="name" value="parent"/> <property name="age" value="1"/> </bean> <bean id="inheritsWithDifferentClass" class="org.springframework.beans.DerivedTestBean" parent="inheritedTestBean" init-method="initialize"> Spring Framework (2.5.6) 76
  • 77. The IoC container <property name="name" value="override"/> <!-- the age property value of 1 will be inherited from parent --> </bean> A child bean definition will use the bean class from the parent definition if none is specified, but can also override it. In the latter case, the child bean class must be compatible with the parent, that is it must accept the parent's property values. A child bean definition will inherit constructor argument values, property values and method overrides from the parent, with the option to add new values. If any init-method, destroy-method and/or static factory method settings are specified, they will override the corresponding parent settings. The remaining settings will always be taken from the child definition: depends on, autowire mode, dependency check, singleton, scope, lazy init. Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the abstract attribute. In the case that the parent definition does not specify a class, and so explicitly marking the parent bean definition as abstract is required: <bean id="inheritedTestBeanWithoutClass" abstract="true"> <property name="name" value="parent"/> <property name="age" value="1"/> </bean> <bean id="inheritsWithClass" class="org.springframework.beans.DerivedTestBean" parent="inheritedTestBeanWithoutClass" init-method="initialize"> <property name="name" value="override"/> <!-- age will inherit the value of 1 from the parent bean definition--> </bean> The parent bean cannot get instantiated on its own since it is incomplete, and it is also explicitly marked as abstract. When a definition is defined to be abstract like this, it is usable only as a pure template bean definition that will serve as a parent definition for child definitions. Trying to use such an abstract parent bean on its own (by referring to it as a ref property of another bean, or doing an explicit getBean() call with the parent bean id), will result in an error. Similarly, the container's internal preInstantiateSingletons() method will completely ignore bean definitions which are defined as abstract. Note ApplicationContexts (but not BeanFactories) will by default pre-instantiate all singletons. Therefore it is important (at least for singleton beans) that if you have a (parent) bean definition which you intend to use only as a template, and this definition specifies a class, you must make sure to set the 'abstract' attribute to 'true', otherwise the application context will actually (attempt to) pre-instantiate the abstract bean. 3.7. Container extension points The IoC component of the Spring Framework has been designed for extension. There is typically no need for an application developer to subclass any of the various BeanFactory or ApplicationContext implementation classes. The Spring IoC container can be infinitely extended by plugging in implementations of special integration interfaces. The next few sections are devoted to detailing all of these various integration interfaces. Spring Framework (2.5.6) 77
  • 78. The IoC container 3.7.1. Customizing beans using BeanPostProcessors The first extension point that we will look at is the BeanPostProcessor interface. This interface defines a number of callback methods that you as an application developer can implement in order to provide your own (or override the containers default) instantiation logic, dependency-resolution logic, and so forth. If you want to do some custom logic after the Spring container has finished instantiating, configuring and otherwise initializing a bean, you can plug in one or more BeanPostProcessor implementations. You can configure multiple BeanPostProcessors if you wish. You can control the order in which these BeanPostProcessors execute by setting the 'order' property (you can only set this property if the BeanPostProcessor implements the Ordered interface; if you write your own BeanPostProcessor you should consider implementing the Ordered interface too); consult the Javadoc for the BeanPostProcessor and Ordered interfaces for more details. Note BeanPostProcessors operate on bean (or object) instances; that is to say, the Spring IoC container will have instantiated a bean instance for you, and then BeanPostProcessors get a chance to do their stuff. If you want to change the actual bean definition (that is the recipe that defines the bean), then you rather need to use a BeanFactoryPostProcessor (described below in the section entitled Section 3.7.2, “Customizing configuration metadata with BeanFactoryPostProcessors”. Also, BeanPostProcessors are scoped per-container. This is only relevant if you are using container hierarchies. If you define a BeanPostProcessor in one container, it will only do its stuff on the beans in that container. Beans that are defined in another container will not be post-processed by BeanPostProcessors in another container, even if both containers are part of the same hierarchy. The org.springframework.beans.factory.config.BeanPostProcessor interface consists of exactly two callback methods. When such a class is registered as a post-processor with the container (see below for how this registration is effected), for each bean instance that is created by the container, the post-processor will get a callback from the container both before any container initialization methods (such as afterPropertiesSet and any declared init method) are called, and also afterwards. The post-processor is free to do what it wishes with the bean instance, including ignoring the callback completely. A bean post-processor will typically check for callback interfaces, or do something such as wrap a bean with a proxy; some of the Spring AOP infrastructure classes are implemented as bean post-processors and they do this proxy-wrapping logic. It is important to know that a BeanFactory treats bean post-processors slightly differently than an ApplicationContext. An ApplicationContext will automatically detect any beans which are defined in the configuration metadata which is supplied to it that implement the BeanPostProcessor interface, and register them as post-processors, to be then called appropriately by the container on bean creation. Nothing else needs to be done other than deploying the post-processors in a similar fashion to any other bean. On the other hand, when using a BeanFactory implementation, bean post-processors explicitly have to be registered, with code like this: ConfigurableBeanFactory factory = new XmlBeanFactory(...); // now register any needed BeanPostProcessor instances MyBeanPostProcessor postProcessor = new MyBeanPostProcessor(); factory.addBeanPostProcessor(postProcessor); // now start using the factory Spring Framework (2.5.6) 78
  • 79. The IoC container This explicit registration step is not convenient, and this is one of the reasons why the various ApplicationContext implementations are preferred above plain BeanFactory implementations in the vast majority of Spring-backed applications, especially when using BeanPostProcessors. BeanPostProcessors and AOP auto-proxying Classes that implement the BeanPostProcessor interface are special, and so they are treated differently by the container. All BeanPostProcessors and their directly referenced beans will be instantiated on startup, as part of the special startup phase of the ApplicationContext, then all those BeanPostProcessors will be registered in a sorted fashion - and applied to all further beans. Since AOP auto-proxying is implemented as a BeanPostProcessor itself, no BeanPostProcessors or directly referenced beans are eligible for auto-proxying (and thus will not have aspects 'woven' into them. For any such bean, you should see an info log message: “Bean 'foo' is not eligible for getting processed by all BeanPostProcessors (for example: not eligible for auto-proxying)”. Find below some examples of how to write, register, and use BeanPostProcessors in the context of an ApplicationContext. 3.7.1.1. Example: Hello World, BeanPostProcessor-style This first example is hardly compelling, but serves to illustrate basic usage. All we are going to do is code a custom BeanPostProcessor implementation that simply invokes the toString() method of each bean as it is created by the container and prints the resulting string to the system console. Yes, it is not hugely useful, but serves to get the basic concepts across before we move into the second example which is actually useful. Find below the custom BeanPostProcessor implementation class definition: package scripting; import org.springframework.beans.factory.config.BeanPostProcessor; import org.springframework.beans.BeansException; public class InstantiationTracingBeanPostProcessor implements BeanPostProcessor { // simply return the instantiated bean as-is public Object postProcessBeforeInitialization(Object bean, String beanName) throws BeansException { return bean; // we could potentially return any object reference here... } public Object postProcessAfterInitialization(Object bean, String beanName) throws BeansException { System.out.println("Bean '" + beanName + "' created : " + bean.toString()); return bean; } } <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:lang="http://www.springframework.org/schema/lang" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-2.5.xsd"> <lang:groovy id="messenger" script-source="classpath:org/springframework/scripting/groovy/Messenger.groovy"> <lang:property name="message" value="Fiona Apple Is Just So Dreamy."/> </lang:groovy> <!-- when the above bean ('messenger') is instantiated, this custom BeanPostProcessor implementation will output the fact to the system console Spring Framework (2.5.6) 79
  • 80. The IoC container --> <bean class="scripting.InstantiationTracingBeanPostProcessor"/> </beans> Notice how the InstantiationTracingBeanPostProcessor is simply defined; it doesn't even have a name, and because it is a bean it can be dependency injected just like any other bean. (The above configuration also just so happens to define a bean that is backed by a Groovy script. The Spring 2.0 dynamic language support is detailed in the chapter entitled Chapter 24, Dynamic language support.) Find below a small driver script to exercise the above code and configuration; import org.springframework.context.ApplicationContext; import org.springframework.context.support.ClassPathXmlApplicationContext; import org.springframework.scripting.Messenger; public final class Boot { public static void main(final String[] args) throws Exception { ApplicationContext ctx = new ClassPathXmlApplicationContext("scripting/beans.xml"); Messenger messenger = (Messenger) ctx.getBean("messenger"); System.out.println(messenger); } } The output of executing the above program will be (something like) this: Bean 'messenger' created : org.springframework.scripting.groovy.GroovyMessenger@272961 org.springframework.scripting.groovy.GroovyMessenger@272961 3.7.1.2. Example: The RequiredAnnotationBeanPostProcessor Using callback interfaces or annotations in conjunction with a custom BeanPostProcessor implementation is a common means of extending the Spring IoC container. This next example is a bit of a cop-out, in that you are directed to the section entitled Section 25.3.1, “@Required” which demonstrates the usage of a custom BeanPostProcessor implementation that ships with the Spring distribution which ensures that JavaBean properties on beans that are marked with an (arbitrary) annotation are actually (configured to be) dependency-injected with a value. 3.7.2. Customizing configuration metadata with BeanFactoryPostProcessors The next extension point that we will look at is the org.springframework.beans.factory.config.BeanFactoryPostProcessor. The semantics of this interface are similar to the BeanPostProcessor, with one major difference: BeanFactoryPostProcessors operate on the bean configuration metadata; that is, the Spring IoC container will allow BeanFactoryPostProcessors to read the configuration metadata and potentially change it before the container has actually instantiated any other beans. You can configure multiple BeanFactoryPostProcessors if you wish. You can control the order in which these BeanFactoryPostProcessors execute by setting the 'order' property (you can only set this property if the BeanFactoryPostProcessor implements the Ordered interface; if you write your own BeanFactoryPostProcessor you should consider implementing the Ordered interface too); consult the Javadoc for the BeanFactoryPostProcessor and Ordered interfaces for more details. Note If you want to change the actual bean instances (the objects that are created from the configuration Spring Framework (2.5.6) 80
  • 81. The IoC container metadata), then you rather need to use a BeanPostProcessor (described above in the section entitled Section 3.7.1, “Customizing beans using BeanPostProcessors”. Also, BeanFactoryPostProcessors are scoped per-container. This is only relevant if you are using container hierarchies. If you define a BeanFactoryPostProcessor in one container, it will only do its stuff on the bean definitions in that container. Bean definitions in another container will not be post-processed by BeanFactoryPostProcessors in another container, even if both containers are part of the same hierarchy. A bean factory post-processor is executed manually (in the case of a BeanFactory) or automatically (in the case of an ApplicationContext) to apply changes of some sort to the configuration metadata that defines a container. Spring includes a number of pre-existing bean factory post-processors, such as PropertyOverrideConfigurer and PropertyPlaceholderConfigurer, both described below. A custom BeanFactoryPostProcessor can also be used to register custom property editors, for example. In a BeanFactory, the process of applying a BeanFactoryPostProcessor is manual, and will be similar to this: XmlBeanFactory factory = new XmlBeanFactory(new FileSystemResource("beans.xml")); // bring in some property values from a Properties file PropertyPlaceholderConfigurer cfg = new PropertyPlaceholderConfigurer(); cfg.setLocation(new FileSystemResource("jdbc.properties")); // now actually do the replacement cfg.postProcessBeanFactory(factory); This explicit registration step is not convenient, and this is one of the reasons why the various ApplicationContext implementations are preferred above plain BeanFactory implementations in the vast majority of Spring-backed applications, especially when using BeanFactoryPostProcessors. An ApplicationContext will detect any beans which are deployed into it which implement the BeanFactoryPostProcessor interface, and automatically use them as bean factory post-processors, at the appropriate time. Nothing else needs to be done other than deploying these post-processor in a similar fashion to any other bean. Note Just as in the case of BeanPostProcessors,you typically don't want to have BeanFactoryPostProcessors marked as being lazily-initialized. If they are marked as such, then the Spring container will never instantiate them, and thus they won't get a chance to apply their custom logic. If you are using the 'default-lazy-init' attribute on the declaration of your <beans/> element, be sure to mark your various BeanFactoryPostProcessor bean definitions with 'lazy-init="false"'. 3.7.2.1. Example: the PropertyPlaceholderConfigurer The PropertyPlaceholderConfigurer is used to externalize property values from a BeanFactory definition, into another separate file in the standard Java Properties format. This is useful to allow the person deploying an application to customize environment-specific properties (for example database URLs, usernames and passwords), without the complexity or risk of modifying the main XML definition file or files for the container. Consider the following XML-based configuration metadata fragment, where a DataSource with placeholder values is defined. We will configure some properties from an external Properties file, and at runtime, we will apply a PropertyPlaceholderConfigurer to the metadata which will replace some properties of the Spring Framework (2.5.6) 81
  • 82. The IoC container DataSource: <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> <property name="locations"> <value>classpath:com/foo/jdbc.properties</value> </property> </bean> <bean id="dataSource" destroy-method="close" class="org.apache.commons.dbcp.BasicDataSource"> <property name="driverClassName" value="${jdbc.driverClassName}"/> <property name="url" value="${jdbc.url}"/> <property name="username" value="${jdbc.username}"/> <property name="password" value="${jdbc.password}"/> </bean> The actual values come from another file in the standard Java Properties format: jdbc.driverClassName=org.hsqldb.jdbcDriver jdbc.url=jdbc:hsqldb:hsql://production:9002 jdbc.username=sa jdbc.password=root With the context namespace introduced in Spring 2.5, it is possible to configure property placeholders with a dedicated configuration element. Multiple locations may be provided as a comma-separated list for the location attribute. <context:property-placeholder location="classpath:com/foo/jdbc.properties"/> The PropertyPlaceholderConfigurer doesn't only look for properties in the Properties file you specify, but also checks against the Java System properties if it cannot find a property you are trying to use. This behavior can be customized by setting the systemPropertiesMode property of the configurer. It has three values, one to tell the configurer to always override, one to let it never override and one to let it override only if the property cannot be found in the properties file specified. Please consult the Javadoc for the PropertyPlaceholderConfigurer for more information. Class name substitution The PropertyPlaceholderConfigurer can be used to substitute class names, which is sometimes useful when you have to pick a particular implementation class at runtime. For example: <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> <property name="locations"> <value>classpath:com/foo/strategy.properties</value> </property> <property name="properties"> <value>custom.strategy.class=com.foo.DefaultStrategy</value> </property> </bean> <bean id="serviceStrategy" class="${custom.strategy.class}"/> If the class is unable to be resolved at runtime to a valid class, resolution of the bean will fail once it is about to be created (which is during the preInstantiateSingletons() phase of an ApplicationContext for a non-lazy-init bean.) 3.7.2.2. Example: the PropertyOverrideConfigurer The PropertyOverrideConfigurer, another bean factory post-processor, is similar to the Spring Framework (2.5.6) 82
  • 83. The IoC container PropertyPlaceholderConfigurer, but in contrast to the latter, the original definitions can have default values or no values at all for bean properties. If an overriding Properties file does not have an entry for a certain bean property, the default context definition is used. Note that the bean factory definition is not aware of being overridden, so it is not immediately obvious when looking at the XML definition file that the override configurer is being used. In case that there are multiple PropertyOverrideConfigurer instances that define different values for the same bean property, the last one will win (due to the overriding mechanism). Properties file configuration lines are expected to be in the format: beanName.property=value An example properties file might look like this: dataSource.driverClassName=com.mysql.jdbc.Driver dataSource.url=jdbc:mysql:mydb This example file would be usable against a container definition which contains a bean called dataSource, which has driver and url properties. Note that compound property names are also supported, as long as every component of the path except the final property being overridden is already non-null (presumably initialized by the constructors). In this example... foo.fred.bob.sammy=123 ... the sammy property of the bob property of the fred property of the foo bean is being set to the scalar value 123. Note: Specified override values are always literal values; they are not translated into bean references. This also applies when the original value in the XML bean definition specifies a bean reference With the context namespace introduced in Spring 2.5, it is possible to configure property overriding with a dedicated configuration element: <context:property-override location="classpath:override.properties"/> 3.7.3. Customizing instantiation logic using FactoryBeans The org.springframework.beans.factory.FactoryBean interface is to be implemented by objects that are themselves factories. The FactoryBean interface is a point of pluggability into the Spring IoC containers instantiation logic. If you have some complex initialization code that is better expressed in Java as opposed to a (potentially) verbose amount of XML, you can create your own FactoryBean, write the complex initialization inside that class, and then plug your custom FactoryBean into the container. The FactoryBean interface provides three methods: • Object getObject(): has to return an instance of the object this factory creates. The instance can possibly be shared (depending on whether this factory returns singletons or prototypes). • boolean isSingleton(): has to return true if this FactoryBean returns singletons, false otherwise Spring Framework (2.5.6) 83
  • 84. The IoC container • Class getObjectType(): has to return either the object type returned by the getObject() method or null if the type isn't known in advance The FactoryBean concept and interface is used in a number of places within the Spring Framework; at the time of writing there are over 50 implementations of the FactoryBean interface that ship with Spring itself. Finally, there is sometimes a need to ask a container for an actual FactoryBean instance itself, not the bean it produces. This may be achieved by prepending the bean id with '&' (sans quotes) when calling the getBean method of the BeanFactory (including ApplicationContext). So for a given FactoryBean with an id of myBean, invoking getBean("myBean") on the container will return the product of the FactoryBean, but invoking getBean("&myBean") will return the FactoryBean instance itself. 3.8. The ApplicationContext While the beans package provides basic functionality for managing and manipulating beans, including in a programmatic way, the context package adds the ApplicationContext interface, which enhances BeanFactory functionality in a more framework-oriented style. Many users will use ApplicationContext in a completely declarative fashion, not even having to create it manually, but instead relying on support classes such as ContextLoader to automatically instantiate an ApplicationContext as part of the normal startup process of a J2EE web-app. (Of course, it is still possible to create an ApplicationContext programmatically.) The basis for the context package is the ApplicationContext interface, located in the org.springframework.context package. Deriving from the BeanFactory interface, it provides all the functionality of BeanFactory. To allow working in a more framework-oriented fashion, using layering and hierarchical contexts, the context package also provides the following functionality: • MessageSource, providing access to messages in i18n-style. • Access to resources, such as URLs and files. • Event propagation to beans implementing the ApplicationListener interface. • Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, for example the web layer of an application. 3.8.1. BeanFactory or ApplicationContext? Short version: use an ApplicationContext unless you have a really good reason for not doing so. For those of you that are looking for slightly more depth as to the 'but why' of the above recommendation, keep reading. As the ApplicationContext includes all functionality of the BeanFactory, it is generally recommended that it be used in preference to the BeanFactory, except for a few limited situations such as in an Applet, where memory consumption might be critical and a few extra kilobytes might make a difference. However, for most 'typical' enterprise applications and systems, the ApplicationContext is what you will want to use. Versions of Spring 2.0 and above make heavy use of the BeanPostProcessor extension point (to effect proxying and suchlike), and if you are using just a plain BeanFactory then a fair amount of support such as transactions and AOP will not take effect (at least not without some extra steps on your part), which could be confusing because nothing will actually be wrong with the configuration. Find below a feature matrix that lists what features are provided by the BeanFactory and ApplicationContext interfaces (and attendant implementations). (The following sections describe functionality that Spring Framework (2.5.6) 84
  • 85. The IoC container ApplicationContext adds to the basic BeanFactory capabilities in a lot more depth than the said feature matrix.) Table 3.5. Feature Matrix Feature BeanFactory ApplicationContext Bean instantiation/wiring Yes Yes Automatic BeanPostProcessor No Yes registration Automatic No Yes BeanFactoryPostProcessor registration Convenient MessageSource access No Yes (for i18n) ApplicationEvent publication No Yes 3.8.2. Internationalization using MessageSources The ApplicationContext interface extends an interface called MessageSource, and therefore provides messaging (i18n or internationalization) functionality. Together with the HierarchicalMessageSource, capable of resolving hierarchical messages, these are the basic interfaces Spring provides to do message resolution. Let's quickly review the methods defined there: • String getMessage(String code, Object[] args, String default, Locale loc): the basic method used to retrieve a message from the MessageSource. When no message is found for the specified locale, the default message is used. Any arguments passed in are used as replacement values, using the MessageFormat functionality provided by the standard library. • String getMessage(String code, Object[] args, Locale loc): essentially the same as the previous method, but with one difference: no default message can be specified; if the message cannot be found, a NoSuchMessageException is thrown. • String getMessage(MessageSourceResolvable resolvable, Locale locale): all properties used in the methods above are also wrapped in a class named MessageSourceResolvable, which you can use via this method. When an ApplicationContext gets loaded, it automatically searches for a MessageSource bean defined in the context. The bean has to have the name 'messageSource'. If such a bean is found, all calls to the methods described above will be delegated to the message source that was found. If no message source was found, the ApplicationContext attempts to see if it has a parent containing a bean with the same name. If so, it uses that bean as the MessageSource. If it can't find any source for messages, an empty DelegatingMessageSource will be instantiated in order to be able to accept calls to the methods defined above. Spring currently provides two MessageSource implementations. These are the ResourceBundleMessageSource Spring Framework (2.5.6) 85
  • 86. The IoC container and the StaticMessageSource. Both implement HierarchicalMessageSource in order to do nested messaging. The StaticMessageSource is hardly ever used but provides programmatic ways to add messages to the source. The ResourceBundleMessageSource is more interesting and is the one we will provide an example for: <beans> <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource"> <property name="basenames"> <list> <value>format</value> <value>exceptions</value> <value>windows</value> </list> </property> </bean> </beans> This assumes you have three resource bundles defined on your classpath called format, exceptions and windows. Using the JDK standard way of resolving messages through ResourceBundles, any request to resolve a message will be handled. For the purposes of the example, lets assume the contents of two of the above resource bundle files are... # in 'format.properties' message=Alligators rock! # in 'exceptions.properties' argument.required=The '{0}' argument is required. Some (admittedly trivial) driver code to exercise the MessageSource functionality can be found below. Remember that all ApplicationContext implementations are also MessageSource implementations and so can be cast to the MessageSource interface. public static void main(String[] args) { MessageSource resources = new ClassPathXmlApplicationContext("beans.xml"); String message = resources.getMessage("message", null, "Default", null); System.out.println(message); } The resulting output from the above program will be... Alligators rock! So to summarize, the MessageSource is defined in a file called 'beans.xml' (this file exists at the root of your classpath). The 'messageSource' bean definition refers to a number of resource bundles via its basenames property; the three files that are passed in the list to the basenames property exist as files at the root of your classpath (and are called format.properties, exceptions.properties, and windows.properties respectively). Lets look at another example, and this time we will look at passing arguments to the message lookup; these arguments will be converted into Strings and inserted into placeholders in the lookup message. This is perhaps best explained with an example: <beans> <!-- this MessageSource is being used in a web application --> <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource"> <property name="basename" value="test-messages"/> </bean> <!-- let's inject the above MessageSource into this POJO --> <bean id="example" class="com.foo.Example"> Spring Framework (2.5.6) 86
  • 87. The IoC container <property name="messages" ref="messageSource"/> </bean> </beans> public class Example { private MessageSource messages; public void setMessages(MessageSource messages) { this.messages = messages; } public void execute() { String message = this.messages.getMessage("argument.required", new Object [] {"userDao"}, "Required", null); System.out.println(message); } } The resulting output from the invocation of the execute() method will be... The 'userDao' argument is required. With regard to internationalization (i18n), Spring's various MessageResource implementations follow the same locale resolution and fallback rules as the standard JDK ResourceBundle. In short, and continuing with the example 'messageSource' defined previously, if you want to resolve messages against the British (en-GB) locale, you would create files called format_en_GB.properties, exceptions_en_GB.properties, and windows_en_GB.properties respectively. Locale resolution is typically going to be managed by the surrounding environment of the application. For the purpose of this example though, we'll just manually specify the locale that we want to resolve our (British) messages against. # in 'exceptions_en_GB.properties' argument.required=Ebagum lad, the '{0}' argument is required, I say, required. public static void main(final String[] args) { MessageSource resources = new ClassPathXmlApplicationContext("beans.xml"); String message = resources.getMessage("argument.required", new Object [] {"userDao"}, "Required", Locale.UK); System.out.println(message); } The resulting output from the running of the above program will be... Ebagum lad, the 'userDao' argument is required, I say, required. The MessageSourceAware interface can also be used to acquire a reference to any MessageSource that has been defined. Any bean that is defined in an ApplicationContext that implements the MessageSourceAware interface will be injected with the application context's MessageSource when it (the bean) is being created and configured. Note: As an alternative to ResourceBundleMessageSource, Spring also provides a ReloadableResourceBundleMessageSource class. This variant supports the same bundle file format but is more flexible than the standard JDK based ResourceBundleMessageSource implementation. In particular, it allows for reading files from any Spring resource location (not just from the classpath) and supports hot reloading of bundle property files (while efficiently caching them in between). Check out the Spring Framework (2.5.6) 87
  • 88. The IoC container ReloadableResourceBundleMessageSource javadoc for details. 3.8.3. Events Event handling in the ApplicationContext is provided through the ApplicationEvent class and ApplicationListener interface. If a bean which implements the ApplicationListener interface is deployed into the context, every time an ApplicationEvent gets published to the ApplicationContext, that bean will be notified. Essentially, this is the standard Observer design pattern. Spring provides the following standard events: Table 3.6. Built-in Events Event Explanation ContextRefreshedEvent Published when the ApplicationContext is initialized or refreshed, e.g. using the refresh() method on the ConfigurableApplicationContext interface. "Initialized" here means that all beans are loaded, post-processor beans are detected and activated, singletons are pre-instantiated, and the ApplicationContext object is ready for use. A refresh may be triggered multiple times, as long as the context hasn't been closed - provided that the chosen ApplicationContext actually supports such "hot" refreshes (which e.g. XmlWebApplicationContext does but GenericApplicationContext doesn't). ContextStartedEvent Published when the ApplicationContext is started, using the start() method on the ConfigurableApplicationContext interface. "Started" here means that all Lifecycle beans will receive an explicit start signal. This will typically be used for restarting after an explicit stop, but may also be used for starting components that haven't been configured for autostart (e.g. haven't started on initialization already). ContextStoppedEvent Published when the ApplicationContext is stopped, using the stop() method on the ConfigurableApplicationContext interface. "Stopped" here means that all Lifecycle beans will receive an explicit stop signal. A stopped context may be restarted through a start() call. ContextClosedEvent Published when the ApplicationContext is closed, using the close() method on the ConfigurableApplicationContext interface. "Closed" here means that all singleton beans are destroyed. A closed context has reached its end of life; it cannot be refreshed or restarted. RequestHandledEvent A web-specific event telling all beans that an HTTP request has been serviced (this will be published after the request has been finished). Note that this event is only applicable for web applications using Spring's DispatcherServlet. Implementing custom events can be done as well. Simply call the publishEvent() method on the ApplicationContext, specifying a parameter which is an instance of your custom event class implementing ApplicationEvent. Event listeners receive events synchronously. This means the publishEvent() method blocks until all listeners have finished processing the event (it is possible to supply an alternate event publishing strategy via a ApplicationEventMulticaster implementation). Furthermore, when a listener receives an event it operates inside the transaction context of the publisher, if a transaction context is available. Spring Framework (2.5.6) 88
  • 89. The IoC container Let's look at an example. First, the ApplicationContext: <bean id="emailer" class="example.EmailBean"> <property name="blackList"> <list> <value>black@list.org</value> <value>white@list.org</value> <value>john@doe.org</value> </list> </property> </bean> <bean id="blackListListener" class="example.BlackListNotifier"> <property name="notificationAddress" value="spam@list.org"/> </bean> Now, let's look at the actual classes: public class EmailBean implements ApplicationContextAware { private List blackList; private ApplicationContext ctx; public void setBlackList(List blackList) { this.blackList = blackList; } public void setApplicationContext(ApplicationContext ctx) { this.ctx = ctx; } public void sendEmail(String address, String text) { if (blackList.contains(address)) { BlackListEvent event = new BlackListEvent(address, text); ctx.publishEvent(event); return; } // send email... } } public class BlackListNotifier implements ApplicationListener { private String notificationAddress; public void setNotificationAddress(String notificationAddress) { this.notificationAddress = notificationAddress; } public void onApplicationEvent(ApplicationEvent event) { if (event instanceof BlackListEvent) { // notify appropriate person... } } } Of course, this particular example could probably be implemented in better ways (perhaps by using AOP features), but it should be sufficient to illustrate the basic event mechanism. 3.8.4. Convenient access to low-level resources For optimal usage and understanding of application contexts, users should generally familiarize themselves with Spring's Resource abstraction, as described in the chapter entitled Chapter 4, Resources. An application context is a ResourceLoader, able to be used to load Resources. A Resource is essentially a java.net.URL on steroids (in fact, it just wraps and uses a URL where appropriate), which can be used to Spring Framework (2.5.6) 89
  • 90. The IoC container obtain low-level resources from almost any location in a transparent fashion, including from the classpath, a filesystem location, anywhere describable with a standard URL, and some other variations. If the resource location string is a simple path without any special prefixes, where those resources come from is specific and appropriate to the actual application context type. A bean deployed into the application context may implement the special callback interface, ResourceLoaderAware, to be automatically called back at initialization time with the application context itself passed in as the ResourceLoader. A bean may also expose properties of type Resource, to be used to access static resources, and expect that they will be injected into it like any other properties. The person deploying the bean may specify those Resource properties as simple String paths, and rely on a special JavaBean PropertyEditor that is automatically registered by the context, to convert those text strings to actual Resource objects. The location path or paths supplied to an ApplicationContext constructor are actually resource strings, and in simple form are treated appropriately to the specific context implementation ( ClassPathXmlApplicationContext treats a simple location path as a classpath location), but may also be used with special prefixes to force loading of definitions from the classpath or a URL, regardless of the actual context type. 3.8.5. Convenient ApplicationContext instantiation for web applications As opposed to the BeanFactory, which will often be created programmatically, ApplicationContext instances can be created declaratively using for example a ContextLoader. Of course you can also create ApplicationContext instances programmatically using one of the ApplicationContext implementations. First, let's examine the ContextLoader mechanism and its implementations. The ContextLoader mechanism comes in two flavors: the ContextLoaderListener and the ContextLoaderServlet. They both have the same functionality but differ in that the listener version cannot be reliably used in Servlet 2.3 containers. Since the Servlet 2.4 specification, servlet context listeners are required to execute immediately after the servlet context for the web application has been created and is available to service the first request (and also when the servlet context is about to be shut down): as such a servlet context listener is an ideal place to initialize the Spring ApplicationContext. It is up to you as to which one you use, but all things being equal you should probably prefer ContextLoaderListener; for more information on compatibility, have a look at the Javadoc for the ContextLoaderServlet. You can register an ApplicationContext using the ContextLoaderListener as follows: <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/daoContext.xml /WEB-INF/applicationContext.xml</param-value> </context-param> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> <!-- or use the ContextLoaderServlet instead of the above listener <servlet> <servlet-name>context</servlet-name> <servlet-class>org.springframework.web.context.ContextLoaderServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> --> The listener inspects the 'contextConfigLocation' parameter. If the parameter does not exist, the listener will use /WEB-INF/applicationContext.xml as a default. When it does exist, it will separate the String using predefined delimiters (comma, semicolon and whitespace) and use the values as locations where application contexts will be searched for. Ant-style path patterns are supported as well: e.g. /WEB-INF/*Context.xml (for Spring Framework (2.5.6) 90
  • 91. The IoC container all files whose name ends with "Context.xml", residing in the "WEB-INF" directory) or /WEB-INF/**/*Context.xml (for all such files in any subdirectory of "WEB-INF"). The ContextLoaderServlet can be used instead of the ContextLoaderListener. The servlet will use the 'contextConfigLocation' parameter just as the listener does. 3.9. Glue code and the evil singleton The majority of the code inside an application is best written in a DI style, where that code is served out of a Spring IoC container, has its own dependencies supplied by the container when it is created, and is completely unaware of the container. However, for the small glue layers of code that are sometimes needed to tie other code together, there is sometimes a need for singleton (or quasi-singleton) style access to a Spring IoC container. For example, third party code may try to construct new objects directly (Class.forName() style), without the ability to force it to get these objects out of a Spring IoC container. If the object constructed by the third party code is just a small stub or proxy, which then uses a singleton style access to a Spring IoC container to get a real object to delegate to, then inversion of control has still been achieved for the majority of the code (the object coming out of the container); thus most code is still unaware of the container or how it is accessed, and remains decoupled from other code, with all ensuing benefits. EJBs may also use this stub/proxy approach to delegate to a plain Java implementation object, coming out of a Spring IoC container. While the Spring IoC container itself ideally does not have to be a singleton, it may be unrealistic in terms of memory usage or initialization times (when using beans in the Spring IoC container such as a Hibernate SessionFactory) for each bean to use its own, non-singleton Spring IoC container. As another example, in complex J2EE applications with multiple layers (various JAR files, EJBs, and WAR files packaged as an EAR), with each layer having its own Spring IoC container definition (effectively forming a hierarchy), the preferred approach when there is only one web-app (WAR) in the top hierarchy is to simply create one composite Spring IoC container from the multiple XML definition files from each layer. All of the various Spring IoC container implementations may be constructed from multiple definition files in this fashion. However, if there are multiple sibling web-applications at the root of the hierarchy, it is problematic to create a Spring IoC container for each web-application which consists of mostly identical bean definitions from lower layers, as there may be issues due to increased memory usage, issues with creating multiple copies of beans which take a long time to initialize (for example a Hibernate SessionFactory), and possible issues due to side-effects. As an alternative, classes such as ContextSingletonBeanFactoryLocator or SingletonBeanFactoryLocator may be used to demand-load multiple hierarchical (that is one container is the parent of another) Spring IoC container instances in a singleton fashion, which may then be used as the parents of the web-application Spring IoC container instances. The result is that bean definitions for lower layers are loaded only as needed, and loaded only once. You can see a detailed example of the usage of these classes by viewing the Javadoc for the SingletonBeanFactoryLocator and ContextSingletonBeanFactoryLocator classes. As mentioned in the chapter on EJBs, the Spring convenience base classes for EJBs normally use a non-singleton BeanFactoryLocator implementation, which is easily replaced by the use of SingletonBeanFactoryLocator and ContextSingletonBeanFactoryLocator. 3.10. Deploying a Spring ApplicationContext as a J2EE RAR file Since Spring 2.5, it is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating the context and all of its required bean classes and library JARs in a J2EE RAR deployment unit. This is the equivalent of bootstrapping a standalone ApplicationContext, just hosted in J2EE environment, being able to access the J2EE Spring Framework (2.5.6) 91
  • 92. The IoC container server's facilities. RAR deployment is intended as a more 'natural' alternative to the not uncommon scenario of deploying a headless WAR file - i.e. a WAR file without any HTTP entry points, just used for bootstrapping a Spring ApplicationContext in a J2EE environment. RAR deployment is ideal for application contexts that do not need any HTTP entry points but rather just consist of message endpoints and scheduled jobs etc. Beans in such a context may use application server resources such as the JTA transaction manager and JNDI-bound JDBC DataSources and JMS ConnectionFactory instances, and may also register with the platform's JMX server - all through Spring's standard transaction management and JNDI and JMX support facilities. Application components may also interact with the application's server JCA WorkManager through Spring's TaskExecutor abstraction. Check out the JavaDoc of the SpringContextResourceAdapter class for the configuration details involved in RAR deployment. For simple deployment needs, all you need to do is the following: Package all application classes into a RAR file (which is just a standard JAR file with a different file extension), add all required library jars into the root of the RAR archive, add a "META-INF/ra.xml" deployment descriptor (as shown in SpringContextResourceAdapter's JavaDoc) as well as the corresponding Spring XML bean definition file(s) (typically "META-INF/applicationContext.xml"), and drop the resulting RAR file into your application server's deployment directory! NOTE: Such RAR deployment units are usually self-contained; they do not expose components to the 'outside' world, not even to other modules of the same application. Interaction with a RAR-based ApplicationContext usually happens through JMS destinations that it shares with other modules. A RAR-based ApplicationContext may also - for example - schedule some jobs, reacting to new files in the file system (or the like). If it actually needs to allow for synchronous access from the outside, it could for example export RMI endpoints, which of course may be used by other application modules on the same machine as well. 3.11. Annotation-based configuration As mentioned in the section entitled Section 3.7.1.2, “Example: The RequiredAnnotationBeanPostProcessor”, using a BeanPostProcessor in conjunction with annotations is a common means of extending the Spring IoC container. For example, Spring 2.0 introduced the possibility of enforcing required properties with the @Required annotation. As of Spring 2.5, it is now possible to follow that same general approach to drive Spring's dependency injection. Essentially, the @Autowired annotation provides the same capabilities as described in Section 3.3.5, “Autowiring collaborators” but with more fine-grained control and wider applicability. Spring 2.5 also adds support for JSR-250 annotations such as @Resource, @PostConstruct, and @PreDestroy. Of course, these options are only available if you are using at least Java 5 (Tiger) and thus have access to source level annotations. Use of these annotations also requires that certain BeanPostProcessors be registered within the Spring container. As always, these can be registered as individual bean definitions, but they can also be implicitly registered by including the following tag in an XML-based Spring configuration (notice the inclusion of the 'context' namespace): <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.xsd"> <context:annotation-config/> </beans> Spring Framework (2.5.6) 92
  • 93. The IoC container (The implicitly registeredpost-processors include AutowiredAnnotationBeanPostProcessor, CommonAnnotationBeanPostProcessor, PersistenceAnnotationBeanPostProcessor, as well as the aforementioned RequiredAnnotationBeanPostProcessor.) Note Note that <context:annotation-config/> only looks for annotations on beans in the same application context it is defined in. This means that, if you put <context:annotation-config/> in a WebApplicationContext for a DispatcherServlet, it only checks for @Autowired beans in your controllers, and not your services. See Section 13.2, “The DispatcherServlet” for more information. 3.11.1. @Required The @Required annotation applies to bean property setter methods, as in the following example: public class SimpleMovieLister { private MovieFinder movieFinder; @Required public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // ... } This annotation simply indicates that the affected bean property must be populated at configuration time: either through an explicit property value in a bean definition or through autowiring. The container will throw an exception if the affected bean property has not been populated; this allows for eager and explicit failure, avoiding NullPointerExceptions or the like later on. Note that it is still recommended to put assertions into the bean class itself (for example into an init method) in order to enforce those required references and values even when using the class outside of a container. 3.11.2. @Autowired As expected, the @Autowired annotation may be applied to "traditional" setter methods: public class SimpleMovieLister { private MovieFinder movieFinder; @Autowired public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // ... } The annotation may also be applied to methods with arbitrary names and/or multiple arguments: public class MovieRecommender { private MovieCatalog movieCatalog; private CustomerPreferenceDao customerPreferenceDao; Spring Framework (2.5.6) 93
  • 94. The IoC container @Autowired public void prepare(MovieCatalog movieCatalog, CustomerPreferenceDao customerPreferenceDao) { this.movieCatalog = movieCatalog; this.customerPreferenceDao = customerPreferenceDao; } // ... } The @Autowired annotation may even be applied on constructors and fields: public class MovieRecommender { @Autowired private MovieCatalog movieCatalog; private CustomerPreferenceDao customerPreferenceDao; @Autowired public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) { this.customerPreferenceDao = customerPreferenceDao; } // ... } It is also possible to provide all beans of a particular type from the ApplicationContext by adding the annotation to a field or method that expects an array of that type: public class MovieRecommender { @Autowired private MovieCatalog[] movieCatalogs; // ... } The same applies for typed collections: public class MovieRecommender { private Set<MovieCatalog> movieCatalogs; @Autowired public void setMovieCatalogs(Set<MovieCatalog> movieCatalogs) { this.movieCatalogs = movieCatalogs; } // ... } Even typed Maps may be autowired as long as the expected key type is String. The Map values will contain all beans of the expected type, and the keys will contain the corresponding bean names: public class MovieRecommender { private Map<String, MovieCatalog> movieCatalogs; @Autowired public void setMovieCatalogs(Map<String, MovieCatalog> movieCatalogs) { this.movieCatalogs = movieCatalogs; } // ... } Spring Framework (2.5.6) 94
  • 95. The IoC container By default, the autowiring will fail whenever zero candidate beans are available; the default behavior is to treat annotated methods, constructors, and fields as indicating required dependencies. This behavior can be changed as demonstrated below. public class SimpleMovieLister { private MovieFinder movieFinder; @Autowired(required=false) public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // ... } Note Only one annotated constructor per-class may be marked as required, but multiple non-required constructors can be annotated. In that case, each will be considered among the candidates and Spring will use the greediest constructor whose dependencies can be satisfied. Prefer the use of @Autowired's required attribute over the @Required annotation. The required attribute indicates that the property is not required for autowiring purposes, simply skipping it if it cannot be autowired. @Required, on the other hand, is stronger in that it enforces the property to have been set in any of the container's supported ways; if no value has been injected, a corresponding exception will be raised. @Autowired may also be used for well-known "resolvable dependencies": the BeanFactory interface, the ApplicationContext interface, the ResourceLoader interface, the ApplicationEventPublisher interface and the MessageSource interface. These interfaces (and their extended interfaces such as ConfigurableApplicationContext or ResourcePatternResolver) will be automatically resolved, with no special setup necessary. public class MovieRecommender { @Autowired private ApplicationContext context; public MovieRecommender() { } // ... } 3.11.3. Fine-tuning annotation-based autowiring with qualifiers Since autowiring by type may lead to multiple candidates, it is often necessary to have more control over the selection process. One way to accomplish this is with Spring's @Qualifier annotation. This allows for associating qualifier values with specific arguments, narrowing the set of type matches so that a specific bean is chosen for each argument. In the simplest case, this can be a plain descriptive value: public class MovieRecommender { @Autowired @Qualifier("main") private MovieCatalog movieCatalog; // ... } Spring Framework (2.5.6) 95
  • 96. The IoC container The @Qualifier annotation can also be specified on individual constructor arguments or method parameters: public class MovieRecommender { private MovieCatalog movieCatalog; private CustomerPreferenceDao customerPreferenceDao; @Autowired public void prepare(@Qualifier("main") MovieCatalog movieCatalog, CustomerPreferenceDao customerPreferenceDa this.movieCatalog = movieCatalog; this.customerPreferenceDao = customerPreferenceDao; } // ... } The corresponding bean definitions would look like as follows. The bean with qualifier value "main" would be wired with the constructor argument that has been qualified with the same value. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-conte <context:annotation-config/> <bean class="example.SimpleMovieCatalog"> <qualifier value="main"/> <!-- inject any dependencies required by this bean --> </bean> <bean class="example.SimpleMovieCatalog"> <qualifier value="action"/> <!-- inject any dependencies required by this bean --> </bean> <bean id="movieRecommender" class="example.MovieRecommender"/> </beans> For a fallback match, the bean name is considered as a default qualifier value. This means that the bean may be defined with an id "main" instead of the nested qualifier element, leading to the same matching result. However, note that while this can be used to refer to specific beans by name, @Autowired is fundamentally about type-driven injection with optional semantic qualifiers. This means that qualifier values, even when using the bean name fallback, always have narrowing semantics within the set of type matches; they do not semantically express a reference to a unique bean id. Good qualifier values would be "main" or "EMEA" or "persistent", expressing characteristics of a specific component - independent from the bean id (which may be auto-generated in case of an anonymous bean definition like the one above). Qualifiers also apply to typed collections (as discussed above): e.g. to Set<MovieCatalog>. In such a case, all matching beans according to the declared qualifiers are going to be injected as a collection. This implies that qualifiers do not have to be unique; they rather simply constitute filtering criteria. For example, there could be multiple MovieCatalog beans defined with the same qualifier value "action"; all of which would be injected into a Set<MovieCatalog> annotated with @Qualifier("action"). Tip If you intend to express annotation-driven injection by name, do not primarily use @Autowired - even if is technically capable of referring to a bean name through @Qualifier values. Instead, prefer the JSR-250 @Resource annotation which is semantically defined to identify a specific target Spring Framework (2.5.6) 96
  • 97. The IoC container component by its unique name, with the declared type being irrelevant for the matching process. As a specific consequence of this semantic difference, beans which are themselves defined as a collection or map type cannot be injected via @Autowired since type matching is not properly applicable to them. Use @Resource for such beans, referring to the specific collection/map bean by unique name. Note: In contrast to @Autowired which is applicable to fields, constructors and multi-argument methods (allowing for narrowing through qualifier annotations at the parameter level), @Resource is only supported for fields and bean property setter methods with a single argument. As a consequence, stick with qualifiers if your injection target is a constructor or a multi-argument method. You may create your own custom qualifier annotations as well. Simply define an annotation and provide the @Qualifier annotation within your definition: @Target({ElementType.FIELD, ElementType.PARAMETER}) @Retention(RetentionPolicy.RUNTIME) @Qualifier public @interface Genre { String value(); } Then you can provide the custom qualifier on autowired fields and parameters: public class MovieRecommender { @Autowired @Genre("Action") private MovieCatalog actionCatalog; private MovieCatalog comedyCatalog; @Autowired public void setComedyCatalog(@Genre("Comedy") MovieCatalog comedyCatalog) { this.comedyCatalog = comedyCatalog; } // ... } The next step is to provide the information on the candidate bean definitions. You can add <qualifier/> tags as sub-elements of the <bean/> tag and then specify the 'type' and 'value' to match your custom qualifier annotations. The type will be matched against the fully-qualified class name of the annotation, or as a convenience when there is no risk of conflicting names, you may use the 'short' class name. Both are demonstrated in the following example. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-conte <context:annotation-config/> <bean class="example.SimpleMovieCatalog"> <qualifier type="Genre" value="Action"/> <!-- inject any dependencies required by this bean --> </bean> <bean class="example.SimpleMovieCatalog"> Spring Framework (2.5.6) 97
  • 98. The IoC container <qualifier type="example.Genre" value="Comedy"/> <!-- inject any dependencies required by this bean --> </bean> <bean id="movieRecommender" class="example.MovieRecommender"/> </beans> In the next section, entitled Section 3.12, “Classpath scanning for managed components”, you will see an annotation-based alternative to providing the qualifier metadata in XML. Specifically, see: Section 3.12.6, “Providing qualifier metadata with annotations”. In some cases, it may be sufficient to use an annotation without a value. This may be useful when the annotation serves a more generic purpose and could be applied across several different types of dependencies. For example, you may provide an offline catalog that would be searched when no Internet connection is available. First define the simple annotation: @Target({ElementType.FIELD, ElementType.PARAMETER}) @Retention(RetentionPolicy.RUNTIME) @Qualifier public @interface Offline { } Then add the annotation to the field or property to be autowired: public class MovieRecommender { @Autowired @Offline private MovieCatalog offlineCatalog; // ... } Now the bean definition only needs a qualifier 'type': <bean class="example.SimpleMovieCatalog"> <qualifier type="Offline"/> <!-- inject any dependencies required by this bean --> </bean> It is also possible to define custom qualifier annotations that accept named attributes in addition to or instead of the simple 'value' attribute. If multiple attribute values are then specified on a field or parameter to be autowired, a bean definition must match all such attribute values to be considered an autowire candidate. As an example, consider the following annotation definition: @Target({ElementType.FIELD, ElementType.PARAMETER}) @Retention(RetentionPolicy.RUNTIME) @Qualifier public @interface MovieQualifier { String genre(); Format format(); } In this case Format is an enum: public enum Format { VHS, DVD, BLURAY } Spring Framework (2.5.6) 98
  • 99. The IoC container The fields to be autowired are annotated with the custom qualifier and include values for both attributes: 'genre' and 'format'. public class MovieRecommender { @Autowired @MovieQualifier(format=Format.VHS, genre="Action") private MovieCatalog actionVhsCatalog; @Autowired @MovieQualifier(format=Format.VHS, genre="Comedy") private MovieCatalog comedyVhsCatalog; @Autowired @MovieQualifier(format=Format.DVD, genre="Action") private MovieCatalog actionDvdCatalog; @Autowired @MovieQualifier(format=Format.BLURAY, genre="Comedy") private MovieCatalog comedyBluRayCatalog; // ... } Finally, the bean definitions should contain matching qualifier values. This example also demonstrates that bean meta attributes may be used instead of the <qualifier/> sub-elements. If available, the <qualifier/> and its attributes would take precedence, but the autowiring mechanism will fallback on the values provided within the <meta/> tags if no such qualifier is present (see the last 2 bean definitions below). <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-conte <context:annotation-config/> <bean class="example.SimpleMovieCatalog"> <qualifier type="MovieQualifier"> <attribute key="format" value="VHS"/> <attribute key="genre" value="Action"/> </qualifier> <!-- inject any dependencies required by this bean --> </bean> <bean class="example.SimpleMovieCatalog"> <qualifier type="MovieQualifier"> <attribute key="format" value="VHS"/> <attribute key="genre" value="Comedy"/> </qualifier> <!-- inject any dependencies required by this bean --> </bean> <bean class="example.SimpleMovieCatalog"> <meta key="format" value="DVD"/> <meta key="genre" value="Action"/> <!-- inject any dependencies required by this bean --> </bean> <bean class="example.SimpleMovieCatalog"> <meta key="format" value="BLURAY"/> <meta key="genre" value="Comedy"/> <!-- inject any dependencies required by this bean --> </bean> </beans> 3.11.4. CustomAutowireConfigurer Spring Framework (2.5.6) 99
  • 100. The IoC container The CustomAutowireConfigurer is a BeanFactoryPostProcessor that enables further customization of the autowiring process. Specifically, it allows you to register your own custom qualifier annotation types even if they are not themselves annotated with Spring's @Qualifier annotation. <bean id="customAutowireConfigurer" class="org.springframework.beans.factory.annotation.CustomAutowireConfigurer <property name="customQualifierTypes"> <set> <value>example.CustomQualifier</value> </set> </property> </bean> Note that the particular implementation of AutowireCandidateResolver that will be activated for the application context depends upon the Java version. If running on less than Java 5, the qualifier annotations are not supported, and therefore autowire candidates are solely determined by the 'autowire-candidate' value of each bean definition as well as any 'default-autowire-candidates' pattern(s) available on the <beans/> element. If running on Java 5 or greater, the presence of @Qualifier annotations or any custom annotations registered with the CustomAutowireConfigurer will also play a role. Regardless of the Java version, the determination of a "primary" candidate (when multiple beans qualify as autowire candidates) is the same: if exactly one bean definition among the candidates has a 'primary' attribute set to 'true', it will be selected. 3.11.5. @Resource Spring also supports injection using the JSR-250 @Resource annotation on fields or bean property setter methods. This is a common pattern found in Java EE 5 and Java 6 (e.g. in JSF 1.2 managed beans or JAX-WS 2.0 endpoints), which Spring supports for Spring-managed objects as well. @Resource takes a 'name' attribute, and by default Spring will interpret that value as the bean name to be injected. In other words, it follows by-name semantics as demonstrated in this example: public class SimpleMovieLister { private MovieFinder movieFinder; @Resource(name="myMovieFinder") public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } } If no name is specified explicitly, then the default name will be derived from the name of the field or setter method: In case of a field, it will simply be equivalent to the field name; in case of a setter method, it will be equivalent to the bean property name. So the following example is going to have the bean with name "movieFinder" injected into its setter method: public class SimpleMovieLister { private MovieFinder movieFinder; @Resource public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } } Spring Framework (2.5.6) 100
  • 101. The IoC container Note The name provided with the annotation will be resolved as a bean name by the BeanFactory of which the CommonAnnotationBeanPostProcessor is aware. Note that the names may be resolved via JNDI if Spring's SimpleJndiBeanFactory is configured explicitly. However, it is recommended to rely on the default behavior and simply use Spring's JNDI lookup capabilities to preserve the level of indirection. Similar to @Autowired, @Resource may fall back to standard bean type matches (i.e. find a primary type match instead of a specific named bean) as well as resolve well-known "resolvable dependencies": the BeanFactory interface, the ApplicationContext interface, the ResourceLoader interface, the ApplicationEventPublisher interface and the MessageSource interface. Note that this only applies to @Resource usage with no explicit name specified! So the following example will have its customerPreferenceDao field looking for a bean with name "customerPreferenceDao" first, then falling back to a primary type match for the type CustomerPreferenceDao. The "context" field will simply be injected based on the known resolvable dependency type ApplicationContext. public class MovieRecommender { @Resource private CustomerPreferenceDao customerPreferenceDao; @Resource private ApplicationContext context; public MovieRecommender() { } // ... } 3.11.6. @PostConstruct and @PreDestroy The CommonAnnotationBeanPostProcessor not only recognizes the @Resource annotation but also the JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support for these annotations offers yet another alternative to those described in the sections on initialization callbacks and destruction callbacks. Provided that the CommonAnnotationBeanPostProcessor is registered within the Spring ApplicationContext, a method carrying one of these annotations will be invoked at the same point in the lifecycle as the corresponding Spring lifecycle interface's method or explicitly declared callback method. In the example below, the cache will be pre-populated upon initialization and cleared upon destruction. public class CachingMovieLister { @PostConstruct public void populateMovieCache() { // populates the movie cache upon initialization... } @PreDestroy public void clearMovieCache() { // clears the movie cache upon destruction... } } Note Spring Framework (2.5.6) 101
  • 102. The IoC container For details regarding the effects of combining various lifecycle mechanisms, see Section 3.5.1.4, “Combining lifecycle mechanisms”. 3.12. Classpath scanning for managed components Thus far most of the examples within this chapter have used XML for specifying the configuration metadata that produces each BeanDefinition within the Spring container. The previous section (Section 3.11, “Annotation-based configuration”) demonstrated the possibility of providing a considerable amount of the configuration metadata using source-level annotations. Even in those examples however, the "base" bean definitions were explicitly defined in the XML file while the annotations were driving the dependency injection only. The current section introduces an option for implicitly detecting the candidate components by scanning the classpath and matching against filters. 3.12.1. @Component and further stereotype annotations Beginning with Spring 2.0, the @Repository annotation was introduced as a marker for any class that fulfills the role or stereotype of a repository (a.k.a. Data Access Object or DAO). Among the possibilities for leveraging such a marker is the automatic translation of exceptions as described in Section 12.6.4, “Exception Translation”. Spring 2.5 introduces further stereotype annotations: @Component, @Service and @Controller. @Component serves as a generic stereotype for any Spring-managed component; whereas, @Repository, @Service, and @Controller serve as specializations of @Component for more specific use cases (e.g., in the persistence, service, and presentation layers, respectively). What this means is that you can annotate your component classes with @Component, but by annotating them with @Repository, @Service, or @Controller instead, your classes are more properly suited for processing by tools or associating with aspects. For example, these stereotype annotations make ideal targets for pointcuts. Of course, it is also possible that @Repository, @Service, and @Controller may carry additional semantics in future releases of the Spring Framework. Thus, if you are making a decision between using @Component or @Service for your service layer, @Service is clearly the better choice. Similarly, as stated above, @Repository is already supported as a marker for automatic exception translation in your persistence layer. 3.12.2. Auto-detecting components Spring provides the capability of automatically detecting 'stereotyped' classes and registering corresponding BeanDefinitions with the ApplicationContext. For example, the following two classes are eligible for such autodetection: @Service public class SimpleMovieLister { private MovieFinder movieFinder; @Autowired public SimpleMovieLister(MovieFinder movieFinder) { this.movieFinder = movieFinder; } } @Repository public class JpaMovieFinder implements MovieFinder { // implementation elided for clarity } Spring Framework (2.5.6) 102
  • 103. The IoC container To autodetect these classes and register the corresponding beans requires the inclusion of the following element in XML where 'basePackage' would be a common parent package for the two classes (or alternatively a comma-separated list could be specified that included the parent package of each class). <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.xsd"> <context:component-scan base-package="org.example"/> </beans> Note Note that the scanning of classpath packages requires the presence of corresponding directory entries in the classpath. When building jars with Ant, make sure to not activate the files-only switch of the jar task! Furthermore, the AutowiredAnnotationBeanPostProcessor and CommonAnnotationBeanPostProcessor are both included implicitly when using the component-scan element. That means that the two components are autodetected and wired together - all without any bean configuration metadata provided in XML. Note The registration of those post-processors can be disabled by including the annotation-config attribute with a value of 'false'. 3.12.3. Using filters to customize scanning By default, classes annotated with @Component, @Repository, @Service, or @Controller (or classes annotated with a custom annotation that itself is annotated with @Component) are the only detected candidate components. However it is simple to modify and extend this behavior by applying custom filters. These can be added as either include-filter or exclude-filter sub-elements of the 'component-scan' element. Each filter element requires the 'type' and 'expression' attributes. Five filtering options exist as described below. Table 3.7. Filter Types Filter Type Example Expression Description annotation org.example.SomeAnnotation An annotation to be present at the type level in target components. assignable org.example.SomeClass A class (or interface) that the target components are assignable to (extend/implement). aspectj org.example..*Service+ An AspectJ type expression to be matched by the target components. regex org.example.Default.* A regex expression to be matched by the target components' class names. Spring Framework (2.5.6) 103
  • 104. The IoC container Filter Type Example Expression Description custom org.example.MyCustomTypeFilter A custom implementation of the org.springframework.core.type.TypeFilter interface. Find below an example of the XML configuration for ignoring all @Repository annotations and using "stub" repositories instead. <beans ...> <context:component-scan base-package="org.example"> <context:include-filter type="regex" expression=".*Stub.*Repository"/> <context:exclude-filter type="annotation" expression="org.springframework.stereotype.Repository"/> </context:component-scan> </beans> Note It is also possible to disable the default filters by providing use-default-filters="false" as an attribute of the <component-scan/> element. This will in effect disable automatic detection of classes annotated with @Component, @Repository, @Service, or @Controller. 3.12.4. Naming autodetected components When a component is autodetected as part of the scanning process, its bean name will be generated by the BeanNameGenerator strategy known to that scanner. By default, any Spring 'stereotype' annotation (@Component, @Repository, @Service, and @Controller) that contains a name value will thereby provide that name to the corresponding bean definition. If such an annotation contains no name value or for any other detected component (such as those discovered due to custom filters), the default bean name generator will return the uncapitalized non-qualified class name. For example, if the following two components were detected, the names would be 'myMovieLister' and 'movieFinderImpl': @Service("myMovieLister") public class SimpleMovieLister { // ... } @Repository public class MovieFinderImpl implements MovieFinder { // ... } Note If you don't want to rely on the default bean-naming strategy, you may provide a custom bean-naming strategy. First, implement the BeanNameGenerator interface, and be sure to include a default no-arg constructor. Then, provide the fully-qualified class name when configuring the scanner: <beans ...> <context:component-scan base-package="org.example" name-generator="org.example.MyNameGenerator" /> Spring Framework (2.5.6) 104
  • 105. The IoC container </beans> As a general rule, consider specifying the name with the annotation whenever other components may be making explicit references to it. On the other hand, the auto-generated names are adequate whenever the container is responsible for wiring. 3.12.5. Providing a scope for autodetected components As with Spring-managed components in general, the default and by far most common scope is 'singleton'. However, there are times when other scopes are needed. Therefore Spring 2.5 introduces a new @Scope annotation as well. Simply provide the name of the scope within the annotation, such as: @Scope("prototype") @Repository public class MovieFinderImpl implements MovieFinder { // ... } Note If you would like to provide a custom strategy for scope resolution rather than relying on the annotation-based approach, implement the ScopeMetadataResolver interface, and be sure to include a default no-arg constructor. Then, provide the fully-qualified class name when configuring the scanner: <beans ...> <context:component-scan base-package="org.example" scope-resolver="org.example.MyScopeResolver" /> </beans> When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped objects. The reasoning is described in detail within the section entitled Section 3.4.4.5, “Scoped beans as dependencies”. For this purpose, a scoped-proxy attribute is available on the 'component-scan' element. The three possible values are: 'no', 'interfaces', and 'targetClass'. For example, the following configuration will result in standard JDK dynamic proxies: <beans ...> <context:component-scan base-package="org.example" scoped-proxy="interfaces" /> </beans> 3.12.6. Providing qualifier metadata with annotations The @Qualifier annotation was introduced in the section above entitled Section 3.11.3, “Fine-tuning annotation-based autowiring with qualifiers”. The examples in that section demonstrated use of the @Qualifier annotation as well as custom qualifier annotations to provide fine-grained control when resolving autowire candidates. Since those examples were based on XML bean definitions, the qualifier metadata was provided on the candidate bean definitions using the 'qualifier' or 'meta' sub-elements of the 'bean' element in the XML. When relying upon classpath scanning for autodetection of components, then the qualifier metadata may be Spring Framework (2.5.6) 105
  • 106. The IoC container provided with type-level annotations on the candidate class. The following three examples demonstrate this technique. @Component @Qualifier("Action") public class ActionMovieCatalog implements MovieCatalog { // ... } @Component @Genre("Action") public class ActionMovieCatalog implements MovieCatalog { // ... } @Component @Offline public class CachingMovieCatalog implements MovieCatalog { // ... } Note As with most of the annotation-based alternatives, keep in mind that the annotation metadata is bound to the class definition itself, while the use of XML allows for multiple beans of the same type to provide variations in their qualifier metadata since that metadata is provided per-instance rather than per-class. 3.13. Registering a LoadTimeWeaver The context namespace introduced in Spring 2.5 provides a load-time-weaver element. <beans ...> <context:load-time-weaver/> </beans> Adding this element to an XML-based Spring configuration file activates a Spring LoadTimeWeaver for the ApplicationContext. Any bean within that ApplicationContext may implement LoadTimeWeaverAware thereby receiving a reference to the load-time weaver instance. This is particularly useful in combination with Spring's JPA support where load-time weaving may be necessary for JPA class transformation. Consult the LocalContainerEntityManagerFactoryBean Javadoc for more detail. For more on AspectJ load-time weaving, see Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework”. Spring Framework (2.5.6) 106
  • 107. Chapter 4. Resources 4.1. Introduction Java's standard java.net.URL class and standard handlers for various URL prefixes unfortunately are not quite adequate enough for all access to low-level resources. For example, there is no standardized URL implementation that may be used to access a resource that needs to be obtained from the classpath, or relative to a ServletContext. While it is possible to register new handlers for specialized URL prefixes (similar to existing handlers for prefixes such as http:), this is generally quite complicated, and the URL interface still lacks some desirable functionality, such as a method to check for the existence of the resource being pointed to. 4.2. The Resource interface Spring's Resource interface is meant to be a more capable interface for abstracting access to low-level resources. public interface Resource extends InputStreamSource { boolean exists(); boolean isOpen(); URL getURL() throws IOException; File getFile() throws IOException; Resource createRelative(String relativePath) throws IOException; String getFilename(); String getDescription(); } public interface InputStreamSource { InputStream getInputStream() throws IOException; } Some of the most important methods from the Resource interface are: • getInputStream(): locates and opens the resource, returning an InputStream for reading from the resource. It is expected that each invocation returns a fresh InputStream. It is the responsibility of the caller to close the stream. • exists(): returns a boolean indicating whether this resource actually exists in physical form. • isOpen(): returns a boolean indicating whether this resource represents a handle with an open stream. If true, the InputStream cannot be read multiple times, and must be read once only and then closed to avoid resource leaks. Will be false for all usual resource implementations, with the exception of InputStreamResource. • getDescription(): returns a description for this resource, to be used for error output when working with the resource. This is often the fully qualified file name or the actual URL of the resource. Other methods allow you to obtain an actual URL or File object representing the resource (if the underlying Spring Framework (2.5.6) 107
  • 108. Resources implementation is compatible, and supports that functionality). The Resource abstraction is used extensively in Spring itself, as an argument type in many method signatures when a resource is needed. Other methods in some Spring APIs (such as the constructors to various ApplicationContext implementations), take a String which in unadorned or simple form is used to create a Resource appropriate to that context implementation, or via special prefixes on the String path, allow the caller to specify that a specific Resource implementation must be created and used. While the Resource interface is used a lot with Spring and by Spring, it's actually very useful to use as a general utility class by itself in your own code, for access to resources, even when your code doesn't know or care about any other parts of Spring. While this couples your code to Spring, it really only couples it to this small set of utility classes, which are serving as a more capable replacement for URL, and can be considered equivalent to any other library you would use for this purpose. It is important to note that the Resource abstraction does not replace functionality: it wraps it where possible. For example, a UrlResource wraps a URL, and uses the wrapped URL to do its work. 4.3. Built-in Resource implementations There are a number of Resource implementations that come supplied straight out of the box in Spring: 4.3.1. UrlResource The UrlResource wraps a java.net.URL, and may be used to access any object that is normally accessible via a URL, such as files, an HTTP target, an FTP target, etc. All URLs have a standardized String representation, such that appropriate standardized prefixes are used to indicate one URL type from another. This includes file: for accessing filesystem paths, http: for accessing resources via the HTTP protocol, ftp: for accessing resources via FTP, etc. A UrlResource is created by Java code explicitly using the UrlResource constructor, but will often be created implicitly when you call an API method which takes a String argument which is meant to represent a path. For the latter case, a JavaBeans PropertyEditor will ultimately decide which type of Resource to create. If the path string contains a few well-known (to it, that is) prefixes such as classpath:, it will create an appropriate specialized Resource for that prefix. However, if it doesn't recognize the prefix, it will assume the this is just a standard URL string, and will create a UrlResource. 4.3.2. ClassPathResource This class represents a resource which should be obtained from the classpath. This uses either the thread context class loader, a given class loader, or a given class for loading resources. This Resource implementation supports resolution as java.io.File if the class path resource resides in the file system, but not for classpath resources which reside in a jar and have not been expanded (by the servlet engine, or whatever the environment is) to the filesystem. To address this the various Resource implementations always support resolution as a java.net.URL. A ClassPathResource is created by Java code explicitly using the ClassPathResource constructor, but will often be created implicitly when you call an API method which takes a String argument which is meant to represent a path. For the latter case, a JavaBeans PropertyEditor will recognize the special prefix classpath:on the string path, and create a ClassPathResource in that case. Spring Framework (2.5.6) 108
  • 109. Resources 4.3.3. FileSystemResource This is a Resource implementation for java.io.File handles. It obviously supports resolution as a File, and as a URL. 4.3.4. ServletContextResource This is a Resource implementation for ServletContext resources, interpreting relative paths within the relevant web application's root directory. This always supports stream access and URL access, but only allows java.io.File access when the web application archive is expanded and the resource is physically on the filesystem. Whether or not it's expanded and on the filesystem like this, or accessed directly from the JAR or somewhere else like a DB (it's conceivable) is actually dependent on the Servlet container. 4.3.5. InputStreamResource A Resource implementation for a given InputStream. This should only be used if no specific Resource implementation is applicable. In particular, prefer ByteArrayResource or any of the file-based Resource implementations where possible. In contrast to other Resource implementations, this is a descriptor for an already opened resource - therefore returning true from isOpen(). Do not use it if you need to keep the resource descriptor somewhere, or if you need to read a stream multiple times. 4.3.6. ByteArrayResource This is a Resource implementation for a given byte array. It creates a ByteArrayInputStream for the given byte array. It's useful for loading content from any given byte array, without having to resort to a single-use InputStreamResource. 4.4. The ResourceLoader The ResourceLoader interface is meant to be implemented by objects that can return (i.e. load) Resource instances. public interface ResourceLoader { Resource getResource(String location); } All application contexts implement the ResourceLoader interface, and therefore all application contexts may be used to obtain Resource instances. When you call getResource() on a specific application context, and the location path specified doesn't have a specific prefix, you will get back a Resource type that is appropriate to that particular application context. For example, assume the following snippet of code was executed against a ClassPathXmlApplicationContext instance: Resource template = ctx.getResource("some/resource/path/myTemplate.txt); Spring Framework (2.5.6) 109
  • 110. Resources What would be returned would be a ClassPathResource; if the same method was executed against a FileSystemXmlApplicationContext instance, you'd get back a FileSystemResource. For a WebApplicationContext, you'd get back a ServletContextResource, and so on. As such, you can load resources in a fashion appropriate to the particular application context. On the other hand, you may also force ClassPathResource to be used, regardless of the application context type, by specifying the special classpath: prefix: Resource template = ctx.getResource("classpath:some/resource/path/myTemplate.txt); Similarly, one can force a UrlResource to be used by specifying any of the standard java.net.URL prefixes: Resource template = ctx.getResource("file:/some/resource/path/myTemplate.txt); Resource template = ctx.getResource("http://myhost.com/resource/path/myTemplate.txt); The following table summarizes the strategy for converting Strings to Resources: Table 4.1. Resource strings Prefix Example Explanation classpath: classpath:com/myapp/config.xml Loaded from the classpath. file: file:/data/config.xml Loaded as a URL, from the filesystem. a http: http://myserver/logo.png Loaded as a URL. (none) /data/config.xml Depends on the underlying ApplicationContext. a But see also the section entitled Section 4.7.3, “FileSystemResource caveats”. 4.5. The ResourceLoaderAware interface The ResourceLoaderAware interface is a special marker interface, identifying objects that expect to be provided with a ResourceLoader reference. public interface ResourceLoaderAware { void setResourceLoader(ResourceLoader resourceLoader); } When a class implements ResourceLoaderAware and is deployed into an application context (as a Spring-managed bean), it is recognized as ResourceLoaderAware by the application context. The application context will then invoke the setResourceLoader(ResourceLoader), supplying itself as the argument (remember, all application contexts in Spring implement the ResourceLoader interface). Spring Framework (2.5.6) 110
  • 111. Resources Of course, since an ApplicationContext is a ResourceLoader, the bean could also implement the ApplicationContextAware interface and use the supplied application context directly to load resources, but in general, it's better to use the specialized ResourceLoader interface if that's all that's needed. The code would just be coupled to the resource loading interface, which can be considered a utility interface, and not the whole Spring ApplicationContext interface. As of Spring 2.5, you can rely upon autowiring of the ResourceLoader as an alternative to implementing the ResourceLoaderAware interface. The "traditional" constructor and byType autowiring modes (as described in the section entitled Section 3.3.5, “Autowiring collaborators”) are now capable of providing a dependency of type ResourceLoader for either a constructor argument or setter method parameter respectively. For more flexibility (including the ability to autowire fields and multiple parameter methods), consider using the new annotation-based autowiring features. In that case, the ResourceLoader will be autowired into a field, constructor argument, or method parameter that is expecting the ResourceLoader type as long as the field, constructor, or method in question carries the @Autowired annotation. For more information, see the section entitled Section 3.11.2, “@Autowired”. 4.6. Resources as dependencies If the bean itself is going to determine and supply the resource path through some sort of dynamic process, it probably makes sense for the bean to use the ResourceLoader interface to load resources. Consider as an example the loading of a template of some sort, where the specific resource that is needed depends on the role of the user. If the resources are static, it makes sense to eliminate the use of the ResourceLoader interface completely, and just have the bean expose the Resource properties it needs, and expect that they will be injected into it. What makes it trivial to then inject these properties, is that all application contexts register and use a special JavaBeans PropertyEditor which can convert String paths to Resource objects. So if myBean has a template property of type Resource, it can be configured with a simple string for that resource, as follows: <bean id="myBean" class="..."> <property name="template" value="some/resource/path/myTemplate.txt"/> </bean> Note that the resource path has no prefix, so because the application context itself is going to be used as the ResourceLoader, the resource itself will be loaded via a ClassPathResource, FileSystemResource, or ServletContextResource (as appropriate) depending on the exact type of the context. If there is a need to force a specific Resource type to be used, then a prefix may be used. The following two examples show how to force a ClassPathResource and a UrlResource (the latter being used to access a filesystem file). <property name="template" value="classpath:some/resource/path/myTemplate.txt"> <property name="template" value="file:/some/resource/path/myTemplate.txt"/> 4.7. Application contexts and Resource paths 4.7.1. Constructing application contexts Spring Framework (2.5.6) 111
  • 112. Resources An application context constructor (for a specific application context type) generally takes a string or array of strings as the location path(s) of the resource(s) such as XML files that make up the definition of the context. When such a location path doesn't have a prefix, the specific Resource type built from that path and used to load the bean definitions, depends on and is appropriate to the specific application context. For example, if you create a ClassPathXmlApplicationContext as follows: ApplicationContext ctx = new ClassPathXmlApplicationContext("conf/appContext.xml"); The bean definitions will be loaded from the classpath, as a ClassPathResource will be used. But if you create a FileSystemXmlApplicationContext as follows: ApplicationContext ctx = new FileSystemXmlApplicationContext("conf/appContext.xml"); The bean definition will be loaded from a filesystem location, in this case relative to the current working directory. Note that the use of the special classpath prefix or a standard URL prefix on the location path will override the default type of Resource created to load the definition. So this FileSystemXmlApplicationContext... ApplicationContext ctx = new FileSystemXmlApplicationContext("classpath:conf/appContext.xml"); ... will actually load its bean definitions from the classpath. However, it is still a FileSystemXmlApplicationContext. If it is subsequently used as a ResourceLoader, any unprefixed paths will still be treated as filesystem paths. 4.7.1.1. Constructing ClassPathXmlApplicationContext instances - shortcuts The ClassPathXmlApplicationContext exposes a number of constructors to enable convenient instantiation. The basic idea is that one supplies merely a string array containing just the filenames of the XML files themselves (without the leading path information), and one also supplies a Class; the ClassPathXmlApplicationContext will derive the path information from the supplied class. An example will hopefully make this clear. Consider a directory layout that looks like this: com/ foo/ services.xml daos.xml MessengerService.class A ClassPathXmlApplicationContext instance composed of the beans defined in the 'services.xml' and 'daos.xml' could be instantiated like so... ApplicationContext ctx = new ClassPathXmlApplicationContext( new String[] {"services.xml", "daos.xml"}, MessengerService.class); Please do consult the Javadocs for the ClassPathXmlApplicationContext class for details of the various constructors. 4.7.2. Wildcards in application context constructor resource paths Spring Framework (2.5.6) 112
  • 113. Resources The resource paths in application context constructor values may be a simple path (as shown above) which has a one-to-one mapping to a target Resource, or alternately may contain the special "classpath*:" prefix and/or internal Ant-style regular expressions (matched using Spring's PathMatcher utility). Both of the latter are effectively wildcards One use for this mechanism is when doing component-style application assembly. All components can 'publish' context definition fragments to a well-known location path, and when the final application context is created using the same path prefixed via classpath*:, all component fragments will be picked up automatically. Note that this wildcarding is specific to use of resource paths in application context constructors (or when using the PathMatcher utility class hierarchy directly), and is resolved at construction time. It has nothing to do with the Resource type itself. It's not possible to use the classpath*: prefix to construct an actual Resource, as a resource points to just one resource at a time. 4.7.2.1. Ant-style Patterns When the path location contains an Ant-style pattern, for example: /WEB-INF/*-context.xml com/mycompany/**/applicationContext.xml file:C:/some/path/*-context.xml classpath:com/mycompany/**/applicationContext.xml ... the resolver follows a more complex but defined procedure to try to resolve the wildcard. It produces a Resource for the path up to the last non-wildcard segment and obtains a URL from it. If this URL is not a "jar:" URL or container-specific variant (e.g. "zip:" in WebLogic, "wsjar" in WebSphere, etc.), then a java.io.File is obtained from it and used to resolve the wildcard by traversing the filesystem. In the case of a jar URL, the resolver either gets a java.net.JarURLConnection from it or manually parses the jar URL and then traverses the contents of the jar file to resolve the wildcards. 4.7.2.1.1. Implications on portability If the specified path is already a file URL (either explicitly, or implicitly because the base ResourceLoader is a filesystem one, then wildcarding is guaranteed to work in a completely portable fashion. If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path segment URL via a Classloader.getResource() call. Since this is just a node of the path (not the file at the end) it is actually undefined (in the ClassLoader Javadocs) exactly what sort of a URL is returned in this case. In practice, it is always a java.io.File representing the directory, where the classpath resource resolves to a filesystem location, or a jar URL of some sort, where the classpath resource resolves to a jar location. Still, there is a portability concern on this operation. If a jar URL is obtained for the last non-wildcard segment, the resolver must be able to get a java.net.JarURLConnection from it, or manually parse the jar URL, to be able to walk the contents of the jar, and resolve the wildcard. This will work in most environments, but will fail in others, and it is strongly recommended that the wildcard resolution of resources coming from jars be thoroughly tested in your specific environment before you rely on it. 4.7.2.2. The classpath*: prefix When constructing an XML-based application context, a location string may use the special classpath*: prefix: ApplicationContext ctx = new ClassPathXmlApplicationContext("classpath*:conf/appContext.xml"); Spring Framework (2.5.6) 113
  • 114. Resources This special prefix specifies that all classpath resources that match the given name must be obtained (internally, this essentially happens via a ClassLoader.getResources(...) call), and then merged to form the final application context definition. Classpath*: portability The wildcard classpath relies on the getResources() method of the underlying classloader. As most application servers nowadays supply their own classloader implementation, the behavior might differ especially when dealing with jar files. A simple test to check if classpath* works is to use the classloader to load a file from within a jar on the classpath: getClass().getClassLoader().getResources("<someFileInsideTheJar>"). Try this test with files that have the same name but are placed inside two different locations. In case an inappropriate result is returned, check the application server documentation for settings that might affect the classloader behavior. The "classpath*:" prefix can also be combined with a PathMatcher pattern in the rest of the location path, for example "classpath*:META-INF/*-beans.xml". In this case, the resolution strategy is fairly simple: a ClassLoader.getResources() call is used on the last non-wildcard path segment to get all the matching resources in the class loader hierarchy, and then off each resource the same PathMatcher resoltion strategy described above is used for the wildcard subpath. 4.7.2.3. Other notes relating to wildcards Please note that "classpath*:" when combined with Ant-style patterns will only work reliably with at least one root directory before the pattern starts, unless the actual target files reside in the file system. This means that a pattern like "classpath*:*.xml" will not retrieve files from the root of jar files but rather only from the root of expanded directories. This originates from a limitation in the JDK's ClassLoader.getResources() method which only returns file system locations for a passed-in empty string (indicating potential roots to search). Ant-style patterns with "classpath:" resources are not guaranteed to find matching resources if the root package to search is available in multiple class path locations. This is because a resource such as com/mycompany/package1/service-context.xml may be in only one location, but when a path such as classpath:com/mycompany/**/service-context.xml is used to try to resolve it, the resolver will work off the (first) URL returned by getResource("com/mycompany");. If this base package node exists in multiple classloader locations, the actual end resource may not be underneath. Therefore, preferably, use "classpath*:" with the same Ant-style pattern in such a case, which will search all class path locations that contain the root package. 4.7.3. FileSystemResource caveats A FileSystemResource that is not attached to a FileSystemApplicationContext (that is, a FileSystemApplicationContext is not the actual ResourceLoader) will treat absolute vs. relative paths as you would expect. Relative paths are relative to the current working directory, while absolute paths are relative to the root of the filesystem. Spring Framework (2.5.6) 114
  • 115. Resources For backwards compatibility (historical) reasons however, this changes when the FileSystemApplicationContext is the ResourceLoader. The FileSystemApplicationContext simply forces all attached FileSystemResource instances to treat all location paths as relative, whether they start with a leading slash or not. In practice, this means the following are equivalent: ApplicationContext ctx = new FileSystemXmlApplicationContext("conf/context.xml"); ApplicationContext ctx = new FileSystemXmlApplicationContext("/conf/context.xml"); As are the following: (Even though it would make sense for them to be different, as one case is relative and the other absolute.) FileSystemXmlApplicationContext ctx = ...; ctx.getResource("some/resource/path/myTemplate.txt"); FileSystemXmlApplicationContext ctx = ...; ctx.getResource("/some/resource/path/myTemplate.txt"); In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths with FileSystemResource / FileSystemXmlApplicationContext, and just force the use of a UrlResource, by using the file: URL prefix. // actual context type doesn't matter, the Resource will always be UrlResource ctx.getResource("file:/some/resource/path/myTemplate.txt"); // force this FileSystemXmlApplicationContext to load its definition via a UrlResource ApplicationContext ctx = new FileSystemXmlApplicationContext("file:/conf/context.xml"); Spring Framework (2.5.6) 115
  • 116. Chapter 5. Validation, Data-binding, the BeanWrapper, and PropertyEditors 5.1. Introduction There are pros and cons for considering validation as business logic, and Spring offers a design for validation (and data binding) that does not exclude either one of them. Specifically validation should not be tied to the web tier, should be easy to localize and it should be possible to plug in any validator available. Considering the above, Spring has come up with a Validator interface that is both basic and eminently usable in every layer of an application. Data binding is useful for allowing user input to be dynamically bound to the domain model of an application (or whatever objects you use to process user input). Spring provides the so-called DataBinder to do exactly that. The Validator and the DataBinder make up the validation package, which is primarily used in but not limited to the MVC framework. The BeanWrapper is a fundamental concept in the Spring Framework and is used in a lot of places. However, you probably will not ever have the need to use the BeanWrapper directly. Because this is reference documentation however, we felt that some explanation might be in order. We're explaining the BeanWrapper in this chapter since if you were going to use it at all, you would probably do so when trying to bind data to objects, which is strongly related to the BeanWrapper. Spring uses PropertyEditors all over the place. The concept of a PropertyEditor is part of the JavaBeans specification. Just as the BeanWrapper, it's best to explain the use of PropertyEditors in this chapter as well, since it's closely related to the BeanWrapper and the DataBinder. 5.2. Validation using Spring's Validator interface Spring's features a Validator interface that you can use to validate objects. The Validator interface works using an Errors object so that while validating, validators can report validation failures to the Errors object. Let's consider a small data object: public class Person { private String name; private int age; // the usual getters and setters... } We're going to provide validation behavior for the Person class by implementing the following two methods of the org.springframework.validation.Validator interface: • supports(Class) - Can this Validator validate instances of the supplied Class? • validate(Object, org.springframework.validation.Errors) - validates the given object and in case of validation errors, registers those with the given Errors object Implementing a Validator is fairly straightforward, especially when you know of the ValidationUtils helper class that the Spring Framework also provides. Spring Framework (2.5.6) 116
  • 117. Validation, Data-binding, the BeanWrapper, and public class PersonValidator implements Validator { /** * This Validator validates just Person instances */ public boolean supports(Class clazz) { return Person.class.equals(clazz); } public void validate(Object obj, Errors e) { ValidationUtils.rejectIfEmpty(e, "name", "name.empty"); Person p = (Person) obj; if (p.getAge() < 0) { e.rejectValue("age", "negativevalue"); } else if (p.getAge() > 110) { e.rejectValue("age", "too.darn.old"); } } } As you can see, the static rejectIfEmpty(..) method on the ValidationUtils class is used to reject the 'name' property if it is null or the empty string. Have a look at the Javadoc for the ValidationUtils class to see what functionality it provides besides the example shown previously. While it is certainly possible to implement a single Validator class to validate each of the nested objects in a rich object, it may be better to encapsulate the validation logic for each nested class of object in its own Validator implementation. A simple example of a 'rich' object would be a Customer that is composed of two String properties (a first and second name) and a complex Address object. Address objects may be used independently of Customer objects, and so a distinct AddressValidator has been implemented. If you want your CustomerValidator to reuse the logic contained within the AddressValidator class without recourse to copy-n-paste you can dependency-inject or instantiate an AddressValidator within your CustomerValidator, and use it like so: public class CustomerValidator implements Validator { private final Validator addressValidator; public CustomerValidator(Validator addressValidator) { if (addressValidator == null) { throw new IllegalArgumentException("The supplied [Validator] is required and must not be null."); } if (!addressValidator.supports(Address.class)) { throw new IllegalArgumentException( "The supplied [Validator] must support the validation of [Address] instances."); } this.addressValidator = addressValidator; } /** * This Validator validates Customer instances, and any subclasses of Customer too */ public boolean supports(Class clazz) { return Customer.class.isAssignableFrom(clazz); } public void validate(Object target, Errors errors) { ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName", "field.required"); ValidationUtils.rejectIfEmptyOrWhitespace(errors, "surname", "field.required"); Customer customer = (Customer) target; try { errors.pushNestedPath("address"); ValidationUtils.invokeValidator(this.addressValidator, customer.getAddress(), errors); } finally { errors.popNestedPath(); } } } Spring Framework (2.5.6) 117
  • 118. PropertyEditors Validation errors are reported to the Errors object passed to the validator. In case of Spring Web MVC you can use <spring:bind/> tag to inspect the error messages, but of course you can also inspect the errors object yourself. More information about the methods it offers can be found from the Javadoc. 5.3. Resolving codes to error messages We've talked about databinding and validation. Outputting messages corresponding to validation errors is the last thing we need to discuss. In the example we've shown above, we rejected the name and the age field. If we're going to output the error messages by using a MessageSource, we will do so using the error code we've given when rejecting the field ('name' and 'age' in this case). When you call (either directly, or indirectly, using for example the ValidationUtils class) rejectValue or one of the other reject methods from the Errors interface, the underlying implementation will not only register the code you've passed in, but also a number of additional error codes. What error codes it registers is determined by the MessageCodesResolver that is used. By default, the DefaultMessageCodesResolver is used, which for example not only registers a message with the code you gave, but also messages that include the field name you passed to the reject method. So in case you reject a field using rejectValue("age", "too.darn.old"), apart from the too.darn.old code, Spring will also register too.darn.old.age and too.darn.old.age.int (so the first will include the field name and the second will include the type of the field); this is done as a convenience to aid developers in targeting error messages and suchlike. More information on the MessageCodesResolver and the default strategy can be found online with the Javadocs for MessageCodesResolver and DefaultMessageCodesResolver respectively. 5.4. Bean manipulation and the BeanWrapper The org.springframework.beans package adheres to the JavaBeans standard provided by Sun. A JavaBean is simply a class with a default no-argument constructor, which follows a naming convention where (by way of an example) a property named bingoMadness would have a setter method setBingoMadness(..) and a getter method getBingoMadness(). For more information about JavaBeans and the specification, please refer to Sun's website ( java.sun.com/products/javabeans). One quite important class in the beans package is the BeanWrapper interface and its corresponding implementation (BeanWrapperImpl). As quoted from the Javadoc, the BeanWrapper offers functionality to set and get property values (individually or in bulk), get property descriptors, and to query properties to determine if they are readable or writable. Also, the BeanWrapper offers support for nested properties, enabling the setting of properties on sub-properties to an unlimited depth. Then, the BeanWrapper supports the ability to add standard JavaBeans PropertyChangeListeners and VetoableChangeListeners, without the need for supporting code in the target class. Last but not least, the BeanWrapper provides support for the setting of indexed properties. The BeanWrapper usually isn't used by application code directly, but by the DataBinder and the BeanFactory. The way the BeanWrapper works is partly indicated by its name: it wraps a bean to perform actions on that bean, like setting and retrieving properties. 5.4.1. Setting and getting basic and nested properties Setting and getting properties is done using the setPropertyValue(s) and getPropertyValue(s) methods that both come with a couple of overloaded variants. They're all described in more detail in the Javadoc Spring comes with. What's important to know is that there are a couple of conventions for indicating properties of an object. A couple of examples: Spring Framework (2.5.6) 118
  • 119. Validation, Data-binding, the BeanWrapper, and Table 5.1. Examples of properties Expression Explanation name Indicates the property name corresponding to the methods getName() or isName() and setName(..) account.name Indicates the nested property name of the property account corresponding e.g. to the methods getAccount().setName() or getAccount().getName() account[2] Indicates the third element of the indexed property account. Indexed properties can be of type array, list or other naturally ordered collection account[COMPANYNAME] Indicates the value of the map entry indexed by the key COMPANYNAME of the Map property account Below you'll find some examples of working with the BeanWrapper to get and set properties. (This next section is not vitally important to you if you're not planning to work with the BeanWrapper directly. If you're just using the DataBinder and the BeanFactory and their out-of-the-box implementation, you should skip ahead to the section about PropertyEditors.) Consider the following two classes: public class Company { private String name; private Employee managingDirector; public String getName() { return this.name; } public void setName(String name) { this.name = name; } public Employee getManagingDirector() { return this.managingDirector; } public void setManagingDirector(Employee managingDirector) { this.managingDirector = managingDirector; } } public class Employee { private String name; private float salary; public String getName() { return this.name; } public void setName(String name) { this.name = name; } public float getSalary() { return salary; } public void setSalary(float salary) { this.salary = salary; } } The following code snippets show some examples of how to retrieve and manipulate some of the properties of instantiated Companies and Employees: BeanWrapper company = BeanWrapperImpl(new Company()); Spring Framework (2.5.6) 119
  • 120. PropertyEditors // setting the company name.. company.setPropertyValue("name", "Some Company Inc."); // ... can also be done like this: PropertyValue value = new PropertyValue("name", "Some Company Inc."); company.setPropertyValue(value); // ok, let's create the director and tie it to the company: BeanWrapper jim = BeanWrapperImpl(new Employee()); jim.setPropertyValue("name", "Jim Stravinsky"); company.setPropertyValue("managingDirector", jim.getWrappedInstance()); // retrieving the salary of the managingDirector through the company Float salary = (Float) company.getPropertyValue("managingDirector.salary"); 5.4.2. Built-in PropertyEditor implementations Spring heavily uses the concept of PropertyEditors to effect the conversion between an Object and a String. If you think about it, it sometimes might be handy to be able to represent properties in a different way than the object itself. For example, a Date can be represented in a human readable way (as the String '2007-14-09'), while we're still able to convert the human readable form back to the original date (or even better: convert any date entered in a human readable form, back to Date objects). This behavior can be achieved by registering custom editors, of type java.beans.PropertyEditor. Registering custom editors on a BeanWrapper or alternately in a specific IoC container as mentioned in the previous chapter, gives it the knowledge of how to convert properties to the desired type. Read more about PropertyEditors in the Javadoc of the java.beans package provided by Sun. A couple of examples where property editing is used in Spring: • setting properties on beans is done using PropertyEditors. When mentioning java.lang.String as the value of a property of some bean you're declaring in XML file, Spring will (if the setter of the corresponding property has a Class-parameter) use the ClassEditor to try to resolve the parameter to a Class object. • parsing HTTP request parameters in Spring's MVC framework is done using all kinds of PropertyEditors that you can manually bind in all subclasses of the CommandController. Spring has a number of built-in PropertyEditors to make life easy. Each of those is listed below and they are all located in the org.springframework.beans.propertyeditors package. Most, but not all (as indicated below), are registered by default by BeanWrapperImpl. Where the property editor is configurable in some fashion, you can of course still register your own variant to override the default one: Table 5.2. Built-in PropertyEditors Class Explanation ByteArrayPropertyEditor Editor for byte arrays. Strings will simply be converted to their corresponding byte representations. Registered by default by BeanWrapperImpl. ClassEditor Parses Strings representing classes to actual classes and the other way around. When a class is not found, an IllegalArgumentException is thrown. Registered by default by BeanWrapperImpl. CustomBooleanEditor Customizable property editor for Boolean properties. Registered by default by BeanWrapperImpl, but, can be overridden by registering custom instance of it as custom editor. CustomCollectionEditor Property editor for Collections, converting any source Collection Spring Framework (2.5.6) 120
  • 121. Validation, Data-binding, the BeanWrapper, and Class Explanation to a given target Collection type. CustomDateEditor Customizable property editor for java.util.Date, supporting a custom DateFormat. NOT registered by default. Must be user registered as needed with appropriate format. CustomNumberEditor Customizable property editor for any Number subclass like Integer, Long, Float, Double. Registered by default by BeanWrapperImpl, but can be overridden by registering custom instance of it as a custom editor. FileEditor Capable of resolving Strings to java.io.File objects. Registered by default by BeanWrapperImpl. InputStreamEditor One-way property editor, capable of taking a text string and producing (via an intermediate ResourceEditor and Resource) an InputStream, so InputStream properties may be directly set as Strings. Note that the default usage will not close the InputStream for you! Registered by default by BeanWrapperImpl. LocaleEditor Capable of resolving Strings to Locale objects and vice versa (the String format is [language]_[country]_[variant], which is the same thing the toString() method of Locale provides). Registered by default by BeanWrapperImpl. PatternEditor Capable of resolving Strings to JDK 1.5 Pattern objects and vice versa. PropertiesEditor Capable of converting Strings (formatted using the format as defined in the Javadoc for the java.lang.Properties class) to Properties objects. Registered by default by BeanWrapperImpl. StringTrimmerEditor Property editor that trims Strings. Optionally allows transforming an empty string into a null value. NOT registered by default; must be user registered as needed. URLEditor Capable of resolving a String representation of a URL to an actual URL object. Registered by default by BeanWrapperImpl. Spring uses the java.beans.PropertyEditorManager to set the search path for property editors that might be needed. The search path also includes sun.bean.editors, which includes PropertyEditor implementations for types such as Font, Color, and most of the primitive types. Note also that the standard JavaBeans infrastructure will automatically discover PropertyEditor classes (without you having to register them explicitly) if they are in the same package as the class they handle, and have the same name as that class, with 'Editor' appended; for example, one could have the following class and package structure, which would be sufficient for the FooEditor class to be recognized and used as the PropertyEditor for Foo-typed properties. com chank pop Foo FooEditor // the PropertyEditor for the Foo class Note that you can also use the standard BeanInfo JavaBeans mechanism here as well (described in not-amazing-detail here). Find below an example of using the BeanInfo mechanism for explicitly registering Spring Framework (2.5.6) 121
  • 122. PropertyEditors one or more PropertyEditor instances with the properties of an associated class. com chank pop Foo FooBeanInfo // the BeanInfo for the Foo class Here is the Java source code for the referenced FooBeanInfo class. This would associate a CustomNumberEditor with the age property of the Foo class. public class FooBeanInfo extends SimpleBeanInfo { public PropertyDescriptor[] getPropertyDescriptors() { try { final PropertyEditor numberPE = new CustomNumberEditor(Integer.class, true); PropertyDescriptor ageDescriptor = new PropertyDescriptor("age", Foo.class) { public PropertyEditor createPropertyEditor(Object bean) { return numberPE; }; }; return new PropertyDescriptor[] { ageDescriptor }; } catch (IntrospectionException ex) { throw new Error(ex.toString()); } } } 5.4.2.1. Registering additional custom PropertyEditors When setting bean properties as a string value, a Spring IoC container ultimately uses standard JavaBeans PropertyEditors to convert these Strings to the complex type of the property. Spring pre-registers a number of custom PropertyEditors (for example, to convert a classname expressed as a string into a real Class object). Additionally, Java's standard JavaBeans PropertyEditor lookup mechanism allows a PropertyEditor for a class simply to be named appropriately and placed in the same package as the class it provides support for, to be found automatically. If there is a need to register other custom PropertyEditors, there are several mechanisms available. The most manual approach, which is not normally convenient or recommended, is to simply use the registerCustomEditor() method of the ConfigurableBeanFactory interface, assuming you have a BeanFactory reference. Another, slightly more convenient, mechanism is to use a special bean factory post-processor called CustomEditorConfigurer. Although bean factory post-processors can be used with BeanFactory implementations, the CustomEditorConfigurer has a nested property setup, so it is strongly recommended that it is used with the ApplicationContext, where it may be deployed in similar fashion to any other bean, and automatically detected and applied. Note that all bean factories and application contexts automatically use a number of built-in property editors, through their use of something called a BeanWrapper to handle property conversions. The standard property editors that the BeanWrapper registers are listed in the previous section. Additionally, ApplicationContexts also override or add an additional number of editors to handle resource lookups in a manner appropriate to the specific application context type. Standard JavaBeans PropertyEditor instances are used to convert property values expressed as strings to the actual complex type of the property. CustomEditorConfigurer, a bean factory post-processor, may be used to conveniently add support for additional PropertyEditor instances to an ApplicationContext. Consider a user class ExoticType, and another class DependsOnExoticType which needs ExoticType set as a property: Spring Framework (2.5.6) 122
  • 123. Validation, Data-binding, the BeanWrapper, and package example; public class ExoticType { private String name; public ExoticType(String name) { this.name = name; } } public class DependsOnExoticType { private ExoticType type; public void setType(ExoticType type) { this.type = type; } } When things are properly set up, we want to be able to assign the type property as a string, which a PropertyEditor will behind the scenes convert into an actual ExoticType instance: <bean id="sample" class="example.DependsOnExoticType"> <property name="type" value="aNameForExoticType"/> </bean> The PropertyEditor implementation could look similar to this: // converts string representation to ExoticType object package example; public class ExoticTypeEditor extends PropertyEditorSupport { private String format; public void setFormat(String format) { this.format = format; } public void setAsText(String text) { if (format != null && format.equals("upperCase")) { text = text.toUpperCase(); } ExoticType type = new ExoticType(text); setValue(type); } } Finally, we use CustomEditorConfigurer to register the new PropertyEditor with the ApplicationContext, which will then be able to use it as needed: <bean class="org.springframework.beans.factory.config.CustomEditorConfigurer"> <property name="customEditors"> <map> <entry key="example.ExoticType"> <bean class="example.ExoticTypeEditor"> <property name="format" value="upperCase"/> </bean> </entry> </map> </property> </bean> 5.4.2.1.1. Using PropertyEditorRegistrars Another mechanism for registering property editors with the Spring container is to create and use a Spring Framework (2.5.6) 123
  • 124. PropertyEditors PropertyEditorRegistrar. This interface is particularly useful when you need to use the same set of property editors in several different situations: write a corresponding registrar and reuse that in each case. PropertyEditorRegistrars work in conjunction with an interface called PropertyEditorRegistry, an interface that is implemented by the Spring BeanWrapper (and DataBinder). PropertyEditorRegistrars are particularly convenient when used in conjunction with the CustomEditorConfigurer (introduced here), which exposes a property called setPropertyEditorRegistrars(..): PropertyEditorRegistrars added to a CustomEditorConfigurer in this fashion can easily be shared with DataBinder and Spring MVC Controllers. Furthermore, it avoids the need for synchronization on custom editors: a PropertyEditorRegistrar is expected to create fresh PropertyEditor instances for each bean creation attempt. Using a PropertyEditorRegistrar is perhaps best illustrated with an example. First off, you need to create your own PropertyEditorRegistrar implementation: package com.foo.editors.spring; public final class CustomPropertyEditorRegistrar implements PropertyEditorRegistrar { public void registerCustomEditors(PropertyEditorRegistry registry) { // it is expected that new PropertyEditor instances are created registry.registerCustomEditor(ExoticType.class, new ExoticTypeEditor()); // you could register as many custom property editors as are required here... } } See also the org.springframework.beans.support.ResourceEditorRegistrar for an example PropertyEditorRegistrar implementation. Notice how in its implementation of the registerCustomEditors(..) method it creates new instances of each property editor. Next we configure a CustomEditorConfigurer and inject an instance of our CustomPropertyEditorRegistrar into it: <bean class="org.springframework.beans.factory.config.CustomEditorConfigurer"> <property name="propertyEditorRegistrars"> <list> <ref bean="customPropertyEditorRegistrar"/> </list> </property> </bean> <bean id="customPropertyEditorRegistrar" class="com.foo.editors.spring.CustomPropertyEditorRegistrar"/> Finally, and in a bit of a departure from the focus of this chapter, for those of you using Spring's MVC web framework, using PropertyEditorRegistrars in conjunction with data-binding Controllers (such as SimpleFormController) can be very convenient. Find below an example of using a PropertyEditorRegistrar in the implementation of an initBinder(..) method: public final class RegisterUserController extends SimpleFormController { private final PropertyEditorRegistrar customPropertyEditorRegistrar; public RegisterUserController(PropertyEditorRegistrar propertyEditorRegistrar) { this.customPropertyEditorRegistrar = propertyEditorRegistrar; } protected void initBinder(HttpServletRequest request, ServletRequestDataBinder binder) throws Exception { this.customPropertyEditorRegistrar.registerCustomEditors(binder); } // other methods to do with registering a User } Spring Framework (2.5.6) 124
  • 125. Validation, Data-binding, the BeanWrapper, and This style of PropertyEditor registration can lead to concise code (the implementation of initBinder(..) is just one line long!), and allows common PropertyEditor registration code to be encapsulated in a class and then shared amongst as many Controllers as needed. Spring Framework (2.5.6) 125
  • 126. Chapter 6. Aspect Oriented Programming with Spring 6.1. Introduction Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by providing another way of thinking about program structure. The key unit of modularity in OOP is the class, whereas in AOP the unit of modularity is the aspect. Aspects enable the modularization of concerns such as transaction management that cut across multiple types and objects. (Such concerns are often termed crosscutting concerns in AOP literature.) One of the key components of Spring is the AOP framework. While the Spring IoC container does not depend on AOP, meaning you do not need to use AOP if you don't want to, AOP complements Spring IoC to provide a very capable middleware solution. Spring 2.0 AOP Spring 2.0 introduces a simpler and more powerful way of writing custom aspects using either a schema-based approach or the @AspectJ annotation style. Both of these styles offer fully typed advice and use of the AspectJ pointcut language, while still using Spring AOP for weaving. The Spring 2.0 schema- and @AspectJ-based AOP support is discussed in this chapter. Spring 2.0 AOP remains fully backwards compatible with Spring 1.2 AOP, and the lower-level AOP support offered by the Spring 1.2 APIs is discussed in the following chapter. AOP is used in the Spring Framework to... • ... provide declarative enterprise services, especially as a replacement for EJB declarative services. The most important such service is declarative transaction management. • ... allow users to implement custom aspects, complementing their use of OOP with AOP. If you are interested only in generic declarative services or other pre-packaged declarative middleware services such as pooling, you do not need to work directly with Spring AOP, and can skip most of this chapter. 6.1.1. AOP concepts Let us begin by defining some central AOP concepts and terminology. These terms are not Spring-specific... unfortunately, AOP terminology is not particularly intuitive; however, it would be even more confusing if Spring used its own terminology. • Aspect: a modularization of a concern that cuts across multiple classes. Transaction management is a good example of a crosscutting concern in J2EE applications. In Spring AOP, aspects are implemented using regular classes (the schema-based approach) or regular classes annotated with the @Aspect annotation (the @AspectJ style). • Join point: a point during the execution of a program, such as the execution of a method or the handling of an exception. In Spring AOP, a join point always represents a method execution. Spring Framework (2.5.6) 126
  • 127. Aspect Oriented Programming with Spring • Advice: action taken by an aspect at a particular join point. Different types of advice include "around," "before" and "after" advice. (Advice types are discussed below.) Many AOP frameworks, including Spring, model an advice as an interceptor, maintaining a chain of interceptors around the join point. • Pointcut: a predicate that matches join points. Advice is associated with a pointcut expression and runs at any join point matched by the pointcut (for example, the execution of a method with a certain name). The concept of join points as matched by pointcut expressions is central to AOP, and Spring uses the AspectJ pointcut expression language by default. • Introduction: declaring additional methods or fields on behalf of a type. Spring AOP allows you to introduce new interfaces (and a corresponding implementation) to any advised object. For example, you could use an introduction to make a bean implement an IsModified interface, to simplify caching. (An introduction is known as an inter-type declaration in the AspectJ community.) • Target object: object being advised by one or more aspects. Also referred to as the advised object. Since Spring AOP is implemented using runtime proxies, this object will always be a proxied object. • AOP proxy: an object created by the AOP framework in order to implement the aspect contracts (advise method executions and so on). In the Spring Framework, an AOP proxy will be a JDK dynamic proxy or a CGLIB proxy. • Weaving: linking aspects with other application types or objects to create an advised object. This can be done at compile time (using the AspectJ compiler, for example), load time, or at runtime. Spring AOP, like other pure Java AOP frameworks, performs weaving at runtime. Types of advice: • Before advice: Advice that executes before a join point, but which does not have the ability to prevent execution flow proceeding to the join point (unless it throws an exception). • After returning advice: Advice to be executed after a join point completes normally: for example, if a method returns without throwing an exception. • After throwing advice: Advice to be executed if a method exits by throwing an exception. • After (finally) advice: Advice to be executed regardless of the means by which a join point exits (normal or exceptional return). • Around advice: Advice that surrounds a join point such as a method invocation. This is the most powerful kind of advice. Around advice can perform custom behavior before and after the method invocation. It is also responsible for choosing whether to proceed to the join point or to shortcut the advised method execution by returning its own return value or throwing an exception. Around advice is the most general kind of advice. Since Spring AOP, like AspectJ, provides a full range of advice types, we recommend that you use the least powerful advice type that can implement the required behavior. For example, if you need only to update a cache with the return value of a method, you are better off implementing an after returning advice than an around advice, although an around advice can accomplish the same thing. Using the most specific advice type provides a simpler programming model with less potential for errors. For example, you do not need to invoke the proceed() method on the JoinPoint used for around advice, and hence cannot fail to invoke it. In Spring 2.0, all advice parameters are statically typed, so that you work with advice parameters of the appropriate type (the type of the return value from a method execution for example) rather than Object arrays. Spring Framework (2.5.6) 127
  • 128. Aspect Oriented Programming with Spring The concept of join points, matched by pointcuts, is the key to AOP which distinguishes it from older technologies offering only interception. Pointcuts enable advice to be targeted independently of the Object-Oriented hierarchy. For example, an around advice providing declarative transaction management can be applied to a set of methods spanning multiple objects (such as all business operations in the service layer). 6.1.2. Spring AOP capabilities and goals Spring AOP is implemented in pure Java. There is no need for a special compilation process. Spring AOP does not need to control the class loader hierarchy, and is thus suitable for use in a J2EE web container or application server. Spring AOP currently supports only method execution join points (advising the execution of methods on Spring beans). Field interception is not implemented, although support for field interception could be added without breaking the core Spring AOP APIs. If you need to advise field access and update join points, consider a language such as AspectJ. Spring AOP's approach to AOP differs from that of most other AOP frameworks. The aim is not to provide the most complete AOP implementation (although Spring AOP is quite capable); it is rather to provide a close integration between AOP implementation and Spring IoC to help solve common problems in enterprise applications. Thus, for example, the Spring Framework's AOP functionality is normally used in conjunction with the Spring IoC container. Aspects are configured using normal bean definition syntax (although this allows powerful "autoproxying" capabilities): this is a crucial difference from other AOP implementations. There are some things you cannot do easily or efficiently with Spring AOP, such as advise very fine-grained objects (such as domain objects typically): AspectJ is the best choice in such cases. However, our experience is that Spring AOP provides an excellent solution to most problems in J2EE applications that are amenable to AOP. Spring AOP will never strive to compete with AspectJ to provide a comprehensive AOP solution. We believe that both proxy-based frameworks like Spring AOP and full-blown frameworks such as AspectJ are valuable, and that they are complementary, rather than in competition. Spring 2.0 seamlessly integrates Spring AOP and IoC with AspectJ, to enable all uses of AOP to be catered for within a consistent Spring-based application architecture. This integration does not affect the Spring AOP API or the AOP Alliance API: Spring AOP remains backward-compatible. See the following chapter for a discussion of the Spring AOP APIs. Note One of the central tenets of the Spring Framework is that of non-invasiveness; this is the idea that you should not be forced to introduce framework-specific classes and interfaces into your business/domain model. However, in some places the Spring Framework does give you the option to introduce Spring Framework-specific dependencies into your codebase: the rationale in giving you such options is because in certain scenarios it might be just plain easier to read or code some specific piece of functionality in such a way. The Spring Framework (almost) always offers you the choice though: you have the freedom to make an informed decision as to which option best suits your particular use case or scenario. One such choice that is relevant to this chapter is that of which AOP framework (and which AOP style) to choose. You have the choice of AspectJ and/or Spring AOP, and you also have the choice of either the @AspectJ annotation-style approach or the Spring XML configuration-style approach. The fact that this chapter chooses to introduce the @AspectJ-style approach first should not be taken as an indication that the Spring team favors the @AspectJ annotation-style approach over the Spring XML configuration-style. Spring Framework (2.5.6) 128
  • 129. Aspect Oriented Programming with Spring See the section entitled Section 6.4, “Choosing which AOP declaration style to use” for a fuller discussion of the whys and wherefores of each style. 6.1.3. AOP Proxies Spring AOP defaults to using standard J2SE dynamic proxies for AOP proxies. This enables any interface (or set of interfaces) to be proxied. Spring AOP can also use CGLIB proxies. This is necessary to proxy classes, rather than interfaces. CGLIB is used by default if a business object does not implement an interface. As it is good practice to program to interfaces rather than classes, business classes normally will implement one or more business interfaces. It is possible to force the use of CGLIB, in those (hopefully rare) cases where you need to advise a method that is not declared on an interface, or where you need to pass a proxied object to a method as a concrete type. It is important to grasp the fact that Spring AOP is proxy-based. See the section entitled Section 6.6.1, “Understanding AOP proxies” for a thorough examination of exactly what this implementation detail actually means. 6.2. @AspectJ support @AspectJ refers to a style of declaring aspects as regular Java classes annotated with Java 5 annotations. The @AspectJ style was introduced by the AspectJ project as part of the AspectJ 5 release. Spring 2.0 interprets the same annotations as AspectJ 5, using a library supplied by AspectJ for pointcut parsing and matching. The AOP runtime is still pure Spring AOP though, and there is no dependency on the AspectJ compiler or weaver. Using the AspectJ compiler and weaver enables use of the full AspectJ language, and is discussed in Section 6.8, “Using AspectJ with Spring applications”. 6.2.1. Enabling @AspectJ Support To use @AspectJ aspects in a Spring configuration you need to enable Spring support for configuring Spring AOP based on @AspectJ aspects, and autoproxying beans based on whether or not they are advised by those aspects. By autoproxying we mean that if Spring determines that a bean is advised by one or more aspects, it will automatically generate a proxy for that bean to intercept method invocations and ensure that advice is executed as needed. The @AspectJ support is enabled by including the following element inside your spring configuration: <aop:aspectj-autoproxy/> This assumes that you are using schema support as described in Appendix A, XML Schema-based configuration. See Section A.2.7, “The aop schema” for how to import the tags in the aop namespace. If you are using the DTD, it is still possible to enable @AspectJ support by adding the following definition to your application context: <bean class="org.springframework.aop.aspectj.annotation.AnnotationAwareAspectJAutoProxyCreator" /> You will also need two AspectJ libraries on the classpath of your application: aspectjweaver.jar and Spring Framework (2.5.6) 129
  • 130. Aspect Oriented Programming with Spring aspectjrt.jar. These libraries are available in the 'lib' directory of an AspectJ installation (version 1.5.1 or later required), or in the 'lib/aspectj' directory of the Spring-with-dependencies distribution. 6.2.2. Declaring an aspect With the @AspectJ support enabled, any bean defined in your application context with a class that is an @AspectJ aspect (has the @Aspect annotation) will be automatically detected by Spring and used to configure Spring AOP. The following example shows the minimal definition required for a not-very-useful aspect: A regular bean definition in the application context, pointing to a bean class that has the @Aspect annotation: <bean id="myAspect" class="org.xyz.NotVeryUsefulAspect"> <!-- configure properties of aspect here as normal --> </bean> And the NotVeryUsefulAspect class definition, annotated with org.aspectj.lang.annotation.Aspect annotation; package org.xyz; import org.aspectj.lang.annotation.Aspect; @Aspect public class NotVeryUsefulAspect { } Aspects (classes annotated with @Aspect) may have methods and fields just like any other class. They may also contain pointcut, advice, and introduction (inter-type) declarations. Advising aspects In Spring AOP, it is not possible to have aspects themselves be the target of advice from other aspects. The @Aspect annotation on a class marks it as an aspect, and hence excludes it from auto-proxying. 6.2.3. Declaring a pointcut Recall that pointcuts determine join points of interest, and thus enable us to control when advice executes. Spring AOP only supports method execution join points for Spring beans, so you can think of a pointcut as matching the execution of methods on Spring beans. A pointcut declaration has two parts: a signature comprising a name and any parameters, and a pointcut expression that determines exactly which method executions we are interested in. In the @AspectJ annotation-style of AOP, a pointcut signature is provided by a regular method definition, and the pointcut expression is indicated using the @Pointcut annotation (the method serving as the pointcut signature must have a void return type). An example will help make this distinction between a pointcut signature and a pointcut expression clear. The following example defines a pointcut named 'anyOldTransfer' that will match the execution of any method named 'transfer': @Pointcut("execution(* transfer(..))")// the pointcut expression private void anyOldTransfer() {}// the pointcut signature The pointcut expression that forms the value of the @Pointcut annotation is a regular AspectJ 5 pointcut expression. For a full discussion of AspectJ's pointcut language, see the AspectJ Programming Guide (and for Spring Framework (2.5.6) 130
  • 131. Aspect Oriented Programming with Spring Java 5 based extensions, the AspectJ 5 Developers Notebook) or one of the books on AspectJ such as “Eclipse AspectJ” by Colyer et. al. or “AspectJ in Action” by Ramnivas Laddad. 6.2.3.1. Supported Pointcut Designators Spring AOP supports the following AspectJ pointcut designators (PCD) for use in pointcut expressions: Other pointcut types The full AspectJ pointcut language supports additional pointcut designators that are not supported in Spring. These are: call, get, set, preinitialization, staticinitialization, initialization, handler, adviceexecution, withincode, cflow, cflowbelow, if, @this, and @withincode. Use of these pointcut designators in pointcut expressions interpreted by Spring AOP will result in an IllegalArgumentException being thrown. The set of pointcut designators supported by Spring AOP may be extended in future releases both to support more of the AspectJ pointcut designators. • execution - for matching method execution join points, this is the primary pointcut designator you will use when working with Spring AOP • within - limits matching to join points within certain types (simply the execution of a method declared within a matching type when using Spring AOP) • this - limits matching to join points (the execution of methods when using Spring AOP) where the bean reference (Spring AOP proxy) is an instance of the given type • target - limits matching to join points (the execution of methods when using Spring AOP) where the target object (application object being proxied) is an instance of the given type • args - limits matching to join points (the execution of methods when using Spring AOP) where the arguments are instances of the given types • @target - limits matching to join points (the execution of methods when using Spring AOP) where the class of the executing object has an annotation of the given type • @args - limits matching to join points (the execution of methods when using Spring AOP) where the runtime type of the actual arguments passed have annotations of the given type(s) • @within - limits matching to join points within types that have the given annotation (the execution of methods declared in types with the given annotation when using Spring AOP) • @annotation - limits matching to join points where the subject of the join point (method being executed in Spring AOP) has the given annotation Because Spring AOP limits matching to only method execution join points, the discussion of the pointcut designators above gives a narrower definition than you will find in the AspectJ programming guide. In addition, AspectJ itself has type-based semantics and at an execution join point both 'this' and 'target' refer to the same object - the object executing the method. Spring AOP is a proxy-based system and differentiates between the proxy object itself (bound to 'this') and the target object behind the proxy (bound to 'target'). Note Spring Framework (2.5.6) 131
  • 132. Aspect Oriented Programming with Spring Due to the proxy-based nature of Spring's AOP framework, protected methods are by definition not intercepted, neither for JDK proxies (where this isn't applicable) nor for CGLIB proxies (where this is technically possible but not recommendable for AOP purposes). As a consequence, any given pointcut will be matched against public methods only! If your interception needs include protected/private methods or even constructors, consider the use of Spring-driven native AspectJ weaving instead of Spring's proxy-based AOP framework. This constitutes a different mode of AOP usage with different characteristics, so be sure to make yourself familiar with weaving first before making a decision. Spring AOP also supports an additional PCD named 'bean'. This PCD allows you to limit the matching of join points to a particular named Spring bean, or to a set of named Spring beans (when using wildcards). The 'bean' PCD has the following form: bean(idOrNameOfBean) The 'idOrNameOfBean' token can be the name of any Spring bean: limited wildcard support using the '*' character is provided, so if you establish some naming conventions for your Spring beans you can quite easily write a 'bean' PCD expression to pick them out. As is the case with other pointcut designators, the 'bean' PCD can be &&'ed, ||'ed, and ! (negated) too. Note Please note that the 'bean' PCD is only supported in Spring AOP - and not in native AspectJ weaving. It is a Spring-specific extension to the standard PCDs that AspectJ defines. The 'bean' PCD operates at the instance level (building on the Spring bean name concept) rather than at the type level only (which is what weaving-based AOP is limited to). Instance-based pointcut designators are a special capability of Spring's proxy-based AOP framework and its close integration with the Spring bean factory, where it is natural and straightforward to identify specific beans by name. 6.2.3.2. Combining pointcut expressions Pointcut expressions can be combined using '&&', '||' and '!'. It is also possible to refer to pointcut expressions by name. The following example shows three pointcut expressions: anyPublicOperation (which matches if a method execution join point represents the execution of any public method); inTrading (which matches if a method execution is in the trading module), and tradingOperation (which matches if a method execution represents any public method in the trading module). @Pointcut("execution(public * *(..))") private void anyPublicOperation() {} @Pointcut("within(com.xyz.someapp.trading..*)") private void inTrading() {} @Pointcut("anyPublicOperation() && inTrading()") private void tradingOperation() {} It is a best practice to build more complex pointcut expressions out of smaller named components as shown above. When referring to pointcuts by name, normal Java visibility rules apply (you can see private pointcuts in the same type, protected pointcuts in the hierarchy, public pointcuts anywhere and so on). Visibility does not Spring Framework (2.5.6) 132
  • 133. Aspect Oriented Programming with Spring affect pointcut matching. 6.2.3.3. Sharing common pointcut definitions When working with enterprise applications, you often want to refer to modules of the application and particular sets of operations from within several aspects. We recommend defining a "SystemArchitecture" aspect that captures common pointcut expressions for this purpose. A typical such aspect would look as follows: package com.xyz.someapp; import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.Pointcut; @Aspect public class SystemArchitecture { /** * A join point is in the web layer if the method is defined * in a type in the com.xyz.someapp.web package or any sub-package * under that. */ @Pointcut("within(com.xyz.someapp.web..*)") public void inWebLayer() {} /** * A join point is in the service layer if the method is defined * in a type in the com.xyz.someapp.service package or any sub-package * under that. */ @Pointcut("within(com.xyz.someapp.service..*)") public void inServiceLayer() {} /** * A join point is in the data access layer if the method is defined * in a type in the com.xyz.someapp.dao package or any sub-package * under that. */ @Pointcut("within(com.xyz.someapp.dao..*)") public void inDataAccessLayer() {} /** * A business service is the execution of any method defined on a service * interface. This definition assumes that interfaces are placed in the * "service" package, and that implementation types are in sub-packages. * * If you group service interfaces by functional area (for example, * in packages com.xyz.someapp.abc.service and com.xyz.def.service) then * the pointcut expression "execution(* com.xyz.someapp..service.*.*(..))" * could be used instead. * * Alternatively, you can write the expression using the 'bean' * PCD, like so "bean(*Service)". (This assumes that you have * named your Spring service beans in a consistent fashion.) */ @Pointcut("execution(* com.xyz.someapp.service.*.*(..))") public void businessService() {} /** * A data access operation is the execution of any method defined on a * dao interface. This definition assumes that interfaces are placed in the * "dao" package, and that implementation types are in sub-packages. */ @Pointcut("execution(* com.xyz.someapp.dao.*.*(..))") public void dataAccessOperation() {} } The pointcuts defined in such an aspect can be referred to anywhere that you need a pointcut expression. For example, to make the service layer transactional, you could write: <aop:config> <aop:advisor Spring Framework (2.5.6) 133
  • 134. Aspect Oriented Programming with Spring pointcut="com.xyz.someapp.SystemArchitecture.businessService()" advice-ref="tx-advice"/> </aop:config> <tx:advice id="tx-advice"> <tx:attributes> <tx:method name="*" propagation="REQUIRED"/> </tx:attributes> </tx:advice> The <aop:config> and <aop:advisor> elements are discussed in Section 6.3, “Schema-based AOP support”. The transaction elements are discussed in Chapter 9, Transaction management. 6.2.3.4. Examples Spring AOP users are likely to use the execution pointcut designator the most often. The format of an execution expression is: execution(modifiers-pattern? ret-type-pattern declaring-type-pattern? name-pattern(param-pattern) throws-pattern?) All parts except the returning type pattern (ret-type-pattern in the snippet above), name pattern, and parameters pattern are optional. The returning type pattern determines what the return type of the method must be in order for a join point to be matched. Most frequently you will use * as the returning type pattern, which matches any return type. A fully-qualified type name will match only when the method returns the given type. The name pattern matches the method name. You can use the * wildcard as all or part of a name pattern. The parameters pattern is slightly more complex: () matches a method that takes no parameters, whereas (..) matches any number of parameters (zero or more). The pattern (*) matches a method taking one parameter of any type, (*,String) matches a method taking two parameters, the first can be of any type, the second must be a String. Consult the Language Semantics section of the AspectJ Programming Guide for more information. Some examples of common pointcut expressions are given below. • the execution of any public method: execution(public * *(..)) • the execution of any method with a name beginning with "set": execution(* set*(..)) • the execution of any method defined by the AccountService interface: execution(* com.xyz.service.AccountService.*(..)) • the execution of any method defined in the service package: execution(* com.xyz.service.*.*(..)) • the execution of any method defined in the service package or a sub-package: execution(* com.xyz.service..*.*(..)) Spring Framework (2.5.6) 134
  • 135. Aspect Oriented Programming with Spring • any join point (method execution only in Spring AOP) within the service package: within(com.xyz.service.*) • any join point (method execution only in Spring AOP) within the service package or a sub-package: within(com.xyz.service..*) • any join point (method execution only in Spring AOP) where the proxy implements the AccountService interface: this(com.xyz.service.AccountService) 'this' is more commonly used in a binding form :- see the following section on advice for how to make the proxy object available in the advice body. • any join point (method execution only in Spring AOP) where the target object implements the AccountService interface: target(com.xyz.service.AccountService) 'target' is more commonly used in a binding form :- see the following section on advice for how to make the target object available in the advice body. • any join point (method execution only in Spring AOP) which takes a single parameter, and where the argument passed at runtime is Serializable: args(java.io.Serializable) 'args' is more commonly used in a binding form :- see the following section on advice for how to make the method arguments available in the advice body. Note that the pointcut given in this example is different to execution(* *(java.io.Serializable)): the args version matches if the argument passed at runtime is Serializable, the execution version matches if the method signature declares a single parameter of type Serializable. • any join point (method execution only in Spring AOP) where the target object has an @Transactional annotation: @target(org.springframework.transaction.annotation.Transactional) '@target' can also be used in a binding form :- see the following section on advice for how to make the annotation object available in the advice body. • any join point (method execution only in Spring AOP) where the declared type of the target object has an @Transactional annotation: @within(org.springframework.transaction.annotation.Transactional) '@within' can also be used in a binding form :- see the following section on advice for how to make the annotation object available in the advice body. • any join point (method execution only in Spring AOP) where the executing method has an @Transactional Spring Framework (2.5.6) 135
  • 136. Aspect Oriented Programming with Spring annotation: @annotation(org.springframework.transaction.annotation.Transactional) '@annotation' can also be used in a binding form :- see the following section on advice for how to make the annotation object available in the advice body. • any join point (method execution only in Spring AOP) which takes a single parameter, and where the runtime type of the argument passed has the @Classified annotation: @args(com.xyz.security.Classified) '@args' can also be used in a binding form :- see the following section on advice for how to make the annotation object(s) available in the advice body. • any join point (method execution only in Spring AOP) on a Spring bean named 'tradeService': bean(tradeService) • any join point (method execution only in Spring AOP) on Spring beans having names that match the wildcard expression '*Service': bean(*Service) 6.2.4. Declaring advice Advice is associated with a pointcut expression, and runs before, after, or around method executions matched by the pointcut. The pointcut expression may be either a simple reference to a named pointcut, or a pointcut expression declared in place. 6.2.4.1. Before advice Before advice is declared in an aspect using the @Before annotation: import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.Before; @Aspect public class BeforeExample { @Before("com.xyz.myapp.SystemArchitecture.dataAccessOperation()") public void doAccessCheck() { // ... } } If using an in-place pointcut expression we could rewrite the above example as: import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.Before; @Aspect public class BeforeExample { @Before("execution(* com.xyz.myapp.dao.*.*(..))") public void doAccessCheck() { // ... Spring Framework (2.5.6) 136
  • 137. Aspect Oriented Programming with Spring } } 6.2.4.2. After returning advice After returning advice runs when a matched method execution returns normally. It is declared using the @AfterReturning annotation: import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.AfterReturning; @Aspect public class AfterReturningExample { @AfterReturning("com.xyz.myapp.SystemArchitecture.dataAccessOperation()") public void doAccessCheck() { // ... } } Note: it is of course possible to have multiple advice declarations, and other members as well, all inside the same aspect. We're just showing a single advice declaration in these examples to focus on the issue under discussion at the time. Sometimes you need access in the advice body to the actual value that was returned. You can use the form of @AfterReturning that binds the return value for this: import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.AfterReturning; @Aspect public class AfterReturningExample { @AfterReturning( pointcut="com.xyz.myapp.SystemArchitecture.dataAccessOperation()", returning="retVal") public void doAccessCheck(Object retVal) { // ... } } The name used in the returning attribute must correspond to the name of a parameter in the advice method. When a method execution returns, the return value will be passed to the advice method as the corresponding argument value. A returning clause also restricts matching to only those method executions that return a value of the specified type (Object in this case, which will match any return value). Please note that it is not possible to return a totally different reference when using after-returning advice. 6.2.4.3. After throwing advice After throwing advice runs when a matched method execution exits by throwing an exception. It is declared using the @AfterThrowing annotation: import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.AfterThrowing; @Aspect public class AfterThrowingExample { @AfterThrowing("com.xyz.myapp.SystemArchitecture.dataAccessOperation()") public void doRecoveryActions() { // ... Spring Framework (2.5.6) 137
  • 138. Aspect Oriented Programming with Spring } } Often you want the advice to run only when exceptions of a given type are thrown, and you also often need access to the thrown exception in the advice body. Use the throwing attribute to both restrict matching (if desired, use Throwable as the exception type otherwise) and bind the thrown exception to an advice parameter. import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.AfterThrowing; @Aspect public class AfterThrowingExample { @AfterThrowing( pointcut="com.xyz.myapp.SystemArchitecture.dataAccessOperation()", throwing="ex") public void doRecoveryActions(DataAccessException ex) { // ... } } The name used in the throwing attribute must correspond to the name of a parameter in the advice method. When a method execution exits by throwing an exception, the exception will be passed to the advice method as the corresponding argument value. A throwing clause also restricts matching to only those method executions that throw an exception of the specified type (DataAccessException in this case). 6.2.4.4. After (finally) advice After (finally) advice runs however a matched method execution exits. It is declared using the @After annotation. After advice must be prepared to handle both normal and exception return conditions. It is typically used for releasing resources, etc. import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.After; @Aspect public class AfterFinallyExample { @After("com.xyz.myapp.SystemArchitecture.dataAccessOperation()") public void doReleaseLock() { // ... } } 6.2.4.5. Around advice The final kind of advice is around advice. Around advice runs "around" a matched method execution. It has the opportunity to do work both before and after the method executes, and to determine when, how, and even if, the method actually gets to execute at all. Around advice is often used if you need to share state before and after a method execution in a thread-safe manner (starting and stopping a timer for example). Always use the least powerful form of advice that meets your requirements (i.e. don't use around advice if simple before advice would do). Around advice is declared using the @Around annotation. The first parameter of the advice method must be of type ProceedingJoinPoint. Within the body of the advice, calling proceed() on the ProceedingJoinPoint causes the underlying method to execute. The proceed method may also be called passing in an Object[] - the values in the array will be used as the arguments to the method execution when it proceeds. Spring Framework (2.5.6) 138
  • 139. Aspect Oriented Programming with Spring The behavior of proceed when called with an Object[] is a little different than the behavior of proceed for around advice compiled by the AspectJ compiler. For around advice written using the traditional AspectJ language, the number of arguments passed to proceed must match the number of arguments passed to the around advice (not the number of arguments taken by the underlying join point), and the value passed to proceed in a given argument position supplants the original value at the join point for the entity the value was bound to (Don't worry if this doesn't make sense right now!). The approach taken by Spring is simpler and a better match to its proxy-based, execution only semantics. You only need to be aware of this difference if you are compiling @AspectJ aspects written for Spring and using proceed with arguments with the AspectJ compiler and weaver. There is a way to write such aspects that is 100% compatible across both Spring AOP and AspectJ, and this is discussed in the following section on advice parameters. import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.Around; import org.aspectj.lang.ProceedingJoinPoint; @Aspect public class AroundExample { @Around("com.xyz.myapp.SystemArchitecture.businessService()") public Object doBasicProfiling(ProceedingJoinPoint pjp) throws Throwable { // start stopwatch Object retVal = pjp.proceed(); // stop stopwatch return retVal; } } The value returned by the around advice will be the return value seen by the caller of the method. A simple caching aspect for example could return a value from a cache if it has one, and invoke proceed() if it does not. Note that proceed may be invoked once, many times, or not at all within the body of the around advice, all of these are quite legal. 6.2.4.6. Advice parameters Spring 2.0 offers fully typed advice - meaning that you declare the parameters you need in the advice signature (as we saw for the returning and throwing examples above) rather than work with Object[] arrays all the time. We'll see how to make argument and other contextual values available to the advice body in a moment. First let's take a look at how to write generic advice that can find out about the method the advice is currently advising. 6.2.4.6.1. Access to the current JoinPoint Any advice method may declare as its first parameter, a parameter of type org.aspectj.lang.JoinPoint (please note that around advice is required to declare a first parameter of type ProceedingJoinPoint, which is a subclass of JoinPoint. The JoinPoint interface provides a number of useful methods such as getArgs() (returns the method arguments), getThis() (returns the proxy object), getTarget() (returns the target object), getSignature() (returns a description of the method that is being advised) and toString() (prints a useful description of the method being advised). Please do consult the Javadocs for full details. 6.2.4.6.2. Passing parameters to advice We've already seen how to bind the returned value or exception value (using after returning and after throwing advice). To make argument values available to the advice body, you can use the binding form of args. If a parameter name is used in place of a type name in an args expression, then the value of the corresponding argument will be passed as the parameter value when the advice is invoked. An example should make this clearer. Suppose you want to advise the execution of dao operations that take an Account object as the first parameter, and you need access to the account in the advice body. You could write the following: Spring Framework (2.5.6) 139
  • 140. Aspect Oriented Programming with Spring @Before("com.xyz.myapp.SystemArchitecture.dataAccessOperation() &&" + "args(account,..)") public void validateAccount(Account account) { // ... } The args(account,..) part of the pointcut expression serves two purposes: firstly, it restricts matching to only those method executions where the method takes at least one parameter, and the argument passed to that parameter is an instance of Account; secondly, it makes the actual Account object available to the advice via the account parameter. Another way of writing this is to declare a pointcut that "provides" the Account object value when it matches a join point, and then just refer to the named pointcut from the advice. This would look as follows: @Pointcut("com.xyz.myapp.SystemArchitecture.dataAccessOperation() &&" + "args(account,..)") private void accountDataAccessOperation(Account account) {} @Before("accountDataAccessOperation(account)") public void validateAccount(Account account) { // ... } The interested reader is once more referred to the AspectJ programming guide for more details. The proxy object (this), target object (target), and annotations (@within, @target, @annotation, @args) can all be bound in a similar fashion. The following example shows how you could match the execution of methods annotated with an @Auditable annotation, and extract the audit code. First the definition of the @Auditable annotation: @Retention(RetentionPolicy.RUNTIME) @Target(ElementType.METHOD) public @interface Auditable { AuditCode value(); } And then the advice that matches the execution of @Auditable methods: @Before("com.xyz.lib.Pointcuts.anyPublicMethod() && " + "@annotation(auditable)") public void audit(Auditable auditable) { AuditCode code = auditable.value(); // ... } 6.2.4.6.3. Determining argument names The parameter binding in advice invocations relies on matching names used in pointcut expressions to declared parameter names in (advice and pointcut) method signatures. Parameter names are not available through Java reflection, so Spring AOP uses the following strategies to determine parameter names: 1. If the parameter names have been specified by the user explicitly, then the specified parameter names are used: both the advice and the pointcut annotations have an optional "argNames" attribute which can be used to specify the argument names of the annotated method - these argument names are available at runtime. For example: @Before( value="com.xyz.lib.Pointcuts.anyPublicMethod() && target(bean) && @annotation(auditable)", Spring Framework (2.5.6) 140
  • 141. Aspect Oriented Programming with Spring argNames="bean,auditable") public void audit(Object bean, Auditable auditable) { AuditCode code = auditable.value(); // ... use code and bean } If the first parameter is of the JoinPoint, ProceedingJoinPoint, or JoinPoint.StaticPart type, you may leave out the name of the parameter from the value of the "argNames" attribute. For example, if you modify the preceding advice to receive the join point object, the "argNames" attribute need not include it: @Before( value="com.xyz.lib.Pointcuts.anyPublicMethod() && target(bean) && @annotation(auditable)", argNames="bean,auditable") public void audit(JoinPoint jp, Object bean, Auditable auditable) { AuditCode code = auditable.value(); // ... use code, bean, and jp } The special treatment given to the first parameter of the JoinPoint, ProceedingJoinPoint, and JoinPoint.StaticPart types is particularly convenient for advice that do not collect any other join point context. In such situations, you may simply omit the "argNames" attribute. For example, the following advice need not declare the "argNames" attribute: @Before( "com.xyz.lib.Pointcuts.anyPublicMethod()") public void audit(JoinPoint jp) { // ... use jp } 2. Using the 'argNames' attribute is a little clumsy, so if the 'argNames' attribute has not been specified, then Spring AOP will look at the debug information for the class and try to determine the parameter names from the local variable table. This information will be present as long as the classes have been compiled with debug information ('-g:vars' at a minimum). The consequences of compiling with this flag on are: (1) your code will be slightly easier to understand (reverse engineer), (2) the class file sizes will be very slightly bigger (typically inconsequential), (3) the optimization to remove unused local variables will not be applied by your compiler. In other words, you should encounter no difficulties building with this flag on. If an @AspectJ aspect has been compiled by the AspectJ compiler (ajc) even without the debug information then there is no need to add the argNames attribute as the compiler will retain the needed information. 3. If the code has been compiled without the necessary debug information, then Spring AOP will attempt to deduce the pairing of binding variables to parameters (for example, if only one variable is bound in the pointcut expression, and the advice method only takes one parameter, the pairing is obvious!). If the binding of variables is ambiguous given the available information, then an AmbiguousBindingException will be thrown. 4. If all of the above strategies fail then an IllegalArgumentException will be thrown. 6.2.4.6.4. Proceeding with arguments We remarked earlier that we would describe how to write a proceed call with arguments that works consistently across Spring AOP and AspectJ. The solution is simply to ensure that the advice signature binds each of the method parameters in order. For example: @Around("execution(List<Account> find*(..)) &&" + "com.xyz.myapp.SystemArchitecture.inDataAccessLayer() && " + "args(accountHolderNamePattern)") public Object preProcessQueryPattern(ProceedingJoinPoint pjp, String accountHolderNamePattern) throws Throwable { Spring Framework (2.5.6) 141
  • 142. Aspect Oriented Programming with Spring String newPattern = preProcess(accountHolderNamePattern); return pjp.proceed(new Object[] {newPattern}); } In many cases you will be doing this binding anyway (as in the example above). 6.2.4.7. Advice ordering What happens when multiple pieces of advice all want to run at the same join point? Spring AOP follows the same precedence rules as AspectJ to determine the order of advice execution. The highest precedence advice runs first "on the way in" (so given two pieces of before advice, the one with highest precedence runs first). "On the way out" from a join point, the highest precedence advice runs last (so given two pieces of after advice, the one with the highest precedence will run second). When two pieces of advice defined in different aspects both need to run at the same join point, unless you specify otherwise the order of execution is undefined. You can control the order of execution by specifying precedence. This is done in the normal Spring way by either implementing the org.springframework.core.Ordered interface in the aspect class or annotating it with the Order annotation. Given two aspects, the aspect returning the lower value from Ordered.getValue() (or the annotation value) has the higher precedence. When two pieces of advice defined in the same aspect both need to run at the same join point, the ordering is undefined (since there is no way to retrieve the declaration order via reflection for javac-compiled classes). Consider collapsing such advice methods into one advice method per join point in each aspect class, or refactor the pieces of advice into separate aspect classes - which can be ordered at the aspect level. 6.2.5. Introductions Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised objects implement a given interface, and to provide an implementation of that interface on behalf of those objects. An introduction is made using the @DeclareParents annotation. This annotation is used to declare that matching types have a new parent (hence the name). For example, given an interface UsageTracked, and an implementation of that interface DefaultUsageTracked, the following aspect declares that all implementors of service interfaces also implement the UsageTracked interface. (In order to expose statistics via JMX for example.) @Aspect public class UsageTracking { @DeclareParents(value="com.xzy.myapp.service.*+", defaultImpl=DefaultUsageTracked.class) public static UsageTracked mixin; @Before("com.xyz.myapp.SystemArchitecture.businessService() &&" + "this(usageTracked)") public void recordUsage(UsageTracked usageTracked) { usageTracked.incrementUseCount(); } } The interface to be implemented is determined by the type of the annotated field. The value attribute of the @DeclareParents annotation is an AspectJ type pattern :- any bean of a matching type will implement the UsageTracked interface. Note that in the before advice of the above example, service beans can be directly used as implementations of the UsageTracked interface. If accessing a bean programmatically you would write the Spring Framework (2.5.6) 142
  • 143. Aspect Oriented Programming with Spring following: UsageTracked usageTracked = (UsageTracked) context.getBean("myService"); 6.2.6. Aspect instantiation models (This is an advanced topic, so if you are just starting out with AOP you can safely skip it until later.) By default there will be a single instance of each aspect within the application context. AspectJ calls this the singleton instantiation model. It is possible to define aspects with alternate lifecycles :- Spring supports AspectJ's perthis and pertarget instantiation models (percflow, percflowbelow, and pertypewithin are not currently supported). A "perthis" aspect is declared by specifying a perthis clause in the @Aspect annotation. Let's look at an example, and then we'll explain how it works. @Aspect("perthis(com.xyz.myapp.SystemArchitecture.businessService())") public class MyAspect { private int someState; @Before(com.xyz.myapp.SystemArchitecture.businessService()) public void recordServiceUsage() { // ... } } The effect of the 'perthis' clause is that one aspect instance will be created for each unique service object executing a business service (each unique object bound to 'this' at join points matched by the pointcut expression). The aspect instance is created the first time that a method is invoked on the service object. The aspect goes out of scope when the service object goes out of scope. Before the aspect instance is created, none of the advice within it executes. As soon as the aspect instance has been created, the advice declared within it will execute at matched join points, but only when the service object is the one this aspect is associated with. See the AspectJ programming guide for more information on per-clauses. The 'pertarget' instantiation model works in exactly the same way as perthis, but creates one aspect instance for each unique target object at matched join points. 6.2.7. Example Now that you have seen how all the constituent parts work, let's put them together to do something useful! The execution of business services can sometimes fail due to concurrency issues (for example, deadlock loser). If the operation is retried, it is quite likely to succeed next time round. For business services where it is appropriate to retry in such conditions (idempotent operations that don't need to go back to the user for conflict resolution), we'd like to transparently retry the operation to avoid the client seeing a PessimisticLockingFailureException. This is a requirement that clearly cuts across multiple services in the service layer, and hence is ideal for implementing via an aspect. Because we want to retry the operation, we will need to use around advice so that we can call proceed multiple times. Here's how the basic aspect implementation looks: @Aspect public class ConcurrentOperationExecutor implements Ordered { private static final int DEFAULT_MAX_RETRIES = 2; private int maxRetries = DEFAULT_MAX_RETRIES; Spring Framework (2.5.6) 143
  • 144. Aspect Oriented Programming with Spring private int order = 1; public void setMaxRetries(int maxRetries) { this.maxRetries = maxRetries; } public int getOrder() { return this.order; } public void setOrder(int order) { this.order = order; } @Around("com.xyz.myapp.SystemArchitecture.businessService()") public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable { int numAttempts = 0; PessimisticLockingFailureException lockFailureException; do { numAttempts++; try { return pjp.proceed(); } catch(PessimisticLockingFailureException ex) { lockFailureException = ex; } } while(numAttempts <= this.maxRetries); throw lockFailureException; } } Note that the aspect implements the Ordered interface so we can set the precedence of the aspect higher than the transaction advice (we want a fresh transaction each time we retry). The maxRetries and order properties will both be configured by Spring. The main action happens in the doConcurrentOperation around advice. Notice that for the moment we're applying the retry logic to all businessService()s. We try to proceed, and if we fail with an PessimisticLockingFailureException we simply try again unless we have exhausted all of our retry attempts. The corresponding Spring configuration is: <aop:aspectj-autoproxy/> <bean id="concurrentOperationExecutor" class="com.xyz.myapp.service.impl.ConcurrentOperationExecutor"> <property name="maxRetries" value="3"/> <property name="order" value="100"/> </bean> To refine the aspect so that it only retries idempotent operations, we might define an Idempotent annotation: @Retention(RetentionPolicy.RUNTIME) public @interface Idempotent { // marker annotation } and use the annotation to annotate the implementation of service operations. The change to the aspect to only retry idempotent operations simply involves refining the pointcut expression so that only @Idempotent operations match: @Around("com.xyz.myapp.SystemArchitecture.businessService() && " + "@annotation(com.xyz.myapp.service.Idempotent)") public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable { ... } Spring Framework (2.5.6) 144
  • 145. Aspect Oriented Programming with Spring 6.3. Schema-based AOP support If you are unable to use Java 5, or simply prefer an XML-based format, then Spring 2.0 also offers support for defining aspects using the new "aop" namespace tags. The exact same pointcut expressions and advice kinds are supported as when using the @AspectJ style, hence in this section we will focus on the new syntax and refer the reader to the discussion in the previous section (Section 6.2, “@AspectJ support”) for an understanding of writing pointcut expressions and the binding of advice parameters. To use the aop namespace tags described in this section, you need to import the spring-aop schema as described in Appendix A, XML Schema-based configuration. See Section A.2.7, “The aop schema” for how to import the tags in the aop namespace. Within your Spring configurations, all aspect and advisor elements must be placed within an <aop:config> element (you can have more than one <aop:config> element in an application context configuration). An <aop:config> element can contain pointcut, advisor, and aspect elements (note these must be declared in that order). Warning The <aop:config> style of configuration makes heavy use of Spring's auto-proxying mechanism. This can cause issues (such as advice not being woven) if you are already using explicit auto-proxying via the use of BeanNameAutoProxyCreator or suchlike. The recommended usage pattern is to use either just the <aop:config> style, or just the AutoProxyCreator style. 6.3.1. Declaring an aspect Using the schema support, an aspect is simply a regular Java object defined as a bean in your Spring application context. The state and behavior is captured in the fields and methods of the object, and the pointcut and advice information is captured in the XML. An aspect is declared using the <aop:aspect> element, and the backing bean is referenced using the ref attribute: <aop:config> <aop:aspect id="myAspect" ref="aBean"> ... </aop:aspect> </aop:config> <bean id="aBean" class="..."> ... </bean> The bean backing the aspect ("aBean" in this case) can of course be configured and dependency injected just like any other Spring bean. 6.3.2. Declaring a pointcut A named pointcut can be declared inside an <aop:config> element, enabling the pointcut definition to be shared across several aspects and advisors. A pointcut representing the execution of any business service in the service layer could be defined as follows: <aop:config> Spring Framework (2.5.6) 145
  • 146. Aspect Oriented Programming with Spring <aop:pointcut id="businessService" expression="execution(* com.xyz.myapp.service.*.*(..))"/> </aop:config> Note that the pointcut expression itself is using the same AspectJ pointcut expression language as described in Section 6.2, “@AspectJ support”. If you are using the schema based declaration style with Java 5, you can refer to named pointcuts defined in types (@Aspects) within the pointcut expression, but this feature is not available on JDK 1.4 and below (it relies on the Java 5 specific AspectJ reflection APIs). On JDK 1.5 therefore, another way of defining the above pointcut would be: <aop:config> <aop:pointcut id="businessService" expression="com.xyz.myapp.SystemArchitecture.businessService()"/> </aop:config> Assuming you have a SystemArchitecture aspect as described in Section 6.2.3.3, “Sharing common pointcut definitions”. Declaring a pointcut inside an aspect is very similar to declaring a top-level pointcut: <aop:config> <aop:aspect id="myAspect" ref="aBean"> <aop:pointcut id="businessService" expression="execution(* com.xyz.myapp.service.*.*(..))"/> ... </aop:aspect> </aop:config> Much the same way in an @AspectJ aspect, pointcuts declared using the schema based definition style may collect join point context. For example, the following pointcut collects the 'this' object as the join point context and passes it to advice: <aop:config> <aop:aspect id="myAspect" ref="aBean"> <aop:pointcut id="businessService" expression="execution(* com.xyz.myapp.service.*.*(..)) &amp;&amp; this(service)"/> <aop:before pointcut-ref="businessService" method="monitor"/> ... </aop:aspect> </aop:config> The advice must be declared to receive the collected join point context by including parameters of the matching names: public void monitor(Object service) { ... } When combining pointcut sub-expressions, '&&' is awkward within an XML document, and so the keywords Spring Framework (2.5.6) 146
  • 147. Aspect Oriented Programming with Spring 'and', 'or' and 'not' can be used in place of '&&', '||' and '!' respectively. For example, the previous pointcut may be better written as: <aop:config> <aop:aspect id="myAspect" ref="aBean"> <aop:pointcut id="businessService" expression="execution(* com.xyz.myapp.service.*.*(..)) and this(service)"/> <aop:before pointcut-ref="businessService" method="monitor"/> ... </aop:aspect> </aop:config> Note that pointcuts defined in this way are referred to by their XML id and cannot be used as named pointcuts to form composite pointcuts. The named pointcut support in the schema based definition style is thus more limited than that offered by the @AspectJ style. 6.3.3. Declaring advice The same five advice kinds are supported as for the @AspectJ style, and they have exactly the same semantics. 6.3.3.1. Before advice Before advice runs before a matched method execution. It is declared inside an <aop:aspect> using the <aop:before> element. <aop:aspect id="beforeExample" ref="aBean"> <aop:before pointcut-ref="dataAccessOperation" method="doAccessCheck"/> ... </aop:aspect> Here dataAccessOperation is the id of a pointcut defined at the top (<aop:config>) level. To define the pointcut inline instead, replace the pointcut-ref attribute with a pointcut attribute: <aop:aspect id="beforeExample" ref="aBean"> <aop:before pointcut="execution(* com.xyz.myapp.dao.*.*(..))" method="doAccessCheck"/> ... </aop:aspect> As we noted in the discussion of the @AspectJ style, using named pointcuts can significantly improve the readability of your code. The method attribute identifies a method (doAccessCheck) that provides the body of the advice. This method must be defined for the bean referenced by the aspect element containing the advice. Before a data access operation is executed (a method execution join point matched by the pointcut expression), the "doAccessCheck" method on the aspect bean will be invoked. Spring Framework (2.5.6) 147
  • 148. Aspect Oriented Programming with Spring 6.3.3.2. After returning advice After returning advice runs when a matched method execution completes normally. It is declared inside an <aop:aspect> in the same way as before advice. For example: <aop:aspect id="afterReturningExample" ref="aBean"> <aop:after-returning pointcut-ref="dataAccessOperation" method="doAccessCheck"/> ... </aop:aspect> Just as in the @AspectJ style, it is possible to get hold of the return value within the advice body. Use the returning attribute to specify the name of the parameter to which the return value should be passed: <aop:aspect id="afterReturningExample" ref="aBean"> <aop:after-returning pointcut-ref="dataAccessOperation" returning="retVal" method="doAccessCheck"/> ... </aop:aspect> The doAccessCheck method must declare a parameter named retVal. The type of this parameter constrains matching in the same way as described for @AfterReturning. For example, the method signature may be declared as: public void doAccessCheck(Object retVal) {... 6.3.3.3. After throwing advice After throwing advice executes when a matched method execution exits by throwing an exception. It is declared inside an <aop:aspect> using the after-throwing element: <aop:aspect id="afterThrowingExample" ref="aBean"> <aop:after-throwing pointcut-ref="dataAccessOperation" method="doRecoveryActions"/> ... </aop:aspect> Just as in the @AspectJ style, it is possible to get hold of the thrown exception within the advice body. Use the throwing attribute to specify the name of the parameter to which the exception should be passed: <aop:aspect id="afterThrowingExample" ref="aBean"> <aop:after-throwing pointcut-ref="dataAccessOperation" throwing="dataAccessEx" method="doRecoveryActions"/> ... </aop:aspect> Spring Framework (2.5.6) 148
  • 149. Aspect Oriented Programming with Spring The doRecoveryActions method must declare a parameter named dataAccessEx. The type of this parameter constrains matching in the same way as described for @AfterThrowing. For example, the method signature may be declared as: public void doRecoveryActions(DataAccessException dataAccessEx) {... 6.3.3.4. After (finally) advice After (finally) advice runs however a matched method execution exits. It is declared using the after element: <aop:aspect id="afterFinallyExample" ref="aBean"> <aop:after pointcut-ref="dataAccessOperation" method="doReleaseLock"/> ... </aop:aspect> 6.3.3.5. Around advice The final kind of advice is around advice. Around advice runs "around" a matched method execution. It has the opportunity to do work both before and after the method executes, and to determine when, how, and even if, the method actually gets to execute at all. Around advice is often used if you need to share state before and after a method execution in a thread-safe manner (starting and stopping a timer for example). Always use the least powerful form of advice that meets your requirements; don't use around advice if simple before advice would do. Around advice is declared using the aop:around element. The first parameter of the advice method must be of type ProceedingJoinPoint. Within the body of the advice, calling proceed() on the ProceedingJoinPoint causes the underlying method to execute. The proceed method may also be calling passing in an Object[] - the values in the array will be used as the arguments to the method execution when it proceeds. See Section 6.2.4.5, “Around advice” for notes on calling proceed with an Object[]. <aop:aspect id="aroundExample" ref="aBean"> <aop:around pointcut-ref="businessService" method="doBasicProfiling"/> ... </aop:aspect> The implementation of the doBasicProfiling advice would be exactly the same as in the @AspectJ example (minus the annotation of course): public Object doBasicProfiling(ProceedingJoinPoint pjp) throws Throwable { // start stopwatch Object retVal = pjp.proceed(); // stop stopwatch return retVal; } 6.3.3.6. Advice parameters The schema based declaration style supports fully typed advice in the same way as described for the @AspectJ Spring Framework (2.5.6) 149
  • 150. Aspect Oriented Programming with Spring support - by matching pointcut parameters by name against advice method parameters. See Section 6.2.4.6, “Advice parameters” for details. If you wish to explicitly specify argument names for the advice methods (not relying on the detection strategies previously described) then this is done using the arg-names attribute of the advice element, which is treated in the same manner to the "argNames" attribute in an advice annotation as described in Section 6.2.4.6.3, “Determining argument names”. For example: <aop:before pointcut="com.xyz.lib.Pointcuts.anyPublicMethod() and @annotation(auditable)" method="audit" arg-names="auditable"/> The arg-names attribute accepts a comma-delimited list of parameter names. Find below a slightly more involved example of the XSD-based approach that illustrates some around advice used in conjunction with a number of strongly typed parameters. package x.y.service; public interface FooService { Foo getFoo(String fooName, int age); } public class DefaultFooService implements FooService { public Foo getFoo(String name, int age) { return new Foo(name, age); } } Next up is the aspect. Notice the fact that the profile(..) method accepts a number of strongly-typed parameters, the first of which happens to be the join point used to proceed with the method call: the presence of this parameter is an indication that the profile(..) is to be used as around advice: package x.y; import org.aspectj.lang.ProceedingJoinPoint; import org.springframework.util.StopWatch; public class SimpleProfiler { public Object profile(ProceedingJoinPoint call, String name, int age) throws Throwable { StopWatch clock = new StopWatch( "Profiling for '" + name + "' and '" + age + "'"); try { clock.start(call.toShortString()); return call.proceed(); } finally { clock.stop(); System.out.println(clock.prettyPrint()); } } } Finally, here is the XML configuration that is required to effect the execution of the above advice for a particular join point: <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <!-- this is the object that will be proxied by Spring's AOP infrastructure --> <bean id="fooService" class="x.y.service.DefaultFooService"/> Spring Framework (2.5.6) 150
  • 151. Aspect Oriented Programming with Spring <!-- this is the actual advice itself --> <bean id="profiler" class="x.y.SimpleProfiler"/> <aop:config> <aop:aspect ref="profiler"> <aop:pointcut id="theExecutionOfSomeFooServiceMethod" expression="execution(* x.y.service.FooService.getFoo(String,int)) and args(name, age)"/> <aop:around pointcut-ref="theExecutionOfSomeFooServiceMethod" method="profile"/> </aop:aspect> </aop:config> </beans> If we had the following driver script, we would get output something like this on standard output: import org.springframework.beans.factory.BeanFactory; import org.springframework.context.support.ClassPathXmlApplicationContext; import x.y.service.FooService; public final class Boot { public static void main(final String[] args) throws Exception { BeanFactory ctx = new ClassPathXmlApplicationContext("x/y/plain.xml"); FooService foo = (FooService) ctx.getBean("fooService"); foo.getFoo("Pengo", 12); } } StopWatch 'Profiling for 'Pengo' and '12'': running time (millis) = 0 ----------------------------------------- ms % Task name ----------------------------------------- 00000 ? execution(getFoo) 6.3.3.7. Advice ordering When multiple advice needs to execute at the same join point (executing method) the ordering rules are as described in Section 6.2.4.7, “Advice ordering”. The precedence between aspects is determined by either adding the Order annotation to the bean backing the aspect or by having the bean implement the Ordered interface. 6.3.4. Introductions Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised objects implement a given interface, and to provide an implementation of that interface on behalf of those objects. An introduction is made using the aop:declare-parents element inside an aop:aspect This element is used to declare that matching types have a new parent (hence the name). For example, given an interface UsageTracked, and an implementation of that interface DefaultUsageTracked, the following aspect declares that all implementors of service interfaces also implement the UsageTracked interface. (In order to expose statistics via JMX for example.) <aop:aspect id="usageTrackerAspect" ref="usageTracking"> <aop:declare-parents types-matching="com.xzy.myapp.service.*+" implement-interface="com.xyz.myapp.service.tracking.UsageTracked" default-impl="com.xyz.myapp.service.tracking.DefaultUsageTracked"/> Spring Framework (2.5.6) 151
  • 152. Aspect Oriented Programming with Spring <aop:before pointcut="com.xyz.myapp.SystemArchitecture.businessService() and this(usageTracked)" method="recordUsage"/> </aop:aspect> The class backing the usageTracking bean would contain the method: public void recordUsage(UsageTracked usageTracked) { usageTracked.incrementUseCount(); } The interface to be implemented is determined by implement-interface attribute. The value of the types-matching attribute is an AspectJ type pattern :- any bean of a matching type will implement the UsageTracked interface. Note that in the before advice of the above example, service beans can be directly used as implementations of the UsageTracked interface. If accessing a bean programmatically you would write the following: UsageTracked usageTracked = (UsageTracked) context.getBean("myService"); 6.3.5. Aspect instantiation models The only supported instantiation model for schema-defined aspects is the singleton model. Other instantiation models may be supported in future releases. 6.3.6. Advisors The concept of "advisors" is brought forward from the AOP support defined in Spring 1.2 and does not have a direct equivalent in AspectJ. An advisor is like a small self-contained aspect that has a single piece of advice. The advice itself is represented by a bean, and must implement one of the advice interfaces described in Section 7.3.2, “Advice types in Spring”. Advisors can take advantage of AspectJ pointcut expressions though. Spring 2.0 supports the advisor concept with the <aop:advisor> element. You will most commonly see it used in conjunction with transactional advice, which also has its own namespace support in Spring 2.0. Here's how it looks: <aop:config> <aop:pointcut id="businessService" expression="execution(* com.xyz.myapp.service.*.*(..))"/> <aop:advisor pointcut-ref="businessService" advice-ref="tx-advice"/> </aop:config> <tx:advice id="tx-advice"> <tx:attributes> <tx:method name="*" propagation="REQUIRED"/> </tx:attributes> </tx:advice> As well as the pointcut-ref attribute used in the above example, you can also use the pointcut attribute to define a pointcut expression inline. Spring Framework (2.5.6) 152
  • 153. Aspect Oriented Programming with Spring To define the precedence of an advisor so that the advice can participate in ordering, use the order attribute to define the Ordered value of the advisor. 6.3.7. Example Let's see how the concurrent locking failure retry example from Section 6.2.7, “Example” looks when rewritten using the schema support. The execution of business services can sometimes fail due to concurrency issues (for example, deadlock loser). If the operation is retried, it is quite likely it will succeed next time round. For business services where it is appropriate to retry in such conditions (idempotent operations that don't need to go back to the user for conflict resolution), we'd like to transparently retry the operation to avoid the client seeing a PessimisticLockingFailureException. This is a requirement that clearly cuts across multiple services in the service layer, and hence is ideal for implementing via an aspect. Because we want to retry the operation, we'll need to use around advice so that we can call proceed multiple times. Here's how the basic aspect implementation looks (it's just a regular Java class using the schema support): public class ConcurrentOperationExecutor implements Ordered { private static final int DEFAULT_MAX_RETRIES = 2; private int maxRetries = DEFAULT_MAX_RETRIES; private int order = 1; public void setMaxRetries(int maxRetries) { this.maxRetries = maxRetries; } public int getOrder() { return this.order; } public void setOrder(int order) { this.order = order; } public Object doConcurrentOperation(ProceedingJoinPoint pjp) throws Throwable { int numAttempts = 0; PessimisticLockingFailureException lockFailureException; do { numAttempts++; try { return pjp.proceed(); } catch(PessimisticLockingFailureException ex) { lockFailureException = ex; } } while(numAttempts <= this.maxRetries); throw lockFailureException; } } Note that the aspect implements the Ordered interface so we can set the precedence of the aspect higher than the transaction advice (we want a fresh transaction each time we retry). The maxRetries and order properties will both be configured by Spring. The main action happens in the doConcurrentOperation around advice method. We try to proceed, and if we fail with a PessimisticLockingFailureException we simply try again unless we have exhausted all of our retry attempts. This class is identical to the one used in the @AspectJ example, but with the annotations removed. Spring Framework (2.5.6) 153
  • 154. Aspect Oriented Programming with Spring The corresponding Spring configuration is: <aop:config> <aop:aspect id="concurrentOperationRetry" ref="concurrentOperationExecutor"> <aop:pointcut id="idempotentOperation" expression="execution(* com.xyz.myapp.service.*.*(..))"/> <aop:around pointcut-ref="idempotentOperation" method="doConcurrentOperation"/> </aop:aspect> </aop:config> <bean id="concurrentOperationExecutor" class="com.xyz.myapp.service.impl.ConcurrentOperationExecutor"> <property name="maxRetries" value="3"/> <property name="order" value="100"/> </bean> Notice that for the time being we assume that all business services are idempotent. If this is not the case we can refine the aspect so that it only retries genuinely idempotent operations, by introducing an Idempotent annotation: @Retention(RetentionPolicy.RUNTIME) public @interface Idempotent { // marker annotation } and using the annotation to annotate the implementation of service operations. The change to the aspect to retry only idempotent operations simply involves refining the pointcut expression so that only @Idempotent operations match: <aop:pointcut id="idempotentOperation" expression="execution(* com.xyz.myapp.service.*.*(..)) and @annotation(com.xyz.myapp.service.Idempotent)"/> 6.4. Choosing which AOP declaration style to use Once you have decided that an aspect is the best approach for implementing a given requirement, how do you decide between using Spring AOP or AspectJ, and between the Aspect language (code) style, @AspectJ annotation style, or the Spring XML style? These decisions are influenced by a number of factors including application requirements, development tools, and team familiarity with AOP. 6.4.1. Spring AOP or full AspectJ? Use the simplest thing that can work. Spring AOP is simpler than using full AspectJ as there is no requirement to introduce the AspectJ compiler / weaver into your development and build processes. If you only need to advise the execution of operations on Spring beans, then Spring AOP is the right choice. If you need to advise objects not managed by the Spring container (such as domain objects typically), then you will need to use AspectJ. You will also need to use AspectJ if you wish to advise join points other than simple method executions (for example, field get or set join points, and so on). When using AspectJ, you have the choice of the AspectJ language syntax (also known as the "code style") or the @AspectJ annotation style. Clearly, if you are not using Java 5+ then the choice has been made for you... Spring Framework (2.5.6) 154
  • 155. Aspect Oriented Programming with Spring use the code style. If aspects play a large role in your design, and you are able to use the AspectJ Development Tools (AJDT) plugin for Eclipse, then the AspectJ language syntax is the preferred option: it is cleaner and simpler because the language was purposefully designed for writing aspects. If you are not using Eclipse, or have only a few aspects that do not play a major role in your application, then you may want to consider using the @AspectJ style and sticking with a regular Java compilation in your IDE, and adding an aspect weaving phase to your build script. 6.4.2. @AspectJ or XML for Spring AOP? If you have chosen to use Spring AOP, then you have a choice of @AspectJ or XML style. Clearly if you are not running on Java 5+, then the XML style is the appropriate choice; for Java 5 projects there are various tradeoffs to consider. The XML style will be most familiar to existing Spring users. It can be used with any JDK level (referring to named pointcuts from within pointcut expressions does still require Java 5+ though) and is backed by genuine POJOs. When using AOP as a tool to configure enterprise services then XML can be a good choice (a good test is whether you consider the pointcut expression to be a part of your configuration you might want to change independently). With the XML style arguably it is clearer from your configuration what aspects are present in the system. The XML style has two disadvantages. Firstly it does not fully encapsulate the implementation of the requirement it addresses in a single place. The DRY principle says that there should be a single, unambiguous, authoritative representation of any piece of knowledge within a system. When using the XML style, the knowledge of how a requirement is implemented is split across the declaration of the backing bean class, and the XML in the configuration file. When using the @AspectJ style there is a single module - the aspect - in which this information is encapsulated. Secondly, the XML style is slightly more limited in what it can express than the @AspectJ style: only the "singleton" aspect instantiation model is supported, and it is not possible to combine named pointcuts declared in XML. For example, in the @AspectJ style you can write something like: @Pointcut(execution(* get*())) public void propertyAccess() {} @Pointcut(execution(org.xyz.Account+ *(..)) public void operationReturningAnAccount() {} @Pointcut(propertyAccess() && operationReturningAnAccount()) public void accountPropertyAccess() {} In the XML style I can declare the first two pointcuts: <aop:pointcut id="propertyAccess" expression="execution(* get*())"/> <aop:pointcut id="operationReturningAnAccount" expression="execution(org.xyz.Account+ *(..))"/> The downside of the XML approach is that you cannot define the 'accountPropertyAccess' pointcut by combining these definitions. The @AspectJ style supports additional instantiation models, and richer pointcut composition. It has the advantage of keeping the aspect as a modular unit. It also has the advantage the @AspectJ aspects can be understood (and thus consumed) both by Spring AOP and by AspectJ - so if you later decide you need the capabilities of AspectJ to implement additional requirements then it is very easy to migrate to an AspectJ-based approach. On balance the Spring team prefer the @AspectJ style whenever you have aspects that do more than simple "configuration" of enterprise services. Spring Framework (2.5.6) 155
  • 156. Aspect Oriented Programming with Spring 6.5. Mixing aspect types It is perfectly possible to mix @AspectJ style aspects using the autoproxying support, schema-defined <aop:aspect> aspects, <aop:advisor> declared advisors and even proxies and interceptors defined using the Spring 1.2 style in the same configuration. All of these are implemented using the same underlying support mechanism and will co-exist without any difficulty. 6.6. Proxying mechanisms Spring AOP uses either JDK dynamic proxies or CGLIB to create the proxy for a given target object. (JDK dynamic proxies are preferred whenever you have a choice). If the target object to be proxied implements at least one interface then a JDK dynamic proxy will be used. All of the interfaces implemented by the target type will be proxied. If the target object does not implement any interfaces then a CGLIB proxy will be created. If you want to force the use of CGLIB proxying (for example, to proxy every method defined for the target object, not just those implemented by its interfaces) you can do so. However, there are some issues to consider: • final methods cannot be advised, as they cannot be overriden. • You will need the CGLIB 2 binaries on your classpath, whereas dynamic proxies are available with the JDK. Spring will automatically warn you when it needs CGLIB and the CGLIB library classes are not found on the classpath. • The constructor of your proxied object will be called twice. This is a natural consequence of the CGLIB proxy model whereby a subclass is generated for each proxied object. For each proxied instance, two objects are created: the actual proxied object and an instance of the subclass that implements the advice. This behavior is not exhibited when using JDK proxies. Usually, calling the constructor of the proxied type twice, is not an issue, as there are usually only assignments taking place and no real logic is implemented in the constructor. To force the use of CGLIB proxies set the value of the proxy-target-class attribute of the <aop:config> element to true: <aop:config proxy-target-class="true"> <!-- other beans defined here... --> </aop:config> To force CGLIB proxying when using the @AspectJ autoproxy support, set the 'proxy-target-class' attribute of the <aop:aspectj-autoproxy> element to true: <aop:aspectj-autoproxy proxy-target-class="true"/> Note Multiple <aop:config/> sections are collapsed into a single unified auto-proxy creator at runtime, which applies the strongest proxy settings that any of the <aop:config/> sections (typically from different XML bean definition files) specified. This also applies to the <tx:annotation-driven/> and <aop:aspectj-autoproxy/> elements. Spring Framework (2.5.6) 156
  • 157. Aspect Oriented Programming with Spring To be clear: using 'proxy-target-class="true"' on <tx:annotation-driven/>, <aop:aspectj-autoproxy/> or <aop:config/> elements will force the use of CGLIB proxies for all three of them. 6.6.1. Understanding AOP proxies Spring AOP is proxy-based. It is vitally important that you grasp the semantics of what that last statement actually means before you write your own aspects or use any of the Spring AOP-based aspects supplied with the Spring Framework. Consider first the scenario where you have a plain-vanilla, un-proxied, nothing-special-about-it, straight object reference, as illustrated by the following code snippet. public class SimplePojo implements Pojo { public void foo() { // this next method invocation is a direct call on the 'this' reference this.bar(); } public void bar() { // some logic... } } If you invoke a method on an object reference, the method is invoked directly on that object reference, as can be seen below. public class Main { public static void main(String[] args) { Pojo pojo = new SimplePojo(); // this is a direct method call on the 'pojo' reference pojo.foo(); } } Things change slightly when the reference that client code has is a proxy. Consider the following diagram and code snippet. Spring Framework (2.5.6) 157
  • 158. Aspect Oriented Programming with Spring public class Main { public static void main(String[] args) { ProxyFactory factory = new ProxyFactory(new SimplePojo()); factory.addInterface(Pojo.class); factory.addAdvice(new RetryAdvice()); Pojo pojo = (Pojo) factory.getProxy(); // this is a method call on the proxy! pojo.foo(); } } The key thing to understand here is that the client code inside the main(..) of the Main class has a reference to the proxy. This means that method calls on that object reference will be calls on the proxy, and as such the proxy will be able to delegate to all of the interceptors (advice) that are relevant to that particular method call. However, once the call has finally reached the target object, the SimplePojo reference in this case, any method calls that it may make on itself, such as this.bar() or this.foo(), are going to be invoked against the this reference, and not the proxy. This has important implications. It means that self-invocation is not going to result in the advice associated with a method invocation getting a chance to execute. Okay, so what is to be done about this? The best approach (the term best is used loosely here) is to refactor your code such that the self-invocation does not happen. For sure, this does entail some work on your part, but it is the best, least-invasive approach. The next approach is absolutely horrendous, and I am almost reticent to point it out precisely because it is so horrendous. You can (choke!) totally tie the logic within your class to Spring AOP by doing this: public class SimplePojo implements Pojo { public void foo() { // this works, but... gah! ((Pojo) AopContext.currentProxy()).bar(); } public void bar() { // some logic... } } This totally couples your code to Spring AOP, and it makes the class itself aware of the fact that it is being used in an AOP context, which flies in the face of AOP. It also requires some additional configuration when the proxy is being created: public class Main { Spring Framework (2.5.6) 158
  • 159. Aspect Oriented Programming with Spring public static void main(String[] args) { ProxyFactory factory = new ProxyFactory(new SimplePojo()); factory.adddInterface(Pojo.class); factory.addAdvice(new RetryAdvice()); factory.setExposeProxy(true); Pojo pojo = (Pojo) factory.getProxy(); // this is a method call on the proxy! pojo.foo(); } } Finally, it must be noted that AspectJ does not have this self-invocation issue because it is not a proxy-based AOP framework. 6.7. Programmatic creation of @AspectJ Proxies In addition to declaring aspects in your configuration using either <aop:config> or <aop:aspectj-autoproxy>, it is also possible programmatically to create proxies that advise target objects. For the full details of Spring's AOP API, see the next chapter. Here we want to focus on the ability to automatically create proxies using @AspectJ aspects. The class org.springframework.aop.aspectj.annotation.AspectJProxyFactory can be used to create a proxy for a target object that is advised by one or more @AspectJ aspects. Basic usage for this class is very simple, as illustrated below. See the Javadocs for full information. // create a factory that can generate a proxy for the given target object AspectJProxyFactory factory = new AspectJProxyFactory(targetObject); // add an aspect, the class must be an @AspectJ aspect // you can call this as many times as you need with different aspects factory.addAspect(SecurityManager.class); // you can also add existing aspect instances, the type of the object supplied must be an @AspectJ aspect factory.addAspect(usageTracker); // now get the proxy object... MyInterfaceType proxy = factory.getProxy(); 6.8. Using AspectJ with Spring applications Everything we've covered so far in this chapter is pure Spring AOP. In this section, we're going to look at how you can use the AspectJ compiler/weaver instead of, or in addition to, Spring AOP if your needs go beyond the facilities offered by Spring AOP alone. Spring ships with a small AspectJ aspect library, which is available standalone in your distribution as spring-aspects.jar; you'll need to add this to your classpath in order to use the aspects in it. Section 6.8.1, “Using AspectJ to dependency inject domain objects with Spring” and Section 6.8.2, “Other Spring aspects for AspectJ” discuss the content of this library and how you can use it. Section 6.8.3, “Configuring AspectJ aspects using Spring IoC” discusses how to dependency inject AspectJ aspects that are woven using the AspectJ compiler. Finally, Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework” provides an introduction to load-time weaving for Spring applications using AspectJ. 6.8.1. Using AspectJ to dependency inject domain objects with Spring Spring Framework (2.5.6) 159
  • 160. Aspect Oriented Programming with Spring The Spring container instantiates and configures beans defined in your application context. It is also possible to ask a bean factory to configure a pre-existing object given the name of a bean definition containing the configuration to be applied. The spring-aspects.jar contains an annotation-driven aspect that exploits this capability to allow dependency injection of any object. The support is intended to be used for objects created outside of the control of any container. Domain objects often fall into this category because they are often created programmatically using the new operator, or by an ORM tool as a result of a database query. The @Configurable annotation marks a class as eligible for Spring-driven configuration. In the simplest case it can be used just as a marker annotation: package com.xyz.myapp.domain; import org.springframework.beans.factory.annotation.Configurable; @Configurable public class Account { // ... } When used as a marker interface in this way, Spring will configure new instances of the annotated type (Account in this case) using a prototype-scoped bean definition with the same name as the fully-qualified type name (com.xyz.myapp.domain.Account). Since the default name for a bean is the fully-qualified name of its type, a convenient way to declare the prototype definition is simply to omit the id attribute: <bean class="com.xyz.myapp.domain.Account" scope="prototype"> <property name="fundsTransferService" ref="fundsTransferService"/> </bean> If you want to explicitly specify the name of the prototype bean definition to use, you can do so directly in the annotation: package com.xyz.myapp.domain; import org.springframework.beans.factory.annotation.Configurable; @Configurable("account") public class Account { // ... } Spring will now look for a bean definition named "account" and use that as the definition to configure new Account instances. You can also use autowiring to avoid having to specify a prototype-scoped bean definition at all. To have Spring apply autowiring use the 'autowire' property of the @Configurable annotation: specify either @Configurable(autowire=Autowire.BY_TYPE) or @Configurable(autowire=Autowire.BY_NAME for autowiring by type or by name respectively. As an alternative, as of Spring 2.5 it is preferable to specify explicit, annotation-driven dependency injection for your @Configurable beans by using @Autowired and @Resource at the field or method level (see Section 3.11, “Annotation-based configuration” for further details). Finally you can enable Spring dependency checking for the object references in the newly created and configured object by using the dependencyCheck attribute (for example: @Configurable(autowire=Autowire.BY_NAME,dependencyCheck=true)). If this attribute is set to true, then Spring will validate after configuration that all properties (which are not primitives or collections) have been set. Using the annotation on its own does nothing of course. It is the AnnotationBeanConfigurerAspect in spring-aspects.jar that acts on the presence of the annotation. In essence the aspect says "after returning Spring Framework (2.5.6) 160
  • 161. Aspect Oriented Programming with Spring from the initialization of a new object of a type annotated with @Configurable, configure the newly created object using Spring in accordance with the properties of the annotation". In this context, initialization refers to newly instantiated objects (e.g., objects instantiated with the 'new' operator) as well as to Serializable objects that are undergoing deserialization (e.g., via readResolve()). Note One of the key phrases in the above paragraph is 'in essence'. For most cases, the exact semantics of 'after returning from the initialization of a new object' will be fine... in this context, 'after initialization' means that the dependencies will be injected after the object has been constructed - this means that the dependencies will not be available for use in the constructor bodies of the class. If you want the dependencies to be injected before the constructor bodies execute, and thus be available for use in the body of the constructors, then you need to define this on the @Configurable declaration like so: @Configurable(preConstruction=true) You can find out more information about the language semantics of the various pointcut types in AspectJ in this appendix of the AspectJ Programming Guide. For this to work the annotated types must be woven with the AspectJ weaver - you can either use a build-time Ant or Maven task to do this (see for example the AspectJ Development Environment Guide) or load-time weaving (see Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework”). The AnnotationBeanConfigurerAspect itself needs configuring by Spring (in order to obtain a reference to the bean factory that is to be used to configure new objects). The Spring context namespace defines a convenient tag for doing this: just include the following in your application context configuration: <context:spring-configured/> If you are using the DTD instead of schema, the equivalent definition is: <bean class="org.springframework.beans.factory.aspectj.AnnotationBeanConfigurerAspect" factory-method="aspectOf"/> Instances of @Configurable objects created before the aspect has been configured will result in a warning being issued to the log and no configuration of the object taking place. An example might be a bean in the Spring configuration that creates domain objects when it is initialized by Spring. In this case you can use the "depends-on" bean attribute to manually specify that the bean depends on the configuration aspect. <bean id="myService" class="com.xzy.myapp.service.MyService" depends-on="org.springframework.beans.factory.aspectj.AnnotationBeanConfigurerAspect"> <!-- ... --> </bean> 6.8.1.1. Unit testing @Configurable objects One of the goals of the @Configurable support is to enable independent unit testing of domain objects without the difficulties associated with hard-coded lookups. If @Configurable types have not been woven by AspectJ then the annotation has no affect during unit testing, and you can simply set mock or stub property references in the object under test and proceed as normal. If @Configurable types have been woven by AspectJ then you can Spring Framework (2.5.6) 161
  • 162. Aspect Oriented Programming with Spring still unit test outside of the container as normal, but you will see a warning message each time that you construct an @Configurable object indicating that it has not been configured by Spring. 6.8.1.2. Working with multiple application contexts The AnnotationBeanConfigurerAspect used to implement the @Configurable support is an AspectJ singleton aspect. The scope of a singleton aspect is the same as the scope of static members, that is to say there is one aspect instance per classloader that defines the type. This means that if you define multiple application contexts within the same classloader hierarchy you need to consider where to define the <context:spring-configured/> bean and where to place spring-aspects.jar on the classpath. Consider a typical Spring web-app configuration with a shared parent application context defining common business services and everything needed to support them, and one child application context per servlet containing definitions particular to that servlet. All of these contexts will co-exist within the same classloader hierarchy, and so the AnnotationBeanConfigurerAspect can only hold a reference to one of them. In this case we recommend defining the <context:spring-configured/> bean in the shared (parent) application context: this defines the services that you are likely to want to inject into domain objects. A consequence is that you cannot configure domain objects with references to beans defined in the child (servlet-specific) contexts using the @Configurable mechanism (probably not something you want to do anyway!). When deploying multiple web-apps within the same container, ensure that each web-application loads the types in spring-aspects.jar using its own classloader (for example, by placing spring-aspects.jar in 'WEB-INF/lib'). If spring-aspects.jar is only added to the container wide classpath (and hence loaded by the shared parent classloader), all web applications will share the same aspect instance which is probably not what you want. 6.8.2. Other Spring aspects for AspectJ In addition to the @Configurable aspect, spring-aspects.jar contains an AspectJ aspect that can be used to drive Spring's transaction management for types and methods annotated with the @Transactional annotation. This is primarily intended for users who want to use the Spring Framework's transaction support outside of the Spring container. The aspect that interprets @Transactional annotations is the AnnotationTransactionAspect. When using this aspect, you must annotate the implementation class (and/or methods within that class), not the interface (if any) that the class implements. AspectJ follows Java's rule that annotations on interfaces are not inherited. A @Transactional annotation on a class specifies the default transaction semantics for the execution of any public operation in the class. A @Transactional annotation on a method within the class overrides the default transaction semantics given by the class annotation (if present). Methods with public, protected, and default visibility may all be annotated. Annotating protected and default visibility methods directly is the only way to get transaction demarcation for the execution of such methods. For AspectJ programmers that want to use the Spring configuration and transaction management support but don't want to (or cannot) use annotations, spring-aspects.jar also contains abstract aspects you can extend to provide your own pointcut definitions. See the sources for the AbstractBeanConfigurerAspect and AbstractTransactionAspect aspects for more information. As an example, the following excerpt shows how you could write an aspect to configure all instances of objects defined in the domain model using prototype bean definitions that match the fully-qualified class names: public aspect DomainObjectConfiguration extends AbstractBeanConfigurerAspect { public DomainObjectConfiguration() { Spring Framework (2.5.6) 162
  • 163. Aspect Oriented Programming with Spring setBeanWiringInfoResolver(new ClassNameBeanWiringInfoResolver()); } // the creation of a new bean (any object in the domain model) protected pointcut beanCreation(Object beanInstance) : initialization(new(..)) && SystemArchitecture.inDomainModel() && this(beanInstance); } 6.8.3. Configuring AspectJ aspects using Spring IoC When using AspectJ aspects with Spring applications, it is natural to both want and expect to be able to configure such aspects using Spring. The AspectJ runtime itself is responsible for aspect creation, and the means of configuring the AspectJ created aspects via Spring depends on the AspectJ instantiation model (the 'per-xxx' clause) used by the aspect. The majority of AspectJ aspects are singleton aspects. Configuration of these aspects is very easy: simply create a bean definition referencing the aspect type as normal, and include the bean attribute 'factory-method="aspectOf"'. This ensures that Spring obtains the aspect instance by asking AspectJ for it rather than trying to create an instance itself. For example: <bean id="profiler" class="com.xyz.profiler.Profiler" factory-method="aspectOf"> <property name="profilingStrategy" ref="jamonProfilingStrategy"/> </bean> Non-singleton aspects are harder to configure: however it is possible to do so by creating prototype bean definitions and using the @Configurable support from spring-aspects.jar to configure the aspect instances once they have bean created by the AspectJ runtime. If you have some @AspectJ aspects that you want to weave with AspectJ (for example, using load-time weaving for domain model types) and other @AspectJ aspects that you want to use with Spring AOP, and these aspects are all configured using Spring, then you will need to tell the Spring AOP @AspectJ autoproxying support which exact subset of the @AspectJ aspects defined in the configuration should be used for autoproxying. You can do this by using one or more <include/> elements inside the <aop:aspectj-autoproxy/> declaration. Each <include/> element specifies a name pattern, and only beans with names matched by at least one of the patterns will be used for Spring AOP autoproxy configuration: <aop:aspectj-autoproxy> <aop:include name="thisBean"/> <aop:include name="thatBean"/> </aop:aspectj-autoproxy> Note Do not be misled by the name of the <aop:aspectj-autoproxy/> element: using it will result in the creation of Spring AOP proxies. The @AspectJ style of aspect declaration is just being used here, but the AspectJ runtime is not involved. 6.8.4. Load-time weaving with AspectJ in the Spring Framework Load-time weaving (LTW) refers to the process of weaving AspectJ aspects into an application's class files as Spring Framework (2.5.6) 163
  • 164. Aspect Oriented Programming with Spring they are being loaded into the Java virtual machine (JVM). The focus of this section is on configuring and using LTW in the specific context of the Spring Framework: this section is not an introduction to LTW though. For full details on the specifics of LTW and configuring LTW with just AspectJ (with Spring not being involved at all), see the LTW section of the AspectJ Development Environment Guide. The value-add that the Spring Framework brings to AspectJ LTW is in enabling much finer-grained control over the weaving process. 'Vanilla' AspectJ LTW is effected using a Java (5+) agent, which is switched on by specifying a VM argument when starting up a JVM. It is thus a JVM-wide setting, which may be fine in some situations, but often is a little too coarse. Spring-enabled LTW enables you to switch on LTW on a per-ClassLoader basis, which obviously is more fine-grained and which can make more sense in a 'single-JVM-multiple-application' environment (such as is found in a typical application server environment). Further, in certain environments, this support enables load-time weaving without making any modifications to the application server's launch script that will be needed to add -javaagent:path/to/aspectjweaver.jar or (as we describe later in this section) -javaagent:path/to/spring-agent.jar. Developers simply modify one or more files that form the application context to enable load-time weaving instead of relying on administrators who typically are in charge of the deployment configuration such as the launch script. Now that the sales pitch is over, let us first walk through a quick example of AspectJ LTW using Spring, followed by detailed specifics about elements introduced in the following example. For a complete example, please see the Petclinic sample application. 6.8.4.1. A first example Let us assume that you are an application developer who has been tasked with diagnosing the cause of some performance problems in a system. Rather than break out a profiling tool, what we are going to do is switch on a simple profiling aspect that will enable us to very quickly get some performance metrics, so that we can then apply a finer-grained profiling tool to that specific area immediately afterwards. Here is the profiling aspect. Nothing too fancy, just a quick-and-dirty time-based profiler, using the @AspectJ-style of aspect declaration. package foo; import org.aspectj.lang.ProceedingJoinPoint; import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.Around; import org.aspectj.lang.annotation.Pointcut; import org.springframework.util.StopWatch; import org.springframework.core.annotation.Order; @Aspect public class ProfilingAspect { @Around("methodsToBeProfiled()") public Object profile(ProceedingJoinPoint pjp) throws Throwable { StopWatch sw = new StopWatch(getClass().getSimpleName()); try { sw.start(pjp.getSignature().getName()); return pjp.proceed(); } finally { sw.stop(); System.out.println(sw.prettyPrint()); } } @Pointcut("execution(public * foo..*.*(..))") public void methodsToBeProfiled(){} } We will also need to create an 'META-INF/aop.xml' file, to inform the AspectJ weaver that we want to weave Spring Framework (2.5.6) 164
  • 165. Aspect Oriented Programming with Spring our ProfilingAspect into our classes. This file convention, namely the presence of a file (or files) on the Java classpath called ' META-INF/aop.xml' is standard AspectJ. <!DOCTYPE aspectj PUBLIC "-//AspectJ//DTD//EN" "http://www.eclipse.org/aspectj/dtd/aspectj.dtd"> <aspectj> <weaver> <!-- only weave classes in our application-specific packages --> <include within="foo.*"/> </weaver> <aspects> <!-- weave in just this aspect --> <aspect name="foo.ProfilingAspect"/> </aspects> </aspectj> Now to the Spring-specific portion of the configuration. We need to configure a LoadTimeWeaver (all explained later, just take it on trust for now). This load-time weaver is the essential component responsible for weaving the aspect configuration in one or more 'META-INF/aop.xml' files into the classes in your application. The good thing is that it does not require a lot of configuration, as can be seen below (there are some more options that you can specify, but these are detailed later). <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.x <!-- a service object; we will be profiling its methods --> <bean id="entitlementCalculationService" class="foo.StubEntitlementCalculationService"/> <!-- this switches on the load-time weaving --> <context:load-time-weaver/> </beans> Now that all the required artifacts are in place - the aspect, the 'META-INF/aop.xml' file, and the Spring configuration -, let us create a simple driver class with a main(..) method to demonstrate the LTW in action. package foo; import org.springframework.context.support.ClassPathXmlApplicationContext; public final class Main { public static void main(String[] args) { ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml", Main.class); EntitlementCalculationService entitlementCalculationService = (EntitlementCalculationService) ctx.getBean("entitlementCalculationService"); // the profiling aspect is 'woven' around this method execution entitlementCalculationService.calculateEntitlement(); } } There is one last thing to do. The introduction to this section did say that one could switch on LTW selectively Spring Framework (2.5.6) 165
  • 166. Aspect Oriented Programming with Spring on a per-ClassLoader basis with Spring, and this is true. However, just for this example, we are going to use a Java agent (supplied with Spring) to switch on the LTW. This is the command line we will use to run the above Main class: java -javaagent:C:/projects/foo/lib/global/spring-agent.jar foo.Main The '-javaagent' is a Java 5+ flag for specifying and enabling agents to instrument programs running on the JVM. The Spring Framework ships with such an agent, the InstrumentationSavingAgent, which is packaged in the spring-agent.jar that was supplied as the value of the -javaagent argument in the above example. The output from the execution of the Main program will look something like that below. (I have introduced a Thread.sleep(..) statement into the calculateEntitlement() implementation so that the profiler actually captures something other than 0 milliseconds - the 01234 milliseconds is not an overhead introduced by the AOP :) ) Calculating entitlement StopWatch 'ProfilingAspect': running time (millis) = 1234 ------ ----- ---------------------------- ms % Task name ------ ----- ---------------------------- 01234 100% calculateEntitlement Since this LTW is effected using full-blown AspectJ, we are not just limited to advising Spring beans; the following slight variation on the Main program will yield the same result. package foo; import org.springframework.context.support.ClassPathXmlApplicationContext; public final class Main { public static void main(String[] args) { new ClassPathXmlApplicationContext("beans.xml", Main.class); EntitlementCalculationService entitlementCalculationService = new StubEntitlementCalculationService(); // the profiling aspect will be 'woven' around this method execution entitlementCalculationService.calculateEntitlement(); } } Notice how in the above program we are simply bootstrapping the Spring container, and then creating a new instance of the StubEntitlementCalculationService totally outside the context of Spring... the profiling advice still gets woven in. The example admittedly is simplistic... however the basics of the LTW support in Spring have all been introduced in the above example, and the rest of this section will explain the 'why' behind each bit of configuration and usage in detail. Note The ProfilingAspect used in this example may be basic, but it is quite useful. It is a nice example of a development-time aspect that developers can use during development (of course), and then quite easily exclude from builds of the application being deployed into UAT or production. Spring Framework (2.5.6) 166
  • 167. Aspect Oriented Programming with Spring 6.8.4.2. Aspects The aspects that you use in LTW have to be AspectJ aspects. They can be written in either the AspectJ language itself or you can write your aspects in the @AspectJ-style. The latter option is of course only an option if you are using Java 5+, but it does mean that your aspects are then both valid AspectJ and Spring AOP aspects. Furthermore, the compiled aspect classes need to be available on the classpath. 6.8.4.3. 'META-INF/aop.xml' The AspectJ LTW infrastructure is configured using one or more 'META-INF/aop.xml' files, that are on the Java classpath (either directly, or more typically in jar files). The structure and contents of this file is detailed in the main AspectJ reference documentation, and the interested reader is referred to that resource. (I appreciate that this section is brief, but the 'aop.xml' file is 100% AspectJ - there is no Spring-specific information or semantics that apply to it, and so there is no extra value that I can contribute either as a result), so rather than rehash the quite satisfactory section that the AspectJ developers wrote, I am just directing you there.) 6.8.4.4. Required libraries (JARS) At a minimum you will need the following libraries to use the Spring Framework's support for AspectJ LTW: 1. spring.jar (version 2.5 or later) 2. aspectjrt.jar (version 1.5 or later) 3. aspectjweaver.jar (version 1.5 or later) If you are using the Spring-provided agent to enable instrumentation, you will also need: 1. spring-agent.jar 6.8.4.5. Spring configuration The key component in Spring's LTW support is the LoadTimeWeaver interface (in the org.springframework.instrument.classloading package), and the numerous implementations of it that ship with the Spring distribution. A LoadTimeWeaver is responsible for adding one or more java.lang.instrument.ClassFileTransformers to a ClassLoader at runtime, which opens the door to all manner of interesting applications, one of which happens to be the LTW of aspects. Tip If you are unfamiliar with the idea of runtime class file transformation, you are encouraged to read the Javadoc API documentation for the java.lang.instrument package before continuing. This is not a huge chore because there is - rather annoyingly - precious little documentation there... the key interfaces and classes will at least be laid out in front of you for reference as you read through this section. Configuring a LoadTimeWeaver using XML for a particular ApplicationContext can be as easy as adding one line. (Please note that you almost certainly will need to be using an ApplicationContext as your Spring container - typically a BeanFactory will not be enough because the LTW support makes use of Spring Framework (2.5.6) 167
  • 168. Aspect Oriented Programming with Spring BeanFactoryPostProcessors.) To enable the Spring Framework's LTW support, you need to configure a LoadTimeWeaver, which typically is done using the <context:load-time-weaver/> element. Find below a valid <context:load-time-weaver/> definition that uses default settings. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.x <context:load-time-weaver/> </beans> The above <context:load-time-weaver/> bean definition will define and register a number of LTW-specific infrastructure beans for you automatically, such as a LoadTimeWeaver and an AspectJWeavingEnabler. Notice how the <context:load-time-weaver/> is defined in the 'context' namespace; note also that the referenced XML Schema file is only available in versions of Spring 2.5 and later. What the above configuration does is define and register a default LoadTimeWeaver bean for you. The default LoadTimeWeaver is the DefaultContextLoadTimeWeaver class, which attempts to decorate an automatically detected LoadTimeWeaver: the exact type of LoadTimeWeaver that will be 'automatically detected' is dependent upon your runtime environment (summarised in the following table). Table 6.1. DefaultContextLoadTimeWeaver LoadTimeWeavers Runtime Environment LoadTimeWeaver implementation Running in BEA's Weblogic 10 WebLogicLoadTimeWeaver Running in Oracle's OC4J OC4JLoadTimeWeaver Running in GlassFish GlassFishLoadTimeWeaver JVM started with Spring InstrumentationLoadTimeWeaver InstrumentationSavingAgent (java -javaagent:path/to/spring-agent.jar) Fallback, expecting the underlying ClassLoader to ReflectiveLoadTimeWeaver follow common conventions (e.g. applicable to TomcatInstrumentableClassLoader and to Resin) Note that these are just the LoadTimeWeavers that are autodetected when using the DefaultContextLoadTimeWeaver: it is of course possible to specify exactly which LoadTimeWeaver implementation that you wish to use by specifying the fully-qualified classname as the value of the 'weaver-class' attribute of the <context:load-time-weaver/> element. Find below an example of doing just that: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" Spring Framework (2.5.6) 168
  • 169. Aspect Oriented Programming with Spring xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.x <context:load-time-weaver weaver-class="org.springframework.instrument.classloading.ReflectiveLoadTimeWeaver"/> </beans> The LoadTimeWeaver that is defined and registered by the <context:load-time-weaver/> element can be later retrieved from the Spring container using the well-known name 'loadTimeWeaver'. Remember that the LoadTimeWeaver exists just as a mechanism for Spring's LTW infrastructure to add one or more ClassFileTransformers. The actual ClassFileTransformer that does the LTW is the ClassPreProcessorAgentAdapter (from the org.aspectj.weaver.loadtime package) class. See the class-level Javadoc for the ClassPreProcessorAgentAdapter class for further details, because the specifics of how the weaving is actually effected is beyond the scope of this section. There is one final attribute of the <context:load-time-weaver/> left to discuss: the 'aspectj-weaving' attribute. This is a simple attribute that controls whether LTW is enabled or not, it is as simple as that. It accepts one of three possible values, summarised below, with the default value if the attribute is not present being ' autodetect' Table 6.2. 'aspectj-weaving' attribute values Attribute Value Explanation on AspectJ weaving is on, and aspects will be woven at load-time as appropriate. off LTW is off... no aspect will be woven at load-time. autodetect If the Spring LTW infrastructure can find at least one 'META-INF/aop.xml' file, then AspectJ weaving is on, else it is off. This is the default value. 6.8.4.6. Environment-specific configuration This last section contains any additional settings and configuration that you will need when using Spring's LTW support in environments such as application servers and web containers. 6.8.4.6.1. Generic Java applications You may enable Spring's support for LTW in any Java application (standalone as well as application server based) through the use of the Spring-provided instrumentation agent. To do so, start the VM by by specifying the -javaagent:path/to/spring-agent.jar option. Note that this requires modification of the VM launch script which may prevent you from using this in application server environments (depending on your operation policies). 6.8.4.6.2. Tomcat For web applications deployed onto Apache Tomcat 5.0 and above, Spring provides a Spring Framework (2.5.6) 169
  • 170. Aspect Oriented Programming with Spring TomcatInstrumentableClassLoader to be registered as the web app class loader. The required Tomcat setup looks as follows, to be included either in Tomcat's central server.xml file or in an application-specific META-INF/context.xml file within the WAR root. Spring's spring-tomcat-weaver.jar needs to be included in Tomcat's common lib directory in order to make this setup work. <Context path="/myWebApp" docBase="/my/webApp/location"> <Loader loaderClass="org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader" useSystemClassLoaderAsParent="false"/> </Context> Note: We generally recommend Tomcat 5.5.20 or above when enabling load-time weaving. Prior versions have known issues with custom ClassLoader setup. Alternatively, consider the use of the Spring-provided generic VM agent, to be specified in Tomcat's launch script (see above). This will make instrumentation available to all deployed web applications, no matter which ClassLoader they happen to run on. For a more detailed discussion of Tomcat-based weaving setup, check out the Section 12.6.1.3.1, “Tomcat load-time weaving setup (5.0+)” section which discusses specifics of various Tomcat versions. While the primary focus of that section is on JPA persistence provider setup, the Tomcat setup characteristics apply to general load-time weaving as well. 6.8.4.6.3. WebLogic, OC4J, Resin, GlassFish Recent versions of BEA WebLogic (version 10 and above), Oracle Containers for Java EE (OC4J 10.1.3.1 and above) and Resin (3.1 and above) provide a ClassLoader that is capable of local instrumentation. Spring's native LTW leverages such ClassLoaders to enable AspectJ weaving. You can enable LTW by simply activating context:load-time-weaver as described earlier. Specifically, you do not need to modify the launch script to add -javaagent:path/to/spring-agent.jar. GlassFish provides an instrumentation-capable ClassLoader as well, but only in its EAR environment. For GlassFish web applications, follow the Tomcat setup instructions as outlined above. 6.9. Further Resources More information on AspectJ can be found on the AspectJ website. The book Eclipse AspectJ by Adrian Colyer et. al. (Addison-Wesley, 2005) provides a comprehensive introduction and reference for the AspectJ language. The book AspectJ in Action by Ramnivas Laddad (Manning, 2003) comes highly recommended; the focus of the book is on AspectJ, but a lot of general AOP themes are explored (in some depth). Spring Framework (2.5.6) 170
  • 171. Chapter 7. Spring AOP APIs 7.1. Introduction The previous chapter described the Spring 2.0 support for AOP using @AspectJ and schema-based aspect definitions. In this chapter we discuss the lower-level Spring AOP APIs and the AOP support used in Spring 1.2 applications. For new applications, we recommend the use of the Spring 2.0 AOP support described in the previous chapter, but when working with existing applications, or when reading books and articles, you may come across Spring 1.2 style examples. Spring 2.0 is fully backwards compatible with Spring 1.2 and everything described in this chapter is fully supported in Spring 2.0. 7.2. Pointcut API in Spring Let's look at how Spring handles the crucial pointcut concept. 7.2.1. Concepts Spring's pointcut model enables pointcut reuse independent of advice types. It's possible to target different advice using the same pointcut. The org.springframework.aop.Pointcut interface is the central interface, used to target advices to particular classes and methods. The complete interface is shown below: public interface Pointcut { ClassFilter getClassFilter(); MethodMatcher getMethodMatcher(); } Splitting the Pointcut interface into two parts allows reuse of class and method matching parts, and fine-grained composition operations (such as performing a "union" with another method matcher). The ClassFilter interface is used to restrict the pointcut to a given set of target classes. If the matches() method always returns true, all target classes will be matched: public interface ClassFilter { boolean matches(Class clazz); } The MethodMatcher interface is normally more important. The complete interface is shown below: public interface MethodMatcher { boolean matches(Method m, Class targetClass); boolean isRuntime(); boolean matches(Method m, Class targetClass, Object[] args); } The matches(Method, Class) method is used to test whether this pointcut will ever match a given method on Spring Framework (2.5.6) 171
  • 172. Spring AOP APIs a target class. This evaluation can be performed when an AOP proxy is created, to avoid the need for a test on every method invocation. If the 2-argument matches method returns true for a given method, and the isRuntime() method for the MethodMatcher returns true, the 3-argument matches method will be invoked on every method invocation. This enables a pointcut to look at the arguments passed to the method invocation immediately before the target advice is to execute. Most MethodMatchers are static, meaning that their isRuntime() method returns false. In this case, the 3-argument matches method will never be invoked. Tip If possible, try to make pointcuts static, allowing the AOP framework to cache the results of pointcut evaluation when an AOP proxy is created. 7.2.2. Operations on pointcuts Spring supports operations on pointcuts: notably, union and intersection. • Union means the methods that either pointcut matches. • Intersection means the methods that both pointcuts match. • Union is usually more useful. • Pointcuts can be composed using the static methods in the org.springframework.aop.support.Pointcuts class, or using the ComposablePointcut class in the same package. However, using AspectJ pointcut expressions is usually a simpler approach. 7.2.3. AspectJ expression pointcuts Since 2.0, the most important type of pointcut used by Spring is org.springframework.aop.aspectj.AspectJExpressionPointcut. This is a pointcut that uses an AspectJ supplied library to parse an AspectJ pointcut expression string. See the previous chapter for a discussion of supported AspectJ pointcut primitives. 7.2.4. Convenience pointcut implementations Spring provides several convenient pointcut implementations. Some can be used out of the box; others are intended to be subclassed in application-specific pointcuts. 7.2.4.1. Static pointcuts Static pointcuts are based on method and target class, and cannot take into account the method's arguments. Static pointcuts are sufficient - and best - for most usages. It's possible for Spring to evaluate a static pointcut only once, when a method is first invoked: after that, there is no need to evaluate the pointcut again with each method invocation. Let's consider some static pointcut implementations included with Spring. 7.2.4.1.1. Regular expression pointcuts Spring Framework (2.5.6) 172
  • 173. Spring AOP APIs One obvious way to specify static pointcuts is regular expressions. Several AOP frameworks besides Spring make this possible. org.springframework.aop.support.Perl5RegexpMethodPointcut is a generic regular expression pointcut, using Perl 5 regular expression syntax. The Perl5RegexpMethodPointcut class depends on Jakarta ORO for regular expression matching. Spring also provides the JdkRegexpMethodPointcut class that uses the regular expression support in JDK 1.4+. Using the Perl5RegexpMethodPointcut class, you can provide a list of pattern Strings. If any of these is a match, the pointcut will evaluate to true. (So the result is effectively the union of these pointcuts.) The usage is shown below: <bean id="settersAndAbsquatulatePointcut" class="org.springframework.aop.support.Perl5RegexpMethodPointcut"> <property name="patterns"> <list> <value>.*set.*</value> <value>.*absquatulate</value> </list> </property> </bean> Spring provides a convenience class, RegexpMethodPointcutAdvisor, that allows us to also reference an Advice (remember that an Advice can be an interceptor, before advice, throws advice etc.). Behind the scenes, Spring will use a JdkRegexpMethodPointcut. Using RegexpMethodPointcutAdvisor simplifies wiring, as the one bean encapsulates both pointcut and advice, as shown below: <bean id="settersAndAbsquatulateAdvisor" class="org.springframework.aop.support.RegexpMethodPointcutAdvisor"> <property name="advice"> <ref local="beanNameOfAopAllianceInterceptor"/> </property> <property name="patterns"> <list> <value>.*set.*</value> <value>.*absquatulate</value> </list> </property> </bean> RegexpMethodPointcutAdvisor can be used with any Advice type. 7.2.4.1.2. Attribute-driven pointcuts An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata attributes: typically, source-level metadata. 7.2.4.2. Dynamic pointcuts Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method arguments, as well as static information. This means that they must be evaluated with every method invocation; the result cannot be cached, as arguments will vary. The main example is the control flow pointcut. 7.2.4.2.1. Control flow pointcuts Spring control flow pointcuts are conceptually similar to AspectJ cflow pointcuts, although less powerful. Spring Framework (2.5.6) 173
  • 174. Spring AOP APIs (There is currently no way to specify that a pointcut executes below a join point matched by another pointcut.) A control flow pointcut matches the current call stack. For example, it might fire if the join point was invoked by a method in the com.mycompany.web package, or by the SomeCaller class. Control flow pointcuts are specified using the org.springframework.aop.support.ControlFlowPointcut class. Note Control flow pointcuts are significantly more expensive to evaluate at runtime than even other dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic pointcuts. 7.2.5. Pointcut superclasses Spring provides useful pointcut superclasses to help you to implement your own pointcuts. Because static pointcuts are most useful, you'll probably subclass StaticMethodMatcherPointcut, as shown below. This requires implementing just one abstract method (although it's possible to override other methods to customize behavior): class TestStaticPointcut extends StaticMethodMatcherPointcut { public boolean matches(Method m, Class targetClass) { // return true if custom criteria match } } There are also superclasses for dynamic pointcuts. You can use custom pointcuts with any advice type in Spring 1.0 RC2 and above. 7.2.6. Custom pointcuts Because pointcuts in Spring AOP are Java classes, rather than language features (as in AspectJ) it's possible to declare custom pointcuts, whether static or dynamic. Custom pointcuts in Spring can be arbitrarily complex. However, using the AspectJ pointcut expression language is recommended if possible. Note Later versions of Spring may offer support for "semantic pointcuts" as offered by JAC: for example, "all methods that change instance variables in the target object." 7.3. Advice API in Spring Let's now look at how Spring AOP handles advice. 7.3.1. Advice lifecycles Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique to each advised object. This corresponds to per-class or per-instance advice. Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors. These do not depend on the state of the proxied object or add new state; they merely act on the method and arguments. Spring Framework (2.5.6) 174
  • 175. Spring AOP APIs Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds state to the proxied object. It's possible to use a mix of shared and per-instance advice in the same AOP proxy. 7.3.2. Advice types in Spring Spring provides several advice types out of the box, and is extensible to support arbitrary advice types. Let us look at the basic concepts and standard advice types. 7.3.2.1. Interception around advice The most fundamental advice type in Spring is interception around advice. Spring is compliant with the AOP Alliance interface for around advice using method interception. MethodInterceptors implementing around advice should implement the following interface: public interface MethodInterceptor extends Interceptor { Object invoke(MethodInvocation invocation) throws Throwable; } The MethodInvocation argument to the invoke() method exposes the method being invoked; the target join point; the AOP proxy; and the arguments to the method. The invoke() method should return the invocation's result: the return value of the join point. A simple MethodInterceptor implementation looks as follows: public class DebugInterceptor implements MethodInterceptor { public Object invoke(MethodInvocation invocation) throws Throwable { System.out.println("Before: invocation=[" + invocation + "]"); Object rval = invocation.proceed(); System.out.println("Invocation returned"); return rval; } } Note the call to the MethodInvocation's proceed() method. This proceeds down the interceptor chain towards the join point. Most interceptors will invoke this method, and return its return value. However, a MethodInterceptor, like any around advice, can return a different value or throw an exception rather than invoke the proceed method. However, you don't want to do this without good reason! Note MethodInterceptors offer interoperability with other AOP Alliance-compliant AOP implementations. The other advice types discussed in the remainder of this section implement common AOP concepts, but in a Spring-specific way. While there is an advantage in using the most specific advice type, stick with MethodInterceptor around advice if you are likely to want to run the aspect in another AOP framework. Note that pointcuts are not currently interoperable between frameworks, and the AOP Alliance does not currently define pointcut interfaces. 7.3.2.2. Before advice A simpler advice type is a before advice. This does not need a MethodInvocation object, since it will only be Spring Framework (2.5.6) 175
  • 176. Spring AOP APIs called before entering the method. The main advantage of a before advice is that there is no need to invoke the proceed() method, and therefore no possibility of inadvertently failing to proceed down the interceptor chain. The MethodBeforeAdvice interface is shown below. (Spring's API design would allow for field before advice, although the usual objects apply to field interception and it's unlikely that Spring will ever implement it). public interface MethodBeforeAdvice extends BeforeAdvice { void before(Method m, Object[] args, Object target) throws Throwable; } Note the return type is void. Before advice can insert custom behavior before the join point executes, but cannot change the return value. If a before advice throws an exception, this will abort further execution of the interceptor chain. The exception will propagate back up the interceptor chain. If it is unchecked, or on the signature of the invoked method, it will be passed directly to the client; otherwise it will be wrapped in an unchecked exception by the AOP proxy. An example of a before advice in Spring, which counts all method invocations: public class CountingBeforeAdvice implements MethodBeforeAdvice { private int count; public void before(Method m, Object[] args, Object target) throws Throwable { ++count; } public int getCount() { return count; } } Tip Before advice can be used with any pointcut. 7.3.2.3. Throws advice Throws advice is invoked after the return of the join point if the join point threw an exception. Spring offers typed throws advice. Note that this means that the org.springframework.aop.ThrowsAdvice interface does not contain any methods: It is a tag interface identifying that the given object implements one or more typed throws advice methods. These should be in the form of: afterThrowing([Method, args, target], subclassOfThrowable) Only the last argument is required. The method signatures may have either one or four arguments, depending on whether the advice method is interested in the method and arguments. The following classes are examples of throws advice. The advice below is invoked if a RemoteException is thrown (including subclasses): public class RemoteThrowsAdvice implements ThrowsAdvice { public void afterThrowing(RemoteException ex) throws Throwable { // Do something with remote exception } } Spring Framework (2.5.6) 176
  • 177. Spring AOP APIs The following advice is invoked if a ServletException is thrown. Unlike the above advice, it declares 4 arguments, so that it has access to the invoked method, method arguments and target object: public class ServletThrowsAdviceWithArguments implements ThrowsAdvice { public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) { // Do something with all arguments } } The final example illustrates how these two methods could be used in a single class, which handles both RemoteException and ServletException. Any number of throws advice methods can be combined in a single class. public static class CombinedThrowsAdvice implements ThrowsAdvice { public void afterThrowing(RemoteException ex) throws Throwable { // Do something with remote exception } public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) { // Do something with all arguments } } Note: If a throws-advice method throws an exception itself, it will override the original exception (i.e. change the exception thrown to the user). The overriding exception will typically be a RuntimeException; this is compatible with any method signature. However, if a throws-advice method throws a checked exception, it will have to match the declared exceptions of the target method and is hence to some degree coupled to specific target method signatures. Do not throw an undeclared checked exception that is incompatible with the target method's signature! Tip Throws advice can be used with any pointcut. 7.3.2.4. After Returning advice An after returning advice in Spring must implement the org.springframework.aop.AfterReturningAdvice interface, shown below: public interface AfterReturningAdvice extends Advice { void afterReturning(Object returnValue, Method m, Object[] args, Object target) throws Throwable; } An after returning advice has access to the return value (which it cannot modify), invoked method, methods arguments and target. The following after returning advice counts all successful method invocations that have not thrown exceptions: public class CountingAfterReturningAdvice implements AfterReturningAdvice { private int count; public void afterReturning(Object returnValue, Method m, Object[] args, Object target) throws Throwable { ++count; } Spring Framework (2.5.6) 177
  • 178. Spring AOP APIs public int getCount() { return count; } } This advice doesn't change the execution path. If it throws an exception, this will be thrown up the interceptor chain instead of the return value. Tip After returning advice can be used with any pointcut. 7.3.2.5. Introduction advice Spring treats introduction advice as a special kind of interception advice. Introduction requires an IntroductionAdvisor, and an IntroductionInterceptor, implementing the following interface: public interface IntroductionInterceptor extends MethodInterceptor { boolean implementsInterface(Class intf); } The invoke() method inherited from the AOP Alliance MethodInterceptor interface must implement the introduction: that is, if the invoked method is on an introduced interface, the introduction interceptor is responsible for handling the method call - it cannot invoke proceed(). Introduction advice cannot be used with any pointcut, as it applies only at class, rather than method, level. You can only use introduction advice with the IntroductionAdvisor, which has the following methods: public interface IntroductionAdvisor extends Advisor, IntroductionInfo { ClassFilter getClassFilter(); void validateInterfaces() throws IllegalArgumentException; } public interface IntroductionInfo { Class[] getInterfaces(); } There is no MethodMatcher, and hence no Pointcut, associated with introduction advice. Only class filtering is logical. The getInterfaces() method returns the interfaces introduced by this advisor. The validateInterfaces() method is used internally to see whether or not the introduced interfaces can be implemented by the configured IntroductionInterceptor . Let's look at a simple example from the Spring test suite. Let's suppose we want to introduce the following interface to one or more objects: public interface Lockable { void lock(); void unlock(); boolean locked(); Spring Framework (2.5.6) 178
  • 179. Spring AOP APIs } This illustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type, and call lock and unlock methods. If we call the lock() method, we want all setter methods to throw a LockedException. Thus we can add an aspect that provides the ability to make objects immutable, without them having any knowledge of it: a good example of AOP. Firstly, we'll need an IntroductionInterceptor that does the heavy lifting. In this case, we extend the org.springframework.aop.support.DelegatingIntroductionInterceptor convenience class. We could implement IntroductionInterceptor directly, but using DelegatingIntroductionInterceptor is best for most cases. The DelegatingIntroductionInterceptor is designed to delegate an introduction to an actual implementation of the introduced interface(s), concealing the use of interception to do so. The delegate can be set to any object using a constructor argument; the default delegate (when the no-arg constructor is used) is this. Thus in the example below, the delegate is the LockMixin subclass of DelegatingIntroductionInterceptor. Given a delegate (by default itself), a DelegatingIntroductionInterceptor instance looks for all interfaces implemented by the delegate (other than IntroductionInterceptor), and will support introductions against any of them. It's possible for subclasses such as LockMixin to call the suppressInterface(Class intf) method to suppress interfaces that should not be exposed. However, no matter how many interfaces an IntroductionInterceptor is prepared to support, the IntroductionAdvisor used will control which interfaces are actually exposed. An introduced interface will conceal any implementation of the same interface by the target. Thus LockMixin subclasses DelegatingIntroductionInterceptor and implements Lockable itself. The superclass automatically picks up that Lockable can be supported for introduction, so we don't need to specify that. We could introduce any number of interfaces in this way. Note the use of the locked instance variable. This effectively adds additional state to that held in the target object. public class LockMixin extends DelegatingIntroductionInterceptor implements Lockable { private boolean locked; public void lock() { this.locked = true; } public void unlock() { this.locked = false; } public boolean locked() { return this.locked; } public Object invoke(MethodInvocation invocation) throws Throwable { if (locked() && invocation.getMethod().getName().indexOf("set") == 0) throw new LockedException(); return super.invoke(invocation); } } Often it isn't necessary to override the invoke() method: the DelegatingIntroductionInterceptor implementation - which calls the delegate method if the method is introduced, otherwise proceeds towards the join point - is usually sufficient. In the present case, we need to add a check: no setter method can be invoked if Spring Framework (2.5.6) 179
  • 180. Spring AOP APIs in locked mode. The introduction advisor required is simple. All it needs to do is hold a distinct LockMixin instance, and specify the introduced interfaces - in this case, just Lockable. A more complex example might take a reference to the introduction interceptor (which would be defined as a prototype): in this case, there's no configuration relevant for a LockMixin, so we simply create it using new. public class LockMixinAdvisor extends DefaultIntroductionAdvisor { public LockMixinAdvisor() { super(new LockMixin(), Lockable.class); } } We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It's impossible to use an IntroductionInterceptor without an IntroductionAdvisor.) As usual with introductions, the advisor must be per-instance, as it is stateful. We need a different instance of LockMixinAdvisor, and hence LockMixin, for each advised object. The advisor comprises part of the advised object's state. We can apply this advisor programmatically, using the Advised.addAdvisor() method, or (the recommended way) in XML configuration, like any other advisor. All proxy creation choices discussed below, including "auto proxy creators," correctly handle introductions and stateful mixins. 7.4. Advisor API in Spring In Spring, an Advisor is an aspect that contains just a single advice object associated with a pointcut expression. Apart from the special case of introductions, any advisor can be used with any advice. org.springframework.aop.support.DefaultPointcutAdvisor is the most commonly used advisor class. For example, it can be used with a MethodInterceptor, BeforeAdvice or ThrowsAdvice. It is possible to mix advisor and advice types in Spring in the same AOP proxy. For example, you could use a interception around advice, throws advice and before advice in one proxy configuration: Spring will automatically create the necessary interceptor chain. 7.5. Using the ProxyFactoryBean to create AOP proxies If you're using the Spring IoC container (an ApplicationContext or BeanFactory) for your business objects - and you should be! - you will want to use one of Spring's AOP FactoryBeans. (Remember that a factory bean introduces a layer of indirection, enabling it to create objects of a different type.) Note The Spring 2.0 AOP support also uses factory beans under the covers. The basic way to create an AOP proxy in Spring is to use the org.springframework.aop.framework.ProxyFactoryBean. This gives complete control over the pointcuts and advice that will apply, and their ordering. However, there are simpler options that are preferable if you don't need such control. 7.5.1. Basics Spring Framework (2.5.6) 180
  • 181. Spring AOP APIs The ProxyFactoryBean, like other Spring FactoryBean implementations, introduces a level of indirection. If you define a ProxyFactoryBean with name foo, what objects referencing foo see is not the ProxyFactoryBean instance itself, but an object created by the ProxyFactoryBean's implementation of the getObject() method. This method will create an AOP proxy wrapping a target object. One of the most important benefits of using a ProxyFactoryBean or another IoC-aware class to create AOP proxies, is that it means that advices and pointcuts can also be managed by IoC. This is a powerful feature, enabling certain approaches that are hard to achieve with other AOP frameworks. For example, an advice may itself reference application objects (besides the target, which should be available in any AOP framework), benefiting from all the pluggability provided by Dependency Injection. 7.5.2. JavaBean properties In common with most FactoryBean implementations provided with Spring, the ProxyFactoryBean class is itself a JavaBean. Its properties are used to: • Specify the target you want to proxy. • Specify whether to use CGLIB (see below and also the section entitled Section 7.5.3, “JDK- and CGLIB-based proxies”). Some key properties are inherited from org.springframework.aop.framework.ProxyConfig (the superclass for all AOP proxy factories in Spring). These key properties include: • proxyTargetClass: true if the target class is to be proxied, rather than the target class' interfaces. If this property value is set to true, then CGLIB proxies will be created (but see also below the section entitled Section 7.5.3, “JDK- and CGLIB-based proxies”). • optimize: controls whether or not aggressive optimizations are applied to proxies created via CGLIB. One should not blithely use this setting unless one fully understands how the relevant AOP proxy handles optimization. This is currently used only for CGLIB proxies; it has no effect with JDK dynamic proxies. • frozen: if a proxy configuration is frozen, then changes to the configuration are no longer allowed. This is useful both as a slight optimization and for those cases when you don't want callers to be able to manipulate the proxy (via the Advised interface) after the proxy has been created. The default value of this property is false, so changes such as adding additional advice are allowed. • exposeProxy: determines whether or not the current proxy should be exposed in a ThreadLocal so that it can be accessed by the target. If a target needs to obtain the proxy and the exposeProxy property is set to true, the target can use the AopContext.currentProxy() method. • aopProxyFactory: the implementation of AopProxyFactory to use. Offers a way of customizing whether to use dynamic proxies, CGLIB or any other proxy strategy. The default implementation will choose dynamic proxies or CGLIB appropriately. There should be no need to use this property; it is intended to allow the addition of new proxy types in Spring 1.1. Other properties specific to ProxyFactoryBean include: • proxyInterfaces: array of String interface names. If this isn't supplied, a CGLIB proxy for the target class will be used (but see also below the section entitled Section 7.5.3, “JDK- and CGLIB-based proxies”). • interceptorNames: String array of Advisor, interceptor or other advice names to apply. Ordering is Spring Framework (2.5.6) 181
  • 182. Spring AOP APIs significant, on a first come-first served basis. That is to say that the first interceptor in the list will be the first to be able to intercept the invocation. The names are bean names in the current factory, including bean names from ancestor factories. You can't mention bean references here since doing so would result in the ProxyFactoryBean ignoring the singleton setting of the advice. You can append an interceptor name with an asterisk (*). This will result in the application of all advisor beans with names starting with the part before the asterisk to be applied. An example of using this feature can be found in Section 7.5.6, “Using 'global' advisors”. • singleton: whether or not the factory should return a single object, no matter how often the getObject() method is called. Several FactoryBean implementations offer such a method. The default value is true. If you want to use stateful advice - for example, for stateful mixins - use prototype advices along with a singleton value of false. 7.5.3. JDK- and CGLIB-based proxies This section serves as the definitive documentation on how the ProxyFactoryBean chooses to create one of either a JDK- and CGLIB-based proxy for a particular target object (that is to be proxied). Note The behavior of the ProxyFactoryBean with regard to creating JDK- or CGLIB-based proxies changed between versions 1.2.x and 2.0 of Spring. The ProxyFactoryBean now exhibits similar semantics with regard to auto-detecting interfaces as those of the TransactionProxyFactoryBean class. If the class of a target object that is to be proxied (hereafter simply referred to as the target class) doesn't implement any interfaces, then a CGLIB-based proxy will be created. This is the easiest scenario, because JDK proxies are interface based, and no interfaces means JDK proxying isn't even possible. One simply plugs in the target bean, and specifies the list of interceptors via the interceptorNames property. Note that a CGLIB-based proxy will be created even if the proxyTargetClass property of the ProxyFactoryBean has been set to false. (Obviously this makes no sense, and is best removed from the bean definition because it is at best redundant, and at worst confusing.) If the target class implements one (or more) interfaces, then the type of proxy that is created depends on the configuration of the ProxyFactoryBean. If the proxyTargetClass property of the ProxyFactoryBean has been set to true, then a CGLIB-based proxy will be created. This makes sense, and is in keeping with the principle of least surprise. Even if the proxyInterfaces property of the ProxyFactoryBean has been set to one or more fully qualified interface names, the fact that the proxyTargetClass property is set to true will cause CGLIB-based proxying to be in effect. If the proxyInterfaces property of the ProxyFactoryBean has been set to one or more fully qualified interface names, then a JDK-based proxy will be created. The created proxy will implement all of the interfaces that were specified in the proxyInterfaces property; if the target class happens to implement a whole lot more interfaces than those specified in the proxyInterfaces property, that is all well and good but those additional interfaces will not be implemented by the returned proxy. If the proxyInterfaces property of the ProxyFactoryBean has not been set, but the target class does implement Spring Framework (2.5.6) 182
  • 183. Spring AOP APIs one (or more) interfaces, then the ProxyFactoryBean will auto-detect the fact that the target class does actually implement at least one interface, and a JDK-based proxy will be created. The interfaces that are actually proxied will be all of the interfaces that the target class implements; in effect, this is the same as simply supplying a list of each and every interface that the target class implements to the proxyInterfaces property. However, it is significantly less work, and less prone to typos. 7.5.4. Proxying interfaces Let's look at a simple example of ProxyFactoryBean in action. This example involves: • A target bean that will be proxied. This is the "personTarget" bean definition in the example below. • An Advisor and an Interceptor used to provide advice. • An AOP proxy bean definition specifying the target object (the personTarget bean) and the interfaces to proxy, along with the advices to apply. <bean id="personTarget" class="com.mycompany.PersonImpl"> <property name="name"><value>Tony</value></property> <property name="age"><value>51</value></property> </bean> <bean id="myAdvisor" class="com.mycompany.MyAdvisor"> <property name="someProperty"><value>Custom string property value</value></property> </bean> <bean id="debugInterceptor" class="org.springframework.aop.interceptor.DebugInterceptor"> </bean> <bean id="person" class="org.springframework.aop.framework.ProxyFactoryBean"> <property name="proxyInterfaces"><value>com.mycompany.Person</value></property> <property name="target"><ref local="personTarget"/></property> <property name="interceptorNames"> <list> <value>myAdvisor</value> <value>debugInterceptor</value> </list> </property> </bean> Note that the interceptorNames property takes a list of String: the bean names of the interceptor or advisors in the current factory. Advisors, interceptors, before, after returning and throws advice objects can be used. The ordering of advisors is significant. Note You might be wondering why the list doesn't hold bean references. The reason for this is that if the ProxyFactoryBean's singleton property is set to false, it must be able to return independent proxy instances. If any of the advisors is itself a prototype, an independent instance would need to be returned, so it's necessary to be able to obtain an instance of the prototype from the factory; holding a reference isn't sufficient. The "person" bean definition above can be used in place of a Person implementation, as follows: Person person = (Person) factory.getBean("person"); Spring Framework (2.5.6) 183
  • 184. Spring AOP APIs Other beans in the same IoC context can express a strongly typed dependency on it, as with an ordinary Java object: <bean id="personUser" class="com.mycompany.PersonUser"> <property name="person"><ref local="person" /></property> </bean> The PersonUser class in this example would expose a property of type Person. As far as it's concerned, the AOP proxy can be used transparently in place of a "real" person implementation. However, its class would be a dynamic proxy class. It would be possible to cast it to the Advised interface (discussed below). It's possible to conceal the distinction between target and proxy using an anonymous inner bean, as follows. Only the ProxyFactoryBean definition is different; the advice is included only for completeness: <bean id="myAdvisor" class="com.mycompany.MyAdvisor"> <property name="someProperty"><value>Custom string property value</value></property> </bean> <bean id="debugInterceptor" class="org.springframework.aop.interceptor.DebugInterceptor"/> <bean id="person" class="org.springframework.aop.framework.ProxyFactoryBean"> <property name="proxyInterfaces"><value>com.mycompany.Person</value></property> <!-- Use inner bean, not local reference to target --> <property name="target"> <bean class="com.mycompany.PersonImpl"> <property name="name"><value>Tony</value></property> <property name="age"><value>51</value></property> </bean> </property> <property name="interceptorNames"> <list> <value>myAdvisor</value> <value>debugInterceptor</value> </list> </property> </bean> This has the advantage that there's only one object of type Person: useful if we want to prevent users of the application context from obtaining a reference to the un-advised object, or need to avoid any ambiguity with Spring IoC autowiring. There's also arguably an advantage in that the ProxyFactoryBean definition is self-contained. However, there are times when being able to obtain the un-advised target from the factory might actually be an advantage: for example, in certain test scenarios. 7.5.5. Proxying classes What if you need to proxy a class, rather than one or more interfaces? Imagine that in our example above, there was no Person interface: we needed to advise a class called Person that didn't implement any business interface. In this case, you can configure Spring to use CGLIB proxying, rather than dynamic proxies. Simply set the proxyTargetClass property on the ProxyFactoryBean above to true. While it's best to program to interfaces, rather than classes, the ability to advise classes that don't implement interfaces can be useful when working with legacy code. (In general, Spring isn't prescriptive. While it makes it easy to apply good practices, it avoids forcing a particular approach.) If you want to, you can force the use of CGLIB in any case, even if you do have interfaces. CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this generated subclass to delegate method calls to the original target: the subclass is used to implement the Decorator pattern, Spring Framework (2.5.6) 184
  • 185. Spring AOP APIs weaving in the advice. CGLIB proxying should generally be transparent to users. However, there are some issues to consider: • Final methods can't be advised, as they can't be overridden. • You'll need the CGLIB 2 binaries on your classpath; dynamic proxies are available with the JDK. There's little performance difference between CGLIB proxying and dynamic proxies. As of Spring 1.0, dynamic proxies are slightly faster. However, this may change in the future. Performance should not be a decisive consideration in this case. 7.5.6. Using 'global' advisors By appending an asterisk to an interceptor name, all advisors with bean names matching the part before the asterisk, will be added to the advisor chain. This can come in handy if you need to add a standard set of 'global' advisors: <bean id="proxy" class="org.springframework.aop.framework.ProxyFactoryBean"> <property name="target" ref="service"/> <property name="interceptorNames"> <list> <value>global*</value> </list> </property> </bean> <bean id="global_debug" class="org.springframework.aop.interceptor.DebugInterceptor"/> <bean id="global_performance" class="org.springframework.aop.interceptor.PerformanceMonitorInterceptor"/> 7.6. Concise proxy definitions Especially when defining transactional proxies, you may end up with many similar proxy definitions. The use of parent and child bean definitions, along with inner bean definitions, can result in much cleaner and more concise proxy definitions. First a parent, template, bean definition is created for the proxy: <bean id="txProxyTemplate" abstract="true" class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean"> <property name="transactionManager" ref="transactionManager"/> <property name="transactionAttributes"> <props> <prop key="*">PROPAGATION_REQUIRED</prop> </props> </property> </bean> This will never be instantiated itself, so may actually be incomplete. Then each proxy which needs to be created is just a child bean definition, which wraps the target of the proxy as an inner bean definition, since the target will never be used on its own anyway. <bean id="myService" parent="txProxyTemplate"> <property name="target"> <bean class="org.springframework.samples.MyServiceImpl"> </bean> </property> </bean> Spring Framework (2.5.6) 185
  • 186. Spring AOP APIs It is of course possible to override properties from the parent template, such as in this case, the transaction propagation settings: <bean id="mySpecialService" parent="txProxyTemplate"> <property name="target"> <bean class="org.springframework.samples.MySpecialServiceImpl"> </bean> </property> <property name="transactionAttributes"> <props> <prop key="get*">PROPAGATION_REQUIRED,readOnly</prop> <prop key="find*">PROPAGATION_REQUIRED,readOnly</prop> <prop key="load*">PROPAGATION_REQUIRED,readOnly</prop> <prop key="store*">PROPAGATION_REQUIRED</prop> </props> </property> </bean> Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the abstract attribute, as described previously, so that it may not actually ever be instantiated. Application contexts (but not simple bean factories) will by default pre-instantiate all singletons. It is therefore important (at least for singleton beans) that if you have a (parent) bean definition which you intend to use only as a template, and this definition specifies a class, you must make sure to set the abstract attribute to true, otherwise the application context will actually try to pre-instantiate it. 7.7. Creating AOP proxies programmatically with the ProxyFactory It's easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP without dependency on Spring IoC. The following listing shows creation of a proxy for a target object, with one interceptor and one advisor. The interfaces implemented by the target object will automatically be proxied: ProxyFactory factory = new ProxyFactory(myBusinessInterfaceImpl); factory.addInterceptor(myMethodInterceptor); factory.addAdvisor(myAdvisor); MyBusinessInterface tb = (MyBusinessInterface) factory.getProxy(); The first step is to construct an object of type org.springframework.aop.framework.ProxyFactory. You can create this with a target object, as in the above example, or specify the interfaces to be proxied in an alternate constructor. You can add interceptors or advisors, and manipulate them for the life of the ProxyFactory. If you add an IntroductionInterceptionAroundAdvisor you can cause the proxy to implement additional interfaces. There are also convenience methods on ProxyFactory (inherited from AdvisedSupport) which allow you to add other advice types such as before and throws advice. AdvisedSupport is the superclass of both ProxyFactory and ProxyFactoryBean. Tip Integrating AOP proxy creation with the IoC framework is best practice in most applications. We recommend that you externalize configuration from Java code with AOP, as in general. Spring Framework (2.5.6) 186
  • 187. Spring AOP APIs 7.8. Manipulating advised objects However you create AOP proxies, you can manipulate them using the org.springframework.aop.framework.Advised interface. Any AOP proxy can be cast to this interface, whichever other interfaces it implements. This interface includes the following methods: Advisor[] getAdvisors(); void addAdvice(Advice advice) throws AopConfigException; void addAdvice(int pos, Advice advice) throws AopConfigException; void addAdvisor(Advisor advisor) throws AopConfigException; void addAdvisor(int pos, Advisor advisor) throws AopConfigException; int indexOf(Advisor advisor); boolean removeAdvisor(Advisor advisor) throws AopConfigException; void removeAdvisor(int index) throws AopConfigException; boolean replaceAdvisor(Advisor a, Advisor b) throws AopConfigException; boolean isFrozen(); The getAdvisors() method will return an Advisor for every advisor, interceptor or other advice type that has been added to the factory. If you added an Advisor, the returned advisor at this index will be the object that you added. If you added an interceptor or other advice type, Spring will have wrapped this in an advisor with a pointcut that always returns true. Thus if you added a MethodInterceptor, the advisor returned for this index will be an DefaultPointcutAdvisor returning your MethodInterceptor and a pointcut that matches all classes and methods. The addAdvisor() methods can be used to add any Advisor. Usually the advisor holding pointcut and advice will be the generic DefaultPointcutAdvisor, which can be used with any advice or pointcut (but not for introductions). By default, it's possible to add or remove advisors or interceptors even once a proxy has been created. The only restriction is that it's impossible to add or remove an introduction advisor, as existing proxies from the factory will not show the interface change. (You can obtain a new proxy from the factory to avoid this problem.) A simple example of casting an AOP proxy to the Advised interface and examining and manipulating its advice: Advised advised = (Advised) myObject; Advisor[] advisors = advised.getAdvisors(); int oldAdvisorCount = advisors.length; System.out.println(oldAdvisorCount + " advisors"); // Add an advice like an interceptor without a pointcut // Will match all proxied methods // Can use for interceptors, before, after returning or throws advice advised.addAdvice(new DebugInterceptor()); // Add selective advice using a pointcut advised.addAdvisor(new DefaultPointcutAdvisor(mySpecialPointcut, myAdvice)); assertEquals("Added two advisors", oldAdvisorCount + 2, advised.getAdvisors().length); Spring Framework (2.5.6) 187
  • 188. Spring AOP APIs Note It's questionable whether it's advisable (no pun intended) to modify advice on a business object in production, although there are no doubt legitimate usage cases. However, it can be very useful in development: for example, in tests. I have sometimes found it very useful to be able to add test code in the form of an interceptor or other advice, getting inside a method invocation I want to test. (For example, the advice can get inside a transaction created for that method: for example, to run SQL to check that a database was correctly updated, before marking the transaction for roll back.) Depending on how you created the proxy, you can usually set a frozen flag, in which case the Advised isFrozen() method will return true, and any attempts to modify advice through addition or removal will result in an AopConfigException. The ability to freeze the state of an advised object is useful in some cases, for example, to prevent calling code removing a security interceptor. It may also be used in Spring 1.1 to allow aggressive optimization if runtime advice modification is known not to be required. 7.9. Using the "autoproxy" facility So far we've considered explicit creation of AOP proxies using a ProxyFactoryBean or similar factory bean. Spring also allows us to use "autoproxy" bean definitions, which can automatically proxy selected bean definitions. This is built on Spring "bean post processor" infrastructure, which enables modification of any bean definition as the container loads. In this model, you set up some special bean definitions in your XML bean definition file to configure the auto proxy infrastructure. This allows you just to declare the targets eligible for autoproxying: you don't need to use ProxyFactoryBean. There are two ways to do this: • Using an autoproxy creator that refers to specific beans in the current context. • A special case of autoproxy creation that deserves to be considered separately; autoproxy creation driven by source-level metadata attributes. 7.9.1. Autoproxy bean definitions The org.springframework.aop.framework.autoproxy package provides the following standard autoproxy creators. 7.9.1.1. BeanNameAutoProxyCreator The BeanNameAutoProxyCreator class is a BeanPostProcessor that automatically creates AOP proxies for beans with names matching literal values or wildcards. <bean class="org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator"> <property name="beanNames"><value>jdk*,onlyJdk</value></property> <property name="interceptorNames"> <list> <value>myInterceptor</value> </list> </property> </bean> Spring Framework (2.5.6) 188
  • 189. Spring AOP APIs As with ProxyFactoryBean, there is an interceptorNames property rather than a list of interceptors, to allow correct behavior for prototype advisors. Named "interceptors" can be advisors or any advice type. As with auto proxying in general, the main point of using BeanNameAutoProxyCreator is to apply the same configuration consistently to multiple objects, with minimal volume of configuration. It is a popular choice for applying declarative transactions to multiple objects. Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above example, are plain old bean definitions with the target class. An AOP proxy will be created automatically by the BeanNameAutoProxyCreator. The same advice will be applied to all matching beans. Note that if advisors are used (rather than the interceptor in the above example), the pointcuts may apply differently to different beans. 7.9.1.2. DefaultAdvisorAutoProxyCreator A more general and extremely powerful auto proxy creator is DefaultAdvisorAutoProxyCreator. This will automagically apply eligible advisors in the current context, without the need to include specific bean names in the autoproxy advisor's bean definition. It offers the same merit of consistent configuration and avoidance of duplication as BeanNameAutoProxyCreator. Using this mechanism involves: • Specifying a DefaultAdvisorAutoProxyCreator bean definition. • Specifying any number of Advisors in the same or related contexts. Note that these must be Advisors, not just interceptors or other advices. This is necessary because there must be a pointcut to evaluate, to check the eligibility of each advice to candidate bean definitions. The DefaultAdvisorAutoProxyCreator will automatically evaluate the pointcut contained in each advisor, to see what (if any) advice it should apply to each business object (such as "businessObject1" and "businessObject2" in the example). This means that any number of advisors can be applied automatically to each business object. If no pointcut in any of the advisors matches any method in a business object, the object will not be proxied. As bean definitions are added for new business objects, they will automatically be proxied if necessary. Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain an un-advised object. Calling getBean("businessObject1") on this ApplicationContext will return an AOP proxy, not the target business object. (The "inner bean" idiom shown earlier also offers this benefit.) <bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/> <bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor"> <property name="transactionInterceptor" ref="transactionInterceptor"/> </bean> <bean id="customAdvisor" class="com.mycompany.MyAdvisor"/> <bean id="businessObject1" class="com.mycompany.BusinessObject1"> <!-- Properties omitted --> </bean> <bean id="businessObject2" class="com.mycompany.BusinessObject2"/> The DefaultAdvisorAutoProxyCreator is very useful if you want to apply the same advice consistently to many business objects. Once the infrastructure definitions are in place, you can simply add new business objects without including specific proxy configuration. You can also drop in additional aspects very easily - for Spring Framework (2.5.6) 189
  • 190. Spring AOP APIs example, tracing or performance monitoring aspects - with minimal change to configuration. The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so that only certain advisors are evaluated, allowing use of multiple, differently configured, AdvisorAutoProxyCreators in the same factory) and ordering. Advisors can implement the org.springframework.core.Ordered interface to ensure correct ordering if this is an issue. The TransactionAttributeSourceAdvisor used in the above example has a configurable order value; the default setting is unordered. 7.9.1.3. AbstractAdvisorAutoProxyCreator This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own autoproxy creators by subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to the behavior of the framework DefaultAdvisorAutoProxyCreator. 7.9.2. Using metadata-driven auto-proxying A particularly important type of autoproxying is driven by metadata. This produces a similar programming model to .NET ServicedComponents. Instead of using XML deployment descriptors as in EJB, configuration for transaction management and other enterprise services is held in source-level attributes. In this case, you use the DefaultAdvisorAutoProxyCreator, in combination with Advisors that understand metadata attributes. The metadata specifics are held in the pointcut part of the candidate advisors, rather than in the autoproxy creation class itself. This is really a special case of the DefaultAdvisorAutoProxyCreator, but deserves consideration on its own. (The metadata-aware code is in the pointcuts contained in the advisors, not the AOP framework itself.) The /attributes directory of the JPetStore sample application shows the use of attribute-driven autoproxying. In this case, there's no need to use the TransactionProxyFactoryBean. Simply defining transactional attributes on business objects is sufficient, because of the use of metadata-aware pointcuts. The bean definitions include the following code, in /WEB-INF/declarativeServices.xml. Note that this is generic, and can be used outside the JPetStore: <bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/> <bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor"> <property name="transactionInterceptor" ref="transactionInterceptor"/> </bean> <bean id="transactionInterceptor" class="org.springframework.transaction.interceptor.TransactionInterceptor"> <property name="transactionManager" ref="transactionManager"/> <property name="transactionAttributeSource"> <bean class="org.springframework.transaction.interceptor.AttributesTransactionAttributeSource"> <property name="attributes" ref="attributes"/> </bean> </property> </bean> <bean id="attributes" class="org.springframework.metadata.commons.CommonsAttributes"/> The DefaultAdvisorAutoProxyCreator bean definition (the name is not significant, hence it can even be omitted) will pick up all eligible pointcuts in the current application context. In this case, the "transactionAdvisor" bean definition, of type TransactionAttributeSourceAdvisor, will apply to classes or methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor depends on a TransactionInterceptor, via constructor dependency. The example resolves this via autowiring. The AttributesTransactionAttributeSource depends on an implementation of the Spring Framework (2.5.6) 190
  • 191. Spring AOP APIs org.springframework.metadata.Attributes interface. In this fragment, the "attributes" bean satisfies this, using the Jakarta Commons Attributes API to obtain attribute information. (The application code must have been compiled using the Commons Attributes compilation task.) The /annotation directory of the JPetStore sample application contains an analogous example for auto-proxying driven by JDK 1.5+ annotations. The following configuration enables automatic detection of Spring's Transactional annotation, leading to implicit proxies for beans containing that annotation: <bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/> <bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor"> <property name="transactionInterceptor" ref="transactionInterceptor"/> </bean> <bean id="transactionInterceptor" class="org.springframework.transaction.interceptor.TransactionInterceptor"> <property name="transactionManager" ref="transactionManager"/> <property name="transactionAttributeSource"> <bean class="org.springframework.transaction.annotation.AnnotationTransactionAttributeSource"/> </property> </bean> The TransactionInterceptor defined here depends on a PlatformTransactionManager definition, which is not included in this generic file (although it could be) because it will be specific to the application's transaction requirements (typically JTA, as in this example, or Hibernate, JDO or JDBC): <bean id="transactionManager" class="org.springframework.transaction.jta.JtaTransactionManager"/> Tip If you require only declarative transaction management, using these generic XML definitions will result in Spring automatically proxying all classes or methods with transaction attributes. You won't need to work directly with AOP, and the programming model is similar to that of .NET ServicedComponents. This mechanism is extensible. It's possible to do autoproxying based on custom attributes. You need to: • Define your custom attribute. • Specify an Advisor with the necessary advice, including a pointcut that is triggered by the presence of the custom attribute on a class or method. You may be able to use an existing advice, merely implementing a static pointcut that picks up the custom attribute. It's possible for such advisors to be unique to each advised class (for example, mixins): they simply need to be defined as prototype, rather than singleton, bean definitions. For example, the LockMixin introduction interceptor from the Spring test suite, shown above, could be used in conjunction with an attribute-driven pointcut to target a mixin, as shown here. We use the generic DefaultPointcutAdvisor, configured using JavaBean properties: <bean id="lockMixin" class="org.springframework.aop.LockMixin" scope="prototype"/> <bean id="lockableAdvisor" class="org.springframework.aop.support.DefaultPointcutAdvisor" scope="prototype"> <property name="pointcut" ref="myAttributeAwarePointcut"/> <property name="advice" ref="lockMixin"/> </bean> Spring Framework (2.5.6) 191
  • 192. Spring AOP APIs <bean id="anyBean" class="anyclass" ... If the attribute aware pointcut matches any methods in the anyBean or other bean definitions, the mixin will be applied. Note that both lockMixin and lockableAdvisor definitions are prototypes. The myAttributeAwarePointcut pointcut can be a singleton definition, as it doesn't hold state for individual advised objects. 7.10. Using TargetSources Spring offers the concept of a TargetSource, expressed in the org.springframework.aop.TargetSource interface. This interface is responsible for returning the "target object" implementing the join point. The TargetSource implementation is asked for a target instance each time the AOP proxy handles a method invocation. Developers using Spring AOP don't normally need to work directly with TargetSources, but this provides a powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a pooling TargetSource can return a different target instance for each invocation, using a pool to manage instances. If you do not specify a TargetSource, a default implementation is used that wraps a local object. The same target is returned for each invocation (as you would expect). Let's look at the standard target sources provided with Spring, and how you can use them. Tip When using a custom target source, your target will usually need to be a prototype rather than a singleton bean definition. This allows Spring to create a new target instance when required. 7.10.1. Hot swappable target sources The org.springframework.aop.target.HotSwappableTargetSource exists to allow the target of an AOP proxy to be switched while allowing callers to keep their references to it. Changing the target source's target takes effect immediately. The HotSwappableTargetSource is threadsafe. You can change the target via the swap() method on HotSwappableTargetSource as follows: HotSwappableTargetSource swapper = (HotSwappableTargetSource) beanFactory.getBean("swapper"); Object oldTarget = swapper.swap(newTarget); The XML definitions required look as follows: <bean id="initialTarget" class="mycompany.OldTarget"/> <bean id="swapper" class="org.springframework.aop.target.HotSwappableTargetSource"> <constructor-arg ref="initialTarget"/> </bean> <bean id="swappable" class="org.springframework.aop.framework.ProxyFactoryBean"> <property name="targetSource" ref="swapper"/> Spring Framework (2.5.6) 192
  • 193. Spring AOP APIs </bean> The above swap() call changes the target of the swappable bean. Clients who hold a reference to that bean will be unaware of the change, but will immediately start hitting the new target. Although this example doesn't add any advice - and it's not necessary to add advice to use a TargetSource - of course any TargetSource can be used in conjunction with arbitrary advice. 7.10.2. Pooling target sources Using a pooling target source provides a similar programming model to stateless session EJBs, in which a pool of identical instances is maintained, with method invocations going to free objects in the pool. A crucial difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to any POJO. As with Spring in general, this service can be applied in a non-invasive way. Spring provides out-of-the-box support for Jakarta Commons Pool 1.3, which provides a fairly efficient pooling implementation. You'll need the commons-pool Jar on your application's classpath to use this feature. It's also possible to subclass org.springframework.aop.target.AbstractPoolingTargetSource to support any other pooling API. Sample configuration is shown below: <bean id="businessObjectTarget" class="com.mycompany.MyBusinessObject" scope="prototype"> ... properties omitted </bean> <bean id="poolTargetSource" class="org.springframework.aop.target.CommonsPoolTargetSource"> <property name="targetBeanName" value="businessObjectTarget"/> <property name="maxSize" value="25"/> </bean> <bean id="businessObject" class="org.springframework.aop.framework.ProxyFactoryBean"> <property name="targetSource" ref="poolTargetSource"/> <property name="interceptorNames" value="myInterceptor"/> </bean> Note that the target object - "businessObjectTarget" in the example - must be a prototype. This allows the PoolingTargetSource implementation to create new instances of the target to grow the pool as necessary. See the havadoc for AbstractPoolingTargetSource and the concrete subclass you wish to use for information about its properties: "maxSize" is the most basic, and always guaranteed to be present. In this case, "myInterceptor" is the name of an interceptor that would need to be defined in the same IoC context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling, and no other advice, don't set the interceptorNames property at all. It's possible to configure Spring so as to be able to cast any pooled object to the org.springframework.aop.target.PoolingConfig interface, which exposes information about the configuration and current size of the pool through an introduction. You'll need to define an advisor like this: <bean id="poolConfigAdvisor" class="org.springframework.beans.factory.config.MethodInvokingFactoryBean"> <property name="targetObject" ref="poolTargetSource"/> <property name="targetMethod" value="getPoolingConfigMixin"/> </bean> Spring Framework (2.5.6) 193
  • 194. Spring AOP APIs This advisor is obtained by calling a convenience method on the AbstractPoolingTargetSource class, hence the use of MethodInvokingFactoryBean. This advisor's name ("poolConfigAdvisor" here) must be in the list of interceptors names in the ProxyFactoryBean exposing the pooled object. The cast will look as follows: PoolingConfig conf = (PoolingConfig) beanFactory.getBean("businessObject"); System.out.println("Max pool size is " + conf.getMaxSize()); Note Pooling stateless service objects is not usually necessary. We don't believe it should be the default choice, as most stateless objects are naturally thread safe, and instance pooling is problematic if resources are cached. Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any autoproxy creator. 7.10.3. Prototype target sources Setting up a "prototype" target source is similar to a pooling TargetSource. In this case, a new instance of the target will be created on every method invocation. Although the cost of creating a new object isn't high in a modern JVM, the cost of wiring up the new object (satisfying its IoC dependencies) may be more expensive. Thus you shouldn't use this approach without very good reason. To do this, you could modify the poolTargetSource definition shown above as follows. (I've also changed the name, for clarity.) <bean id="prototypeTargetSource" class="org.springframework.aop.target.PrototypeTargetSource"> <property name="targetBeanName" ref="businessObjectTarget"/> </bean> There's only one property: the name of the target bean. Inheritance is used in the TargetSource implementations to ensure consistent naming. As with the pooling target source, the target bean must be a prototype bean definition. 7.10.4. ThreadLocal target sources ThreadLocal target sources are useful if you need an object to be created for each incoming request (per thread that is). The concept of a ThreadLocal provide a JDK-wide facility to transparently store resource alongside a thread. Setting up a ThreadLocalTargetSource is pretty much the same as was explained for the other types of target source: <bean id="threadlocalTargetSource" class="org.springframework.aop.target.ThreadLocalTargetSource"> <property name="targetBeanName" value="businessObjectTarget"/> </bean> Note ThreadLocals come with serious issues (potentially resulting in memory leaks) when incorrectly using them in a multi-threaded and multi-classloader environments. One should always consider wrapping a threadlocal in some other class and never directly use the ThreadLocal itself (except of Spring Framework (2.5.6) 194
  • 195. Spring AOP APIs course in the wrapper class). Also, one should always remember to correctly set and unset (where the latter simply involved a call to ThreadLocal.set(null)) the resource local to the thread. Unsetting should be done in any case since not unsetting it might result in problematic behavior. Spring's ThreadLocal support does this for you and should always be considered in favor of using ThreadLocals without other proper handling code. 7.11. Defining new Advice types Spring AOP is designed to be extensible. While the interception implementation strategy is presently used internally, it is possible to support arbitrary advice types in addition to the out-of-the-box interception around advice, before, throws advice and after returning advice. The org.springframework.aop.framework.adapter package is an SPI package allowing support for new custom advice types to be added without changing the core framework. The only constraint on a custom Advice type is that it must implement the org.aopalliance.aop.Advice tag interface. Please refer to the org.springframework.aop.framework.adapter package's Javadocs for further information. 7.12. Further resources Please refer to the Spring sample applications for further examples of Spring AOP: • The JPetStore's default configuration illustrates the use of the TransactionProxyFactoryBean for declarative transaction management. • The /attributes directory of the JPetStore illustrates the use of attribute-driven declarative transaction management. Spring Framework (2.5.6) 195
  • 196. Chapter 8. Testing 8.1. Introduction The Spring team considers developer testing to be an absolutely integral part of enterprise software development. A thorough treatment of testing in the enterprise is beyond the scope of this chapter; rather, the focus here is on the value-add that the adoption of the IoC principle can bring to unit testing and on the benefits that the Spring Framework provides in integration testing. 8.2. Unit testing One of the main benefits of Dependency Injection is that your code should really depend far less on the container than in traditional J2EE development. The POJOs that comprise your application should be testable in JUnit or TestNG tests, with objects simply instantiated using the new operator, without Spring or any other container. You can use mock objects (in conjunction with many other valuable testing techniques) to test your code in isolation. If you follow the architecture recommendations around Spring you will find that the resulting clean layering and componentization of your codebase will naturally facilitate easier unit testing. For example, you will be able to test service layer objects by stubbing or mocking DAO or Repository interfaces, without any need to access persistent data while running unit tests. True unit tests typically will run extremely quickly, as there is no runtime infrastructure to set up, whether application server, database, ORM tool, or whatever. Thus emphasizing true unit tests as part of your development methodology will boost your productivity. The upshot of this is that you often do not need this section of the testing chapter to help you write effective unit tests for your IoC-based applications. For certain unit testing scenarios, however, the Spring Framework provides the following mock objects and testing support classes. 8.2.1. Mock objects 8.2.1.1. JNDI The org.springframework.mock.jndi package contains an implementation of the JNDI SPI, which is useful for setting up a simple JNDI environment for test suites or stand-alone applications. If, for example, JDBC DataSources get bound to the same JNDI names in test code as within a J2EE container, both application code and configuration can be reused in testing scenarios without modification. 8.2.1.2. Servlet API The org.springframework.mock.web package contains a comprehensive set of Servlet API mock objects, targeted at usage with Spring's Web MVC framework, which are useful for testing web contexts and controllers. These mock objects are generally more convenient to use than dynamic mock objects (e.g., EasyMock) or existing Servlet API mock objects (e.g., MockObjects). 8.2.1.3. Portlet API The org.springframework.mock.web.portlet package contains a set of Portlet API mock objects, targeted at usage with Spring's Portlet MVC framework. Spring Framework (2.5.6) 196
  • 197. Testing 8.2.2. Unit testing support classes 8.2.2.1. General utilities The org.springframework.test.util package contains ReflectionTestUtils, which is a collection of reflection-based utility methods for use in unit and integration testing scenarios in which the developer would benefit from being able to set a non-public field or invoke a non-public setter method when testing application code involving, for example: • ORM frameworks such as JPA and Hibernate which condone the usage of private or protected field access as opposed to public setter methods for properties in a domain entity • Spring's support for annotations such as @Autowired and @Resource which provides dependency injection for private or protected fields, setter methods, and configuration methods 8.2.2.2. Spring MVC The org.springframework.test.web package contains AbstractModelAndViewTests, which serves as a convenient base class for JUnit 3.8 based unit tests dealing with Spring MVC ModelAndView objects. When developing against Java 1.4 and higher (e.g., in combination with JUnit 4+, TestNG, etc.), you have the option of using the ModelAndViewAssert class (in the same package) to test your ModelAndView related functionality. Tip: depending on your testing environment, either extend AbstractModelAndViewTests or use ModelAndViewAssert directly and then use MockHttpServletRequest, MockHttpSession, etc. from the org.springframework.mock.web package to test your Spring MVC Controllers. 8.3. Integration testing 8.3.1. Overview It is important to be able to perform some integration testing without requiring deployment to your application server or connecting to other enterprise infrastructure. This will enable you to test things such as: • The correct wiring of your Spring IoC container contexts. • Data access using JDBC or an ORM tool. This would include such things as the correctness of SQL statements, Hibernate queries, JPA entity mappings, etc. The Spring Framework provides first class support for integration testing in the form of the classes that are packaged in the spring-test.jar library. In this library, you will find the org.springframework.test package which contains valuable classes for integration testing using a Spring container, while at the same time not being reliant on an application server or other deployment environment. Such tests will be slower to run than unit tests but much faster to run than the equivalent Cactus tests or remote tests relying on deployment to an application server. Prior to the 2.5 release of the framework, Spring provided integration testing support specific to JUnit 3.8. As of the 2.5 release, Spring offers support for unit and integration testing in the form of the Spring TestContext Framework, which is agnostic of the actual testing framework in use, thus allowing instrumentation of tests in various environments including JUnit 3.8, JUnit 4.4, TestNG, etc. Note that the Spring TestContext Framework requires Java 5+. Spring Framework (2.5.6) 197
  • 198. Testing 8.3.2. Which support framework to use The Spring team recommends using the Spring TestContext Framework for all new unit testing or integration testing involving ApplicationContexts or requiring transactional test fixtures; however, if you are developing in a pre-Java 5 environment, you will need to continue to use the JUnit 3.8 legacy support. In addition, explicit integration testing support for JPA which relies on shadow class loading for JPA class instrumentation is currently only available with the JUnit 3.8 legacy support. If you are testing against a JPA provider which does not require class instrumentation, however, it is recommended that you use the TestContext framework. 8.3.3. Common goals The Spring integration testing support frameworks share several common goals, including: • Spring IoC container caching between test execution. • Dependency Injection of test fixture instances (this is nice). • Transaction management appropriate to integration testing (this is even nicer). • Spring-specific support classes that are really useful when writing integration tests. The following sections outline each of these goals and provide direct links to information specific to the particular support frameworks. 8.3.3.1. Context management and caching Spring integration testing support frameworks provide consistent loading of Spring ApplicationContexts and caching of those contexts. Support for the caching of loaded contexts is important, because if you are working on a large project, startup time may become an issue - not because of the overhead of Spring itself, but because the objects instantiated by the Spring container will themselves take time to instantiate. For example, a project with 50-100 Hibernate mapping files might take 10-20 seconds to load the mapping files, and incurring that cost before running every single test in every single test fixture will lead to slower overall test runs that could reduce productivity. Test classes will generally provide an array containing the resource locations of XML configuration metadata - typically on the classpath - used to configure the application. This will be the same, or nearly the same, as the list of configuration locations specified in web.xml or other deployment configuration. By default, once loaded, the configured ApplicationContext will be reused for each test. Thus the setup cost will be incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely case that a test may 'dirty' the application context, requiring reloading - for example, by changing a bean definition or the state of an application object - Spring's testing support provides mechanisms to cause the test fixture to reload the configurations and rebuild the application context before executing the next test. Context management and caching with: • JUnit 3.8 legacy support • The TestContext Framework 8.3.3.2. Dependency Injection of test fixtures Spring Framework (2.5.6) 198
  • 199. Testing When Spring integration testing support frameworks load your application context, they can optionally configure instances of your test classes via Dependency Injection. This provides a convenient mechanism for setting up test fixtures using pre-configured beans from your application context. A strong benefit here is that you can reuse application contexts across various testing scenarios (e.g., for configuring Spring-managed object graphs, transactional proxies, DataSources, etc.), thus avoiding the need to duplicate complex test fixture set up for individual test cases. As an example, consider the scenario where we have a class, HibernateTitleDao, that performs data access logic for say, the Title domain object. We want to write integration tests that test all of the following areas: • The Spring configuration: basically, is everything related to the configuration of the HibernateTitleDao bean correct and present? • The Hibernate mapping file configuration: is everything mapped correctly and are the correct lazy-loading settings in place? • The logic of the HibernateTitleDao: does the configured instance of this class perform as anticipated? Dependency Injection of test fixtures with: • JUnit 3.8 legacy support • The TestContext Framework 8.3.3.3. Transaction management One common issue in tests that access a real database is their affect on the state of the persistence store. Even when you're using a development database, changes to the state may affect future tests. Also, many operations - such as inserting to or modifying persistent data - cannot be performed (or verified) outside a transaction. The Spring integration testing support frameworks meet this need. By default, they create and roll back a transaction for each test. You simply write code that can assume the existence of a transaction. If you call transactionally proxied objects in your tests, they will behave correctly, according to their transactional semantics. In addition, if test methods delete the contents of selected tables while running within a transaction, the transaction will roll back by default, and the database will return to its state prior to execution of the test. Transactional support is provided to your test class via a PlatformTransactionManager bean defined in the test's application context. If you want a transaction to commit - unusual, but occasionally useful when you want a particular test to populate or modify the database - the Spring integration testing support frameworks can be instructed to cause the transaction to commit instead of roll back either by calling an inherited hook-method or by declaring a specific annotation. Transaction management with: • JUnit 3.8 legacy support • The TestContext Framework 8.3.3.4. Integration testing support classes The Spring integration testing support frameworks provide several abstract support classes that can simplify Spring Framework (2.5.6) 199
  • 200. Testing writing integration tests. These base test classes provide well defined hooks into the testing framework as well as convenient instance variables and methods, allowing access to such things as: • The ApplicationContext: useful for performing explicit bean lookups or testing the state of the context as a whole. • A JdbcTemplate or SimpleJdbcTemplate: useful for querying to confirm state. For example, you might query before and after testing application code that creates an object and persists it using an ORM tool, to verify that the data appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) You will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the flush() method on Hibernate's Session interface. Often you will provide an application-wide superclass for integration tests that provides further useful instance variables used in many tests. Support classes for: • JUnit 3.8 legacy support • The TestContext Framework 8.3.4. JDBC testing support The org.springframework.test.jdbc package contains SimpleJdbcTestUtils, which is a Java-5-based collection of JDBC related utility functions intended to simplify standard database testing scenarios. Note that AbstractTransactionalJUnit38SpringContextTests, AbstractTransactionalJUnit4SpringContextTests, and AbstractTransactionalTestNGSpringContextTests provide convenience methods which delegate to SimpleJdbcTestUtils internally. 8.3.5. Common annotations The Spring Framework provides a common set of Spring-specific annotations in the org.springframework.test.annotation package that you can use in your testing if you are developing against Java 5 or greater. • @IfProfileValue Indicates that the annotated test is enabled for a specific testing environment. If the configured ProfileValueSource returns a matching value for the provided name, the test will be enabled. This annotation can be applied to an entire class or individual methods. @IfProfileValue(name="java.vendor", value="Sun Microsystems Inc.") public void testProcessWhichRunsOnlyOnSunJvm() { // some logic that should run only on Java VMs from Sun Microsystems } Alternatively @IfProfileValue may be configured with a list of values (with OR semantics) to achieve TestNG-like support for test groups in a JUnit environment. Consider the following example: @IfProfileValue(name="test-groups", values={"unit-tests", "integration-tests"}) public void testProcessWhichRunsForUnitOrIntegrationTestGroups() { // some logic that should run only for unit and integration test groups } Spring Framework (2.5.6) 200
  • 201. Testing • @ProfileValueSourceConfiguration Class-level annotation which is used to specify what type of ProfileValueSource to use when retrieving profile values configured via the @IfProfileValue annotation. If @ProfileValueSourceConfiguration is not declared for a test, SystemProfileValueSource will be used by default. @ProfileValueSourceConfiguration(CustomProfileValueSource.class) public class CustomProfileValueSourceTests { // class body... } • @DirtiesContext The presence of this annotation on a test method indicates that the underlying Spring container is 'dirtied' during the execution of the test method, and thus must be rebuilt after the test method finishes execution (regardless of whether the test passed or not). @DirtiesContext public void testProcessWhichDirtiesAppCtx() { // some logic that results in the Spring container being dirtied } • @ExpectedException Indicates that the annotated test method is expected to throw an exception during execution. The type of the expected exception is provided in the annotation, and if an instance of the exception is thrown during the test method execution then the test passes. Likewise if an instance of the exception is not thrown during the test method execution then the test fails. @ExpectedException(SomeBusinessException.class) public void testProcessRainyDayScenario() { // some logic that should result in an Exception being thrown } • @Timed Indicates that the annotated test method has to finish execution in a specified time period (in milliseconds). If the text execution time takes longer than the specified time period, the test fails. Note that the time period includes execution of the test method itself, any repetitions of the test (see @Repeat), as well as any set up or tear down of the test fixture. @Timed(millis=1000) public void testProcessWithOneSecondTimeout() { // some logic that should not take longer than 1 second to execute } • @Repeat Indicates that the annotated test method must be executed repeatedly. The number of times that the test method is to be executed is specified in the annotation. Note that the scope of execution to be repeated includes execution of the test method itself as well as any set up or tear down of the test fixture. @Repeat(10) public void testProcessRepeatedly() { // ... Spring Framework (2.5.6) 201
  • 202. Testing } • @Rollback Indicates whether or not the transaction for the annotated test method should be rolled back after the test method has completed. If true, the transaction will be rolled back; otherwise, the transaction will be committed. Use @Rollback to override the default rollback flag configured at the class level. @Rollback(false) public void testProcessWithoutRollback() { // ... } • @NotTransactional The presence of this annotation indicates that the annotated test method must not execute in a transactional context. @NotTransactional public void testProcessWithoutTransaction() { // ... } Annotation support for: • JUnit 3.8 legacy support: all common annotations listed above are supported but must be used in conjunction with AbstractAnnotationAwareTransactionalTests in order for the presence of these annotations to have any effect. • The TestContext Framework: supports all of the common annotations listed above while providing additional TestContext-specific and transactional annotations (e.g., @ContextConfiguration, @BeforeTransaction, etc.). Note, however, that some of the common annotations are only supported when used in conjunction with JUnit (e.g., with the SpringJUnit4ClassRunner or the JUnit 3.8 and JUnit 4.4 base test classes). Refer to the documentation in the TestContext Framework section for further details. 8.3.6. JUnit 3.8 legacy support Spring's JUnit 3.8 legacy support is comprised of the classes found in the org.springframework.test package. This package provides valuable JUnit TestCase superclasses which can be extended for out-of-container integration tests involving Spring ApplicationContexts or requiring transactional support at the test method level. 8.3.6.1. Context management and caching AbstractSingleSpringContextTests provides context management and caching support for JUnit 3.8 based test cases and exposes a protected method that subclasses can override to provide the location of context definition files: protected String[] getConfigLocations() Implementations of this method must provide an array containing the resource locations of XML configuration metadata - typically on the classpath - used to configure the application. This will be the same, or nearly the Spring Framework (2.5.6) 202
  • 203. Testing same, as the list of configuration locations specified in web.xml or other deployment configuration. As an alternative you may choose to override one of the following. See the respective JavaDoc for further details. protected String[] getConfigPaths() protected String getConfigPath() By default, once loaded, the configuration file set will be reused for each test case. Thus the setup cost will be incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely case that a test may 'dirty' the application context, requiring reloading - for example, by changing a bean definition or the state of an application object - you can call the setDirty() method on AbstractSingleSpringContextTests to cause the test fixture to reload the configurations and rebuild the application context before executing the next test case. As an alternative, if you are developing against Java 5 or greater and extending AbstractAnnotationAwareTransactionalTests, you may annotate your test method with @DirtiesContext to achieve the same effect. 8.3.6.2. Dependency Injection of test fixtures When AbstractDependencyInjectionSpringContextTests (and subclasses) load your application context, they can optionally configure instances of your test classes by Setter Injection. All you need to do is to define instance variables and the corresponding setter methods. AbstractDependencyInjectionSpringContextTests will automatically locate the corresponding object in the set of configuration files specified in the getConfigLocations() method. Consider the scenario where we have a class, HibernateTitleDao (as outlined in the Common goals section). Let's look at a JUnit 3.8 based implementation of the test class itself (we will look at the configuration immediately afterwards). public final class HibernateTitleDaoTests extends AbstractDependencyInjectionSpringContextTests { // this instance will be (automatically) dependency injected private HibernateTitleDao titleDao; // a setter method to enable DI of the 'titleDao' instance variable public void setTitleDao(HibernateTitleDao titleDao) { this.titleDao = titleDao; } public void testLoadTitle() throws Exception { Title title = this.titleDao.loadTitle(new Long(10)); assertNotNull(title); } // specifies the Spring configuration to load for this test fixture protected String[] getConfigLocations() { return new String[] { "classpath:com/foo/daos.xml" }; } } The file referenced by the getConfigLocations() method (i.e., "classpath:com/foo/daos.xml") looks like this: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <!-- this bean will be injected into the HibernateTitleDaoTests class --> <bean id="titleDao" class="com.foo.dao.hibernate.HibernateTitleDao"> Spring Framework (2.5.6) 203
  • 204. Testing <property name="sessionFactory" ref="sessionFactory"/> </bean> <bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"> <!-- dependencies elided for clarity --> </bean> </beans> The AbstractDependencyInjectionSpringContextTests classes uses autowire by type. Thus if you have multiple bean definitions of the same type, you cannot rely on this approach for those particular beans. In that case, you can use the inherited applicationContext instance variable and perform explicit lookups using (for example) a call to applicationContext.getBean("titleDao"). If you don't want dependency injection applied to your test cases, simply don't declare any public setter methods. Alternatively, you can extend AbstractSpringContextTests - the root of the JUnit 3.8 integration testing support class hierarchy in the org.springframework.test package - which merely contains convenience methods to load Spring contexts and performs no Dependency Injection of the test fixture. 8.3.6.2.1. Field level injection If, for whatever reason, you don't fancy having setter methods in your test fixtures, Spring can inject dependencies into protected fields. Find below a reworking of the previous example to use field level injection (the Spring XML configuration does not need to change, merely the test fixture). public final class HibernateTitleDaoTests extends AbstractDependencyInjectionSpringContextTests { public HibernateTitleDaoTests() { // switch on field level injection setPopulateProtectedVariables(true); } // this instance will be (automatically) dependency injected protected HibernateTitleDao titleDao; public void testLoadTitle() throws Exception { Title title = this.titleDao.loadTitle(new Long(10)); assertNotNull(title); } // specifies the Spring configuration to load for this test fixture protected String[] getConfigLocations() { return new String[] { "classpath:com/foo/daos.xml" }; } } In the case of field injection, there is no autowiring going on: the name of a protected instance variable is used as the lookup bean name in the configured Spring container. 8.3.6.3. Transaction management AbstractTransactionalSpringContextTests depends on a PlatformTransactionManager bean being defined in the application context. The name doesn't matter due to the use of autowire by type. Typically you will extend the subclass, AbstractTransactionalDataSourceSpringContextTests. This class also requires that a DataSource bean definition - again, with any name - be present in the application context. It creates a JdbcTemplate instance variable, that is useful for convenient querying, and provides handy methods to delete the contents of selected tables (remember that the transaction will roll back by default, so this is safe to do). If you want a transaction to commit programmatically - unusual, but occasionally useful when you want a Spring Framework (2.5.6) 204
  • 205. Testing particular test to populate the database - you can call the setComplete() method inherited from AbstractTransactionalSpringContextTests. This will cause the transaction to commit instead of roll back. As an alternative, if you are developing against Java 5 or greater and extending AbstractAnnotationAwareTransactionalTests, you may annotate your test method with @Rollback(false) to achieve the same effect through configuration. There is also the convenient ability to end a transaction before the test case ends, by calling the endTransaction() method. This will roll back the transaction by default and commit it only if setComplete() had previously been called. This functionality is useful if you want to test the behavior of 'disconnected' data objects, such as Hibernate-mapped entities that will be used in a web or remoting tier outside a transaction. Often, lazy loading errors are discovered only through UI testing; if you call endTransaction() you can ensure correct operation of the UI through your JUnit test suite. 8.3.6.4. JUnit 3.8 legacy support classes When you extend the AbstractTransactionalDataSourceSpringContextTests class you will have access to the following protected instance variables: • applicationContext (a ConfigurableApplicationContext): inherited from the AbstractSingleSpringContextTests superclass. Use this to perform explicit bean lookup or to test the state of the context as a whole. • jdbcTemplate: inherited from AbstractTransactionalDataSourceSpringContextTests. Useful for querying to confirm state. For example, you might query before and after testing application code that creates an object and persists it using an ORM tool, to verify that the data appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) You will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the flush() method on Hibernate's Session interface. 8.3.6.5. Java 5+ specific support 8.3.6.5.1. Annotation aware transactional tests In addition to the aforementioned common annotations, the org.springframework.test.annotation package also contains an abstract JUnit TestCase class which provides annotation-driven integration testing support. The AbstractAnnotationAwareTransactionalTests class extends AbstractTransactionalDataSourceSpringContextTests and makes text fixtures, which extend it, aware of a number of (Spring-specific) annotations. AbstractAnnotationAwareTransactionalTests supports all annotations listed in the common annotations section as well as Spring's @Transactional annotation for configuring explicit transactional semantics. 8.3.6.5.2. JPA support classes The org.springframework.test.jpa package provides support classes for tests based on the Java Persistence API (JPA). • AbstractJpaTests is a convenient support class for JPA-related tests, which offers the same contract as AbstractTransactionalDataSourceSpringContextTests and equally good performance, even when performing the instrumentation required by the JPA specification. Exposes an EntityManagerFactory and a shared EntityManager. Requires an EntityManagerFactory to be injected, plus the DataSource and JpaTransactionManager through the superclass. Spring Framework (2.5.6) 205
  • 206. Testing • AbstractAspectjJpaTests is a subclass of AbstractJpaTests that activates AspectJ load-time weaving and allows the ability to specify a custom location for AspectJ's aop.xml file. 8.3.7. Spring TestContext Framework The Spring TestContext Framework (located in the org.springframework.test.context package) provides generic, annotation-driven unit and integration testing support that is agnostic of the testing framework in use, for example JUnit 3.8, JUnit 4.4, TestNG 5.5, etc. The TestContext framework also places a great deal of importance on convention over configuration with reasonable defaults that can be overridden via annotation-based configuration. In addition to generic testing infrastructure, the TestContext framework provides explicit support for JUnit 3.8, JUnit 4.4, and TestNG 5.5 in the form of abstract support classes. For JUnit 4.4, the framework also provides a custom Runner which allows one to write test classes that are not required to extend a particular class hierarchy. The following section provides an overview of the internals of the TestContext framework. If you are only interested in using the framework and not necessarily interested in extending it with your own custom listeners, feel free to skip ahead to the configuration (context management, dependency injection, transaction management), support classes, and annotation support sections. 8.3.7.1. Key abstractions The core of the framework consists of the TestContext and TestContextManager classes and the TestExecutionListener interface. A TestContextManager is created on a per-test basis. The TestContextManager in turn manages a TestContext which is responsible for holding the context of the current test. The TestContextManager is also responsible for updating the state of the TestContext as the test progresses and delegating to TestExecutionListeners, which instrument the actual test execution (e.g., providing dependency injection, managing transactions, etc.). Consult the JavaDoc and the Spring test suite for further information and examples of various configurations. • TestContext: encapsulates the context in which a test is executed, agnostic of the actual testing framework in use. • TestContextManager: the main entry point into the Spring TestContext Framework, which is responsible for managing a single TestContext and signaling events to all registered TestExecutionListeners at well defined test execution points: test instance preparation, prior to any before methods of a particular testing framework, and after any after methods of a particular testing framework. • TestExecutionListener: defines a listener API for reacting to test execution events published by the TestContextManager with which the listener is registered. Spring provides three TestExecutionListener implementations which are configured by default (via the @TestExecutionListeners annotation): DependencyInjectionTestExecutionListener, DirtiesContextTestExecutionListener, and TransactionalTestExecutionListener, which provide support for dependency injection of the test instance, handling of the @DirtiesContext annotation, and transactional test execution support with default rollback semantics, respectively. The following three sections explain how to configure the TestContext framework via annotations and provide working examples of how to actually write unit and integration tests with the framework. 8.3.7.2. Context management and caching Spring Framework (2.5.6) 206
  • 207. Testing Each TestContext provides context management and caching support for the test instance for which it is responsible. Test instances do not automatically receive access to the configured ApplicationContext; however, if a test class implements the ApplicationContextAware interface, a reference to the ApplicationContext will be supplied to the test instance (provided the DependencyInjectionTestExecutionListener has been configured, which is the default). Note that AbstractJUnit38SpringContextTests, AbstractJUnit4SpringContextTests, and AbstractTestNGSpringContextTests already implement ApplicationContextAware and therefore provide this functionality out-of-the-box. In contrast to the JUnit 3.8 legacy support, test classes which use the TestContext framework do not need to override any protected instance methods to configure their application context. Rather, configuration is achieved merely by declaring the @ContextConfiguration annotation at the class level. If your test class does not explicitly declare any application context resource locations, the configured ContextLoader will determine how and whether or not to load a context from a default set of locations. For example, GenericXmlContextLoader - which is the default ContextLoader - will generate a default location based on the name of the test class. If your class is named com.example.MyTest, GenericXmlContextLoader will load your application context from "classpath:/com/example/MyTest-context.xml". package com.example; @RunWith(SpringJUnit4ClassRunner.class) // ApplicationContext will be loaded from "classpath:/com/example/MyTest-context.xml" @ContextConfiguration public class MyTest { // class body... } If the default location does not suit your needs, you are free to explicitly configure the locations attribute of @ContextConfiguration (see code listing below) with an array containing the resource locations of XML configuration metadata (assuming an XML-capable ContextLoader has been configured) - typically on the classpath - used to configure the application. This will be the same, or nearly the same, as the list of configuration locations specified in web.xml or other deployment configuration. As an alternative you may choose to implement and configure your own custom ContextLoader. @RunWith(SpringJUnit4ClassRunner.class) // ApplicationContext will be loaded from "/applicationContext.xml" and "/applicationContext-test.xml" // in the root of the classpath @ContextConfiguration(locations={"/applicationContext.xml", "/applicationContext-test.xml"}) public class MyTest { // class body... } @ContextConfiguration also supports a boolean inheritLocations attribute which denotes whether or not resource locations from superclasses should be inherited. The default value is true, which means that an annotated class will inherit the resource locations defined by an annotated superclass. Specifically, the resource locations for an annotated class will be appended to the list of resource locations defined by an annotated superclass. Thus, subclasses have the option of extending the list of resource locations. In the following example, the ApplicationContext for ExtendedTest will be loaded from "/base-context.xml" and "/extended-context.xml", in that order. Beans defined in "/extended-context.xml" may therefore override those defined in "/base-context.xml". @RunWith(SpringJUnit4ClassRunner.class) // ApplicationContext will be loaded from "/base-context.xml" in the root of the classpath @ContextConfiguration(locations={"/base-context.xml"}) public class BaseTest { // class body... } // ApplicationContext will be loaded from "/base-context.xml" and "/extended-context.xml" Spring Framework (2.5.6) 207
  • 208. Testing // in the root of the classpath @ContextConfiguration(locations={"/extended-context.xml"}) public class ExtendedTest extends BaseTest { // class body... } If inheritLocations is set to false, the resource locations for the annotated class will shadow and effectively replace any resource locations defined by a superclass. By default, once loaded, the configured ApplicationContext will be reused for each test. Thus the setup cost will be incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely case that a test may dirty the application context, requiring reloading - for example, by changing a bean definition or the state of an application object - you may annotate your test method with @DirtiesContext (assuming DirtiesContextTestExecutionListener has been configured, which is the default) to cause the test fixture to reload the configurations and rebuild the application context before executing the next test. 8.3.7.3. Dependency Injection of test fixtures When you configure the DependencyInjectionTestExecutionListener - which is configured by default - via the @TestExecutionListeners annotation, the dependencies of your test instances will be injected from beans in the application context you configured via @ContextConfiguration by Setter Injection, Field Injection, or both, depending on which annotations you choose and whether you place them on setter methods or fields. For consistency with annotation support in Spring 2.5, you may choose either Spring's @Autowired annotation or the @Resource annotation from JSR 250. The semantics for both are consistent throughout the Spring Framework. For example, if you prefer autowiring by type, annotate your setter methods or fields with @Autowired. On the other hand, if you prefer to have your dependencies injected by name, annotate your setter methods or fields with @Resource. Tip The TestContext framework does not instrument the manner in which a test instance is instantiated. Thus the use of @Autowired for constructors has no effect for test classes. Since @Autowired performs autowiring by type, if you have multiple bean definitions of the same type, you cannot rely on this approach for those particular beans. In that case, you can use @Resource for injection by name. Alternatively, if your test class implements ApplicationContextAware, you can directly access the ApplicationContext supplied to your test and perform an explicit lookup using (for example) a call to applicationContext.getBean("titleDao"). If you don't want dependency injection applied to your test instances, simply don't annotate any fields or setter methods with @Autowired or @Resource. Alternatively, you can disable dependency injection altogether by explicitly configuring your class with @TestExecutionListeners and omitting DependencyInjectionTestExecutionListener.class from the list of listeners. Consider the scenario where we have a class, HibernateTitleDao (as outlined in the common goals section). First, let's look at a JUnit 4.4 based implementation of the test class itself which uses @Autowired for field injection (we will look at the application context configuration after all sample code listings). Note: The dependency injection behavior in the following code listings is not in any way specific to JUnit 4.4. The same DI techniques can be used in conjunction with any testing framework. @RunWith(SpringJUnit4ClassRunner.class) // specifies the Spring configuration to load for this test fixture @ContextConfiguration(locations={"daos.xml"}) public final class HibernateTitleDaoTests { // this instance will be dependency injected by type Spring Framework (2.5.6) 208
  • 209. Testing @Autowired private HibernateTitleDao titleDao; public void testLoadTitle() throws Exception { Title title = this.titleDao.loadTitle(new Long(10)); assertNotNull(title); } } Alternatively, we can configure the class to use @Autowired for setter injection. @RunWith(SpringJUnit4ClassRunner.class) // specifies the Spring configuration to load for this test fixture @ContextConfiguration(locations={"daos.xml"}) public final class HibernateTitleDaoTests { // this instance will be dependency injected by type private HibernateTitleDao titleDao; @Autowired public void setTitleDao(HibernateTitleDao titleDao) { this.titleDao = titleDao; } public void testLoadTitle() throws Exception { Title title = this.titleDao.loadTitle(new Long(10)); assertNotNull(title); } } Now let's take a look at an example using @Resource for field injection. @RunWith(SpringJUnit4ClassRunner.class) // specifies the Spring configuration to load for this test fixture @ContextConfiguration(locations={"daos.xml"}) public final class HibernateTitleDaoTests { // this instance will be dependency injected by name @Resource private HibernateTitleDao titleDao; public void testLoadTitle() throws Exception { Title title = this.titleDao.loadTitle(new Long(10)); assertNotNull(title); } } Finally, here is an example using @Resource for setter injection. @RunWith(SpringJUnit4ClassRunner.class) // specifies the Spring configuration to load for this test fixture @ContextConfiguration(locations={"daos.xml"}) public final class HibernateTitleDaoTests { // this instance will be dependency injected by name private HibernateTitleDao titleDao; @Resource public void setTitleDao(HibernateTitleDao titleDao) { this.titleDao = titleDao; } public void testLoadTitle() throws Exception { Title title = this.titleDao.loadTitle(new Long(10)); assertNotNull(title); } } The above code listings use the same XML context file referenced by the @ContextConfiguration annotation (i.e., "daos.xml") which looks like this: Spring Framework (2.5.6) 209
  • 210. Testing <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <!-- this bean will be injected into the HibernateTitleDaoTests class --> <bean id="titleDao" class="com.foo.dao.hibernate.HibernateTitleDao"> <property name="sessionFactory" ref="sessionFactory"/> </bean> <bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"> <!-- dependencies elided for clarity --> </bean> </beans> Note If you are extending from a Spring-provided test base class that happens to use @Autowired on one of its setters methods, you might have multiple beans of the affected type defined in your application context: e.g. multiple DataSource beans. In such a case, you may override the setter and use the @Qualifier annotation to indicate a specific target bean as follows: ... @Override @Autowired public void setDataSource(@Qualifier("myDataSource") DataSource dataSource) { super.setDataSource(dataSource); } ... The specified qualifier value indicates the specific DataSource bean to inject, narrowing the set of type matches to a specific bean. Its value is matched against <qualifier> declarations within the corresponding <bean> definitions. The bean name is used as a fallback qualifier value, so you may effectively also point to a specific bean by name there (as shown above, assuming that "myDataSource" is the bean id). If there is only one DataSource bean to begin with, then the qualifier will simply not have any effect - independent from the bean name of that single matching bean. Alternatively, consider using the @Resource annotation on such an overridden setter methods, defining the target bean name explicitly - with no type matching semantics. Note that this always points to a bean with that specific name, no matter whether there is one or more beans of the given type. ... @Override @Resource("myDataSource") public void setDataSource(DataSource dataSource) { super.setDataSource(dataSource); } ... 8.3.7.4. Transaction management In the TestContext framework, transactions are managed by the TransactionalTestExecutionListener, which is configured via the @TestExecutionListeners annotation by default, even if you do not explicitly declare @TestExecutionListeners on your test class. To enable support for transactions, however, you must provide a PlatformTransactionManager bean in the application context loaded via @ContextConfiguration semantics. In addition, you must declare @Transactional either at the class or method level. Spring Framework (2.5.6) 210
  • 211. Testing For class-level transaction configuration (i.e., setting the bean name for the transaction manager and the default rollback flag), see the @TransactionConfiguration entry in the TestContext framework annotation support section. There are several options for configuring transactions for individual test methods. If transactions are not enabled for the entire test class, methods may be explicitly annotated with @Transactional. Similarly, if transactions are enabled for the entire test class, methods may be explicitly flagged not to run within a transaction by annotating them with @NotTransactional. To control whether or not a transaction should commit for a particular test method, you may use the @Rollback annotation to override the class-level default rollback setting. Note that AbstractTransactionalJUnit38SpringContextTests, AbstractTransactionalJUnit4SpringContextTests, and AbstractTransactionalTestNGSpringContextTests are pre-configured for transactional support at the class level. You will occasionally find that you need to execute certain code before or after a transactional test method but outside the transactional context, for example to verify the initial database state prior to execution of your test or to verify expected transactional commit behavior after test execution (e.g., if the test was configured not to roll back the transaction). TransactionalTestExecutionListener supports the @BeforeTransaction and @AfterTransaction annotations exactly for such scenarios. Simply annotate any public void method in your test class with one of these annotations, and the TransactionalTestExecutionListener will ensure that your before transaction method or after transaction method is executed at the appropriate time. Tip Any before methods (e.g., methods annotated with JUnit 4's @Before) and any after methods (e.g., methods annotated with JUnit 4's @After) will be executed within a transaction. In addition, methods annotated with @BeforeTransaction or @AfterTransaction will naturally not be executed for tests annotated with @NotTransactional. The following JUnit 4 based example displays a fictitious integration testing scenario highlighting several of the transaction-related annotations. Consult the TestContext framework annotation support section of the reference manual for further information and configuration examples. @RunWith(SpringJUnit4ClassRunner.class) @ContextConfiguration @TransactionConfiguration(transactionManager="txMgr", defaultRollback=false) @Transactional public class FictitiousTransactionalTest { @BeforeTransaction public void verifyInitialDatabaseState() { // logic to verify the initial state before a transaction is started } @Before public void setUpTestDataWithinTransaction() { // set up test data within the transaction } @Test // overrides the class-level defaultRollback setting @Rollback(true) public void modifyDatabaseWithinTransaction() { // logic which uses the test data and modifies database state } @After public void tearDownWithinTransaction() { // execute "tear down" logic within the transaction Spring Framework (2.5.6) 211
  • 212. Testing } @AfterTransaction public void verifyFinalDatabaseState() { // logic to verify the final state after transaction has rolled back } @Test @NotTransactional public void performNonDatabaseRelatedAction() { // logic which does not modify database state } } 8.3.7.5. TestContext support classes 8.3.7.5.1. JUnit 3.8 support classes The org.springframework.test.context.junit38 package provides support classes for JUnit 3.8 based test cases. • AbstractJUnit38SpringContextTests: Abstract TestCase which integrates the Spring TestContext Framework with explicit ApplicationContext testing support in a JUnit 3.8 environment. When you extend the AbstractJUnit38SpringContextTests class you will have access to the following protected instance variables: • applicationContext: use this to perform explicit bean lookups or to test the state of the context as a whole. • AbstractTransactionalJUnit38SpringContextTests: Abstract transactional extension of AbstractJUnit38SpringContextTests that also adds some convenience functionality for JDBC access. Expects a javax.sql.DataSource bean and a PlatformTransactionManager bean to be defined in the ApplicationContext. When you extend the AbstractTransactionalJUnit38SpringContextTests class you will have access to the following protected instance variables: • applicationContext: inherited from the AbstractJUnit38SpringContextTests superclass. Use this to perform explicit bean lookups or to test the state of the context as a whole. • simpleJdbcTemplate: useful for querying to confirm state. For example, you might query before and after testing application code that creates an object and persists it using an ORM tool, to verify that the data appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) You will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the flush() method on Hibernate's Session interface. 8.3.7.5.2. JUnit 4.4 support classes The org.springframework.test.context.junit4 package provides support classes for JUnit 4.4 based test cases. • AbstractJUnit4SpringContextTests: Abstract base test class which integrates the Spring TestContext Framework with explicit ApplicationContext testing support in a JUnit 4.4 environment. Spring Framework (2.5.6) 212
  • 213. Testing When you extend AbstractJUnit4SpringContextTests you will have access to the following protected instance variables: • applicationContext: use this to perform explicit bean lookups or to test the state of the context as a whole. • AbstractTransactionalJUnit4SpringContextTests: Abstract transactional extension of AbstractJUnit4SpringContextTests that also adds some convenience functionality for JDBC access. Expects a javax.sql.DataSource bean and a PlatformTransactionManager bean to be defined in the ApplicationContext. When you extend AbstractTransactionalJUnit4SpringContextTests you will have access to the following protected instance variables: • applicationContext: inherited from the AbstractJUnit4SpringContextTests superclass. Use this to perform explicit bean lookups or to test the state of the context as a whole. • simpleJdbcTemplate: useful for querying to confirm state. For example, you might query before and after testing application code that creates an object and persists it using an ORM tool, to verify that the data appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) You will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the flush() method on Hibernate's Session interface. Tip These classes serve only as a convenience for extension. If you do not wish for your test classes to be tied to a Spring-specific class hierarchy - for example, if you wish to directly extend the class you are testing - you may configure your own custom test classes by using @RunWith(SpringJUnit4ClassRunner.class), @ContextConfiguration, @TestExecutionListeners, etc. 8.3.7.5.3. Custom JUnit 4.4 Runner The Spring TestContext Framework offers full integration with JUnit 4.4 via a custom runner. By annotating test classes with @Runwith(SpringJUnit4ClassRunner.class), developers can implement standard JUnit 4.4 unit and integration tests and simultaneously reap the benefits of the TestContext framework such as support for loading application contexts, dependency injection of test instances, transactional test method execution, etc. The following code listing displays the minimal requirements for configuring a test class to run with the custom Spring Runner. Note that @TestExecutionListeners has been configured with an empty list in order to disable the default listeners, which would otherwise require that an ApplicationContext be configured via @ContextConfiguration. @RunWith(SpringJUnit4ClassRunner.class) @TestExecutionListeners({}) public class SimpleTest { @Test public void testMethod() { // execute test logic... } } 8.3.7.5.4. TestNG support classes Spring Framework (2.5.6) 213
  • 214. Testing The org.springframework.test.context.testng package provides support classes for TestNG based test cases. • AbstractTestNGSpringContextTests: Abstract base test class which integrates the Spring TestContext Framework with explicit ApplicationContext testing support in a TestNG environment. When you extend AbstractTestNGSpringContextTests you will have access to the following protected instance variables: • applicationContext: use this to perform explicit bean lookups or to test the state of the context as a whole. • AbstractTransactionalTestNGSpringContextTests: Abstract transactional extension of AbstractTestNGSpringContextTests that adds some convenience functionality for JDBC access. Expects a javax.sql.DataSource bean and a PlatformTransactionManager bean to be defined in the ApplicationContext. When you extend AbstractTransactionalTestNGSpringContextTests you will have access to the following protected instance variables: • applicationContext: inherited from the AbstractTestNGSpringContextTests superclass. Use this to perform explicit bean lookups or to test the state of the context as a whole. • simpleJdbcTemplate: useful for querying to confirm state. For example, you might query before and after testing application code that creates an object and persists it using an ORM tool, to verify that the data appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) You will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the flush() method on Hibernate's Session interface. Tip These classes serve only as a convenience for extension. If you do not wish for your test classes to be tied to a Spring-specific class hierarchy - for example, if you wish to directly extend the class you are testing - you may configure your own custom test classes by using @ContextConfiguration, @TestExecutionListeners, etc. and by manually instrumenting your test class with a TestContextManager. See the source code of AbstractTestNGSpringContextTests for an example of how to instrument your test class. 8.3.7.6. TestContext framework annotation support The Spring TestContext Framework supports all annotations as outlined in the common annotations section. The following annotations, however, are only supported when used in conjunction with JUnit (e.g., with the SpringJUnit4ClassRunner or the JUnit 3.8 and JUnit 4.4 support classes. • @IfProfileValue • @ProfileValueSourceConfiguration • @ExpectedException Spring Framework (2.5.6) 214
  • 215. Testing Using Spring's @ExpectedException annotation in conjunction with JUnit 4's @Test(expected=...) configuration would lead to an unresolvable conflict. Developers must therefore choose one or the other when integrating with JUnit 4, in which case it is generally preferable to use the explicit JUnit 4 configuration. • @Timed Spring's @Timed annotation has different semantics than JUnit 4's @Test(timeout=...) support. Specifically, due to the manner in which JUnit 4 handles test execution timeouts (i.e., by executing the test method in a separate Thread), @Test(timeout=...) applies to each iteration in the case of repetitions and preemptively fails the test if the test takes too long. Spring's @Timed, on the other hand, times the total test execution time (including all repetitions) and does not preemptively fail the test but rather waits for the test to actually complete before failing. • @Repeat The following non-test-specific annotations are also supported by the Spring TestContext Framework with their standard semantics. • @Autowired • @Qualifier • @Resource (javax.annotation) if JSR-250 is present • @PersistenceContext (javax.persistence) if JPA is present • @PersistenceUnit (javax.persistence) if JPA is present • @Required • @Transactional The following list includes all annotations specific to the Spring TestContext Framework. Refer to the respective JavaDoc for further information, including default attribute values, etc. • @ContextConfiguration Defines class-level metadata which is used to determine how to load and configure an ApplicationContext. Specifically, @ContextConfiguration defines the application context resource locations to load as well as the ContextLoader strategy to use for loading the context. @ContextConfiguration(locations={"example/test-context.xml"}, loader=CustomContextLoader.class) public class CustomConfiguredApplicationContextTests { // class body... } Note: @ContextConfiguration provides support for inherited resource locations by default. See the Context management and caching section and JavaDoc for an example and further details. • @TestExecutionListeners Defines class-level metadata for configuring which TestExecutionListeners should be registered with a TestContextManager. Typically, @TestExecutionListeners will be used in conjunction with Spring Framework (2.5.6) 215
  • 216. Testing @ContextConfiguration. @ContextConfiguration @TestExecutionListeners({CustomTestExecutionListener.class, AnotherTestExecutionListener.class}) public class CustomTestExecutionListenerTests { // class body... } Note: @TestExecutionListeners provides support for inherited listeners by default. See the JavaDoc for an example and further details. • @TransactionConfiguration Defines class-level metadata for configuring transactional tests. Specifically, the bean name of the PlatformTransactionManager that is to be used to drive transactions can be explicitly configured if the bean name of the desired PlatformTransactionManager is not "transactionManager". In addition, the defaultRollback flag can optionally be changed to false. Typically, @TransactionConfiguration will be used in conjunction with @ContextConfiguration. @ContextConfiguration @TransactionConfiguration(transactionManager="txMgr", defaultRollback=false) public class CustomConfiguredTransactionalTests { // class body... } • @BeforeTransaction Indicates that the annotated public void method should be executed before a transaction is started for test methods configured to run within a transaction via the @Transactional annotation. @BeforeTransaction public void beforeTransaction() { // logic to be executed before a transaction is started } • @AfterTransaction Indicates that the annotated public void method should be executed after a transaction has been ended for test methods configured to run within a transaction via the @Transactional annotation. @AfterTransaction public void afterTransaction() { // logic to be executed after a transaction has ended } 8.3.8. PetClinic example The PetClinic sample application included with the full Spring distribution illustrates several features of the Spring TestContext Framework in a JUnit 4.4 environment. Most test functionality is included in the AbstractClinicTests, for which a partial listing is shown below: @ContextConfiguration public abstract class AbstractClinicTests extends AbstractTransactionalJUnit4SpringContextTests { @Autowired protected Clinic clinic; @Test public void getVets() { Spring Framework (2.5.6) 216
  • 217. Testing Collection<Vet> vets = this.clinic.getVets(); assertEquals("JDBC query must show the same number of vets", super.countRowsInTable("VETS"), vets.size()); Vet v1 = EntityUtils.getById(vets, Vet.class, 2); assertEquals("Leary", v1.getLastName()); assertEquals(1, v1.getNrOfSpecialties()); assertEquals("radiology", (v1.getSpecialties().get(0)).getName()); // ... } // ... } Notes: • This test case extends the AbstractTransactionalJUnit4SpringContextTests class, from which it inherits configuration for Dependency Injection (via the DependencyInjectionTestExecutionListener) and transactional behavior (via the TransactionalTestExecutionListener). • The clinic instance variable - the application object being tested - is set by Dependency Injection via @Autowired semantics. • The testGetVets() method illustrates how the inherited countRowsInTable() method can be used to easily verify the number of rows in a given table, thus testing correct behavior of the application code being tested. This allows for stronger tests and lessens dependency on the exact test data. For example, you can add additional rows in the database without breaking tests. • Like many integration tests using a database, most of the tests in AbstractClinicTests depend on a minimum amount of data already in the database before the test cases run. You might, however, choose to populate the database in your test cases also - again, within the same transaction. The PetClinic application supports three data access technologies - JDBC, Hibernate, and JPA. By declaring @ContextConfiguration without any specific resource locations, the AbstractClinicTests class will have its application context loaded from the default location, "AbstractClinicTests-context.xml", which declares a common DataSource. Subclasses specify additional context locations which must declare a PlatformTransactionManager and a concrete implementation of Clinic. For example, the Hibernate implementation of the PetClinic tests contains the following implementation. Note that for this example, HibernateClinicTests does not contain a single line of code: we only need to declare @ContextConfiguration, and the tests are inherited from AbstractClinicTests. Since @ContextConfiguration is declared without any specific resource locations, the Spring TestContext Framework will load an application context from all the beans defined in "AbstractClinicTests-context.xml" (i.e., the inherited locations) and "HibernateClinicTests-context.xml", with "HibernateClinicTests-context.xml" possibly overriding beans defined in "AbstractClinicTests-context.xml". @ContextConfiguration public class HibernateClinicTests extends AbstractClinicTests { } As you can see in the PetClinic application, the Spring configuration is split across multiple files. As is typical of large scale applications, configuration locations will often be specified in a common base class for all application-specific integration tests. Such a base class may also add useful instance variables - populated by Dependency Injection, naturally - such as a HibernateTemplate, in the case of an application using Hibernate. As far as possible, you should have exactly the same Spring configuration files in your integration tests as in the deployed environment. One likely point of difference concerns database connection pooling and transaction infrastructure. If you are deploying to a full-blown application server, you will probably use its connection pool Spring Framework (2.5.6) 217
  • 218. Testing (available through JNDI) and JTA implementation. Thus in production you will use a JndiObjectFactoryBean for the DataSource and JtaTransactionManager. JNDI and JTA will not be available in out-of-container integration tests, so you should use a combination like the Commons DBCP BasicDataSource and DataSourceTransactionManager or HibernateTransactionManager for them. You can factor out this variant behavior into a single XML file, having the choice between application server and 'local' configuration separated from all other configuration, which will not vary between the test and production environments. In addition, it is advisable to use properties files for connection settings: see the PetClinic application for an example. 8.4. Further Resources This section contains links to further resources about testing in general. • The JUnit homepage. The Spring Framework's unit test suite is written using JUnit 3.8 as the testing framework. • The TestNG homepage. TestNG is a testing framework inspired by JUnit 3.8 with added support for Java 5 annotations, test groups, data-driven testing, distributed testing, etc. • The Mock Objects homepage. About Mock Objects, a technique for improving the design of code within Test-Driven Development. • "Mock Objects" article at Wikipedia. • The EasyMock homepage. The Spring Framework uses EasyMock extensively in its test suite. • The JMock homepage. JMock is a library that supports test-driven development of Java code with mock objects. • The DbUnit homepage. DbUnit is a JUnit extension (also usable with Ant) targeted for database-driven projects that, among other things, puts your database into a known state between test runs. • The Grinder homepage. The Grinder is a Java load-testing framework. Spring Framework (2.5.6) 218
  • 219. Part II. Middle Tier Data Access This part of the reference documentation is concerned with the middle tier, and specifically the data access responsibilities of said tier. Spring's comprehensive transaction management support is covered in some detail, followed by thorough coverage of the various middle tier data access frameworks and technologies that the Spring Framework integrates with. • Chapter 9, Transaction management • Chapter 10, DAO support • Chapter 11, Data access using JDBC • Chapter 12, Object Relational Mapping (ORM) data access Spring Framework (2.5.6) 219
  • 220. Chapter 9. Transaction management 9.1. Introduction One of the most compelling reasons to use the Spring Framework is the comprehensive transaction support. The Spring Framework provides a consistent abstraction for transaction management that delivers the following benefits: • Provides a consistent programming model across different transaction APIs such as JTA, JDBC, Hibernate, JPA, and JDO. • Supports declarative transaction management. • Provides a simpler API for programmatic transaction management than a number of complex transaction APIs such as JTA. • Integrates very well with Spring's various data access abstractions. This chapter is divided up into a number of sections, each detailing one of the value-adds or technologies of the Spring Framework's transaction support. The chapter closes up with some discussion of best practices surrounding transaction management (for example, choosing between declarative and programmatic transaction management). • The first section, entitled Motivations, describes why one would want to use the Spring Framework's transaction abstraction as opposed to EJB CMT or driving transactions via a proprietary API such as Hibernate. • The second section, entitled Key abstractions outlines the core classes in the Spring Framework's transaction support, as well as how to configure and obtain DataSource instances from a variety of sources. • The third section, entitled Declarative transaction management, covers the Spring Framework's support for declarative transaction management. • The fourth section, entitled Programmatic transaction management, covers the Spring Framework's support for programmatic (that is, explicitly coded) transaction management. 9.2. Motivations Is an application server needed for transaction management? The Spring Framework's transaction management support significantly changes traditional thinking as to when a J2EE application requires an application server. In particular, you don't need an application server just to have declarative transactions via EJB. In fact, even if you have an application server with powerful JTA capabilities, you may well decide that the Spring Framework's declarative transactions offer more power and a much more productive programming model than EJB CMT. Typically you need an application server's JTA capability only if you need to enlist multiple transactional Spring Framework (2.5.6) 220
  • 221. Transaction management resources, and for many applications being able to handle transactions across multiple resources isn't a requirement. For example, many high-end applications use a single, highly scalable database (such as Oracle 9i RAC). Standalone transaction managers such as Atomikos Transactions and JOTM are other options. (Of course you may need other application server capabilities such as JMS and JCA.) The most important point is that with the Spring Framework you can choose when to scale your application up to a full-blown application server. Gone are the days when the only alternative to using EJB CMT or JTA was to write code using local transactions such as those on JDBC connections, and face a hefty rework if you ever needed that code to run within global, container-managed transactions. With the Spring Framework, only configuration needs to change so that your code doesn't have to. Traditionally, J2EE developers have had two choices for transaction management: global or local transactions. Global transactions are managed by the application server, using the Java Transaction API (JTA). Local transactions are resource-specific: the most common example would be a transaction associated with a JDBC connection. This choice has profound implications. For instance, global transactions provide the ability to work with multiple transactional resources (typically relational databases and message queues). With local transactions, the application server is not involved in transaction management and cannot help ensure correctness across multiple resources. (It is worth noting that most applications use a single transaction resource.) Global Transactions. Global transactions have a significant downside, in that code needs to use JTA, and JTA is a cumbersome API to use (partly due to its exception model). Furthermore, a JTA UserTransaction normally needs to be sourced from JNDI: meaning that we need to use both JNDI and JTA to use JTA. Obviously all use of global transactions limits the reusability of application code, as JTA is normally only available in an application server environment. Previously, the preferred way to use global transactions was via EJB CMT (Container Managed Transaction): CMT is a form of declarative transaction management (as distinguished from programmatic transaction management). EJB CMT removes the need for transaction-related JNDI lookups - although of course the use of EJB itself necessitates the use of JNDI. It removes most of the need (although not entirely) to write Java code to control transactions. The significant downside is that CMT is tied to JTA and an application server environment. Also, it is only available if one chooses to implement business logic in EJBs, or at least behind a transactional EJB facade. The negatives around EJB in general are so great that this is not an attractive proposition, especially in the face of compelling alternatives for declarative transaction management. Local Transactions. Local transactions may be easier to use, but have significant disadvantages: they cannot work across multiple transactional resources. For example, code that manages transactions using a JDBC connection cannot run within a global JTA transaction. Another downside is that local transactions tend to be invasive to the programming model. Spring resolves these problems. It enables application developers to use a consistent programming model in any environment. You write your code once, and it can benefit from different transaction management strategies in different environments. The Spring Framework provides both declarative and programmatic transaction management. Declarative transaction management is preferred by most users, and is recommended in most cases. With programmatic transaction management, developers work with the Spring Framework transaction abstraction, which can run over any underlying transaction infrastructure. With the preferred declarative model, developers typically write little or no code related to transaction management, and hence don't depend on the Spring Framework's transaction API (or indeed on any other transaction API). Spring Framework (2.5.6) 221
  • 222. Transaction management 9.3. Key abstractions The key to the Spring transaction abstraction is the notion of a transaction strategy. A transaction strategy is defined by the org.springframework.transaction.PlatformTransactionManager interface, shown below: public interface PlatformTransactionManager { TransactionStatus getTransaction(TransactionDefinition definition) throws TransactionException; void commit(TransactionStatus status) throws TransactionException; void rollback(TransactionStatus status) throws TransactionException; } This is primarily an SPI interface, although it can be used programmatically. Note that in keeping with the Spring Framework's philosophy, PlatformTransactionManager is an interface, and can thus be easily mocked or stubbed as necessary. Nor is it tied to a lookup strategy such as JNDI: PlatformTransactionManager implementations are defined like any other object (or bean) in the Spring Framework's IoC container. This benefit alone makes it a worthwhile abstraction even when working with JTA: transactional code can be tested much more easily than if it used JTA directly. Again in keeping with Spring's philosophy, the TransactionException that can be thrown by any of the PlatformTransactionManager interface's methods is unchecked (that is it extends the java.lang.RuntimeException class). Transaction infrastructure failures are almost invariably fatal. In rare cases where application code can actually recover from a transaction failure, the application developer can still choose to catch and handle TransactionException. The salient point is that developers are not forced to do so. The getTransaction(..) method returns a TransactionStatus object, depending on a TransactionDefinition parameter. The returned TransactionStatus might represent a new or existing transaction (if there were a matching transaction in the current call stack - with the implication being that (as with J2EE transaction contexts) a TransactionStatus is associated with a thread of execution). The TransactionDefinition interface specifies: • Isolation: the degree of isolation this transaction has from the work of other transactions. For example, can this transaction see uncommitted writes from other transactions? • Propagation: normally all code executed within a transaction scope will run in that transaction. However, there are several options specifying behavior if a transactional method is executed when a transaction context already exists: for example, simply continue running in the existing transaction (the common case); or suspending the existing transaction and creating a new transaction. Spring offers all of the transaction propagation options familiar from EJB CMT. (Some details regarding the semantics of transaction propagation in Spring can be found in the section entitled Section 9.5.7, “Transaction propagation”. • Timeout: how long this transaction may run before timing out (and automatically being rolled back by the underlying transaction infrastructure). • Read-only status: a read-only transaction does not modify any data. Read-only transactions can be a useful optimization in some cases (such as when using Hibernate). These settings reflect standard transactional concepts. If necessary, please refer to a resource discussing transaction isolation levels and other core transaction concepts because understanding such core concepts is essential to using the Spring Framework or indeed any other transaction management solution. Spring Framework (2.5.6) 222
  • 223. Transaction management The TransactionStatus interface provides a simple way for transactional code to control transaction execution and query transaction status. The concepts should be familiar, as they are common to all transaction APIs: public interface TransactionStatus { boolean isNewTransaction(); void setRollbackOnly(); boolean isRollbackOnly(); } Regardless of whether you opt for declarative or programmatic transaction management in Spring, defining the correct PlatformTransactionManager implementation is absolutely essential. In good Spring fashion, this important definition typically is made using via Dependency Injection. PlatformTransactionManager implementations normally require knowledge of the environment in which they work: JDBC, JTA, Hibernate, etc The following examples from the dataAccessContext-local.xml file from Spring's jPetStore sample application show how a local PlatformTransactionManager implementation can be defined. (This will work with plain JDBC.) We must define a JDBC DataSource, and then use the Spring DataSourceTransactionManager, giving it a reference to the DataSource. <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close"> <property name="driverClassName" value="${jdbc.driverClassName}" /> <property name="url" value="${jdbc.url}" /> <property name="username" value="${jdbc.username}" /> <property name="password" value="${jdbc.password}" /> </bean> The related PlatformTransactionManager bean definition will look like this: <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"> <property name="dataSource" ref="dataSource"/> </bean> If we use JTA in a J2EE container, as in the 'dataAccessContext-jta.xml' file from the same sample application, we use a container DataSource, obtained via JNDI, in conjunction with Spring's JtaTransactionManager. The JtaTransactionManager doesn't need to know about the DataSource, or any other specific resources, as it will use the container's global transaction management infrastructure. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:jee="http://www.springframework.org/schema/jee" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xs http://www.springframework.org/schema/jee http://www.springframework.org/schema/jee/spring-jee-2.5.xsd"> <jee:jndi-lookup id="dataSource" jndi-name="jdbc/jpetstore"/> <bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager" /> <!-- other <bean/> definitions here --> </beans> Note The above definition of the 'dataSource' bean uses the <jndi-lookup/> tag from the 'jee' Spring Framework (2.5.6) 223
  • 224. Transaction management namespace. For more information on schema-based configuration, see Appendix A, XML Schema-based configuration, and for more information on the <jee/> tags see the section entitled Section A.2.3, “The jee schema”. We can also use Hibernate local transactions easily, as shown in the following examples from the Spring Framework's PetClinic sample application. In this case, we need to define a Hibernate LocalSessionFactoryBean, which application code will use to obtain Hibernate Session instances. The DataSource bean definition will be similar to the one shown previously (and thus is not shown). If the DataSource is managed by the JEE container it should be non-transactional as the Spring Framework, rather than the JEE container, will manage transactions. The 'txManager' bean in this case is of the HibernateTransactionManager type. In the same way as the DataSourceTransactionManager needs a reference to the DataSource, the HibernateTransactionManager needs a reference to the SessionFactory. <bean id="sessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"> <property name="dataSource" ref="dataSource" /> <property name="mappingResources"> <list> <value>org/springframework/samples/petclinic/hibernate/petclinic.hbm.xml</value> </list> </property> <property name="hibernateProperties"> <value> hibernate.dialect=${hibernate.dialect} </value> </property> </bean> <bean id="txManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager"> <property name="sessionFactory" ref="sessionFactory" /> </bean> With Hibernate and JTA transactions, we can simply use the JtaTransactionManager as with JDBC or any other resource strategy. <bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager"/> Note that this is identical to JTA configuration for any resource, as these are global transactions, which can enlist any transactional resource. In all these cases, application code will not need to change at all. We can change how transactions are managed merely by changing configuration, even if that change means moving from local to global transactions or vice versa. 9.4. Resource synchronization with transactions It should now be clear how different transaction managers are created, and how they are linked to related resources which need to be synchronized to transactions (for example DataSourceTransactionManager to a JDBC DataSource, HibernateTransactionManager to a Hibernate SessionFactory, and so forth). There remains the question however of how the application code, directly or indirectly using a persistence API (such as JDBC, Hibernate, and JDO), ensures that these resources are obtained and handled properly in terms of proper creation/reuse/cleanup and trigger (optionally) transaction synchronization via the relevant PlatformTransactionManager. Spring Framework (2.5.6) 224
  • 225. Transaction management 9.4.1. High-level approach The preferred approach is to use Spring's highest level persistence integration APIs. These do not replace the native APIs, but internally handle resource creation/reuse, cleanup, optional transaction synchronization of the resources and exception mapping so that user data access code doesn't have to worry about these concerns at all, but can concentrate purely on non-boilerplate persistence logic. Generally, the same template approach is used for all persistence APIs, with examples including the JdbcTemplate, HibernateTemplate, and JdoTemplate classes (detailed in subsequent chapters of this reference documentation. 9.4.2. Low-level approach At a lower level exist classes such as DataSourceUtils (for JDBC), SessionFactoryUtils (for Hibernate), PersistenceManagerFactoryUtils (for JDO), and so on. When it is preferable for application code to deal directly with the resource types of the native persistence APIs, these classes ensure that proper Spring Framework-managed instances are obtained, transactions are (optionally) synchronized, and exceptions which happen in the process are properly mapped to a consistent API. For example, in the case of JDBC, instead of the traditional JDBC approach of calling the getConnection() method on the DataSource, you would instead use Spring's org.springframework.jdbc.datasource.DataSourceUtils class as follows: Connection conn = DataSourceUtils.getConnection(dataSource); If an existing transaction exists, and already has a connection synchronized (linked) to it, that instance will be returned. Otherwise, the method call will trigger the creation of a new connection, which will be (optionally) synchronized to any existing transaction, and made available for subsequent reuse in that same transaction. As mentioned, this has the added advantage that any SQLException will be wrapped in a Spring Framework CannotGetJdbcConnectionException - one of the Spring Framework's hierarchy of unchecked DataAccessExceptions. This gives you more information than can easily be obtained from the SQLException, and ensures portability across databases: even across different persistence technologies. It should be noted that this will also work fine without Spring transaction management (transaction synchronization is optional), so you can use it whether or not you are using Spring for transaction management. Of course, once you've used Spring's JDBC support or Hibernate support, you will generally prefer not to use DataSourceUtils or the other helper classes, because you'll be much happier working via the Spring abstraction than directly with the relevant APIs. For example, if you use the Spring JdbcTemplate or jdbc.object package to simplify your use of JDBC, correct connection retrieval happens behind the scenes and you won't need to write any special code. 9.4.3. TransactionAwareDataSourceProxy At the very lowest level exists the TransactionAwareDataSourceProxy class. This is a proxy for a target DataSource, which wraps the target DataSource to add awareness of Spring-managed transactions. In this respect, it is similar to a transactional JNDI DataSource as provided by a J2EE server. It should almost never be necessary or desirable to use this class, except when existing code exists which must be called and passed a standard JDBC DataSource interface implementation. In that case, it's possible to still have this code be usable, but participating in Spring managed transactions. It is preferable to write your new code using the higher level abstractions mentioned above. Spring Framework (2.5.6) 225
  • 226. Transaction management 9.5. Declarative transaction management Most users of the Spring Framework choose declarative transaction management. It is the option with the least impact on application code, and hence is most consistent with the ideals of a non-invasive lightweight container. The Spring Framework's declarative transaction management is made possible with Spring AOP, although, as the transactional aspects code comes with the Spring Framework distribution and may be used in a boilerplate fashion, AOP concepts do not generally have to be understood to make effective use of this code. It may be helpful to begin by considering EJB CMT and explaining the similarities and differences with the Spring Framework's declarative transaction management. The basic approach is similar: it is possible to specify transaction behavior (or lack of it) down to individual method level. It is possible to make a setRollbackOnly() call within a transaction context if necessary. The differences are: • Unlike EJB CMT, which is tied to JTA, the Spring Framework's declarative transaction management works in any environment. It can work with JDBC, JDO, Hibernate or other transactions under the covers, with configuration changes only. • The Spring Framework enables declarative transaction management to be applied to any class, not merely special classes such as EJBs. • The Spring Framework offers declarative rollback rules: this is a feature with no EJB equivalent. Both programmatic and declarative support for rollback rules is provided. • The Spring Framework gives you an opportunity to customize transactional behavior, using AOP. For example, if you want to insert custom behavior in the case of transaction rollback, you can. You can also add arbitrary advice, along with the transactional advice. With EJB CMT, you have no way to influence the container's transaction management other than setRollbackOnly(). • The Spring Framework does not support propagation of transaction contexts across remote calls, as do high-end application servers. If you need this feature, we recommend that you use EJB. However, consider carefully before using such a feature, because normally, one does not want transactions to span remote calls. Where is TransactionProxyFactoryBean? Declarative transaction configuration in versions of Spring 2.0 and above differs considerably from previous versions of Spring. The main difference is that there is no longer any need to configure TransactionProxyFactoryBean beans. The old, pre-Spring 2.0 configuration style is still 100% valid configuration; think of the new <tx:tags/> as simply defining TransactionProxyFactoryBean beans on your behalf. The concept of rollback rules is important: they enable us to specify which exceptions (and throwables) should cause automatic roll back. We specify this declaratively, in configuration, not in Java code. So, while we can still call setRollbackOnly()on the TransactionStatus object to roll the current transaction back programmatically, most often we can specify a rule that MyApplicationException must always result in rollback. This has the significant advantage that business objects don't need to depend on the transaction infrastructure. For example, they typically don't need to import any Spring APIs, transaction or other. While the EJB default behavior is for the EJB container to automatically roll back the transaction on a system exception (usually a runtime exception), EJB CMT does not roll back the transaction automatically on an Spring Framework (2.5.6) 226
  • 227. Transaction management application exception (that is, a checked exception other than java.rmi.RemoteException). While the Spring default behavior for declarative transaction management follows EJB convention (roll back is automatic only on unchecked exceptions), it is often useful to customize this. 9.5.1. Understanding the Spring Framework's declarative transaction implementation The aim of this section is to dispel the mystique that is sometimes associated with the use of declarative transactions. It is all very well for this reference documentation simply to tell you to annotate your classes with the @Transactional annotation, add the line ('<tx:annotation-driven/>') to your configuration, and then expect you to understand how it all works. This section will explain the inner workings of the Spring Framework's declarative transaction infrastructure to help you navigate your way back upstream to calmer waters in the event of transaction-related issues. The most important concepts to grasp with regard to the Spring Framework's declarative transaction support are that this support is enabled via AOP proxies, and that the transactional advice is driven by metadata (currently XML- or annotation-based). The combination of AOP with transactional metadata yields an AOP proxy that uses a TransactionInterceptor in conjunction with an appropriate PlatformTransactionManager implementation to drive transactions around method invocations. Note Although knowledge of Spring AOP is not required to use Spring's declarative transaction support, it can help. Spring AOP is thoroughly covered in the chapter entitled Chapter 6, Aspect Oriented Programming with Spring. Conceptually, calling a method on a transactional proxy looks like this... 9.5.2. A first example Spring Framework (2.5.6) 227
  • 228. Transaction management Consider the following interface, and its attendant implementation. (The intent is to convey the concepts, and using the rote Foo and Bar tropes means that you can concentrate on the transaction usage and not have to worry about the domain model.) // the service interface that we want to make transactional package x.y.service; public interface FooService { Foo getFoo(String fooName); Foo getFoo(String fooName, String barName); void insertFoo(Foo foo); void updateFoo(Foo foo); } // an implementation of the above interface package x.y.service; public class DefaultFooService implements FooService { public Foo getFoo(String fooName) { throw new UnsupportedOperationException(); } public Foo getFoo(String fooName, String barName) { throw new UnsupportedOperationException(); } public void insertFoo(Foo foo) { throw new UnsupportedOperationException(); } public void updateFoo(Foo foo) { throw new UnsupportedOperationException(); } } (For the purposes of this example, the fact that the DefaultFooService class throws UnsupportedOperationException instances in the body of each implemented method is good; it will allow us to see transactions being created and then rolled back in response to the UnsupportedOperationException instance being thrown.) Let's assume that the first two methods of the FooService interface (getFoo(String) and getFoo(String, String)) have to execute in the context of a transaction with read-only semantics, and that the other methods (insertFoo(Foo) and updateFoo(Foo)) have to execute in the context of a transaction with read-write semantics. Don't worry about taking the following configuration in all at once; everything will be explained in detail in the next few paragraphs. <!-- from the file 'context.xml' --> <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xs http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <!-- this is the service object that we want to make transactional --> <bean id="fooService" class="x.y.service.DefaultFooService"/> Spring Framework (2.5.6) 228
  • 229. Transaction management <!-- the transactional advice (what 'happens'; see the <aop:advisor/> bean below) --> <tx:advice id="txAdvice" transaction-manager="txManager"> <!-- the transactional semantics... --> <tx:attributes> <!-- all methods starting with 'get' are read-only --> <tx:method name="get*" read-only="true"/> <!-- other methods use the default transaction settings (see below) --> <tx:method name="*"/> </tx:attributes> </tx:advice> <!-- ensure that the above transactional advice runs for any execution of an operation defined by the FooService interface --> <aop:config> <aop:pointcut id="fooServiceOperation" expression="execution(* x.y.service.FooService.*(..))"/> <aop:advisor advice-ref="txAdvice" pointcut-ref="fooServiceOperation"/> </aop:config> <!-- don't forget the DataSource --> <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close"> <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/> <property name="url" value="jdbc:oracle:thin:@rj-t42:1521:elvis"/> <property name="username" value="scott"/> <property name="password" value="tiger"/> </bean> <!-- similarly, don't forget the PlatformTransactionManager --> <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"> <property name="dataSource" ref="dataSource"/> </bean> <!-- other <bean/> definitions here --> </beans> Let's pick apart the above configuration. We have a service object (the 'fooService' bean) that we want to make transactional. The transaction semantics that we want to apply are encapsulated in the <tx:advice/> definition. The <tx:advice/> definition reads as “... all methods on starting with 'get' are to execute in the context of a read-only transaction, and all other methods are to execute with the default transaction semantics”. The 'transaction-manager' attribute of the <tx:advice/> tag is set to the name of the PlatformTransactionManager bean that is going to actually drive the transactions (in this case the 'txManager' bean). Tip You can actually omit the 'transaction-manager' attribute in the transactional advice (<tx:advice/>) if the bean name of the PlatformTransactionManager that you want to wire in has the name 'transactionManager'. If the PlatformTransactionManager bean that you want to wire in has any other name, then you have to be explicit and use the 'transaction-manager' attribute as in the example above. The <aop:config/> definition ensures that the transactional advice defined by the 'txAdvice' bean actually executes at the appropriate points in the program. First we define a pointcut that matches the execution of any operation defined in the FooService interface ('fooServiceOperation'). Then we associate the pointcut with the 'txAdvice' using an advisor. The result indicates that at the execution of a 'fooServiceOperation', the advice defined by 'txAdvice' will be run. The expression defined within the <aop:pointcut/> element is an AspectJ pointcut expression; see the chapter entitled Chapter 6, Aspect Oriented Programming with Spring for more details on pointcut expressions in Spring 2.0. A common requirement is to make an entire service layer transactional. The best way to do this is simply to change the pointcut expression to match any operation in your service layer. For example: Spring Framework (2.5.6) 229
  • 230. Transaction management <aop:config> <aop:pointcut id="fooServiceMethods" expression="execution(* x.y.service.*.*(..))"/> <aop:advisor advice-ref="txAdvice" pointcut-ref="fooServiceMethods"/> </aop:config> (This example assumes that all your service interfaces are defined in the 'x.y.service' package; see the chapter entitled Chapter 6, Aspect Oriented Programming with Spring for more details.) Now that we've analyzed the configuration, you may be asking yourself, “Okay... but what does all this configuration actually do?”. The above configuration is going to effect the creation of a transactional proxy around the object that is created from the 'fooService' bean definition. The proxy will be configured with the transactional advice, so that when an appropriate method is invoked on the proxy, a transaction may be started, suspended, be marked as read-only, etc., depending on the transaction configuration associated with that method. Consider the following program that test drives the above configuration. public final class Boot { public static void main(final String[] args) throws Exception { ApplicationContext ctx = new ClassPathXmlApplicationContext("context.xml", Boot.class); FooService fooService = (FooService) ctx.getBean("fooService"); fooService.insertFoo (new Foo()); } } The output from running the above program will look something like this. (Please note that the Log4J output and the stacktrace from the UnsupportedOperationException thrown by the insertFoo(..) method of the DefaultFooService class have been truncated in the interest of clarity.) <!-- the Spring container is starting up... --> [AspectJInvocationContextExposingAdvisorAutoProxyCreator] - Creating implicit proxy for bean 'fooService' with 0 common interceptors and 1 specific interceptors <!-- the DefaultFooService is actually proxied --> [JdkDynamicAopProxy] - Creating JDK dynamic proxy for [x.y.service.DefaultFooService] <!-- ... the insertFoo(..) method is now being invoked on the proxy --> [TransactionInterceptor] - Getting transaction for x.y.service.FooService.insertFoo <!-- the transactional advice kicks in here... --> [DataSourceTransactionManager] - Creating new transaction with name [x.y.service.FooService.insertFoo] [DataSourceTransactionManager] - Acquired Connection [org.apache.commons.dbcp.PoolableConnection@a53de4] for JDBC transaction <!-- the insertFoo(..) method from DefaultFooService throws an exception... --> [RuleBasedTransactionAttribute] - Applying rules to determine whether transaction should rollback on java.lang.UnsupportedOperationException [TransactionInterceptor] - Invoking rollback for transaction on x.y.service.FooService.insertFoo due to throwable [java.lang.UnsupportedOperationException] <!-- and the transaction is rolled back (by default, RuntimeException instances cause rollback) --> [DataSourceTransactionManager] - Rolling back JDBC transaction on Connection [org.apache.commons.dbcp.PoolableConnection@a53de4] [DataSourceTransactionManager] - Releasing JDBC Connection after transaction [DataSourceUtils] - Returning JDBC Connection to DataSource Exception in thread "main" java.lang.UnsupportedOperationException at x.y.service.DefaultFooService.insertFoo(DefaultFooService.java:14) <!-- AOP infrastructure stack trace elements removed for clarity --> at $Proxy0.insertFoo(Unknown Source) at Boot.main(Boot.java:11) 9.5.3. Rolling back Spring Framework (2.5.6) 230
  • 231. Transaction management The previous section outlined the basics of how to specify the transactional settings for the classes, typically service layer classes, in your application in a declarative fashion. This section describes how you can control the rollback of transactions in a simple declarative fashion. The recommended way to indicate to the Spring Framework's transaction infrastructure that a transaction's work is to be rolled back is to throw an Exception from code that is currently executing in the context of a transaction. The Spring Framework's transaction infrastructure code will catch any unhandled Exception as it bubbles up the call stack, and will mark the transaction for rollback. Note however that the Spring Framework's transaction infrastructure code will, by default, only mark a transaction for rollback in the case of runtime, unchecked exceptions; that is, when the thrown exception is an instance or subclass of RuntimeException. (Errors will also - by default - result in a rollback.) Checked exceptions that are thrown from a transactional method will not result in the transaction being rolled back. Exactly which Exception types mark a transaction for rollback can be configured. Find below a snippet of XML configuration that demonstrates how one would configure rollback for a checked, application-specific Exception type. <tx:advice id="txAdvice" transaction-manager="txManager"> <tx:attributes> <tx:method name="get*" read-only="true" rollback-for="NoProductInStockException"/> <tx:method name="*"/> </tx:attributes> </tx:advice> It is also possible to specify 'no rollback rules', for those times when you do not want a transaction to be marked for rollback when an exception is thrown. In the example configuration below, we effectively are telling the Spring Framework's transaction infrastructure to commit the attendant transaction even in the face of an unhandled InstrumentNotFoundException. <tx:advice id="txAdvice"> <tx:attributes> <tx:method name="updateStock" no-rollback-for="InstrumentNotFoundException"/> <tx:method name="*"/> </tx:attributes> </tx:advice> When the Spring Framework's transaction infrastructure has caught an exception and is consulting any configured rollback rules to determine whether or not to mark the transaction for rollback, the strongest matching rule wins. So in the case of the following configuration, any exception other than an InstrumentNotFoundException would result in the attendant transaction being marked for rollback. <tx:advice id="txAdvice"> <tx:attributes> <tx:method name="*" rollback-for="Throwable" no-rollback-for="InstrumentNotFoundException"/> </tx:attributes> </tx:advice> The second way to indicate that a rollback is required is to do so programmatically. Although very simple, this way is quite invasive, and tightly couples your code to the Spring Framework's transaction infrastructure, as can be seen below: public void resolvePosition() { try { // some business logic... } catch (NoProductInStockException ex) { // trigger rollback programmatically TransactionAspectSupport.currentTransactionStatus().setRollbackOnly(); } } Spring Framework (2.5.6) 231
  • 232. Transaction management You are strongly encouraged to use the declarative approach to rollback if at all possible. Programmatic rollback is available should you absolutely need it, but its usage flies in the face of achieving a nice, clean POJO-based architecture. 9.5.4. Configuring different transactional semantics for different beans Consider the scenario where you have a number of service layer objects, and you want to apply totally different transactional configuration to each of them. This is achieved by defining distinct <aop:advisor/> elements with differing 'pointcut' and 'advice-ref' attribute values. Let's assume that all of your service layer classes are defined in a root 'x.y.service' package. To make all beans that are instances of classes defined in that package (or in subpackages) and that have names ending in 'Service' have the default transactional configuration, you would write the following: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <aop:config> <aop:pointcut id="serviceOperation" expression="execution(* x.y.service..*Service.*(..))"/> <aop:advisor pointcut-ref="serviceOperation" advice-ref="txAdvice"/> </aop:config> <!-- these two beans will be transactional... --> <bean id="fooService" class="x.y.service.DefaultFooService"/> <bean id="barService" class="x.y.service.extras.SimpleBarService"/> <!-- ... and these two beans won't --> <bean id="anotherService" class="org.xyz.SomeService"/> <!-- (not in the right package) --> <bean id="barManager" class="x.y.service.SimpleBarManager"/> <!-- (doesn't end in 'Service') --> <tx:advice id="txAdvice"> <tx:attributes> <tx:method name="get*" read-only="true"/> <tx:method name="*"/> </tx:attributes> </tx:advice> <!-- other transaction infrastructure beans such as a PlatformTransactionManager omitted... --> </beans> Find below an example of configuring two distinct beans with totally different transactional settings. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <aop:config> <aop:pointcut id="defaultServiceOperation" expression="execution(* x.y.service.*Service.*(..))"/> Spring Framework (2.5.6) 232
  • 233. Transaction management <aop:pointcut id="noTxServiceOperation" expression="execution(* x.y.service.ddl.DefaultDdlManager.*(..))"/> <aop:advisor pointcut-ref="defaultServiceOperation" advice-ref="defaultTxAdvice"/> <aop:advisor pointcut-ref="noTxServiceOperation" advice-ref="noTxAdvice"/> </aop:config> <!-- this bean will be transactional (see the 'defaultServiceOperation' pointcut) --> <bean id="fooService" class="x.y.service.DefaultFooService"/> <!-- this bean will also be transactional, but with totally different transactional settings --> <bean id="anotherFooService" class="x.y.service.ddl.DefaultDdlManager"/> <tx:advice id="defaultTxAdvice"> <tx:attributes> <tx:method name="get*" read-only="true"/> <tx:method name="*"/> </tx:attributes> </tx:advice> <tx:advice id="noTxAdvice"> <tx:attributes> <tx:method name="*" propagation="NEVER"/> </tx:attributes> </tx:advice> <!-- other transaction infrastructure beans such as a PlatformTransactionManager omitted... --> </beans> 9.5.5. <tx:advice/> settings This section summarises the various transactional settings that can be specified using the <tx:advice/> tag. The default <tx:advice/> settings are: • The propagation setting is REQUIRED • The isolation level is DEFAULT • The transaction is read/write • The transaction timeout defaults to the default timeout of the underlying transaction system, or or none if timeouts are not supported • Any RuntimeException will trigger rollback, and any checked Exception will not These default settings can be changed; the various attributes of the <tx:method/> tags that are nested within <tx:advice/> and <tx:attributes/> tags are summarized below: Table 9.1. <tx:method/> settings Attribute Required? Default Description name Yes The method name(s) with which the transaction attributes are to be associated. The wildcard (*) character can be used Spring Framework (2.5.6) 233
  • 234. Transaction management Attribute Required? Default Description to associate the same transaction attribute settings with a number of methods; for example, 'get*', 'handle*', 'on*Event', and so forth. propagation No REQUIRED The transaction propagation behavior isolation No DEFAULT The transaction isolation level timeout No -1 The transaction timeout value (in seconds) read-only No false Is this transaction read-only? rollback-for No The Exception(s) that will trigger rollback; comma-delimited. For example, 'com.foo.MyBusinessException,Serv no-rollback-for No The Exception(s) that will not trigger rollback; comma-delimited. For example, 'com.foo.MyBusinessException,Serv At the time of writing it is not possible to have explicit control over the name of a transaction, where 'name' means the transaction name that will be shown in a transaction monitor, if applicable (for example, WebLogic's transaction monitor), and in logging output. For declarative transactions, the transaction name is always the fully-qualified class name + "." + method name of the transactionally-advised class. For example 'com.foo.BusinessService.handlePayment'. 9.5.6. Using @Transactional Note The functionality offered by the @Transactional annotation and the support classes is only available to you if you are using at least Java 5 (Tiger). In addition to the XML-based declarative approach to transaction configuration, you can also use an annotation-based approach to transaction configuration. Declaring transaction semantics directly in the Java source code puts the declarations much closer to the affected code, and there is generally not much danger of undue coupling, since code that is meant to be used transactionally is almost always deployed that way anyway. Spring Framework (2.5.6) 234
  • 235. Transaction management The ease-of-use afforded by the use of the @Transactional annotation is best illustrated with an example, after which all of the details will be explained. Consider the following class definition: // the service class that we want to make transactional @Transactional public class DefaultFooService implements FooService { Foo getFoo(String fooName); Foo getFoo(String fooName, String barName); void insertFoo(Foo foo); void updateFoo(Foo foo); } When the above POJO is defined as a bean in a Spring IoC container, the bean instance can be made transactional by adding merely one line of XML configuration, like so: <!-- from the file 'context.xml' --> <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xs http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <!-- this is the service object that we want to make transactional --> <bean id="fooService" class="x.y.service.DefaultFooService"/> <!-- enable the configuration of transactional behavior based on annotations --> <tx:annotation-driven transaction-manager="txManager"/> <!-- a PlatformTransactionManager is still required --> <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"> <!-- (this dependency is defined somewhere else) --> <property name="dataSource" ref="dataSource"/> </bean> <!-- other <bean/> definitions here --> </beans> Tip You can actually omit the 'transaction-manager' attribute in the <tx:annotation-driven/> tag if the bean name of the PlatformTransactionManager that you want to wire in has the name 'transactionManager'. If the PlatformTransactionManager bean that you want to dependency inject has any other name, then you have to be explicit and use the 'transaction-manager' attribute as in the example above. Method visibility and @Transactional When using proxies, the @Transactional annotation should only be applied to methods with public visibility. If you do annotate protected, private or package-visible methods with the @Transactional annotation, no error will be raised, but the annotated method will not exhibit the configured transactional settings. Consider the use of AspectJ (see below) if you need to annotate non-public methods. The @Transactional annotation may be placed before an interface definition, a method on an interface, a class Spring Framework (2.5.6) 235
  • 236. Transaction management definition, or a public method on a class. However, please note that the mere presence of the @Transactional annotation is not enough to actually turn on the transactional behavior - the @Transactional annotation is simply metadata that can be consumed by something that is @Transactional-aware and that can use the metadata to configure the appropriate beans with transactional behavior. In the case of the above example, it is the presence of the <tx:annotation-driven/> element that switches on the transactional behavior. The Spring team's recommendation is that you only annotate concrete classes with the @Transactional annotation, as opposed to annotating interfaces. You certainly can place the @Transactional annotation on an interface (or an interface method), but this will only work as you would expect it to if you are using interface-based proxies. The fact that annotations are not inherited means that if you are using class-based proxies (proxy-target-class="true") or the weaving-based aspect (mode="aspectj") then the transaction settings will not be recognised by the proxying/weaving infrastructure and the object will not be wrapped in a transactional proxy (which would be decidedly bad). So please do take the Spring team's advice and only annotate concrete classes (and the methods of concrete classes) with the @Transactional annotation. Note: In proxy mode (which is the default), only 'external' method calls coming in through the proxy will be intercepted. This means that 'self-invocation', i.e. a method within the target object calling some other method of the target object, won't lead to an actual transaction at runtime even if the invoked method is marked with @Transactional! Consider the use of AspectJ mode (see below) if you expect self-invocations to be wrapped with transactions as well. In this case, there won't be a proxy in the first place; instead, the target class will be 'weaved' (i.e. its byte code will be modified) in order to turn @Transactional into runtime behavior on any kind of method. Table 9.2. <tx:annotation-driven/> settings Attribute Default Description transaction-manager transactionManager The name of transaction manager to use. Only required if the name of the transaction manager is not transactionManager, as in the example above. mode proxy The default mode "proxy" will process annotated beans to be proxied using Spring's AOP framework (following proxy semantics, as discussed above, applying to method calls coming in through the proxy only). The alternative mode "aspectj" will instead weave the affected classes with Spring's AspectJ transaction aspect (modifying the target class byte code in order to apply to any kind of method call). AspectJ weaving requires spring-aspects.jar on the classpath as well as load-time weaving (or compile-time weaving) enabled. (See the section entitled Spring Framework (2.5.6) 236
  • 237. Transaction management Attribute Default Description Section 6.8.4.5, “Spring configuration” for details on how to set up load-time weaving.) proxy-target-class false Applies to proxy mode only. Controls what type of transactional proxies are created for classes annotated with the @Transactional annotation. If "proxy-target-class" attribute is set to "true", then class-based proxies will be created. If "proxy-target-class" is "false" or if the attribute is omitted, then standard JDK interface-based proxies will be created. (See the section entitled Section 6.6, “Proxying mechanisms” for a detailed examination of the different proxy types.) order Ordered.LOWEST_PRECEDENCE Defines the order of the transaction advice that will be applied to beans annotated with @Transactional. More on the rules related to ordering of AOP advice can be found in the AOP chapter (see section Section 6.2.4.7, “Advice ordering”). Note that not specifying any ordering will leave the decision as to what order advice is run in to the AOP subsystem. Note The "proxy-target-class" attribute on the <tx:annotation-driven/> element controls what type of transactional proxies are created for classes annotated with the @Transactional annotation. If "proxy-target-class" attribute is set to "true", then class-based proxies will be created. If "proxy-target-class" is "false" or if the attribute is omitted, then standard JDK interface-based proxies will be created. (See the section entitled Section 6.6, “Proxying mechanisms” for a detailed examination of the different proxy types.) Note Note that <tx:annotation-driven/> only looks for @Transactional on beans in the same application context it is defined in. This means that, if you put <tx:annotation-driven/> in a WebApplicationContext for a DispatcherServlet, it only checks for @Transactional beans in Spring Framework (2.5.6) 237
  • 238. Transaction management your controllers, and not your services. See Section 13.2, “The DispatcherServlet” for more information. The most derived location takes precedence when evaluating the transactional settings for a method. In the case of the following example, the DefaultFooService class is annotated at the class level with the settings for a read-only transaction, but the @Transactional annotation on the updateFoo(Foo) method in the same class takes precedence over the transactional settings defined at the class level. @Transactional(readOnly = true) public class DefaultFooService implements FooService { public Foo getFoo(String fooName) { // do something } // these settings have precedence for this method @Transactional(readOnly = false, propagation = Propagation.REQUIRES_NEW) public void updateFoo(Foo foo) { // do something } } 9.5.6.1. @Transactional settings The @Transactional annotation is metadata that specifies that an interface, class, or method must have transactional semantics; for example, “start a brand new read-only transaction when this method is invoked, suspending any existing transaction”. The default @Transactional settings are: • The propagation setting is PROPAGATION_REQUIRED • The isolation level is ISOLATION_DEFAULT • The transaction is read/write • The transaction timeout defaults to the default timeout of the underlying transaction system, or or none if timeouts are not supported • Any RuntimeException will trigger rollback, and any checked Exception will not These default settings can be changed; the various properties of the @Transactional annotation are summarized in the following table: Table 9.3. @Transactional properties Property Type Description propagation enum: Propagation optional propagation setting isolation enum: Isolation optional isolation level readOnly boolean read/write vs. read-only transaction timeout int (in seconds granularity) the transaction timeout rollbackFor an array of Class objects, which an optional array of exception must be derived from Throwable classes which must cause rollback Spring Framework (2.5.6) 238
  • 239. Transaction management Property Type Description rollbackForClassname an array of class names. Classes an optional array of names of must be derived from Throwable exception classes that must cause rollback noRollbackFor an array of Class objects, which an optional array of exception must be derived from Throwable classes that must not cause rollback. noRollbackForClassname an array of String class names, an optional array of names of which must be derived from exception classes that must not Throwable cause rollback Currently it is not possible to have explicit control over the name of a transaction, where 'name' means the transaction name that will be shown in a transaction monitor, if applicable (for example, WebLogic's transaction monitor), and in logging output. For declarative transactions, the transaction name is always the fully-qualified class name + "." + method name of the transactionally-advised class. For example, if the handlePayment(..) method of the BusinessService class started a transaction, the name of the transaction would be: com.foo.BusinessService.handlePayment 9.5.7. Transaction propagation Please note that this section of the Spring reference documentation is not an introduction to transaction propagation proper; rather it details some of the semantics regarding transaction propagation in Spring. In the case of Spring-managed transactions, please be aware of the difference between physical and logical transactions, and how the propagation setting applies to this difference. 9.5.7.1. Required PROPAGATION_REQUIRED When the propagation setting is PROPAGATION_REQUIRED, a logical transaction scope is created for each method Spring Framework (2.5.6) 239
  • 240. Transaction management that it gets applied to. Each such logical transaction scope can individually decide on rollback-only status, with an outer transaction scope being logically independent from the inner transaction scope. Of course, in case of standard PROPAGATION_REQUIRED behavior, they will be mapped to the same physical transaction. So a rollback-only marker set in the inner transaction scope does affect the outer transactions chance to actually commit (as you would expect it to). However, in the case where an inner transaction scopes sets the rollback-only marker, the outer transaction itself has not decided on the rollback itself, and so the rollback (silently triggered by the inner transaction scope) is unexpected: a corresponding UnexpectedRollbackException will be thrown at that point. This is expected behavior so that the caller of a transaction can never be misled to assume that a commit was performed when it really was not. So if an inner transaction (that the outer caller is not aware of) silently marks a transaction as rollback-only, the outer caller would still innocently call commit - and needs to receive an UnexpectedRollbackException to indicate clearly that a rollback was performed instead. 9.5.7.2. RequiresNew PROPAGATION_REQUIRES_NEW PROPAGATION_REQUIRES_NEW, in contrast, uses a completely independent transaction for each affected transaction scope. In that case, the underlying physical transactions will be different and hence can commit or rollback independently, with an outer transaction not affected by an inner transaction's rollback status. 9.5.7.3. Nested PROPAGATION_NESTED is different again in that it uses a single physical transaction with multiple savepoints that it can roll back to. Such partial rollbacks allow an inner transaction scope to trigger a rollback for its scope, with the outer transaction being able to continue the physical transaction despite some operations having been rolled back. This is typically mapped onto JDBC savepoints, so will only work with JDBC resource transactions (see Spring's DataSourceTransactionManager). 9.5.8. Advising transactional operations Consider the situation where you would like to execute both transactional and (to keep things simple) some basic profiling advice. How do you effect this in the context of using <tx:annotation-driven/>? What we want to see when we invoke the updateFoo(Foo) method is: • the configured profiling aspect starting up, • then the transactional advice executing, Spring Framework (2.5.6) 240
  • 241. Transaction management • then the method on the advised object executing • then the transaction committing (we'll assume a sunny day scenario here), • and then finally the profiling aspect reporting (somehow) exactly how long the whole transactional method invocation took Note This chapter is not concerned with explaining AOP in any great detail (except as it applies to transactions). Please see the chapter entitled Chapter 6, Aspect Oriented Programming with Spring for detailed coverage of the various bits and pieces of the following AOP configuration (and AOP in general). Here is the code for a simple profiling aspect. The ordering of advice is controlled via the Ordered interface. For full details on advice ordering, see Section 6.2.4.7, “Advice ordering”. package x.y; import org.aspectj.lang.ProceedingJoinPoint; import org.springframework.util.StopWatch; import org.springframework.core.Ordered; public class SimpleProfiler implements Ordered { private int order; // allows us to control the ordering of advice public int getOrder() { return this.order; } public void setOrder(int order) { this.order = order; } // this method is the around advice public Object profile(ProceedingJoinPoint call) throws Throwable { Object returnValue; StopWatch clock = new StopWatch(getClass().getName()); try { clock.start(call.toShortString()); returnValue = call.proceed(); } finally { clock.stop(); System.out.println(clock.prettyPrint()); } return returnValue; } } <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <bean id="fooService" class="x.y.service.DefaultFooService"/> <!-- this is the aspect --> <bean id="profiler" class="x.y.SimpleProfiler"> <!-- execute before the transactional advice (hence the lower order number) --> <property name="order" value="1"/> </bean> Spring Framework (2.5.6) 241
  • 242. Transaction management <tx:annotation-driven transaction-manager="txManager" order="200"/> <aop:config> <!-- this advice will execute around the transactional advice --> <aop:aspect id="profilingAspect" ref="profiler"> <aop:pointcut id="serviceMethodWithReturnValue" expression="execution(!void x.y..*Service.*(..))"/> <aop:around method="profile" pointcut-ref="serviceMethodWithReturnValue"/> </aop:aspect> </aop:config> <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close"> <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/> <property name="url" value="jdbc:oracle:thin:@rj-t42:1521:elvis"/> <property name="username" value="scott"/> <property name="password" value="tiger"/> </bean> <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"> <property name="dataSource" ref="dataSource"/> </bean> </beans> The result of the above configuration will be a 'fooService' bean that has profiling and transactional aspects applied to it in that order. The configuration of any number of additional aspects is effected in a similar fashion. Finally, find below some example configuration for effecting the same setup as above, but using the purely XML declarative approach. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <bean id="fooService" class="x.y.service.DefaultFooService"/> <!-- the profiling advice --> <bean id="profiler" class="x.y.SimpleProfiler"> <!-- execute before the transactional advice (hence the lower order number) --> <property name="order" value="1"/> </bean> <aop:config> <aop:pointcut id="entryPointMethod" expression="execution(* x.y..*Service.*(..))"/> <!-- will execute after the profiling advice (c.f. the order attribute) --> <aop:advisor advice-ref="txAdvice" pointcut-ref="entryPointMethod" order="2"/> <!-- order value is higher than the profiling aspect --> <aop:aspect id="profilingAspect" ref="profiler"> <aop:pointcut id="serviceMethodWithReturnValue" expression="execution(!void x.y..*Service.*(..))"/> <aop:around method="profile" pointcut-ref="serviceMethodWithReturnValue"/> </aop:aspect> </aop:config> <tx:advice id="txAdvice" transaction-manager="txManager"> <tx:attributes> <tx:method name="get*" read-only="true"/> <tx:method name="*"/> </tx:attributes> </tx:advice> <!-- other <bean/> definitions such as a DataSource and a PlatformTransactionManager here --> Spring Framework (2.5.6) 242
  • 243. Transaction management </beans> The result of the above configuration will be a 'fooService' bean that has profiling and transactional aspects applied to it in that order. If we wanted the profiling advice to execute after the transactional advice on the way in, and before the transactional advice on the way out, then we would simply swap the value of the profiling aspect bean's 'order' property such that it was higher than the transactional advice's order value. The configuration of any number of additional aspects is achieved in a similar fashion. 9.5.9. Using @Transactional with AspectJ It is also possible to use the Spring Framework's @Transactional support outside of a Spring container by means of an AspectJ aspect. To use this support you must first annotate your classes (and optionally your classes' methods with the @Transactional annotation, and then you must link (weave) your application with the org.springframework.transaction.aspectj.AnnotationTransactionAspect defined in the spring-aspects.jar file. The aspect must also be configured with a transaction manager. You could of course use the Spring Framework's IoC container to take care of dependency injecting the aspect. The simplest way to configure the transaction management aspect is to use the '<tx:annotation-driven/>' element and specify the mode attribute to asepctj as described in Section 9.5.6, “Using @Transactional”. Since we're focusing here on applications running outside of a Spring container, we'll show you how to do it programmatically. Note Prior to continuing, you may well want to read the previous sections entitled Section 9.5.6, “Using @Transactional” and Chapter 6, Aspect Oriented Programming with Spring respectively. // construct an appropriate transaction manager DataSourceTransactionManager txManager = new DataSourceTransactionManager(getDataSource()); // configure the AnnotationTransactionAspect to use it; this must be done before executing any transactional methods AnnotationTransactionAspect.aspectOf().setTransactionManager(txManager); Note When using this aspect, you must annotate the implementation class (and/or methods within that class), not the interface (if any) that the class implements. AspectJ follows Java's rule that annotations on interfaces are not inherited. The @Transactional annotation on a class specifies the default transaction semantics for the execution of any method in the class. The @Transactional annotation on a method within the class overrides the default transaction semantics given by the class annotation (if present). Any method may be annotated, regardless of visibility. To weave your applications with the AnnotationTransactionAspect you must either build your application with AspectJ (see the AspectJ Development Guide) or use load-time weaving. See the section entitled Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework” for a discussion of load-time weaving with AspectJ. 9.6. Programmatic transaction management Spring Framework (2.5.6) 243
  • 244. Transaction management The Spring Framework provides two means of programmatic transaction management: • Using the TransactionTemplate. • Using a PlatformTransactionManager implementation directly. If you are going to use programmatic transaction management, the Spring team generally recommends using the TransactionTemplate. The second approach is similar to using the JTA UserTransaction API (although exception handling is less cumbersome). 9.6.1. Using the TransactionTemplate The TransactionTemplate adopts the same approach as other Spring templates such as the JdbcTemplate. It uses a callback approach, to free application code from having to do the boilerplate acquisition and release of transactional resources, and results in code that is intention driven, in that the code that is written focuses solely on what the developer wants to do. Note As you will immediately see in the examples that follow, using the TransactionTemplate absolutely couples you to Spring's transaction infrastructure and APIs. Whether or not programmatic transaction management is suitable for your development needs is a decision that you will have to make yourself. Application code that must execute in a transactional context, and that will use the TransactionTemplate explicitly, looks like this. You, as an application developer, will write a TransactionCallback implementation (typically expressed as an anonymous inner class) that will contain all of the code that you need to have execute in the context of a transaction. You will then pass an instance of your custom TransactionCallback to the execute(..) method exposed on the TransactionTemplate. public class SimpleService implements Service { // single TransactionTemplate shared amongst all methods in this instance private final TransactionTemplate transactionTemplate; // use constructor-injection to supply the PlatformTransactionManager public SimpleService(PlatformTransactionManager transactionManager) { Assert.notNull(transactionManager, "The 'transactionManager' argument must not be null."); this.transactionTemplate = new TransactionTemplate(transactionManager); } public Object someServiceMethod() { return transactionTemplate.execute(new TransactionCallback() { // the code in this method executes in a transactional context public Object doInTransaction(TransactionStatus status) { updateOperation1(); return resultOfUpdateOperation2(); } }); } } If there is no return value, use the convenient TransactionCallbackWithoutResult class via an anonymous class like so: transactionTemplate.execute(new TransactionCallbackWithoutResult() { protected void doInTransactionWithoutResult(TransactionStatus status) { Spring Framework (2.5.6) 244
  • 245. Transaction management updateOperation1(); updateOperation2(); } }); Code within the callback can roll the transaction back by calling the setRollbackOnly() method on the supplied TransactionStatus object. transactionTemplate.execute(new TransactionCallbackWithoutResult() { protected void doInTransactionWithoutResult(TransactionStatus status) { try { updateOperation1(); updateOperation2(); } catch (SomeBusinessExeption ex) { status.setRollbackOnly(); } } }); 9.6.1.1. Specifying transaction settings Transaction settings such as the propagation mode, the isolation level, the timeout, and so forth can be set on the TransactionTemplate either programmatically or in configuration. TransactionTemplate instances by default have the default transactional settings. Find below an example of programmatically customizing the transactional settings for a specific TransactionTemplate. public class SimpleService implements Service { private final TransactionTemplate transactionTemplate; public SimpleService(PlatformTransactionManager transactionManager) { Assert.notNull(transactionManager, "The 'transactionManager' argument must not be null."); this.transactionTemplate = new TransactionTemplate(transactionManager); // the transaction settings can be set here explicitly if so desired this.transactionTemplate.setIsolationLevel(TransactionDefinition.ISOLATION_READ_UNCOMMITTED); this.transactionTemplate.setTimeout(30); // 30 seconds // and so forth... } } Find below an example of defining a TransactionTemplate with some custom transactional settings, using Spring XML configuration. The 'sharedTransactionTemplate' can then be injected into as many services as are required. <bean id="sharedTransactionTemplate" class="org.springframework.transaction.support.TransactionTemplate"> <property name="isolationLevelName" value="ISOLATION_READ_UNCOMMITTED"/> <property name="timeout" value="30"/> </bean>" Finally, instances of the TransactionTemplate class are threadsafe, in that instances do not maintain any conversational state. TransactionTemplate instances do however maintain configuration state, so while a number of classes may choose to share a single instance of a TransactionTemplate, if a class needed to use a TransactionTemplate with different settings (for example, a different isolation level), then two distinct TransactionTemplate instances would need to be created and used. 9.6.2. Using the PlatformTransactionManager You can also use the org.springframework.transaction.PlatformTransactionManager directly to manage Spring Framework (2.5.6) 245
  • 246. Transaction management your transaction. Simply pass the implementation of the PlatformTransactionManager you're using to your bean via a bean reference. Then, using the TransactionDefinition and TransactionStatus objects you can initiate transactions, rollback and commit. DefaultTransactionDefinition def = new DefaultTransactionDefinition(); // explicitly setting the transaction name is something that can only be done programmatically def.setName("SomeTxName"); def.setPropagationBehavior(TransactionDefinition.PROPAGATION_REQUIRED); TransactionStatus status = txManager.getTransaction(def); try { // execute your business logic here } catch (MyException ex) { txManager.rollback(status); throw ex; } txManager.commit(status); 9.7. Choosing between programmatic and declarative transaction management Programmatic transaction management is usually a good idea only if you have a small number of transactional operations. For example, if you have a web application that require transactions only for certain update operations, you may not want to set up transactional proxies using Spring or any other technology. In this case, using the TransactionTemplate may be a good approach. Being able to set the transaction name explicitly is also something that can only be done using the programmatic approach to transaction management. On the other hand, if your application has numerous transactional operations, declarative transaction management is usually worthwhile. It keeps transaction management out of business logic, and is not difficult to configure. When using the Spring Framework, rather than EJB CMT, the configuration cost of declarative transaction management is greatly reduced. 9.8. Application server-specific integration Spring's transaction abstraction generally is application server agnostic. Additionally, Spring's JtaTransactionManager class, which can optionally perform a JNDI lookup for the JTA UserTransaction and TransactionManager objects, autodetects the location for the latter object, which varies by application server. Having access to the JTA TransactionManager allows for enhanced transaction semantics, in particular supporting transaction suspension. Please see the JtaTransactionManager Javadocs for details. Spring's JtaTransactionManager is the standard choice when running on J2EE application servers, known to work on all common servers. Its advanced functionality such as transaction suspension is known to work on many servers as well - including GlassFish, JBoss, Geronimo and Oracle OC4J - without any special configuration required. However, for fully supported transaction suspension and further advanced integration, Spring ships special adapters for IBM WebSphere and BEA WebLogic and also for Oracle OC4J. We'll discuss these adapters in the following sections. For standard scenarios, including WebLogic, WebSphere and OC4J, consider using the convenient '<tx:jta-transaction-manager/>' configuration element. This will automatically detect the underlying server and choose the best transaction manager available for the platform. This means that you won't have to configure server-specific adapter classes (as discussed in the following sections) explicitly; they will rather be chosen automatically, with the standard JtaTransactionManager as default fallback. Spring Framework (2.5.6) 246
  • 247. Transaction management 9.8.1. IBM WebSphere On WebSphere 6.0 and above, the recommended Spring JTA transaction manager to use is WebSphereUowTransactionManager. This special adapter leverages IBM's UOWManager API which is available in WebSphere Application Server 6.0.2.19 or above and 6.1.0.9 or above. With this adapter, Spring-driven transaction suspension (suspend/resume as initiated by PROPAGATION_REQUIRES_NEW) is officially supported by IBM! In a WebSphere 5.1 environment, you may wish to use Spring's WebSphereTransactionManagerFactoryBean class. This is a factory bean which retrieves the JTA TransactionManager in a WebSphere environment, which is done via WebSphere's static access methods. Once the JTA TransactionManager instance has been obtained via this factory bean, Spring's JtaTransactionManager may be configured with a reference to it, for enhanced transaction semantics over the use of only the JTA UserTransaction object. Please see the Javadocs for full details. Note that WebSphereTransactionManagerFactoryBean usage is known to work on WAS 5.1 and 6.0 but is not officially supported by IBM. Prefer WebSphereUowTransactionManager when running on WAS 6.0 or higher (see above). 9.8.2. BEA WebLogic On WebLogic 8.1 or above, you will generally prefer to use the WebLogicJtaTransactionManager instead of the stock JtaTransactionManager class. This special WebLogic-specific subclass of the normal JtaTransactionManager supports the full power of Spring's transaction definitions in a WebLogic-managed transaction environment, beyond standard JTA semantics: Features include transaction names, per-transaction isolation levels, and proper resuming of transactions in all cases. 9.8.3. Oracle OC4J Spring ships a special adapter class for OC4J 10.1.3 or above: OC4JJtaTransactionManager. This is analogous to the WebLogicJtaTransactionManager class discussed in the previous section, providing similar value-adds on OC4J: transaction names and per-transaction isolation levels. Note that the full JTA functionality, including transaction suspension, works fine with Spring's JtaTransactionManager on OC4J as well. The special OC4JJtaTransactionManager adapter simply provides value-adds beyond standard JTA. 9.9. Solutions to common problems 9.9.1. Use of the wrong transaction manager for a specific DataSource You should take care to use the correct PlatformTransactionManager implementation for their requirements. Used properly, the Spring Framework merely provides a straightforward and portable abstraction. If you are using global transactions, you must use the org.springframework.transaction.jta.JtaTransactionManager class (or an application server-specific subclass of it) for all your transactional operations. Otherwise the transaction infrastructure will attempt to perform local transactions on resources such as container DataSource instances. Such local transactions do not make sense, and a good application server will treat them as errors. Spring Framework (2.5.6) 247
  • 248. Transaction management 9.10. Further Resources Find below links to further resources about the Spring Framework's transaction support. • Java Transaction Design Strategies is a book available from InfoQ that provides a well-paced introduction to transactions in Java. It also includes side-by-side examples of how to configure and use transactions using both the Spring Framework and EJB3. Spring Framework (2.5.6) 248
  • 249. Chapter 10. DAO support 10.1. Introduction The Data Access Object (DAO) support in Spring is aimed at making it easy to work with data access technologies like JDBC, Hibernate or JDO in a consistent way. This allows one to switch between the aforementioned persistence technologies fairly easily and it also allows one to code without worrying about catching exceptions that are specific to each technology. 10.2. Consistent exception hierarchy Spring provides a convenient translation from technology-specific exceptions like SQLException to its own exception class hierarchy with the DataAccessException as the root exception. These exceptions wrap the original exception so there is never any risk that one might lose any information as to what might have gone wrong. In addition to JDBC exceptions, Spring can also wrap Hibernate-specific exceptions, converting them from proprietary, checked exceptions (in the case of versions of Hibernate prior to Hibernate 3.0), to a set of focused runtime exceptions (the same is true for JDO and JPA exceptions). This allows one to handle most persistence exceptions, which are non-recoverable, only in the appropriate layers, without having annoying boilerplate catch-and-throw blocks and exception declarations in one's DAOs. (One can still trap and handle exceptions anywhere one needs to though.) As mentioned above, JDBC exceptions (including database-specific dialects) are also converted to the same hierarchy, meaning that one can perform some operations with JDBC within a consistent programming model. The above holds true for the various template classes in Springs support for various ORM frameworks. If one uses the interceptor-based classes then the application must care about handling HibernateExceptions and JDOExceptions itself, preferably via delegating to SessionFactoryUtils' convertHibernateAccessException(..) or convertJdoAccessException methods respectively. These methods convert the exceptions to ones that are compatible with the exceptions in the org.springframework.dao exception hierarchy. As JDOExceptions are unchecked, they can simply get thrown too, sacrificing generic DAO abstraction in terms of exceptions though. The exception hierarchy that Spring provides can be seen below. (Please note that the class hierarchy detailed in the image shows only a subset of the entire DataAccessException hierarchy.) Spring Framework (2.5.6) 249
  • 250. DAO support 10.3. Consistent abstract classes for DAO support To make it easier to work with a variety of data access technologies such as JDBC, JDO and Hibernate in a consistent way, Spring provides a set of abstract DAO classes that one can extend. These abstract classes have methods for providing the data source and any other configuration settings that are specific to the relevant data-access technology. • JdbcDaoSupport - superclass for JDBC data access objects. Requires a DataSource to be provided; in turn, this class provides a JdbcTemplate instance initialized from the supplied DataSource to subclasses. • HibernateDaoSupport - superclass for Hibernate data access objects. Requires a SessionFactory to be provided; in turn, this class provides a HibernateTemplate instance initialized from the supplied SessionFactory to subclasses. Can alternatively be initialized directly via a HibernateTemplate, to reuse the latters settings like SessionFactory, flush mode, exception translator, and so forth. • JdoDaoSupport - super class for JDO data access objects. Requires a PersistenceManagerFactory to be provided; in turn, this class provides a JdoTemplate instance initialized from the supplied PersistenceManagerFactory to subclasses. • JpaDaoSupport - super class for JPA data access objects. Requires a EntityManagerFactory to be provided; in turn, this class provides a JpaTemplate instance initialized from the supplied EntityManagerFactory to subclasses. Spring Framework (2.5.6) 250
  • 251. Chapter 11. Data access using JDBC 11.1. Introduction The value-add provided by the Spring Framework's JDBC abstraction framework is perhaps best shown by the following list (note that only the italicized lines need to be coded by an application developer): 1. Define connection parameters 2. Open the connection 3. Specify the statement 4. Prepare and execute the statement 5. Set up the loop to iterate through the results (if any) 6. Do the work for each iteration 7. Process any exception 8. Handle transactions 9. Close the connection The Spring Framework takes care of all the grungy, low-level details that can make JDBC such a tedious API to develop with. 11.1.1. Choosing a style There are a number of options for selecting an approach to form the basis for your JDBC database access. There are three flavors of the JdbcTemplate, a new "SimpleJdbc" approach taking advantage of database metadata, and there is also the "RDBMS Object" style for a more object oriented approach similar in style to the JDO Query design. We'll briefly list the primary reasons why you would pick one of these approaches. Keep in mind that even if you start using one of these approaches, you can still mix and match if there is a feature in a different approach that you would like to take advantage of. All approaches requires a JDBC 2.0 compliant driver and some advanced features require a JDBC 3.0 driver. • JdbcTemplate - this is the classic Spring JDBC approach and the most widely used. This is the "lowest level" approach and all other approaches use a JdbcTemplate under the covers. Works well in a JDK 1.4 and higher environment. • NamedParameterJdbcTemplate - wraps a JdbcTemplate to provide more convenient usage with named parameters instead of the traditional JDBC "?" place holders. This provides better documentation and ease of use when you have multiple parameters for an SQL statement. Works with JDK 1.4 and up. • SimpleJdbcTemplate - this class combines the most frequently used features of both JdbcTemplate and NamedParameterJdbcTemplate plus it adds additional convenience by taking advantage of some Java 5 features like varargs, autoboxing and generics to provide an easier to use API. Requires JDK 5 or higher. • SimpleJdbcInsert and SimpleJdbcCall - designed to take advantage of database metadata to limit the Spring Framework (2.5.6) 251
  • 252. Data access using JDBC amount of configuration needed. This will simplify the coding to a point where you only need to provide the name of the table or procedure and provide a Map of parameters matching the column names. Designed to work together with the SimpleJdbcTemplate. Requires JDK 5 or higher and a database that provides adequate metadata. • RDBMS Objects including MappingSqlQuery, SqlUpdate and StoredProcedure - an approach where you create reusable and thread safe objects during initialization of your data access layer. This approach is modeled after JDO Query where you define your query string, declare parameters and compile the query. Once that is done any execute methods can be called multiple times with various parameter values passed in. Works with JDK 1.4 and higher. 11.1.2. The package hierarchy The Spring Framework's JDBC abstraction framework consists of four different packages, namely core, datasource, object, and support. The org.springframework.jdbc.core package contains the JdbcTemplate class and its various callback interfaces, plus a variety of related classes. A sub-package named org.springframework.jdbc.core.simple contains the SimpleJdbcTemplate class and the related SimpleJdbcInsert and SimpleJdbcCall classes. Another sub-package named org.springframework.jdbc.core.namedparam contains the NamedParameterJdbcTemplate class and the related support classes. The org.springframework.jdbc.datasource package contains a utility class for easy DataSource access, and various simple DataSource implementations that can be used for testing and running unmodified JDBC code outside of a J2EE container. The utility class provides static methods to obtain connections from JNDI and to close connections if necessary. It has support for thread-bound connections, e.g. for use with DataSourceTransactionManager. Next, the org.springframework.jdbc.object package contains classes that represent RDBMS queries, updates, and stored procedures as thread safe, reusable objects. This approach is modeled by JDO, although of course objects returned by queries are “disconnected” from the database. This higher level of JDBC abstraction depends on the lower-level abstraction in the org.springframework.jdbc.core package. Finally the org.springframework.jdbc.support package is where you find the SQLException translation functionality and some utility classes. Exceptions thrown during JDBC processing are translated to exceptions defined in the org.springframework.dao package. This means that code using the Spring JDBC abstraction layer does not need to implement JDBC or RDBMS-specific error handling. All translated exceptions are unchecked giving you the option of catching the exceptions that you can recover from while allowing other exceptions to be propagated to the caller. 11.2. Using the JDBC Core classes to control basic JDBC processing and error handling 11.2.1. JdbcTemplate The JdbcTemplate class is the central class in the JDBC core package. It simplifies the use of JDBC since it handles the creation and release of resources. This helps to avoid common errors such as forgetting to always close the connection. It executes the core JDBC workflow like statement creation and execution, leaving Spring Framework (2.5.6) 252
  • 253. Data access using JDBC application code to provide SQL and extract results. This class executes SQL queries, update statements or stored procedure calls, imitating iteration over ResultSets and extraction of returned parameter values. It also catches JDBC exceptions and translates them to the generic, more informative, exception hierarchy defined in the org.springframework.dao package. Code using the JdbcTemplate only need to implement callback interfaces, giving them a clearly defined contract. The PreparedStatementCreator callback interface creates a prepared statement given a Connection provided by this class, providing SQL and any necessary parameters. The same is true for the CallableStatementCreator interface which creates callable statement. The RowCallbackHandler interface extracts values from each row of a ResultSet. The JdbcTemplate can be used within a DAO implementation via direct instantiation with a DataSource reference, or be configured in a Spring IOC container and given to DAOs as a bean reference. Note: the DataSource should always be configured as a bean in the Spring IoC container, in the first case given to the service directly, in the second case to the prepared template. Finally, all of the SQL issued by this class is logged at the 'DEBUG' level under the category corresponding to the fully qualified class name of the template instance (typically JdbcTemplate, but it may be different if a custom subclass of the JdbcTemplate class is being used). 11.2.1.1. Examples Find below some examples of using the JdbcTemplate class. (These examples are not an exhaustive list of all of the functionality exposed by the JdbcTemplate; see the attendant Javadocs for that). 11.2.1.1.1. Querying (SELECT) A simple query for getting the number of rows in a relation. int rowCount = this.jdbcTemplate.queryForInt("select count(0) from t_accrual"); A simple query using a bind variable. int countOfActorsNamedJoe = this.jdbcTemplate.queryForInt( "select count(0) from t_actors where first_name = ?", new Object[]{"Joe"}); Querying for a String. String surname = (String) this.jdbcTemplate.queryForObject( "select surname from t_actor where id = ?", new Object[]{new Long(1212)}, String.class); Querying and populating a single domain object. Actor actor = (Actor) this.jdbcTemplate.queryForObject( "select first_name, surname from t_actor where id = ?", new Object[]{new Long(1212)}, new RowMapper() { public Object mapRow(ResultSet rs, int rowNum) throws SQLException { Actor actor = new Actor(); actor.setFirstName(rs.getString("first_name")); actor.setSurname(rs.getString("surname")); return actor; } }); Querying and populating a number of domain objects. Spring Framework (2.5.6) 253
  • 254. Data access using JDBC Collection actors = this.jdbcTemplate.query( "select first_name, surname from t_actor", new RowMapper() { public Object mapRow(ResultSet rs, int rowNum) throws SQLException { Actor actor = new Actor(); actor.setFirstName(rs.getString("first_name")); actor.setSurname(rs.getString("surname")); return actor; } }); If the last two snippets of code actually existed in the same application, it would make sense to remove the duplication present in the two RowMapper anonymous inner classes, and extract them out into a single class (typically a static inner class) that can then be referenced by DAO methods as needed. For example, the last code snippet might be better off written like so: public Collection findAllActors() { return this.jdbcTemplate.query( "select first_name, surname from t_actor", new ActorMapper()); } private static final class ActorMapper implements RowMapper { public Object mapRow(ResultSet rs, int rowNum) throws SQLException { Actor actor = new Actor(); actor.setFirstName(rs.getString("first_name")); actor.setSurname(rs.getString("surname")); return actor; } } 11.2.1.1.2. Updating (INSERT/UPDATE/DELETE) this.jdbcTemplate.update( "insert into t_actor (first_name, surname) values (?, ?)", new Object[] {"Leonor", "Watling"}); this.jdbcTemplate.update( "update t_actor set weapon = ? where id = ?", new Object[] {"Banjo", new Long(5276)}); this.jdbcTemplate.update( "delete from actor where id = ?", new Object[] {new Long.valueOf(actorId)}); 11.2.1.1.3. Other operations The execute(..) method can be used to execute any arbitrary SQL, and as such is often used for DDL statements. It is heavily overloaded with variants taking callback interfaces, binding variable arrays, and suchlike. this.jdbcTemplate.execute("create table mytable (id integer, name varchar(100))"); Invoking a simple stored procedure (more sophisticated stored procedure support is covered later). this.jdbcTemplate.update( "call SUPPORT.REFRESH_ACTORS_SUMMARY(?)", new Object[]{Long.valueOf(unionId)}); 11.2.1.2. JdbcTemplate idioms (best practices) Spring Framework (2.5.6) 254
  • 255. Data access using JDBC Instances of the JdbcTemplate class are threadsafe once configured. This is important because it means that you can configure a single instance of a JdbcTemplate and then safely inject this shared reference into multiple DAOs (or repositories). To be clear, the JdbcTemplate is stateful, in that it maintains a reference to a DataSource, but this state is not conversational state. A common idiom when using the JdbcTemplate class (and the associated SimpleJdbcTemplate and NamedParameterJdbcTemplate classes) is to configure a DataSource in your Spring configuration file, and then dependency inject that shared DataSource bean into your DAO classes; the JdbcTemplate is created in the setter for the DataSource. This leads to DAOs that look in part like this: public class JdbcCorporateEventDao implements CorporateEventDao { private JdbcTemplate jdbcTemplate; public void setDataSource(DataSource dataSource) { this.jdbcTemplate = new JdbcTemplate(dataSource); } // JDBC-backed implementations of the methods on the CorporateEventDao follow... } The attendant configuration might look like this. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean id="corporateEventDao" class="com.example.JdbcCorporateEventDao"> <property name="dataSource" ref="dataSource"/> </bean> <!-- the DataSource (parameterized for configuration via a PropertyPlaceHolderConfigurer) --> <bean id="dataSource" destroy-method="close" class="org.apache.commons.dbcp.BasicDataSource"> <property name="driverClassName" value="${jdbc.driverClassName}"/> <property name="url" value="${jdbc.url}"/> <property name="username" value="${jdbc.username}"/> <property name="password" value="${jdbc.password}"/> </bean> </beans> If you are using Spring's JdbcDaoSupport class, and your various JDBC-backed DAO classes extend from it, then you inherit a setDataSource(..) method for free from said superclass. It is totally up to you as to whether or not you inherit from said class, you certainly are not forced to. If you look at the source for the JdbcDaoSupport class you will see that there is not a whole lot to it... it is provided as a convenience only. Regardless of which of the above template initialization styles you choose to use (or not), there is (almost) certainly no need to create a brand new instance of a JdbcTemplate class each and every time you wish to execute some SQL... remember, once configured, a JdbcTemplate instance is threadsafe. A reason for wanting multiple JdbcTemplate instances would be when you have an application that accesses multiple databases, which requires multiple DataSources, and subsequently multiple differently configured JdbcTemplates. 11.2.2. NamedParameterJdbcTemplate The NamedParameterJdbcTemplate class adds support for programming JDBC statements using named parameters (as opposed to programming JDBC statements using only classic placeholder ('?') arguments. The NamedParameterJdbcTemplate class wraps a JdbcTemplate, and delegates to the wrapped JdbcTemplate to do much of its work. This section will describe only those areas of the NamedParameterJdbcTemplate class that Spring Framework (2.5.6) 255
  • 256. Data access using JDBC differ from the JdbcTemplate itself; namely, programming JDBC statements using named parameters. // some JDBC-backed DAO class... private NamedParameterJdbcTemplate namedParameterJdbcTemplate; public void setDataSource(DataSource dataSource) { this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource); } public int countOfActorsByFirstName(String firstName) { String sql = "select count(0) from T_ACTOR where first_name = :first_name"; SqlParameterSource namedParameters = new MapSqlParameterSource("first_name", firstName); return namedParameterJdbcTemplate.queryForInt(sql, namedParameters); } Notice the use of the named parameter notation in the value assigned to the 'sql' variable, and the corresponding value that is plugged into the 'namedParameters' variable (of type MapSqlParameterSource). If you like, you can also pass along named parameters (and their corresponding values) to a NamedParameterJdbcTemplate instance using the (perhaps more familiar) Map-based style. (The rest of the methods exposed by the NamedParameterJdbcOperations - and implemented by the NamedParameterJdbcTemplate class) follow a similar pattern and will not be covered here.) // some JDBC-backed DAO class... private NamedParameterJdbcTemplate namedParameterJdbcTemplate; public void setDataSource(DataSource dataSource) { this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource); } public int countOfActorsByFirstName(String firstName) { String sql = "select count(0) from T_ACTOR where first_name = :first_name"; Map namedParameters = Collections.singletonMap("first_name", firstName); return this.namedParameterJdbcTemplate.queryForInt(sql, namedParameters); } Another nice feature related to the NamedParameterJdbcTemplate (and existing in the same Java package) is the SqlParameterSource interface. You have already seen an example of an implementation of this interface in one of the preceding code snippets (the MapSqlParameterSource class). The entire point of the SqlParameterSource is to serve as a source of named parameter values to a NamedParameterJdbcTemplate. The MapSqlParameterSource class is a very simple implementation, that is simply an adapter around a java.util.Map, where the keys are the parameter names and the values are the parameter values. Another SqlParameterSource implementation is the BeanPropertySqlParameterSource class. This class wraps an arbitrary JavaBean (that is, an instance of a class that adheres to the JavaBean conventions), and uses the properties of the wrapped JavaBean as the source of named parameter values. public class Actor { private Long id; private String firstName; private String lastName; public String getFirstName() { return this.firstName; } public String getLastName() { return this.lastName; } Spring Framework (2.5.6) 256
  • 257. Data access using JDBC public Long getId() { return this.id; } // setters omitted... } // some JDBC-backed DAO class... private NamedParameterJdbcTemplate namedParameterJdbcTemplate; public void setDataSource(DataSource dataSource) { this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource); } public int countOfActors(Actor exampleActor) { // notice how the named parameters match the properties of the above 'Actor' class String sql = "select count(0) from T_ACTOR where first_name = :firstName and last_name = :lastName"; SqlParameterSource namedParameters = new BeanPropertySqlParameterSource(exampleActor); return this.namedParameterJdbcTemplate.queryForInt(sql, namedParameters); } Remember that the NamedParameterJdbcTemplate class wraps a classic JdbcTemplate template; if you need access to the wrapped JdbcTemplate instance (to access some of the functionality only present in the JdbcTemplate class), then you can use the getJdbcOperations() method to access the wrapped JdbcTemplate via the JdbcOperations interface. See also the section entitled Section 11.2.1.2, “JdbcTemplate idioms (best practices)” for some advice on how to best use the NamedParameterJdbcTemplate class in the context of an application. 11.2.3. SimpleJdbcTemplate Note The functionality offered by the SimpleJdbcTemplate is only available to you if you are using Java 5 or later. The SimpleJdbcTemplate class is a wrapper around the classic JdbcTemplate that takes advantage of Java 5 language features such as varargs and autoboxing. The SimpleJdbcTemplate class is somewhat of a sop to the syntactic-sugar-like features of Java 5, but as anyone who has developed on Java 5 and then had to move back to developing on a previous version of the JDK will know, those syntactic-sugar-like features sure are nice. The value-add of the SimpleJdbcTemplate class in the area of syntactic-sugar is best illustrated with a 'before and after' example. The following code snippet shows first some data access code using the classic JdbcTemplate, followed immediately thereafter by a code snippet that does the same job, only this time using the SimpleJdbcTemplate. // classic JdbcTemplate-style... private JdbcTemplate jdbcTemplate; public void setDataSource(DataSource dataSource) { this.jdbcTemplate = new JdbcTemplate(dataSource); } public Actor findActor(long id) { String sql = "select id, first_name, last_name from T_ACTOR where id = ?"; RowMapper mapper = new RowMapper() { Spring Framework (2.5.6) 257
  • 258. Data access using JDBC public Object mapRow(ResultSet rs, int rowNum) throws SQLException { Actor actor = new Actor(); actor.setId(rs.getLong("id")); actor.setFirstName(rs.getString("first_name")); actor.setLastName(rs.getString("last_name")); return actor; } }; // notice the cast, the wrapping up of the 'id' argument // in an array, and the boxing of the 'id' argument as a reference type return (Actor) jdbcTemplate.queryForObject(sql, mapper, new Object[] {Long.valueOf(id)}); } Here is the same method, only this time using the SimpleJdbcTemplate; notice how much 'cleaner' the code is. // SimpleJdbcTemplate-style... private SimpleJdbcTemplate simpleJdbcTemplate; public void setDataSource(DataSource dataSource) { this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource); } public Actor findActor(long id) { String sql = "select id, first_name, last_name from T_ACTOR where id = ?"; ParameterizedRowMapper<Actor> mapper = new ParameterizedRowMapper<Actor>() { // notice the return type with respect to Java 5 covariant return types public Actor mapRow(ResultSet rs, int rowNum) throws SQLException { Actor actor = new Actor(); actor.setId(rs.getLong("id")); actor.setFirstName(rs.getString("first_name")); actor.setLastName(rs.getString("last_name")); return actor; } }; return this.simpleJdbcTemplate.queryForObject(sql, mapper, id); } See also the section entitled Section 11.2.1.2, “JdbcTemplate idioms (best practices)” for some advice on how to best use the SimpleJdbcTemplate class in the context of an application. Note The SimpleJdbcTemplate class only offers a subset of the methods exposed on the JdbcTemplate class. If you need to use a method from the JdbcTemplate that is not defined on the SimpleJdbcTemplate, you can always access the underlying JdbcTemplate by calling the getJdbcOperations() method on the SimpleJdbcTemplate, which will then allow you to invoke the method that you want. The only downside is that the methods on the JdbcOperations interface are not generified, so you are back to casting and such again. 11.2.4. DataSource In order to work with data from a database, one needs to obtain a connection to the database. The way Spring does this is through a DataSource. A DataSource is part of the JDBC specification and can be seen as a generalized connection factory. It allows a container or a framework to hide connection pooling and transaction management issues from the application code. As a developer, you don not need to know any details about how to connect to the database, that is the responsibility for the administrator that sets up the datasource. You will most likely have to fulfill both roles while you are developing and testing you code though, but you will not necessarily have to know how the production data source is configured. Spring Framework (2.5.6) 258
  • 259. Data access using JDBC When using Spring's JDBC layer, you can either obtain a data source from JNDI or you can configure your own, using an implementation that is provided in the Spring distribution. The latter comes in handy for unit testing outside of a web container. We will use the DriverManagerDataSource implementation for this section but there are several additional implementations that will be covered later on. The DriverManagerDataSource works the same way that you probably are used to work when you obtain a JDBC connection. You have to specify the fully qualified class name of the JDBC driver that you are using so that the DriverManager can load the driver class. Then you have to provide a URL that varies between JDBC drivers. You have to consult the documentation for your driver for the correct value to use here. Finally you must provide a username and a password that will be used to connect to the database. Here is an example of how to configure a DriverManagerDataSource: DriverManagerDataSource dataSource = new DriverManagerDataSource(); dataSource.setDriverClassName("org.hsqldb.jdbcDriver"); dataSource.setUrl("jdbc:hsqldb:hsql://localhost:"); dataSource.setUsername("sa"); dataSource.setPassword(""); 11.2.5. SQLExceptionTranslator SQLExceptionTranslator is an interface to be implemented by classes that can translate between SQLExceptions and Spring's own data-access-strategy-agnostic org.springframework.dao.DataAccessException. Implementations can be generic (for example, using SQLState codes for JDBC) or proprietary (for example, using Oracle error codes) for greater precision. SQLErrorCodeSQLExceptionTranslator is the implementation of SQLExceptionTranslator that is used by default. This implementation uses specific vendor codes. More precise than SQLState implementation, but vendor specific. The error code translations are based on codes held in a JavaBean type class named SQLErrorCodes. This class is created and populated by an SQLErrorCodesFactory which as the name suggests is a factory for creating SQLErrorCodes based on the contents of a configuration file named 'sql-error-codes.xml'. This file is populated with vendor codes and based on the DatabaseProductName taken from the DatabaseMetaData, the codes for the current database are used. The SQLErrorCodeSQLExceptionTranslator applies the following matching rules: • Try custom translation implemented by any subclass. Note that this class is concrete and is typically used itself, in which case this rule does not apply. • Apply error code matching. Error codes are obtained from the SQLErrorCodesFactory by default. This looks up error codes from the classpath and keys into them from the database name from the database metadata. • Use the fallback translator. SQLStateSQLExceptionTranslator is the default fallback translator. SQLErrorCodeSQLExceptionTranslator can be extended the following way: public class MySQLErrorCodesTranslator extends SQLErrorCodeSQLExceptionTranslator { protected DataAccessException customTranslate(String task, String sql, SQLException sqlex) { if (sqlex.getErrorCode() == -12345) { return new DeadlockLoserDataAccessException(task, sqlex); } return null; } } In this example the specific error code '-12345' is translated and any other errors are simply left to be translated by the default translator implementation. To use this custom translator, it is necessary to pass it to the JdbcTemplate using the method setExceptionTranslator and to use this JdbcTemplate for all of the data access processing where this translator is needed. Here is an example of how this custom translator can be used: Spring Framework (2.5.6) 259
  • 260. Data access using JDBC // create a JdbcTemplate and set data source JdbcTemplate jt = new JdbcTemplate(); jt.setDataSource(dataSource); // create a custom translator and set the DataSource for the default translation lookup MySQLErrorCodesTransalator tr = new MySQLErrorCodesTransalator(); tr.setDataSource(dataSource); jt.setExceptionTranslator(tr); // use the JdbcTemplate for this SqlUpdate SqlUpdate su = new SqlUpdate(); su.setJdbcTemplate(jt); su.setSql("update orders set shipping_charge = shipping_charge * 1.05"); su.compile(); su.update(); The custom translator is passed a data source because we still want the default translation to look up the error codes in sql-error-codes.xml. 11.2.6. Executing statements To execute an SQL statement, there is very little code needed. All you need is a DataSource and a JdbcTemplate. Once you have that, you can use a number of convenience methods that are provided with the JdbcTemplate. Here is a short example showing what you need to include for a minimal but fully functional class that creates a new table. import javax.sql.DataSource; import org.springframework.jdbc.core.JdbcTemplate; public class ExecuteAStatement { private JdbcTemplate jdbcTemplate; public void setDataSource(DataSource dataSource) { this.jdbcTemplate = new JdbcTemplate(dataSource); } public void doExecute() { this.jdbcTemplate.execute("create table mytable (id integer, name varchar(100))"); } } 11.2.7. Running Queries In addition to the execute methods, there is a large number of query methods. Some of these methods are intended to be used for queries that return a single value. Maybe you want to retrieve a count or a specific value from one row. If that is the case then you can use queryForInt(..), queryForLong(..) or queryForObject(..). The latter will convert the returned JDBC Type to the Java class that is passed in as an argument. If the type conversion is invalid, then an InvalidDataAccessApiUsageException will be thrown. Here is an example that contains two query methods, one for an int and one that queries for a String. import javax.sql.DataSource; import org.springframework.jdbc.core.JdbcTemplate; public class RunAQuery { private JdbcTemplate jdbcTemplate; public void setDataSource(DataSource dataSource) { this.jdbcTemplate = new JdbcTemplate(dataSource); } public int getCount() { return this.jdbcTemplate.queryForInt("select count(*) from mytable"); } Spring Framework (2.5.6) 260
  • 261. Data access using JDBC public String getName() { return (String) this.jdbcTemplate.queryForObject("select name from mytable", String.class); } public void setDataSource(DataSource dataSource) { this.dataSource = dataSource; } } In addition to the single results query methods there are several methods that return a List with an entry for each row that the query returned. The most generic method is queryForList(..) which returns a List where each entry is a Map with each entry in the map representing the column value for that row. If we add a method to the above example to retrieve a list of all the rows, it would look like this: private JdbcTemplate jdbcTemplate; public void setDataSource(DataSource dataSource) { this.jdbcTemplate = new JdbcTemplate(dataSource); } public List getList() { return this.jdbcTemplate.queryForList("select * from mytable"); } The list returned would look something like this: [{name=Bob, id=1}, {name=Mary, id=2}] 11.2.8. Updating the database There are also a number of update methods that you can use. Find below an example where a column is updated for a certain primary key. In this example an SQL statement is used that has place holders for row parameters. Note that the parameter values are passed in as an array of objects (and thus primitives have to be wrapped in the primitive wrapper classes). import javax.sql.DataSource; import org.springframework.jdbc.core.JdbcTemplate; public class ExecuteAnUpdate { private JdbcTemplate jdbcTemplate; public void setDataSource(DataSource dataSource) { this.jdbcTemplate = new JdbcTemplate(dataSource); } public void setName(int id, String name) { this.jdbcTemplate.update( "update mytable set name = ? where id = ?", new Object[] {name, new Integer(id)}); } } 11.2.9. Retrieving auto-generated keys One of the update convenience methods provides support for acquiring the primary keys generated by the database (part of the JDBC 3.0 standard - see chapter 13.6 of the specification for details). The method takes a PreparedStatementCreator as its first argument, and this is the way the required insert statement is specified. The other argument is a KeyHolder, which will contain the generated key on successful return from the update. Spring Framework (2.5.6) 261
  • 262. Data access using JDBC There is not a standard single way to create an appropriate PreparedStatement (which explains why the method signature is the way it is). An example that works on Oracle and may not work on other platforms is: final String INSERT_SQL = "insert into my_test (name) values(?)"; final String name = "Rob"; KeyHolder keyHolder = new GeneratedKeyHolder(); jdbcTemplate.update( new PreparedStatementCreator() { public PreparedStatement createPreparedStatement(Connection connection) throws SQLException { PreparedStatement ps = connection.prepareStatement(INSERT_SQL, new String[] {"id"}); ps.setString(1, name); return ps; } }, keyHolder); // keyHolder.getKey() now contains the generated key 11.3. Controlling database connections 11.3.1. DataSourceUtils The DataSourceUtils class is a convenient and powerful helper class that provides static methods to obtain connections from JNDI and close connections if necessary. It has support for thread-bound connections, for example for use with DataSourceTransactionManager. 11.3.2. SmartDataSource The SmartDataSource interface is to be implemented by classes that can provide a connection to a relational database. Extends the DataSource interface to allow classes using it to query whether or not the connection should be closed after a given operation. This can sometimes be useful for efficiency, in the cases where one knows that one wants to reuse a connection. 11.3.3. AbstractDataSource This is an abstract base class for Spring's DataSource implementations, that takes care of the "uninteresting" glue. This is the class one would extend if one was writing one's own DataSource implementation. 11.3.4. SingleConnectionDataSource The SingleConnectionDataSource class is an implementation of the SmartDataSource interface that wraps a single Connection that is not closed after use. Obviously, this is not multi-threading capable. If client code will call close in the assumption of a pooled connection, like when using persistence tools, set suppressClose to true. This will return a close-suppressing proxy instead of the physical connection. Be aware that you will not be able to cast this to a native Oracle Connection or the like anymore. This is primarily a test class. For example, it enables easy testing of code outside an application server, in conjunction with a simple JNDI environment. In contrast to DriverManagerDataSource, it reuses the same connection all the time, avoiding excessive creation of physical connections. 11.3.5. DriverManagerDataSource Spring Framework (2.5.6) 262
  • 263. Data access using JDBC The DriverManagerDataSource class is an implementation of the standard DataSource interface that configures a plain old JDBC Driver via bean properties, and returns a new Connection every time. This is potentially useful for test or standalone environments outside of a J2EE container, either as a DataSource bean in a Spring IoC container, or in conjunction with a simple JNDI environment. Pool-assuming Connection.close() calls will simply close the connection, so any DataSource-aware persistence code should work. However, using JavaBean style connection pools such as commons-dbcp is so easy, even in a test environment, that it is almost always preferable to use such a connection pool over DriverManagerDataSource. 11.3.6. TransactionAwareDataSourceProxy TransactionAwareDataSourceProxy is a proxy for a target DataSource, which wraps that target DataSource to add awareness of Spring-managed transactions. In this respect it is similar to a transactional JNDI DataSource as provided by a J2EE server. Note It should almost never be necessary or desirable to use this class, except when existing code exists which must be called and passed a standard JDBC DataSource interface implementation. In this case, it's possible to still have this code be usable, but participating in Spring managed transactions. It is generally preferable to write your own new code using the higher level abstractions for resource management, such as JdbcTemplate or DataSourceUtils. (See the TransactionAwareDataSourceProxy Javadocs for more details.) 11.3.7. DataSourceTransactionManager The DataSourceTransactionManager class is a PlatformTransactionManager implementation for single JDBC datasources. It binds a JDBC connection from the specified data source to the currently executing thread, potentially allowing for one thread connection per data source. Application code is required to retrieve the JDBC connection via DataSourceUtils.getConnection(DataSource) instead of J2EE's standard DataSource.getConnection. This is recommended anyway, as it throws unchecked org.springframework.dao exceptions instead of checked SQLExceptions. All framework classes like JdbcTemplate use this strategy implicitly. If not used with this transaction manager, the lookup strategy behaves exactly like the common one - it can thus be used in any case. The DataSourceTransactionManager class supports custom isolation levels, and timeouts that get applied as appropriate JDBC statement query timeouts. To support the latter, application code must either use JdbcTemplate or call DataSourceUtils.applyTransactionTimeout(..) method for each created statement. This implementation can be used instead of JtaTransactionManager in the single resource case, as it does not require the container to support JTA. Switching between both is just a matter of configuration, if you stick to the required connection lookup pattern. Note that JTA does not support custom isolation levels! 11.3.8. NativeJdbcExtractor There are times when we need to access vendor specific JDBC methods that differ from the standard JDBC API. This can be problematic if we are running in an application server or with a DataSource that wraps the Connection, Statement and ResultSet objects with its own wrapper objects. To gain access to the native objects you can configure your JdbcTemplate or OracleLobHandler with a NativeJdbcExtractor. Spring Framework (2.5.6) 263
  • 264. Data access using JDBC The NativeJdbcExtractor comes in a variety of flavors to match your execution environment: • SimpleNativeJdbcExtractor • C3P0NativeJdbcExtractor • CommonsDbcpNativeJdbcExtractor • JBossNativeJdbcExtractor • WebLogicNativeJdbcExtractor • WebSphereNativeJdbcExtractor • XAPoolNativeJdbcExtractor Usually the SimpleNativeJdbcExtractor is sufficient for unwrapping a Connection object in most environments. See the Java Docs for more details. 11.4. JDBC batch operations Most JDBC drivers provide improved performance if you batch multiple calls to the same prepared statement. By grouping updates into batches you limit the number of round trips to the database. This section will cover batch processing using both the JdbcTemplate and the SimpleJdbcTemplate. 11.4.1. Batch operations with the JdbcTemplate Using the JdbcTemplate batch processing is accomplished by implementing a special interface, BatchPreparedStatementSetter, and passing that in as the second parameter in your batchUpdate method call. This interface has two methods you must implement. One is named getBatchSize and here you provide the size of the current batch. The other method is setValues and it allows you to set the values for the parameters of the prepared statement and. This method will get called the number of times that you specified in the getBatchSize call. Here is an example of this where we update the actor table based on entries in a list. The entire list is used as the batch in his example. public class JdbcActorDao implements ActorDao { private JdbcTemplate jdbcTemplate; public void setDataSource(DataSource dataSource) { this.jdbcTemplate = new JdbcTemplate(dataSource); } public int[] batchUpdate(final List actors) { int[] updateCounts = jdbcTemplate.batchUpdate( "update t_actor set first_name = ?, last_name = ? where id = ?", new BatchPreparedStatementSetter() { public void setValues(PreparedStatement ps, int i) throws SQLException { ps.setString(1, ((Actor)actors.get(i)).getFirstName()); ps.setString(2, ((Actor)actors.get(i)).getLastName()); ps.setLong(3, ((Actor)actors.get(i)).getId().longValue()); } public int getBatchSize() { return actors.size(); } } ); return updateCounts; } Spring Framework (2.5.6) 264
  • 265. Data access using JDBC // ... additional methods } If you are processing stream of updates or reading from a file then you might have a preferred batch size, but the last batch might not have that number of entries. In this case you can use the InterruptibleBatchPreparedStatementSetter interface which allows you to interrupt a batch once the input source is exhausted. The isBatchExhausted method allows you to signal the end of the batch. 11.4.2. Batch operations with the SimpleJdbcTemplate The SimpleJdbcTemplate provides an alternate way of providing the batch update. Instead of implementing a special batch interface, you simply provide all parameter values in the call and the framework will loop over these values and use an internal prepared statement setter. The API varies depending on whether you use named parameters or not. For the named parameters you provide an array of SqlParameterSource, one entry for each member of the batch. You can use the SqlParameterSource.createBatch method to create this array, passing in either an array of JavaBeans or an array of Maps containing the parameter values. This example shows a batch update using named parameters: public class JdbcActorDao implements ActorDao { private SimpleJdbcTemplate simpleJdbcTemplate; public void setDataSource(DataSource dataSource) { this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource); } public int[] batchUpdate(final List<Actor> actors) { SqlParameterSource[] batch = SqlParameterSourceUtils.createBatch(actors.toArray()); int[] updateCounts = simpleJdbcTemplate.batchUpdate( "update t_actor set first_name = :firstName, last_name = :lastName where id = :id", batch); return updateCounts; } // ... additional methods } For an SQL statement using the classic "?" place holders you pass in a List containing an object array with the update values. This object array must have one entry for each placeholder in the SQL statement and they must be in the same order as they are defined in the SQL statement. The same example using classic JDBC "?" place holders: public class JdbcActorDao implements ActorDao { private SimpleJdbcTemplate simpleJdbcTemplate; public void setDataSource(DataSource dataSource) { this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource); } public int[] batchUpdate(final List<Actor> actors) { List<Object[]> batch = new ArrayList<Object[]>(); for (Actor actor : actors) { Object[] values = new Object[] { actor.getFirstName(), actor.getLastName(), actor.getId()}; batch.add(values); } int[] updateCounts = simpleJdbcTemplate.batchUpdate( "update t_actor set first_name = ?, last_name = ? where id = ?", batch); return updateCounts; Spring Framework (2.5.6) 265
  • 266. Data access using JDBC } // ... additional methods } All batch update methods return an int array containing the number of affected rows for each batch entry. This count is reported by the JDBC driver and it's not always available in which case the JDBC driver simply returns a -2 value. 11.5. Simplifying JDBC operations with the SimpleJdbc classes The SimpleJdbcInsert and SimpleJdbcCall classes provide simplified configuration by taking advantage of database metadata that can be retrieved via the JDBC driver. This means there is less to configure up front, although you can override or turn off the metadata processing if you prefer to provide all the details in your code. 11.5.1. Inserting data using SimpleJdbcInsert Let's start by looking at the SimpleJdbcInsert class first. We will use the minimal amount of configuration options to start with. The SimpleJdbcInsert should be instantiated in the data access layer's initialization method. For this example, the initializing method is the setDataSource method. There is no need to subclass the SimpleJdbcInsert class, just create a new instance and set the table name using the withTableName method. Configuration methods for this class follows the "fluid" style returning the instance of the SimpleJdbcInsert which allows you to chain all configuration methods. In this case there is only one configuration method used but we will see examples of multiple ones soon. public class JdbcActorDao implements ActorDao { private SimpleJdbcTemplate simpleJdbcTemplate; private SimpleJdbcInsert insertActor; public void setDataSource(DataSource dataSource) { this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource); this.insertActor = new SimpleJdbcInsert(dataSource).withTableName("t_actor"); } public void add(Actor actor) { Map<String, Object> parameters = new HashMap<String, Object>(3); parameters.put("id", actor.getId()); parameters.put("first_name", actor.getFirstName()); parameters.put("last_name", actor.getLastName()); insertActor.execute(parameters); } // ... additional methods } The execute method used here takes a plain java.utils.Map as its only parameter. The important thing to note here is that the keys used for the Map must match the column names of the table as defined in the database. This is because we read the metadata in order to construct the actual insert statement. 11.5.2. Retrieving auto-generated keys using SimpleJdbcInsert Next we'll look at the same insert, but instead of passing in the id we will retrieve the auto-generated key and set it on the new Actor object. When we create the SimpleJdbcInsert, in addition to specifying the table name, Spring Framework (2.5.6) 266
  • 267. Data access using JDBC we specify the name of the generated key column using the usingGeneratedKeyColumns method. public class JdbcActorDao implements ActorDao { private SimpleJdbcTemplate simpleJdbcTemplate; private SimpleJdbcInsert insertActor; public void setDataSource(DataSource dataSource) { this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource); this.insertActor = new SimpleJdbcInsert(dataSource) .withTableName("t_actor") .usingGeneratedKeyColumns("id"); } public void add(Actor actor) { Map<String, Object> parameters = new HashMap<String, Object>(2); parameters.put("first_name", actor.getFirstName()); parameters.put("last_name", actor.getLastName()); Number newId = insertActor.executeAndReturnKey(parameters); actor.setId(newId.longValue()); } // ... additional methods } Here we can see the main difference when executing the insert is that we don't add the id to the Map and we call the executeReturningKey method. This returns a java.lang.Number object that we can use to create an instance of the numerical type that is used in our domain class. It's important to note that we can't rely on all databases to return a specific Java class here, java.lang.Number is the base class that we can rely on. If you have multiple auto-generated columns or the generated values are non-numeric then you can use a KeyHolder that is returned from the executeReturningKeyHolder method. 11.5.3. Specifying the columns to use for a SimpleJdbcInsert It's possible to limit the columns used for the insert by specifying a list of column names to be used. This is accomplished using the usingColumns method. public class JdbcActorDao implements ActorDao { private SimpleJdbcTemplate simpleJdbcTemplate; private SimpleJdbcInsert insertActor; public void setDataSource(DataSource dataSource) { this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource); this.insertActor = new SimpleJdbcInsert(dataSource) .withTableName("t_actor") .usingColumns("first_name", "last_name") .usingGeneratedKeyColumns("id"); } public void add(Actor actor) { Map<String, Object> parameters = new HashMap<String, Object>(2); parameters.put("first_name", actor.getFirstName()); parameters.put("last_name", actor.getLastName()); Number newId = insertActor.executeAndReturnKey(parameters); actor.setId(newId.longValue()); } // ... additional methods } The execution of the insert is the same as if we had relied on the metadata for determining what columns to use. 11.5.4. Using SqlParameterSource to provide parameter values Using a Map to provide parameter values works fine, but it's not the most convenient class to use. Spring Spring Framework (2.5.6) 267
  • 268. Data access using JDBC provides a couple of implementations of the SqlParameterSource interface that can be used instead. The first one we'll look at is BeanPropertySqlParameterSource which is a very convenient class as long as you have a JavaBean compliant class that contains your values. It will use the corresponding getter method to extract the parameter values. Here is an example: public class JdbcActorDao implements ActorDao { private SimpleJdbcTemplate simpleJdbcTemplate; private SimpleJdbcInsert insertActor; public void setDataSource(DataSource dataSource) { this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource); this.insertActor = new SimpleJdbcInsert(dataSource) .withTableName("t_actor") .usingGeneratedKeyColumns("id"); } public void add(Actor actor) { SqlParameterSource parameters = new BeanPropertySqlParameterSource(actor); Number newId = insertActor.executeAndReturnKey(parameters); actor.setId(newId.longValue()); } // ... additional methods } Another option is the MapSqlParameterSource that resembles a Map but provides a more convenient addValue method that can be chained. public class JdbcActorDao implements ActorDao { private SimpleJdbcTemplate simpleJdbcTemplate; private SimpleJdbcInsert insertActor; public void setDataSource(DataSource dataSource) { this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource); this.insertActor = new SimpleJdbcInsert(dataSource) .withTableName("t_actor") .usingGeneratedKeyColumns("id"); } public void add(Actor actor) { SqlParameterSource parameters = new MapSqlParameterSource() .addValue("first_name", actor.getFirstName()) .addValue("last_name", actor.getLastName()); Number newId = insertActor.executeAndReturnKey(parameters); actor.setId(newId.longValue()); } // ... additional methods } As you can see, the configuration is the same, it;s just the executing code that has to change to use these alternative input classes. 11.5.5. Calling a stored procedure using SimpleJdbcCall Let's now turn our attention to calling stored procedures using the SimpleJdbcCall class. This class is designed to make it as simple as possible to call a stored procedure. It takes advantage of metadata present in the database to look up names of in and out parameters. This means that you don't have to explicitly declare parameters. You can of course still declare them if you prefer to do that or if you have parameters that don't have an automatic mapping to a Java class like ARRAY or STRUCT parameters. In our first example we will look at a plain vanilla procedure that only returns scalar values in form of VARCHAR and DATE. I have added a birthDate property to the Actor class to get some variety in terms of return values. The example procedure Spring Framework (2.5.6) 268
  • 269. Data access using JDBC reads a specified actor entry and returns first_name, last_name, and birth_date columns in the form of out parameters. Here is the source for the procedure as it would look when using MySQL as the database: CREATE PROCEDURE read_actor ( IN in_id INTEGER, OUT out_first_name VARCHAR(100), OUT out_last_name VARCHAR(100), OUT out_birth_date DATE) BEGIN SELECT first_name, last_name, birth_date INTO out_first_name, out_last_name, out_birth_date FROM t_actor where id = in_id; END; As you can see there are four parameters. One is an in parameter "in_id" containing the id of the Actor we are looking up. The remaining parameters are out parameters and they will be used to return the data read from the table. The SimpleJdbcCall is declared in a similar manner to the SimpleJdbcInsert, no need to subclass and we declare it in the initialization method. For this example, all we need to specify is the name of the procedure. public class JdbcActorDao implements ActorDao { private SimpleJdbcTemplate simpleJdbcTemplate; private SimpleJdbcCall procReadActor; public void setDataSource(DataSource dataSource) { this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource); this.procReadActor = new SimpleJdbcCall(dataSource) .withProcedureName("read_actor"); } public Actor readActor(Long id) { SqlParameterSource in = new MapSqlParameterSource() .addValue("in_id", id); Map out = procReadActor.execute(in); Actor actor = new Actor(); actor.setId(id); actor.setFirstName((String) out.get("out_first_name")); actor.setLastName((String) out.get("out_last_name")); actor.setBirthDate((Date) out.get("out_birth_date")); return actor; } // ... additional methods } The execution of the call involves creating an SqlParameterSource containing the in parameter. It's important to match the name of the parameter declared in the stored procedure. The case doesn't have to match since we use metadata to determine how database objects should be referred to - what you specify in your source for the stored procedure is not necessarily the way it is stored in the database, some databases transform names to all upper case while others use lower case or the case as specified. The execute method takes the in parameters and returns a Map containing any out parameters keyed by the name as specified in the stored procedure. In this case they are out_first_name, out_last_name and out_birth_date. The last part of the execute method just creates an Actor instance to use to return the data retrieved. Again, it's important to match the names of the out parameters here. Also, the case used for the names of the out parameters stored in the results map are as they were defined in the database. You will either have to do a case-insensitive lookup or instruct Spring to use a CaseInsensitiveMap from the Jakarta Commons project. The way you do that is by creating your own JdbcTemplate and setting the setResultsMapCaseInsensitive property to true. Then you pass this customized JdbcTemplate instance into the constructor of your SimpleJdbcCall. You also have to include the commons-collections.jar on your classpath for this to work. Spring Framework (2.5.6) 269
  • 270. Data access using JDBC Here is an example of this configuration: public class JdbcActorDao implements ActorDao { private SimpleJdbcCall procReadActor; public void setDataSource(DataSource dataSource) { JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource); jdbcTemplate.setResultsMapCaseInsensitive(true); this.procReadActor = new SimpleJdbcCall(jdbcTemplate) .withProcedureName("read_actor"); } // ... additional methods } By doing this, you don't have to worry about the case used for the names of your returned out parameters. 11.5.6. Declaring parameters to use for a SimpleJdbcCall We have seen how the parameters are deduced based on metadata, but you can declare then explicitly if you wish. This is done when the SimpleJdbcCall is created and configured using the declareParameters method that takes a variable number of SqlParameter objects as input. See the next section for details on how to define an SqlParameter. We can opt to declare one, some or all of the parameters explicitly. The parameter metadata is still being used. By calling the method withoutProcedureColumnMetaDataAccess we can specify that we would like to bypass any processing of the metadata lookups for potential parameters and only use the declared ones. Another situation that can arise is that one or more in parameters have default values and we would like to leave them out of the call. To do that we will just call the useInParameterNames to specify the list of in parameter names to include. This is what a fully declared procedure call declaration of our earlier example would look like: public class JdbcActorDao implements ActorDao { private SimpleJdbcCall procReadActor; public void setDataSource(DataSource dataSource) { JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource); jdbcTemplate.setResultsMapCaseInsensitive(true); this.procReadActor = new SimpleJdbcCall(jdbcTemplate) .withProcedureName("read_actor") .withoutProcedureColumnMetaDataAccess() .useInParameterNames("in_id") .declareParameters( new SqlParameter("in_id", Types.NUMERIC), new SqlOutParameter("out_first_name", Types.VARCHAR), new SqlOutParameter("out_last_name", Types.VARCHAR), new SqlOutParameter("out_birth_date", Types.DATE) ); } // ... additional methods } The execution and end results are the same, we are just specifying all the details explicitly rather than relying on metadata. This will be necessary if the database we use is not part of the supported databases. Currently we support metadata lookup of stored procedure calls for the following databases: Apache Derby, DB2, MySQL, Microsoft SQL Server, Oracle and Sybase. We also support metadata lookup of stored functions for: MySQL, Microsoft SQL Server and Oracle. Spring Framework (2.5.6) 270
  • 271. Data access using JDBC 11.5.7. How to define SqlParameters To define a parameter to be used for the SimpleJdbc classes, and also for the RDBMS operations classes covered in the following section, you use an SqlParameter or one of its subclasses. You typically specify the parameter name and SQL type in the constructor. The SQL type is specified using the java.sql.Types constants. We have already seen declarations like: new SqlParameter("in_id", Types.NUMERIC), new SqlOutParameter("out_first_name", Types.VARCHAR), The first line with the SqlParameter declares an in parameter. In parameters can be used for both stored procedure calls and for queries using the SqlQuery and its subclasses covered in the following section. The second line with the SqlOutParameter declares an out parameter to be used in a stored procedure call. There is also an SqlInOutParameter for inout parameters, parameters that provide an in value to the procedure and that also return a value Note Only parameters declared as SqlParameter and SqlInOutParameter will be used to provide input values. This is different from the StoredProcedure class which for backwards compatibility reasons allows input values to be provided for parameters declared as SqlOutParameter. In addition to the name and the SQL type you can specify additional options. For in parameters you can specify a scale for numeric data or a type name for custom database types. For out parameters you can provide a RowMapper to handle mapping of rows returned from a REF cursor. Another option is to specify an SqlReturnType that provides and opportunity to define customized handling of the return values. 11.5.8. Calling a stored function using SimpleJdbcCall Calling a stored function is done almost exactly the same way as calling a stored procedure. The only difference is that you need to provide a function name rather than a procedure name. This is done by using the withFunctionName method. Using this method indicates that your call is to a function and the corresponding call string for a function call will be generated. There is also a specialized execute call executeFunction that will return the function return value as an object of a specified type. This way you don't have to retrieve the return value from the results map. A similar convenience method named executeObject is also available for stored procedures that only have one out parameter. The following example is based on a stored function named get_actor_name that returns an actor's full name. Here is the MySQL source for this function: CREATE FUNCTION get_actor_name (in_id INTEGER) RETURNS VARCHAR(200) READS SQL DATA BEGIN DECLARE out_name VARCHAR(200); SELECT concat(first_name, ' ', last_name) INTO out_name FROM t_actor where id = in_id; RETURN out_name; END; To call this function we again create a SimpleJdbcCall in the initialization method. public class JdbcActorDao implements ActorDao { private SimpleJdbcTemplate simpleJdbcTemplate; Spring Framework (2.5.6) 271
  • 272. Data access using JDBC private SimpleJdbcCall funcGetActorName; public void setDataSource(DataSource dataSource) { this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource); JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource); jdbcTemplate.setResultsMapCaseInsensitive(true); this.funcGetActorName = new SimpleJdbcCall(jdbcTemplate) .withFunctionName("get_actor_name"); } public String getActorName(Long id) { SqlParameterSource in = new MapSqlParameterSource() .addValue("in_id", id); String name = funcGetActorName.executeFunction(String.class, in); return name; } // ... additional methods } The execute method used returns a String containing the return value from the function call. 11.5.9. Returning ResultSet/REF Cursor from a SimpleJdbcCall Calling a stored procedure or function that returns a result set has always been a bit tricky. Some databases return result sets during the JDBC results processing while others require an explicitly registered out parameter of a specific type. Both approaches still needs some additional processing to loop over the result set and process the returned rows. With the SimpleJdbcCall you use the returningResultSet method and declare a RowMapper implementation to be used for a specific parameter. In the case where the result set is returned during the results processing, there are no names defined, so the returned results will have to match the order you declare the RowMapper implementations. The name specified will still be used to store the processed list of results in the results map returned from the execute statement. For this example we will use a stored procedure that takes no in parameters and returns all rows from the t_actor table. Here is the MySQL source for this procedure: CREATE PROCEDURE read_all_actors() BEGIN SELECT a.id, a.first_name, a.last_name, a.birth_date FROM t_actor a; END; In order to call this procedure we need to declare the RowMapper to be used. Since the class we want to map to follows the JavaBean rules, we can use a ParameterizedBeanPropertyRowMapper that is created by passing in the required class to map to in the newInstance method. public class JdbcActorDao implements ActorDao { private SimpleJdbcTemplate simpleJdbcTemplate; private SimpleJdbcCall procReadAllActors; public void setDataSource(DataSource dataSource) { this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource); JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource); jdbcTemplate.setResultsMapCaseInsensitive(true); this.procReadAllActors = new SimpleJdbcCall(jdbcTemplate) .withProcedureName("read_all_actors") .returningResultSet("actors", ParameterizedBeanPropertyRowMapper.newInstance(Actor.class)); } public List getActorsList() { Map m = procReadAllActors.execute(new HashMap<String, Object>(0)); return (List) m.get("actors"); Spring Framework (2.5.6) 272
  • 273. Data access using JDBC } // ... additional methods } The execute call passes in an empty Map since this call doesn't take any parameters. The list of Actors is then retrieved from the results map and returned to the caller. 11.6. Modeling JDBC operations as Java objects The org.springframework.jdbc.object package contains classes that allow one to access the database in a more object-oriented manner. By way of an example, one can execute queries and get the results back as a list containing business objects with the relational column data mapped to the properties of the business object. One can also execute stored procedures and run update, delete and insert statements. Note There is a view borne from experience acquired in the field amongst some of the Spring developers that the various RDBMS operation classes described below (with the exception of the StoredProcedure class) can often be replaced with straight JdbcTemplate calls... often it is simpler to use and plain easier to read a DAO method that simply calls a method on a JdbcTemplate direct (as opposed to encapsulating a query as a full-blown class). It must be stressed however that this is just a view... if you feel that you are getting measurable value from using the RDBMS operation classes, feel free to continue using these classes. 11.6.1. SqlQuery SqlQuery is a reusable, threadsafe class that encapsulates an SQL query. Subclasses must implement the newRowMapper(..) method to provide a RowMapper instance that can create one object per row obtained from iterating over the ResultSet that is created during the execution of the query. The SqlQuery class is rarely used directly since the MappingSqlQuery subclass provides a much more convenient implementation for mapping rows to Java classes. Other implementations that extend SqlQuery are MappingSqlQueryWithParameters and UpdatableSqlQuery. 11.6.2. MappingSqlQuery MappingSqlQuery is a reusable query in which concrete subclasses must implement the abstract mapRow(..) method to convert each row of the supplied ResultSet into an object. Find below a brief example of a custom query that maps the data from the customer relation to an instance of the Customer class. private class CustomerMappingQuery extends MappingSqlQuery { public CustomerMappingQuery(DataSource ds) { super(ds, "SELECT id, name FROM customer WHERE id = ?"); super.declareParameter(new SqlParameter("id", Types.INTEGER)); compile(); } public Object mapRow(ResultSet rs, int rowNumber) throws SQLException { Customer cust = new Customer(); cust.setId((Integer) rs.getObject("id")); cust.setName(rs.getString("name")); return cust; } Spring Framework (2.5.6) 273
  • 274. Data access using JDBC } We provide a constructor for this customer query that takes the DataSource as the only parameter. In this constructor we call the constructor on the superclass with the DataSource and the SQL that should be executed to retrieve the rows for this query. This SQL will be used to create a PreparedStatement so it may contain place holders for any parameters to be passed in during execution. Each parameter must be declared using the declareParameter method passing in an SqlParameter. The SqlParameter takes a name and the JDBC type as defined in java.sql.Types. After all parameters have been defined we call the compile() method so the statement can be prepared and later be executed. public Customer getCustomer(Integer id) { CustomerMappingQuery custQry = new CustomerMappingQuery(dataSource); Object[] parms = new Object[1]; parms[0] = id; List customers = custQry.execute(parms); if (customers.size() > 0) { return (Customer) customers.get(0); } else { return null; } } The method in this example retrieves the customer with the id that is passed in as the only parameter. After creating an instance of the CustomerMappingQuery class we create an array of objects that will contain all parameters that are passed in. In this case there is only one parameter and it is passed in as an Integer. Now we are ready to execute the query using this array of parameters and we get a List that contains a Customer object for each row that was returned for our query. In this case it will only be one entry if there was a match. 11.6.3. SqlUpdate The SqlUpdate class encapsulates an SQL update. Like a query, an update object is reusable, and like all RdbmsOperation classes, an update can have parameters and is defined in SQL. This class provides a number of update(..) methods analogous to the execute(..) methods of query objects. This class is concrete. Although it can be subclassed (for example to add a custom update method) it can easily be parameterized by setting SQL and declaring parameters. import java.sql.Types; import javax.sql.DataSource; import org.springframework.jdbc.core.SqlParameter; import org.springframework.jdbc.object.SqlUpdate; public class UpdateCreditRating extends SqlUpdate { public UpdateCreditRating(DataSource ds) { setDataSource(ds); setSql("update customer set credit_rating = ? where id = ?"); declareParameter(new SqlParameter(Types.NUMERIC)); declareParameter(new SqlParameter(Types.NUMERIC)); compile(); } /** * @param id for the Customer to be updated * @param rating the new value for credit rating * @return number of rows updated */ public int run(int id, int rating) { Object[] params = new Object[] { new Integer(rating), new Integer(id)}; Spring Framework (2.5.6) 274
  • 275. Data access using JDBC return update(params); } } 11.6.4. StoredProcedure The StoredProcedure class is a superclass for object abstractions of RDBMS stored procedures. This class is abstract, and its various execute(..) methods have protected access, preventing use other than through a subclass that offers tighter typing. The inherited sql property will be the name of the stored procedure in the RDBMS. To define a parameter to be used for the StoredProcedure classe, you use an SqlParameter or one of its subclasses. You must specify the parameter name and SQL type in the constructor. The SQL type is specified using the java.sql.Types constants. We have already seen declarations like: new SqlParameter("in_id", Types.NUMERIC), new SqlOutParameter("out_first_name", Types.VARCHAR), The first line with the SqlParameter declares an in parameter. In parameters can be used for both stored procedure calls and for queries using the SqlQuery and its subclasses covered in the following section. The second line with the SqlOutParameter declares an out parameter to be used in the stored procedure call. There is also an SqlInOutParameter for inout parameters, parameters that provide an in value to the procedure and that also return a value Note Parameters declared as SqlParameter and SqlInOutParameter will always be used to provide input values. In addition to this any parameter declared as SqlOutParameter where an non-null input value is provided will also be used as an input paraneter. In addition to the name and the SQL type you can specify additional options. For in parameters you can specify a scale for numeric data or a type name for custom database types. For out parameters you can provide a RowMapper to handle mapping of rows returned from a REF cursor. Another option is to specify an SqlReturnType that provides and opportunity to define customized handling of the return values. Here is an example of a program that calls a function, sysdate(), that comes with any Oracle database. To use the stored procedure functionality one has to create a class that extends StoredProcedure. There are no input parameters, but there is an output parameter that is declared as a date type using the class SqlOutParameter. The execute() method returns a map with an entry for each declared output parameter using the parameter name as the key. import java.sql.Types; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import javax.sql.DataSource; import org.springframework.jdbc.core.SqlOutParameter; import org.springframework.jdbc.datasource.*; import org.springframework.jdbc.object.StoredProcedure; public class TestStoredProcedure { Spring Framework (2.5.6) 275
  • 276. Data access using JDBC public static void main(String[] args) { TestStoredProcedure t = new TestStoredProcedure(); t.test(); System.out.println("Done!"); } void test() { DriverManagerDataSource ds = new DriverManagerDataSource(); ds.setDriverClassName("oracle.jdbc.OracleDriver"); ds.setUrl("jdbc:oracle:thin:@localhost:1521:mydb"); ds.setUsername("scott"); ds.setPassword("tiger"); MyStoredProcedure sproc = new MyStoredProcedure(ds); Map results = sproc.execute(); printMap(results); } private class MyStoredProcedure extends StoredProcedure { private static final String SQL = "sysdate"; public MyStoredProcedure(DataSource ds) { setDataSource(ds); setFunction(true); setSql(SQL); declareParameter(new SqlOutParameter("date", Types.DATE)); compile(); } public Map execute() { // the 'sysdate' sproc has no input parameters, so an empty Map is supplied... return execute(new HashMap()); } } private static void printMap(Map results) { for (Iterator it = results.entrySet().iterator(); it.hasNext(); ) { System.out.println(it.next()); } } } Find below an example of a StoredProcedure that has two output parameters (in this case Oracle REF cursors). import oracle.jdbc.driver.OracleTypes; import org.springframework.jdbc.core.SqlOutParameter; import org.springframework.jdbc.object.StoredProcedure; import javax.sql.DataSource; import java.util.HashMap; import java.util.Map; public class TitlesAndGenresStoredProcedure extends StoredProcedure { private static final String SPROC_NAME = "AllTitlesAndGenres"; public TitlesAndGenresStoredProcedure(DataSource dataSource) { super(dataSource, SPROC_NAME); declareParameter(new SqlOutParameter("titles", OracleTypes.CURSOR, new TitleMapper())); declareParameter(new SqlOutParameter("genres", OracleTypes.CURSOR, new GenreMapper())); compile(); } public Map execute() { // again, this sproc has no input parameters, so an empty Map is supplied... return super.execute(new HashMap()); } } Notice how the overloaded variants of the declareParameter(..) method that have been used in the TitlesAndGenresStoredProcedure constructor are passed RowMapper implementation instances; this is a very Spring Framework (2.5.6) 276
  • 277. Data access using JDBC convenient and powerful way to reuse existing functionality. (The code for the two RowMapper implementations is provided below in the interest of completeness.) Firstly the TitleMapper class, which simply maps a ResultSet to a Title domain object for each row in the supplied ResultSet. import com.foo.sprocs.domain.Title; import org.springframework.jdbc.core.RowMapper; import java.sql.ResultSet; import java.sql.SQLException; public final class TitleMapper implements RowMapper { public Object mapRow(ResultSet rs, int rowNum) throws SQLException { Title title = new Title(); title.setId(rs.getLong("id")); title.setName(rs.getString("name")); return title; } } Secondly, the GenreMapper class, which again simply maps a ResultSet to a Genre domain object for each row in the supplied ResultSet. import org.springframework.jdbc.core.RowMapper; import java.sql.ResultSet; import java.sql.SQLException; import com.foo.domain.Genre; public final class GenreMapper implements RowMapper { public Object mapRow(ResultSet rs, int rowNum) throws SQLException { return new Genre(rs.getString("name")); } } If one needs to pass parameters to a stored procedure (that is the stored procedure has been declared as having one or more input parameters in its definition in the RDBMS), one would code a strongly typed execute(..) method which would delegate to the superclass' (untyped) execute(Map parameters) (which has protected access); for example: import oracle.jdbc.driver.OracleTypes; import org.springframework.jdbc.core.SqlOutParameter; import org.springframework.jdbc.object.StoredProcedure; import javax.sql.DataSource; import java.util.HashMap; import java.util.Map; public class TitlesAfterDateStoredProcedure extends StoredProcedure { private static final String SPROC_NAME = "TitlesAfterDate"; private static final String CUTOFF_DATE_PARAM = "cutoffDate"; public TitlesAfterDateStoredProcedure(DataSource dataSource) { super(dataSource, SPROC_NAME); declareParameter(new SqlParameter(CUTOFF_DATE_PARAM, Types.DATE); declareParameter(new SqlOutParameter("titles", OracleTypes.CURSOR, new TitleMapper())); compile(); } public Map execute(Date cutoffDate) { Map inputs = new HashMap(); inputs.put(CUTOFF_DATE_PARAM, cutoffDate); return super.execute(inputs); } } Spring Framework (2.5.6) 277
  • 278. Data access using JDBC 11.6.5. SqlFunction The SqlFunction RDBMS operation class encapsulates an SQL "function" wrapper for a query that returns a single row of results. The default behavior is to return an int, but that can be overridden by using the methods with an extra return type parameter. This is similar to using the queryForXxx methods of the JdbcTemplate. The advantage with SqlFunction is that you don't have to create the JdbcTemplate, it is done behind the scenes. This class is intended to use to call SQL functions that return a single result using a query like "select user()" or "select sysdate from dual". It is not intended for calling more complex stored functions or for using a CallableStatement to invoke a stored procedure or stored function. (Use the StoredProcedure or SqlCall classes for this type of processing). SqlFunction is a concrete class, and there is typically no need to subclass it. Code using this package can create an object of this type, declaring SQL and parameters, and then invoke the appropriate run method repeatedly to execute the function. Here is an example of retrieving the count of rows from a table: public int countRows() { SqlFunction sf = new SqlFunction(dataSource, "select count(*) from mytable"); sf.compile(); return sf.run(); } 11.7. Common issues with parameter and data value handling There are some issues involving parameters and data values that are common across all the different approaches provided by the Spring JDBC Framework. 11.7.1. Providing SQL type information for parameters Most of the time Spring will assume the SQL type of the parameters based on the type of parameter passed in. It is possible to explicitly provide the SQL type to be used when setting parameter values. This is sometimes necessary to correctly set NULL values. There are a few different ways this can be accomplished: • Many of the update and query methods of the JdbcTemplate take an additional parameter in the form of an int array. This array should contain the SQL type using constant values from the java.sql.Types class. There must be one entry for each parameter. • You can wrap the parameter value that needs this additional information using the SqlParameterValue class. Create a new instance for each value and pass in the SQL type and parameter value in the constructor. You can also provide an optional scale parameter for numeric values. • For methods working with named parameters, you can use the SqlParameterSource classes BeanPropertySqlParameterSource or MapSqlParameterSource. They both have methods for registering the SQL type for any of the named parameter values. 11.7.2. Handling BLOB and CLOB objects Spring Framework (2.5.6) 278
  • 279. Data access using JDBC You can store images and other binary objects as well and large chunks of text. These large object are called BLOB for binary data and CLOB for character data. Spring lets you handle these large objects using the JdbcTemplate directly and also when using the higher abstractions provided by RDBMS Objects and the SimpleJdbc classes. All of these approaches use an implementation of the LobHandler interface for the actual management of the LOB data. The LobHandler provides access to a LobCreator, via the getLobCreator method, for creating new LOB objects to be inserted. The LobCreator/LobHandler provides the following support for LOB in- and output: • BLOB • byte[] – getBlobAsBytes and setBlobAsBytes • InputStream – getBlobAsBinaryStream and setBlobAsBinaryStream • CLOB • String – getClobAsString and setClobAsString • InputStream – getClobAsAsciiStream and setClobAsAsciiStream • Reader – getClobAsCharacterStream and setClobAsCharacterStream We will now show an example of how to create and insert a BLOB. We will later see how to read it back from the database. This example uses a JdbcTemplate and an implementation of the AbstractLobCreatingPreparedStatementCallback. There is one method that must be implemented and it is "setValues". In this method you will be provided with a LobCreator that can be used to set the values for the LOB columns in your SQL insert statement. We are assuming that we have a variable named 'lobHandler' that already is set to an instance of a DefaultLobHandler. This is typically done using dependency injection. final File blobIn = new File("spring2004.jpg"); final InputStream blobIs = new FileInputStream(blobIn); final File clobIn = new File("large.txt"); final InputStream clobIs = new FileInputStream(clobIn); final InputStreamReader clobReader = new InputStreamReader(clobIs); jdbcTemplate.execute( "INSERT INTO lob_table (id, a_clob, a_blob) VALUES (?, ?, ?)", new AbstractLobCreatingPreparedStatementCallback(lobhandler) { ‚ protected void setValues(PreparedStatement ps, LobCreator lobCreator) throws SQLException { ps.setLong(1, 1L); lobCreator.setClobAsCharacterStream(ps, 2, clobReader, (int)clobIn.length()); ƒ lobCreator.setBlobAsBinaryStream(ps, 3, blobIs, (int)blobIn.length()); „ } } ); blobIs.close(); clobReader.close(); ‚ Here we use the lobHandler that in this example is a plain DefaultLobHandler ƒ Using the method setClobAsCharacterStream we pass in the contents of the CLOB „ Using the method setBlobAsBinartStream we pass in the contents of the BLOB Now it's time to read the LOB data from the database. Again, we use a JdbcTempate and we have the same Spring Framework (2.5.6) 279
  • 280. Data access using JDBC instance variable 'lobHandler' with a reference to a DefaultLobHandler. List l = jdbcTemplate.query("select id, a_clob, a_blob from lob_table", new RowMapper() { public Object mapRow(ResultSet rs, int i) throws SQLException { Map results = new HashMap(); String clobText = lobHandler.getClobAsString(rs, "a_clob"); ‚ results.put("CLOB", clobText); byte[] blobBytes = lobHandler.getBlobAsBytes(rs, "a_blob"); ƒ results.put("BLOB", blobBytes); return results; } }); ƒ Using the method getClobAsString we retrieve the contents of the CLOB „ Using the method getBlobAsBytes we retrieve the contents of the BLOB 11.7.3. Passing in lists of values for IN clause The SQL standard allows for selecting rows based on an expression that includes a variable list of values. A typical example would be "select * from T_ACTOR where id in (1, 2, 3)". This variable list is not directly supported for prepared statements by the JDBC standard - there is no way of declaring a variable number of place holders. You would have to either have a number of variations with the desired number of place holders prepared or you would have to dynamically generate the SQL string once you know how many place holders are required. The named parameter support provided in the NamedParameterJdbcTemplate and SimpleJdbcTemplate takes the latter approach. When you pass in the values you should pass them in as a java.util.List of primitive objects. This list will be used to insert the required place holders and pass in the values during the statement execution. Note You need to be careful when passing in a large number of values. The JDBC standard doesn't guarantee that you can use more than 100 values for an IN expression list. Various databases exceed this number, but they usually have a hard limit for how many values are allowed. Oracle's limit for instance is 1000. In addition to the primitive values in the value list, you can create a java.util.List of object arrays. This would support a case where there are multiple expressions defined for the IN clause like "select * from T_ACTOR where (id, last_name) in ((1, 'Johnson'), (2, 'Harrop'))". This of course requires that your database supports this syntax. 11.7.4. Handling complex types for stored procedure calls When calling stored procedures it's sometimes possible to use complex types specific to the database. To accommodate these types Spring provides a SqlReturnType for handling them when they are returned from the stored procedure call and SqlTypeValue when they are passed in as a parameter to the stored procedure. Here is an example of returning the value of an Oracle STRUCT object of the user declared type "ITEM_TYPE". The SqlReturnType interface has a single method named "getTypeValue" that must be implemented. This interface is used as part of the declaration of an SqlOutParameter. declareParameter(new SqlOutParameter("item", OracleTypes.STRUCT, "ITEM_TYPE", new SqlReturnType() { public Object getTypeValue(CallableStatement cs, int colIndx, int sqlType, String typeName) Spring Framework (2.5.6) 280
  • 281. Data access using JDBC throws SQLException { STRUCT struct = (STRUCT)cs.getObject(colIndx); Object[] attr = struct.getAttributes(); TestItem item = new TestItem(); item.setId(((Number) attr[0]).longValue()); item.setDescription((String)attr[1]); item.setExpirationDate((java.util.Date)attr[2]); return item; } })); Going from Java to the database and passing in the value of a TestItem into a stored procedure is done using the SqlTypeValue. The SqlTypeValue interface has a single method named "createTypeValue" that must be implemented. The active connection is passed in and can be used to create database specific objects like StructDescriptors or ArrayDescriptors SqlTypeValue value = new AbstractSqlTypeValue() { protected Object createTypeValue(Connection conn, int sqlType, String typeName) throws SQLException { StructDescriptor itemDescriptor = new StructDescriptor(typeName, conn); Struct item = new STRUCT(itemDescriptor, conn, new Object[] { testItem.getId(), testItem.getDescription(), new java.sql.Date(testItem.getExpirationDate().getTime()) }); return item; } }; This SqlTypeValue can now be added to the Map containing the input parameters for the execute call of the stored procedure. Spring Framework (2.5.6) 281
  • 282. Chapter 12. Object Relational Mapping (ORM) data access 12.1. Introduction The Spring Framework provides integration with Hibernate, JDO, Oracle TopLink, iBATIS SQL Maps and JPA: in terms of resource management, DAO implementation support, and transaction strategies. For example for Hibernate, there is first-class support with lots of IoC convenience features, addressing many typical Hibernate integration issues. All of these support packages for O/R (Object Relational) mappers comply with Spring's generic transaction and DAO exception hierarchies. There are usually two integration styles: either using Spring's DAO 'templates' or coding DAOs against plain Hibernate/JDO/TopLink/etc APIs. In both cases, DAOs can be configured through Dependency Injection and participate in Spring's resource and transaction management. Spring adds significant support when using the O/R mapping layer of your choice to create data access applications. First of all, you should know that once you started using Spring's support for O/R mapping, you don't have to go all the way. No matter to what extent, you're invited to review and leverage the Spring approach, before deciding to take the effort and risk of building a similar infrastructure in-house. Much of the O/R mapping support, no matter what technology you're using may be used in a library style, as everything is designed as a set of reusable JavaBeans. Usage inside a Spring IoC container does provide additional benefits in terms of ease of configuration and deployment; as such, most examples in this section show configuration inside a Spring container. Some of the benefits of using the Spring Framework to create your ORM DAOs include: • Ease of testing. Spring's IoC approach makes it easy to swap the implementations and config locations of Hibernate SessionFactory instances, JDBC DataSource instances, transaction managers, and mappes object implementations (if needed). This makes it much easier to isolate and test each piece of persistence-related code in isolation. • Common data access exceptions. Spring can wrap exceptions from your O/R mapping tool of choice, converting them from proprietary (potentially checked) exceptions to a common runtime DataAccessException hierarchy. This allows you to handle most persistence exceptions, which are non-recoverable, only in the appropriate layers, without annoying boilerplate catches/throws, and exception declarations. You can still trap and handle exceptions anywhere you need to. Remember that JDBC exceptions (including DB specific dialects) are also converted to the same hierarchy, meaning that you can perform some operations with JDBC within a consistent programming model. • General resource management. Spring application contexts can handle the location and configuration of Hibernate SessionFactory instances, JDBC DataSource instances, iBATIS SQL Maps configuration objects, and other related resources. This makes these values easy to manage and change. Spring offers efficient, easy and safe handling of persistence resources. For example: related code using Hibernate generally needs to use the same Hibernate Session for efficiency and proper transaction handling. Spring makes it easy to transparently create and bind a Session to the current thread, either by using an explicit 'template' wrapper class at the Java code level or by exposing a current Session through the Hibernate SessionFactory (for DAOs based on plain Hibernate API). Thus Spring solves many of the issues that repeatedly arise from typical Hibernate usage, for any transaction environment (local or JTA). • Integrated transaction management. Spring allows you to wrap your O/R mapping code with either a declarative, AOP style method interceptor, or an explicit 'template' wrapper class at the Java code level. In Spring Framework (2.5.6) 282
  • 283. Object Relational Mapping (ORM) data access either case, transaction semantics are handled for you, and proper transaction handling (rollback, etc) in case of exceptions is taken care of. As discussed below, you also get the benefit of being able to use and swap various transaction managers, without your Hibernate/JDO related code being affected: for example, between local transactions and JTA, with the same full services (such as declarative transactions) available in both scenarios. As an additional benefit, JDBC-related code can fully integrate transactionally with the code you use to do O/R mapping. This is useful for data access that's not suitable for O/R mapping, such as batch processing or streaming of BLOBs, which still needs to share common transactions with ORM operations. The PetClinic sample in the Spring distribution offers alternative DAO implementations and application context configurations for JDBC, Hibernate, Oracle TopLink, and JPA. PetClinic can therefore serve as working sample app that illustrates the use of Hibernate, TopLink and JPA in a Spring web application. It also leverages declarative transaction demarcation with different transaction strategies. The JPetStore sample illustrates the use of iBATIS SQL Maps in a Spring environment. It also features two web tier versions: one based on Spring Web MVC, one based on Struts. Beyond the samples shipped with Spring, there are a variety of Spring-based O/R mapping samples provided by specific vendors: for example, the JDO implementations JPOX (http://www.jpox.org/) and Kodo (http://www.bea.com/kodo/). 12.2. Hibernate We will start with a coverage of Hibernate 3 in a Spring environment, using it to demonstrate the approach that Spring takes towards integrating O/R mappers. This section will cover many issues in detail and show different variations of DAO implementations and transaction demarcation. Most of these patterns can be directly translated to all other supported ORM tools. The following sections in this chapter will then cover the other ORM technologies, showing briefer examples there. Note: As of Spring 2.5, Spring requires Hibernate 3.1 or higher. Neither Hibernate 2.1 nor Hibernate 3.0 are supported anymore. 12.2.1. Resource management Typical business applications are often cluttered with repetitive resource management code. Many projects try to invent their own solutions for this issue, sometimes sacrificing proper handling of failures for programming convenience. Spring advocates strikingly simple solutions for proper resource handling, namely IoC via templating; for example infrastructure classes with callback interfaces, or applying AOP interceptors. The infrastructure cares for proper resource handling, and for appropriate conversion of specific API exceptions to an unchecked infrastructure exception hierarchy. Spring introduces a DAO exception hierarchy, applicable to any data access strategy. For direct JDBC, the JdbcTemplate class mentioned in a previous section cares for connection handling, and for proper conversion of SQLException to the DataAccessException hierarchy, including translation of database-specific SQL error codes to meaningful exception classes. It supports both JTA and JDBC transactions, via respective Spring transaction managers. Spring also offers Hibernate and JDO support, consisting of a HibernateTemplate / JdoTemplate analogous to JdbcTemplate, a HibernateInterceptor / JdoInterceptor, and a Hibernate / JDO transaction manager. The major goal is to allow for clear application layering, with any data access and transaction technology, and for loose coupling of application objects. No more business service dependencies on the data access or transaction strategy, no more hard-coded resource lookups, no more hard-to-replace singletons, no more custom service registries. One simple and consistent approach to wiring up application objects, keeping them as reusable and free from container dependencies as possible. All the individual data access features are usable on their own but Spring Framework (2.5.6) 283
  • 284. Object Relational Mapping (ORM) data access integrate nicely with Spring's application context concept, providing XML-based configuration and cross-referencing of plain JavaBean instances that don't need to be Spring-aware. In a typical Spring application, many important objects are JavaBeans: data access templates, data access objects (that use the templates), transaction managers, business services (that use the data access objects and transaction managers), web view resolvers, web controllers (that use the business services),and so on. 12.2.2. SessionFactory setup in a Spring container To avoid tying application objects to hard-coded resource lookups, Spring allows you to define resources such as a JDBC DataSource or a Hibernate SessionFactory as beans in the Spring container. Application objects that need to access resources just receive references to such pre-defined instances via bean references (the DAO definition in the next section illustrates this). The following excerpt from an XML application context definition shows how to set up a JDBC DataSource and a Hibernate SessionFactory on top of it: <beans> <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close"> <property name="driverClassName" value="org.hsqldb.jdbcDriver"/> <property name="url" value="jdbc:hsqldb:hsql://localhost:9001"/> <property name="username" value="sa"/> <property name="password" value=""/> </bean> <bean id="mySessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"> <property name="dataSource" ref="myDataSource"/> <property name="mappingResources"> <list> <value>product.hbm.xml</value> </list> </property> <property name="hibernateProperties"> <value> hibernate.dialect=org.hibernate.dialect.HSQLDialect </value> </property> </bean> </beans> Note that switching from a local Jakarta Commons DBCP BasicDataSource to a JNDI-located DataSource (usually managed by an application server) is just a matter of configuration: <beans> <bean id="myDataSource" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiName" value="java:comp/env/jdbc/myds"/> </bean> </beans> You can also access a JNDI-located SessionFactory, using Spring's JndiObjectFactoryBean to retrieve and expose it. However, that is typically not common outside of an EJB context. 12.2.3. The HibernateTemplate The basic programming model for templating looks as follows, for methods that can be part of any custom data access object or business service. There are no restrictions on the implementation of the surrounding object at all, it just needs to provide a Hibernate SessionFactory. It can get the latter from anywhere, but preferably as bean reference from a Spring IoC container - via a simple setSessionFactory(..) bean property setter. The following snippets show a DAO definition in a Spring container, referencing the above defined SessionFactory, and an example for a DAO method implementation. Spring Framework (2.5.6) 284
  • 285. Object Relational Mapping (ORM) data access <beans> <bean id="myProductDao" class="product.ProductDaoImpl"> <property name="sessionFactory" ref="mySessionFactory"/> </bean> </beans> public class ProductDaoImpl implements ProductDao { private HibernateTemplate hibernateTemplate; public void setSessionFactory(SessionFactory sessionFactory) { this.hibernateTemplate = new HibernateTemplate(sessionFactory); } public Collection loadProductsByCategory(String category) throws DataAccessException { return this.hibernateTemplate.find("from test.Product product where product.category=?", category); } } The HibernateTemplate class provides many methods that mirror the methods exposed on the Hibernate Session interface, in addition to a number of convenience methods such as the one shown above. If you need access to the Session to invoke methods that are not exposed on the HibernateTemplate, you can always drop down to a callback-based approach like so. public class ProductDaoImpl implements ProductDao { private HibernateTemplate hibernateTemplate; public void setSessionFactory(SessionFactory sessionFactory) { this.hibernateTemplate = new HibernateTemplate(sessionFactory); } public Collection loadProductsByCategory(final String category) throws DataAccessException { return this.hibernateTemplate.execute(new HibernateCallback() { public Object doInHibernate(Session session) { Criteria criteria = session.createCriteria(Product.class); criteria.add(Expression.eq("category", category)); criteria.setMaxResults(6); return criteria.list(); } }; } } A callback implementation effectively can be used for any Hibernate data access. HibernateTemplate will ensure that Session instances are properly opened and closed, and automatically participate in transactions. The template instances are thread-safe and reusable, they can thus be kept as instance variables of the surrounding class. For simple single step actions like a single find, load, saveOrUpdate, or delete call, HibernateTemplate offers alternative convenience methods that can replace such one line callback implementations. Furthermore, Spring provides a convenient HibernateDaoSupport base class that provides a setSessionFactory(..) method for receiving a SessionFactory, and getSessionFactory() and getHibernateTemplate()for use by subclasses. In combination, this allows for very simple DAO implementations for typical requirements: public class ProductDaoImpl extends HibernateDaoSupport implements ProductDao { public Collection loadProductsByCategory(String category) throws DataAccessException { return this.getHibernateTemplate().find( "from test.Product product where product.category=?", category); } } Spring Framework (2.5.6) 285
  • 286. Object Relational Mapping (ORM) data access 12.2.4. Implementing Spring-based DAOs without callbacks As alternative to using Spring's HibernateTemplate to implement DAOs, data access code can also be written in a more traditional fashion, without wrapping the Hibernate access code in a callback, while still respecting and participating in Spring's generic DataAccessException hierarchy. The HibernateDaoSupport base class offers methods to access the current transactional Session and to convert exceptions in such a scenario; similar methods are also available as static helpers on the SessionFactoryUtils class. Note that such code will usually pass 'false' as the value of the getSession(..) methods 'allowCreate' argument, to enforce running within a transaction (which avoids the need to close the returned Session, as its lifecycle is managed by the transaction). public class HibernateProductDao extends HibernateDaoSupport implements ProductDao { public Collection loadProductsByCategory(String category) throws DataAccessException, MyException { Session session = getSession(false); try { Query query = session.createQuery("from test.Product product where product.category=?"); query.setString(0, category); List result = query.list(); if (result == null) { throw new MyException("No search results."); } return result; } catch (HibernateException ex) { throw convertHibernateAccessException(ex); } } } The advantage of such direct Hibernate access code is that it allows any checked application exception to be thrown within the data access code; contrast this to the HibernateTemplate class which is restricted to throwing only unchecked exceptions within the callback. Note that you can often defer the corresponding checks and the throwing of application exceptions to after the callback, which still allows working with HibernateTemplate. In general, the HibernateTemplate class' convenience methods are simpler and more convenient for many scenarios. 12.2.5. Implementing DAOs based on plain Hibernate 3 API Hibernate 3 provides a feature called "contextual Sessions", where Hibernate itself manages one current Session per transaction. This is roughly equivalent to Spring's synchronization of one Hibernate Session per transaction. A corresponding DAO implementation looks like as follows, based on the plain Hibernate API: public class ProductDaoImpl implements ProductDao { private SessionFactory sessionFactory; public void setSessionFactory(SessionFactory sessionFactory) { this.sessionFactory = sessionFactory; } public Collection loadProductsByCategory(String category) { return this.sessionFactory.getCurrentSession() .createQuery("from test.Product product where product.category=?") .setParameter(0, category) .list(); } } This style is very similar to what you will find in the Hibernate reference documentation and examples, except for holding the SessionFactory in an instance variable. We strongly recommend such an instance-based setup over the old-school static HibernateUtil class from Hibernate's CaveatEmptor sample application. (In Spring Framework (2.5.6) 286
  • 287. Object Relational Mapping (ORM) data access general, do not keep any resources in static variables unless absolutely necessary.) The above DAO follows the Dependency Injection pattern: it fits nicely into a Spring IoC container, just like it would if coded against Spring's HibernateTemplate. Of course, such a DAO can also be set up in plain Java (for example, in unit tests): simply instantiate it and call setSessionFactory(..) with the desired factory reference. As a Spring bean definition, it would look as follows: <beans> <bean id="myProductDao" class="product.ProductDaoImpl"> <property name="sessionFactory" ref="mySessionFactory"/> </bean> </beans> The main advantage of this DAO style is that it depends on Hibernate API only; no import of any Spring class is required. This is of course appealing from a non-invasiveness perspective, and will no doubt feel more natural to Hibernate developers. However, the DAO throws plain HibernateException (which is unchecked, so does not have to be declared or caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on Hibernate's own exception hierarchy. Catching specific causes such as an optimistic locking failure is not possible without tieing the caller to the implementation strategy. This tradeoff might be acceptable to applications that are strongly Hibernate-based and/or do not need any special exception treatment. Fortunately, Spring's LocalSessionFactoryBean supports Hibernate's SessionFactory.getCurrentSession() method for any Spring transaction strategy, returning the current Spring-managed transactional Session even with HibernateTransactionManager. Of course, the standard behavior of that method remains: returning the current Session associated with the ongoing JTA transaction, if any (no matter whether driven by Spring's JtaTransactionManager, by EJB CMT, or by JTA). In summary: DAOs can be implemented based on the plain Hibernate 3 API, while still being able to participate in Spring-managed transactions. 12.2.6. Programmatic transaction demarcation Transactions can be demarcated in a higher level of the application, on top of such lower-level data access services spanning any number of operations. There are no restrictions on the implementation of the surrounding business service here as well, it just needs a Spring PlatformTransactionManager. Again, the latter can come from anywhere, but preferably as bean reference via a setTransactionManager(..) method - just like the productDAO should be set via a setProductDao(..) method. The following snippets show a transaction manager and a business service definition in a Spring application context, and an example for a business method implementation. <beans> <bean id="myTxManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager"> <property name="sessionFactory" ref="mySessionFactory"/> </bean> <bean id="myProductService" class="product.ProductServiceImpl"> <property name="transactionManager" ref="myTxManager"/> <property name="productDao" ref="myProductDao"/> </bean> </beans> public class ProductServiceImpl implements ProductService { Spring Framework (2.5.6) 287
  • 288. Object Relational Mapping (ORM) data access private TransactionTemplate transactionTemplate; private ProductDao productDao; public void setTransactionManager(PlatformTransactionManager transactionManager) { this.transactionTemplate = new TransactionTemplate(transactionManager); } public void setProductDao(ProductDao productDao) { this.productDao = productDao; } public void increasePriceOfAllProductsInCategory(final String category) { this.transactionTemplate.execute(new TransactionCallbackWithoutResult() { public void doInTransactionWithoutResult(TransactionStatus status) { List productsToChange = this.productDao.loadProductsByCategory(category); // do the price increase... } } ); } } 12.2.7. Declarative transaction demarcation Alternatively, one can use Spring's declarative transaction support, which essentially enables you to replace explicit transaction demarcation API calls in your Java code with an AOP transaction interceptor configured in a Spring container. This allows you to keep business services free of repetitive transaction demarcation code, and allows you to focus on adding business logic which is where the real value of your application lies. Furthermore, transaction semantics like propagation behavior and isolation level can be changed in a configuration file and do not affect the business service implementations. <beans> <bean id="myTxManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager"> <property name="sessionFactory" ref="mySessionFactory"/> </bean> <bean id="myProductService" class="org.springframework.aop.framework.ProxyFactoryBean"> <property name="proxyInterfaces" value="product.ProductService"/> <property name="target"> <bean class="product.DefaultProductService"> <property name="productDao" ref="myProductDao"/> </bean> </property> <property name="interceptorNames"> <list> <value>myTxInterceptor</value> <!-- the transaction interceptor (configured elsewhere) --> </list> </property> </bean> </beans> public class ProductServiceImpl implements ProductService { private ProductDao productDao; public void setProductDao(ProductDao productDao) { this.productDao = productDao; } // notice the absence of transaction demarcation code in this method // Spring's declarative transaction infrastructure will be demarcating transactions on your behalf public void increasePriceOfAllProductsInCategory(final String category) { List productsToChange = this.productDao.loadProductsByCategory(category); // ... } } Spring Framework (2.5.6) 288
  • 289. Object Relational Mapping (ORM) data access Spring's TransactionInterceptor allows any checked application exception to be thrown with the callback code, while TransactionTemplate is restricted to unchecked exceptions within the callback. TransactionTemplate will trigger a rollback in case of an unchecked application exception, or if the transaction has been marked rollback-only by the application (via TransactionStatus). TransactionInterceptor behaves the same way by default but allows configurable rollback policies per method. The following higher level approach to declarative transactions doesn't use the ProxyFactoryBean, and as such may be easier to use if you have a large number of service objects that you wish to make transactional. Note You are strongly encouraged to read the section entitled Section 9.5, “Declarative transaction management” if you have not done so already prior to continuing. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5. http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <!-- SessionFactory, DataSource, etc. omitted --> <bean id="myTxManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager"> <property name="sessionFactory" ref="mySessionFactory"/> </bean> <aop:config> <aop:pointcut id="productServiceMethods" expression="execution(* product.ProductService.*(..))"/> <aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/> </aop:config> <tx:advice id="txAdvice" transaction-manager="myTxManager"> <tx:attributes> <tx:method name="increasePrice*" propagation="REQUIRED"/> <tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/> <tx:method name="*" propagation="SUPPORTS" read-only="true"/> </tx:attributes> </tx:advice> <bean id="myProductService" class="product.SimpleProductService"> <property name="productDao" ref="myProductDao"/> </bean> </beans> 12.2.8. Transaction management strategies Both TransactionTemplate and TransactionInterceptor delegate the actual transaction handling to a PlatformTransactionManager instance, which can be a HibernateTransactionManager (for a single Hibernate SessionFactory, using a ThreadLocal Session under the hood) or a JtaTransactionManager (delegating to the JTA subsystem of the container) for Hibernate applications. You could even use a custom PlatformTransactionManager implementation. So switching from native Hibernate transaction management to JTA, such as when facing distributed transaction requirements for certain deployments of your application, is just a matter of configuration. Simply replace the Hibernate transaction manager with Spring's JTA transaction implementation. Both transaction demarcation and data access code will work without changes, as they just use the generic transaction management APIs. Spring Framework (2.5.6) 289
  • 290. Object Relational Mapping (ORM) data access For distributed transactions across multiple Hibernate session factories, simply combine JtaTransactionManager as a transaction strategy with multiple LocalSessionFactoryBean definitions. Each of your DAOs then gets one specific SessionFactory reference passed into its corresponding bean property. If all underlying JDBC data sources are transactional container ones, a business service can demarcate transactions across any number of DAOs and any number of session factories without special regard, as long as it is using JtaTransactionManager as the strategy. <beans> <bean id="myDataSource1" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiName value="java:comp/env/jdbc/myds1"/> </bean> <bean id="myDataSource2" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiName" value="java:comp/env/jdbc/myds2"/> </bean> <bean id="mySessionFactory1" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"> <property name="dataSource" ref="myDataSource1"/> <property name="mappingResources"> <list> <value>product.hbm.xml</value> </list> </property> <property name="hibernateProperties"> <value> hibernate.dialect=org.hibernate.dialect.MySQLDialect hibernate.show_sql=true </value> </property> </bean> <bean id="mySessionFactory2" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"> <property name="dataSource" ref="myDataSource2"/> <property name="mappingResources"> <list> <value>inventory.hbm.xml</value> </list> </property> <property name="hibernateProperties"> <value> hibernate.dialect=org.hibernate.dialect.OracleDialect </value> </property> </bean> <bean id="myTxManager" class="org.springframework.transaction.jta.JtaTransactionManager"/> <bean id="myProductDao" class="product.ProductDaoImpl"> <property name="sessionFactory" ref="mySessionFactory1"/> </bean> <bean id="myInventoryDao" class="product.InventoryDaoImpl"> <property name="sessionFactory" ref="mySessionFactory2"/> </bean> <!-- this shows the Spring 1.x style of declarative transaction configuration --> <!-- it is totally supported, 100% legal in Spring 2.x, but see also above for the sleeker, Spring 2.0 style - <bean id="myProductService" class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean"> <property name="transactionManager" ref="myTxManager"/> <property name="target"> <bean class="product.ProductServiceImpl"> <property name="productDao" ref="myProductDao"/> <property name="inventoryDao" ref="myInventoryDao"/> </bean> </property> <property name="transactionAttributes"> <props> <prop key="increasePrice*">PROPAGATION_REQUIRED</prop> <prop key="someOtherBusinessMethod">PROPAGATION_REQUIRES_NEW</prop> <prop key="*">PROPAGATION_SUPPORTS,readOnly</prop> </props> </property> </bean> Spring Framework (2.5.6) 290
  • 291. Object Relational Mapping (ORM) data access </beans> Both HibernateTransactionManager and JtaTransactionManager allow for proper JVM-level cache handling with Hibernate - without container-specific transaction manager lookup or JCA connector (as long as not using EJB to initiate transactions). HibernateTransactionManager can export the JDBC Connection used by Hibernate to plain JDBC access code, for a specific DataSource. This allows for high-level transaction demarcation with mixed Hibernate/JDBC data access completely without JTA, as long as you are just accessing one database! HibernateTransactionManager will automatically expose the Hibernate transaction as JDBC transaction if the passed-in SessionFactory has been set up with a DataSource (through the "dataSource" property of the LocalSessionFactoryBean class). Alternatively, the DataSource that the transactions are supposed to be exposed for can also be specified explicitly, through the "dataSource" property of the HibernateTransactionManager class. 12.2.9. Container resources versus local resources Spring's resource management allows for simple switching between a JNDI SessionFactory and a local one, without having to change a single line of application code. The decision as to whether to keep the resource definitions in the container or locally within the application, is mainly a matter of the transaction strategy being used. Compared to a Spring-defined local SessionFactory, a manually registered JNDI SessionFactory does not provide any benefits. Deploying a SessionFactory through Hibernate's JCA connector provides the added value of participating in the J2EE server's management infrastructure, but does not add actual value beyond that. An important benefit of Spring's transaction support is that it isn't bound to a container at all. Configured to any other strategy than JTA, it will work in a standalone or test environment too. Especially for the typical case of single-database transactions, this is a very lightweight and powerful alternative to JTA. When using local EJB Stateless Session Beans to drive transactions, you depend both on an EJB container and JTA - even if you just access a single database anyway, and just use SLSBs for declarative transactions via CMT. The alternative of using JTA programmatically requires a J2EE environment as well. JTA does not just involve container dependencies in terms of JTA itself and of JNDI DataSource instances. For non-Spring JTA-driven Hibernate transactions, you have to use the Hibernate JCA connector, or extra Hibernate transaction code with the TransactionManagerLookup being configured for proper JVM-level caching. Spring-driven transactions can work with a locally defined Hibernate SessionFactory nicely, just like with a local JDBC DataSource - if accessing a single database, of course. Therefore you just have to fall back to Spring's JTA transaction strategy when actually facing distributed transaction requirements. Note that a JCA connector needs container-specific deployment steps, and obviously JCA support in the first place. This is far more hassle than deploying a simple web app with local resource definitions and Spring-driven transactions. And you often need the Enterprise Edition of your container, as for example WebLogic Express does not provide JCA. A Spring application with local resources and transactions spanning one single database will work in any J2EE web container (without JTA, JCA, or EJB) - like Tomcat, Resin, or even plain Jetty. Additionally, such a middle tier can be reused in desktop applications or test suites easily. All things considered: if you do not use EJB, stick with local SessionFactory setup and Spring's HibernateTransactionManager or JtaTransactionManager. You will get all of the benefits including proper transactional JVM-level caching and distributed transactions, without any container deployment hassle. JNDI registration of a Hibernate SessionFactory via the JCA connector really only adds value when used in conjunction with EJBs. Spring Framework (2.5.6) 291
  • 292. Object Relational Mapping (ORM) data access 12.2.10. Spurious application server warnings when using Hibernate In some JTA environments with very strict XADataSource implementations -- currently only some WebLogic and WebSphere versions -- when using Hibernate configured without any awareness of the JTA PlatformTransactionManager object for that environment, it is possible for spurious warning or exceptions to show up in the application server log. These warnings or exceptions will say something to the effect that the connection being accessed is no longer valid, or JDBC access is no longer valid, possibly because the transaction is no longer active. As an example, here is an actual exception from WebLogic: java.sql.SQLException: The transaction is no longer active - status: 'Committed'. No further JDBC access is allowed within this transaction. This warning is easy to resolve by simply making Hibernate aware of the JTA PlatformTransactionManager instance, to which it will also synchronize (along with Spring). This may be done in two ways: • If in your application context you are already directly obtaining the JTA PlatformTransactionManager object (presumably from JNDI via JndiObjectFactoryBean) and feeding it for example to Spring's JtaTransactionManager, then the easiest way is to simply specify a reference to this as the value of LocalSessionFactoryBean's jtaTransactionManager property. Spring will then make the object available to Hibernate. • More likely you do not already have the JTA PlatformTransactionManager instance (since Spring's JtaTransactionManager can find it itself) so you need to instead configure Hibernate to also look it up directly. This is done by configuring an AppServer specific TransactionManagerLookup class in the Hibernate configuration, as described in the Hibernate manual. It is not necessary to read any more for proper usage, but the full sequence of events with and without Hibernate being aware of the JTA PlatformTransactionManager will now be described. When Hibernate is not configured with any awareness of the JTA PlatformTransactionManager, the sequence of events when a JTA transaction commits is as follows: • JTA transaction commits • Spring's JtaTransactionManager is synchronized to the JTA transaction, so it is called back via an afterCompletion callback by the JTA transaction manager. • Among other activities, this can trigger a callback by Spring to Hibernate, via Hibernate's afterTransactionCompletion callback (used to clear the Hibernate cache), followed by an explicit close() call on the Hibernate Session, which results in Hibernate trying to close() the JDBC Connection. • In some environments, this Connection.close() call then triggers the warning or error, as the application server no longer considers the Connection usable at all, since the transaction has already been committed. When Hibernate is configured with awareness of the JTA PlatformTransactionManager, the sequence of events when a JTA transaction commits is instead as follows: • JTA transaction is ready to commit • Spring's JtaTransactionManager is synchronized to the JTA transaction, so it is called back via a beforeCompletion callback by the JTA transaction manager. • Spring is aware that Hibernate itself is synchronized to the JTA transaction, and behaves differently than in Spring Framework (2.5.6) 292
  • 293. Object Relational Mapping (ORM) data access the previous scenario. Assuming the Hibernate Session needs to be closed at all, Spring will close it now. • JTA Transaction commits • Hibernate is synchronized to the JTA transaction, so it is called back via an afterCompletion callback by the JTA transaction manager, and can properly clear its cache. 12.3. JDO Spring supports the standard JDO 2.0/2.1 API as data access strategy, following the same style as the Hibernate support. The corresponding integration classes reside in the org.springframework.orm.jdo package. 12.3.1. PersistenceManagerFactory setup Spring provides a LocalPersistenceManagerFactoryBean class that allows for defining a local JDO PersistenceManagerFactory within a Spring application context: <beans> <bean id="myPmf" class="org.springframework.orm.jdo.LocalPersistenceManagerFactoryBean"> <property name="configLocation" value="classpath:kodo.properties"/> </bean> </beans> Alternatively, a PersistenceManagerFactory can also be set up through direct instantiation of a PersistenceManagerFactory implementation class. A JDO PersistenceManagerFactory implementation class is supposed to follow the JavaBeans pattern, just like a JDBC DataSource implementation class, which is a natural fit for a Spring bean definition. This setup style usually supports a Spring-defined JDBC DataSource, passed into the "connectionFactory" property. For example, for the open source JDO implementation JPOX (http://www.jpox.org): <beans> <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close"> <property name="driverClassName" value="${jdbc.driverClassName}"/> <property name="url" value="${jdbc.url}"/> <property name="username" value="${jdbc.username}"/> <property name="password" value="${jdbc.password}"/> </bean> <bean id="myPmf" class="org.jpox.PersistenceManagerFactoryImpl" destroy-method="close"> <property name="connectionFactory" ref="dataSource"/> <property name="nontransactionalRead" value="true"/> </bean> </beans> A JDO PersistenceManagerFactory can also be set up in the JNDI environment of a J2EE application server, usually through the JCA connector provided by the particular JDO implementation. Spring's standard JndiObjectFactoryBean can be used to retrieve and expose such a PersistenceManagerFactory. However, outside an EJB context, there is often no compelling benefit in holding the PersistenceManagerFactory in JNDI: only choose such setup for a good reason. See "container resources versus local resources" in the Hibernate section for a discussion; the arguments there apply to JDO as well. Spring Framework (2.5.6) 293
  • 294. Object Relational Mapping (ORM) data access 12.3.2. JdoTemplate and JdoDaoSupport Each JDO-based DAO will then receive the PersistenceManagerFactory through dependency injection. Such a DAO could be coded against plain JDO API, working with the given PersistenceManagerFactory, but will usually rather be used with the Spring Framework's JdoTemplate: <beans> <bean id="myProductDao" class="product.ProductDaoImpl"> <property name="persistenceManagerFactory" ref="myPmf"/> </bean> </beans> public class ProductDaoImpl implements ProductDao { private JdoTemplate jdoTemplate; public void setPersistenceManagerFactory(PersistenceManagerFactory pmf) { this.jdoTemplate = new JdoTemplate(pmf); } public Collection loadProductsByCategory(final String category) throws DataAccessException { return (Collection) this.jdoTemplate.execute(new JdoCallback() { public Object doInJdo(PersistenceManager pm) throws JDOException { Query query = pm.newQuery(Product.class, "category = pCategory"); query.declareParameters("String pCategory"); List result = query.execute(category); // do some further stuff with the result list return result; } }); } } A callback implementation can effectively be used for any JDO data access. JdoTemplate will ensure that PersistenceManagers are properly opened and closed, and automatically participate in transactions. The template instances are thread-safe and reusable, they can thus be kept as instance variables of the surrounding class. For simple single-step actions such as a single find, load, makePersistent, or delete call, JdoTemplate offers alternative convenience methods that can replace such one line callback implementations. Furthermore, Spring provides a convenient JdoDaoSupport base class that provides a setPersistenceManagerFactory(..) method for receiving a PersistenceManagerFactory, and getPersistenceManagerFactory() and getJdoTemplate() for use by subclasses. In combination, this allows for very simple DAO implementations for typical requirements: public class ProductDaoImpl extends JdoDaoSupport implements ProductDao { public Collection loadProductsByCategory(String category) throws DataAccessException { return getJdoTemplate().find( Product.class, "category = pCategory", "String category", new Object[] {category}); } } As alternative to working with Spring's JdoTemplate, you can also code Spring-based DAOs at the JDO API level, explicitly opening and closing a PersistenceManager. As elaborated in the corresponding Hibernate section, the main advantage of this approach is that your data access code is able to throw checked exceptions. JdoDaoSupport offers a variety of support methods for this scenario, for fetching and releasing a transactional PersistenceManager as well as for converting exceptions. 12.3.3. Implementing DAOs based on the plain JDO API Spring Framework (2.5.6) 294
  • 295. Object Relational Mapping (ORM) data access DAOs can also be written against plain JDO API, without any Spring dependencies, directly using an injected PersistenceManagerFactory. A corresponding DAO implementation looks like as follows: public class ProductDaoImpl implements ProductDao { private PersistenceManagerFactory persistenceManagerFactory; public void setPersistenceManagerFactory(PersistenceManagerFactory pmf) { this.persistenceManagerFactory = pmf; } public Collection loadProductsByCategory(String category) { PersistenceManager pm = this.persistenceManagerFactory.getPersistenceManager(); try { Query query = pm.newQuery(Product.class, "category = pCategory"); query.declareParameters("String pCategory"); return query.execute(category); } finally { pm.close(); } } } As the above DAO still follows the Dependency Injection pattern, it still fits nicely into a Spring container, just like it would if coded against Spring's JdoTemplate: <beans> <bean id="myProductDao" class="product.ProductDaoImpl"> <property name="persistenceManagerFactory" ref="myPmf"/> </bean> </beans> The main issue with such DAOs is that they always get a new PersistenceManager from the factory. To still access a Spring-managed transactional PersistenceManager, consider defining a TransactionAwarePersistenceManagerFactoryProxy (as included in Spring) in front of your target PersistenceManagerFactory, passing the proxy into your DAOs. <beans> <bean id="myPmfProxy" class="org.springframework.orm.jdo.TransactionAwarePersistenceManagerFactoryProxy"> <property name="targetPersistenceManagerFactory" ref="myPmf"/> </bean> <bean id="myProductDao" class="product.ProductDaoImpl"> <property name="persistenceManagerFactory" ref="myPmfProxy"/> </bean> </beans> Your data access code will then receive a transactional PersistenceManager (if any) from the PersistenceManagerFactory.getPersistenceManager() method that it calls. The latter method call goes through the proxy, which will first check for a current transactional PersistenceManager before getting a new one from the factory. close() calls on the PersistenceManager will be ignored in case of a transactional PersistenceManager. If your data access code will always run within an active transaction (or at least within active transaction synchronization), it is safe to omit the PersistenceManager.close() call and thus the entire finally block, which you might prefer to keep your DAO implementations concise: public class ProductDaoImpl implements ProductDao { Spring Framework (2.5.6) 295
  • 296. Object Relational Mapping (ORM) data access private PersistenceManagerFactory persistenceManagerFactory; public void setPersistenceManagerFactory(PersistenceManagerFactory pmf) { this.persistenceManagerFactory = pmf; } public Collection loadProductsByCategory(String category) { PersistenceManager pm = this.persistenceManagerFactory.getPersistenceManager(); Query query = pm.newQuery(Product.class, "category = pCategory"); query.declareParameters("String pCategory"); return query.execute(category); } } With such DAOs that rely on active transactions, it is recommended to enforce active transactions through turning TransactionAwarePersistenceManagerFactoryProxy's "allowCreate" flag off: <beans> <bean id="myPmfProxy" class="org.springframework.orm.jdo.TransactionAwarePersistenceManagerFactoryProxy"> <property name="targetPersistenceManagerFactory" ref="myPmf"/> <property name="allowCreate" value="false"/> </bean> <bean id="myProductDao" class="product.ProductDaoImpl"> <property name="persistenceManagerFactory" ref="myPmfProxy"/> </bean> </beans> The main advantage of this DAO style is that it depends on JDO API only; no import of any Spring class is required. This is of course appealing from a non-invasiveness perspective, and might feel more natural to JDO developers. However, the DAO throws plain JDOException (which is unchecked, so does not have to be declared or caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on JDO's own exception structure. Catching specific causes such as an optimistic locking failure is not possible without tying the caller to the implementation strategy. This tradeoff might be acceptable to applications that are strongly JDO-based and/or do not need any special exception treatment. In summary: DAOs can be implemented based on plain JDO API, while still being able to participate in Spring-managed transactions. This might in particular appeal to people already familiar with JDO, feeling more natural to them. However, such DAOs will throw plain JDOException; conversion to Spring's DataAccessException would have to happen explicitly (if desired). 12.3.4. Transaction management To execute service operations within transactions, you can use Spring's common declarative transaction facilities. For example: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <bean id="myTxManager" class="org.springframework.orm.jdo.JdoTransactionManager"> <property name="persistenceManagerFactory" ref="myPmf"/> Spring Framework (2.5.6) 296
  • 297. Object Relational Mapping (ORM) data access </bean> <bean id="myProductService" class="product.ProductServiceImpl"> <property name="productDao" ref="myProductDao"/> </bean> <tx:advice id="txAdvice" transaction-manager="txManager"> <tx:attributes> <tx:method name="increasePrice*" propagation="REQUIRED"/> <tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/> <tx:method name="*" propagation="SUPPORTS" read-only="true"/> </tx:attributes> </tx:advice> <aop:config> <aop:pointcut id="productServiceMethods" expression="execution(* product.ProductService.*(..))"/> <aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/> </aop:config> </beans> Note that JDO requires an active transaction when modifying a persistent object. There is no concept like a non-transactional flush in JDO, in contrast to Hibernate. For this reason, the chosen JDO implementation needs to be set up for a specific environment: in particular, it needs to be explicitly set up for JTA synchronization, to detect an active JTA transaction itself. This is not necessary for local transactions as performed by Spring's JdoTransactionManager, but it is necessary for participating in JTA transactions (whether driven by Spring's JtaTransactionManager or by EJB CMT / plain JTA). JdoTransactionManager is capable of exposing a JDO transaction to JDBC access code that accesses the same JDBC DataSource, provided that the registered JdoDialect supports retrieval of the underlying JDBC Connection. This is the case for JDBC-based JDO 2.0 implementations by default. 12.3.5. JdoDialect As an advanced feature, both JdoTemplate and interfacename support a custom JdoDialect, to be passed into the "jdoDialect" bean property. In such a scenario, the DAOs won't receive a PersistenceManagerFactory reference but rather a full JdoTemplate instance instead (for example, passed into JdoDaoSupport's "jdoTemplate" property). A JdoDialect implementation can enable some advanced features supported by Spring, usually in a vendor-specific manner: • applying specific transaction semantics (such as custom isolation level or transaction timeout) • retrieving the transactional JDBC Connection (for exposure to JDBC-based DAOs) • applying query timeouts (automatically calculated from Spring-managed transaction timeout) • eagerly flushing a PersistenceManager (to make transactional changes visible to JDBC-based data access code) • advanced translation of JDOExceptions to Spring DataAccessExceptions See the JdoDialect Javadoc for more details on its operations and how they are used within Spring's JDO support. 12.4. Oracle TopLink Since Spring 1.2, Spring supports Oracle TopLink (http://www.oracle.com/technology/products/ias/toplink) as Spring Framework (2.5.6) 297
  • 298. Object Relational Mapping (ORM) data access data access strategy, following the same style as the Hibernate support. Both TopLink 9.0.4 (the production version as of Spring 1.2) and 10.1.3 (still in beta as of Spring 1.2) are supported. The corresponding integration classes reside in the org.springframework.orm.toplink package. Spring's TopLink support has been co-developed with the Oracle TopLink team. Many thanks to the TopLink team, in particular to Jim Clark who helped to clarify details in all areas! 12.4.1. SessionFactory abstraction TopLink itself does not ship with a SessionFactory abstraction. Instead, multi-threaded access is based on the concept of a central ServerSession, which in turn is able to spawn ClientSession instances for single-threaded usage. For flexible setup options, Spring defines a SessionFactory abstraction for TopLink, enabling to switch between different Session creation strategies. As a one-stop shop, Spring provides a LocalSessionFactoryBean class that allows for defining a TopLink SessionFactory with bean-style configuration. It needs to be configured with the location of the TopLink session configuration file, and usually also receives a Spring-managed JDBC DataSource to use. <beans> <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close"> <property name="driverClassName" value="${jdbc.driverClassName}"/> <property name="url" value="${jdbc.url}"/> <property name="username" value="${jdbc.username}"/> <property name="password" value="${jdbc.password}"/> </bean> <bean id="mySessionFactory" class="org.springframework.orm.toplink.LocalSessionFactoryBean"> <property name="configLocation" value="toplink-sessions.xml"/> <property name="dataSource" ref="dataSource"/> </bean> </beans> <toplink-configuration> <session> <name>Session</name> <project-xml>toplink-mappings.xml</project-xml> <session-type> <server-session/> </session-type> <enable-logging>true</enable-logging> <logging-options/> </session> </toplink-configuration> Usually, LocalSessionFactoryBean will hold a multi-threaded TopLink ServerSession underneath and create appropriate client Sessions for it: either a plain Session (typical), a managed ClientSession, or a transaction-aware Session (the latter are mainly used internally by Spring's TopLink support). It might also hold a single-threaded TopLink DatabaseSession; this is rather unusual, though. 12.4.2. TopLinkTemplate and TopLinkDaoSupport Each TopLink-based DAO will then receive the SessionFactory through dependency injection, i.e. through a bean property setter or through a constructor argument. Such a DAO could be coded against plain TopLink API, fetching a Session from the given SessionFactory, but will usually rather be used with Spring's TopLinkTemplate: <beans> Spring Framework (2.5.6) 298
  • 299. Object Relational Mapping (ORM) data access <bean id="myProductDao" class="product.ProductDaoImpl"> <property name="sessionFactory" ref="mySessionFactory"/> </bean> </beans> public class TopLinkProductDao implements ProductDao { private TopLinkTemplate tlTemplate; public void setSessionFactory(SessionFactory sessionFactory) { this.tlTemplate = new TopLinkTemplate(sessionFactory); } public Collection loadProductsByCategory(final String category) throws DataAccessException { return (Collection) this.tlTemplate.execute(new TopLinkCallback() { public Object doInTopLink(Session session) throws TopLinkException { ReadAllQuery findOwnersQuery = new ReadAllQuery(Product.class); findOwnersQuery.addArgument("Category"); ExpressionBuilder builder = this.findOwnersQuery.getExpressionBuilder(); findOwnersQuery.setSelectionCriteria( builder.get("category").like(builder.getParameter("Category"))); Vector args = new Vector(); args.add(category); List result = session.executeQuery(findOwnersQuery, args); // do some further stuff with the result list return result; } }); } } A callback implementation can effectively be used for any TopLink data access. TopLinkTemplate will ensure that Sessions are properly opened and closed, and automatically participate in transactions. The template instances are thread-safe and reusable, they can thus be kept as instance variables of the surrounding class. For simple single-step actions such as a single executeQuery, readAll, readById, or merge call, JdoTemplate offers alternative convenience methods that can replace such one line callback implementations. Furthermore, Spring provides a convenient TopLinkDaoSupport base class that provides a setSessionFactory(..) method for receiving a SessionFactory, and getSessionFactory() and getTopLinkTemplate() for use by subclasses. In combination, this allows for simple DAO implementations for typical requirements: public class ProductDaoImpl extends TopLinkDaoSupport implements ProductDao { public Collection loadProductsByCategory(String category) throws DataAccessException { ReadAllQuery findOwnersQuery = new ReadAllQuery(Product.class); findOwnersQuery.addArgument("Category"); ExpressionBuilder builder = this.findOwnersQuery.getExpressionBuilder(); findOwnersQuery.setSelectionCriteria( builder.get("category").like(builder.getParameter("Category"))); return getTopLinkTemplate().executeQuery(findOwnersQuery, new Object[] {category}); } } Side note: TopLink query objects are thread-safe and can be cached within the DAO, i.e. created on startup and kept in instance variables. As alternative to working with Spring's TopLinkTemplate, you can also code your TopLink data access based on the raw TopLink API, explicitly opening and closing a Session. As elaborated in the corresponding Hibernate section, the main advantage of this approach is that your data access code is able to throw checked exceptions. TopLinkDaoSupport offers a variety of support methods for this scenario, for fetching and releasing a transactional Session as well as for converting exceptions. Spring Framework (2.5.6) 299
  • 300. Object Relational Mapping (ORM) data access 12.4.3. Implementing DAOs based on plain TopLink API DAOs can also be written against plain TopLink API, without any Spring dependencies, directly using an injected TopLink Session. The latter will usually be based on a SessionFactory defined by a LocalSessionFactoryBean, exposed for bean references of type Session through Spring's TransactionAwareSessionAdapter. The getActiveSession() method defined on TopLink's Session interface will return the current transactional Session in such a scenario. If there is no active transaction, it will return the shared TopLink ServerSession as-is, which is only supposed to be used directly for read-only access. There is also an analogous getActiveUnitOfWork() method, returning the TopLink UnitOfWork associated with the current transaction, if any (returning null else). A corresponding DAO implementation looks like as follows: public class ProductDaoImpl implements ProductDao { private Session session; public void setSession(Session session) { this.session = session; } public Collection loadProductsByCategory(String category) { ReadAllQuery findOwnersQuery = new ReadAllQuery(Product.class); findOwnersQuery.addArgument("Category"); ExpressionBuilder builder = this.findOwnersQuery.getExpressionBuilder(); findOwnersQuery.setSelectionCriteria( builder.get("category").like(builder.getParameter("Category"))); Vector args = new Vector(); args.add(category); return session.getActiveSession().executeQuery(findOwnersQuery, args); } } As the above DAO still follows the Dependency Injection pattern, it still fits nicely into a Spring application context, analogous to like it would if coded against Spring's TopLinkTemplate. Spring's TransactionAwareSessionAdapter is used to expose a bean reference of type Session, to be passed into the DAO: <beans> <bean id="mySessionAdapter" class="org.springframework.orm.toplink.support.TransactionAwareSessionAdapter"> <property name="sessionFactory" ref="mySessionFactory"/> </bean> <bean id="myProductDao" class="product.ProductDaoImpl"> <property name="session" ref="mySessionAdapter"/> </bean> </beans> The main advantage of this DAO style is that it depends on TopLink API only; no import of any Spring class is required. This is of course appealing from a non-invasiveness perspective, and might feel more natural to TopLink developers. However, the DAO throws plain TopLinkException (which is unchecked, so does not have to be declared or caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on TopLink's own exception structure. Catching specific causes such as an optimistic locking failure is not possible without tying the caller to the implementation strategy. This tradeoff might be acceptable to Spring Framework (2.5.6) 300
  • 301. Object Relational Mapping (ORM) data access applications that are strongly TopLink-based and/or do not need any special exception treatment. A further disadvantage of that DAO style is that TopLink's standard getActiveSession() feature just works within JTA transactions. It does not work with any other transaction strategy out-of-the-box, in particular not with local TopLink transactions. Fortunately, Spring's TransactionAwareSessionAdapter exposes a corresponding proxy for the TopLink ServerSession which supports TopLink's Session.getActiveSession() and Session.getActiveUnitOfWork() methods for any Spring transaction strategy, returning the current Spring-managed transactional Session even with TopLinkTransactionManager. Of course, the standard behavior of that method remains: returning the current Session associated with the ongoing JTA transaction, if any (no matter whether driven by Spring's JtaTransactionManager, by EJB CMT, or by plain JTA). In summary: DAOs can be implemented based on plain TopLink API, while still being able to participate in Spring-managed transactions. This might in particular appeal to people already familiar with TopLink, feeling more natural to them. However, such DAOs will throw plain TopLinkException; conversion to Spring's DataAccessException would have to happen explicitly (if desired). 12.4.4. Transaction management To execute service operations within transactions, you can use Spring's common declarative transaction facilities. For example: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <bean id="myTxManager" class="org.springframework.orm.toplink.TopLinkTransactionManager"> <property name="sessionFactory" ref="mySessionFactory"/> </bean> <bean id="myProductService" class="product.ProductServiceImpl"> <property name="productDao" ref="myProductDao"/> </bean> <aop:config> <aop:pointcut id="productServiceMethods" expression="execution(* product.ProductService.*(..))"/> <aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/> </aop:config> <tx:advice id="txAdvice" transaction-manager="myTxManager"> <tx:attributes> <tx:method name="increasePrice*" propagation="REQUIRED"/> <tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/> <tx:method name="*" propagation="SUPPORTS" read-only="true"/> </tx:attributes> </tx:advice> </beans> Note that TopLink requires an active UnitOfWork for modifying a persistent object. (You should never modify objects returned by a plain TopLink Session - those are usually read-only objects, directly taken from the second-level cache!) There is no concept like a non-transactional flush in TopLink, in contrast to Hibernate. For this reason, TopLink needs to be set up for a specific environment: in particular, it needs to be explicitly set up for JTA synchronization, to detect an active JTA transaction itself and expose a corresponding active Session and UnitOfWork. This is not necessary for local transactions as performed by Spring's Spring Framework (2.5.6) 301
  • 302. Object Relational Mapping (ORM) data access TopLinkTransactionManager, but it is necessary for participating in JTA transactions (whether driven by Spring's JtaTransactionManager or by EJB CMT / plain JTA). Within your TopLink-based DAO code, use the Session.getActiveUnitOfWork() method to access the current UnitOfWork and perform write operations through it. This will only work within an active transaction (both within Spring-managed transactions and plain JTA transactions). For special needs, you can also acquire separate UnitOfWork instances that won't participate in the current transaction; this is hardly needed, though. TopLinkTransactionManager is capable of exposing a TopLink transaction to JDBC access code that accesses the same JDBC DataSource, provided that TopLink works with JDBC in the backend and is thus able to expose the underlying JDBC Connection. The DataSource to expose the transactions for needs to be specified explicitly; it won't be autodetected. 12.5. iBATIS SQL Maps The iBATIS support in the Spring Framework much resembles the JDBC / Hibernate support in that it supports the same template style programming and just as with JDBC or Hibernate, the iBATIS support works with Spring's exception hierarchy and let's you enjoy the all IoC features Spring has. Transaction management can be handled through Spring's standard facilities. There are no special transaction strategies for iBATIS, as there is no special transactional resource involved other than a JDBC Connection. Hence, Spring's standard JDBC DataSourceTransactionManager or JtaTransactionManager are perfectly sufficient. Note Spring does actually support both iBatis 1.x and 2.x. However, only support for iBatis 2.x is actually shipped with the core Spring distribution. The iBatis 1.x support classes were moved to the Spring Modules project as of Spring 2.0, and you are directed there for documentation. 12.5.1. Setting up the SqlMapClient If we want to map the previous Account class with iBATIS 2.x we need to create the following SQL map 'Account.xml': <sqlMap namespace="Account"> <resultMap id="result" class="examples.Account"> <result property="name" column="NAME" columnIndex="1"/> <result property="email" column="EMAIL" columnIndex="2"/> </resultMap> <select id="getAccountByEmail" resultMap="result"> select ACCOUNT.NAME, ACCOUNT.EMAIL from ACCOUNT where ACCOUNT.EMAIL = #value# </select> <insert id="insertAccount"> insert into ACCOUNT (NAME, EMAIL) values (#name#, #email#) </insert> </sqlMap> The configuration file for iBATIS 2 looks like this: <sqlMapConfig> Spring Framework (2.5.6) 302
  • 303. Object Relational Mapping (ORM) data access <sqlMap resource="example/Account.xml"/> </sqlMapConfig> Remember that iBATIS loads resources from the class path, so be sure to add the 'Account.xml' file to the class path. We can use the SqlMapClientFactoryBean in the Spring container. Note that with iBATIS SQL Maps 2.x, the JDBC DataSource is usually specified on the SqlMapClientFactoryBean, which enables lazy loading. <beans> <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close"> <property name="driverClassName" value="${jdbc.driverClassName}"/> <property name="url" value="${jdbc.url}"/> <property name="username" value="${jdbc.username}"/> <property name="password" value="${jdbc.password}"/> </bean> <bean id="sqlMapClient" class="org.springframework.orm.ibatis.SqlMapClientFactoryBean"> <property name="configLocation" value="WEB-INF/sqlmap-config.xml"/> <property name="dataSource" ref="dataSource"/> </bean> </beans> 12.5.2. Using SqlMapClientTemplate and SqlMapClientDaoSupport The SqlMapClientDaoSupport class offers a supporting class similar to the SqlMapDaoSupport. We extend it to implement our DAO: public class SqlMapAccountDao extends SqlMapClientDaoSupport implements AccountDao { public Account getAccount(String email) throws DataAccessException { return (Account) getSqlMapClientTemplate().queryForObject("getAccountByEmail", email); } public void insertAccount(Account account) throws DataAccessException { getSqlMapClientTemplate().update("insertAccount", account); } } In the DAO, we use the pre-configured SqlMapClientTemplate to execute the queries, after setting up the SqlMapAccountDao in the application context and wiring it with our SqlMapClient instance: <beans> <bean id="accountDao" class="example.SqlMapAccountDao"> <property name="sqlMapClient" ref="sqlMapClient"/> </bean> </beans> Note that a SqlMapTemplate instance could also be created manually, passing in the SqlMapClient as constructor argument. The SqlMapClientDaoSupport base class simply pre-initializes a SqlMapClientTemplate instance for us. The SqlMapClientTemplate also offers a generic execute method, taking a custom SqlMapClientCallback implementation as argument. This can, for example, be used for batching: public class SqlMapAccountDao extends SqlMapClientDaoSupport implements AccountDao { Spring Framework (2.5.6) 303
  • 304. Object Relational Mapping (ORM) data access public void insertAccount(Account account) throws DataAccessException { getSqlMapClientTemplate().execute(new SqlMapClientCallback() { public Object doInSqlMapClient(SqlMapExecutor executor) throws SQLException { executor.startBatch(); executor.update("insertAccount", account); executor.update("insertAddress", account.getAddress()); executor.executeBatch(); } }); } } In general, any combination of operations offered by the native SqlMapExecutor API can be used in such a callback. Any SQLException thrown will automatically get converted to Spring's generic DataAccessException hierarchy. 12.5.3. Implementing DAOs based on plain iBATIS API DAOs can also be written against plain iBATIS API, without any Spring dependencies, directly using an injected SqlMapClient. A corresponding DAO implementation looks like as follows: public class SqlMapAccountDao implements AccountDao { private SqlMapClient sqlMapClient; public void setSqlMapClient(SqlMapClient sqlMapClient) { this.sqlMapClient = sqlMapClient; } public Account getAccount(String email) { try { return (Account) this.sqlMapClient.queryForObject("getAccountByEmail", email); } catch (SQLException ex) { throw new MyDaoException(ex); } } public void insertAccount(Account account) throws DataAccessException { try { this.sqlMapClient.update("insertAccount", account); } catch (SQLException ex) { throw new MyDaoException(ex); } } } In such a scenario, the SQLException thrown by the iBATIS API needs to be handled in a custom fashion: usually, wrapping it in your own application-specific DAO exception. Wiring in the application context would still look like before, due to the fact that the plain iBATIS-based DAO still follows the Dependency Injection pattern: <beans> <bean id="accountDao" class="example.SqlMapAccountDao"> <property name="sqlMapClient" ref="sqlMapClient"/> </bean> </beans> 12.6. JPA Spring Framework (2.5.6) 304
  • 305. Object Relational Mapping (ORM) data access Spring JPA (available under the org.springframework.orm.jpa package) offers comprehensive support for the Java Persistence API in a similar manner to the integration with Hibernate or JDO, while being aware of the underlying implementation in order to provide additional features. 12.6.1. JPA setup in a Spring environment Spring JPA offers three ways of setting up JPA EntityManagerFactory: 12.6.1.1. LocalEntityManagerFactoryBean The LocalEntityManagerFactoryBean creates an EntityManagerFactory suitable for environments which solely use JPA for data access. The factory bean will use the JPA PersistenceProvider autodetection mechanism (according to JPA's Java SE bootstrapping) and, in most cases, requires only the persistence unit name to be specified: <beans> <bean id="myEmf" class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean"> <property name="persistenceUnitName" value="myPersistenceUnit"/> </bean> </beans> This is the simplest but also most limited form of JPA deployment. There is no way to link to an existing JDBC DataSource and no support for global transactions, for example. Furthermore, weaving (byte-code transformation) of persistent classes is provider-specific, often requiring a specific JVM agent to specified on startup. All in all, this option is only really sufficient for standalone applications and test environments (which is exactly what the JPA specification designed it for). Only use this option in simple deployment environments like standalone applications and integration tests. 12.6.1.2. Obtaining an EntityManagerFactory from JNDI Obtaining an EntityManagerFactory from JNDI (for example in a Java EE 5 environment), is just a matter of changing the XML configuration: <beans> <jee:jndi-lookup id="myEmf" jndi-name="persistence/myPersistenceUnit"/> </beans> This assumes standard Java EE 5 bootstrapping, with the Java EE server autodetecting persistence units (i.e. META-INF/persistence.xml files in application jars) and persistence-unit-ref entries in the Java EE deployment descriptor (e.g. web.xml) defining environment naming context locations for those persistence units. In such a scenario, the entire persistence unit deployment, including the weaving (byte-code transformation) of persistent classes, is up to the Java EE server. The JDBC DataSource is defined through a JNDI location in the META-INF/persistence.xml file; EntityManager transactions are integrated with the server's JTA subsystem. Spring merely uses the obtained EntityManagerFactory, passing it on to application objects via dependency injection, and managing transactions for it (typically through JtaTransactionManager). Note that, in case of multiple persistence units used in the same application, the bean names of such a JNDI-retrieved persistence units should match the persistence unit names that the application uses to refer to Spring Framework (2.5.6) 305
  • 306. Object Relational Mapping (ORM) data access them (e.g. in @PersistenceUnit and @PersistenceContext annotations). Use this option when deploying to a Java EE 5 server. Check your server's documentation on how to deploy a custom JPA provider into your server, allowing for a different provider than the server's default. 12.6.1.3. LocalContainerEntityManagerFactoryBean The LocalContainerEntityManagerFactoryBean gives full control over EntityManagerFactory configuration and is appropriate for environments where fine-grained customization is required. The LocalContainerEntityManagerFactoryBean will create a PersistenceUnitInfo based on the persistence.xml file, the supplied dataSourceLookup strategy and the specified loadTimeWeaver. It is thus possible to work with custom DataSources outside of JNDI and to control the weaving process. <beans> <bean id="myEmf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"> <property name="dataSource" ref="someDataSource"/> <property name="loadTimeWeaver"> <bean class="org.springframework.instrument.classloading.InstrumentationLoadTimeWeaver"/> </property> </bean> </beans> A typical persistence.xml file looks as follows: <persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0"> <persistence-unit name="myUnit" transaction-type="RESOURCE_LOCAL"> <mapping-file>META-INF/orm.xml</mapping-file> <exclude-unlisted-classes/> </persistence-unit> </persistence> NOTE: The "exclude-unlisted-classes" element always indicates that NO scanning for annotated entity classes is supposed to happen, in order to support the <exclude-unlisted-classes/> shortcut. This is in line with the JPA specification (which suggests that shortcut) but unfortunately in conflict with the JPA XSD (which implies "false" for that shortcut). As a consequence, "<exclude-unlisted-classes> false </exclude-unlisted-classes/>" is not supported! Simply omit the "exclude-unlisted-classes" element if you would like entity class scanning to actually happen. This is the most powerful JPA setup option, allowing for flexible local configuration within the application. It supports links to an existing JDBC DataSource, supports both local and global transactions, etc. However, it also imposes requirements onto the runtime environment, such as the availability of a weaving-capable ClassLoader if the persistence provider demands byte-code transformation. Note that this option may conflict with the built-in JPA capabilities of a Java EE 5 server. So when running in a full Java EE 5 environment, consider obtaining your EntityManagerFactory from JNDI. Alternatively, specify a custom "persistenceXmlLocation" on your LocalContainerEntityManagerFactoryBean definition, e.g. "META-INF/my-persistence.xml", and only include a descriptor with that name in your application jar files. Since the Java EE 5 server will only look for default META-INF/persistence.xml files, it will ignore such custom persistence units and hence avoid conflicts with a Spring-driven JPA setup upfront. (This applies to Resin 3.1, for example.) Use this option for full JPA capabilities in a Spring-based application environment. This includes web containers such as Tomcat as well as standalone applications and integration tests with sophisticated persistence requirements. Spring Framework (2.5.6) 306
  • 307. Object Relational Mapping (ORM) data access When is load-time weaving required? Not all JPA providers impose the need of a JVM agent (Hibernate being an example). If your provider does not require an agent or you have other alternatives (for example applying enhancements at build time through a custom compiler or an ant task) the load-time weaver should not be used. The LoadTimeWeaver interface is a Spring-provided class that allows JPA ClassTransformer instances to be plugged in a specific manner depending on the environment (web container/application server). Hooking ClassTransformers through a Java 5 agent is typically not efficient - the agents work against the entire virtual machine and inspect every class that is loaded - something that is typically undesirable in a production server enviroment. Spring provides a number of LoadTimeWeaver implementations for various environments, allowing ClassTransformer instances to be applied only per ClassLoader and not per VM. The following sections will discuss typical JPA weaving setup on Tomcat as well as using Spring's VM agent. See the AOP chapter section entitled Section 6.8.4.5, “Spring configuration” for details on how to set up general load-time weaving, covering Tomcat and the VM agent as well as WebLogic, OC4J, GlassFish and Resin. 12.6.1.3.1. Tomcat load-time weaving setup (5.0+) Apache Tomcat's default ClassLoader does not support class transformation but allows custom ClassLoaders to be used. Spring offers the TomcatInstrumentableClassLoader (inside the org.springframework.instrument.classloading.tomcat package) which extends the Tomcat ClassLoader (WebappClassLoader) and allows JPA ClassTransformer instances to 'enhance' all classes loaded by it. In short, JPA transformers will be applied only inside a specific web application (which uses the TomcatInstrumentableClassLoader). In order to use the custom ClassLoader on: 1. Copy spring-tomcat-weaver.jar into $CATALINA_HOME/server/lib (where $CATALINA_HOME represents the root of the Tomcat installation). 2. Instruct Tomcat to use the custom ClassLoader (instead of the default one) by editing the web application context file: <Context path="/myWebApp" docBase="/my/webApp/location"> <Loader loaderClass="org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader"/> </Context> Tomcat 5.0.x and 5.5.x series support several context locations: server configuration file ($CATALINA_HOME/conf/server.xml), the default context configuration ($CATALINA_HOME/conf/context.xml) that affects all deployed web applications and per-webapp configurations, deployed on the server ($CATALINA_HOME/conf/[enginename]/[hostname]/my-webapp-context.xml) side or along with the webapp (your-webapp.war/META-INF/context.xml). For efficiency, inside the web-app configuration style is recommended since only applications which use JPA will use the custom ClassLoader. See the Tomcat 5.x documentation for more details about available context locations. Note that versions prior to 5.5.20 contained a bug in the XML configuration parsing preventing usage of Loader tag inside server.xml (no matter if a ClassLoader is specified or not (be it the official or a custom Spring Framework (2.5.6) 307
  • 308. Object Relational Mapping (ORM) data access one). See Tomcat's bugzilla for more details. If you are using Tomcat 5.5.20+ you can set useSystemClassLoaderAsParent to false to fix the problem: <Context path="/myWebApp" docBase="/my/webApp/location"> <Loader loaderClass="org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader" useSystemClassLoaderAsParent="false"/> </Context> 1. Copy spring-tomcat-weaver.jar into $CATALINA_HOME/lib (where $CATALINA_HOME represents the root of the Tomcat installation). 2. Instruct Tomcat to use the custom ClassLoader (instead of the default one) by editing the web application context file: <Context path="/myWebApp" docBase="/my/webApp/location"> <Loader loaderClass="org.springframework.instrument.classloading.tomcat.TomcatInstrumentableClassLoader"/> </Context> Tomcat 6.0.x (similar to 5.0.x/5.5.x) series support several context locations: server configuration file ($CATALINA_HOME/conf/server.xml), the default context configuration ($CATALINA_HOME/conf/context.xml) that affects all deployed web applications and per-webapp configurations, deployed on the server ($CATALINA_HOME/conf/[enginename]/[hostname]/my-webapp-context.xml) side or along with the webapp (your-webapp.war/META-INF/context.xml). For efficiency, inside the web-app configuration style is recommended since only applications which use JPA will use the custom ClassLoader. See the Tomcat 5.x documentation for more details about available context locations. • Tomcat 5.0.x/5.5.x • Tomcat 6.0.x The last step required on all Tomcat versions, is to use the appropriate the LoadTimeWeaver when configuring LocalContainerEntityManagerFactoryBean: <bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"> <property name="loadTimeWeaver"> <bean class="org.springframework.instrument.classloading.ReflectiveLoadTimeWeaver"/> </property> </bean> Using this technique, JPA applications relying on instrumentation, can run in Tomcat without the need of an agent. This is important especially when hosting applications which rely on different JPA implementations since the JPA transformers are applied only at ClassLoader level and thus, are isolated from each other. Note If TopLink is being used a JPA provider under Tomcat, please place the toplink-essentials jar under $CATALINA_HOME/shared/lib folder instead of your war. 12.6.1.3.2. General load-time weaving using the VM agent For environments where class instrumentation is required but are not supported by the existing LoadTimeWeaver implementations, a JDK agent can be the only solution. For such cases, Spring provides Spring Framework (2.5.6) 308
  • 309. Object Relational Mapping (ORM) data access InstrumentationLoadTimeWeaver which requires a Spring-specific (but very general) VM agent (spring-agent.jar): <bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"> <property name="loadTimeWeaver"> <bean class="org.springframework.instrument.classloading.InstrumentationLoadTimeWeaver"/> </property> </bean> Note that the virtual machine has to be started with the Spring agent, by supplying the following JVM options: -javaagent:/path/to/spring-agent.jar 12.6.1.3.3. Context-wide load-time weaver setup Since Spring 2.5, a context-wide LoadTimeWeaver can be configured using the context:load-time-weaver configuration element. Such a 'global' weaver will be picked up by all JPA LocalContainerEntityManagerFactoryBeans automatically. This is the preferred way of setting up a load-time weaver, delivering autodetection of the platform (WebLogic, OC4J, GlassFish, Tomcat, Resin, VM agent) as well as automatic propagation of the weaver to all weaver-aware beans. <context:load-time-weaver/> <bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"> ... </bean> See the section entitled Section 6.8.4.5, “Spring configuration” for details on how to set up general load-time weaving, covering Tomcat and the VM agent as well as WebLogic, OC4J, GlassFish and Resin. 12.6.1.4. Dealing with multiple persistence units For applications that rely on multiple persistence units locations (stored in various jars in the classpath for example), Spring offers the PersistenceUnitManager to act as a central repository and avoid the (potentially expensive) persistence units discovery process. The default implementation allows multiple locations to be specified (by default, the classpath is searched for 'META-INF/persistence.xml' files) which are parsed and later on retrieved through the persistence unit name: <bean id="pum" class="org.springframework.orm.jpa.persistenceunit.DefaultPersistenceUnitManager"> <property name="persistenceXmlLocation"> <list> <value>org/springframework/orm/jpa/domain/persistence-multi.xml</value> <value>classpath:/my/package/**/custom-persistence.xml</value> <value>classpath*:META-INF/persistence.xml</value> </list> </property> <property name="dataSources"> <map> <entry key="localDataSource" value-ref="local-db"/> <entry key="remoteDataSource" value-ref="remote-db"/> </map> </property> <!-- if no datasource is specified, use this one --> <property name="defaultDataSource" ref="remoteDataSource"/> </bean> <bean id="emf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"> <property name="persistenceUnitManager" ref="pum"/> </bean> Spring Framework (2.5.6) 309
  • 310. Object Relational Mapping (ORM) data access Note that the default implementation allows customization of the persistence unit infos before feeding them to the JPA provider declaratively through its properties (which affect all hosted units) or programmatically, through the PersistenceUnitPostProcessor (which allows persistence unit selection). If no PersistenceUnitManager is specified, one will be created and used internally by LocalContainerEntityManagerFactoryBean. 12.6.2. JpaTemplate and JpaDaoSupport Each JPA-based DAO will then receive a EntityManagerFactory via dependency injection. Such a DAO can be coded against plain JPA and work with the given EntityManagerFactory or through Spring's JpaTemplate: <beans> <bean id="myProductDao" class="product.ProductDaoImpl"> <property name="entityManagerFactory" ref="myEmf"/> </bean> </beans> public class JpaProductDao implements ProductDao { private JpaTemplate jpaTemplate; public void setEntityManagerFactory(EntityManagerFactory emf) { this.jpaTemplate = new JpaTemplate(emf); } public Collection loadProductsByCategory(final String category) throws DataAccessException { return (Collection) this.jpaTemplate.execute(new JpaCallback() { public Object doInJpa(EntityManager em) throws PersistenceException { Query query = em.createQuery("from Product as p where p.category = :category"); query.setParameter("category", category); List result = query.getResultList(); // do some further processing with the result list return result; } }); } } The JpaCallback implementation allows any type of JPA data access. The JpaTemplate will ensure that EntityManagers are properly opened and closed and automatically participate in transactions. Moreover, the JpaTemplate properly handles exceptions, making sure resources are cleaned up and the appropriate transactions rolled back. The template instances are thread-safe and reusable and they can be kept as instance variable of the enclosing class. Note that JpaTemplate offers single-step actions such as find, load, merge, etc along with alternative convenience methods that can replace one line callback implementations. Furthermore, Spring provides a convenient JpaDaoSupport base class that provides the get/setEntityManagerFactory and getJpaTemplate() to be used by subclasses: public class ProductDaoImpl extends JpaDaoSupport implements ProductDao { public Collection loadProductsByCategory(String category) throws DataAccessException { Map<String, String> params = new HashMap<String, String>(); params.put("category", category); return getJpaTemplate().findByNamedParams("from Product as p where p.category = :category", params); } } Besides working with Spring's JpaTemplate, one can also code Spring-based DAOs against the JPA, doing one's own explicit EntityManager handling. As also elaborated in the corresponding Hibernate section, the Spring Framework (2.5.6) 310
  • 311. Object Relational Mapping (ORM) data access main advantage of this approach is that your data access code is able to throw checked exceptions. JpaDaoSupport offers a variety of support methods for this scenario, for retrieving and releasing a transaction EntityManager, as well as for converting exceptions. JpaTemplate mainly exists as a sibling of JdoTemplate and HibernateTemplate, offering the same style for people used to it. For newly started projects, consider adopting the native JPA style of coding data access objects instead, based on a "shared EntityManager" reference obtained through the JPA @PersistenceContext annotation (using Spring's PersistenceAnnotationBeanPostProcessor; see below for details.) 12.6.3. Implementing DAOs based on plain JPA Note While EntityManagerFactory instances are thread-safe, EntityManager instances are not. The injected JPA EntityManager behave just like an EntityManager fetched from an application server's JNDI environment, as defined by the JPA specification. It will delegate all calls to the current transactional EntityManager, if any; else, it will fall back to a newly created EntityManager per operation, making it thread-safe. It is possible to write code against the plain JPA without using any Spring dependencies, using an injected EntityManagerFactory or EntityManager. Note that Spring can understand @PersistenceUnit and @PersistenceContext annotations both at field and method level if a PersistenceAnnotationBeanPostProcessor is enabled. A corresponding DAO implementation might look like this: public class ProductDaoImpl implements ProductDao { private EntityManagerFactory emf; @PersistenceUnit public void setEntityManagerFactory(EntityManagerFactory emf) { this.emf = emf; } public Collection loadProductsByCategory(String category) { EntityManager em = this.emf.createEntityManager(); try { Query query = em.createQuery("from Product as p where p.category = ?1"); query.setParameter(1, category); return query.getResultList(); } finally { if (em != null) { em.close(); } } } } The DAO above has no dependency on Spring and still fits nicely into a Spring application context, just like it would if coded against Spring's JpaTemplate. Moreover, the DAO takes advantage of annotations to require the injection of the default EntityManagerFactory: <beans> <!-- bean post-processor for JPA annotations --> <bean class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/> <bean id="myProductDao" class="product.ProductDaoImpl"/> </beans> Spring Framework (2.5.6) 311
  • 312. Object Relational Mapping (ORM) data access Note: As alternative to defining a PersistenceAnnotationBeanPostProcessor explicitly, consider using Spring 2.5's context:annotation-config XML element in your application context configuration. This will automatically register all of Spring's standard post-processors for annotation-based configuration (including CommonAnnotationBeanPostProcessor etc). <beans> <!-- post-processors for all standard config annotations --> <context:annotation-config/> <bean id="myProductDao" class="product.ProductDaoImpl"/> </beans> The main issue with such a DAO is that it always creates a new EntityManager via the factory. This can be easily overcome by requesting a transactional EntityManager (also called "shared EntityManager", since it is a shared, thread-safe proxy for the actual transactional EntityManager) to be injected instead of the factory: public class ProductDaoImpl implements ProductDao { @PersistenceContext private EntityManager em; public Collection loadProductsByCategory(String category) { Query query = em.createQuery("from Product as p where p.category = :category"); query.setParameter("category", category); return query.getResultList(); } } Note that the @PersistenceContext annotation has an optional attribute type, which defaults to PersistenceContextType.TRANSACTION. This default is what you need to receive a "shared EntityManager" proxy. The alternative, PersistenceContextType.EXTENDED, is a completely different affair: This results in a so-called "extended EntityManager", which is not thread-safe and hence must not be used in a concurrently accessed component such as a Spring-managed singleton bean. Extended EntityManagers are only supposed to be used in stateful components that, for example, reside in a session, with the lifecycle of the EntityManager not tied to a current transaction but rather being completely up to the application. Method and Field level Injection Annotations that indicate dependency injections (such as @PersistenceUnit and @PersistenceContext) can be applied on field or methods inside a class, therefore the expression "method/field level injection". Field-level annotations concise and easier to use while method-level allow for processing the injected dependency. In both cases the member visibility (public, protected, private) does not matter. What about class level annotations? On the Java EE 5 platform, they are used for dependency declaration and not for resource injection. The injected EntityManager is Spring-managed (aware of the ongoing transaction). It is important to note that even though the new implementation prefers method level injection (of an EntityManager instead of an EntityManagerFactory), no change is required in the application context XML due to annotation usage. The main advantage of this DAO style is that it depends on Java Persistence API; no import of any Spring class is required. Moreover, as the JPA annotations are understood, the injections are applied automatically by the Spring container. This is of course appealing from a non-invasiveness perspective, and might feel more natural to JPA developers. Spring Framework (2.5.6) 312
  • 313. Object Relational Mapping (ORM) data access 12.6.4. Exception Translation However, the DAO throws the plain PersistenceException exception class (which is unchecked, and so does not have to be declared or caught) but also IllegalArgumentException and IllegalStateException, which means that callers can only treat exceptions as generally fatal - unless they want to depend on JPA's own exception structure. Catching specific causes such as an optimistic locking failure is not possible without tying the caller to the implementation strategy. This tradeoff might be acceptable to applications that are strongly JPA-based and/or do not need any special exception treatment. However, Spring offers a solution allowing exception translation to be applied transparently through the @Repository annotation: @Repository public class ProductDaoImpl implements ProductDao { // class body here... } <beans> <!-- Exception translation bean post processor --> <bean class="org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor"/> <bean id="myProductDao" class="product.ProductDaoImpl"/> </beans> The postprocessor will automatically look for all exception translators (implementations of the PersistenceExceptionTranslator interface) and advise all beans marked with the @Repository annotation so that the discovered translators can intercept and apply the appropriate translation on the thrown exceptions. In summary: DAOs can be implemented based on the plain Java Persistence API and annotations, while still being able to benefit from Spring-managed transactions, dependency injection, and transparent exception conversion (if desired) to Spring's custom exception hierarchies. 12.7. Transaction Management To execute service operations within transactions, you can use Spring's common declarative transaction facilities. For example: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5. http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <bean id="myTxManager" class="org.springframework.orm.jpa.JpaTransactionManager"> <property name="entityManagerFactory" ref="myEmf"/> </bean> <bean id="myProductService" class="product.ProductServiceImpl"> <property name="productDao" ref="myProductDao"/> </bean> <aop:config> <aop:pointcut id="productServiceMethods" expression="execution(* product.ProductService.*(..))"/> <aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/> </aop:config> <tx:advice id="txAdvice" transaction-manager="myTxManager"> Spring Framework (2.5.6) 313
  • 314. Object Relational Mapping (ORM) data access <tx:attributes> <tx:method name="increasePrice*" propagation="REQUIRED"/> <tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/> <tx:method name="*" propagation="SUPPORTS" read-only="true"/> </tx:attributes> </tx:advice> </beans> Spring JPA allows a configured JpaTransactionManager to expose a JPA transaction to JDBC access code that accesses the same JDBC DataSource, provided that the registered JpaDialect supports retrieval of the underlying JDBC Connection. Out of the box, Spring provides dialects for the Toplink, Hibernate and OpenJPA JPA implementations. See the next section for details on the JpaDialect mechanism. 12.8. JpaDialect As an advanced feature JpaTemplate, JpaTransactionManager and subclasses of AbstractEntityManagerFactoryBean support a custom JpaDialect, to be passed into the "jpaDialect" bean property. In such a scenario, the DAOs won't receive an EntityManagerFactory reference but rather a full JpaTemplate instance instead (for example, passed into JpaDaoSupport's "jpaTemplate" property). A JpaDialect implementation can enable some advanced features supported by Spring, usually in a vendor-specific manner: • applying specific transaction semantics (such as custom isolation level or transaction timeout) • retrieving the transactional JDBC Connection (for exposure to JDBC-based DAOs) • advanced translation of PersistenceExceptions to Spring DataAccessExceptions This is particularly valuable for special transaction semantics and for advanced translation of exception. Note that the default implementation used (DefaultJpaDialect) doesn't provide any special capabilities and if the above features are required, the appropriate dialect has to be specified. See the JpaDialect Javadoc for more details of its operations and how they are used within Spring's JPA support. Spring Framework (2.5.6) 314
  • 315. Part III. The Web This part of the reference documentation covers the Spring Framework's support for the presentation tier (and specifically web-based presentation tiers). The Spring Framework's own web framework, Spring Web MVC, is covered in the first couple of chapters. A number of the remaining chapters in this part of the reference documentation are concerned with the Spring Framework's integration with other web technologies, such as Struts and JSF (to name but two). This section concludes with coverage of Spring's MVC portlet framework. • Chapter 13, Web MVC framework • Chapter 14, View technologies • Chapter 15, Integrating with other web frameworks • Chapter 16, Portlet MVC Framework Spring Framework (2.5.6) 315
  • 316. Chapter 13. Web MVC framework 13.1. Introduction Spring's Web MVC framework is designed around a DispatcherServlet that dispatches requests to handlers, with configurable handler mappings, view resolution, locale and theme resolution as well as support for upload files. The default handler is a very simple Controller interface, just offering a ModelAndView handleRequest(request,response) method. This can already be used for application controllers, but you will prefer the included implementation hierarchy, consisting of, for example AbstractController, AbstractCommandController and SimpleFormController. Application controllers will typically be subclasses of those. Note that you can choose an appropriate base class: if you don't have a form, you don't need a form controller. This is a major difference to Struts. Tip Since Spring 2.5, an annotated controller style is available for Java 5+ users. This is a compelling alternative to implementing traditional Controller (sub-)classes, allowing for flexible multi-action handling. See the Section 13.11, “Annotation-based controller configuration” section for details. “Open for extension...” One of the overarching design principles in Spring Web MVC (and in Spring in general) is the “Open for extension, closed for modification” principle. The reason that this principle is being mentioned here is because a number of methods in the core classes in Spring Web MVC are marked final. This means of course that you as a developer cannot override these methods to supply your own behavior... this is by design and has not been done arbitrarily to annoy. The book 'Expert Spring Web MVC and Web Flow' by Seth Ladd and others explains this principle and the reasons for adhering to it in some depth on page 117 (first edition) in the section entitled 'A Look At Design'. If you don't have access to the aforementioned book, then the following article may be of interest the next time you find yourself going “Gah! Why can't I override this method?” (if indeed you ever do). 1. Bob Martin, The Open-Closed Principle (PDF) Note that you cannot add advice to final methods using Spring MVC. This means it won't be possible to add advice to for example the AbstractController.handleRequest() method. Refer to Section 6.6.1, “Understanding AOP proxies” for more information on AOP proxies and why you cannot add advice to final methods. Spring Web MVC allows you to use any object as a command or form object - there is no need to implement a framework-specific interface or base class. Spring's data binding is highly flexible: for example, it treats type mismatches as validation errors that can be evaluated by the application, not as system errors. All this means that you don't need to duplicate your business objects' properties as simple, untyped strings in your form objects just to be able to handle invalid submissions, or to convert the Strings properly. Instead, it is often preferable to bind directly to your business objects. This is another major difference to Struts which is built around required Spring Framework (2.5.6) 316
  • 317. Web MVC framework base classes such as Action and ActionForm. Compared to WebWork, Spring has more differentiated object roles. It supports the notion of a Controller, an optional command or form object, and a model that gets passed to the view. The model will normally include the command or form object but also arbitrary reference data; instead, a WebWork Action combines all those roles into one single object. WebWork does allow you to use existing business objects as part of your form, but only by making them bean properties of the respective Action class. Finally, the same Action instance that handles the request is used for evaluation and form population in the view. Thus, reference data needs to be modeled as bean properties of the Action too. These are (arguably) too many roles for one object. Spring's view resolution is extremely flexible. A Controller implementation can even write a view directly to the response (by returning null for the ModelAndView). In the normal case, a ModelAndView instance consists of a view name and a model Map, which contains bean names and corresponding objects (like a command or form, containing reference data). View name resolution is highly configurable, either via bean names, via a properties file, or via your own ViewResolver implementation. The fact that the model (the M in MVC) is based on the Map interface allows for the complete abstraction of the view technology. Any renderer can be integrated directly, whether JSP, Velocity, or any other rendering technology. The model Map is simply transformed into an appropriate format, such as JSP request attributes or a Velocity template model. 13.1.1. Pluggability of other MVC implementations There are several reasons why some projects will prefer to use other MVC implementations. Many teams expect to leverage their existing investment in skills and tools. In addition, there is a large body of knowledge and experience available for the Struts framework. Thus, if you can live with Struts' architectural flaws, it can still be a viable choice for the web layer; the same applies to WebWork and other web MVC frameworks. If you don't want to use Spring's web MVC, but intend to leverage other solutions that Spring offers, you can integrate the web MVC framework of your choice with Spring easily. Simply start up a Spring root application context via its ContextLoaderListener, and access it via its ServletContext attribute (or Spring's respective helper method) from within a Struts or WebWork action. Note that there aren't any "plug-ins" involved, so no dedicated integration is necessary. From the web layer's point of view, you'll simply use Spring as a library, with the root application context instance as the entry point. All your registered beans and all of Spring's services can be at your fingertips even without Spring's Web MVC. Spring doesn't compete with Struts or WebWork in this scenario, it just addresses the many areas that the pure web MVC frameworks don't, from bean configuration to data access and transaction handling. So you are able to enrich your application with a Spring middle tier and/or data access tier, even if you just want to use, for example, the transaction abstraction with JDBC or Hibernate. 13.1.2. Features of Spring Web MVC Spring Web Flow Spring Web Flow (SWF) aims to be the best solution for the management of web application page flow. SWF integrates with existing frameworks like Spring MVC, Struts, and JSF, in both servlet and portlet environments. If you have a business process (or processes) that would benefit from a conversational model as opposed to a purely request model, then SWF may be the solution. SWF allows you to capture logical page flows as self-contained modules that are reusable in different situations, and as such is ideal for building web application modules that guide the user through Spring Framework (2.5.6) 317
  • 318. Web MVC framework controlled navigations that drive business processes. For more information about SWF, consult the Spring Web Flow website. Spring's web module provides a wealth of unique web support features, including: • Clear separation of roles - controller, validator, command object, form object, model object, DispatcherServlet, handler mapping, view resolver, etc. Each role can be fulfilled by a specialized object. • Powerful and straightforward configuration of both framework and application classes as JavaBeans, including easy referencing across contexts, such as from web controllers to business objects and validators. • Adaptability, non-intrusiveness. Use whatever controller subclass you need (plain, command, form, wizard, multi-action, or a custom one) for a given scenario instead of deriving from a single controller for everything. • Reusable business code - no need for duplication. You can use existing business objects as command or form objects instead of mirroring them in order to extend a particular framework base class. • Customizable binding and validation - type mismatches as application-level validation errors that keep the offending value, localized date and number binding, etc instead of String-only form objects with manual parsing and conversion to business objects. • Customizable handler mapping and view resolution - handler mapping and view resolution strategies range from simple URL-based configuration, to sophisticated, purpose-built resolution strategies. This is more flexible than some web MVC frameworks which mandate a particular technique. • Flexible model transfer - model transfer via a name/value Map supports easy integration with any view technology. • Customizable locale and theme resolution, support for JSPs with or without Spring tag library, support for JSTL, support for Velocity without the need for extra bridges, etc. • A simple yet powerful JSP tag library known as the Spring tag library that provides support for features such as data binding and themes. The custom tags allow for maximum flexibility in terms of markup code. For information on the tag library descriptor, see the appendix entitled Appendix D, spring.tld • A JSP form tag library, introduced in Spring 2.0, that makes writing forms in JSP pages much easier. For information on the tag library descriptor, see the appendix entitled Appendix E, spring-form.tld • Beans whose lifecycle is scoped to the current HTTP request or HTTP Session. This is not a specific feature of Spring MVC itself, but rather of the WebApplicationContext container(s) that Spring MVC uses. These bean scopes are described in detail in the section entitled Section 3.4.4, “The other scopes” 13.2. The DispatcherServlet Spring's web MVC framework is, like many other web MVC frameworks, request-driven, designed around a central servlet that dispatches requests to controllers and offers other functionality facilitating the development of web applications. Spring's DispatcherServlet however, does more than just that. It is completely integrated with the Spring IoC container and as such allows you to use every other feature that Spring has. Spring Framework (2.5.6) 318
  • 319. Web MVC framework The request processing workflow of the Spring Web MVC DispatcherServlet is illustrated in the following diagram. The pattern-savvy reader will recognize that the DispatcherServlet is an expression of the “Front Controller” design pattern (this is a pattern that Spring Web MVC shares with many other leading web frameworks). The requesting processing workflow in Spring Web MVC (high level) The DispatcherServlet is an actual Servlet (it inherits from the HttpServlet base class), and as such is declared in the web.xml of your web application. Requests that you want the DispatcherServlet to handle will have to be mapped using a URL mapping in the same web.xml file. This is standard J2EE servlet configuration; an example of such a DispatcherServlet declaration and mapping can be found below. <web-app> <servlet> <servlet-name>example</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>example</servlet-name> <url-pattern>*.form</url-pattern> </servlet-mapping> </web-app> In the example above, all requests ending with .form will be handled by the 'example' DispatcherServlet. This is only the first step in setting up Spring Web MVC... the various beans used by the Spring Web MVC framework (over and above the DispatcherServlet itself) now need to be configured. As detailed in the section entitled Section 3.8, “The ApplicationContext”, ApplicationContext instances in Spring can be scoped. In the web MVC framework, each DispatcherServlet has its own Spring Framework (2.5.6) 319
  • 320. Web MVC framework WebApplicationContext, which inherits all the beans already defined in the root WebApplicationContext. These inherited beans defined can be overridden in the servlet-specific scope, and new scope-specific beans can be defined local to a given servlet instance. Context hierarchy in Spring Web MVC The framework will, on initialization of a DispatcherServlet, look for a file named [servlet-name]-servlet.xml in the WEB-INF directory of your web application and create the beans defined there (overriding the definitions of any beans defined with the same name in the global scope). Consider the following DispatcherServlet servlet configuration (in the 'web.xml' file.) <web-app> <servlet> <servlet-name>golfing</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>golfing</servlet-name> <url-pattern>*.do</url-pattern> </servlet-mapping> </web-app> With the above servlet configuration in place, you will need to have a file called '/WEB-INF/golfing-servlet.xml' in your application; this file will contain all of your Spring Web MVC-specific components (beans). The exact location of this configuration file can be changed via a servlet initialization parameter (see below for details). Spring Framework (2.5.6) 320
  • 321. Web MVC framework The WebApplicationContext is an extension of the plain ApplicationContext that has some extra features necessary for web applications. It differs from a normal ApplicationContext in that it is capable of resolving themes (see Section 13.7, “Using themes”), and that it knows which servlet it is associated with (by having a link to the ServletContext). The WebApplicationContext is bound in the ServletContext, and by using static methods on the RequestContextUtils class you can always lookup the WebApplicationContext in case you need access to it. The Spring DispatcherServlet has a couple of special beans it uses in order to be able to process requests and render the appropriate views. These beans are included in the Spring framework and can be configured in the WebApplicationContext, just as any other bean would be configured. Each of those beans is described in more detail below. Right now, we'll just mention them, just to let you know they exist and to enable us to go on talking about the DispatcherServlet. For most of the beans, sensible defaults are provided so you don't (initially) have to worry about configuring them. Table 13.1. Special beans in the WebApplicationContext Bean type Explanation Controllers Controllers are the components that form the 'C' part of the MVC. Handler mappings Handler mappings handle the execution of a list of pre- and post-processors and controllers that will be executed if they match certain criteria (for instance a matching URL specified with the controller) View resolvers View resolvers are components capable of resolving view names to views Locale resolver A locale resolver is a component capable of resolving the locale a client is using, in order to be able to offer internationalized views Theme resolver A theme resolver is capable of resolving themes your web application can use, for example, to offer personalized layouts multipart file A multipart file resolver offers the functionality to process file uploads from HTML resolver forms Handler exception Handler exception resolvers offer functionality to map exceptions to views or resolver(s) implement other more complex exception handling code When a DispatcherServlet is set up for use and a request comes in for that specific DispatcherServlet, said DispatcherServlet starts processing the request. The list below describes the complete process a request goes through when handled by a DispatcherServlet: 1. The WebApplicationContext is searched for and bound in the request as an attribute in order for the controller and other elements in the process to use. It is bound by default under the key DispatcherServlet.WEB_APPLICATION_CONTEXT_ATTRIBUTE. 2. The locale resolver is bound to the request to let elements in the process resolve the locale to use when processing the request (rendering the view, preparing data, etc.) If you don't use the resolver, it won't affect anything, so if you don't need locale resolving, you don't have to use it. 3. The theme resolver is bound to the request to let elements such as views determine which theme to use. The theme resolver does not affect anything if you don't use it, so if you don't need themes you can just ignore it. 4. If a multipart resolver is specified, the request is inspected for multiparts; if multiparts are found, the request Spring Framework (2.5.6) 321
  • 322. Web MVC framework is wrapped in a MultipartHttpServletRequest for further processing by other elements in the process. (See the section entitled Section 13.8.2, “Using the MultipartResolver” for further information about multipart handling). 5. An appropriate handler is searched for. If a handler is found, the execution chain associated with the handler (preprocessors, postprocessors, and controllers) will be executed in order to prepare a model (for rendering). 6. If a model is returned, the view is rendered. If no model is returned (which could be due to a pre- or postprocessor intercepting the request, for example, for security reasons), no view is rendered, since the request could already have been fulfilled. Exceptions that are thrown during processing of the request get picked up by any of the handler exception resolvers that are declared in the WebApplicationContext. Using these exception resolvers allows you to define custom behaviors in case such exceptions get thrown. The Spring DispatcherServlet also has support for returning the last-modification-date, as specified by the Servlet API. The process of determining the last modification date for a specific request is straightforward: the DispatcherServlet will first lookup an appropriate handler mapping and test if the handler that is found implements the interface LastModified interface. If so, the value of the long getLastModified(request) method of the LastModified interface is returned to the client. You can customize Spring's DispatcherServlet by adding context parameters in the web.xml file or servlet initialization parameters. The possibilities are listed below. Table 13.2. DispatcherServlet initialization parameters Parameter Explanation contextClass Class that implements WebApplicationContext, which will be used to instantiate the context used by this servlet. If this parameter isn't specified, the XmlWebApplicationContext will be used. String contextConfigLocation which is passed to the context instance (specified by contextClass) to indicate where context(s) can be found. The string is potentially split up into multiple strings (using a comma as a delimiter) to support multiple contexts (in case of multiple context locations, of beans that are defined twice, the latest takes precedence). namespace the namespace of the WebApplicationContext. Defaults to [servlet-name]-servlet. 13.3. Controllers The notion of a controller is part of the MVC design pattern (more specifically, it is the 'C' in MVC). Controllers provide access to the application behavior which is typically defined by a service interface. Controllers interpret user input and transform such input into a sensible model which will be represented to the user by the view. Spring has implemented the notion of a controller in a very abstract way enabling a wide variety of different kinds of controllers to be created. Spring contains form-specific controllers, command-based controllers, and controllers that execute wizard-style logic, to name but a few. Spring's basis for the controller architecture is the org.springframework.web.servlet.mvc.Controller interface, the source code for which is listed below. public interface Controller { Spring Framework (2.5.6) 322
  • 323. Web MVC framework /** * Process the request and return a ModelAndView object which the DispatcherServlet * will render. */ ModelAndView handleRequest( HttpServletRequest request, HttpServletResponse response) throws Exception; } As you can see, the Controller interface defines a single method that is responsible for handling a request and returning an appropriate model and view. These three concepts are the basis for the Spring MVC implementation - ModelAndView and Controller. While the Controller interface is quite abstract, Spring offers a lot of Controller implementations out of the box that already contain a lot of the functionality you might need. The Controller interface just defines the most basic responsibility required of every controller; namely handling a request and returning a model and a view. 13.3.1. AbstractController and WebContentGenerator To provide a basic infrastructure, all of Spring's various Controller inherit from AbstractController, a class offering caching support and, for example, the setting of the mimetype. Table 13.3. Features offered by the AbstractController Feature Explanation supportedMethods indicates what methods this controller should accept. Usually this is set to both GET and POST, but you can modify this to reflect the method you want to support. If a request is received with a method that is not supported by the controller, the client will be informed of this (expedited by the throwing of a ServletException). requireSession indicates whether or not this controller requires a HTTP session to do its work. If a session is not present when such a controller receives a request, the user is informed of this by a ServletException being thrown. synchronizeOnSession use this if you want handling by this controller to be synchronized on the user's HTTP session. cacheSeconds when you want a controller to generate a caching directive in the HTTP response, specify a positive integer here. By default the value of this property is set to -1 so no caching directives will be included in the generated response. useExpiresHeader tweaks your controllers to specify the HTTP 1.0 compatible "Expires" header in the generated response. By default the value of this property is true. useCacheHeader tweaks your controllers to specify the HTTP 1.1 compatible "Cache-Control" header in the generated response. By default the value of this property is true. When using the AbstractController as the baseclass for your controllers you only have to override the handleRequestInternal(HttpServletRequest, HttpServletResponse) method, implement your logic, and return a ModelAndView object. Here is short example consisting of a class and a declaration in the web application context. package samples; Spring Framework (2.5.6) 323
  • 324. Web MVC framework public class SampleController extends AbstractController { public ModelAndView handleRequestInternal( HttpServletRequest request, HttpServletResponse response) throws Exception { ModelAndView mav = new ModelAndView("hello"); mav.addObject("message", "Hello World!"); return mav; } } <bean id="sampleController" class="samples.SampleController"> <property name="cacheSeconds" value="120"/> </bean> The above class and the declaration in the web application context is all you need besides setting up a handler mapping (see the section entitled Section 13.4, “Handler mappings”) to get this very simple controller working. This controller will generate caching directives telling the client to cache things for 2 minutes before rechecking. This controller also returns a hard-coded view (which is typically considered bad practice). 13.3.2. Other simple controllers Although you can extend AbstractController, Spring provides a number of concrete implementations which offer functionality that is commonly used in simple MVC applications. The ParameterizableViewController is basically the same as the example above, except for the fact that you can specify the view name that it will return in the web application context (and thus remove the need to hard-code the viewname in the Java class). The UrlFilenameViewController inspects the URL and retrieves the filename of the file request and uses that as a viewname. For example, the filename of http://www.springframework.org/index.html request is index. 13.3.3. The MultiActionController Spring offers a MultiActionController class that supports the aggregation of multiple request-handling methods into one controller, which then allows you to group related functionality together. (If you are a Struts veteran you might recognize the similarity between the Struts DispatchAction and the Spring MVC MultiActionController.) The MultiActionController class is defined in a distinct package - org.springframework.web.servlet.mvc.multiaction - and it is capable of mapping requests to method names and then invoking the correct method to handle a particular request. Using the MultiActionController is especially handy when you have a lot of related functionality that would perhaps be nice to define all in a single class without having to implement one Controller for each bit of functionality. The MultiActionController typically is not appropriate for capturing very complex request-handling logic or use cases that address totally-different areas of functionality, and you are encouraged to stick with the standard 'one piece-of-functionality maps to one Controller' for such cases. There are two usage-styles for the MultiActionController. Either you subclass the MultiActionController and specify the methods that will be resolved by the MethodNameResolver on your subclass, or you define a delegate object, on which methods resolved by the MethodNameResolver will be invoked. If you choose the former style, you do not need to set a delegate, but for the latter style, you will need to inject your delegate object into the MultiActionController as a collaborator (either as a single constructor argument or via the 'setDelegate' method). The MultiActionController needs some strategy to determine which method to invoke when handling an incoming request: this strategy is defined by the MethodNameResolver interface. The MultiActionController Spring Framework (2.5.6) 324
  • 325. Web MVC framework class exposes the 'methodNameResolver' property so that you can inject a MethodNameResolver that is capable of doing that. The methods that you define on a MultiActionController (or on the class of the injected delegate object) must conform to the following signature: // 'anyMeaningfulName' can be replaced by any method name public [ModelAndView | Map | void] anyMeaningfulName(HttpServletRequest, HttpServletResponse [,HttpSession] [,An The full details of this method signature are covered in the class-level Javadoc of the MultiActionController source itself. If you are planning to use the MultiActionController, you are highly encouraged to consult that Javadoc. However, below you will find some basic examples of valid MultiActionController method signatures. The standard signature (mirrors the Controller interface method). public ModelAndView displayCatalog(HttpServletRequest, HttpServletResponse) This signature accepts a Login argument that will be populated (bound) with parameters retrieved from the request. public ModelAndView login(HttpServletRequest, HttpServletResponse, Login) This signature requires that the request already have a valid session. public ModelAndView viewCart(HttpServletRequest, HttpServletResponse, HttpSession) This signature accepts a Product argument that will be populated (bound) with parameters retrieved from the request and requires that the request already have a valid session. Note that the order of arguments is important: the session must be the third argument, and an object to be bound must always be the final argument (fourth when a session is specified, or third otherwise). public ModelAndView updateCart(HttpServletRequest, HttpServletResponse, HttpSession, Product) This signature has a void return type indicating that the handler method assumes the responsibility of writing the response. public void home(HttpServletRequest, HttpServletResponse) This signature has a Map return type indicating that a view name translator will be responsible for providing the view name based upon the request, and the model will consist of the Map's entries (see the section entitled Section 13.10, “Convention over configuration” below). public Map list(HttpServletRequest, HttpServletResponse) The MethodNameResolver is responsible for resolving method names based on the specifics of the incoming HttpServletRequest. A number of MethodNameResolver implementations are provided for you, and of course you can always write your own. Please also note that the InternalPathMethodNameResolver is the default MethodNameResolver that will be used if you don't inject one explicitly. • InternalPathMethodNameResolver - interprets the final filename from the request path and uses that as the method name/ For example, 'http://www.sf.net/testing.view' will result in the method testing(HttpServletRequest, Spring Framework (2.5.6) 325
  • 326. Web MVC framework HttpServletResponse) being invoked. • ParameterMethodNameResolver - interprets a request parameter as the name of the method that is to be invoked. For example, 'http://www.sf.net/index.view?method=testIt' will result in the method testIt(HttpServletRequest, HttpServletResponse) being invoked. The 'paramName' property specifies the name of the request parameter that is to be used. • PropertiesMethodNameResolver - uses a user-defined Properties object with request URLs mapped to method names. For example, when the Properties contain '/index/welcome.html=doIt' and a request to /index/welcome.html comes in, the doIt(HttpServletRequest, HttpServletResponse) method will be invoked. This particular MethodNameResolver uses the Spring PathMatcher class internally, so if the Properties contained '/**/welcom?.html', the example would also have worked. You may also declare custom methods for handling Exceptions that occur during request handling. The valid signature for such a method is similar to the request handling methods in that the HttpServletRequest and HttpServletResponse must be provided as the first and second parameters respectively. Unlike request handling methods however, the method's name is irrelevant. Instead, when determining which Exception handling method to invoke, the decision is based upon the most specific possible match among the methods whose third argument is some type of Exception. Here is an example signature for one such Exception handling method. public ModelAndView processException(HttpServletRequest, HttpServletResponse, IllegalArgumentException) Let's look at an example showing the delegate-style of MultiActionController usage in conjunction with the ParameterMethodNameResolver. <bean id="paramMultiController" class="org.springframework.web.servlet.mvc.multiaction.MultiActionController"> <property name="methodNameResolver"> <bean class="org.springframework.web.servlet.mvc.multiaction.ParameterMethodNameResolver"> <property name="paramName" value="method"/> </bean> </property> <property name="delegate"> <bean class="samples.SampleDelegate"/> </property> </bean> } public class SampleDelegate { public ModelAndView retrieveIndex(HttpServletRequest req, HttpServletResponse resp) { return new ModelAndView("index", "date", new Long(System.currentTimeMillis())); } } When using the delegate shown above, we could also configure the PropertiesMethodNameResolver to match any number couple of URLs to the method we defined: <bean id="propsResolver" class="org....mvc.multiaction.PropertiesMethodNameResolver"> <property name="mappings"> <value> /index/welcome.html=retrieveIndex /**/notwelcome.html=retrieveIndex /*/user?.html=retrieveIndex Spring Framework (2.5.6) 326
  • 327. Web MVC framework </value> </property> </bean> <bean id="paramMultiController" class="org....mvc.multiaction.MultiActionController"> <property name="methodNameResolver" ref="propsResolver"/> <property name="delegate"> <bean class="samples.SampleDelegate"/> </property> </bean> 13.3.4. Command controllers Spring's command controllers are a fundamental part of the Spring Web MVC package. Command controllers provide a way to interact with data objects and dynamically bind parameters from the HttpServletRequest to the data object specified. They perform a somewhat similar role to the Struts ActionForm, but in Spring, your data objects don't have to implement a framework-specific interface. First, lets examine what command controllers are available straight out of the box. • AbstractCommandController - a command controller you can use to create your own command controller, capable of binding request parameters to a data object you specify. This class does not offer form functionality; it does however offer validation features and lets you specify in the controller itself what to do with the command object that has been populated with request parameter values. • AbstractFormController - an abstract controller offering form submission support. Using this controller you can model forms and populate them using a command object you retrieve in the controller. After a user has filled the form, the AbstractFormController binds the fields, validates the command object, and hands the object back to the controller to take the appropriate action. Supported features are: invalid form submission (resubmission), validation, and normal form workflow. You implement methods to determine which views are used for form presentation and success. Use this controller if you need forms, but don't want to specify what views you're going to show the user in the application context. • SimpleFormController - a form controller that provides even more support when creating a form with a corresponding command object. The SimpleFormController let's you specify a command object, a viewname for the form, a viewname for page you want to show the user when form submission has succeeded, and more. • AbstractWizardFormController - as the class name suggests, this is an abstract class - your wizard controller should extend it. This means you have to implement the validatePage(), processFinish() and processCancel() methods. You probably also want to write a contractor, which should at the very least call setPages() and setCommandName(). The former takes as its argument an array of type String. This array is the list of views which comprise your wizard. The latter takes as its argument a String, which will be used to refer to your command object from within your views. As with any instance of AbstractFormController, you are required to use a command object - a JavaBean which will be populated with the data from your forms. You can do this in one of two ways: either call setCommandClass() from the constructor with the class of your command object, or implement the formBackingObject() method. AbstractWizardFormController has a number of concrete methods that you may wish to override. Of these, the ones you are likely to find most useful are: referenceData(..) which you can use to pass model data to your view in the form of a Map; getTargetPage() if your wizard needs to change page order or omit pages dynamically; and onBindAndValidate() if you want to override the built-in binding and validation workflow. Spring Framework (2.5.6) 327
  • 328. Web MVC framework Finally, it is worth pointing out the setAllowDirtyBack() and setAllowDirtyForward(), which you can call from getTargetPage() to allow users to move backwards and forwards in the wizard even if validation fails for the current page. For a full list of methods, see the Javadoc for AbstractWizardFormController. There is an implemented example of this wizard in the jPetStore included in the Spring distribution: org.springframework.samples.jpetstore.web.spring.OrderFormController. 13.4. Handler mappings Using a handler mapping you can map incoming web requests to appropriate handlers. There are some handler mappings you can use out of the box, for example, the SimpleUrlHandlerMapping or the BeanNameUrlHandlerMapping, but let's first examine the general concept of a HandlerMapping. The functionality a basic HandlerMapping provides is the delivering of a HandlerExecutionChain, which must contain the handler that matches the incoming request, and may also contain a list of handler interceptors that are applied to the request. When a request comes in, the DispatcherServlet will hand it over to the handler mapping to let it inspect the request and come up with an appropriate HandlerExecutionChain. Then the DispatcherServlet will execute the handler and interceptors in the chain (if any). The concept of configurable handler mappings that can optionally contain interceptors (executed before or after the actual handler was executed, or both) is extremely powerful. A lot of supporting functionality can be built into custom HandlerMappings. Think of a custom handler mapping that chooses a handler not only based on the URL of the request coming in, but also on a specific state of the session associated with the request. This section describes two of Spring's most commonly used handler mappings. They both extend the AbstractHandlerMapping and share the following properties: • interceptors: the list of interceptors to use. HandlerInterceptors are discussed in Section 13.4.3, “Intercepting requests - the HandlerInterceptor interface”. • defaultHandler: the default handler to use, when this handler mapping does not result in a matching handler. • order: based on the value of the order property (see the org.springframework.core.Ordered interface), Spring will sort all handler mappings available in the context and apply the first matching handler. • alwaysUseFullPath: if this property is set to true, Spring will use the full path within the current servlet context to find an appropriate handler. If this property is set to false (the default), the path within the current servlet mapping will be used. For example, if a servlet is mapped using /testing/* and the alwaysUseFullPath property is set to true, /testing/viewPage.html would be used, whereas if the property is set to false, /viewPage.html would be used. • urlDecode: the default value for this property is true, as of Spring 2.5. If you prefer to compare encoded paths, switch this flag to false. However, note that the HttpServletRequest always exposes the servlet path in decoded form. Be aware that the servlet path will not match when compared with encoded paths. • lazyInitHandlers: allows for lazy initialization of singleton handlers (prototype handlers are always lazily initialized). Default value is false. (Note: the last three properties are only available to subclasses of org.springframework.web.servlet.handler.AbstractUrlHandlerMapping). 13.4.1. BeanNameUrlHandlerMapping A very simple, but very powerful handler mapping is the BeanNameUrlHandlerMapping, which maps incoming Spring Framework (2.5.6) 328
  • 329. Web MVC framework HTTP requests to names of beans, defined in the web application context. Let's say we want to enable a user to insert an account and we've already provided an appropriate form controller (see Section 13.3.4, “Command controllers” for more information on command- and form controllers) and a JSP view (or Velocity template) that renders the form. When using the BeanNameUrlHandlerMapping, we could map the HTTP request with the URL http://samples.com/editaccount.form to the appropriate form Controller as follows: <beans> <bean id="handlerMapping" class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping"/> <bean name="/editaccount.form" class="org.springframework.web.servlet.mvc.SimpleFormController"> <property name="formView" value="account"/> <property name="successView" value="account-created"/> <property name="commandName" value="account"/> <property name="commandClass" value="samples.Account"/> </bean> <beans> All incoming requests for the URL /editaccount.form will now be handled by the form Controller in the source listing above. Of course we have to define a servlet-mapping in web.xml as well, to let through all the requests ending with .form. <web-app> ... <servlet> <servlet-name>sample</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <!-- maps the sample dispatcher to *.form --> <servlet-mapping> <servlet-name>sample</servlet-name> <url-pattern>*.form</url-pattern> </servlet-mapping> ... </web-app> Note If you want to use the BeanNameUrlHandlerMapping, you don't necessarily have to define it in the web application context (as indicated above). By default, if no handler mapping can be found in the context, the DispatcherServlet creates a BeanNameUrlHandlerMapping for you! 13.4.2. SimpleUrlHandlerMapping A further - and much more powerful handler mapping - is the SimpleUrlHandlerMapping. This mapping is configurable in the application context and has Ant-style path matching capabilities (see the Javadoc for the org.springframework.util.PathMatcher class). Here is an example: <web-app> ... <servlet> <servlet-name>sample</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <!-- maps the sample dispatcher to *.form --> <servlet-mapping> <servlet-name>sample</servlet-name> <url-pattern>*.form</url-pattern> </servlet-mapping> <!-- maps the sample dispatcher to *.html --> Spring Framework (2.5.6) 329
  • 330. Web MVC framework <servlet-mapping> <servlet-name>sample</servlet-name> <url-pattern>*.html</url-pattern> </servlet-mapping> ... </web-app> The above web.xml configuration snippet enables all requests ending with .html and .form to be handled by the sample dispatcher servlet. <beans> <!-- no 'id' required, HandlerMapping beans are automatically detected by the DispatcherServlet --> <bean class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping"> <property name="mappings"> <value> /*/account.form=editAccountFormController /*/editaccount.form=editAccountFormController /ex/view*.html=helpController /**/help.html=helpController </value> </property> </bean> <bean id="helpController" class="org.springframework.web.servlet.mvc.UrlFilenameViewController"/> <bean id="editAccountFormController" class="org.springframework.web.servlet.mvc.SimpleFormController"> <property name="formView" value="account"/> <property name="successView" value="account-created"/> <property name="commandName" value="Account"/> <property name="commandClass" value="samples.Account"/> </bean> <beans> This handler mapping routes requests for 'help.html' in any directory to the 'helpController', which is a UrlFilenameViewController (more about controllers can be found in the section entitled Section 13.3, “Controllers”). Requests for a resource beginning with 'view', and ending with '.html' in the directory 'ex' will be routed to the 'helpController'. Two further mappings are also defined for 'editAccountFormController'. 13.4.3. Intercepting requests - the HandlerInterceptor interface Spring's handler mapping mechanism has the notion of handler interceptors, that can be extremely useful when you want to apply specific functionality to certain requests, for example, checking for a principal. Interceptors located in the handler mapping must implement HandlerInterceptor from the org.springframework.web.servlet package. This interface defines three methods, one that will be called before the actual handler will be executed, one that will be called after the handler is executed, and one that is called after the complete request has finished. These three methods should provide enough flexibility to do all kinds of pre- and post-processing. The preHandle(..) method returns a boolean value. You can use this method to break or continue the processing of the execution chain. When this method returns true, the handler execution chain will continue, when it returns false, the DispatcherServlet assumes the interceptor itself has taken care of requests (and, for example, rendered an appropriate view) and does not continue executing the other interceptors and the actual handler in the execution chain. The following example provides an interceptor that intercepts all requests and reroutes the user to a specific page if the time is not between 9 a.m. and 6 p.m. Spring Framework (2.5.6) 330
  • 331. Web MVC framework <beans> <bean id="handlerMapping" class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping"> <property name="interceptors"> <list> <ref bean="officeHoursInterceptor"/> </list> </property> <property name="mappings"> <value> /*.form=editAccountFormController /*.view=editAccountFormController </value> </property> </bean> <bean id="officeHoursInterceptor" class="samples.TimeBasedAccessInterceptor"> <property name="openingTime" value="9"/> <property name="closingTime" value="18"/> </bean> <beans> package samples; public class TimeBasedAccessInterceptor extends HandlerInterceptorAdapter { private int openingTime; private int closingTime; public void setOpeningTime(int openingTime) { this.openingTime = openingTime; } public void setClosingTime(int closingTime) { this.closingTime = closingTime; } public boolean preHandle( HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { Calendar cal = Calendar.getInstance(); int hour = cal.get(HOUR_OF_DAY); if (openingTime <= hour < closingTime) { return true; } else { response.sendRedirect("http://host.com/outsideOfficeHours.html"); return false; } } } Any request coming in, will be intercepted by the TimeBasedAccessInterceptor, and if the current time is outside office hours, the user will be redirected to a static html file, saying, for example, he can only access the website during office hours. As you can see, Spring has an adapter class (the cunningly named HandlerInterceptorAdapter) to make it easier to extend the HandlerInterceptor interface. 13.5. Views and resolving them All MVC frameworks for web applications provide a way to address views. Spring provides view resolvers, which enable you to render models in a browser without tying you to a specific view technology. Out of the box, Spring enables you to use JSPs, Velocity templates and XSLT views, for example. The section entitled Chapter 14, View technologies has details of how to integrate and use a number of disparate view technologies. Spring Framework (2.5.6) 331
  • 332. Web MVC framework The two interfaces which are important to the way Spring handles views are ViewResolver and View. The ViewResolver provides a mapping between view names and actual views. The View interface addresses the preparation of the request and hands the request over to one of the view technologies. 13.5.1. Resolving views - the ViewResolver interface As discussed in the section entitled Section 13.3, “Controllers”, all controllers in the Spring Web MVC framework return a ModelAndView instance. Views in Spring are addressed by a view name and are resolved by a view resolver. Spring comes with quite a few view resolvers. We'll list most of them and then provide a couple of examples. Table 13.4. View resolvers ViewResolver Description AbstractCachingViewResolver An abstract view resolver which takes care of caching views. Often views need preparation before they can be used, extending this view resolver provides caching of views. XmlViewResolver An implementation of ViewResolver that accepts a configuration file written in XML with the same DTD as Spring's XML bean factories. The default configuration file is /WEB-INF/views.xml. ResourceBundleViewResolver An implementation of ViewResolver that uses bean definitions in a ResourceBundle, specified by the bundle basename. The bundle is typically defined in a properties file, located in the classpath. The default file name is views.properties. UrlBasedViewResolver A simple implementation of the ViewResolver interface that effects the direct resolution of symbolic view names to URLs, without an explicit mapping definition. This is appropriate if your symbolic names match the names of your view resources in a straightforward manner, without the need for arbitrary mappings. InternalResourceViewResolver A convenience subclass of UrlBasedViewResolver that supports InternalResourceView (i.e. Servlets and JSPs), and subclasses such as JstlView and TilesView. The view class for all views generated by this resolver can be specified via setViewClass(..). See the Javadocs for the UrlBasedViewResolver class for details. VelocityViewResolver / A convenience subclass of UrlBasedViewResolver that supports FreeMarkerViewResolver VelocityView (i.e. Velocity templates) or FreeMarkerView respectively and custom subclasses of them. As an example, when using JSP for a view technology you can use the UrlBasedViewResolver. This view resolver translates a view name to a URL and hands the request over to the RequestDispatcher to render the view. <bean id="viewResolver" class="org.springframework.web.servlet.view.UrlBasedViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/WEB-INF/jsp/"/> <property name="suffix" value=".jsp"/> </bean> Spring Framework (2.5.6) 332
  • 333. Web MVC framework When returning test as a viewname, this view resolver will hand the request over to the RequestDispatcher that will send the request to /WEB-INF/jsp/test.jsp. When mixing different view technologies in a web application, you can use the ResourceBundleViewResolver: <bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver"> <property name="basename" value="views"/> <property name="defaultParentView" value="parentView"/> </bean> The ResourceBundleViewResolver inspects the ResourceBundle identified by the basename, and for each view it is supposed to resolve, it uses the value of the property [viewname].class as the view class and the value of the property [viewname].url as the view url. As you can see, you can identify a parent view, from which all views in the properties file sort of extend. This way you can specify a default view class, for example. A note on caching - subclasses of AbstractCachingViewResolver cache view instances they have resolved. This greatly improves performance when using certain view technologies. It's possible to turn off the cache, by setting the cache property to false. Furthermore, if you have the requirement to be able to refresh a certain view at runtime (for example when a Velocity template has been modified), you can use the removeFromCache(String viewName, Locale loc) method. 13.5.2. Chaining ViewResolvers Spring supports more than just one view resolver. This allows you to chain resolvers and, for example, override specific views in certain circumstances. Chaining view resolvers is pretty straightforward - just add more than one resolver to your application context and, if necessary, set the order property to specify an order. Remember, the higher the order property, the later the view resolver will be positioned in the chain. In the following example, the chain of view resolvers consists of two resolvers, a InternalResourceViewResolver (which is always automatically positioned as the last resolver in the chain) and an XmlViewResolver for specifying Excel views (which are not supported by the InternalResourceViewResolver): <bean id="jspViewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/WEB-INF/jsp/"/> <property name="suffix" value=".jsp"/> </bean> <bean id="excelViewResolver" class="org.springframework.web.servlet.view.XmlViewResolver"> <property name="order" value="1"/> <property name="location" value="/WEB-INF/views.xml"/> </bean> <!-- in views.xml --> <beans> <bean name="report" class="org.springframework.example.ReportExcelView"/> </beans> If a specific view resolver does not result in a view, Spring will inspect the context to see if other view resolvers are configured. If there are additional view resolvers, it will continue to inspect them. If not, it will throw an Exception. You have to keep something else in mind - the contract of a view resolver mentions that a view resolver can return null to indicate the view could not be found. Not all view resolvers do this however! This is because in some cases, the resolver simply cannot detect whether or not the view exists. For example, the Spring Framework (2.5.6) 333
  • 334. Web MVC framework InternalResourceViewResolver uses the RequestDispatcher internally, and dispatching is the only way to figure out if a JSP exists - this can only be done once. The same holds for the VelocityViewResolver and some others. Check the Javadoc for the view resolver to see if you're dealing with a view resolver that does not report non-existing views. As a result of this, putting an InternalResourceViewResolver in the chain in a place other than the last, will result in the chain not being fully inspected, since the InternalResourceViewResolver will always return a view! 13.5.3. Redirecting to views As has been mentioned, a controller normally returns a logical view name, which a view resolver resolves to a particular view technology. For view technologies such as JSPs that are actually processed via the Servlet/JSP engine, this is normally handled via InternalResourceViewResolver / InternalResourceView which will ultimately end up issuing an internal forward or include, via the Servlet API's RequestDispatcher.forward(..) or RequestDispatcher.include(). For other view technologies, such as Velocity, XSLT, etc., the view itself produces the content on the response stream. It is sometimes desirable to issue an HTTP redirect back to the client, before the view is rendered. This is desirable for example when one controller has been called with POSTed data, and the response is actually a delegation to another controller (for example on a successful form submission). In this case, a normal internal forward will mean the other controller will also see the same POST data, which is potentially problematic if it can confuse it with other expected data. Another reason to do a redirect before displaying the result is that this will eliminate the possibility of the user doing a double submission of form data. The browser will have sent the initial POST, will have seen a redirect back and done a subsequent GET because of that, and thus as far as it is concerned, the current page does not reflect the result of a POST, but rather of a GET, so there is no way the user can accidentally re-POST the same data by doing a refresh. The refresh would just force a GET of the result page, not a resend of the initial POST data. 13.5.3.1. RedirectView One way to force a redirect as the result of a controller response is for the controller to create and return an instance of Spring's RedirectView. In this case, DispatcherServlet will not use the normal view resolution mechanism, but rather as it has been given the (redirect) view already, will just ask it to do its work. The RedirectView simply ends up issuing an HttpServletResponse.sendRedirect() call, which will come back to the client browser as an HTTP redirect. All model attributes are simply exposed as HTTP query parameters. This does mean that the model must contain only objects (generally Strings or convertible to Strings) which can be readily converted to a string-form HTTP query parameter. If using RedirectView and the view is created by the controller itself, it is preferable for the redirect URL to be injected into the controller so that it is not baked into the controller but configured in the context along with the view names. 13.5.3.2. The redirect: prefix While the use of RedirectView works fine, if the controller itself is creating the RedirectView, there is no getting around the fact that the controller is aware that a redirection is happening. This is really suboptimal and couples things too tightly. The controller should not really care about how the response gets handled... it should generally think only in terms of view names that have been injected into it. The special redirect: prefix allows this to be achieved. If a view name is returned which has the prefix redirect:, then UrlBasedViewResolver (and all subclasses) will recognize this as a special indication that a redirect is needed. The rest of the view name will be treated as the redirect URL. Spring Framework (2.5.6) 334
  • 335. Web MVC framework The net effect is the same as if the controller had returned a RedirectView, but now the controller itself can deal just in terms of logical view names. A logical view name such as redirect:/my/response/controller.html will redirect relative to the current servlet context, while a name such as redirect:http://myhost.com/some/arbitrary/path.html will redirect to an absolute URL. The important thing is that as long as this redirect view name is injected into the controller like any other logical view name, the controller is not even aware that redirection is happening. 13.5.3.3. The forward: prefix It is also possible to use a special forward: prefix for view names that will ultimately be resolved by UrlBasedViewResolver and subclasses. All this does is create an InternalResourceView (which ultimately does a RequestDispatcher.forward()) around the rest of the view name, which is considered a URL. Therefore, there is never any use in using this prefix when using InternalResourceViewResolver / InternalResourceView anyway (for JSPs for example), but it's of potential use when you are primarily using another view technology, but still want to force a forward to happen to a resource to be handled by the Servlet/JSP engine. (Note that you may also chain multiple view resolvers, instead.) As with the redirect: prefix, if the view name with the prefix is just injected into the controller, the controller does not have to be aware that anything special is happening in terms of handling the response. 13.6. Using locales Most parts of Spring's architecture support internationalization, just as the Spring web MVC framework does. DispatcherServlet enables you to automatically resolve messages using the client's locale. This is done with LocaleResolver objects. When a request comes in, the DispatcherServlet looks for a locale resolver and if it finds one it tries to use it to set the locale. Using the RequestContext.getLocale() method, you can always retrieve the locale that was resolved by the locale resolver. Besides the automatic locale resolution, you can also attach an interceptor to the handler mapping (see Section 13.4.3, “Intercepting requests - the HandlerInterceptor interface” for more information on handler mapping interceptors), to change the locale under specific circumstances, based on a parameter in the request, for example. Locale resolvers and interceptors are all defined in the org.springframework.web.servlet.i18n package, and are configured in your application context in the normal way. Here is a selection of the locale resolvers included in Spring. 13.6.1. AcceptHeaderLocaleResolver This locale resolver inspects the accept-language header in the request that was sent by the browser of the client. Usually this header field contains the locale of the client's operating system. 13.6.2. CookieLocaleResolver This locale resolver inspects a Cookie that might exist on the client, to see if a locale is specified. If so, it uses that specific locale. Using the properties of this locale resolver, you can specify the name of the cookie, as well as the maximum age. Find below an example of defining a CookieLocaleResolver. <bean id="localeResolver" class="org.springframework.web.servlet.i18n.CookieLocaleResolver"> Spring Framework (2.5.6) 335
  • 336. Web MVC framework <property name="cookieName" value="clientlanguage"/> <!-- in seconds. If set to -1, the cookie is not persisted (deleted when browser shuts down) --> <property name="cookieMaxAge" value="100000"> </bean> Table 13.5. CookieLocaleResolver properties Property Default Description cookieName classname + The name of the cookie LOCALE cookieMaxAge Integer.MAX_INT The maximum time a cookie will stay persistent on the client. If -1 is specified, the cookie will not be persisted. It will only be available until the client shuts down his or her browser. cookiePath / Using this parameter, you can limit the visibility of the cookie to a certain part of your site. When cookiePath is specified, the cookie will only be visible to that path, and the paths below it. 13.6.3. SessionLocaleResolver The SessionLocaleResolver allows you to retrieve locales from the session that might be associated with the user's request. 13.6.4. LocaleChangeInterceptor You can build in changing of locales using the LocaleChangeInterceptor. This interceptor needs to be added to one of the handler mappings (see Section 13.4, “Handler mappings”). It will detect a parameter in the request and change the locale (it calls setLocale() on the LocaleResolver that also exists in the context). <bean id="localeChangeInterceptor" class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor"> <property name="paramName" value="siteLanguage"/> </bean> <bean id="localeResolver" class="org.springframework.web.servlet.i18n.CookieLocaleResolver"/> <bean id="urlMapping" class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping"> <property name="interceptors"> <list> <ref bean="localeChangeInterceptor"/> </list> </property> <property name="mappings"> <value>/**/*.view=someController</value> </property> </bean> All calls to all *.view resources containing a parameter named siteLanguage will now change the locale. So a request for the following URL, http://www.sf.net/home.view?siteLanguage=nl will change the site language to Dutch. Spring Framework (2.5.6) 336
  • 337. Web MVC framework 13.7. Using themes 13.7.1. Introduction The theme support provided by the Spring web MVC framework enables you to further enhance the user experience by allowing the look and feel of your application to be themed. A theme is basically a collection of static resources affecting the visual style of the application, typically style sheets and images. 13.7.2. Defining themes When you want to use themes in your web application you'll have to set up a org.springframework.ui.context.ThemeSource. The WebApplicationContext interface extends ThemeSource but delegates its responsibilities to a dedicated implementation. By default the delegate will be a org.springframework.ui.context.support.ResourceBundleThemeSource that loads properties files from the root of the classpath. If you want to use a custom ThemeSource implementation or if you need to configure the basename prefix of the ResourceBundleThemeSource, you can register a bean in the application context with the reserved name "themeSource". The web application context will automatically detect that bean and start using it. When using the ResourceBundleThemeSource, a theme is defined in a simple properties file. The properties file lists the resources that make up the theme. Here is an example: styleSheet=/themes/cool/style.css background=/themes/cool/img/coolBg.jpg The keys of the properties are the names used to refer to the themed elements from view code. For a JSP this would typically be done using the spring:theme custom tag, which is very similar to the spring:message tag. The following JSP fragment uses the theme defined above to customize the look and feel: <%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%> <html> <head> <link rel="stylesheet" href="<spring:theme code="styleSheet"/>" type="text/css"/> </head> <body background="<spring:theme code="background"/>"> ... </body> </html> By default, the ResourceBundleThemeSource uses an empty basename prefix. As a result the properties files will be loaded from the root of the classpath, so we'll have to put our cool.properties theme definition in a directory at the root of the classpath, e.g. in /WEB-INF/classes. Note that the ResourceBundleThemeSource uses the standard Java resource bundle loading mechanism, allowing for full internationalization of themes. For instance, we could have a /WEB-INF/classes/cool_nl.properties that references a special background image, e.g. with Dutch text on it. 13.7.3. Theme resolvers Now that we have our themes defined, the only thing left to do is decide which theme to use. The DispatcherServlet will look for a bean named "themeResolver" to find out which ThemeResolver implementation to use. A theme resolver works in much the same way as a LocaleResolver. It can detect the theme that should be used for a particular request and can also alter the request's theme. The following theme Spring Framework (2.5.6) 337
  • 338. Web MVC framework resolvers are provided by Spring: Table 13.6. ThemeResolver implementations Class Description FixedThemeResolver Selects a fixed theme, set using the "defaultThemeName" property. SessionThemeResolver The theme is maintained in the users HTTP session. It only needs to be set once for each session, but is not persisted between sessions. CookieThemeResolver The selected theme is stored in a cookie on the user-agent's machine. Spring also provides a ThemeChangeInterceptor, which allows changing the theme on every request by including a simple request parameter. 13.8. Spring's multipart (fileupload) support 13.8.1. Introduction Spring has built-in multipart support to handle fileuploads in web applications. The design for the multipart support is done with pluggable MultipartResolver objects, defined in the org.springframework.web.multipart package. Out of the box, Spring provides a MultipartResolver for use with Commons FileUpload (http://jakarta.apache.org/commons/fileupload). How uploading files is supported will be described in the rest of this chapter. By default, no multipart handling will be done by Spring, as some developers will want to handle multiparts themselves. You will have to enable it yourself by adding a multipart resolver to the web application's context. After you have done that, each request will be inspected to see if it contains a multipart. If no multipart is found, the request will continue as expected. However, if a multipart is found in the request, the MultipartResolver that has been declared in your context will be used. After that, the multipart attribute in your request will be treated like any other attribute. 13.8.2. Using the MultipartResolver The following example shows how to use the CommonsMultipartResolver: <bean id="multipartResolver" class="org.springframework.web.multipart.commons.CommonsMultipartResolver"> <!-- one of the properties available; the maximum file size in bytes --> <property name="maxUploadSize" value="100000"/> </bean> This is an example using the CosMultipartResolver: <bean id="multipartResolver" class="org.springframework.web.multipart.cos.CosMultipartResolver"> <!-- one of the properties available; the maximum file size in bytes --> <property name="maxUploadSize" value="100000"/> </bean> Of course you also need to put the appropriate jars in your classpath for the multipart resolver to work. In the Spring Framework (2.5.6) 338
  • 339. Web MVC framework case of the CommonsMultipartResolver, you need to use commons-fileupload.jar; in the case of the CosMultipartResolver, use cos.jar. Now that you have seen how to set Spring up to handle multipart requests, let's talk about how to actually use it. When the Spring DispatcherServlet detects a multi-part request, it activates the resolver that has been declared in your context and hands over the request. What the resolver then does is wrap the current HttpServletRequest into a MultipartHttpServletRequest that has support for multipart file uploads. Using the MultipartHttpServletRequest you can get information about the multiparts contained by this request and actually get access to the multipart files themselves in your controllers. 13.8.3. Handling a file upload in a form After the MultipartResolver has finished doing its job, the request will be processed like any other. To use it, you create a form with an upload field (see immediately below), then let Spring bind the file onto your form (backing object). To actually let the user upload a file, we have to create a (HTML) form: <html> <head> <title>Upload a file please</title> </head> <body> <h1>Please upload a file</h1> <form method="post" action="upload.form" enctype="multipart/form-data"> <input type="file" name="file"/> <input type="submit"/> </form> </body> </html> As you can see, we've created a field named after the property of the bean that holds the byte[]. Furthermore we've added the encoding attribute (enctype="multipart/form-data") which is necessary to let the browser know how to encode the multipart fields (do not forget this!). Just as with any other property that's not automagically convertible to a string or primitive type, to be able to put binary data in your objects you have to register a custom editor with the ServletRequestDatabinder. There are a couple of editors available for handling files and setting the results on an object. There's a StringMultipartEditor capable of converting files to Strings (using a user-defined character set) and there is a ByteArrayMultipartEditor which converts files to byte arrays. They function just as the CustomDateEditor does. So, to be able to upload files using a (HTML) form, declare the resolver, a url mapping to a controller that will process the bean, and the controller itself. <beans> <!-- lets use the Commons-based implementation of the MultipartResolver interface --> <bean id="multipartResolver" class="org.springframework.web.multipart.commons.CommonsMultipartResolver"/> <bean id="urlMapping" class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping"> <property name="mappings"> <value> /upload.form=fileUploadController </value> </property> </bean> <bean id="fileUploadController" class="examples.FileUploadController"> <property name="commandClass" value="examples.FileUploadBean"/> <property name="formView" value="fileuploadform"/> <property name="successView" value="confirmation"/> </bean> Spring Framework (2.5.6) 339
  • 340. Web MVC framework </beans> After that, create the controller and the actual class to hold the file property. public class FileUploadController extends SimpleFormController { protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response, Object command, BindException errors) throws ServletException, IOException { // cast the bean FileUploadBean bean = (FileUploadBean) command; let's see if there's content there byte[] file = bean.getFile(); if (file == null) { // hmm, that's strange, the user did not upload anything } // well, let's do nothing with the bean for now and return return super.onSubmit(request, response, command, errors); } protected void initBinder(HttpServletRequest request, ServletRequestDataBinder binder) throws ServletException { // to actually be able to convert Multipart instance to byte[] // we have to register a custom editor binder.registerCustomEditor(byte[].class, new ByteArrayMultipartFileEditor()); // now Spring knows how to handle multipart object and convert them } } public class FileUploadBean { private byte[] file; public void setFile(byte[] file) { this.file = file; } public byte[] getFile() { return file; } } As you can see, the FileUploadBean has a property typed byte[] that holds the file. The controller registers a custom editor to let Spring know how to actually convert the multipart objects the resolver has found to properties specified by the bean. In this example, nothing is done with the byte[] property of the bean itself, but in practice you can do whatever you want (save it in a database, mail it to somebody, etc). An equivalent example in which a file is bound straight to a String-typed property on a (form backing) object might look like: public class FileUploadController extends SimpleFormController { protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response, Object command, BindException errors) throws ServletException, IOException { // cast the bean FileUploadBean bean = (FileUploadBean) command; let's see if there's content there String file = bean.getFile(); if (file == null) { // hmm, that's strange, the user did not upload anything } // well, let's do nothing with the bean for now and return return super.onSubmit(request, response, command, errors); } protected void initBinder(HttpServletRequest request, ServletRequestDataBinder binder) throws ServletException { Spring Framework (2.5.6) 340
  • 341. Web MVC framework // to actually be able to convert Multipart instance to a String // we have to register a custom editor binder.registerCustomEditor(String.class, new StringMultipartFileEditor()); // now Spring knows how to handle multipart object and convert them } } public class FileUploadBean { private String file; public void setFile(String file) { this.file = file; } public String getFile() { return file; } } Of course, this last example only makes (logical) sense in the context of uploading a plain text file (it wouldn't work so well in the case of uploading an image file). The third (and final) option is where one binds directly to a MultipartFile property declared on the (form backing) object's class. In this case one does not need to register any custom PropertyEditor because there is no type conversion to be performed. public class FileUploadController extends SimpleFormController { protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response, Object command, BindException errors) throws ServletException, IOException { // cast the bean FileUploadBean bean = (FileUploadBean) command; let's see if there's content there MultipartFile file = bean.getFile(); if (file == null) { // hmm, that's strange, the user did not upload anything } // well, let's do nothing with the bean for now and return return super.onSubmit(request, response, command, errors); } } public class FileUploadBean { private MultipartFile file; public void setFile(MultipartFile file) { this.file = file; } public MultipartFile getFile() { return file; } } 13.9. Handling exceptions Spring provides HandlerExceptionResolvers to ease the pain of unexpected exceptions occurring while your request is being handled by a controller which matched the request. HandlerExceptionResolvers somewhat resemble the exception mappings you can define in the web application descriptor web.xml. However, they provide a more flexible way to handle exceptions. They provide information about what handler was executing when the exception was thrown. Furthermore, a programmatic way of handling exception gives you many more Spring Framework (2.5.6) 341
  • 342. Web MVC framework options for how to respond appropriately before the request is forwarded to another URL (the same end result as when using the servlet specific exception mappings). Besides implementing the HandlerExceptionResolver interface, which is only a matter of implementing the resolveException(Exception, Handler) method and returning a ModelAndView, you may also use the SimpleMappingExceptionResolver. This resolver enables you to take the class name of any exception that might be thrown and map it to a view name. This is functionally equivalent to the exception mapping feature from the Servlet API, but it's also possible to implement more finely grained mappings of exceptions from different handlers. 13.10. Convention over configuration For a lot of projects, sticking to established conventions and having reasonable defaults is just what they (the projects) need... this theme of convention-over-configuration now has explicit support in Spring Web MVC. What this means is that if you establish a set of naming conventions and suchlike, you can substantially cut down on the amount of configuration that is required to set up handler mappings, view resolvers, ModelAndView instances, etc. This is a great boon with regards to rapid prototyping, and can also lend a degree of (always good-to-have) consistency across a codebase should you choose to move forward with it into production. This convention over configuration support address the three core areas of MVC - namely, the models, views, and controllers. 13.10.1. The Controller - ControllerClassNameHandlerMapping The ControllerClassNameHandlerMapping class is a HandlerMapping implementation that uses a convention to determine the mapping between request URLs and the Controller instances that are to handle those requests. An example; consider the following (simplistic) Controller implementation. Take especial notice of the name of the class. public class ViewShoppingCartController implements Controller { public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) { // the implementation is not hugely important for this example... } } Here is a snippet from the attendent Spring Web MVC configuration file... <bean class="org.springframework.web.servlet.mvc.support.ControllerClassNameHandlerMapping"/> <bean id="viewShoppingCart" class="x.y.z.ViewShoppingCartController"> <!-- inject dependencies as required... --> </bean> The ControllerClassNameHandlerMapping finds all of the various handler (or Controller) beans defined in its application context and strips 'Controller' off the name to define its handler mappings. Let's look at some more examples so that the central idea becomes immediately familiar. • WelcomeController maps to the '/welcome*' request URL • HomeController maps to the '/home*' request URL Spring Framework (2.5.6) 342
  • 343. Web MVC framework • IndexController maps to the '/index*' request URL • RegisterController maps to the '/register*' request URL • DisplayShoppingCartController maps to the '/displayshoppingcart*' request URL (Notice the casing - all lowercase - in the case of camel-cased Controller class names.) In the case of MultiActionController handler classes, the mappings generated are (ever so slightly) more complex, but hopefully no less understandable. Some examples (all of the Controller names in this next bit are assumed to be MultiActionController implementations). • AdminController maps to the '/admin/*' request URL • CatalogController maps to the '/catalog/*' request URL If you follow the pretty standard convention of naming your Controller implementations as xxxController, then the ControllerClassNameHandlerMapping will save you the tedium of having to firstly define and then having to maintain a potentially looooong SimpleUrlHandlerMapping (or suchlike). The ControllerClassNameHandlerMapping class extends the AbstractHandlerMapping base class so you can define HandlerInterceptor instances and everything else just like you would with many other HandlerMapping implementations. 13.10.2. The Model - ModelMap (ModelAndView) The ModelMap class is essentially a glorified Map that can make adding objects that are to be displayed in (or on) a View adhere to a common naming convention. Consider the following Controller implementation; notice that objects are added to the ModelAndView without any associated name being specified. public class DisplayShoppingCartController implements Controller { public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) { List cartItems = // get a List of CartItem objects User user = // get the User doing the shopping ModelAndView mav = new ModelAndView("displayShoppingCart"); <-- the logical view name mav.addObject(cartItems); <-- look ma, no name, just the object mav.addObject(user); <-- and again ma! return mav; } } The ModelAndView class uses a ModelMap class that is a custom Map implementation that automatically generates a key for an object when an object is added to it. The strategy for determining the name for an added object is, in the case of a scalar object such as User, to use the short class name of the object's class. Find below some examples of the names that are generated for scalar objects put into a ModelMap instance. • An x.y.User instance added will have the name 'user' generated • An x.y.Registration instance added will have the name 'registration' generated • An x.y.Foo instance added will have the name 'foo' generated Spring Framework (2.5.6) 343
  • 344. Web MVC framework • A java.util.HashMap instance added will have the name 'hashMap' generated (you'll probably want to be explicit about the name in this case because 'hashMap' is less than intuitive). • Adding null will result in an IllegalArgumentException being thrown. If the object (or objects) that you are adding could potentially be null, then you will also want to be explicit about the name). What, no automatic pluralisation? Spring Web MVC's convention over configuration support does not support automatic pluralisation. That is to say, you cannot add a List of Person objects to a ModelAndView and have the generated name be 'people'. This decision was taken after some debate, with the “Principle of Least Surprise” winning out in the end. The strategy for generating a name after adding a Set, List or array object is to peek into the collection, take the short class name of the first object in the collection, and use that with 'List' appended to the name. Some examples will make the semantics of name generation for collections clearer... • An x.y.User[] array with one or more x.y.User elements added will have the name 'userList' generated • An x.y.Foo[] array with one or more x.y.User elements added will have the name 'fooList' generated • A java.util.ArrayList with one or more x.y.User elements added will have the name 'userList' generated • A java.util.HashSet with one or more x.y.Foo elements added will have the name 'fooList' generated • An empty java.util.ArrayList will not be added at all (i.e. the addObject(..) call will essentially be a no-op). 13.10.3. The View - RequestToViewNameTranslator The RequestToViewNameTranslator interface is responsible for determining a logical View name when no such logical view name is explicitly supplied. It has just one implementation, the rather cunningly named DefaultRequestToViewNameTranslator class. The DefaultRequestToViewNameTranslator maps request URLs to logical view names in a fashion that is probably best explained by recourse to an example. public class RegistrationController implements Controller { public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse response) { // process the request... ModelAndView mav = new ModelAndView(); // add data as necessary to the model... return mav; // notice that no View or logical view name has been set } } <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN" "http://www.springframework.org/dtd/spring-beans-2.0.dtd"> <beans> <!-- this bean with the well known name generates view names for us --> <bean id="viewNameTranslator" class="org.springframework.web.servlet.view.DefaultRequestToViewNameTranslator Spring Framework (2.5.6) 344
  • 345. Web MVC framework <bean class="x.y.RegistrationController"> <!-- inject dependencies as necessary --> </bean> <!-- maps request URLs to Controller names --> <bean class="org.springframework.web.servlet.mvc.support.ControllerClassNameHandlerMapping"/> <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="prefix" value="/WEB-INF/jsp/"/> <property name="suffix" value=".jsp"/> </bean> </beans> Notice how in the implementation of the handleRequest(..) method no View or logical view name is ever set on the ModelAndView that is returned. It is the DefaultRequestToViewNameTranslator that will be tasked with generating a logical view name from the URL of the request. In the case of the above RegistrationController, which is being used in conjunction with the ControllerClassNameHandlerMapping, a request URL of 'http://localhost/registration.html' will result in a logical view name of 'registration' being generated by the DefaultRequestToViewNameTranslator. This logical view name will then be resolved into the '/WEB-INF/jsp/registration.jsp' view by the InternalResourceViewResolver bean. Tip You don't even need to define a DefaultRequestToViewNameTranslator bean explicitly. If you are okay with the default settings of the DefaultRequestToViewNameTranslator, then you can rely on the fact that the Spring Web MVC DispatcherServlet will actually instantiate an instance of this class if one is not explicitly configured. Of course, if you need to change the default settings, then you do need to configure your own DefaultRequestToViewNameTranslator bean explicitly. Please do consult the quite comprehensive Javadoc for the DefaultRequestToViewNameTranslator class for details of the various properties that can be configured. 13.11. Annotation-based controller configuration There is a current trend to favor annotations over XML files for some types of configuration data. To facilitate this, Spring is now (since 2.5) providing support for configuring the MVC framework components using annotations. Spring 2.5 introduces an annotation-based programming model for MVC controllers, using annotations such as @RequestMapping, @RequestParam, @ModelAttribute, etc. This annotation support is available for both Servlet MVC and Portlet MVC. Controllers implemented in this style do not have to extend specific base classes or implement specific interfaces. Furthermore, they do not usually have direct dependencies on Servlet or Portlet API's, although they can easily get access to Servlet or Portlet facilities if desired. Tip The Spring distribution ships with the PetClinic sample, which is a web application that takes advantage of the annotation support described in this section, in the context of simple form processing. You can find the PetClinic application in the 'samples/petclinic' directory. For a further sample application that builds on annotation-based Web MVC, check out imagedb. Spring Framework (2.5.6) 345
  • 346. Web MVC framework The focus in that sample is on stateless multi-action controllers, including the processing of multipart file uploads. You can find the imagedb application in the 'samples/imagedb' directory. The following sections document these annotations and how they are most commonly used in a Servlet environment. 13.11.1. Setting up the dispatcher for annotation support @RequestMapping will only be processed if a corresponding HandlerMapping (for type level annotations) and/or HandlerAdapter (for method level annotations) is present in the dispatcher. This is the case by default in both DispatcherServlet and DispatcherPortlet. However, if you are defining custom HandlerMappings or HandlerAdapters, then you need to make sure that a corresponding custom DefaultAnnotationHandlerMapping and/or AnnotationMethodHandlerAdapter is defined as well - provided that you intend to use @RequestMapping. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean class="org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping"/> <bean class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"/> // ... (controller bean definitions) ... </beans> Defining a DefaultAnnotationHandlerMapping and/or AnnotationMethodHandlerAdapter explicitly also makes sense if you would like to customize the mapping strategy, e.g. specifying a custom PathMatcher or WebBindingInitializer (see below). 13.11.2. Defining a controller with @Controller The @Controller annotation indicates that a particular class serves the role of a controller. There is no need to extend any controller base class or reference the Servlet API. You are of course still able to reference Servlet-specific features if you need to. The basic purpose of the @Controller annotation is to act as a stereotype for the annotated class, indicating its role. The dispatcher will scan such annotated classes for mapped methods, detecting @RequestMapping annotations (see the next section). Annotated controller beans may be defined explicitly, using a standard Spring bean definition in the dispatcher's context. However, the @Controller stereotype also allows for autodetection, aligned with Spring 2.5's general support for detecting component classes in the classpath and auto-registering bean definitions for them. To enable autodetection of such annotated controllers, you have to add component scanning to your configuration. This is easily achieved by using the spring-context schema as shown in the following XML snippet: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" Spring Framework (2.5.6) 346
  • 347. Web MVC framework xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.xsd"> <context:component-scan base-package="org.springframework.samples.petclinic.web"/> // ... </beans> 13.11.3. Mapping requests with @RequestMapping The @RequestMapping annotation is used to map URLs like '/editPet.do' onto an entire class or a particular handler method. Typically the type-level annotation maps a specific request path (or path pattern) onto a form controller, with additional method-level annotations 'narrowing' the primary mapping for a specific HTTP method request method ("GET"/"POST") or specific HTTP request parameters. Tip @RequestMapping at the type level may be used for plain implementations of the Controller interface as well. In this case, the request processing code would follow the traditional handleRequest signature, while the controller's mapping would be expressed through an @RequestMapping annotation. This works for pre-built Controller base classes, such as SimpleFormController, too. In the following discussion, we'll focus on controllers that are based on annotated handler methods. The following is an example of a form controller from the PetClinic sample application using this annotation: @Controller @RequestMapping("/editPet.do") @SessionAttributes("pet") public class EditPetForm { private final Clinic clinic; @Autowired public EditPetForm(Clinic clinic) { this.clinic = clinic; } @ModelAttribute("types") public Collection<PetType> populatePetTypes() { return this.clinic.getPetTypes(); } @RequestMapping(method = RequestMethod.GET) public String setupForm(@RequestParam("petId") int petId, ModelMap model) { Pet pet = this.clinic.loadPet(petId); model.addAttribute("pet", pet); return "petForm"; } @RequestMapping(method = RequestMethod.POST) public String processSubmit( @ModelAttribute("pet") Pet pet, BindingResult result, SessionStatus status) { new PetValidator().validate(pet, result); if (result.hasErrors()) { return "petForm"; } else { this.clinic.storePet(pet); Spring Framework (2.5.6) 347
  • 348. Web MVC framework status.setComplete(); return "redirect:owner.do?ownerId=" + pet.getOwner().getId(); } } } For a traditional multi-action controller the URLs are typically mapped directly on the methods since the controller responds to multiple URLs. The following is an example of a multi-action controller from the PetClinic sample application using @RequestMapping: @Controller public class ClinicController { private final Clinic clinic; @Autowired public ClinicController(Clinic clinic) { this.clinic = clinic; } /** * Custom handler for the welcome view. * Note that this handler relies on the RequestToViewNameTranslator to * determine the logical view name based on the request URL: "/welcome.do" * -> "welcome". */ @RequestMapping("/welcome.do") public void welcomeHandler() { } /** * Custom handler for displaying vets. * Note that this handler returns a plain {@link ModelMap} object instead of * a ModelAndView, thus leveraging convention-based model attribute names. * It relies on the RequestToViewNameTranslator to determine the logical * view name based on the request URL: "/vets.do" -> "vets". * @return a ModelMap with the model attributes for the view */ @RequestMapping("/vets.do") public ModelMap vetsHandler() { return new ModelMap(this.clinic.getVets()); } /** * Custom handler for displaying an owner. * Note that this handler returns a plain {@link ModelMap} object instead of * a ModelAndView, thus leveraging convention-based model attribute names. * It relies on the RequestToViewNameTranslator to determine the logical * view name based on the request URL: "/owner.do" -> "owner". * @param ownerId the ID of the owner to display * @return a ModelMap with the model attributes for the view */ @RequestMapping("/owner.do") public ModelMap ownerHandler(@RequestParam("ownerId") int ownerId) { return new ModelMap(this.clinic.loadOwner(ownerId)); } } 13.11.3.1. Advanced @RequestMapping options Ant-style path patterns are supported (e.g. "/myPath/*.do"). At the method level, relative paths (e.g. "edit.do") are supported within the primary mapping expressed at the type level. The handler method names are taken into account for narrowing if no path was specified explicitly, according to the specified org.springframework.web.servlet.mvc.multiaction.MethodNameResolver (by default an org.springframework.web.servlet.mvc.multiaction.InternalPathMethodNameResolver). Note that this only applies in case of ambiguous annotation mappings that do not specify a path mapping explicitly. In other words, the method name is only used for narrowing among a set of matching methods; it does not constitute a primary path mapping itself. Spring Framework (2.5.6) 348
  • 349. Web MVC framework If you have a single default method (without explicit path mapping), then all requests without a more specific mapped method found will be dispatched to it. If you have multiple such default methods, then the method name will be taken into account for choosing between them. Path mappings can be narrowed through parameter conditions: a sequence of "myParam=myValue" style expressions, with a request only mapped if each such parameter is found to have the given value. "myParam" style expressions are also supported, with such parameters having to be present in the request (allowed to have any value). Finally, "!myParam" style expressions indicate that the specified parameter is not supposed to be present in the request. 13.11.4. Supported handler method arguments and return types Handler methods which are annotated with @RequestMapping are allowed to have very flexible signatures. They may have arguments of the following types, in arbitrary order (except for validation results, which need to follow right after the corresponding command object, if desired): • Request and/or response objects (Servlet API). You may choose any specific request/response type, e.g. ServletRequest / HttpServletRequest. • Session object (Servlet API): of type HttpSession. An argument of this type will enforce the presence of a corresponding session. As a consequence, such an argument will never be null. Note that session access may not be thread-safe, in particular in a Servlet environment: Consider switching the AnnotationMethodHandlerAdapter's "synchronizeOnSession" flag to "true" if multiple requests are allowed to access a session concurrently. • org.springframework.web.context.request.WebRequest or org.springframework.web.context.request.NativeWebRequest. Allows for generic request parameter access as well as request/session attribute access, without ties to the native Servlet/Portlet API. • java.util.Locale for the current request locale (determined by the most specific locale resolver available, i.e. the configured LocaleResolver in a Servlet environment). • java.io.InputStream / java.io.Reader for access to the request's content. This will be the raw InputStream/Reader as exposed by the Servlet API. • java.io.OutputStream / java.io.Writer for generating the response's content. This will be the raw OutputStream/Writer as exposed by the Servlet API. • @RequestParam annotated parameters for access to specific Servlet request parameters. Parameter values will be converted to the declared method argument type. • java.util.Map / org.springframework.ui.Model / org.springframework.ui.ModelMap for enriching the implicit model that will be exposed to the web view. • Command/form objects to bind parameters to: as bean properties or fields, with customizable type conversion, depending on @InitBinder methods and/or the HandlerAdapter configuration - see the "webBindingInitializer" property on AnnotationMethodHandlerAdapter. Such command objects along with their validation results will be exposed as model attributes, by default using the non-qualified command class name in property notation (e.g. "orderAddress" for type "mypackage.OrderAddress"). Specify a parameter-level ModelAttribute annotation for declaring a specific model attribute name. • org.springframework.validation.Errors / org.springframework.validation.BindingResult validation results for a preceding command/form object (the immediate preceding argument). Spring Framework (2.5.6) 349
  • 350. Web MVC framework • org.springframework.web.bind.support.SessionStatus status handle for marking form processing as complete (triggering the cleanup of session attributes that have been indicated by the @SessionAttributes annotation at the handler type level). The following return types are supported for handler methods: • A ModelAndView object, with the model implicitly enriched with command objects and the results of @ModelAttribute annotated reference data accessor methods. • A Model object, with the view name implicitly determined through a RequestToViewNameTranslator and the model implicitly enriched with command objects and the results of @ModelAttribute annotated reference data accessor methods. • A Map object for exposing a model, with the view name implicitly determined through a RequestToViewNameTranslator and the model implicitly enriched with command objects and the results of @ModelAttribute annotated reference data accessor methods. • A View object, with the model implicitly determined through command objects and @ModelAttribute annotated reference data accessor methods. The handler method may also programmatically enrich the model by declaring a Model argument (see above). • A String value which is interpreted as view name, with the model implicitly determined through command objects and @ModelAttribute annotated reference data accessor methods. The handler method may also programmatically enrich the model by declaring a Model argument (see above). • void if the method handles the response itself (by writing the response content directly, declaring an argument of type ServletResponse / HttpServletResponse for that purpose) or if the view name is supposed to be implicitly determined through a RequestToViewNameTranslator (not declaring a response argument in the handler method signature). • Any other return type will be considered as single model attribute to be exposed to the view, using the attribute name specified through @ModelAttribute at the method level (or the default attribute name based on the return type's class name otherwise). The model will be implicitly enriched with command objects and the results of @ModelAttribute annotated reference data accessor methods. 13.11.5. Binding request parameters to method parameters with @RequestParam The @RequestParam annotation is used to bind request parameters to a method parameter in your controller. The following code snippet from the PetClinic sample application shows the usage: @Controller @RequestMapping("/editPet.do") @SessionAttributes("pet") public class EditPetForm { // ... @RequestMapping(method = RequestMethod.GET) public String setupForm(@RequestParam("petId") int petId, ModelMap model) { Pet pet = this.clinic.loadPet(petId); model.addAttribute("pet", pet); return "petForm"; } // ... Spring Framework (2.5.6) 350
  • 351. Web MVC framework Parameters using this annotation are required by default, but you can specify that a parameter is optional by setting @RequestParam's required attribute to false (e.g., @RequestParam(value="id", required="false")). 13.11.6. Providing a link to data from the model with @ModelAttribute @ModelAttribute has two usage scenarios in controllers. When placed on a method parameter, @ModelAttribute is used to map a model attribute to the specific, annotated method parameter (see the processSubmit() method below). This is how the controller gets a reference to the object holding the data entered in the form. In addition, the parameter can be declared as the specific type of the form backing object rather than as a generic java.lang.Object, thus increasing type safety. @ModelAttribute is also used at the method level to provide reference data for the model (see the populatePetTypes() method below). For this usage the method signature can contain the same types as documented above for the @RequestMapping annotation. Note: @ModelAttribute annotated methods will be executed before the chosen @RequestMapping annotated handler method. They effectively pre-populate the implicit model with specific attributes, often loaded from a database. Such an attribute can then already be accessed through @ModelAttribute annotated handler method parameters in the chosen handler method, potentially with binding and validation applied to it. The following code snippet shows these two usages of this annotation: @Controller @RequestMapping("/editPet.do") @SessionAttributes("pet") public class EditPetForm { // ... @ModelAttribute("types") public Collection<PetType> populatePetTypes() { return this.clinic.getPetTypes(); } @RequestMapping(method = RequestMethod.POST) public String processSubmit( @ModelAttribute("pet") Pet pet, BindingResult result, SessionStatus status) { new PetValidator().validate(pet, result); if (result.hasErrors()) { return "petForm"; } else { this.clinic.storePet(pet); status.setComplete(); return "redirect:owner.do?ownerId=" + pet.getOwner().getId(); } } } 13.11.7. Specifying attributes to store in a Session with @SessionAttributes The type-level @SessionAttributes annotation declares session attributes used by a specific handler. This will typically list the names of model attributes which should be transparently stored in the session or some conversational storage, serving as form-backing beans between subsequent requests. The following code snippet shows the usage of this annotation: @Controller @RequestMapping("/editPet.do") @SessionAttributes("pet") public class EditPetForm { Spring Framework (2.5.6) 351
  • 352. Web MVC framework // ... } 13.11.8. Customizing WebDataBinder initialization To customize request parameter binding with PropertyEditors, etc. via Spring's WebDataBinder, you can either use @InitBinder-annotated methods within your controller or externalize your configuration by providing a custom WebBindingInitializer. 13.11.8.1. Customizing data binding with @InitBinder Annotating controller methods with @InitBinder allows you to configure web data binding directly within your controller class. @InitBinder identifies methods which initialize the WebDataBinder which will be used for populating command and form object arguments of annotated handler methods. Such init-binder methods support all arguments that @RequestMapping supports, except for command/form objects and corresponding validation result objects. Init-binder methods must not have a return value. Thus, they are usually declared as void. Typical arguments include WebDataBinder in combination with WebRequest or java.util.Locale, allowing code to register context-specific editors. The following example demonstrates the use of @InitBinder for configuring a CustomDateEditor for all java.util.Date form properties. @Controller public class MyFormController { @InitBinder public void initBinder(WebDataBinder binder) { SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd"); dateFormat.setLenient(false); binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat, false)); } // ... } 13.11.8.2. Configuring a custom WebBindingInitializer To externalize data binding initialization, you can provide a custom implementation of the WebBindingInitializer interface, which you then enable by supplying a custom bean configuration for an AnnotationMethodHandlerAdapter, thus overriding the default configuration. The following example from the PetClinic application shows a configuration using a custom implementation of the WebBindingInitializer interface, org.springframework.samples.petclinic.web.ClinicBindingInitializer, which configures PropertyEditors required by several of the PetClinic controllers. <bean class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"> <property name="cacheSeconds" value="0" /> <property name="webBindingInitializer"> <bean class="org.springframework.samples.petclinic.web.ClinicBindingInitializer" /> </property> </bean> 13.12. Further Resources Spring Framework (2.5.6) 352
  • 353. Web MVC framework Find below links and pointers to further resources about Spring Web MVC. • The Spring distribution ships with a Spring Web MVC tutorial that guides the reader through building a complete Spring Web MVC-based application using a step-by-step approach. This tutorial is available in the 'docs' directory of the Spring distribution. An online version can also be found on the Spring Framework website. • The book entitled “Expert Spring Web MVC and Web Flow” by Seth Ladd and others (published by Apress) is an excellent hardcopy source of Spring Web MVC goodness. Spring Framework (2.5.6) 353
  • 354. Chapter 14. View technologies 14.1. Introduction One of the areas in which Spring excels is in the separation of view technologies from the rest of the MVC framework. For example, deciding to use Velocity or XSLT in place of an existing JSP is primarily a matter of configuration. This chapter covers the major view technologies that work with Spring and touches briefly on how to add new ones. This chapter assumes you are already familiar with Section 13.5, “Views and resolving them” which covers the basics of how views in general are coupled to the MVC framework. 14.2. JSP & JSTL Spring provides a couple of out-of-the-box solutions for JSP and JSTL views. Using JSP or JSTL is done using a normal view resolver defined in the WebApplicationContext. Furthermore, of course you need to write some JSPs that will actually render the view. 14.2.1. View resolvers Just as with any other view technology you're integrating with Spring, for JSPs you'll need a view resolver that will resolve your views. The most commonly used view resolvers when developing with JSPs are the InternalResourceViewResolver and the ResourceBundleViewResolver. Both are declared in the WebApplicationContext: <!-- the ResourceBundleViewResolver --> <bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver"> <property name="basename" value="views"/> </bean> # And a sample properties file is uses (views.properties in WEB-INF/classes): welcome.class=org.springframework.web.servlet.view.JstlView welcome.url=/WEB-INF/jsp/welcome.jsp productList.class=org.springframework.web.servlet.view.JstlView productList.url=/WEB-INF/jsp/productlist.jsp As you can see, the ResourceBundleViewResolver needs a properties file defining the view names mapped to 1) a class and 2) a URL. With a ResourceBundleViewResolver you can mix different types of views using only one resolver. <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/WEB-INF/jsp/"/> <property name="suffix" value=".jsp"/> </bean> The InternalResourceBundleViewResolver can be configured for using JSPs as described above. As a best practice, we strongly encourage placing your JSP files in a directory under the 'WEB-INF' directory, so there can be no direct access by clients. 14.2.2. 'Plain-old' JSPs versus JSTL When using the Java Standard Tag Library you must use a special view class, the JstlView, as JSTL needs Spring Framework (2.5.6) 354
  • 355. View technologies some preparation before things such as the i18N features will work. 14.2.3. Additional tags facilitating development Spring provides data binding of request parameters to command objects as described in earlier chapters. To facilitate the development of JSP pages in combination with those data binding features, Spring provides a few tags that make things even easier. All Spring tags have HTML escaping features to enable or disable escaping of characters. The tag library descriptor (TLD) is included in the spring.jar as well in the distribution itself. Further information about the individual tags can be found in the appendix entitled Appendix D, spring.tld. 14.2.4. Using Spring's form tag library As of version 2.0, Spring provides a comprehensive set of data binding-aware tags for handling form elements when using JSP and Spring Web MVC. Each tag provides support for the set of attributes of its corresponding HTML tag counterpart, making the tags familiar and intuitive to use. The tag-generated HTML is HTML 4.01/XHTML 1.0 compliant. Unlike other form/input tag libraries, Spring's form tag library is integrated with Spring Web MVC, giving the tags access to the command object and reference data your controller deals with. As you will see in the following examples, the form tags make JSPs easier to develop, read and maintain. Let's go through the form tags and look at an example of how each tag is used. We have included generated HTML snippets where certain tags require further commentary. 14.2.4.1. Configuration The form tag library comes bundled in spring.jar. The library descriptor is called spring-form.tld. To use the tags from this library, add the following directive to the top of your JSP page: <%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %> ... where form is the tag name prefix you want to use for the tags from this library. 14.2.4.2. The form tag This tag renders an HTML 'form' tag and exposes a binding path to inner tags for binding. It puts the command object in the PageContext so that the command object can be accessed by inner tags. All the other tags in this library are nested tags of the form tag. Let's assume we have a domain object called User. It is a JavaBean with properties such as firstName and lastName. We will use it as the form backing object of our form controller which returns form.jsp. Below is an example of what form.jsp would look like: <form:form> <table> <tr> <td>First Name:</td> <td><form:input path="firstName" /></td> </tr> <tr> <td>Last Name:</td> <td><form:input path="lastName" /></td> </tr> <tr> Spring Framework (2.5.6) 355
  • 356. View technologies <td colspan="2"> <input type="submit" value="Save Changes" /> </td> </tr> </table> </form:form> The firstName and lastName values are retrieved from the command object placed in the PageContext by the page controller. Keep reading to see more complex examples of how inner tags are used with the form tag. The generated HTML looks like a standard form: <form method="POST"> <table> <tr> <td>First Name:</td> <td><input name="firstName" type="text" value="Harry"/></td> </tr> <tr> <td>Last Name:</td> <td><input name="lastName" type="text" value="Potter"/></td> </tr> <tr> <td colspan="2"> <input type="submit" value="Save Changes" /> </td> </tr> </table> </form> The preceding JSP assumes that the variable name of the form backing object is 'command'. If you have put the form backing object into the model under another name (definitely a best practice), then you can bind the form to the named variable like so: <form:form commandName="user"> <table> <tr> <td>First Name:</td> <td><form:input path="firstName" /></td> </tr> <tr> <td>Last Name:</td> <td><form:input path="lastName" /></td> </tr> <tr> <td colspan="2"> <input type="submit" value="Save Changes" /> </td> </tr> </table> </form:form> 14.2.4.3. The input tag This tag renders an HTML 'input' tag with type 'text' using the bound value. For an example of this tag, see Section 14.2.4.2, “The form tag”. 14.2.4.4. The checkbox tag This tag renders an HTML 'input' tag with type 'checkbox'. Let's assume our User has preferences such as newsletter subscription and a list of hobbies. Below is an example of the Preferences class: public class Preferences { Spring Framework (2.5.6) 356
  • 357. View technologies private boolean receiveNewsletter; private String[] interests; private String favouriteWord; public boolean isReceiveNewsletter() { return receiveNewsletter; } public void setReceiveNewsletter(boolean receiveNewsletter) { this.receiveNewsletter = receiveNewsletter; } public String[] getInterests() { return interests; } public void setInterests(String[] interests) { this.interests = interests; } public String getFavouriteWord() { return favouriteWord; } public void setFavouriteWord(String favouriteWord) { this.favouriteWord = favouriteWord; } } The form.jsp would look like: <form:form> <table> <tr> <td>Subscribe to newsletter?:</td> <%-- Approach 1: Property is of type java.lang.Boolean --%> <td><form:checkbox path="preferences.receiveNewsletter"/></td> </tr> <tr> <td>Interests:</td> <td> <%-- Approach 2: Property is of an array or of type java.util.Collection --%> Quidditch: <form:checkbox path="preferences.interests" value="Quidditch"/> Herbology: <form:checkbox path="preferences.interests" value="Herbology"/> Defence Against the Dark Arts: <form:checkbox path="preferences.interests" value="Defence Against the Dark Arts"/> </td> </tr> <tr> <td>Favourite Word:</td> <td> <%-- Approach 3: Property is of type java.lang.Object --%> Magic: <form:checkbox path="preferences.favouriteWord" value="Magic"/> </td> </tr> </table> </form:form> There are 3 approaches to the checkbox tag which should meet all your checkbox needs. • Approach One - When the bound value is of type java.lang.Boolean, the input(checkbox) is marked as 'checked' if the bound value is true. The value attribute corresponds to the resolved value of the setValue(Object) value property. • Approach Two - When the bound value is of type array or java.util.Collection, the input(checkbox) is marked as 'checked' if the configured setValue(Object) value is present in the bound Collection. Spring Framework (2.5.6) 357
  • 358. View technologies • Approach Three - For any other bound value type, the input(checkbox) is marked as 'checked' if the configured setValue(Object) is equal to the bound value. Note that regardless of the approach, the same HTML structure is generated. Below is an HTML snippet of some checkboxes: <tr> <td>Interests:</td> <td> Quidditch: <input name="preferences.interests" type="checkbox" value="Quidditch"/> <input type="hidden" value="1" name="_preferences.interests"/> Herbology: <input name="preferences.interests" type="checkbox" value="Herbology"/> <input type="hidden" value="1" name="_preferences.interests"/> Defence Against the Dark Arts: <input name="preferences.interests" type="checkbox" value="Defence Against the Dark Arts"/> <input type="hidden" value="1" name="_preferences.interests"/> </td> </tr> What you might not expect to see is the additional hidden field after each checkbox. When a checkbox in an HTML page is not checked, its value will not be sent to the server as part of the HTTP request parameters once the form is submitted, so we need a workaround for this quirk in HTML in order for Spring form data binding to work. The checkbox tag follows the existing Spring convention of including a hidden parameter prefixed by an underscore ("_") for each checkbox. By doing this, you are effectively telling Spring that “ the checkbox was visible in the form and I want my object to which the form data will be bound to reflect the state of the checkbox no matter what ”. 14.2.4.5. The checkboxes tag This tag renders multiple HTML 'input' tags with type 'checkbox'. Building on the example from the previous checkbox tag section. Sometimes you prefer not to have to list all the possible hobbies in your JSP page. You would rather provide a list at runtime of the available options and pass that in to the tag. That is the purpose of the checkboxes tag. You pass in an Array, a List or a Map containing the available options in the "items" property. Typically the bound property is a collection so it can hold multiple values selected by the user. Below is an example of the JSP using this tag: <form:form> <table> <tr> <td>Interests:</td> <td> <%-- Property is of an array or of type java.util.Collection --%> <form:checkboxes path="preferences.interests" items="${interestList}"/> </td> </tr> </table> </form:form> This example assumes that the "interestList" is a List available as a model attribute containing strings of the values to be selected from. In the case where you use a Map, the map entry key will be used as the value and the map entry's value will be used as the label to be displayed. You can also use a custom object where you can provide the property names for the value using "itemValue" and the label using "itemLabel". 14.2.4.6. The radiobutton tag This tag renders an HTML 'input' tag with type 'radio'. A typical usage pattern will involve multiple tag instances bound to the same property but with different values. Spring Framework (2.5.6) 358
  • 359. View technologies <tr> <td>Sex:</td> <td>Male: <form:radiobutton path="sex" value="M"/> <br/> Female: <form:radiobutton path="sex" value="F"/> </td> </tr> 14.2.4.7. The radiobuttons tag This tag renders multiple HTML 'input' tags with type 'radio'. Just like the checkboxes tag above, you might want to pass in the available options as a runtime variable. For this usage you would use the radiobuttons tag. You pass in an Array, a List or a Map containing the available options in the "items" property. In the case where you use a Map, the map entry key will be used as the value and the map entry's value will be used as the label to be displayed. You can also use a custom object where you can provide the property names for the value using "itemValue" and the label using "itemLabel". <tr> <td>Sex:</td> <td><form:radiobuttons path="sex" items="${sexOptions}"/></td> </tr> 14.2.4.8. The password tag This tag renders an HTML 'input' tag with type 'password' using the bound value. <tr> <td>Password:</td> <td> <form:password path="password" /> </td> </tr> Please note that by default, the password value is not shown. If you do want the password value to be shown, then set the value of the 'showPassword' attribute to true, like so. <tr> <td>Password:</td> <td> <form:password path="password" value="^76525bvHGq" showPassword="true" /> </td> </tr> 14.2.4.9. The select tag This tag renders an HTML 'select' element. It supports data binding to the selected option as well as the use of nested option and options tags. Let's assume a User has a list of skills. <tr> <td>Skills:</td> <td><form:select path="skills" items="${skills}"/></td> </tr> If the User's skill were in Herbology, the HTML source of the 'Skills' row would look like: <tr> <td>Skills:</td> <td><select name="skills" multiple="true"> Spring Framework (2.5.6) 359
  • 360. View technologies <option value="Potions">Potions</option> <option value="Herbology" selected="selected">Herbology</option> <option value="Quidditch">Quidditch</option></select> </td> </tr> 14.2.4.10. The option tag This tag renders an HTML 'option'. It sets 'selected' as appropriate based on the bound value. <tr> <td>House:</td> <td> <form:select path="house"> <form:option value="Gryffindor"/> <form:option value="Hufflepuff"/> <form:option value="Ravenclaw"/> <form:option value="Slytherin"/> </form:select> </td> </tr> If the User's house was in Gryffindor, the HTML source of the 'House' row would look like: <tr> <td>House:</td> <td> <select name="house"> <option value="Gryffindor" selected="selected">Gryffindor</option> <option value="Hufflepuff">Hufflepuff</option> <option value="Ravenclaw">Ravenclaw</option> <option value="Slytherin">Slytherin</option> </select> </td> </tr> 14.2.4.11. The options tag This tag renders a list of HTML 'option' tags. It sets the 'selected' attribute as appropriate based on the bound value. <tr> <td>Country:</td> <td> <form:select path="country"> <form:option value="-" label="--Please Select"/> <form:options items="${countryList}" itemValue="code" itemLabel="name"/> </form:select> </td> </tr> If the User lived in the UK, the HTML source of the 'Country' row would look like: <tr> <td>Country:</td> <td> <select name="country"> <option value="-">--Please Select</option> <option value="AT">Austria</option> <option value="UK" selected="selected">United Kingdom</option> <option value="US">United States</option> </select> </td> </tr> Spring Framework (2.5.6) 360
  • 361. View technologies As the example shows, the combined usage of an option tag with the options tag generates the same standard HTML, but allows you to explicitly specify a value in the JSP that is for display only (where it belongs) such as the default string in the example: "-- Please Select". The items attribute is typically populated with a collection or array of item objects. itemValue and itemLabel simply refer to bean properties of those item objects, if specified; otherwise, the item objects themselves will be stringified. Alternatively, you may specify a Map of items, in which case the map keys are interpreted as option values and the map values correspond to option labels. If itemValue and/or itemLabel happen to be specified as well, the item value property will apply to the map key and the item label property will apply to the map value. 14.2.4.12. The textarea tag This tag renders an HTML 'textarea'. <tr> <td>Notes:</td> <td><form:textarea path="notes" rows="3" cols="20" /></td> <td><form:errors path="notes" /></td> </tr> 14.2.4.13. The hidden tag This tag renders an HTML 'input' tag with type 'hidden' using the bound value. To submit an unbound hidden value, use the HTML input tag with type 'hidden'. <form:hidden path="house" /> If we choose to submit the 'house' value as a hidden one, the HTML would look like: <input name="house" type="hidden" value="Gryffindor"/> 14.2.4.14. The errors tag This tag renders field errors in an HTML 'span' tag. It provides access to the errors created in your controller or those that were created by any validators associated with your controller. Let's assume we want to display all error messages for the firstName and lastName fields once we submit the form. We have a validator for instances of the User class called UserValidator. public class UserValidator implements Validator { public boolean supports(Class candidate) { return User.class.isAssignableFrom(candidate); } public void validate(Object obj, Errors errors) { ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName", "required", "Field is required."); ValidationUtils.rejectIfEmptyOrWhitespace(errors, "lastName", "required", "Field is required."); } } The form.jsp would look like: <form:form> <table> Spring Framework (2.5.6) 361
  • 362. View technologies <tr> <td>First Name:</td> <td><form:input path="firstName" /></td> <%-- Show errors for firstName field --%> <td><form:errors path="firstName" /></td> </tr> <tr> <td>Last Name:</td> <td><form:input path="lastName" /></td> <%-- Show errors for lastName field --%> <td><form:errors path="lastName" /></td> </tr> <tr> <td colspan="3"> <input type="submit" value="Save Changes" /> </td> </tr> </table> </form:form> If we submit a form with empty values in the firstName and lastName fields, this is what the HTML would look like: <form method="POST"> <table> <tr> <td>First Name:</td> <td><input name="firstName" type="text" value=""/></td> <%-- Associated errors to firstName field displayed --%> <td><span name="firstName.errors">Field is required.</span></td> </tr> <tr> <td>Last Name:</td> <td><input name="lastName" type="text" value=""/></td> <%-- Associated errors to lastName field displayed --%> <td><span name="lastName.errors">Field is required.</span></td> </tr> <tr> <td colspan="3"> <input type="submit" value="Save Changes" /> </td> </tr> </table> </form> What if we want to display the entire list of errors for a given page? The example below shows that the errors tag also supports some basic wildcarding functionality. • path="*" - displays all errors • path="lastName*" - displays all errors associated with the lastName field The example below will display a list of errors at the top of the page, followed by field-specific errors next to the fields: <form:form> <form:errors path="*" cssClass="errorBox" /> <table> <tr> <td>First Name:</td> <td><form:input path="firstName" /></td> <td><form:errors path="firstName" /></td> </tr> <tr> <td>Last Name:</td> <td><form:input path="lastName" /></td> <td><form:errors path="lastName" /></td> Spring Framework (2.5.6) 362
  • 363. View technologies </tr> <tr> <td colspan="3"> <input type="submit" value="Save Changes" /> </td> </tr> </table> </form:form> The HTML would look like: <form method="POST"> <span name="*.errors" class="errorBox">Field is required.<br/>Field is required.</span> <table> <tr> <td>First Name:</td> <td><input name="firstName" type="text" value=""/></td> <td><span name="firstName.errors">Field is required.</span></td> </tr> <tr> <td>Last Name:</td> <td><input name="lastName" type="text" value=""/></td> <td><span name="lastName.errors">Field is required.</span></td> </tr> <tr> <td colspan="3"> <input type="submit" value="Save Changes" /> </td> </tr> </form> 14.3. Tiles It is possible to integrate Tiles - just as any other view technology - in web applications using Spring. The following describes in a broad way how to do this. NOTE: This section focuses on Spring's support for Tiles 2 (the standalone version of Tiles, requiring Java 5+) in the org.springframework.web.servlet.view.tiles2 package. Spring also continues to support Tiles 1.x (a.k.a. "Struts Tiles", as shipped with Struts 1.1+; compatible with Java 1.4) in the original org.springframework.web.servlet.view.tiles package. 14.3.1. Dependencies To be able to use Tiles you have to have a couple of additional dependencies included in your project. The following is the list of dependencies you need. • Tiles version 2.0.4 or higher • Commons BeanUtils • Commons Digester • Commons Logging These dependencies are all available in the Spring distribution. 14.3.2. How to integrate Tiles To be able to use Tiles, you have to configure it using files containing definitions (for basic information on definitions and other Tiles concepts, please have a look at http://tiles.apache.org). In Spring this is done using Spring Framework (2.5.6) 363
  • 364. View technologies the TilesConfigurer. Have a look at the following piece of example ApplicationContext configuration: <bean id="tilesConfigurer" class="org.springframework.web.servlet.view.tiles2.TilesConfigurer"> <property name="definitions"> <list> <value>/WEB-INF/defs/general.xml</value> <value>/WEB-INF/defs/widgets.xml</value> <value>/WEB-INF/defs/administrator.xml</value> <value>/WEB-INF/defs/customer.xml</value> <value>/WEB-INF/defs/templates.xml</value> </list> </property> </bean> As you can see, there are five files containing definitions, which are all located in the 'WEB-INF/defs' directory. At initialization of the WebApplicationContext, the files will be loaded and the definitions factory will be initialized. After that has been done, the Tiles includes in the definition files can be used as views within your Spring web application. To be able to use the views you have to have a ViewResolver just as with any other view technology used with Spring. Below you can find two possibilities, the UrlBasedViewResolver and the ResourceBundleViewResolver. 14.3.2.1. UrlBasedViewResolver The UrlBasedViewResolver instantiates the given viewClass for each view it has to resolve. <bean id="viewResolver" class="org.springframework.web.servlet.view.UrlBasedViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.tiles2.TilesView"/> </bean> 14.3.2.2. ResourceBundleViewResolver The ResourceBundleViewResolver has to be provided with a property file containing viewnames and viewclasses the resolver can use: <bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver"> <property name="basename" value="views"/> </bean> ... welcomeView.class=org.springframework.web.servlet.view.tiles2.TilesView welcomeView.url=welcome (this is the name of a Tiles definition) vetsView.class=org.springframework.web.servlet.view.tiles2.TilesView vetsView.url=vetsView (again, this is the name of a Tiles definition) findOwnersForm.class=org.springframework.web.servlet.view.JstlView findOwnersForm.url=/WEB-INF/jsp/findOwners.jsp ... As you can see, when using the ResourceBundleViewResolver, you can easily mix different view technologies. Note that the TilesView class for Tiles 2 supports JSTL (the JSP Standard Tag Library) out of the box, whereas there is a separate TilesJstlView subclass in the Tiles 1.x support. 14.3.2.3. SimpleSpringPreparerFactory and SpringBeanPreparerFactory As an advanced feature, Spring also supports two special Tiles 2 PreparerFactory implementations. Check out the Tiles documentation for details on how to use ViewPreparer references in your Tiles definition files. Specify SimpleSpringPreparerFactory to autowire ViewPreparer instances based on specified preparer Spring Framework (2.5.6) 364
  • 365. View technologies classes, applying Spring's container callbacks as well as applying configured Spring BeanPostProcessors. If Spring's context-wide annotation-config has been activated, annotations in ViewPreparer classes will be automatically detected and applied. Note that this expects preparer classes in the Tiles definition files, just like the default PreparerFactory does. Specify SpringBeanPreparerFactory to operate on specified preparer names instead of classes, obtaining the corresponding Spring bean from the DispatcherServlet's application context. The full bean creation process will be in the control of the Spring application context in this case, allowing for the use of explicit dependency injection configuration, scoped beans etc. Note that you need to define one Spring bean definition per preparer name (as used in your Tiles definitions). <bean id="tilesConfigurer" class="org.springframework.web.servlet.view.tiles2.TilesConfigurer"> <property name="definitions"> <list> <value>/WEB-INF/defs/general.xml</value> <value>/WEB-INF/defs/widgets.xml</value> <value>/WEB-INF/defs/administrator.xml</value> <value>/WEB-INF/defs/customer.xml</value> <value>/WEB-INF/defs/templates.xml</value> </list> </property> <!-- resolving preparer names as Spring bean definition names --> <property name="preparerFactoryClass" value="org.springframework.web.servlet.view.tiles2.SpringBeanPreparerFactory"/> </bean> 14.4. Velocity & FreeMarker Velocity and FreeMarker are two templating languages that can both be used as view technologies within Spring MVC applications. The languages are quite similar and serve similar needs and so are considered together in this section. For semantic and syntactic differences between the two languages, see the FreeMarker web site. 14.4.1. Dependencies Your web application will need to include velocity-1.x.x.jar or freemarker-2.x.jar in order to work with Velocity or FreeMarker respectively and commons-collections.jar needs also to be available for Velocity. Typically they are included in the WEB-INF/lib folder where they are guaranteed to be found by a J2EE server and added to the classpath for your application. It is of course assumed that you already have the spring.jar in your 'WEB-INF/lib' directory too! The latest stable Velocity, FreeMarker and Commons Collections jars are supplied with the Spring framework and can be copied from the relevant /lib/ sub-directories. If you make use of Spring's 'dateToolAttribute' or 'numberToolAttribute' in your Velocity views, you will also need to include the velocity-tools-generic-1.x.jar 14.4.2. Context configuration A suitable configuration is initialized by adding the relevant configurer bean definition to your '*-servlet.xml' as shown below: <!-- This bean sets up the Velocity environment for us based on a root path for templates. Optionally, a properties file can be specified for more control over the Velocity environment, but the defaults are pretty sane for file based template loading. --> <bean id="velocityConfig" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer"> <property name="resourceLoaderPath" value="/WEB-INF/velocity/"/> Spring Framework (2.5.6) 365
  • 366. View technologies </bean> <!-- View resolvers can also be configured with ResourceBundles or XML files. If you need different view resolving based on Locale, you have to use the resource bundle resolver. --> <bean id="viewResolver" class="org.springframework.web.servlet.view.velocity.VelocityViewResolver"> <property name="cache" value="true"/> <property name="prefix" value=""/> <property name="suffix" value=".vm"/> </bean> <!-- freemarker config --> <bean id="freemarkerConfig" class="org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer"> <property name="templateLoaderPath" value="/WEB-INF/freemarker/"/> </bean> <!-- View resolvers can also be configured with ResourceBundles or XML files. If you need different view resolving based on Locale, you have to use the resource bundle resolver. --> <bean id="viewResolver" class="org.springframework.web.servlet.view.freemarker.FreeMarkerViewResolver"> <property name="cache" value="true"/> <property name="prefix" value=""/> <property name="suffix" value=".ftl"/> </bean> Note For non web-apps add a VelocityConfigurationFactoryBean or a FreeMarkerConfigurationFactoryBean to your application context definition file. 14.4.3. Creating templates Your templates need to be stored in the directory specified by the *Configurer bean shown above. This document does not cover details of creating templates for the two languages - please see their relevant websites for information. If you use the view resolvers highlighted, then the logical view names relate to the template file names in similar fashion to InternalResourceViewResolver for JSP's. So if your controller returns a ModelAndView object containing a view name of "welcome" then the resolvers will look for the /WEB-INF/freemarker/welcome.ftl or /WEB-INF/velocity/welcome.vm template as appropriate. 14.4.4. Advanced configuration The basic configurations highlighted above will be suitable for most application requirements, however additional configuration options are available for when unusual or advanced requirements dictate. 14.4.4.1. velocity.properties This file is completely optional, but if specified, contains the values that are passed to the Velocity runtime in order to configure velocity itself. Only required for advanced configurations, if you need this file, specify its location on the VelocityConfigurer bean definition above. <bean id="velocityConfig" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer"> <property name="configLocation value="/WEB-INF/velocity.properties"/> </bean> Spring Framework (2.5.6) 366
  • 367. View technologies Alternatively, you can specify velocity properties directly in the bean definition for the Velocity config bean by replacing the "configLocation" property with the following inline properties. <bean id="velocityConfig" class="org.springframework.web.servlet.view.velocity.VelocityConfigurer"> <property name="velocityProperties"> <props> <prop key="resource.loader">file</prop> <prop key="file.resource.loader.class"> org.apache.velocity.runtime.resource.loader.FileResourceLoader </prop> <prop key="file.resource.loader.path">${webapp.root}/WEB-INF/velocity</prop> <prop key="file.resource.loader.cache">false</prop> </props> </property> </bean> Refer to the API documentation for Spring configuration of Velocity, or the Velocity documentation for examples and definitions of the 'velocity.properties' file itself. 14.4.4.2. FreeMarker FreeMarker 'Settings' and 'SharedVariables' can be passed directly to the FreeMarker Configuration object managed by Spring by setting the appropriate bean properties on the FreeMarkerConfigurer bean. The freemarkerSettings property requires a java.util.Properties object and the freemarkerVariables property requires a java.util.Map. <bean id="freemarkerConfig" class="org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer"> <property name="templateLoaderPath" value="/WEB-INF/freemarker/"/> <property name="freemarkerVariables"> <map> <entry key="xml_escape" value-ref="fmXmlEscape"/> </map> </property> </bean> <bean id="fmXmlEscape" class="freemarker.template.utility.XmlEscape"/> See the FreeMarker documentation for details of settings and variables as they apply to the Configuration object. 14.4.5. Bind support and form handling Spring provides a tag library for use in JSP's that contains (amongst other things) a <spring:bind/> tag. This tag primarily enables forms to display values from form backing objects and to show the results of failed validations from a Validator in the web or business tier. From version 1.1, Spring now has support for the same functionality in both Velocity and FreeMarker, with additional convenience macros for generating form input elements themselves. 14.4.5.1. The bind macros A standard set of macros are maintained within the spring.jar file for both languages, so they are always available to a suitably configured application. Some of the macros defined in the Spring libraries are considered internal (private) but no such scoping exists in the macro definitions making all macros visible to calling code and user templates. The following sections concentrate only on the macros you need to be directly calling from within your templates. If you wish to view the macro code directly, the files are called spring.vm / spring.ftl and are in the packages org.springframework.web.servlet.view.velocity or Spring Framework (2.5.6) 367
  • 368. View technologies org.springframework.web.servlet.view.freemarker respectively. 14.4.5.2. Simple binding In your html forms (vm / ftl templates) that act as the 'formView' for a Spring form controller, you can use code similar to the following to bind to field values and display error messages for each input field in similar fashion to the JSP equivalent. Note that the name of the command object is "command" by default, but can be overridden in your MVC configuration by setting the 'commandName' bean property on your form controller. Example code is shown below for the personFormV and personFormF views configured earlier; <!-- velocity macros are automatically available --> <html> ... <form action="" method="POST"> Name: #springBind( "command.name" ) <input type="text" name="${status.expression}" value="$!status.value" /><br> #foreach($error in $status.errorMessages) <b>$error</b> <br> #end <br> ... <input type="submit" value="submit"/> </form> ... </html> <!-- freemarker macros have to be imported into a namespace. We strongly recommend sticking to 'spring' --> <#import "spring.ftl" as spring /> <html> ... <form action="" method="POST"> Name: <@spring.bind "command.name" /> <input type="text" name="${spring.status.expression}" value="${spring.status.value?default("")}" /><br> <#list spring.status.errorMessages as error> <b>${error}</b> <br> </#list> <br> ... <input type="submit" value="submit"/> </form> ... </html> #springBind / <@spring.bind> requires a 'path' argument which consists of the name of your command object (it will be 'command' unless you changed it in your FormController properties) followed by a period and the name of the field on the command object you wish to bind to. Nested fields can be used too such as "command.address.street". The bind macro assumes the default HTML escaping behavior specified by the ServletContext parameter defaultHtmlEscape in web.xml The optional form of the macro called #springBindEscaped / <@spring.bindEscaped> takes a second argument and explicitly specifies whether HTML escaping should be used in the status error messages or values. Set to true or false as required. Additional form handling macros simplify the use of HTML escaping and these macros should be used wherever possible. They are explained in the next section. 14.4.5.3. Form input generation macros Additional convenience macros for both languages simplify both binding and form generation (including validation error display). It is never necessary to use these macros to generate form input fields, and they can be mixed and matched with simple HTML or calls direct to the spring bind macros highlighted previously. Spring Framework (2.5.6) 368
  • 369. View technologies The following table of available macros show the VTL and FTL definitions and the parameter list that each takes. Table 14.1. Table of macro definitions macro VTL definition FTL definition message (output a string from a #springMessage($code) <@spring.message code/> resource bundle based on the code parameter) messageText (output a string from #springMessageText($code <@spring.messageText code, a resource bundle based on the $text) text/> code parameter, falling back to the value of the default parameter) url (prefix a relative URL with the #springUrl($relativeUrl) <@spring.url relativeUrl/> application's context root) formInput (standard input field #springFormInput($path <@spring.formInput path, for gathering user input) $attributes) attributes, fieldType/> formHiddenInput * (hidden input #springFormHiddenInput($path <@spring.formHiddenInput field for submitting non-user input) $attributes) path, attributes/> formPasswordInput * (standard #springFormPasswordInput($path <@spring.formPasswordInput input field for gathering $attributes) path, attributes/> passwords. Note that no value will ever be populated in fields of this type) formTextarea (large text field for #springFormTextarea($path <@spring.formTextarea path, gathering long, freeform text input) $attributes) attributes/> formSingleSelect (drop down box #springFormSingleSelect( <@spring.formSingleSelect of options allowing a single $path $options $attributes) path, options, attributes/> required value to be selected) formMultiSelect (a list box of #springFormMultiSelect($path <@spring.formMultiSelect options allowing the user to select $options $attributes) path, options, attributes/> 0 or more values) formRadioButtons (a set of radio #springFormRadioButtons($path <@spring.formRadioButtons buttons allowing a single selection $options $separator path, options separator, to be made from the available $attributes) attributes/> choices) formCheckboxes (a set of #springFormCheckboxes($path <@spring.formCheckboxes path, checkboxes allowing 0 or more $options $separator options, separator, values to be selected) $attributes) attributes/> showErrors (simplify display of #springShowErrors($separator <@spring.showErrors validation errors for the bound $classOrStyle) separator, classOrStyle/> field) * In FTL (FreeMarker), these two macros are not actually required as you can use the normal formInput Spring Framework (2.5.6) 369
  • 370. View technologies macro, specifying 'hidden' or 'password' as the value for the fieldType parameter. The parameters to any of the above macros have consistent meanings: • path: the name of the field to bind to (ie "command.name") • options: a Map of all the available values that can be selected from in the input field. The keys to the map represent the values that will be POSTed back from the form and bound to the command object. Map objects stored against the keys are the labels displayed on the form to the user and may be different from the corresponding values posted back by the form. Usually such a map is supplied as reference data by the controller. Any Map implementation can be used depending on required behavior. For strictly sorted maps, a SortedMap such as a TreeMap with a suitable Comparator may be used and for arbitrary Maps that should return values in insertion order, use a LinkedHashMap or a LinkedMap from commons-collections. • separator: where multiple options are available as discreet elements (radio buttons or checkboxes), the sequence of characters used to separate each one in the list (ie "<br>"). • attributes: an additional string of arbitrary tags or text to be included within the HTML tag itself. This string is echoed literally by the macro. For example, in a textarea field you may supply attributes as 'rows="5" cols="60"' or you could pass style information such as 'style="border:1px solid silver"'. • classOrStyle: for the showErrors macro, the name of the CSS class that the span tag wrapping each error will use. If no information is supplied (or the value is empty) then the errors will be wrapped in <b></b> tags. Examples of the macros are outlined below some in FTL and some in VTL. Where usage differences exist between the two languages, they are explained in the notes. 14.4.5.3.1. Input Fields <!-- the Name field example from above using form macros in VTL --> ... Name: #springFormInput("command.name" "")<br> #springShowErrors("<br>" "")<br> The formInput macro takes the path parameter (command.name) and an additional attributes parameter which is empty in the example above. The macro, along with all other form generation macros, performs an implicit spring bind on the path parameter. The binding remains valid until a new bind occurs so the showErrors macro doesn't need to pass the path parameter again - it simply operates on whichever field a bind was last created for. The showErrors macro takes a separator parameter (the characters that will be used to separate multiple errors on a given field) and also accepts a second parameter, this time a class name or style attribute. Note that FreeMarker is able to specify default values for the attributes parameter, unlike Velocity, and the two macro calls above could be expressed as follows in FTL: <@spring.formInput "command.name"/> <@spring.showErrors "<br>"/> Output is shown below of the form fragment generating the name field, and displaying a validation error after the form was submitted with no value in the field. Validation occurs through Spring's Validation framework. The generated HTML looks like this: Name: <input type="text" name="name" value="" > Spring Framework (2.5.6) 370
  • 371. View technologies <br> <b>required</b> <br> <br> The formTextarea macro works the same way as the formInput macro and accepts the same parameter list. Commonly, the second parameter (attributes) will be used to pass style information or rows and cols attributes for the textarea. 14.4.5.3.2. Selection Fields Four selection field macros can be used to generate common UI value selection inputs in your HTML forms. • formSingleSelect • formMultiSelect • formRadioButtons • formCheckboxes Each of the four macros accepts a Map of options containing the value for the form field, and the label corresponding to that value. The value and the label can be the same. An example of radio buttons in FTL is below. The form backing object specifies a default value of 'London' for this field and so no validation is necessary. When the form is rendered, the entire list of cities to choose from is supplied as reference data in the model under the name 'cityMap'. ... Town: <@spring.formRadioButtons "command.address.town", cityMap, "" /><br><br> This renders a line of radio buttons, one for each value in cityMap using the separator "". No additional attributes are supplied (the last parameter to the macro is missing). The cityMap uses the same String for each key-value pair in the map. The map's keys are what the form actually submits as POSTed request parameters, map values are the labels that the user sees. In the example above, given a list of three well known cities and a default value in the form backing object, the HTML would be Town: <input type="radio" name="address.town" value="London" > London <input type="radio" name="address.town" value="Paris" checked="checked" > Paris <input type="radio" name="address.town" value="New York" > New York If your application expects to handle cities by internal codes for example, the map of codes would be created with suitable keys like the example below. protected Map referenceData(HttpServletRequest request) throws Exception { Map cityMap = new LinkedHashMap(); cityMap.put("LDN", "London"); cityMap.put("PRS", "Paris"); cityMap.put("NYC", "New York"); Spring Framework (2.5.6) 371
  • 372. View technologies Map m = new HashMap(); m.put("cityMap", cityMap); return m; } The code would now produce output where the radio values are the relevant codes but the user still sees the more user friendly city names. Town: <input type="radio" name="address.town" value="LDN" > London <input type="radio" name="address.town" value="PRS" checked="checked" > Paris <input type="radio" name="address.town" value="NYC" > New York 14.4.5.4. HTML escaping and XHTML compliance Default usage of the form macros above will result in HTML tags that are HTML 4.01 compliant and that use the default value for HTML escaping defined in your web.xml as used by Spring's bind support. In order to make the tags XHTML compliant or to override the default HTML escaping value, you can specify two variables in your template (or in your model where they will be visible to your templates). The advantage of specifying them in the templates is that they can be changed to different values later in the template processing to provide different behavior for different fields in your form. To switch to XHTML compliance for your tags, specify a value of 'true' for a model/context variable named xhtmlCompliant: ## for Velocity.. #set($springXhtmlCompliant = true) <#-- for FreeMarker --> <#assign xhtmlCompliant = true in spring> Any tags generated by the Spring macros will now be XHTML compliant after processing this directive. In similar fashion, HTML escaping can be specified per field: <#-- until this point, default HTML escaping is used --> <#assign htmlEscape = true in spring> <#-- next field will use HTML escaping --> <@spring.formInput "command.name" /> <#assign htmlEscape = false in spring> <#-- all future fields will be bound with HTML escaping off --> 14.5. XSLT XSLT is a transformation language for XML and is popular as a view technology within web applications. XSLT can be a good choice as a view technology if your application naturally deals with XML, or if your model can easily be converted to XML. The following section shows how to produce an XML document as Spring Framework (2.5.6) 372
  • 373. View technologies model data and have it transformed with XSLT in a Spring Web MVC application. 14.5.1. My First Words This example is a trivial Spring application that creates a list of words in the Controller and adds them to the model map. The map is returned along with the view name of our XSLT view. See the section entitled Section 13.3, “Controllers” for details of Spring Web MVC's Controller interface. The XSLT view will turn the list of words into a simple XML document ready for transformation. 14.5.1.1. Bean definitions Configuration is standard for a simple Spring application. The dispatcher servlet config file contains a reference to a ViewResolver, URL mappings and a single controller bean... <bean id="homeController"class="xslt.HomeController"/> ... that encapsulates our word generation logic. 14.5.1.2. Standard MVC controller code The controller logic is encapsulated in a subclass of AbstractController, with the handler method being defined like so... protected ModelAndView handleRequestInternal( HttpServletRequest request, HttpServletResponse response) throws Exception { Map map = new HashMap(); List wordList = new ArrayList(); wordList.add("hello"); wordList.add("world"); map.put("wordList", wordList); return new ModelAndView("home", map); } So far we've done nothing that's XSLT specific. The model data has been created in the same way as you would for any other Spring MVC application. Depending on the configuration of the application now, that list of words could be rendered by JSP/JSTL by having them added as request attributes, or they could be handled by Velocity by adding the object to the VelocityContext. In order to have XSLT render them, they of course have to be converted into an XML document somehow. There are software packages available that will automatically 'domify' an object graph, but within Spring, you have complete flexibility to create the DOM from your model in any way you choose. This prevents the transformation of XML playing too great a part in the structure of your model data which is a danger when using tools to manage the domification process. 14.5.1.3. Convert the model data to XML In order to create a DOM document from our list of words or any other model data, we must subclass the (provided) org.springframework.web.servlet.view.xslt.AbstractXsltView class. In doing so, we must also typically implement the abstract method createXsltSource(..) method. The first parameter passed to this method is our model map. Here's the complete listing of the HomePage class in our trivial word application: package xslt; Spring Framework (2.5.6) 373
  • 374. View technologies // imports omitted for brevity public class HomePage extends AbstractXsltView { protected Source createXsltSource(Map model, String rootName, HttpServletRequest request, HttpServletResponse response) throws Exception { Document document = DocumentBuilderFactory.newInstance().newDocumentBuilder().newDocument(); Element root = document.createElement(rootName); List words = (List) model.get("wordList"); for (Iterator it = words.iterator(); it.hasNext();) { String nextWord = (String) it.next(); Element wordNode = document.createElement("word"); Text textNode = document.createTextNode(nextWord); wordNode.appendChild(textNode); root.appendChild(wordNode); } return new DOMSource(root); } } A series of parameter name/value pairs can optionally be defined by your subclass which will be added to the transformation object. The parameter names must match those defined in your XSLT template declared with <xsl:param name="myParam">defaultValue</xsl:param>. To specify the parameters, override the getParameters() method of the AbstractXsltView class and return a Map of the name/value pairs. If your parameters need to derive information from the current request, you can override the getParameters(HttpServletRequest request) method instead. 14.5.1.4. Defining the view properties The views.properties file (or equivalent xml definition if you're using an XML based view resolver as we did in the Velocity examples above) looks like this for the one-view application that is 'My First Words': home.class=xslt.HomePage home.stylesheetLocation=/WEB-INF/xsl/home.xslt home.root=words Here, you can see how the view is tied in with the HomePage class just written which handles the model domification in the first property '.class'. The 'stylesheetLocation' property points to the XSLT file which will handle the XML transformation into HTML for us and the final property '.root' is the name that will be used as the root of the XML document. This gets passed to the HomePage class above in the second parameter to the createXsltSource(..) method(s). 14.5.1.5. Document transformation Finally, we have the XSLT code used for transforming the above document. As shown in the above 'views.properties' file, the stylesheet is called 'home.xslt' and it lives in the war file in the 'WEB-INF/xsl' directory. <?xml version="1.0" encoding="utf-8"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="html" omit-xml-declaration="yes"/> <xsl:template match="/"> <html> <head><title>Hello!</title></head> <body> <h1>My First Words</h1> <xsl:apply-templates/> </body> </html> Spring Framework (2.5.6) 374
  • 375. View technologies </xsl:template> <xsl:template match="word"> <xsl:value-of select="."/><br/> </xsl:template> </xsl:stylesheet> 14.5.2. Summary A summary of the files discussed and their location in the WAR file is shown in the simplified WAR structure below. ProjectRoot | +- WebContent | +- WEB-INF | +- classes | | | +- xslt | | | | | +- HomePageController.class | | +- HomePage.class | | | +- views.properties | +- lib | | | +- spring.jar | +- xsl | | | +- home.xslt | +- frontcontroller-servlet.xml You will also need to ensure that an XML parser and an XSLT engine are available on the classpath. JDK 1.4 provides them by default, and most J2EE containers will also make them available by default, but it's a possible source of errors to be aware of. 14.6. Document views (PDF/Excel) 14.6.1. Introduction Returning an HTML page isn't always the best way for the user to view the model output, and Spring makes it simple to generate a PDF document or an Excel spreadsheet dynamically from the model data. The document is the view and will be streamed from the server with the correct content type to (hopefully) enable the client PC to run their spreadsheet or PDF viewer application in response. In order to use Excel views, you need to add the 'poi' library to your classpath, and for PDF generation, the iText.jar. Both are included in the main Spring distribution. 14.6.2. Configuration and setup Document based views are handled in an almost identical fashion to XSLT views, and the following sections build upon the previous one by demonstrating how the same controller used in the XSLT example is invoked to Spring Framework (2.5.6) 375
  • 376. View technologies render the same model as both a PDF document and an Excel spreadsheet (which can also be viewed or manipulated in Open Office). 14.6.2.1. Document view definitions Firstly, let's amend the views.properties file (or xml equivalent) and add a simple view definition for both document types. The entire file now looks like this with the XSLT view shown from earlier.. home.class=xslt.HomePage home.stylesheetLocation=/WEB-INF/xsl/home.xslt home.root=words xl.class=excel.HomePage pdf.class=pdf.HomePage If you want to start with a template spreadsheet to add your model data to, specify the location as the 'url' property in the view definition 14.6.2.2. Controller code The controller code we'll use remains exactly the same from the XSLT example earlier other than to change the name of the view to use. Of course, you could be clever and have this selected based on a URL parameter or some other logic - proof that Spring really is very good at decoupling the views from the controllers! 14.6.2.3. Subclassing for Excel views Exactly as we did for the XSLT example, we'll subclass suitable abstract classes in order to implement custom behavior in generating our output documents. For Excel, this involves writing a subclass of org.springframework.web.servlet.view.document.AbstractExcelView (for Excel files generated by POI) or org.springframework.web.servlet.view.document.AbstractJExcelView (for JExcelApi-generated Excel files). and implementing the buildExcelDocument Here's the complete listing for our POI Excel view which displays the word list from the model map in consecutive rows of the first column of a new spreadsheet.. package excel; // imports omitted for brevity public class HomePage extends AbstractExcelView { protected void buildExcelDocument( Map model, HSSFWorkbook wb, HttpServletRequest req, HttpServletResponse resp) throws Exception { HSSFSheet sheet; HSSFRow sheetRow; HSSFCell cell; // Go to the first sheet // getSheetAt: only if wb is created from an existing document //sheet = wb.getSheetAt( 0 ); sheet = wb.createSheet("Spring"); sheet.setDefaultColumnWidth((short)12); // write a text at A1 cell = getCell( sheet, 0, 0 ); setText(cell,"Spring-Excel test"); List words = (List ) model.get("wordList"); for (int i=0; i < words.size(); i++) { Spring Framework (2.5.6) 376
  • 377. View technologies cell = getCell( sheet, 2+i, 0 ); setText(cell, (String) words.get(i)); } } } And this a view generating the same Excel file, now using JExcelApi: package excel; // imports omitted for brevity public class HomePage extends AbstractExcelView { protected void buildExcelDocument(Map model, WritableWorkbook wb, HttpServletRequest request, HttpServletResponse response) throws Exception { WritableSheet sheet = wb.createSheet("Spring"); sheet.addCell(new Label(0, 0, "Spring-Excel test"); List words = (List)model.get("wordList"); for (int i = -; i < words.size(); i++) { sheet.addCell(new Label(2+i, 0, (String)words.get(i)); } } } Note the differences between the APIs. We've found that the JExcelApi is somewhat more intuitive and furthermore, JExcelApi has a bit better image-handling capabilities. There have been memory problems with large Excel file when using JExcelApi however. If you now amend the controller such that it returns xl as the name of the view (return new ModelAndView("xl", map);) and run your application again, you should find that the Excel spreadsheet is created and downloaded automatically when you request the same page as before. 14.6.2.4. Subclassing for PDF views The PDF version of the word list is even simpler. This time, the class extends org.springframework.web.servlet.view.document.AbstractPdfView and implements the buildPdfDocument() method as follows.. package pdf; // imports omitted for brevity public class PDFPage extends AbstractPdfView { protected void buildPdfDocument( Map model, Document doc, PdfWriter writer, HttpServletRequest req, HttpServletResponse resp) throws Exception { List words = (List) model.get("wordList"); for (int i=0; i<words.size(); i++) doc.add( new Paragraph((String) words.get(i))); } } Spring Framework (2.5.6) 377
  • 378. View technologies Once again, amend the controller to return the pdf view with a return new ModelAndView("pdf", map); and reload the URL in your application. This time a PDF document should appear listing each of the words in the model map. 14.7. JasperReports JasperReports (http://jasperreports.sourceforge.net) is a powerful open-source reporting engine that supports the creation of report designs using an easily understood XML file format. JasperReports is capable of rendering reports output into four different formats: CSV, Excel, HTML and PDF. 14.7.1. Dependencies Your application will need to include the latest release of JasperReports, which at the time of writing was 0.6.1. JasperReports itself depends on the following projects: • BeanShell • Commons BeanUtils • Commons Collections • Commons Digester • Commons Logging • iText • POI JasperReports also requires a JAXP compliant XML parser. 14.7.2. Configuration To configure JasperReports views in your Spring container configuration you need to define a ViewResolver to map view names to the appropriate view class depending on which format you want your report rendered in. 14.7.2.1. Configuring the ViewResolver Typically, you will use the ResourceBundleViewResolver to map view names to view classes and files in a properties file. <bean id="viewResolver" class="org.springframework.web.servlet.view.ResourceBundleViewResolver"> <property name="basename" value="views"/> </bean> Here we've configured an instance of the ResourceBundleViewResolver class that will look for view mappings in the resource bundle with base name views. (The content of this file is described in the next section.) 14.7.2.2. Configuring the Views The Spring Framework contains five different View implementations for JasperReports, four of which correspond to one of the four output formats supported by JasperReports, and one that allows for the format to Spring Framework (2.5.6) 378
  • 379. View technologies be determined at runtime: Table 14.2. JasperReports View classes Class Name Render Format JasperReportsCsvView CSV JasperReportsHtmlView HTML JasperReportsPdfView PDF JasperReportsXlsView Microsoft Excel JasperReportsMultiFormatView The view is decided upon at runtime Mapping one of these classes to a view name and a report file is a matter of adding the appropriate entries into the resource bundle configured in the previous section as shown here: simpleReport.class=org.springframework.web.servlet.view.jasperreports.JasperReportsPdfView simpleReport.url=/WEB-INF/reports/DataSourceReport.jasper Here you can see that the view with name simpleReport is mapped to the JasperReportsPdfView class, causing the output of this report to be rendered in PDF format. The url property of the view is set to the location of the underlying report file. 14.7.2.3. About Report Files JasperReports has two distinct types of report file: the design file, which has a .jrxml extension, and the compiled report file, which has a .jasper extension. Typically, you use the JasperReports Ant task to compile your .jrxml design file into a .jasper file before deploying it into your application. With the Spring Framework you can map either of these files to your report file and the framework will take care of compiling the .jrxml file on the fly for you. You should note that after a .jrxml file is compiled by the Spring Framework, the compiled report is cached for the lifetime of the application. To make changes to the file you will need to restart your application. 14.7.2.4. Using JasperReportsMultiFormatView The JasperReportsMultiFormatView allows for report format to be specified at runtime. The actual rendering of the report is delegated to one of the other JasperReports view classes - the JasperReportsMultiFormatView class simply adds a wrapper layer that allows for the exact implementation to be specified at runtime. The JasperReportsMultiFormatView class introduces two concepts: the format key and the discriminator key. The JasperReportsMultiFormatView class uses the mapping key to lookup the actual view implementation class and uses the format key to lookup up the mapping key. From a coding perspective you add an entry to your model with the formay key as the key and the mapping key as the value, for example: public ModelAndView handleSimpleReportMulti(HttpServletRequest request, HttpServletResponse response) throws Exception { String uri = request.getRequestURI(); String format = uri.substring(uri.lastIndexOf(".") + 1); Map model = getModel(); model.put("format", format); return new ModelAndView("simpleReportMulti", model); } Spring Framework (2.5.6) 379
  • 380. View technologies In this example, the mapping key is determined from the extension of the request URI and is added to the model under the default format key: format. If you wish to use a different format key then you can configure this using the formatKey property of the JasperReportsMultiFormatView class. By default the following mapping key mappings are configured in JasperReportsMultiFormatView: Table 14.3. JasperReportsMultiFormatView Default Mapping Key Mappings Mapping Key View Class csv JasperReportsCsvView html JasperReportsHtmlView pdf JasperReportsPdfView xls JasperReportsXlsView So in the example above a request to URI /foo/myReport.pdf would be mapped to the JasperReportsPdfView class. You can override the mapping key to view class mappings using the formatMappings property of JasperReportsMultiFormatView. 14.7.3. Populating the ModelAndView In order to render your report correctly in the format you have chosen, you must supply Spring with all of the data needed to populate your report. For JasperReports this means you must pass in all report parameters along with the report datasource. Report parameters are simple name/value pairs and can be added be to the Map for your model as you would add any name/value pair. When adding the datasource to the model you have two approaches to choose from. The first approach is to add an instance of JRDataSource or a Collection type to the model Map under any arbitrary key. Spring will then locate this object in the model and treat it as the report datasource. For example, you may populate your model like so: private Map getModel() { Map model = new HashMap(); Collection beanData = getBeanData(); model.put("myBeanData", beanData); return model; } The second approach is to add the instance of JRDataSource or Collection under a specific key and then configure this key using the reportDataKey property of the view class. In both cases Spring will instances of Collection in a JRBeanCollectionDataSource instance. For example: private Map getModel() { Map model = new HashMap(); Collection beanData = getBeanData(); Collection someData = getSomeData(); model.put("myBeanData", beanData); model.put("someData", someData); return model; } Here you can see that two Collection instances are being added to the model. To ensure that the correct one is used, we simply modify our view configuration as appropriate: Spring Framework (2.5.6) 380
  • 381. View technologies simpleReport.class=org.springframework.web.servlet.view.jasperreports.JasperReportsPdfView simpleReport.url=/WEB-INF/reports/DataSourceReport.jasper simpleReport.reportDataKey=myBeanData Be aware that when using the first approach, Spring will use the first instance of JRDataSource or Collection that it encounters. If you need to place multiple instances of JRDataSource or Collection into the model then you need to use the second approach. 14.7.4. Working with Sub-Reports JasperReports provides support for embedded sub-reports within your master report files. There are a wide variety of mechanisms for including sub-reports in your report files. The easiest way is to hard code the report path and the SQL query for the sub report into your design files. The drawback of this approach is obvious - the values are hard-coded into your report files reducing reusability and making it harder to modify and update report designs. To overcome this you can configure sub-reports declaratively and you can include additional data for these sub-reports directly from your controllers. 14.7.4.1. Configuring Sub-Report Files To control which sub-report files are included in a master report using Spring, your report file must be configured to accept sub-reports from an external source. To do this you declare a parameter in your report file like so: <parameter name="ProductsSubReport" class="net.sf.jasperreports.engine.JasperReport"/> Then, you define your sub-report to use this sub-report parameter: <subreport> <reportElement isPrintRepeatedValues="false" x="5" y="25" width="325" height="20" isRemoveLineWhenBlank="true" backcolor="#ffcc99"/> <subreportParameter name="City"> <subreportParameterExpression><![CDATA[$F{city}]]></subreportParameterExpression> </subreportParameter> <dataSourceExpression><![CDATA[$P{SubReportData}]]></dataSourceExpression> <subreportExpression class="net.sf.jasperreports.engine.JasperReport"> <![CDATA[$P{ProductsSubReport}]]></subreportExpression> </subreport> This defines a master report file that expects the sub-report to be passed in as an instance of net.sf.jasperreports.engine.JasperReports under the parameter ProductsSubReport. When configuring your Jasper view class, you can instruct Spring to load a report file and pass into the JasperReports engine as a sub-report using the subReportUrls property: <property name="subReportUrls"> <map> <entry key="ProductsSubReport" value="/WEB-INF/reports/subReportChild.jrxml"/> </map> </property> Here, the key of the Map corresponds to the name of the sub-report parameter in th report design file, and the entry is the URL of the report file. Spring will load this report file, compiling it if necessary, and will pass into the JasperReports engine under the given key. 14.7.4.2. Configuring Sub-Report Data Sources This step is entirely optional when using Spring configure your sub-reports. If you wish, you can still configure Spring Framework (2.5.6) 381
  • 382. View technologies the data source for your sub-reports using static queries. However, if you want Spring to convert data returned in your ModelAndView into instances of JRDataSource then you need to specify which of the parameters in your ModelAndView Spring should convert. To do this configure the list of parameter names using the subReportDataKeys property of the your chosen view class: <property name="subReportDataKeys" value="SubReportData"/> Here, the key you supply MUST correspond to both the key used in your ModelAndView and the key used in your report design file. 14.7.5. Configuring Exporter Parameters If you have special requirements for exporter configuration - perhaps you want a specific page size for your PDF report, then you can configure these exporter parameters declaratively in your Spring configuration file using the exporterParameters property of the view class. The exporterParameters property is typed as Map and in your configuration the key of an entry should be the fully-qualified name of a static field that contains the exporter parameter definition and the value of an entry should be the value you want to assign to the parameter. An example of this is shown below: <bean id="htmlReport" class="org.springframework.web.servlet.view.jasperreports.JasperReportsHtmlView"> <property name="url" value="/WEB-INF/reports/simpleReport.jrxml"/> <property name="exporterParameters"> <map> <entry key="net.sf.jasperreports.engine.export.JRHtmlExporterParameter.HTML_FOOTER"> <value>Footer by Spring! &lt;/td&gt;&lt;td width="50%"&gt;&amp;nbsp; &lt;/td&gt;&lt;/tr&gt; &lt;/table&gt;&lt;/body&gt;&lt;/html&gt; </value> </entry> </map> </property> </bean> Here you can see that the JasperReportsHtmlView is being configured with an exporter parameter for net.sf.jasperreports.engine.export.JRHtmlExporterParameter.HTML_FOOTER which will output a footer in the resulting HTML. Spring Framework (2.5.6) 382
  • 383. Chapter 15. Integrating with other web frameworks 15.1. Introduction This chapter details Spring's integration with third party web frameworks such as JSF, Struts, WebWork, and Tapestry. Spring Web Flow Spring Web Flow (SWF) aims to be the best solution for the management of web application page flow. SWF integrates with existing frameworks like Spring MVC, Struts, and JSF, in both servlet and portlet environments. If you have a business process (or processes) that would benefit from a conversational model as opposed to a purely request model, then SWF may be the solution. SWF allows you to capture logical page flows as self-contained modules that are reusable in different situations, and as such is ideal for building web application modules that guide the user through controlled navigations that drive business processes. For more information about SWF, consult the Spring Web Flow website. One of the core value propositions of the Spring Framework is that of enabling choice. In a general sense, Spring does not force one to use or buy into any particular architecture, technology, or methodology (although it certainly recommends some over others). This freedom to pick and choose the architecture, technology, or methodology that is most relevant to a developer and his or her development team is arguably most evident in the web area, where Spring provides its own web framework (Spring MVC), while at the same time providing integration with a number of popular third party web frameworks. This allows one to continue to leverage any and all of the skills one may have acquired in a particular web framework such as Struts, while at the same time being able to enjoy the benefits afforded by Spring in other areas such as data access, declarative transaction management, and flexible configuration and application assembly. Having dispensed with the woolly sales patter (c.f. the previous paragraph), the remainder of this chapter will concentrate upon the meaty details of integrating your favourite web framework with Spring. One thing that is often commented upon by developers coming to Java from other languages is the seeming super-abundance of web frameworks available in Java... there are indeed a great number of web frameworks in the Java space; in fact there are far too many to cover with any semblance of detail in a single chapter. This chapter thus picks four of the more popular web frameworks in Java, starting with the Spring configuration that is common to all of the supported web frameworks, and then detailing the specific integration options for each supported web framework. Please note that this chapter does not attempt to explain how to use any of the supported web frameworks. For example, if you want to use Struts for the presentation layer of your web application, the assumption is that you are already familiar with Struts. If you need further details about any of the supported web frameworks themselves, please do consult the section entitled Section 15.7, “Further Resources” at the end of this chapter. 15.2. Common configuration Before diving into the integration specifics of each supported web framework, let us first take a look at the Spring configuration that not specific to any one web framework. (This section is equally applicable to Spring's Spring Framework (2.5.6) 383
  • 384. Integrating with other web frameworks own web framework, Spring MVC.) One of the concepts (for want of a better word) espoused by (Spring's) lightweight application model is that of a layered architecture. Remember that in a 'classic' layered architecture, the web layer is but one of many layers... it serves as one of the entry points into a server side application, and it delegates to service objects (facades) defined in a service layer to satisfy business specific (and presentation-technology agnostic) use cases. In Spring, these service objects, any other business-specific objects, data access objects, etc. exist in a distinct 'business context', which contains no web or presentation layer objects (presentation objects such as Spring MVC controllers are typically configured in a distinct 'presentation context'). This section details how one configures a Spring container (a WebApplicationContext) that contains all of the 'business beans' in one's application. Onto specifics... all that one need do is to declare a ContextLoaderListener in the standard J2EE servlet web.xml file of one's web application, and add a contextConfigLocation <context-param/> section (in the same file) that defines which set of Spring XML cpnfiguration files to load. Find below the <listener/> configuration: <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> Note Listeners were added to the Servlet API in version 2.3; listener startup order was finally clarified in Servlet 2.4. If you have a Servlet 2.3 container, you can use the ContextLoaderServlet to achieve the same functionality in a 100% portable fashion (with respect to startup order). Find below the <context-param/> configuration: <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/applicationContext*.xml</param-value> </context-param> If you don't specify the contextConfigLocation context parameter, the ContextLoaderListener will look for a file called /WEB-INF/applicationContext.xml to load. Once the context files are loaded, Spring creates a WebApplicationContext object based on the bean definitions and stores it in the ServletContext of one's web application. All Java web frameworks are built on top of the Servlet API, and so one can use the following code snippet to get access to this 'business context' ApplicationContext created by the ContextLoaderListener. WebApplicationContext ctx = WebApplicationContextUtils.getWebApplicationContext(servletContext); The WebApplicationContextUtils class is for convenience, so you don't have to remember the name of the ServletContext attribute. Its getWebApplicationContext() method will return null if an object doesn't exist under the WebApplicationContext.ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE key. Rather than risk getting NullPointerExceptions in your application, it's better to use the getRequiredWebApplicationContext() method. This method throws an exception when the ApplicationContext is missing. Once you have a reference to the WebApplicationContext, you can retrieve beans by their name or type. Most developers retrieve beans by name, then cast them to one of their implemented interfaces. Spring Framework (2.5.6) 384
  • 385. Integrating with other web frameworks Fortunately, most of the frameworks in this section have simpler ways of looking up beans. Not only do they make it easy to get beans from a Spring container, but they also allow you to use dependency injection on their controllers. Each web framework section has more detail on its specific integration strategies. 15.3. JavaServer Faces 1.1 and 1.2 JavaServer Faces (JSF) is the JCP's standard component-based, event-driven web user interface framework. As of Java EE 5, it is an official part of the Java EE umbrella. For a popular JSF runtime as well as for popular JSF component libraries, check out the Apache MyFaces project. The MyFaces project also provides common JSF extensions such as MyFaces Orchestra: a Spring-based JSF extension that provides rich conversation scope support. Note Spring Web Flow 2.0 provides rich JSF support through its newly established Spring Faces module, both for JSF-centric usage (as described in this section) and for Spring-centric usage (using JSF views within a Spring MVC dispatcher). Check out the Spring Web Flow website for details! The key element in Spring's JSF integration is the JSF 1.1 VariableResolver mechanism. On JSF 1.2, Spring supports the ELResolver mechanism as a next-generation version of JSF EL integration. 15.3.1. DelegatingVariableResolver (JSF 1.1/1.2) The easiest way to integrate one's Spring middle-tier with one's JSF web layer is to use the DelegatingVariableResolver class. To configure this variable resolver in one's application, one will need to edit one's faces-context.xml file. After the opening <faces-config/> element, add an <application/> element and a <variable-resolver/> element within it. The value of the variable resolver should reference Spring's DelegatingVariableResolver; for example: <faces-config> <application> <variable-resolver>org.springframework.web.jsf.DelegatingVariableResolver</variable-resolver> <locale-config> <default-locale>en</default-locale> <supported-locale>en</supported-locale> <supported-locale>es</supported-locale> </locale-config> <message-bundle>messages</message-bundle> </application> </faces-config> The DelegatingVariableResolver will first delegate value lookups to the default resolver of the underlying JSF implementation, and then to Spring's 'business context' WebApplicationContext. This allows one to easily inject dependencies into one's JSF-managed beans. Managed beans are defined in one's faces-config.xml file. Find below an example where #{userManager} is a bean that is retrieved from the Spring 'business context'. <managed-bean> <managed-bean-name>userList</managed-bean-name> <managed-bean-class>com.whatever.jsf.UserList</managed-bean-class> <managed-bean-scope>request</managed-bean-scope> <managed-property> <property-name>userManager</property-name> Spring Framework (2.5.6) 385
  • 386. Integrating with other web frameworks <value>#{userManager}</value> </managed-property> </managed-bean> 15.3.2. SpringBeanVariableResolver (JSF 1.1/1.2) SpringBeanVariableResolver is a variant of DelegatingVariableResolver. It delegates to the Spring's 'business context' WebApplicationContext first, then to the default resolver of the underlying JSF implementation. This is useful in particular when using request/session-scoped beans with special Spring resolution rules, e.g. Spring FactoryBean implementations. Configuration-wise, simply define SpringBeanVariableResolver in your faces-context.xml file: <faces-config> <application> <variable-resolver>org.springframework.web.jsf.SpringBeanVariableResolver</variable-resolver> ... </application> </faces-config> 15.3.3. SpringBeanFacesELResolver (JSF 1.2+) SpringBeanFacesELResolver is a JSF 1.2 compliant ELResolver implementation, integrating with the standard Unified EL as used by JSF 1.2 and JSP 2.1. Like SpringBeanVariableResolver, it delegates to the Spring's 'business context' WebApplicationContext first, then to the default resolver of the underlying JSF implementation. Configuration-wise, simply define SpringBeanFacesELResolver in your JSF 1.2 faces-context.xml file: <faces-config> <application> <el-resolver>org.springframework.web.jsf.el.SpringBeanFacesELResolver</el-resolver> ... </application> </faces-config> 15.3.4. FacesContextUtils A custom VariableResolver works well when mapping one's properties to beans in faces-config.xml, but at times one may need to grab a bean explicitly. The FacesContextUtils class makes this easy. It is similar to WebApplicationContextUtils, except that it takes a FacesContext parameter rather than a ServletContext parameter. ApplicationContext ctx = FacesContextUtils.getWebApplicationContext(FacesContext.getCurrentInstance()); 15.4. Apache Struts 1.x and 2.x Struts is the de facto web framework for Java applications, mainly because it was one of the first to be released (June 2001). Invented by Craig McClanahan, Struts is an open source project hosted by the Apache Software Foundation. At the time, it greatly simplified the JSP/Servlet programming paradigm and won over many developers who were using proprietary frameworks. It simplified the programming model, it was open source (and thus free as in beer), and it had a large community, which allowed the project to grow and become popular Spring Framework (2.5.6) 386
  • 387. Integrating with other web frameworks among Java web developers. Note The following section discusses Struts 1 a.k.a. "Struts Classic". Struts 2 is effectively a different product - a successor of WebWork 2.2 (as discussed in Section 15.5, “WebWork 2.x”), carrying the Struts brand now. Check out the Struts 2 Spring Plugin for the built-in Spring integration shipped with Struts 2. In general, Struts 2 is closer to WebWork 2.2 than to Struts 1 in terms of its Spring integration implications. To integrate your Struts 1.x application with Spring, you have two options: • Configure Spring to manage your Actions as beans, using the ContextLoaderPlugin, and set their dependencies in a Spring context file. • Subclass Spring's ActionSupport classes and grab your Spring-managed beans explicitly using a getWebApplicationContext() method. 15.4.1. ContextLoaderPlugin The ContextLoaderPlugin is a Struts 1.1+ plug-in that loads a Spring context file for the Struts ActionServlet. This context refers to the root WebApplicationContext (loaded by the ContextLoaderListener) as its parent. The default name of the context file is the name of the mapped servlet, plus -servlet.xml. If ActionServlet is defined in web.xml as <servlet-name>action</servlet-name>, the default is /WEB-INF/action-servlet.xml. To configure this plug-in, add the following XML to the plug-ins section near the bottom of your struts-config.xml file: <plug-in className="org.springframework.web.struts.ContextLoaderPlugIn"/> The location of the context configuration files can be customized using the 'contextConfigLocation' property. <plug-in className="org.springframework.web.struts.ContextLoaderPlugIn"> <set-property property="contextConfigLocation" value="/WEB-INF/action-servlet.xml,/WEB-INF/applicationContext.xml"/> </plug-in> It is possible to use this plugin to load all your context files, which can be useful when using testing tools like StrutsTestCase. StrutsTestCase's MockStrutsTestCase won't initialize Listeners on startup so putting all your context files in the plugin is a workaround. (A bug has been filed for this issue, but has been closed as 'Wont Fix'). After configuring this plug-in in struts-config.xml, you can configure your Action to be managed by Spring. Spring (1.1.3+) provides two ways to do this: • Override Struts' default RequestProcessor with Spring's DelegatingRequestProcessor. • Use the DelegatingActionProxy class in the type attribute of your <action-mapping>. Both of these methods allow you to manage your Actions and their dependencies in the action-servlet.xml file. The bridge between the Action in struts-config.xml and action-servlet.xml is built with the action-mapping's Spring Framework (2.5.6) 387
  • 388. Integrating with other web frameworks "path" and the bean's "name". If you have the following in your struts-config.xml file: <action path="/users" .../> You must define that Action's bean with the "/users" name in action-servlet.xml: <bean name="/users" .../> 15.4.1.1. DelegatingRequestProcessor To configure the DelegatingRequestProcessor in your struts-config.xml file, override the "processorClass" property in the <controller> element. These lines follow the <action-mapping> element. <controller> <set-property property="processorClass" value="org.springframework.web.struts.DelegatingRequestProcessor"/> </controller> After adding this setting, your Action will automatically be looked up in Spring's context file, no matter what the type. In fact, you don't even need to specify a type. Both of the following snippets will work: <action path="/user" type="com.whatever.struts.UserAction"/> <action path="/user"/> If you're using Struts' modules feature, your bean names must contain the module prefix. For example, an action defined as <action path="/user"/> with module prefix "admin" requires a bean name with <bean name="/admin/user"/>. Note If you are using Tiles in your Struts application, you must configure your <controller> with the DelegatingTilesRequestProcessor instead. 15.4.1.2. DelegatingActionProxy If you have a custom RequestProcessor and can't use the DelegatingRequestProcessor or DelegatingTilesRequestProcessor approaches, you can use the DelegatingActionProxy as the type in your action-mapping. <action path="/user" type="org.springframework.web.struts.DelegatingActionProxy" name="userForm" scope="request" validate="false" parameter="method"> <forward name="list" path="/userList.jsp"/> <forward name="edit" path="/userForm.jsp"/> </action> The bean definition in action-servlet.xml remains the same, whether you use a custom RequestProcessor or the DelegatingActionProxy. If you define your Action in a context file, the full feature set of Spring's bean container will be available for it: dependency injection as well as the option to instantiate a new Action instance for each request. To activate the latter, add scope="prototype" to your Action's bean definition. <bean name="/user" scope="prototype" autowire="byName" class="org.example.web.UserAction"/> Spring Framework (2.5.6) 388
  • 389. Integrating with other web frameworks 15.4.2. ActionSupport Classes As previously mentioned, you can retrieve the WebApplicationContext from the ServletContext using the WebApplicationContextUtils class. An easier way is to extend Spring's Action classes for Struts. For example, instead of subclassing Struts' Action class, you can subclass Spring's ActionSupport class. The ActionSupport class provides additional convenience methods, like getWebApplicationContext(). Below is an example of how you might use this in an Action: public class UserAction extends DispatchActionSupport { public ActionForward execute(ActionMapping mapping, ActionForm form, HttpServletRequest request, HttpServletResponse response) throws Exception { if (log.isDebugEnabled()) { log.debug("entering 'delete' method..."); } WebApplicationContext ctx = getWebApplicationContext(); UserManager mgr = (UserManager) ctx.getBean("userManager"); // talk to manager for business logic return mapping.findForward("success"); } } Spring includes subclasses for all of the standard Struts Actions - the Spring versions merely have Support appended to the name: • ActionSupport, • DispatchActionSupport, • LookupDispatchActionSupport and • MappingDispatchActionSupport. The recommended strategy is to use the approach that best suits your project. Subclassing makes your code more readable, and you know exactly how your dependencies are resolved. However, using the ContextLoaderPlugin allow you to easily add new dependencies in your context XML file. Either way, Spring provides some nice options for integrating the two frameworks. 15.5. WebWork 2.x From the WebWork homepage... “ WebWork is a Java web-application development framework. It is built specifically with developer productivity and code simplicity in mind, providing robust support for building reusable UI templates, such as form controls, UI themes, internationalization, dynamic form parameter mapping to JavaBeans, robust client and server side validation, and much more. ” WebWork is (in the opinion of this author) a very clean, elegant web framework. Its architecture and key concepts are not only very easy to understand, it has a rich tag library, nicely decoupled validation, and it is (again, in the opinion of this author) quite easy to be productive in next to no time at all (the documentation and tutorials are pretty good too). One of the key enablers in WebWork's technology stack is an IoC container to manage Webwork Actions, handle the "wiring" of business objects, etc. Prior to WebWork version 2.2, WebWork used its own proprietary IoC container (and provided integration points so that one could integrate an IoC container such as Springs into the mix). However, as of WebWork version 2.2, the default IoC container that is used within WebWork is Spring. This is obviously great news if one is a Spring developer, because it means that one is immediately Spring Framework (2.5.6) 389
  • 390. Integrating with other web frameworks familiar with the basics of IoC configuration, idioms and suchlike within WebWork. Now in the interests of adhering to the DRY (Dont Repeat Yourself) principle, it would be foolish to writeup the Spring-WebWork integration in light of the fact that the WebWork team have already written such a writeup. Please do consult the Spring-WebWork integration page on the WebWork wiki for the full lowdown. Note that the Spring-WebWork integration code was developed (and continues to be maintained and improved) by the WebWork developers themselves, so in the first instance please do refer to the WebWork site and forums if you are having issues with the integration. Do feel free to post comments and queries regarding the Spring-WebWork integration on the Spring support forums too. 15.6. Tapestry 3.x and 4.x From the Tapestry homepage... “ Tapestry is an open-source framework for creating dynamic, robust, highly scalable web applications in Java. Tapestry complements and builds upon the standard Java Servlet API, and so it works in any servlet container or application server. ” While Spring has its own powerful web layer, there are a number of unique advantages to building a J2EE application using a combination of Tapestry for the web user interface and the Spring container for the lower layers. This section of the web integration chapter attempts to detail a few best practices for combining these two frameworks. A typical layered J2EE application built with Tapestry and Spring will consist of a top user interface (UI) layer built with Tapestry, and a number of lower layers, all wired together by one or more Spring containers. Tapestry's own reference documentation contains the following snippet of best practice advice. (Text that the author of this Spring section has added is contained within [] brackets.) “ A very succesful design pattern in Tapestry is to keep pages and components very simple, and delegate as much logic as possible out to HiveMind [or Spring, or whatever] services. Listener methods should ideally do little more than marshall together the correct information and pass it over to a service. ” The key question then is... how does one supply Tapestry pages with collaborating services? The answer, ideally, is that one would want to dependency inject those services directly into one's Tapestry pages. In Tapestry, one can effect this dependency injection by a variety of means... This section is only going to enumerate the dependency injection means afforded by Spring. The real beauty of the rest of this Spring-Tapestry integration is that the elegant and flexible design of Tapestry itself makes doing this dependency injection of Spring-managed beans a cinch. (Another nice thing is that this Spring-Tapestry integration code was written - and continues to be maintained - by the Tapestry creator Howard M. Lewis Ship, so hats off to him for what is really some silky smooth integration). 15.6.1. Injecting Spring-managed beans Assume we have the following simple Spring container definition (in the ubiquitous XML format): <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN" "http://www.springframework.org/dtd/spring-beans-2.0.dtd"> <beans> <!-- the DataSource --> <bean id="dataSource" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiName" value="java:DefaultDS"/> </bean> <bean id="hibSessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean"> <property name="dataSource" ref="dataSource"/> Spring Framework (2.5.6) 390
  • 391. Integrating with other web frameworks </bean> <bean id="transactionManager" class="org.springframework.transaction.jta.JtaTransactionManager"/> <bean id="mapper" class="com.whatever.dataaccess.mapper.hibernate.MapperImpl"> <property name="sessionFactory" ref="hibSessionFactory"/> </bean> <!-- (transactional) AuthenticationService --> <bean id="authenticationService" class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean"> <property name="transactionManager" ref="transactionManager"/> <property name="target"> <bean class="com.whatever.services.service.user.AuthenticationServiceImpl"> <property name="mapper" ref="mapper"/> </bean> </property> <property name="proxyInterfacesOnly" value="true"/> <property name="transactionAttributes"> <value> *=PROPAGATION_REQUIRED </value> </property> </bean> <!-- (transactional) UserService --> <bean id="userService" class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean"> <property name="transactionManager" ref="transactionManager"/> <property name="target"> <bean class="com.whatever.services.service.user.UserServiceImpl"> <property name="mapper" ref="mapper"/> </bean> </property> <property name="proxyInterfacesOnly" value="true"/> <property name="transactionAttributes"> <value> *=PROPAGATION_REQUIRED </value> </property> </bean> </beans> Inside the Tapestry application, the above bean definitions need to be loaded into a Spring container, and any relevant Tapestry pages need to be supplied (injected) with the authenticationService and userService beans, which implement the AuthenticationService and UserService interfaces, respectively. At this point, the application context is available to a web application by calling Spring's static utility function WebApplicationContextUtils.getApplicationContext(servletContext), where servletContext is the standard ServletContext from the J2EE Servlet specification. As such, one simple mechanism for a page to get an instance of the UserService, for example, would be with code such as: WebApplicationContext appContext = WebApplicationContextUtils.getApplicationContext( getRequestCycle().getRequestContext().getServlet().getServletContext()); UserService userService = (UserService) appContext.getBean("userService"); ... some code which uses UserService This mechanism does work... having said that, it can be made a lot less verbose by encapsulating most of the functionality in a method in the base class for the page or component. However, in some respects it goes against the IoC principle; ideally you would like the page to not have to ask the context for a specific bean by name, and in fact, the page would ideally not know about the context at all. Luckily, there is a mechanism to allow this. We rely upon the fact that Tapestry already has a mechanism to declaratively add properties to a page, and it is in fact the preferred approach to manage all properties on a page Spring Framework (2.5.6) 391
  • 392. Integrating with other web frameworks in this declarative fashion, so that Tapestry can properly manage their lifecycle as part of the page and component lifecycle. Note This next section is applicable to Tapestry 3.x. If you are using Tapestry version 4.x, please consult the section entitled Section 15.6.1.4, “Dependency Injecting Spring Beans into Tapestry pages - Tapestry 4.x style”. 15.6.1.1. Dependency Injecting Spring Beans into Tapestry pages First we need to make the ApplicationContext available to the Tapestry page or Component without having to have the ServletContext; this is because at the stage in the page's/component's lifecycle when we need to access the ApplicationContext, the ServletContext won't be easily available to the page, so we can't use WebApplicationContextUtils.getApplicationContext(servletContext) directly. One way is by defining a custom version of the Tapestry IEngine which exposes this for us: package com.whatever.web.xportal; import ... public class MyEngine extends org.apache.tapestry.engine.BaseEngine { public static final String APPLICATION_CONTEXT_KEY = "appContext"; /** * @see org.apache.tapestry.engine.AbstractEngine#setupForRequest(org.apache.tapestry.request.RequestContext */ protected void setupForRequest(RequestContext context) { super.setupForRequest(context); // insert ApplicationContext in global, if not there Map global = (Map) getGlobal(); ApplicationContext ac = (ApplicationContext) global.get(APPLICATION_CONTEXT_KEY); if (ac == null) { ac = WebApplicationContextUtils.getWebApplicationContext( context.getServlet().getServletContext() ); global.put(APPLICATION_CONTEXT_KEY, ac); } } } This engine class places the Spring Application Context as an attribute called "appContext" in this Tapestry app's 'Global' object. Make sure to register the fact that this special IEngine instance should be used for this Tapestry application, with an entry in the Tapestry application definition file. For example: file: xportal.application: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE application PUBLIC "-//Apache Software Foundation//Tapestry Specification 3.0//EN" "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd"> <application name="Whatever xPortal" engine-class="com.whatever.web.xportal.MyEngine"> </application> 15.6.1.2. Component definition files Now in our page or component definition file (*.page or *.jwc), we simply add property-specification elements to grab the beans we need out of the ApplicationContext, and create page or component properties for them. Spring Framework (2.5.6) 392
  • 393. Integrating with other web frameworks For example: <property-specification name="userService" type="com.whatever.services.service.user.UserService"> global.appContext.getBean("userService") </property-specification> <property-specification name="authenticationService" type="com.whatever.services.service.user.AuthenticationService"> global.appContext.getBean("authenticationService") </property-specification> The OGNL expression inside the property-specification specifies the initial value for the property, as a bean obtained from the context. The entire page definition might look like this: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE page-specification PUBLIC "-//Apache Software Foundation//Tapestry Specification 3.0//EN" "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd"> <page-specification class="com.whatever.web.xportal.pages.Login"> <property-specification name="username" type="java.lang.String"/> <property-specification name="password" type="java.lang.String"/> <property-specification name="error" type="java.lang.String"/> <property-specification name="callback" type="org.apache.tapestry.callback.ICallback" persistent="yes"/> <property-specification name="userService" type="com.whatever.services.service.user.UserService"> global.appContext.getBean("userService") </property-specification> <property-specification name="authenticationService" type="com.whatever.services.service.user.AuthenticationService"> global.appContext.getBean("authenticationService") </property-specification> <bean name="delegate" class="com.whatever.web.xportal.PortalValidationDelegate"/> <bean name="validator" class="org.apache.tapestry.valid.StringValidator" lifecycle="page"> <set-property name="required" expression="true"/> <set-property name="clientScriptingEnabled" expression="true"/> </bean> <component id="inputUsername" type="ValidField"> <static-binding name="displayName" value="Username"/> <binding name="value" expression="username"/> <binding name="validator" expression="beans.validator"/> </component> <component id="inputPassword" type="ValidField"> <binding name="value" expression="password"/> <binding name="validator" expression="beans.validator"/> <static-binding name="displayName" value="Password"/> <binding name="hidden" expression="true"/> </component> </page-specification> 15.6.1.3. Adding abstract accessors Now in the Java class definition for the page or component itself, all we need to do is add an abstract getter method for the properties we have defined (in order to be able to access the properties). // our UserService implementation; will come from page definition public abstract UserService getUserService(); // our AuthenticationService implementation; will come from page definition public abstract AuthenticationService getAuthenticationService(); For the sake of completeness, the entire Java class, for a login page in this example, might look like this: package com.whatever.web.xportal.pages; Spring Framework (2.5.6) 393
  • 394. Integrating with other web frameworks /** * Allows the user to login, by providing username and password. * After successfully logging in, a cookie is placed on the client browser * that provides the default username for future logins (the cookie * persists for a week). */ public abstract class Login extends BasePage implements ErrorProperty, PageRenderListener { /** the key under which the authenticated user object is stored in the visit as */ public static final String USER_KEY = "user"; /** The name of the cookie that identifies a user **/ private static final String COOKIE_NAME = Login.class.getName() + ".username"; private final static int ONE_WEEK = 7 * 24 * 60 * 60; public abstract String getUsername(); public abstract void setUsername(String username); public abstract String getPassword(); public abstract void setPassword(String password); public abstract ICallback getCallback(); public abstract void setCallback(ICallback value); public abstract UserService getUserService(); public abstract AuthenticationService getAuthenticationService(); protected IValidationDelegate getValidationDelegate() { return (IValidationDelegate) getBeans().getBean("delegate"); } protected void setErrorField(String componentId, String message) { IFormComponent field = (IFormComponent) getComponent(componentId); IValidationDelegate delegate = getValidationDelegate(); delegate.setFormComponent(field); delegate.record(new ValidatorException(message)); } /** * Attempts to login. * <p> * If the user name is not known, or the password is invalid, then an error * message is displayed. **/ public void attemptLogin(IRequestCycle cycle) { String password = getPassword(); // Do a little extra work to clear out the password. setPassword(null); IValidationDelegate delegate = getValidationDelegate(); delegate.setFormComponent((IFormComponent) getComponent("inputPassword")); delegate.recordFieldInputValue(null); // An error, from a validation field, may already have occurred. if (delegate.getHasErrors()) { return; } try { User user = getAuthenticationService().login(getUsername(), getPassword()); loginUser(user, cycle); } catch (FailedLoginException ex) { this.setError("Login failed: " + ex.getMessage()); return; } } /** * Sets up the {@link User} as the logged in user, creates * a cookie for their username (for subsequent logins), * and redirects to the appropriate page, or * a specified page). **/ public void loginUser(User user, IRequestCycle cycle) { Spring Framework (2.5.6) 394
  • 395. Integrating with other web frameworks String username = user.getUsername(); // Get the visit object; this will likely force the // creation of the visit object and an HttpSession Map visit = (Map) getVisit(); visit.put(USER_KEY, user); // After logging in, go to the MyLibrary page, unless otherwise specified ICallback callback = getCallback(); if (callback == null) { cycle.activate("Home"); } else { callback.performCallback(cycle); } IEngine engine = getEngine(); Cookie cookie = new Cookie(COOKIE_NAME, username); cookie.setPath(engine.getServletPath()); cookie.setMaxAge(ONE_WEEK); // Record the user's username in a cookie cycle.getRequestContext().addCookie(cookie); engine.forgetPage(getPageName()); } public void pageBeginRender(PageEvent event) { if (getUsername() == null) { setUsername(getRequestCycle().getRequestContext().getCookieValue(COOKIE_NAME)); } } } 15.6.1.4. Dependency Injecting Spring Beans into Tapestry pages - Tapestry 4.x style Effecting the dependency injection of Spring-managed beans into Tapestry pages in Tapestry version 4.x is so much simpler. All that is needed is a single add-on library, and some (small) amount of (essentially boilerplate) configuration. Simply package and deploy this library with the (any of the) other libraries required by your web application (typically in WEB-INF/lib). You will then need to create and expose the Spring container using the method detailed previously. You can then inject Spring-managed beans into Tapestry very easily; if we are using Java 5, consider the Login page from above: we simply need to annotate the appropriate getter methods in order to dependency inject the Spring-managed userService and authenticationService objects (lots of the class definition has been elided for clarity)... package com.whatever.web.xportal.pages; public abstract class Login extends BasePage implements ErrorProperty, PageRenderListener { @InjectObject("spring:userService") public abstract UserService getUserService(); @InjectObject("spring:authenticationService") public abstract AuthenticationService getAuthenticationService(); } We are almost done... all that remains is the HiveMind configuration that exposes the Spring container stored in the ServletContext as a HiveMind service; for example: <?xml version="1.0"?> <module id="com.javaforge.tapestry.spring" version="0.1.1"> <service-point id="SpringApplicationInitializer" interface="org.apache.tapestry.services.ApplicationInitializer" visibility="private"> Spring Framework (2.5.6) 395
  • 396. Integrating with other web frameworks <invoke-factory> <construct class="com.javaforge.tapestry.spring.SpringApplicationInitializer"> <set-object property="beanFactoryHolder" value="service:hivemind.lib.DefaultSpringBeanFactoryHolder" /> </construct> </invoke-factory> </service-point> <!-- Hook the Spring setup into the overall application initialization. --> <contribution configuration-id="tapestry.init.ApplicationInitializers"> <command id="spring-context" object="service:SpringApplicationInitializer" /> </contribution> </module> If you are using Java 5 (and thus have access to annotations), then that really is it. If you are not using Java 5, then one obviously doesn't annotate one's Tapestry page classes with annotations; instead, one simply uses good old fashioned XML to declare the dependency injection; for example, inside the .page or .jwc file for the Login page (or component): <inject property="userService" object="spring:userService"/> <inject property="authenticationService" object="spring:authenticationService"/> In this example, we've managed to allow service beans defined in a Spring container to be provided to the Tapestry page in a declarative fashion. The page class does not know where the service implementations are coming from, and in fact it is easy to slip in another implementation, for example, during testing. This inversion of control is one of the prime goals and benefits of the Spring Framework, and we have managed to extend it all the way up the J2EE stack in this Tapestry application. 15.7. Further Resources Find below links to further resources about the various web frameworks described in this chapter. • The JSF homepage • The Struts homepage • The WebWork homepage • The Tapestry homepage Spring Framework (2.5.6) 396
  • 397. Chapter 16. Portlet MVC Framework 16.1. Introduction JSR-168 The Java Portlet Specification For more general information about portlet development, please review a whitepaper from Sun entitled "Introduction to JSR 168", and of course the JSR-168 Specification itself. In addition to supporting conventional (servlet-based) Web development, Spring also supports JSR-168 Portlet development. As much as possible, the Portlet MVC framework is a mirror image of the Web MVC framework, and also uses the same underlying view abstractions and integration technology. So, be sure to review the chapters entitled Chapter 13, Web MVC framework and Chapter 14, View technologies before continuing with this chapter. Note Bear in mind that while the concepts of Spring MVC are the same in Spring Portlet MVC, there are some notable differences created by the unique workflow of JSR-168 portlets. The main way in which portlet workflow differs from servlet workflow is that the request to the portlet can have two distinct phases: the action phase and the render phase. The action phase is executed only once and is where any 'backend' changes or actions occur, such as making changes in a database. The render phase then produces what is displayed to the user each time the display is refreshed. The critical point here is that for a single overall request, the action phase is executed only once, but the render phase may be executed multiple times. This provides (and requires) a clean separation between the activities that modify the persistent state of your system and the activities that generate what is displayed to the user. Spring Web Flow Spring Web Flow (SWF) aims to be the best solution for the management of web application page flow. SWF integrates with existing frameworks like Spring MVC, Struts, and JSF, in both servlet and portlet environments. If you have a business process (or processes) that would benefit from a conversational model as opposed to a purely request model, then SWF may be the solution. SWF allows you to capture logical page flows as self-contained modules that are reusable in different situations, and as such is ideal for building web application modules that guide the user through controlled navigations that drive business processes. For more information about SWF, consult the Spring Web Flow website. The dual phases of portlet requests are one of the real strengths of the JSR-168 specification. For example, dynamic search results can be updated routinely on the display without the user explicitly rerunning the search. Most other portlet MVC frameworks attempt to completely hide the two phases from the developer and make it look as much like traditional servlet development as possible - we think this approach removes one of the main benefits of using portlets. So, the separation of the two phases is preserved throughout the Spring Portlet MVC framework. The primary manifestation of this approach is that where the servlet version of the MVC classes Spring Framework (2.5.6) 397
  • 398. Portlet MVC Framework will have one method that deals with the request, the portlet version of the MVC classes will have two methods that deal with the request: one for the action phase and one for the render phase. For example, where the servlet version of AbstractController has the handleRequestInternal(..) method, the portlet version of AbstractController has handleActionRequestInternal(..) and handleRenderRequestInternal(..) methods. The framework is designed around a DispatcherPortlet that dispatches requests to handlers, with configurable handler mappings and view resolution, just as the DispatcherServlet in the web framework does. File upload is also supported in the same way. Locale resolution and theme resolution are not supported in Portlet MVC - these areas are in the purview of the portal/portlet container and are not appropriate at the Spring level. However, all mechanisms in Spring that depend on the locale (such as internationalization of messages) will still function properly because DispatcherPortlet exposes the current locale in the same way as DispatcherServlet. 16.1.1. Controllers - The C in MVC The default handler is still a very simple Controller interface, offering just two methods: • void handleActionRequest(request,response) • ModelAndView handleRenderRequest(request,response) The framework also includes most of the same controller implementation hierarchy, such as AbstractController, SimpleFormController, and so on. Data binding, command object usage, model handling, and view resolution are all the same as in the servlet framework. 16.1.2. Views - The V in MVC All the view rendering capabilities of the servlet framework are used directly via a special bridge servlet named ViewRendererServlet. By using this servlet, the portlet request is converted into a servlet request and the view can be rendered using the entire normal servlet infrastructure. This means all the existing renderers, such as JSP, Velocity, etc., can still be used within the portlet. 16.1.3. Web-scoped beans Spring Portlet MVC supports beans whose lifecycle is scoped to the current HTTP request or HTTP Session (both normal and global). This is not a specific feature of Spring Portlet MVC itself, but rather of the WebApplicationContext container(s) that Spring Portlet MVC uses. These bean scopes are described in detail in the section entitled Section 3.4.4, “The other scopes” Note The Spring distribution ships with a complete Spring Portlet MVC sample application that demonstrates all of the features and functionality of the Spring Portlet MVC framework. This 'petportal' application can be found in the 'samples/petportal' directory of the full Spring distribution. 16.2. The DispatcherPortlet Spring Framework (2.5.6) 398
  • 399. Portlet MVC Framework Portlet MVC is a request-driven web MVC framework, designed around a portlet that dispatches requests to controllers and offers other functionality facilitating the development of portlet applications. Spring's DispatcherPortlet however, does more than just that. It is completely integrated with the Spring ApplicationContext and allows you to use every other feature Spring has. Like ordinary portlets, the DispatcherPortlet is declared in the portlet.xml of your web application: <portlet> <portlet-name>sample</portlet-name> <portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class> <supports> <mime-type>text/html</mime-type> <portlet-mode>view</portlet-mode> </supports> <portlet-info> <title>Sample Portlet</title> </portlet-info> </portlet> The DispatcherPortlet now needs to be configured. In the Portlet MVC framework, each DispatcherPortlet has its own WebApplicationContext, which inherits all the beans already defined in the Root WebApplicationContext. These inherited beans can be overridden in the portlet-specific scope, and new scope- specific beans can be defined local to a given portlet instance. The framework will, on initialization of a DispatcherPortlet, look for a file named [portlet-name]-portlet.xml in the WEB-INF directory of your web application and create the beans defined there (overriding the definitions of any beans defined with the same name in the global scope). The config location used by the DispatcherPortlet can be modified through a portlet initialization parameter (see below for details). The Spring DispatcherPortlet has a few special beans it uses, in order to be able to process requests and render the appropriate views. These beans are included in the Spring framework and can be configured in the WebApplicationContext, just as any other bean would be configured. Each of those beans is described in more detail below. Right now, we'll just mention them, just to let you know they exist and to enable us to go on talking about the DispatcherPortlet. For most of the beans, defaults are provided so you don't have to worry about configuring them. Table 16.1. Special beans in the WebApplicationContext Expression Explanation handler mapping(s) (Section 16.5, “Handler mappings”) a list of pre- and post-processors and controllers that will be executed if they match certain criteria (for instance a matching portlet mode specified with the controller) controller(s) (Section 16.4, “Controllers”) the beans providing the actual functionality (or at least, access to the functionality) as part of the MVC triad view resolver (Section 16.6, “Views and resolving them”) capable of resolving view names to view definitions multipart resolver (Section 16.7, “Multipart (file upload) support”) offers functionality to process file uploads from HTML forms handler exception (Section 16.8, “Handling exceptions”) offers functionality to map exceptions to resolver views or implement other more complex exception handling code Spring Framework (2.5.6) 399
  • 400. Portlet MVC Framework When a DispatcherPortlet is setup for use and a request comes in for that specific DispatcherPortlet, it starts processing the request. The list below describes the complete process a request goes through if handled by a DispatcherPortlet: 1. The locale returned by PortletRequest.getLocale() is bound to the request to let elements in the process resolve the locale to use when processing the request (rendering the view, preparing data, etc.). 2. If a multipart resolver is specified and this is an ActionRequest, the request is inspected for multiparts and if they are found, it is wrapped in a MultipartActionRequest for further processing by other elements in the process. (See Section 16.7, “Multipart (file upload) support” for further information about multipart handling). 3. An appropriate handler is searched for. If a handler is found, the execution chain associated with the handler (pre- processors, post-processors, controllers) will be executed in order to prepare a model. 4. If a model is returned, the view is rendered, using the view resolver that has been configured with the WebApplicationContext. If no model is returned (which could be due to a pre- or post-processor intercepting the request, for example, for security reasons), no view is rendered, since the request could already have been fulfilled. Exceptions that might be thrown during processing of the request get picked up by any of the handler exception resolvers that are declared in the WebApplicationContext. Using these exception resolvers you can define custom behavior in case such exceptions get thrown. You can customize Spring's DispatcherPortlet by adding context parameters in the portlet.xml file or portlet init-parameters. The possibilities are listed below. Table 16.2. DispatcherPortlet initialization parameters Parameter Explanation contextClass Class that implements WebApplicationContext, which will be used to instantiate the context used by this portlet. If this parameter isn't specified, the XmlPortletApplicationContext will be used. contextConfigLocation String which is passed to the context instance (specified by contextClass) to indicate where context(s) can be found. The String is potentially split up into multiple Strings (using a comma as a delimiter) to support multiple contexts (in case of multiple context locations, of beans that are defined twice, the latest takes precedence). namespace The namespace of the WebApplicationContext. Defaults to [portlet-name]- portlet. viewRendererUrl The URL at which DispatcherPortlet can access an instance of ViewRendererServlet (see Section 16.3, “The ViewRendererServlet”). 16.3. The ViewRendererServlet The rendering process in Portlet MVC is a bit more complex than in Web MVC. In order to reuse all the view technologies from Spring Web MVC), we must convert the PortletRequest / PortletResponse to HttpServletRequest / HttpServletResponse and then call the render method of the View. To do this, Spring Framework (2.5.6) 400
  • 401. Portlet MVC Framework DispatcherPortlet uses a special servlet that exists for just this purpose: the ViewRendererServlet. In order for DispatcherPortlet rendering to work, you must declare an instance of the ViewRendererServlet in the web.xml file for your web application as follows: <servlet> <servlet-name>ViewRendererServlet</servlet-name> <servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>ViewRendererServlet</servlet-name> <url-pattern>/WEB-INF/servlet/view</url-pattern> </servlet-mapping> To perform the actual rendering, DispatcherPortlet does the following: 1. Binds the WebApplicationContext to the request as an attribute under the same WEB_APPLICATION_CONTEXT_ATTRIBUTE key that DispatcherServlet uses. 2. Binds the Model and View objects to the request to make them available to the ViewRendererServlet. 3. Constructs a PortletRequestDispatcher and performs an include using the /WEB- INF/servlet/view URL that is mapped to the ViewRendererServlet. The ViewRendererServlet is then able to call the render method on the View with the appropriate arguments. The actual URL for the ViewRendererServlet can be changed using DispatcherPortlet’s viewRendererUrl configuration parameter. 16.4. Controllers The controllers in Portlet MVC are very similar to the Web MVC Controllers and porting code from one to the other should be simple. The basis for the Portlet MVC controller architecture is the org.springframework.web.portlet.mvc.Controller interface, which is listed below. public interface Controller { /** * Process the render request and return a ModelAndView object which the * DispatcherPortlet will render. */ ModelAndView handleRenderRequest(RenderRequest request, RenderResponse response) throws Exception; /** * Process the action request. There is nothing to return. */ void handleActionRequest(ActionRequest request, ActionResponse response) throws Exception; } As you can see, the Portlet Controller interface requires two methods that handle the two phases of a portlet request: the action request and the render request. The action phase should be capable of handling an action request and the render phase should be capable of handling a render request and returning an appropriate model and view. While the Controller interface is quite abstract, Spring Portlet MVC offers a lot of controllers that already contain a lot of the functionality you might need – most of these are very similar to controllers from Spring Framework (2.5.6) 401
  • 402. Portlet MVC Framework Spring Web MVC. The Controller interface just defines the most common functionality required of every controller - handling an action request, handling a render request, and returning a model and a view. 16.4.1. AbstractController and PortletContentGenerator Of course, just a Controller interface isn't enough. To provide a basic infrastructure, all of Spring Portlet MVC's Controllers inherit from AbstractController, a class offering access to Spring's ApplicationContext and control over caching. Table 16.3. Features offered by the AbstractController Parameter Explanation requireSession Indicates whether or not this Controller requires a session to do its work. This feature is offered to all controllers. If a session is not present when such a controller receives a request, the user is informed using a SessionRequiredException. synchronizeSession Use this if you want handling by this controller to be synchronized on the user's session. To be more specific, the extending controller will override the handleRenderRequestInternal(..) and handleActionRequestInternal(..) methods, which will be synchronized on the user’s session if you specify this variable. renderWhenMinimized If you want your controller to actually render the view when the portlet is in a minimized state, set this to true. By default, this is set to false so that portlets that are in a minimized state don’t display any content. cacheSeconds When you want a controller to override the default cache expiration defined for the portlet, specify a positive integer here. By default it is set to -1, which does not change the default caching. Setting it to 0 will ensure the result is never cached. The requireSession and cacheSeconds properties are declared on the PortletContentGenerator class, which is the superclass of AbstractController) but are included here for completeness. When using the AbstractController as a baseclass for your controllers (which is not recommended since there are a lot of other controllers that might already do the job for you) you only have to override either the handleActionRequestInternal(ActionRequest, ActionResponse) method or the handleRenderRequestInternal(RenderRequest, RenderResponse) method (or both), implement your logic, and return a ModelAndView object (in the case of handleRenderRequestInternal). The default implementations of both handleActionRequestInternal(..) and handleRenderRequestInternal(..) throw a PortletException. This is consistent with the behavior of GenericPortlet from the JSR- 168 Specification API. So you only need to override the method that your controller is intended to handle. Here is short example consisting of a class and a declaration in the web application context. package samples; import javax.portlet.RenderRequest; import javax.portlet.RenderResponse; import org.springframework.web.portlet.mvc.AbstractController; import org.springframework.web.portlet.ModelAndView; Spring Framework (2.5.6) 402
  • 403. Portlet MVC Framework public class SampleController extends AbstractController { public ModelAndView handleRenderRequestInternal(RenderRequest request, RenderResponse response) { ModelAndView mav = new ModelAndView("foo"); mav.addObject("message", "Hello World!"); return mav; } } <bean id="sampleController" class="samples.SampleController"> <property name="cacheSeconds" value="120"/> </bean> The class above and the declaration in the web application context is all you need besides setting up a handler mapping (see Section 16.5, “Handler mappings”) to get this very simple controller working. 16.4.2. Other simple controllers Although you can extend AbstractController, Spring Portlet MVC provides a number of concrete implementations which offer functionality that is commonly used in simple MVC applications. The ParameterizableViewController is basically the same as the example above, except for the fact that you can specify the view name that it will return in the web application context (no need to hard-code the view name). The PortletModeNameViewController uses the current mode of the portlet as the view name. So, if your portlet is in View mode (i.e. PortletMode.VIEW) then it uses "view" as the view name. 16.4.3. Command Controllers Spring Portlet MVC has the exact same hierarchy of command controllers as Spring Web MVC. They provide a way to interact with data objects and dynamically bind parameters from the PortletRequest to the data object specified. Your data objects don't have to implement a framework-specific interface, so you can directly manipulate your persistent objects if you desire. Let's examine what command controllers are available, to get an overview of what you can do with them: • AbstractCommandController - a command controller you can use to create your own command controller, capable of binding request parameters to a data object you specify. This class does not offer form functionality, it does however offer validation features and lets you specify in the controller itself what to do with the command object that has been filled with the parameters from the request. • AbstractFormController - an abstract controller offering form submission support. Using this controller you can model forms and populate them using a command object you retrieve in the controller. After a user has filled the form, AbstractFormController binds the fields, validates, and hands the object back to the controller to take appropriate action. Supported features are: invalid form submission (resubmission), validation, and normal form workflow. You implement methods to determine which views are used for form presentation and success. Use this controller if you need forms, but don't want to specify what views you're going to show the user in the application context. • SimpleFormController - a concrete AbstractFormController that provides even more support when creating a form with a corresponding command object. The SimpleFormController lets you specify a command object, a viewname for the form, a viewname for the page you want to show the user when form submission has succeeded, and more. Spring Framework (2.5.6) 403
  • 404. Portlet MVC Framework • AbstractWizardFormController – a concrete AbstractFormController that provides a wizard-style interface for editing the contents of a command object across multiple display pages. Supports multiple user actions: finish, cancel, or page change, all of which are easily specified in request parameters from the view. These command controllers are quite powerful, but they do require a detailed understanding of how they operate in order to use them efficiently. Carefully review the Javadocs for this entire hierarchy and then look at some sample implementations before you start using them. 16.4.4. PortletWrappingController Instead of developing new controllers, it is possible to use existing portlets and map requests to them from a DispatcherPortlet. Using the PortletWrappingController, you can instantiate an existing Portlet as a Controller as follows: <bean id="myPortlet" class="org.springframework.web.portlet.mvc.PortletWrappingController"> <property name="portletClass" value="sample.MyPortlet"/> <property name="portletName" value="my-portlet"/> <property name="initParameters"> <value>config=/WEB-INF/my-portlet-config.xml</value> </property> </bean> This can be very valuable since you can then use interceptors to pre-process and post-process requests going to these portlets. Since JSR-168 does not support any kind of filter mechanism, this is quite handy. For example, this can be used to wrap the Hibernate OpenSessionInViewInterceptor around a MyFaces JSF Portlet. 16.5. Handler mappings Using a handler mapping you can map incoming portlet requests to appropriate handlers. There are some handler mappings you can use out of the box, for example, the PortletModeHandlerMapping, but let's first examine the general concept of a HandlerMapping. Note: We are intentionally using the term “Handler” here instead of “Controller”. DispatcherPortlet is designed to be used with other ways to process requests than just Spring Portlet MVC’s own Controllers. A Handler is any Object that can handle portlet requests. Controllers are an example of Handlers, and they are of course the default. To use some other framework with DispatcherPortlet, a corresponding implementation of HandlerAdapter is all that is needed. The functionality a basic HandlerMapping provides is the delivering of a HandlerExecutionChain, which must contain the handler that matches the incoming request, and may also contain a list of handler interceptors that are applied to the request. When a request comes in, the DispatcherPortlet will hand it over to the handler mapping to let it inspect the request and come up with an appropriate HandlerExecutionChain. Then the DispatcherPortlet will execute the handler and interceptors in the chain (if any). These concepts are all exactly the same as in Spring Web MVC. The concept of configurable handler mappings that can optionally contain interceptors (executed before or after the actual handler was executed, or both) is extremely powerful. A lot of supporting functionality can be built into a custom HandlerMapping. Think of a custom handler mapping that chooses a handler not only based on the portlet mode of the request coming in, but also on a specific state of the session associated with the request. In Spring Web MVC, handler mappings are commonly based on URLs. Since there is really no such thing as a URL within a Portlet, we must use other mechanisms to control mappings. The two most common are the portlet mode and a request parameter, but anything available to the portlet request can be used in a custom Spring Framework (2.5.6) 404
  • 405. Portlet MVC Framework handler mapping. The rest of this section describes three of Spring Portlet MVC's most commonly used handler mappings. They all extend AbstractHandlerMapping and share the following properties: • interceptors: The list of interceptors to use. HandlerInterceptors are discussed in Section 16.5.4, “Adding HandlerInterceptors”. • defaultHandler: The default handler to use, when this handler mapping does not result in a matching handler. • order: Based on the value of the order property (see the org.springframework.core.Ordered interface), Spring will sort all handler mappings available in the context and apply the first matching handler. • lazyInitHandlers: Allows for lazy initialization of singleton handlers (prototype handlers are always lazily initialized). Default value is false. This property is directly implemented in the three concrete Handlers. 16.5.1. PortletModeHandlerMapping This is a simple handler mapping that maps incoming requests based on the current mode of the portlet (e.g. ‘view’, ‘edit’, ‘help’). An example: <bean class="org.springframework.web.portlet.handler.PortletModeHandlerMapping"> <property name="portletModeMap"> <map> <entry key="view" value-ref="viewHandler"/> <entry key="edit" value-ref="editHandler"/> <entry key="help" value-ref="helpHandler"/> </map> </property> </bean> 16.5.2. ParameterHandlerMapping If we need to navigate around to multiple controllers without changing portlet mode, the simplest way to do this is with a request parameter that is used as the key to control the mapping. ParameterHandlerMapping uses the value of a specific request parameter to control the mapping. The default name of the parameter is 'action', but can be changed using the 'parameterName' property. The bean configuration for this mapping will look something like this: <bean class="org.springframework.web.portlet.handler.ParameterHandlerMapping”> <property name="parameterMap"> <map> <entry key="add" value-ref="addItemHandler"/> <entry key="edit" value-ref="editItemHandler"/> <entry key="delete" value-ref="deleteItemHandler"/> </map> </property> </bean> 16.5.3. PortletModeParameterHandlerMapping The most powerful built-in handler mapping, PortletModeParameterHandlerMapping combines the capabilities of the two previous ones to allow different navigation within each portlet mode. Spring Framework (2.5.6) 405
  • 406. Portlet MVC Framework Again the default name of the parameter is "action", but can be changed using the parameterName property. By default, the same parameter value may not be used in two different portlet modes. This is so that if the portal itself changes the portlet mode, the request will no longer be valid in the mapping. This behavior can be changed by setting the allowDupParameters property to true. However, this is not recommended. The bean configuration for this mapping will look something like this: <bean class="org.springframework.web.portlet.handler.PortletModeParameterHandlerMapping"> <property name="portletModeParameterMap"> <map> <entry key="view"> <!-- 'view' portlet mode --> <map> <entry key="add" value-ref="addItemHandler"/> <entry key="edit" value-ref="editItemHandler"/> <entry key="delete" value-ref="deleteItemHandler"/> </map> </entry> <entry key="edit"> <!-- 'edit' portlet mode --> <map> <entry key="prefs" value-ref="prefsHandler"/> <entry key="resetPrefs" value-ref="resetPrefsHandler"/> </map> </entry> </map> </property> </bean> This mapping can be chained ahead of a PortletModeHandlerMapping, which can then provide defaults for each mode and an overall default as well. 16.5.4. Adding HandlerInterceptors Spring's handler mapping mechanism has a notion of handler interceptors, which can be extremely useful when you want to apply specific functionality to certain requests, for example, checking for a principal. Again Spring Portlet MVC implements these concepts in the same way as Web MVC. Interceptors located in the handler mapping must implement HandlerInterceptor from the org.springframework.web.portlet package. Just like the servlet version, this interface defines three methods: one that will be called before the actual handler will be executed (preHandle), one that will be called after the handler is executed (postHandle), and one that is called after the complete request has finished (afterCompletion). These three methods should provide enough flexibility to do all kinds of pre- and post- processing. The preHandle method returns a boolean value. You can use this method to break or continue the processing of the execution chain. When this method returns true, the handler execution chain will continue. When it returns false, the DispatcherPortlet assumes the interceptor itself has taken care of requests (and, for example, rendered an appropriate view) and does not continue executing the other interceptors and the actual handler in the execution chain. The postHandle method is only called on a RenderRequest. The preHandle and afterCompletion methods are called on both an ActionRequest and a RenderRequest. If you need to execute logic in these methods for just one type of request, be sure to check what kind of request it is before processing it. 16.5.5. HandlerInterceptorAdapter As with the servlet package, the portlet package has a concrete implementation of HandlerInterceptor called HandlerInterceptorAdapter. This class has empty versions of all the methods so that you can inherit from Spring Framework (2.5.6) 406
  • 407. Portlet MVC Framework this class and implement just one or two methods when that is all you need. 16.5.6. ParameterMappingInterceptor The portlet package also has a concrete interceptor named ParameterMappingInterceptor that is meant to be used directly with ParameterHandlerMapping and PortletModeParameterHandlerMapping. This interceptor will cause the parameter that is being used to control the mapping to be forwarded from an ActionRequest to the subsequent RenderRequest. This will help ensure that the RenderRequest is mapped to the same Handler as the ActionRequest. This is done in the preHandle method of the interceptor, so you can still modify the parameter value in your handler to change where the RenderRequest will be mapped. Be aware that this interceptor is calling setRenderParameter on the ActionResponse, which means that you cannot call sendRedirect in your handler when using this interceptor. If you need to do external redirects then you will either need to forward the mapping parameter manually or write a different interceptor to handle this for you. 16.6. Views and resolving them As mentioned previously, Spring Portlet MVC directly reuses all the view technologies from Spring Web MVC. This includes not only the various View implementations themselves, but also the ViewResolver implementations. For more information, refer to the sections entitled Chapter 14, View technologies and Section 13.5, “Views and resolving them” respectively. A few items on using the existing View and ViewResolver implementations are worth mentioning: • Most portals expect the result of rendering a portlet to be an HTML fragment. So, things like JSP/JSTL, Velocity, FreeMarker, and XSLT all make sense. But it is unlikely that views that return other document types will make any sense in a portlet context. • There is no such thing as an HTTP redirect from within a portlet (the sendRedirect(..) method of ActionResponse cannot be used to stay within the portal). So, RedirectView and use of the 'redirect:' prefix will not work correctly from within Portlet MVC. • It may be possible to use the 'forward:' prefix from within Portlet MVC. However, remember that since you are in a portlet, you have no idea what the current URL looks like. This means you cannot use a relative URL to access other resources in your web application and that you will have to use an absolute URL. Also, for JSP development, the new Spring Taglib and the new Spring Form Taglib both work in portlet views in exactly the same way that they work in servlet views. 16.7. Multipart (file upload) support Spring Portlet MVC has built-in multipart support to handle file uploads in portlet applications, just like Web MVC does. The design for the multipart support is done with pluggable PortletMultipartResolver objects, defined in the org.springframework.web.portlet.multipart package. Spring provides a PortletMultipartResolver for use with Commons FileUpload. How uploading files is supported will be described in the rest of this section. By default, no multipart handling will be done by Spring Portlet MVC, as some developers will want to handle multiparts themselves. You will have to enable it yourself by adding a multipart resolver to the web application's context. After you have done that, DispatcherPortlet will inspect each request to see if it Spring Framework (2.5.6) 407
  • 408. Portlet MVC Framework contains a multipart. If no multipart is found, the request will continue as expected. However, if a multipart is found in the request, the PortletMultipartResolver that has been declared in your context will be used. After that, the multipart attribute in your request will be treated like any other attribute. Note Any configured PortletMultipartResolver bean must have the following id (or name): "portletMultipartResolver". If you have defined your PortletMultipartResolver with any other name, then the DispatcherPortlet will not find your PortletMultipartResolver, and consequently no multipart support will be in effect. 16.7.1. Using the PortletMultipartResolver The following example shows how to use the CommonsPortletMultipartResolver: <bean id="portletMultipartResolver" class="org.springframework.web.portlet.multipart.CommonsPortletMultipartResolver"> <!-- one of the properties available; the maximum file size in bytes --> <property name="maxUploadSize" value="100000"/> </bean> Of course you also need to put the appropriate jars in your classpath for the multipart resolver to work. In the case of the CommonsMultipartResolver, you need to use commons-fileupload.jar. Be sure to use at least version 1.1 of Commons FileUpload as previous versions do not support JSR-168 Portlet applications. Now that you have seen how to set Portlet MVC up to handle multipart requests, let's talk about how to actually use it. When DispatcherPortlet detects a multipart request, it activates the resolver that has been declared in your context and hands over the request. What the resolver then does is wrap the current ActionRequest into a MultipartActionRequest that has support for multipart file uploads. Using the MultipartActionRequest you can get information about the multiparts contained by this request and actually get access to the multipart files themselves in your controllers. Note that you can only receive multipart file uploads as part of an ActionRequest, not as part of a RenderRequest. 16.7.2. Handling a file upload in a form After the PortletMultipartResolver has finished doing its job, the request will be processed like any other. To use it, you create a form with an upload field (see immediately below), then let Spring bind the file onto your form (backing object). To actually let the user upload a file, we have to create a (JSP/HTML) form: <h1>Please upload a file</h1> <form method="post" action="<portlet:actionURL/>" enctype="multipart/form-data"> <input type="file" name="file"/> <input type="submit"/> </form> As you can see, we've created a field named “file” after the property of the bean that holds the byte[]. Furthermore we've added the encoding attribute (enctype="multipart/form-data"), which is necessary to let the browser know how to encode the multipart fields (do not forget this!). Just as with any other property that's not automagically convertible to a string or primitive type, to be able to put binary data in your objects you have to register a custom editor with the PortletRequestDataBinder. Spring Framework (2.5.6) 408
  • 409. Portlet MVC Framework There are a couple of editors available for handling files and setting the results on an object. There's a StringMultipartFileEditor capable of converting files to Strings (using a user-defined character set) and there is a ByteArrayMultipartFileEditor which converts files to byte arrays. They function just as the CustomDateEditor does. So, to be able to upload files using a form, declare the resolver, a mapping to a controller that will process the bean, and the controller itself. <bean id="portletMultipartResolver" class="org.springframework.web.portlet.multipart.CommonsPortletMultipartResolver"/> <bean class="org.springframework.web.portlet.handler.PortletModeHandlerMapping"> <property name="portletModeMap"> <map> <entry key="view" value-ref="fileUploadController"/> </map> </property> </bean> <bean id="fileUploadController" class="examples.FileUploadController"> <property name="commandClass" value="examples.FileUploadBean"/> <property name="formView" value="fileuploadform"/> <property name="successView" value="confirmation"/> </bean> After that, create the controller and the actual class to hold the file property. public class FileUploadController extends SimpleFormController { public void onSubmitAction(ActionRequest request, ActionResponse response, Object command, BindException errors) throws Exception { // cast the bean FileUploadBean bean = (FileUploadBean) command; // let's see if there's content there byte[] file = bean.getFile(); if (file == null) { // hmm, that's strange, the user did not upload anything } // do something with the file here } protected void initBinder( PortletRequest request, PortletRequestDataBinder binder) throws Exception { // to actually be able to convert Multipart instance to byte[] // we have to register a custom editor binder.registerCustomEditor(byte[].class, new ByteArrayMultipartFileEditor()); // now Spring knows how to handle multipart object and convert } } public class FileUploadBean { private byte[] file; public void setFile(byte[] file) { this.file = file; } public byte[] getFile() { return file; } } As you can see, the FileUploadBean has a property typed byte[] that holds the file. The controller registers a custom editor to let Spring know how to actually convert the multipart objects the resolver has found to properties specified by the bean. In this example, nothing is done with the byte[] property of the bean itself, but in practice you can do whatever you want (save it in a database, mail it to somebody, etc). Spring Framework (2.5.6) 409
  • 410. Portlet MVC Framework An equivalent example in which a file is bound straight to a String-typed property on a (form backing) object might look like this: public class FileUploadController extends SimpleFormController { public void onSubmitAction(ActionRequest request, ActionResponse response, Object command, BindException errors) throws Exception { // cast the bean FileUploadBean bean = (FileUploadBean) command; // let's see if there's content there String file = bean.getFile(); if (file == null) { // hmm, that's strange, the user did not upload anything } // do something with the file here } protected void initBinder( PortletRequest request, PortletRequestDataBinder binder) throws Exception { // to actually be able to convert Multipart instance to a String // we have to register a custom editor binder.registerCustomEditor(String.class, new StringMultipartFileEditor()); // now Spring knows how to handle multipart objects and convert } } public class FileUploadBean { private String file; public void setFile(String file) { this.file = file; } public String getFile() { return file; } } Of course, this last example only makes (logical) sense in the context of uploading a plain text file (it wouldn't work so well in the case of uploading an image file). The third (and final) option is where one binds directly to a MultipartFile property declared on the (form backing) object's class. In this case one does not need to register any custom property editor because there is no type conversion to be performed. public class FileUploadController extends SimpleFormController { public void onSubmitAction(ActionRequest request, ActionResponse response, Object command, BindException errors) throws Exception { // cast the bean FileUploadBean bean = (FileUploadBean) command; // let's see if there's content there MultipartFile file = bean.getFile(); if (file == null) { // hmm, that's strange, the user did not upload anything } // do something with the file here } } public class FileUploadBean { private MultipartFile file; Spring Framework (2.5.6) 410
  • 411. Portlet MVC Framework public void setFile(MultipartFile file) { this.file = file; } public MultipartFile getFile() { return file; } } 16.8. Handling exceptions Just like Web MVC, Portlet MVC provides HandlerExceptionResolvers to ease the pain of unexpected exceptions occurring while your request is being processed by a handler that matched the request. Portlet MVC also provides the same concrete SimpleMappingExceptionResolver that enables you to take the class name of any exception that might be thrown and map it to a view name. 16.9. Annotation-based controller configuration Spring 2.5 introduces an annotation-based programming model for MVC controllers, using annotations such as @RequestMapping, @RequestParam, @ModelAttribute, etc. This annotation support is available for both Servlet MVC and Portlet MVC. Controllers implemented in this style do not have to extend specific base classes or implement specific interfaces. Furthermore, they do not usually have direct dependencies on Servlet or Portlet API's, although they can easily get access to Servlet or Portlet facilities if desired. Tip The Spring distribution ships with the PetPortal sample, which is a portal application that takes advantage of the annotation support described in this section, in the context of simple form processing. You can find the PetPortal application in the 'samples/petportal' directory. The following sections document these annotations and how they are most commonly used in a Portlet environment. 16.9.1. Setting up the dispatcher for annotation support @RequestMapping will only be processed if a corresponding HandlerMapping (for type level annotations) and/or HandlerAdapter (for method level annotations) is present in the dispatcher. This is the case by default in both DispatcherServlet and DispatcherPortlet. However, if you are defining custom HandlerMappings or HandlerAdapters, then you need to make sure that a corresponding custom DefaultAnnotationHandlerMapping and/or AnnotationMethodHandlerAdapter is defined as well - provided that you intend to use @RequestMapping. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean class="org.springframework.web.portlet.mvc.annotation.DefaultAnnotationHandlerMapping"/> <bean class="org.springframework.web.portlet.mvc.annotation.AnnotationMethodHandlerAdapter"/> // ... (controller bean definitions) ... Spring Framework (2.5.6) 411
  • 412. Portlet MVC Framework </beans> Defining a DefaultAnnotationHandlerMapping and/or AnnotationMethodHandlerAdapter explicitly also makes sense if you would like to customize the mapping strategy, e.g. specifying a custom WebBindingInitializer (see below). 16.9.2. Defining a controller with @Controller The @Controller annotation indicates that a particular class serves the role of a controller. There is no need to extend any controller base class or reference the Portlet API. You are of course still able to reference Portlet-specific features if you need to. The basic purpose of the @Controller annotation is to act as a stereotype for the annotated class, indicating its role. The dispatcher will scan such annotated classes for mapped methods, detecting @RequestMapping annotations (see the next section). Annotated controller beans may be defined explicitly, using a standard Spring bean definition in the dispatcher's context. However, the @Controller stereotype also allows for autodetection, aligned with Spring 2.5's general support for detecting component classes in the classpath and auto-registering bean definitions for them. To enable autodetection of such annotated controllers, you have to add component scanning to your configuration. This is easily achieved by using the spring-context schema as shown in the following XML snippet: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.xsd"> <context:component-scan base-package="org.springframework.samples.petportal.portlet"/> // ... </beans> 16.9.3. Mapping requests with @RequestMapping The @RequestMapping annotation is used to map portlet modes like 'VIEW'/'EDIT' onto an entire class or a particular handler method. Typically the type-level annotation maps a specific mode (or mode plus parameter condition) onto a form controller, with additional method-level annotations 'narrowing' the primary mapping for specific portlet request parameters. Tip @RequestMapping at the type level may be used for plain implementations of the Controller interface as well. In this case, the request processing code would follow the traditional handle(Action|Render)Request signature, while the controller's mapping would be expressed through an @RequestMapping annotation. This works for pre-built Controller base classes, such as SimpleFormController, too. Spring Framework (2.5.6) 412
  • 413. Portlet MVC Framework In the following discussion, we'll focus on controllers that are based on annotated handler methods. The following is an example of a form controller from the PetPortal sample application using this annotation: @Controller @RequestMapping("EDIT") @SessionAttributes("site") public class PetSitesEditController { private Properties petSites; public void setPetSites(Properties petSites) { this.petSites = petSites; } @ModelAttribute("petSites") public Properties getPetSites() { return this.petSites; } @RequestMapping // default (action=list) public String showPetSites() { return "petSitesEdit"; } @RequestMapping(params = "action=add") // render phase public String showSiteForm(Model model) { // Used for the initial form as well as for redisplaying with errors. if (!model.containsAttribute("site")) { model.addAttribute("site", new PetSite()); } return "petSitesAdd"; } @RequestMapping(params = "action=add") // action phase public void populateSite( @ModelAttribute("site") PetSite petSite, BindingResult result, SessionStatus status, ActionResponse response) { new PetSiteValidator().validate(petSite, result); if (!result.hasErrors()) { this.petSites.put(petSite.getName(), petSite.getUrl()); status.setComplete(); response.setRenderParameter("action", "list"); } } @RequestMapping(params = "action=delete") public void removeSite(@RequestParam("site") String site, ActionResponse response) { this.petSites.remove(site); response.setRenderParameter("action", "list"); } } 16.9.4. Supported handler method arguments Handler methods which are annotated with @RequestMapping are allowed to have very flexible signatures. They may have arguments of the following types, in arbitrary order (except for validation results, which need to follow right after the corresponding command object, if desired): • Request and/or response objects (Portlet API). You may choose any specific request/response type, e.g. PortletRequest / ActionRequest / RenderRequest. An explicitly declared action/render argument is also used for mapping specific request types onto a handler method (in case of no other information given that differentiates between action and render requests). Spring Framework (2.5.6) 413
  • 414. Portlet MVC Framework • Session object (Portlet API): of type PortletSession. An argument of this type will enforce the presence of a corresponding session. As a consequence, such an argument will never be null. • org.springframework.web.context.request.WebRequest or org.springframework.web.context.request.NativeWebRequest. Allows for generic request parameter access as well as request/session attribute access, without ties to the native Servlet/Portlet API. • java.util.Locale for the current request locale (the portal locale in a Portlet environment). • java.io.InputStream / java.io.Reader for access to the request's content. This will be the raw InputStream/Reader as exposed by the Portlet API. • java.io.OutputStream / java.io.Writer for generating the response's content. This will be the raw OutputStream/Writer as exposed by the Portlet API. • @RequestParam annotated parameters for access to specific Portlet request parameters. Parameter values will be converted to the declared method argument type. • java.util.Map / org.springframework.ui.Model / org.springframework.ui.ModelMap for enriching the implicit model that will be exposed to the web view. • Command/form objects to bind parameters to: as bean properties or fields, with customizable type conversion, depending on @InitBinder methods and/or the HandlerAdapter configuration - see the "webBindingInitializer" property on AnnotationMethodHandlerAdapter. Such command objects along with their validation results will be exposed as model attributes, by default using the non-qualified command class name in property notation (e.g. "orderAddress" for type "mypackage.OrderAddress"). Specify a parameter-level ModelAttribute annotation for declaring a specific model attribute name. • org.springframework.validation.Errors / org.springframework.validation.BindingResult validation results for a preceding command/form object (the immediate preceding argument). • org.springframework.web.bind.support.SessionStatus status handle for marking form processing as complete (triggering the cleanup of session attributes that have been indicated by the @SessionAttributes annotation at the handler type level). The following return types are supported for handler methods: • A ModelAndView object, with the model implicitly enriched with command objects and the results of @ModelAttribute annotated reference data accessor methods. • A Model object, with the view name implicitly determined through a RequestToViewNameTranslator and the model implicitly enriched with command objects and the results of @ModelAttribute annotated reference data accessor methods. • A Map object for exposing a model, with the view name implicitly determined through a RequestToViewNameTranslator and the model implicitly enriched with command objects and the results of @ModelAttribute annotated reference data accessor methods. • A View object, with the model implicitly determined through command objects and @ModelAttribute annotated reference data accessor methods. The handler method may also programmatically enrich the model by declaring a Model argument (see above). • A String value which is interpreted as view name, with the model implicitly determined through command objects and @ModelAttribute annotated reference data accessor methods. The handler method may also Spring Framework (2.5.6) 414
  • 415. Portlet MVC Framework programmatically enrich the model by declaring a Model argument (see above). • void if the method handles the response itself (e.g. by writing the response content directly). • Any other return type will be considered as single model attribute to be exposed to the view, using the attribute name specified through @ModelAttribute at the method level (or the default attribute name based on the return type's class name otherwise). The model will be implicitly enriched with command objects and the results of @ModelAttribute annotated reference data accessor methods. 16.9.5. Binding request parameters to method parameters with @RequestParam The @RequestParam annotation is used to bind request parameters to a method parameter in your controller. The following code snippet from the PetPortal sample application shows the usage: @Controller @RequestMapping("EDIT") @SessionAttributes("site") public class PetSitesEditController { // ... public void removeSite(@RequestParam("site") String site, ActionResponse response) { this.petSites.remove(site); response.setRenderParameter("action", "list"); } // ... } Parameters using this annotation are required by default, but you can specify that a parameter is optional by setting @RequestParam's required attribute to false (e.g., @RequestParam(value="id", required="false")). 16.9.6. Providing a link to data from the model with @ModelAttribute @ModelAttribute has two usage scenarios in controllers. When placed on a method parameter, @ModelAttribute is used to map a model attribute to the specific, annotated method parameter (see the processSubmit() method below). This is how the controller gets a reference to the object holding the data entered in the form. In addition, the parameter can be declared as the specific type of the form backing object rather than as a generic java.lang.Object, thus increasing type safety. @ModelAttribute is also used at the method level to provide reference data for the model (see the populatePetTypes() method below). For this usage the method signature can contain the same types as documented above for the @RequestMapping annotation. Note: @ModelAttribute annotated methods will be executed before the chosen @RequestMapping annotated handler method. They effectively pre-populate the implicit model with specific attributes, often loaded from a database. Such an attribute can then already be accessed through @ModelAttribute annotated handler method parameters in the chosen handler method, potentially with binding and validation applied to it. The following code snippet shows these two usages of this annotation: @Controller @RequestMapping("EDIT") @SessionAttributes("site") public class PetSitesEditController { Spring Framework (2.5.6) 415
  • 416. Portlet MVC Framework // ... @ModelAttribute("petSites") public Properties getPetSites() { return this.petSites; } @RequestMapping(params = "action=add") // action phase public void populateSite( @ModelAttribute("site") PetSite petSite, BindingResult result, SessionStatus status, ActionResponse response) { new PetSiteValidator().validate(petSite, result); if (!result.hasErrors()) { this.petSites.put(petSite.getName(), petSite.getUrl()); status.setComplete(); response.setRenderParameter("action", "list"); } } } 16.9.7. Specifying attributes to store in a Session with @SessionAttributes The type-level @SessionAttributes annotation declares session attributes used by a specific handler. This will typically list the names of model attributes which should be transparently stored in the session or some conversational storage, serving as form-backing beans between subsequent requests. The following code snippet shows the usage of this annotation: @Controller @RequestMapping("EDIT") @SessionAttributes("site") public class PetSitesEditController { // ... } 16.9.8. Customizing WebDataBinder initialization To customize request parameter binding with PropertyEditors, etc. via Spring's WebDataBinder, you can either use @InitBinder-annotated methods within your controller or externalize your configuration by providing a custom WebBindingInitializer. 16.9.8.1. Customizing data binding with @InitBinder Annotating controller methods with @InitBinder allows you to configure web data binding directly within your controller class. @InitBinder identifies methods which initialize the WebDataBinder which will be used for populating command and form object arguments of annotated handler methods. Such init-binder methods support all arguments that @RequestMapping supports, except for command/form objects and corresponding validation result objects. Init-binder methods must not have a return value. Thus, they are usually declared as void. Typical arguments include WebDataBinder in combination with WebRequest or java.util.Locale, allowing code to register context-specific editors. The following example demonstrates the use of @InitBinder for configuring a CustomDateEditor for all java.util.Date form properties. @Controller public class MyFormController { @InitBinder public void initBinder(WebDataBinder binder) { Spring Framework (2.5.6) 416
  • 417. Portlet MVC Framework SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd"); dateFormat.setLenient(false); binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat, false)); } // ... } 16.9.8.2. Configuring a custom WebBindingInitializer To externalize data binding initialization, you can provide a custom implementation of the WebBindingInitializer interface, which you then enable by supplying a custom bean configuration for an AnnotationMethodHandlerAdapter, thus overriding the default configuration. 16.10. Portlet application deployment The process of deploying a Spring Portlet MVC application is no different than deploying any JSR-168 Portlet application. However, this area is confusing enough in general that it is worth talking about here briefly. Generally, the portal/portlet container runs in one webapp in your servlet container and your portlets run in another webapp in your servlet container. In order for the portlet container webapp to make calls into your portlet webapp it must make cross-context calls to a well-known servlet that provides access to the portlet services defined in your portlet.xml file. The JSR-168 specification does not specify exactly how this should happen, so each portlet container has its own mechanism for this, which usually involves some kind of “deployment process” that makes changes to the portlet webapp itself and then registers the portlets within the portlet container. At a minimum, the web.xml file in your portlet webapp is modified to inject the well-known servlet that the portlet container will call. In some cases a single servlet will service all portlets in the webapp, in other cases there will be an instance of the servlet for each portlet. Some portlet containers will also inject libraries and/or configuration files into the webapp as well. The portlet container must also make its implementation of the Portlet JSP Tag Library available to your webapp. The bottom line is that it is important to understand the deployment needs of your target portal and make sure they are met (usually by following the automated deployment process it provides). Be sure to carefully review the documentation from your portal for this process. Once you have deployed your portlet, review the resulting web.xml file for sanity. Some older portals have been known to corrupt the definition of the ViewRendererServlet, thus breaking the rendering of your portlets. Spring Framework (2.5.6) 417
  • 418. Part IV. Integration This part of the reference documentation covers the Spring Framework's integration with a number of J2EE (and related) technologies. • Chapter 17, Remoting and web services using Spring • Chapter 18, Enterprise Java Beans (EJB) integration • Chapter 19, JMS (Java Message Service) • Chapter 20, JMX • Chapter 21, JCA CCI • Chapter 22, Email • Chapter 23, Scheduling and Thread Pooling • Chapter 24, Dynamic language support • Chapter 25, Annotations and Source Level Metadata Support Spring Framework (2.5.6) 418
  • 419. Chapter 17. Remoting and web services using Spring 17.1. Introduction Spring features integration classes for remoting support using various technologies. The remoting support eases the development of remote-enabled services, implemented by your usual (Spring) POJOs. Currently, Spring supports four remoting technologies: • Remote Method Invocation (RMI). Through the use of the RmiProxyFactoryBean and the RmiServiceExporter Spring supports both traditional RMI (with java.rmi.Remote interfaces and java.rmi.RemoteException) and transparent remoting via RMI invokers (with any Java interface). • Spring's HTTP invoker. Spring provides a special remoting strategy which allows for Java serialization via HTTP, supporting any Java interface (just like the RMI invoker). The corresponding support classes are HttpInvokerProxyFactoryBean and HttpInvokerServiceExporter. • Hessian. By using Spring's HessianProxyFactoryBean and the HessianServiceExporter you can transparently expose your services using the lightweight binary HTTP-based protocol provided by Caucho. • Burlap. Burlap is Caucho's XML-based alternative to Hessian. Spring provides support classes such as BurlapProxyFactoryBean and BurlapServiceExporter. • JAX-RPC. Spring provides remoting support for web services via JAX-RPC (J2EE 1.4's web service API). • JAX-WS. Spring provides remoting support for web services via JAX-WS (the successor of JAX-RPC, as introduced in Java EE 5 and Java 6). • JMS. Remoting using JMS as the underlying protocol is supported via the JmsInvokerServiceExporter and JmsInvokerProxyFactoryBean classes. While discussing the remoting capabilities of Spring, we'll use the following domain model and corresponding services: public class Account implements Serializable{ private String name; public String getName(); public void setName(String name) { this.name = name; } } public interface AccountService { public void insertAccount(Account account); public List getAccounts(String name); } public interface RemoteAccountService extends Remote { public void insertAccount(Account account) throws RemoteException; Spring Framework (2.5.6) 419
  • 420. Remoting and web services using Spring public List getAccounts(String name) throws RemoteException; } // the implementation doing nothing at the moment public class AccountServiceImpl implements AccountService { public void insertAccount(Account acc) { // do something... } public List getAccounts(String name) { // do something... } } We will start exposing the service to a remote client by using RMI and talk a bit about the drawbacks of using RMI. We'll then continue to show an example using Hessian as the protocol. 17.2. Exposing services using RMI Using Spring's support for RMI, you can transparently expose your services through the RMI infrastructure. After having this set up, you basically have a configuration similar to remote EJBs, except for the fact that there is no standard support for security context propagation or remote transaction propagation. Spring does provide hooks for such additional invocation context when using the RMI invoker, so you can for example plug in security frameworks or custom security credentials here. 17.2.1. Exporting the service using the RmiServiceExporter Using the RmiServiceExporter, we can expose the interface of our AccountService object as RMI object. The interface can be accessed by using RmiProxyFactoryBean, or via plain RMI in case of a traditional RMI service. The RmiServiceExporter explicitly supports the exposing of any non-RMI services via RMI invokers. Of course, we first have to set up our service in the Spring container: <bean id="accountService" class="example.AccountServiceImpl"> <!-- any additional properties, maybe a DAO? --> </bean> Next we'll have to expose our service using the RmiServiceExporter: <bean class="org.springframework.remoting.rmi.RmiServiceExporter"> <!-- does not necessarily have to be the same name as the bean to be exported --> <property name="serviceName" value="AccountService"/> <property name="service" ref="accountService"/> <property name="serviceInterface" value="example.AccountService"/> <!-- defaults to 1099 --> <property name="registryPort" value="1199"/> </bean> As you can see, we're overriding the port for the RMI registry. Often, your application server also maintains an RMI registry and it is wise to not interfere with that one. Furthermore, the service name is used to bind the service under. So right now, the service will be bound at 'rmi://HOST:1199/AccountService'. We'll use the URL later on to link in the service at the client side. Note Spring Framework (2.5.6) 420
  • 421. Remoting and web services using Spring The servicePort property has been omitted (it defaults to 0). This means that an anonymous port will be used to communicate with the service. 17.2.2. Linking in the service at the client Our client is a simple object using the AccountService to manage accounts: public class SimpleObject { private AccountService accountService; public void setAccountService(AccountService accountService) { this.accountService = accountService; } } To link in the service on the client, we'll create a separate Spring container, containing the simple object and the service linking configuration bits: <bean class="example.SimpleObject"> <property name="accountService" ref="accountService"/> </bean> <bean id="accountService" class="org.springframework.remoting.rmi.RmiProxyFactoryBean"> <property name="serviceUrl" value="rmi://HOST:1199/AccountService"/> <property name="serviceInterface" value="example.AccountService"/> </bean> That's all we need to do to support the remote account service on the client. Spring will transparently create an invoker and remotely enable the account service through the RmiServiceExporter. At the client we're linking it in using the RmiProxyFactoryBean. 17.3. Using Hessian or Burlap to remotely call services via HTTP Hessian offers a binary HTTP-based remoting protocol. It is developed by Caucho and more information about Hessian itself can be found at http://www.caucho.com. 17.3.1. Wiring up the DispatcherServlet for Hessian and co. Hessian communicates via HTTP and does so using a custom servlet. Using Spring's DispatcherServlet principles, as known from Spring Web MVC usage, you can easily wire up such a servlet exposing your services. First we'll have to create a new servlet in your application (this an excerpt from 'web.xml'): <servlet> <servlet-name>remoting</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>remoting</servlet-name> <url-pattern>/remoting/*</url-pattern> </servlet-mapping> Spring Framework (2.5.6) 421
  • 422. Remoting and web services using Spring You're probably familiar with Spring's DispatcherServlet principles and if so, you know that now you'll have to create a Spring container configuration resource named 'remoting-servlet.xml' (after the name of your servlet) in the 'WEB-INF' directory. The application context will be used in the next section. Alternatively, consider the use of Spring's simpler HttpRequestHandlerServlet. This allows you to embed the remote exporter definitions in your root application context (by default in 'WEB-INF/applicationContext.xml'), with individual servlet definitions pointing to specific exporter beans. Each servlet name needs to match the bean name of its target exporter in this case. 17.3.2. Exposing your beans by using the HessianServiceExporter In the newly created application context called remoting-servlet.xml, we'll create a HessianServiceExporter exporting your services: <bean id="accountService" class="example.AccountServiceImpl"> <!-- any additional properties, maybe a DAO? --> </bean> <bean name="/AccountService" class="org.springframework.remoting.caucho.HessianServiceExporter"> <property name="service" ref="accountService"/> <property name="serviceInterface" value="example.AccountService"/> </bean> Now we're ready to link in the service at the client. No explicit handler mapping is specified, mapping request URLs onto services, so BeanNameUrlHandlerMapping will be used: Hence, the service will be exported at the URL indicated through its bean name within the containing DispatcherServlet's mapping (as defined above): 'http://HOST:8080/remoting/AccountService'. Alternatively, create a HessianServiceExporter in your root application context (e.g. in 'WEB-INF/applicationContext.xml'): <bean name="accountExporter" class="org.springframework.remoting.caucho.HessianServiceExporter"> <property name="service" ref="accountService"/> <property name="serviceInterface" value="example.AccountService"/> </bean> In the latter case, define a corresponding servlet for this exporter in 'web.xml', with the same end result: The exporter getting mapped to the request path /remoting/AccountService. Note that the servlet name needs to match the bean name of the target exporter. <servlet> <servlet-name>accountExporter</servlet-name> <servlet-class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>accountExporter</servlet-name> <url-pattern>/remoting/AccountService</url-pattern> </servlet-mapping> 17.3.3. Linking in the service on the client Using the we can link in the service at the client. The same principles apply as with the RMI example. We'll create a separate bean factory or application context and mention the following beans where the SimpleObject is using the AccountService to manage accounts: <bean class="example.SimpleObject"> <property name="accountService" ref="accountService"/> Spring Framework (2.5.6) 422
  • 423. Remoting and web services using Spring </bean> <bean id="accountService" class="org.springframework.remoting.caucho.HessianProxyFactoryBean"> <property name="serviceUrl" value="http://remotehost:8080/remoting/AccountService"/> <property name="serviceInterface" value="example.AccountService"/> </bean> 17.3.4. Using Burlap We won't discuss Burlap, the XML-based equivalent of Hessian, in detail here, since it is configured and set up in exactly the same way as the Hessian variant explained above. Just replace the word Hessian with Burlap and you're all set to go. 17.3.5. Applying HTTP basic authentication to a service exposed through Hessian or Burlap One of the advantages of Hessian and Burlap is that we can easily apply HTTP basic authentication, because both protocols are HTTP-based. Your normal HTTP server security mechanism can easily be applied through using the web.xml security features, for example. Usually, you don't use per-user security credentials here, but rather shared credentials defined at the Hessian/BurlapProxyFactoryBean level (similar to a JDBC DataSource). <bean class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping"> <property name="interceptors" ref="authorizationInterceptor"/> </bean> <bean id="authorizationInterceptor" class="org.springframework.web.servlet.handler.UserRoleAuthorizationInterceptor"> <property name="authorizedRoles" value="administrator,operator"/> </bean> This an example where we explicitly mention the BeanNameUrlHandlerMapping and set an interceptor allowing only administrators and operators to call the beans mentioned in this application context. Note Of course, this example doesn't show a flexible kind of security infrastructure. For more options as far as security is concerned, have a look at the Acegi Security System for Spring, to be found at http://acegisecurity.sourceforge.net. 17.4. Exposing services using HTTP invokers As opposed to Burlap and Hessian, which are both lightweight protocols using their own slim serialization mechanisms, Spring Http invokers use the standard Java serialization mechanism to expose services through HTTP. This has a huge advantage if your arguments and return types are complex types that cannot be serialized using the serialization mechanisms Hessian and Burlap use (refer to the next section for more considerations when choosing a remoting technology). Under the hood, Spring uses either the standard facilities provided by J2SE to perform HTTP calls or Commons HttpClient. Use the latter if you need more advanced and easy-to-use functionality. Refer to jakarta.apache.org/commons/httpclient for more info. Spring Framework (2.5.6) 423
  • 424. Remoting and web services using Spring 17.4.1. Exposing the service object Setting up the HTTP invoker infrastructure for a service objects much resembles the way you would do using Hessian or Burlap. Just as Hessian support provides the HessianServiceExporter, Spring's HttpInvoker support provides the org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter. To expose the AccountService (mentioned above) within a Spring Web MVC DispatcherServlet, the following configuration needs to be in place in the dispatcher's application context: <bean name="/AccountService" class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter"> <property name="service" ref="accountService"/> <property name="serviceInterface" value="example.AccountService"/> </bean> Such an exporter definition will be exposed through the DispatcherServlet's standard mapping facilities, as explained in the section on Hessian. Alternatively, create an HttpInvokerServiceExporter in your root application context (e.g. in 'WEB-INF/applicationContext.xml'): <bean name="accountExporter" class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter"> <property name="service" ref="accountService"/> <property name="serviceInterface" value="example.AccountService"/> </bean> In addition, define a corresponding servlet for this exporter in 'web.xml', with the servlet name matching the bean name of the target exporter: <servlet> <servlet-name>accountExporter</servlet-name> <servlet-class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>accountExporter</servlet-name> <url-pattern>/remoting/AccountService</url-pattern> </servlet-mapping> 17.4.2. Linking in the service at the client Again, linking in the service from the client much resembles the way you would do it when using Hessian or Burlap. Using a proxy, Spring will be able to translate your calls to HTTP POST requests to the URL pointing to the exported service. <bean id="httpInvokerProxy" class="org.springframework.remoting.httpinvoker.HttpInvokerProxyFactoryBean"> <property name="serviceUrl" value="http://remotehost:8080/remoting/AccountService"/> <property name="serviceInterface" value="example.AccountService"/> </bean> As mentioned before, you can choose what HTTP client you want to use. By default, the HttpInvokerProxy uses the J2SE HTTP functionality, but you can also use the Commons HttpClient by setting the httpInvokerRequestExecutor property: <property name="httpInvokerRequestExecutor"> <bean class="org.springframework.remoting.httpinvoker.CommonsHttpInvokerRequestExecutor"/> </property> Spring Framework (2.5.6) 424
  • 425. Remoting and web services using Spring 17.5. Web services Spring provides full support for standard Java web services APIs: • Exposing web services using JAX-RPC • Accessing web services using JAX-RPC • Exposing web services using JAX-WS • Accessing web services using JAX-WS Note Why two standard Java web services APIs? JAX-RPC 1.1 is the standard web service API in J2EE 1.4. As its name indicates, it focuses on on RPC bindings, which became less and less popular in the past couple of years. As a consequence, it has been superseded by JAX-WS 2.0 in Java EE 5, being more flexible in terms of bindings but also being heavily annotation-based. JAX-WS 2.1 is also included in Java 6 (or more specifically, in Sun's JDK 1.6.0_04 and above; previous Sun JDK 1.6.0 releases included JAX-WS 2.0), integrated with the JDK's built-in HTTP server. Spring can work with both standard Java web services APIs. The choice is effectively dependent on the runtime platform: On JDK 1.4 / J2EE 1.4, the only option is JAX-RPC. On Java EE 5 / Java 6, the obvious choice is JAX-WS. On J2EE 1.4 environments that run on Java 5, you might have the option to plug in a JAX-WS provider; check your J2EE server's documentation. In addition to stock support for JAX-RPC and JAX-WS in Spring Core, the Spring portfolio also features Spring Web Services, a solution for contract-first, document-driven web services - highly recommended for building modern, future-proof web services. Last but not least, XFire also allows you to export Spring-managed beans as a web service, through built-in Spring support. 17.5.1. Exposing servlet-based web services using JAX-RPC Spring provides a convenience base class for JAX-RPC servlet endpoint implementations - ServletEndpointSupport. To expose our AccountService we extend Spring's ServletEndpointSupport class and implement our business logic here, usually delegating the call to the business layer. /** * JAX-RPC compliant RemoteAccountService implementation that simply delegates * to the AccountService implementation in the root web application context. * * This wrapper class is necessary because JAX-RPC requires working with dedicated * endpoint classes. If an existing service needs to be exported, a wrapper that * extends ServletEndpointSupport for simple application context access is * the simplest JAX-RPC compliant way. * * This is the class registered with the server-side JAX-RPC implementation. * In the case of Axis, this happens in "server-config.wsdd" respectively via * deployment calls. The web service engine manages the lifecycle of instances * of this class: A Spring application context can just be accessed here. */import org.springframework.remoting.jaxrpc.ServletEndpointSupport; public class AccountServiceEndpoint extends ServletEndpointSupport implements RemoteAccountService { private AccountService biz; Spring Framework (2.5.6) 425
  • 426. Remoting and web services using Spring protected void onInit() { this.biz = (AccountService) getWebApplicationContext().getBean("accountService"); } public void insertAccount(Account acc) throws RemoteException { biz.insertAccount(acc); } public Account[] getAccounts(String name) throws RemoteException { return biz.getAccounts(name); } } Our AccountServletEndpoint needs to run in the same web application as the Spring context to allow for access to Spring's facilities. In case of Axis, copy the AxisServlet definition into your 'web.xml', and set up the endpoint in 'server-config.wsdd' (or use the deploy tool). See the sample application JPetStore where the OrderService is exposed as a web service using Axis. 17.5.2. Accessing web services using JAX-RPC Spring provides two factory beans to create JAX-RPC web service proxies, namely LocalJaxRpcServiceFactoryBean and JaxRpcPortProxyFactoryBean. The former can only return a JAX-RPC service class for us to work with. The latter is the full-fledged version that can return a proxy that implements our business service interface. In this example we use the latter to create a proxy for the AccountService endpoint we exposed in the previous section. You will see that Spring has great support for web services requiring little coding efforts - most of the setup is done in the Spring configuration file as usual: <bean id="accountWebService" class="org.springframework.remoting.jaxrpc.JaxRpcPortProxyFactoryBean"> <property name="serviceInterface" value="example.RemoteAccountService"/> <property name="wsdlDocumentUrl" value="http://localhost:8080/account/services/accountService?WSDL"/> <property name="namespaceUri" value="http://localhost:8080/account/services/accountService"/> <property name="serviceName" value="AccountService"/> <property name="portName" value="AccountPort"/> </bean> Where serviceInterface is our remote business interface the clients will use. wsdlDocumentUrl is the URL for the WSDL file. Spring needs this a startup time to create the JAX-RPC Service. namespaceUri corresponds to the targetNamespace in the .wsdl file. serviceName corresponds to the service name in the .wsdl file. portName corresponds to the port name in the .wsdl file. Accessing the web service is now very easy as we have a bean factory for it that will expose it as RemoteAccountService interface. We can wire this up in Spring: <bean id="client" class="example.AccountClientImpl"> ... <property name="service" ref="accountWebService"/> </bean> From the client code we can access the web service just as if it was a normal class, except that it throws RemoteException. public class AccountClientImpl { private RemoteAccountService service; public void setService(RemoteAccountService service) { this.service = service; } public void foo() { try { service.insertAccount(...); Spring Framework (2.5.6) 426
  • 427. Remoting and web services using Spring } catch (RemoteException ex) { // ouch } } } We can get rid of the checked RemoteException since Spring supports automatic conversion to its corresponding unchecked RemoteException. This requires that we provide a non-RMI interface also. Our configuration is now: <bean id="accountWebService" class="org.springframework.remoting.jaxrpc.JaxRpcPortProxyFactoryBean"> <property name="serviceInterface" value="example.AccountService"/> <property name="portInterface" value="example.RemoteAccountService"/> </bean> Where serviceInterface is changed to our non RMI interface. Our RMI interface is now defined using the property portInterface. Our client code can now avoid handling java.rmi.RemoteException: public class AccountClientImpl { private AccountService service; public void setService(AccountService service) { this.service = service; } public void foo() { service.insertAccount(...); } } Note that you can also drop the "portInterface" part and specify a plain business interface as "serviceInterface". In this case, JaxRpcPortProxyFactoryBean will automatically switch to the JAX-RPC "Dynamic Invocation Interface", performing dynamic invocations without a fixed port stub. The advantage is that you don't even need to have an RMI-compliant Java port interface around (e.g. in case of a non-Java target web service); all you need is a matching business interface. Check out JaxRpcPortProxyFactoryBean's javadoc for details on the runtime implications. 17.5.3. Registering JAX-RPC Bean Mappings To transfer complex objects over the wire such as Account we must register bean mappings on the client side. Note On the server side using Axis registering bean mappings is usually done in the 'server-config.wsdd' file. We will use Axis to register bean mappings on the client side. To do this we need to register the bean mappings programmatically: public class AxisPortProxyFactoryBean extends JaxRpcPortProxyFactoryBean { protected void postProcessJaxRpcService(Service service) { TypeMappingRegistry registry = service.getTypeMappingRegistry(); TypeMapping mapping = registry.createTypeMapping(); registerBeanMapping(mapping, Account.class, "Account"); registry.register("http://schemas.xmlsoap.org/soap/encoding/", mapping); } Spring Framework (2.5.6) 427
  • 428. Remoting and web services using Spring protected void registerBeanMapping(TypeMapping mapping, Class type, String name) { QName qName = new QName("http://localhost:8080/account/services/accountService", name); mapping.register(type, qName, new BeanSerializerFactory(type, qName), new BeanDeserializerFactory(type, qName)); } } 17.5.4. Registering your own JAX-RPC Handler In this section we will register our own javax.rpc.xml.handler.Handler to the web service proxy where we can do custom code before the SOAP message is sent over the wire. The Handler is a callback interface. There is a convenience base class provided in jaxrpc.jar, namely javax.rpc.xml.handler.GenericHandler that we will extend: public class AccountHandler extends GenericHandler { public QName[] getHeaders() { return null; } public boolean handleRequest(MessageContext context) { SOAPMessageContext smc = (SOAPMessageContext) context; SOAPMessage msg = smc.getMessage(); try { SOAPEnvelope envelope = msg.getSOAPPart().getEnvelope(); SOAPHeader header = envelope.getHeader(); ... } catch (SOAPException ex) { throw new JAXRPCException(ex); } return true; } } What we need to do now is to register our AccountHandler to JAX-RPC Service so it would invoke handleRequest(..) before the message is sent over the wire. Spring has at this time of writing no declarative support for registering handlers, so we must use the programmatic approach. However Spring has made it very easy for us to do this as we can override the postProcessJaxRpcService(..) method that is designed for this: public class AccountHandlerJaxRpcPortProxyFactoryBean extends JaxRpcPortProxyFactoryBean { protected void postProcessJaxRpcService(Service service) { QName port = new QName(this.getNamespaceUri(), this.getPortName()); List list = service.getHandlerRegistry().getHandlerChain(port); list.add(new HandlerInfo(AccountHandler.class, null, null)); logger.info("Registered JAX-RPC AccountHandler on port " + port); } } The last thing we must remember to do is to change the Spring configuration to use our factory bean: <bean id="accountWebService" class="example.AccountHandlerJaxRpcPortProxyFactoryBean"> ... </bean> 17.5.5. Exposing servlet-based web services using JAX-WS Spring provides a convenient base class for JAX-WS servlet endpoint implementations - SpringBeanAutowiringSupport. To expose our AccountService we extend Spring's Spring Framework (2.5.6) 428
  • 429. Remoting and web services using Spring SpringBeanAutowiringSupport class and implement our business logic here, usually delegating the call to the business layer. We'll simply use Spring 2.5's @Autowired annotation for expressing such dependencies on Spring-managed beans. /** * JAX-WS compliant AccountService implementation that simply delegates * to the AccountService implementation in the root web application context. * * This wrapper class is necessary because JAX-WS requires working with dedicated * endpoint classes. If an existing service needs to be exported, a wrapper that * extends SpringBeanAutowiringSupport for simple Spring bean autowiring (through * the @Autowired annotation) is the simplest JAX-WS compliant way. * * This is the class registered with the server-side JAX-WS implementation. * In the case of a Java EE 5 server, this would simply be defined as a servlet * in web.xml, with the server detecting that this is a JAX-WS endpoint and reacting * accordingly. The servlet name usually needs to match the specified WS service name. * * The web service engine manages the lifecycle of instances of this class. * Spring bean references will just be wired in here. */import org.springframework.web.context.support.SpringBeanAutowiringSupport; @WebService(serviceName="AccountService") public class AccountServiceEndpoint extends SpringBeanAutowiringSupport { @Autowired private AccountService biz; @WebMethod public void insertAccount(Account acc) { biz.insertAccount(acc); } @WebMethod public Account[] getAccounts(String name) { return biz.getAccounts(name); } } Our AccountServletEndpoint needs to run in the same web application as the Spring context to allow for access to Spring's facilities. This is the case by default in Java EE 5 environments, using the standard contract for JAX-WS servlet endpoint deployment. See Java EE 5 web service tutorials for details. 17.5.6. Exporting standalone web services using JAX-WS The built-in JAX-WS provider that comes with Sun's JDK 1.6 supports exposure of web services using the built-in HTTP server that's included in JDK 1.6 as well. Spring's SimpleJaxWsServiceExporter detects all @WebService annotated beans in the Spring application context, exporting them through the default JAX-WS server (the JDK 1.6 HTTP server). In this scenario, the endpoint instances are defined and managed as Spring beans themselves; they will be registered with the JAX-WS engine but their lifecycle will be up to the Spring application context. This means that Spring functionality like explicit dependency injection may be applied to the endpoint instances. Of course, annotation-driven injection through @Autowired will work as well. <bean class="org.springframework.remoting.jaxws.SimpleJaxWsServiceExporter"> <property name="baseAddress" value="http://localhost:9999/"/> </bean> <bean id="accountServiceEndpoint" class="example.AccountServiceEndpoint"> ... </bean> ... The AccountServiceEndpoint may derive from Spring's SpringBeanAutowiringSupport but doesn't have to Spring Framework (2.5.6) 429
  • 430. Remoting and web services using Spring since the endpoint is a fully Spring-managed bean here. This means that the endpoint implementation may look like as follows, without any superclass declared - and Spring's @Autowired configuration annotation still being honored: @WebService(serviceName="AccountService") public class AccountServiceEndpoint { @Autowired private AccountService biz; @WebMethod public void insertAccount(Account acc) { biz.insertAccount(acc); } @WebMethod public Account[] getAccounts(String name) { return biz.getAccounts(name); } } 17.5.7. Exporting web services using the JAX-WS RI's Spring support Sun's JAX-WS RI, developed as part of the GlassFish project, ships Spring support as part of its JAX-WS Commons project. This allows for defining JAX-WS endpoints as Spring-managed beans, similar to the standalone mode discussed in the previous section - but this time in a Servlet environment. Note that this is not portable in a Java EE 5 environment; it is mainly intended for non-EE environments such as Tomcat, embedding the JAX-WS RI as part of the web application. The difference to the standard style of exporting servlet-based endpoints is that the lifecycle of the endpoint instances themselves will be managed by Spring here, and that there will be only one JAX-WS servlet defined in web.xml. With the standard Java EE 5 style (as illustrated above), you'll have one servlet definition per service endpoint, with each endpoint typically delegating to Spring beans (through the use of @Autowired, as shown above). Check out https://jax-ws-commons.dev.java.net/spring/ for the details on setup and usage style. 17.5.8. Accessing web services using JAX-WS Analogous to the JAX-RPC support, Spring provides two factory beans to create JAX-WS web service proxies, namely LocalJaxWsServiceFactoryBean and JaxWsPortProxyFactoryBean. The former can only return a JAX-WS service class for us to work with. The latter is the full-fledged version that can return a proxy that implements our business service interface. In this example we use the latter to create a proxy for the AccountService endpoint (again): <bean id="accountWebService" class="org.springframework.remoting.jaxws.JaxWsPortProxyFactoryBean"> <property name="serviceInterface" value="example.AccountService"/> <property name="wsdlDocumentUrl" value="http://localhost:8080/account/services/accountService?WSDL"/> <property name="namespaceUri" value="http://localhost:8080/account/services/accountService"/> <property name="serviceName" value="AccountService"/> <property name="portName" value="AccountPort"/> </bean> Where serviceInterface is our business interface the clients will use. wsdlDocumentUrl is the URL for the WSDL file. Spring needs this a startup time to create the JAX-WS Service. namespaceUri corresponds to the targetNamespace in the .wsdl file. serviceName corresponds to the service name in the .wsdl file. portName corresponds to the port name in the .wsdl file. Accessing the web service is now very easy as we have a bean factory for it that will expose it as Spring Framework (2.5.6) 430
  • 431. Remoting and web services using Spring AccountService interface. We can wire this up in Spring: <bean id="client" class="example.AccountClientImpl"> ... <property name="service" ref="accountWebService"/> </bean> From the client code we can access the web service just as if it was a normal class: public class AccountClientImpl { private AccountService service; public void setService(AccountService service) { this.service = service; } public void foo() { service.insertAccount(...); } } NOTE: The above is slightly simplified in that JAX-WS requires endpoint interfaces and implementation classes to be annotated with @WebService, @SOAPBinding etc annotations. This means that you cannot (easily) use plain Java interfaces and implementation classes as JAX-WS endpoint artifacts; you need to annotate them accordingly first. Check the JAX-WS documentation for details on those requirements. 17.5.9. Exposing web services using XFire XFire is a lightweight SOAP library, hosted by Codehaus. Exposing XFire is done using a XFire context that shipping with XFire itself in combination with a RemoteExporter-style bean you have to add to your WebApplicationContext. As with all methods that allow you to expose service, you have to create a DispatcherServlet with a corresponding WebApplicationContext containing the services you will be exposing: <servlet> <servlet-name>xfire</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> </servlet> You also have to link in the XFire configuration. This is done by adding a context file to the contextConfigLocations context parameter picked up by the ContextLoaderListener (or ContextLoaderServlet for that matter). <context-param> <param-name>contextConfigLocation</param-name> <param-value>classpath:org/codehaus/xfire/spring/xfire.xml</param-value> </context-param> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> After you added a servlet mapping (mapping /* to the XFire servlet declared above) you only have to add one extra bean to expose the service using XFire. Add for example the following configuration in your 'xfire-servlet.xml' file: <beans> <bean name="/Echo" class="org.codehaus.xfire.spring.remoting.XFireExporter"> <property name="serviceInterface" value="org.codehaus.xfire.spring.Echo"/> <property name="serviceBean"> Spring Framework (2.5.6) 431
  • 432. Remoting and web services using Spring <bean class="org.codehaus.xfire.spring.EchoImpl"/> </property> <!-- the XFire bean is defined in the xfire.xml file --> <property name="xfire" ref="xfire"/> </bean> </beans> XFire handles the rest. It introspects your service interface and generates a WSDL from it. Parts of this documentation have been taken from the XFire site; for more detailed information on XFire Spring integration, navigate to http://docs.codehaus.org/display/XFIRE/Spring. 17.6. JMS It is also possible to expose services transparently using JMS as the underlying communication protocol. The JMS remoting support in the Spring Framework is pretty basic - it sends and receives on the same thread and in the same non-transactional Session, and as such throughput will be very implementation dependent. The following interface is used on both the server and the client side. package com.foo; public interface CheckingAccountService { public void cancelAccount(Long accountId); } The following simple implementation of the above interface is used on the server-side. package com.foo; public class SimpleCheckingAccountService implements CheckingAccountService { public void cancelAccount(Long accountId) { System.out.println("Cancelling account [" + accountId + "]"); } } This configuration file contains the JMS-infrastructure beans that are shared on both the client and server. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory"> <property name="brokerURL" value="tcp://ep-t43:61616"/> </bean> <bean id="queue" class="org.apache.activemq.command.ActiveMQQueue"> <constructor-arg value="mmm"/> </bean> </beans> 17.6.1. Server-side configuration On the server, you just need to expose the service object using the JmsInvokerServiceExporter. <?xml version="1.0" encoding="UTF-8"?> Spring Framework (2.5.6) 432
  • 433. Remoting and web services using Spring <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean id="checkingAccountService" class="org.springframework.jms.remoting.JmsInvokerServiceExporter"> <property name="serviceInterface" value="com.foo.CheckingAccountService"/> <property name="service"> <bean class="com.foo.SimpleCheckingAccountService"/> </property> </bean> <bean class="org.springframework.jms.listener.SimpleMessageListenerContainer"> <property name="connectionFactory" ref="connectionFactory"/> <property name="destination" ref="queue"/> <property name="concurrentConsumers" value="3"/> <property name="messageListener" ref="checkingAccountService"/> </bean> </beans> package com.foo; import org.springframework.context.support.ClassPathXmlApplicationContext; public class Server { public static void main(String[] args) throws Exception { new ClassPathXmlApplicationContext(new String[]{"com/foo/server.xml", "com/foo/jms.xml"}); } } 17.6.2. Client-side configuration The client merely needs to create a client-side proxy that will implement the agreed upon interface (CheckingAccountService). The resulting object created off the back of the following bean definition can be injected into other client side objects, and the proxy will take care of forwarding the call to the server-side object via JMS. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean id="checkingAccountService" class="org.springframework.jms.remoting.JmsInvokerProxyFactoryBean"> <property name="serviceInterface" value="com.foo.CheckingAccountService"/> <property name="connectionFactory" ref="connectionFactory"/> <property name="queue" ref="queue"/> </bean> </beans> package com.foo; import org.springframework.context.ApplicationContext; import org.springframework.context.support.ClassPathXmlApplicationContext; public class Client { public static void main(String[] args) throws Exception { ApplicationContext ctx = new ClassPathXmlApplicationContext( new String[] {"com/foo/client.xml", "com/foo/jms.xml"}); CheckingAccountService service = (CheckingAccountService) ctx.getBean("checkingAccountService"); service.cancelAccount(new Long(10)); } } Spring Framework (2.5.6) 433
  • 434. Remoting and web services using Spring You may also wish to investigate the support provided by the Lingo project, which (to quote the homepage blurb) “... is a lightweight POJO based remoting and messaging library based on the Spring Framework's remoting libraries which extends it to support JMS.” 17.7. Auto-detection is not implemented for remote interfaces The main reason why auto-detection of implemented interfaces does not occur for remote interfaces is to avoid opening too many doors to remote callers. The target object might implement internal callback interfaces like InitializingBean or DisposableBean which one would not want to expose to callers. Offering a proxy with all interfaces implemented by the target usually does not matter in the local case. But when exporting a remote service, you should expose a specific service interface, with specific operations intended for remote usage. Besides internal callback interfaces, the target might implement multiple business interfaces, with just one of them intended for remote exposure. For these reasons, we require such a service interface to be specified. This is a trade-off between configuration convenience and the risk of accidental exposure of internal methods. Always specifying a service interface is not too much effort, and puts you on the safe side regarding controlled exposure of specific methods. 17.8. Considerations when choosing a technology Each and every technology presented here has its drawbacks. You should carefully consider you needs, the services your exposing and the objects you'll be sending over the wire when choosing a technology. When using RMI, it's not possible to access the objects through the HTTP protocol, unless you're tunneling the RMI traffic. RMI is a fairly heavy-weight protocol in that it support full-object serialization which is important when using a complex data model that needs serialization over the wire. However, RMI-JRMP is tied to Java clients: It is a Java-to-Java remoting solution. Spring's HTTP invoker is a good choice if you need HTTP-based remoting but also rely on Java serialization. It shares the basic infrastructure with RMI invokers, just using HTTP as transport. Note that HTTP invokers are not only limited to Java-to-Java remoting but also to Spring on both the client and server side. (The latter also applies to Spring's RMI invoker for non-RMI interfaces.) Hessian and/or Burlap might provide significant value when operating in a heterogeneous environment, because they explicitly allow for non-Java clients. However, non-Java support is still limited. Known issues include the serialization of Hibernate objects in combination with lazily-initialized collections. If you have such a data model, consider using RMI or HTTP invokers instead of Hessian. JMS can be useful for providing clusters of services and allowing the JMS broker to take care of load balancing, discovery and auto-failover. By default: Java serialization is used when using JMS remoting but the JMS provider could use a different mechanism for the wire formatting, such as XStream to allow servers to be implemented in other technologies. Last but not least, EJB has an advantage over RMI in that it supports standard role-based authentication and authorization and remote transaction propagation. It is possible to get RMI invokers or HTTP invokers to support security context propagation as well, although this is not provided by core Spring: There are just appropriate hooks for plugging in third-party or custom solutions here. Spring Framework (2.5.6) 434
  • 435. Chapter 18. Enterprise Java Beans (EJB) integration 18.1. Introduction As a lightweight container, Spring is often considered an EJB replacement. We do believe that for many if not most applications and use cases, Spring as a container, combined with its rich supporting functionality in the area of transactions, ORM and JDBC access, is a better choice than implementing equivalent functionality via an EJB container and EJBs. However, it is important to note that using Spring does not prevent you from using EJBs. In fact, Spring makes it much easier to access EJBs and implement EJBs and functionality within them. Additionally, using Spring to access services provided by EJBs allows the implementation of those services to later transparently be switched between local EJB, remote EJB, or POJO (plain old Java object) variants, without the client code having to be changed. In this chapter, we look at how Spring can help you access and implement EJBs. Spring provides particular value when accessing stateless session beans (SLSBs), so we'll begin by discussing this. 18.2. Accessing EJBs 18.2.1. Concepts To invoke a method on a local or remote stateless session bean, client code must normally perform a JNDI lookup to obtain the (local or remote) EJB Home object, then use a 'create' method call on that object to obtain the actual (local or remote) EJB object. One or more methods are then invoked on the EJB. To avoid repeated low-level code, many EJB applications use the Service Locator and Business Delegate patterns. These are better than spraying JNDI lookups throughout client code, but their usual implementations have significant disadvantages. For example: • Typically code using EJBs depends on Service Locator or Business Delegate singletons, making it hard to test. • In the case of the Service Locator pattern used without a Business Delegate, application code still ends up having to invoke the create() method on an EJB home, and deal with the resulting exceptions. Thus it remains tied to the EJB API and the complexity of the EJB programming model. • Implementing the Business Delegate pattern typically results in significant code duplication, where we have to write numerous methods that simply call the same method on the EJB. The Spring approach is to allow the creation and use of proxy objects, normally configured inside a Spring container, which act as codeless business delegates. You do not need to write another Service Locator, another JNDI lookup, or duplicate methods in a hand-coded Business Delegate unless you are actually adding real value in such code. 18.2.2. Accessing local SLSBs Assume that we have a web controller that needs to use a local EJB. We’ll follow best practice and use the EJB Spring Framework (2.5.6) 435
  • 436. Enterprise Java Beans (EJB) integration Business Methods Interface pattern, so that the EJB’s local interface extends a non EJB-specific business methods interface. Let’s call this business methods interface MyComponent. public interface MyComponent { ... } One of the main reasons to use the Business Methods Interface pattern is to ensure that synchronization between method signatures in local interface and bean implementation class is automatic. Another reason is that it later makes it much easier for us to switch to a POJO (plain old Java object) implementation of the service if it makes sense to do so. Of course we’ll also need to implement the local home interface and provide an implementation class that implements SessionBean and the MyComponent business methods interface. Now the only Java coding we’ll need to do to hook up our web tier controller to the EJB implementation is to expose a setter method of type MyComponent on the controller. This will save the reference as an instance variable in the controller: private MyComponent myComponent; public void setMyComponent(MyComponent myComponent) { this.myComponent = myComponent; } We can subsequently use this instance variable in any business method in the controller. Now assuming we are obtaining our controller object out of a Spring container, we can (in the same context) configure a LocalStatelessSessionProxyFactoryBean instance, which will be the EJB proxy object. The configuration of the proxy, and setting of the myComponent property of the controller is done with a configuration entry such as: <bean id="myComponent" class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean"> <property name="jndiName" value="ejb/myBean"/> <property name="businessInterface" value="com.mycom.MyComponent"/> </bean> <bean id="myController" class="com.mycom.myController"> <property name="myComponent" ref="myComponent"/> </bean> There’s a lot of work happening behind the scenes, courtesy of the Spring AOP framework, although you aren’t forced to work with AOP concepts to enjoy the results. The myComponent bean definition creates a proxy for the EJB, which implements the business method interface. The EJB local home is cached on startup, so there’s only a single JNDI lookup. Each time the EJB is invoked, the proxy invokes the classname method on the local EJB and invokes the corresponding business method on the EJB. The myController bean definition sets the myComponent property of the controller class to the EJB proxy. Alternatively (and preferably in case of many such proxy definitions), consider using the <jee:local-slsb> configuration element in Spring's "jee" namespace: <jee:local-slsb id="myComponent" jndi-name="ejb/myBean" business-interface="com.mycom.MyComponent"/> <bean id="myController" class="com.mycom.myController"> <property name="myComponent" ref="myComponent"/> </bean> This EJB access mechanism delivers huge simplification of application code: the web tier code (or other EJB client code) has no dependence on the use of EJB. If we want to replace this EJB reference with a POJO or a mock object or other test stub, we could simply change the myComponent bean definition without changing a Spring Framework (2.5.6) 436
  • 437. Enterprise Java Beans (EJB) integration line of Java code. Additionally, we haven’t had to write a single line of JNDI lookup or other EJB plumbing code as part of our application. Benchmarks and experience in real applications indicate that the performance overhead of this approach (which involves reflective invocation of the target EJB) is minimal, and is typically undetectable in typical use. Remember that we don’t want to make fine-grained calls to EJBs anyway, as there’s a cost associated with the EJB infrastructure in the application server. There is one caveat with regards to the JNDI lookup. In a bean container, this class is normally best used as a singleton (there simply is no reason to make it a prototype). However, if that bean container pre-instantiates singletons (as do the various XML ApplicationContext variants) you may have a problem if the bean container is loaded before the EJB container loads the target EJB. That is because the JNDI lookup will be performed in the init() method of this class and then cached, but the EJB will not have been bound at the target location yet. The solution is to not pre-instantiate this factory object, but allow it to be created on first use. In the XML containers, this is controlled via the lazy-init attribute. Although this will not be of interest to the majority of Spring users, those doing programmatic AOP work with EJBs may want to look at LocalSlsbInvokerInterceptor. 18.2.3. Accessing remote SLSBs Accessing remote EJBs is essentiallyidentical to accessing local EJBs, except that the SimpleRemoteStatelessSessionProxyFactoryBean or <jee:remote-slsb> configuration element is used. Of course, with or without Spring, remote invocation semantics apply; a call to a method on an object in another VM in another computer does sometimes have to be treated differently in terms of usage scenarios and failure handling. Spring's EJB client support adds one more advantage over the non-Spring approach. Normally it is problematic for EJB client code to be easily switched back and forth between calling EJBs locally or remotely. This is because the remote interface methods must declare that they throw RemoteException, and client code must deal with this, while the local interface methods don't. Client code written for local EJBs which needs to be moved to remote EJBs typically has to be modified to add handling for the remote exceptions, and client code written for remote EJBs which needs to be moved to local EJBs, can either stay the same but do a lot of unnecessary handling of remote exceptions, or needs to be modified to remove that code. With the Spring remote EJB proxy, you can instead not declare any thrown RemoteException in your Business Method Interface and implementing EJB code, have a remote interface which is identical except that it does throw RemoteException, and rely on the proxy to dynamically treat the two interfaces as if they were the same. That is, client code does not have to deal with the checked RemoteException class. Any actual RemoteException that is thrown during the EJB invocation will be re-thrown as the non-checked RemoteAccessException class, which is a subclass of RuntimeException. The target service can then be switched at will between a local EJB or remote EJB (or even plain Java object) implementation, without the client code knowing or caring. Of course, this is optional; there is nothing stopping you from declaring RemoteExceptions in your business interface. 18.2.4. Accessing EJB 2.x SLSBs versus EJB 3 SLSBs Accessing EJB 2.x Session Beans and EJB 3 Session Beans via Spring is largely transparent. Spring's EJB accessors, including the <jee:local-slsb> and <jee:remote-slsb> facilities, transparently adapt to the actual component at runtime. They handle a home interface if found (EJB 2.x style), or perform straight component invocations if no home interface is available (EJB 3 style). Note: For EJB 3 Session Beans, you could effectively use a JndiObjectFactoryBean / <jee:jndi-lookup> as well, since fully usable component references are exposed for plain JNDI lookups there. Defining explicit <jee:local-slsb> / <jee:remote-slsb> lookups simply provides consistent and more explicit EJB access Spring Framework (2.5.6) 437
  • 438. Enterprise Java Beans (EJB) integration configuration. 18.3. Using Spring's EJB implementation support classes 18.3.1. EJB 2.x base classes Spring provides convenience classes to help you implement EJBs. These are designed to encourage the good practice of putting business logic behind EJBs in POJOs, leaving EJBs responsible for transaction demarcation and (optionally) remoting. To implement a Stateless or Stateful session bean, or a Message Driven bean, you need only derive your implementation class from AbstractStatelessSessionBean, AbstractStatefulSessionBean, and AbstractMessageDrivenBean/AbstractJmsMessageDrivenBean, respectively. Consider an example Stateless Session bean which actually delegates the implementation to a plain java service object. We have the business interface: public interface MyComponent { public void myMethod(...); ... } We also have the plain Java implementation object: public class MyComponentImpl implements MyComponent { public String myMethod(...) { ... } ... } And finally the Stateless Session Bean itself: public class MyFacadeEJB extends AbstractStatelessSessionBean implements MyFacadeLocal { private MyComponent myComp; /** * Obtain our POJO service object from the BeanFactory/ApplicationContext * @see org.springframework.ejb.support.AbstractStatelessSessionBean#onEjbCreate() */ protected void onEjbCreate() throws CreateException { myComp = (MyComponent) getBeanFactory().getBean( ServicesConstants.CONTEXT_MYCOMP_ID); } // for business method, delegate to POJO service impl. public String myFacadeMethod(...) { return myComp.myMethod(...); } ... } The Spring EJB support base classes will by default create and load a Spring IoC container as part of their lifecycle, which is then available to the EJB (for example, as used in the code above to obtain the POJO service object). The loading is done via a strategy object which is a subclass of BeanFactoryLocator. The actual implementation of BeanFactoryLocator used by default is ContextJndiBeanFactoryLocator, which creates the ApplicationContext from a resource locations specified as a JNDI environment variable (in the case of the EJB classes, at java:comp/env/ejb/BeanFactoryPath). If there is a need to change the Spring Framework (2.5.6) 438
  • 439. Enterprise Java Beans (EJB) integration BeanFactory/ApplicationContext loading strategy, the default BeanFactoryLocator implementation used may be overridden by calling the setBeanFactoryLocator() method, either in setSessionContext(), or in the actual constructor of the EJB. Please see the Javadocs for more details. As described in the Javadocs, Stateful Session beans expecting to be passivated and reactivated as part of their lifecycle, and which use a non-serializable container instance (which is the normal case) will have to manually call unloadBeanFactory() and loadBeanFactory from ejbPassivate and ejbActivate, respectively, to unload and reload the BeanFactory on passivation and activation, since it can not be saved by the EJB container. The default behavior of the ContextJndiBeanFactoryLocator classes which is to load an ApplicationContext for the use of the EJB is adequate for some situations. However, it is problematic when the ApplicationContext is loading a number of beans, or the initialization of those beans is time consuming or memory intensive (such as a Hibernate SessionFactory initialization, for example), since every EJB will have their own copy. In this case, the user may want to override the default ContextJndiBeanFactoryLocator usage and use another BeanFactoryLocator variant, such as the ContextSingletonBeanFactoryLocator which can load and use a shared container to be used by multiple EJBs or other clients. Doing this is relatively simple, by adding code similar to this to the EJB: /** * Override default BeanFactoryLocator implementation * @see javax.ejb.SessionBean#setSessionContext(javax.ejb.SessionContext) */ public void setSessionContext(SessionContext sessionContext) { super.setSessionContext(sessionContext); setBeanFactoryLocator(ContextSingletonBeanFactoryLocator.getInstance()); setBeanFactoryLocatorKey(ServicesConstants.PRIMARY_CONTEXT_ID); } You would then need to create a bean definition file named beanRefContext.xml. This file defines all bean factories (usually in the form of application contexts) that may be used in the EJB. In many cases, this file will only contain a single bean definition such as this (where businessApplicationContext.xml contains the bean definitions for all business service POJOs): <beans> <bean id="businessBeanFactory" class="org.springframework.context.support.ClassPathXmlApplicationContext"> <constructor-arg value="businessApplicationContext.xml" /> </bean> </beans> In the above example, the ServicesConstants.PRIMARY_CONTEXT_ID constant would be defined as follows: public static final String ServicesConstants.PRIMARY_CONTEXT_ID = "businessBeanFactory"; Please see the respective Javadocs for the BeanFactoryLocator and ContextSingletonBeanFactoryLocator classes for more information on their usage. 18.3.2. EJB 3 injection interceptor For EJB 3 Session Beans and Message-Driven Beans, Spring provides a convenient interceptor that resolves Spring 2.5's @Autowired annotation in the EJB component class: org.springframework.ejb.interceptor.SpringBeanAutowiringInterceptor. This interceptor can be applied through an @Interceptors annotation in the EJB component class, or through an interceptor-binding XML element in the EJB deployment descriptor. @Stateless @Interceptors(SpringBeanAutowiringInterceptor.class) Spring Framework (2.5.6) 439
  • 440. Enterprise Java Beans (EJB) integration public class MyFacadeEJB implements MyFacadeLocal { // automatically injected with a matching Spring bean @Autowired private MyComponent myComp; // for business method, delegate to POJO service impl. public String myFacadeMethod(...) { return myComp.myMethod(...); } ... } SpringBeanAutowiringInterceptor by default obtains target beans from a ContextSingletonBeanFactoryLocator, with the context defined in a bean definition file named beanRefContext.xml. By default, a single context definition is expected, which is obtained by type rather than by name. However, if you need to choose between multiple context definitions, a specific locator key is required. The locator key (i.e. the name of the context definition in beanRefContext.xml) can be explicitly specified either through overriding the getBeanFactoryLocatorKey method in a custom SpringBeanAutowiringInterceptor subclass. Alternatively, consider overriding SpringBeanAutowiringInterceptor's getBeanFactory method, e.g. obtaining a shared ApplicationContext from a custom holder class. Spring Framework (2.5.6) 440
  • 441. Chapter 19. JMS (Java Message Service) 19.1. Introduction Spring provides a JMS integration framework that simplifies the use of the JMS API and shields the user from differences between the JMS 1.0.2 and 1.1 APIs. JMS can be roughly divided into two areas of functionality, namely the production and consumption of messages. The JmsTemplate class is used for message production and synchronous message reception. For asynchronous reception similar to J2EE's message-driven bean style, Spring provides a number of message listener containers that are used to create Message-Driven POJOs (MDPs). Domain Unification There are two major releases of the JMS specification, 1.0.2 and 1.1. JMS 1.0.2 defined two types of messaging domains, point-to-point (Queues) and publish/subscribe (Topics). The 1.0.2 API reflected these two messaging domains by providing a parallel class hierarchy for each domain. As a result, a client application became domain specific in its use of the JMS API. JMS 1.1 introduced the concept of domain unification that minimized both the functional differences and client API differences between the two domains. As an example of a functional difference that was removed, if you use a JMS 1.1 provider you can transactionally consume a message from one domain and produce a message on the other using the same Session. Note The JMS 1.1 specification was released in April 2002 and incorporated as part of J2EE 1.4 in November 2003. As a result, common J2EE 1.3 application servers which are still in widespread use (such as BEA WebLogic 8.1 and IBM WebSphere 5.1) are based on JMS 1.0.2. The package org.springframework.jms.core provides the core functionality for using JMS. It contains JMS template classes that simplifies the use of the JMS by handling the creation and release of resources, much like the JdbcTemplate does for JDBC. The design principle common to Spring template classes is to provide helper methods to perform common operations and for more sophisticated usage, delegate the essence of the processing task to user implemented callback interfaces. The JMS template follows the same design. The classes offer various convenience methods for the sending of messages, consuming a message synchronously, and exposing the JMS session and message producer to the user. The package org.springframework.jms.support provides JMSException translation functionality. The translation converts the checked JMSException hierarchy to a mirrored hierarchy of unchecked exceptions. If there are any provider specific subclasses of the checked javax.jms.JMSException, this exception is wrapped in the unchecked UncategorizedJmsException. The package org.springframework.jms.support.converter provides a MessageConverter abstraction to convert between Java objects and JMS messages. The package org.springframework.jms.support.destination provides various strategies for managing JMS destinations, such as providing a service locator for destinations stored in JNDI. Spring Framework (2.5.6) 441
  • 442. JMS (Java Message Service) Finally, the package org.springframework.jms.connection provides an implementation of the ConnectionFactory suitable for use in standalone applications. It also contains an implementation of Spring's PlatformTransactionManager for JMS (the cunningly named JmsTransactionManager). This allows for seamless integration of JMS as a transactional resource into Spring's transaction management mechanisms. 19.2. Using Spring JMS 19.2.1. JmsTemplate There are two variants of the functionality offered by the JmsTemplate: the JmsTemplate uses the JMS 1.1 API, and the subclass JmsTemplate102 uses the JMS 1.0.2 API. Code that uses the JmsTemplate only needs to implement callback interfaces giving them a clearly defined contract. The MessageCreator callback interface creates a message given a Session provided by the calling code in JmsTemplate. In order to allow for more complex usage of the JMS API, the callback SessionCallback provides the user with the JMS session and the callback ProducerCallback exposes a Session and MessageProducer pair. The JMS API exposes two types of send methods, one that takes delivery mode, priority, and time-to-live as Quality of Service (QOS) parameters and one that takes no QOS parameters which uses default values. Since there are many send methods in JmsTemplate, the setting of the QOS parameters have been exposed as bean properties to avoid duplication in the number of send methods. Similarly, the timeout value for synchronous receive calls is set using the property setReceiveTimeout. Some JMS providers allow the setting of default QOS values administratively through the configuration of the ConnectionFactory. This has the effect that a call to MessageProducer's send method send(Destination destination, Message message) will use different QOS default values than those specified in the JMS specification. In order to provide consistent management of QOS values, the JmsTemplate must therefore be specifically enabled to use its own QOS values by setting the boolean property isExplicitQosEnabled to true. Note Instances of the JmsTemplate class are thread-safe once configured. This is important because it means that you can configure a single instance of a JmsTemplate and then safely inject this shared reference into multiple collaborators. To be clear, the JmsTemplate is stateful, in that it maintains a reference to a ConnectionFactory, but this state is not conversational state. 19.2.2. Connections The JmsTemplate requires a reference to a ConnectionFactory. The ConnectionFactory is part of the JMS specification and serves as the entry point for working with JMS. It is used by the client application as a factory to create connections with the JMS provider and encapsulates various configuration parameters, many of which are vendor specific such as SSL configuration options. When using JMS inside an EJB, the vendor provides implementations of the JMS interfaces so that they can participate in declarative transaction management and perform pooling of connections and session. In order to use this implementation, J2EE containers typically require that you declare a JMS connection factory as a resource-ref inside the EJB or servlet deployment descriptors. To ensure the use of these features with the JmsTemplate inside an EJB, the client application should ensure that it references the managed implementation of the ConnectionFactory. Spring Framework (2.5.6) 442
  • 443. JMS (Java Message Service) Spring provides an implementation of the ConnectionFactory interface, SingleConnectionFactory, that will return the same Connection on all createConnection calls and ignore calls to close. This is useful for testing and standalone environments so that the same connection can be used for multiple JmsTemplate calls that may span any number of transactions. SingleConnectionFactory takes a reference to a standard ConnectionFactory that would typically come from JNDI. 19.2.3. Destination Management Destinations, like ConnectionFactories, are JMS administered objects that can be stored and retrieved in JNDI. When configuring a Spring application context you can use the JNDI factory class JndiObjectFactoryBean to perform dependency injection on your object's references to JMS destinations. However, often this strategy is cumbersome if there are a large number of destinations in the application or if there are advanced destination management features unique to the JMS provider. Examples of such advanced destination management would be the creation of dynamic destinations or support for a hierarchical namespace of destinations. The JmsTemplate delegates the resolution of a destination name to a JMS destination object to an implementation of the interface DestinationResolver. DynamicDestinationResolver is the default implementation used by JmsTemplate and accommodates resolving dynamic destinations. A JndiDestinationResolver is also provided that acts as a service locator for destinations contained in JNDI and optionally falls back to the behavior contained in DynamicDestinationResolver. Quite often the destinations used in a JMS application are only known at runtime and therefore cannot be administratively created when the application is deployed. This is often because there is shared application logic between interacting system components that create destinations at runtime according to a well-known naming convention. Even though the creation of dynamic destinations are not part of the JMS specification, most vendors have provided this functionality. Dynamic destinations are created with a name defined by the user which differentiates them from temporary destinations and are often not registered in JNDI. The API used to create dynamic destinations varies from provider to provider since the properties associated with the destination are vendor specific. However, a simple implementation choice that is sometimes made by vendors is to disregard the warnings in the JMS specification and to use the TopicSession method createTopic(String topicName) or the QueueSession method createQueue(String queueName) to create a new destination with default destination properties. Depending on the vendor implementation, DynamicDestinationResolver may then also create a physical destination instead of only resolving one. The boolean property pubSubDomain is used to configure the JmsTemplate with knowledge of what JMS domain is being used. By default the value of this property is false, indicating that the point-to-point domain, Queues, will be used. In the 1.0.2 implementation the value of this property determines if the JmsTemplate's send operations will send a message to a Queue or to a Topic. This flag has no effect on send operations for the 1.1 implementation. However, in both implementations, this property determines the behavior of dynamic destination resolution via implementations of the DestinationResolver interface. You can also configure the JmsTemplate with a default destination via the property defaultDestination. The default destination will be used with send and receive operations that do not refer to a specific destination. 19.2.4. Message Listener Containers One of the most common uses of JMS messages in the EJB world is to drive message-driven beans (MDBs). Spring offers a solution to create message-driven POJOs (MDPs) in a way that does not tie a user to an EJB container. (See the section entitled Section 19.4.2, “Asynchronous Reception - Message-Driven POJOs” for detailed coverage of Spring's MDP support.) A message listener container is used to receive messages from a JMS message queue and drive the MessageListener that is injected into it. The listener container is responsible for all threading of message Spring Framework (2.5.6) 443
  • 444. JMS (Java Message Service) reception and dispatches into the listener for processing. A message listener container is the intermediary between an MDP and a messaging provider, and takes care of registering to receive messages, participating in transactions, resource acquisition and release, exception conversion and suchlike. This allows you as an application developer to write the (possibly complex) business logic associated with receiving a message (and possibly responding to it), and delegates boilerplate JMS infrastructure concerns to the framework. There are three standard JMS message listener containers packaged with Spring, each with its specialised feature set. 19.2.4.1. SimpleMessageListenerContainer This message listener container is the simplest of the three standard flavors. It simply creates a fixed number of JMS sessions at startup and uses them throughout the lifespan of the container. This container doesn't allow for dynamic adaption to runtime demands or participate in externally managed transactions. However, it does have the fewest requirements on the JMS provider: This listener container only requires simple JMS API compliance. 19.2.4.2. DefaultMessageListenerContainer This message listener container is the one used in most cases. In contrast to SimpleMessageListenerContainer, this container variant does allow for dynamic adaption to runtime demands and is able to participate in externally managed transactions. Each received message is registered with an XA transaction (when configured with a JtaTransactionManager); processing can take advantage of XA transation semantics. This listener container strikes a good balance between low requirements on the JMS provider and good functionality including transaction participation. 19.2.4.3. ServerSessionMessageListenerContainer This listener container leverages the JMS ServerSessionPool SPI to allow for dynamic management of JMS sessions. The use of this variety of message listener container enables the provider to perform dynamic runtime tuning but, at the expense of requiring the JMS provider to support the ServerSessionPool SPI. If there is no need for provider-driven runtime tuning, look at the DefaultMessageListenerContainer or the SimpleMessageListenerContainer instead. 19.2.5. Transaction management Spring provides a JmsTransactionManager that manages transactions for a single JMS ConnectionFactory. This allows JMS applications to leverage the managed transaction features of Spring as described in Chapter 9, Transaction management. The JmsTransactionManager performs local resource transactions, binding a JMS Connection/Session pair from the specified ConnectionFactory to the thread. JmsTemplate automatically detects such transactional resources and operates on them accordingly. In a J2EE environment, the ConnectionFactory will pool Connections and Sessions, so those resources are efficiently reused across transactions. In a standalone environment, using Spring's SingleConnectionFactory will result in a shared JMS Connection, with each transaction having its own independent Session. Alternatively, consider the use of a provider-specific pooling adapter such as ActiveMQ's PooledConnectionFactory class. JmsTemplate can also be used with the JtaTransactionManager and an XA-capable JMS ConnectionFactory for performing distributed transactions. Note that this requires the use of a JTA transaction manager as well as a properly XA-configured ConnectionFactory! (Check your J2EE server's / JMS provider's documentation.) Spring Framework (2.5.6) 444
  • 445. JMS (Java Message Service) Reusing code across a managed and unmanaged transactional environment can be confusing when using the JMS API to create a Session from a Connection. This is because the JMS API has only one factory method to create a Session and it requires values for the transaction and acknowledgement modes. In a managed environment, setting these values is the responsibility of the environment's transactional infrastructure, so these values are ignored by the vendor's wrapper to the JMS Connection. When using the JmsTemplate in an unmanaged environment you can specify these values through the use of the properties sessionTransacted and sessionAcknowledgeMode. When using a PlatformTransactionManager with JmsTemplate, the template will always be given a transactional JMS Session. 19.3. Sending a Message The JmsTemplate contains many convenience methods to send a message. There are send methods that specify the destination using a javax.jms.Destination object and those that specify the destination using a string for use in a JNDI lookup. The send method that takes no destination argument uses the default destination. Here is an example that sends a message to a queue using the 1.0.2 implementation. import javax.jms.ConnectionFactory; import javax.jms.JMSException; import javax.jms.Message; import javax.jms.Queue; import javax.jms.Session; import org.springframework.jms.core.MessageCreator; import org.springframework.jms.core.JmsTemplate; import org.springframework.jms.core.JmsTemplate102; public class JmsQueueSender { private JmsTemplate jmsTemplate; private Queue queue; public void setConnectionFactory(ConnectionFactory cf) { this.jmsTemplate = new JmsTemplate102(cf, false); } public void setQueue(Queue queue) { this.queue = queue; } public void simpleSend() { this.jmsTemplate.send(this.queue, new MessageCreator() { public Message createMessage(Session session) throws JMSException { return session.createTextMessage("hello queue world"); } }); } } This example uses the MessageCreator callback to create a text message from the supplied Session object and the JmsTemplate is constructed by passing a reference to a ConnectionFactory and a boolean specifying the messaging domain. A zero argument constructor and connectionFactory / queue bean properties are provided and can be used for constructing the instance (using a BeanFactory or plain Java code). Alternatively, consider deriving from Spring's JmsGatewaySupport convenience base class, which provides pre-built bean properties for JMS configuration. When configuring the JMS 1.0.2 support in an application context, it is important to remember setting the value of the boolean property pubSubDomain property in order to indicate if you want to send to Queues or Topics. The method send(String destinationName, MessageCreator creator) lets you send to a message using the string name of the destination. If these names are registered in JNDI, you should set the destinationResolver property of the template to an instance of JndiDestinationResolver. Spring Framework (2.5.6) 445
  • 446. JMS (Java Message Service) If you created the JmsTemplate and specified a default destination, the send(MessageCreator c) sends a message to that destination. 19.3.1. Using Message Converters In order to facilitate the sending of domain model objects, the JmsTemplate has various send methods that take a Java object as an argument for a message's data content. The overloaded methods convertAndSend and receiveAndConvert in JmsTemplate delegate the conversion process to an instance of the MessageConverter interface. This interface defines a simple contract to convert between Java objects and JMS messages. The default implementation SimpleMessageConverter supports conversion between String and TextMessage, byte[] and BytesMesssage, and java.util.Map and MapMessage. By using the converter, you and your application code can focus on the business object that is being sent or received via JMS and not be concerned with the details of how it is represented as a JMS message. The sandbox currently includes a MapMessageConverter which uses reflection to convert between a JavaBean and a MapMessage. Other popular implementations choices you might implement yourself are Converters that use an existing XML marshalling package, such as JAXB, Castor, XMLBeans, or XStream, to create a TextMessage representing the object. To accommodate the setting of a message's properties, headers, and body that can not be generically encapsulated inside a converter class, the MessagePostProcessor interface gives you access to the message after it has been converted, but before it is sent. The example below demonstrates how to modify a message header and a property after a java.util.Map is converted to a message. public void sendWithConversion() { Map map = new HashMap(); map.put("Name", "Mark"); map.put("Age", new Integer(47)); jmsTemplate.convertAndSend("testQueue", map, new MessagePostProcessor() { public Message postProcessMessage(Message message) throws JMSException { message.setIntProperty("AccountID", 1234); message.setJMSCorrelationID("123-00001"); return message; } }); } This results in a message of the form: MapMessage={ Header={ ... standard headers ... CorrelationID={123-00001} } Properties={ AccountID={Integer:1234} } Fields={ Name={String:Mark} Age={Integer:47} } } 19.3.2. SessionCallback and ProducerCallback While the send operations cover many common usage scenarios, there are cases when you want to perform multiple operations on a JMS Session or MessageProducer. The SessionCallback and ProducerCallback expose the JMS Session and Session / MessageProducer pair respectfully. The execute() methods on Spring Framework (2.5.6) 446
  • 447. JMS (Java Message Service) JmsTemplate execute these callback methods. 19.4. Receiving a message 19.4.1. Synchronous Reception While JMS is typically associated with asynchronous processing, it is possible to consume messages synchronously. The overloaded receive(..) methods provide this functionality. During a synchronous receive, the calling thread blocks until a message becomes available. This can be a dangerous operation since the calling thread can potentially be blocked indefinitely. The property receiveTimeout specifies how long the receiver should wait before giving up waiting for a message. 19.4.2. Asynchronous Reception - Message-Driven POJOs In a fashion similar to a Message-Driven Bean (MDB) in the EJB world, the Message-Driven POJO (MDP) acts as a receiver for JMS messages. The one restriction (but see also below for the discussion of the MessageListenerAdapter class) on an MDP is that it must implement the javax.jms.MessageListener interface. Please also be aware that in the case where your POJO will be receiving messages on multiple threads, it is important to ensure that your implementation is thread-safe. Below is a simple implementation of an MDP: import javax.jms.JMSException; import javax.jms.Message; import javax.jms.MessageListener; import javax.jms.TextMessage; public class ExampleListener implements MessageListener { public void onMessage(Message message) { if (message instanceof TextMessage) { try { System.out.println(((TextMessage) message).getText()); } catch (JMSException ex) { throw new RuntimeException(ex); } } else { throw new IllegalArgumentException("Message must be of type TextMessage"); } } } Once you've implemented your MessageListener, it's time to create a message listener container. Find below an example of how to define and configure one of the message listener containers that ships with Spring (in this case the DefaultMessageListenerContainer). <!-- this is the Message Driven POJO (MDP) --> <bean id="messageListener" class="jmsexample.ExampleListener" /> <!-- and this is the message listener container --> <bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer"> <property name="connectionFactory" ref="connectionFactory"/> <property name="destination" ref="destination"/> <property name="messageListener" ref="messageListener" /> </bean> Please refer to the Spring Javadoc of the various message listener containers for a full description of the Spring Framework (2.5.6) 447
  • 448. JMS (Java Message Service) features supported by each implementation. 19.4.3. The SessionAwareMessageListener interface The SessionAwareMessageListener interface is a Spring-specific interface that provides a similar contract the JMS MessageListener interface, but also provides the message handling method with access to the JMS Session from which the Message was received. package org.springframework.jms.listener; public interface SessionAwareMessageListener { void onMessage(Message message, Session session) throws JMSException; } You can choose to have your MDPs implement this interface (in preference to the standard JMS MessageListener interface) if you want your MDPs to be able to respond to any received messages (using the Session supplied in the onMessage(Message, Session) method). All of the message listener container implementations that ship wth Spring have support for MDPs that implement either the MessageListener or SessionAwareMessageListener interface. Classes that implement the SessionAwareMessageListener come with the caveat that they are then tied to Spring through the interface. The choice of whether or not to use it is left entirely up to you as an application developer or architect. Please note that the 'onMessage(..)' method of the SessionAwareMessageListener interface throws JMSException. In contrast to the standard JMS MessageListener interface, when using the SessionAwareMessageListener interface, it is the responsibility of the client code to handle any exceptions thrown. 19.4.4. The MessageListenerAdapter The MessageListenerAdapter class is the final component in Spring's asynchronous messaging support: in a nutshell, it allows you to expose almost any class as a MDP (there are of course some constraints). Note If you are using the JMS 1.0.2 API, you will want to use the MessageListenerAdapter102 class which provides the exact same functionality and value add as the MessageListenerAdapter class, but for the JMS 1.0.2 API. Consider the following interface definition. Notice that although the interface extends neither the MessageListener nor SessionAwareMessageListener interfaces, it can still be used as a MDP via the use of the MessageListenerAdapter class. Notice also how the various message handling methods are strongly typed according to the contents of the various Message types that they can receive and handle. public interface MessageDelegate { void handleMessage(String message); void handleMessage(Map message); void handleMessage(byte[] message); void handleMessage(Serializable message); } Spring Framework (2.5.6) 448
  • 449. JMS (Java Message Service) public class DefaultMessageDelegate implements MessageDelegate { // implementation elided for clarity... } In particular, note how the above implementation of the MessageDelegate interface (the above DefaultMessageDelegate class) has no JMS dependencies at all. It truly is a POJO that we will make into an MDP via the following configuration. <!-- this is the Message Driven POJO (MDP) --> <bean id="messageListener" class="org.springframework.jms.listener.adapter.MessageListenerAdapter"> <constructor-arg> <bean class="jmsexample.DefaultMessageDelegate"/> </constructor-arg> </bean> <!-- and this is the message listener container... --> <bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer"> <property name="connectionFactory" ref="connectionFactory"/> <property name="destination" ref="destination"/> <property name="messageListener" ref="messageListener" /> </bean> Below is an example of another MDP that can only handle the receiving of JMS TextMessage messages. Notice how the message handling method is actually called 'receive' (the name of the message handling method in a MessageListenerAdapter defaults to 'handleMessage'), but it is configurable (as you will see below). Notice also how the 'receive(..)' method is strongly typed to receive and respond only to JMS TextMessage messages. public interface TextMessageDelegate { void receive(TextMessage message); } public class DefaultTextMessageDelegate implements TextMessageDelegate { // implementation elided for clarity... } The configuration of the attendant MessageListenerAdapter would look like this: <bean id="messageListener" class="org.springframework.jms.listener.adapter.MessageListenerAdapter"> <constructor-arg> <bean class="jmsexample.DefaultTextMessageDelegate"/> </constructor-arg> <property name="defaultListenerMethod" value="receive"/> <!-- we don't want automatic message context extraction --> <property name="messageConverter"> <null/> </property> </bean> Please note that if the above 'messageListener' receives a JMS Message of a type other than TextMessage, an IllegalStateException will be thrown (and subsequently swallowed). Another of the capabilities of the MessageListenerAdapter class is the ability to automatically send back a response Message if a handler method returns a non-void value. Consider the interface and class: public interface ResponsiveTextMessageDelegate { // notice the return type... String receive(TextMessage message); } public class DefaultResponsiveTextMessageDelegate implements ResponsiveTextMessageDelegate { Spring Framework (2.5.6) 449
  • 450. JMS (Java Message Service) // implementation elided for clarity... } If the above DefaultResponsiveTextMessageDelegate is used in conjunction with a MessageListenerAdapter then any non-null value that is returned from the execution of the 'receive(..)' method will (in the default configuration) be converted into a TextMessage. The resulting TextMessage will then be sent to the Destination (if one exists) defined in the JMS Reply-To property of the original Message, or the default Destination set on the MessageListenerAdapter (if one has been configured); if no Destination is found then an InvalidDestinationException will be thrown (and please note that this exception will not be swallowed and will propagate up the call stack). 19.4.5. Processing messages within transactions Invoking a message listener within a transaction only requires reconfiguration of the listener container. Local resource transactions can simply be activated through the sessionTransacted flag on the listener container definition. Each message listener invocation will then operate within an active JMS transaction, with message reception rolled back in case of listener execution failure. Sending a response message (via SessionAwareMessageListener) will be part of the same local transaction, but any other resource operations (such as database access) will operate independently. This usually requires duplicate message detection in the listener implementation, covering the case where database processing has committed but message processing failed to commit. <bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer"> <property name="connectionFactory" ref="connectionFactory"/> <property name="destination" ref="destination"/> <property name="messageListener" ref="messageListener"/> <property name="sessionTransacted" value="true"/> </bean> For participating in an externally managed transaction, you will need to configure a transaction manager and use a listener container which supports externally managed transactions: typically DefaultMessageListenerContainer. To configure a message listener container for XA transaction participation, you'll want to configure a JtaTransactionManager (which, by default, delegates to the J2EE server's transaction subsystem). Note that the underlying JMS ConnectionFactory needs to be XA-capable and properly registered with your JTA transaction coordinator! (Check your J2EE server's configuration of JNDI resources.) This allows message recepton as well as e.g. database access to be part of the same transaction (with unified commit semantics, at the expense of XA transaction log overhead). <bean id="transactionManager" class="org.springframework.transaction.jta.JtaTransactionManager"/> Then you just need to add it to our earlier container configuration. The container will take care of the rest. <bean id="jmsContainer" class="org.springframework.jms.listener.DefaultMessageListenerContainer"> <property name="connectionFactory" ref="connectionFactory"/> <property name="destination" ref="destination"/> <property name="messageListener" ref="messageListener"/> <property name="transactionManager" ref="transactionManager"/> </bean> 19.5. Support for JCA Message Endpoints Spring Framework (2.5.6) 450
  • 451. JMS (Java Message Service) Beginning with version 2.5, Spring also provides support for a JCA-based MessageListener container. The JmsMessageEndpointManager will attempt to automatically determine the ActivationSpec class name from the provider's ResourceAdapter class name. Therefore, it is typically possible to just provide Spring's generic JmsActivationSpecConfig as shown in the following example. <bean class="org.springframework.jms.listener.endpoint.JmsMessageEndpointManager"> <property name="resourceAdapter" ref="resourceAdapter"/> <property name="activationSpecConfig"> <bean class="org.springframework.jms.listener.endpoint.JmsActivationSpecConfig"> <property name="destinationName" value="myQueue"/> </bean> </property> <property name="messageListener" ref="myMessageListener"/> </bean> Alternatively, you may set up a JmsMessageEndpointManager with a given ActivationSpec object. The ActivationSpec object may also come from a JNDI lookup (using <jee:jndi-lookup>). <bean class="org.springframework.jms.listener.endpoint.JmsMessageEndpointManager"> <property name="resourceAdapter" ref="resourceAdapter"/> <property name="activationSpec"> <bean class="org.apache.activemq.ra.ActiveMQActivationSpec"> <property name="destination" value="myQueue"/> <property name="destinationType" value="javax.jms.Queue"/> </bean> </property> <property name="messageListener" ref="myMessageListener"/> </bean> Using Spring's ResourceAdapterFactoryBean, the target ResourceAdapter may be configured locally as depicted in the following example. <bean id="resourceAdapter" class="org.springframework.jca.support.ResourceAdapterFactoryBean"> <property name="resourceAdapter"> <bean class="org.apache.activemq.ra.ActiveMQResourceAdapter"> <property name="serverUrl" value="tcp://localhost:61616"/> </bean> </property> <property name="workManager"> <bean class="org.springframework.jca.work.SimpleTaskWorkManager"/> </property> </bean> The specified WorkManager may also point to an environment-specific thread pool - typically through SimpleTaskWorkManager's "asyncTaskExecutor" property. Consider defining a shared thread pool for all your ResourceAdapter instances if you happen to use multiple adapters. In some environments (e.g. WebLogic 9 or above), the entire ResourceAdapter object may be obtained from JNDI instead (using <jee:jndi-lookup>). The Spring-based message listeners can then interact with the server-hosted ResourceAdapter, also using the server's built-in WorkManager. Please consult theJavaDoc for JmsMessageEndpointManager, JmsActivationSpecConfig, and ResourceAdapterFactoryBean for more details. Spring also provides a generic JCA message endpoint manager which is not tied to JMS: org.springframework.jca.endpoint.GenericMessageEndpointManager. This component allows for using any message listener type (e.g. a CCI MessageListener) and any provided-specific ActivationSpec object. Check out your JCA provider's documentation to find out about the actual capabilities of your connector, and consult GenericMessageEndpointManager's JavaDoc for the Spring-specific configuration details. Spring Framework (2.5.6) 451
  • 452. JMS (Java Message Service) Note JCA-based message endpoint management is very analogous to EJB 2.1 Message-Driven Beans; it uses the same underlying resource provider contract. Like with EJB 2.1 MDBs, any message listener interface supported by your JCA provider can be used in the Spring context as well. Spring nevertheless provides explicit 'convenience' support for JMS, simply because JMS is the most common endpoint API used with the JCA endpoint management contract. 19.6. JMS Namespace Support Spring 2.5 introduces an XML namespace for simplifying JMS configuration. To use the JMS namespace elements you will need to reference the JMS schema: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:jms="http://www.springframework.org/schema/jms" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/jms http://www.springframework.org/schema/jms/spring-jms-2.5.xsd"> <!-- <bean/> definitions here --> </beans> The namespace consists of two top-level elements: <listener-container/> and <jca-listener-container/> both of which may contain one or more <listener/> child elements. Here is an example of a basic configuration for two listeners. <jms:listener-container> <jms:listener destination="queue.orders" ref="orderService" method="placeOrder"/> <jms:listener destination="queue.confirmations" ref="confirmationLogger" method="log"/> </jms:listener-container> The example above is equivalent to creating two distinct listener container bean definitions and two distinct MessageListenerAdapter bean definitions as demonstrated in the section entitled Section 19.4.4, “The MessageListenerAdapter”. In addition to the attributes shown above, the listener element may contain several optional ones. The following table describes all available attributes: Table 19.1. Attributes of the JMS <listener> element Attribute Description id A bean name for the hosting listener container. If not specified, a bean name will be automatically generated. destination (required) The destination name for this listener, resolved through the DestinationResolver strategy. ref (required) The bean name of the handler object. Spring Framework (2.5.6) 452
  • 453. JMS (Java Message Service) Attribute Description method The name of the handler method to invoke. If the ref points to a MessageListener or Spring SessionAwareMessageListener, this attribute may be omitted. response-destination The name of the default response destination to send response messages to. This will be applied in case of a request message that does not carry a "JMSReplyTo" field. The type of this destination will be determined by the listener-container's "destination-type" attribute. Note: This only applies to a listener method with a return value, for which each result object will be converted into a response message. subscription The name of the durable subscription, if any. selector An optional message selector for this listener. The <listener-container/> element also accepts several optional attributes. This allows for customization of the various strategies (for example, taskExecutor and destinationResolver) as well as basic JMS settings and resource references. Using these attributes, it is possible to define highly-customized listener containers while still benefiting from the convenience of the namespace. <jms:listener-container connection-factory="myConnectionFactory" task-executor="myTaskExecutor" destination-resolver="myDestinationResolver" transaction-manager="myTransactionManager" concurrency="10"> <jms:listener destination="queue.orders" ref="orderService" method="placeOrder"/> <jms:listener destination="queue.confirmations" ref="confirmationLogger" method="log"/> </jms:listener-container> The following table describes all available attributes. Consult the class-level Javadoc of the AbstractMessageListenerContainer and its concrete subclasses for more detail on the individual properties. The Javadoc also provides a discussion of transaction choices and message redelivery scenarios. Table 19.2. Attributes of the JMS <listener-container> element Attribute Description container-type The type of this listener container. Available options are: default, simple, default102, or simple102 (the default value is 'default'). connection-factory A reference to the JMS ConnectionFactory bean (the default bean name is 'connectionFactory'). task-executor A reference to the Spring TaskExecutor for the JMS listener invokers. destination-resolver A reference to the DestinationResolver strategy for resolving JMS Destinations. Spring Framework (2.5.6) 453
  • 454. JMS (Java Message Service) Attribute Description message-converter A reference to the MessageConverter strategy for converting JMS Messages to listener method arguments. Default is a SimpleMessageConverter. destination-type The JMS destination type for this listener: queue, topic or durableTopic. The default is queue. client-id The JMS client id for this listener container. Needs to be specified when using durable subscriptions. cache The cache level for JMS resources: none, connection, session, consumer or auto. By default (auto), the cache level will effectively be "consumer", unless an external transaction manager has been specified - in which case the effective default will be none (assuming J2EE-style transaction management where the given ConnectionFactory is an XA-aware pool). acknowledge The native JMS acknowledge mode: auto, client, dups-ok or transacted. A value of transacted activates a locally transacted Session. As an alternative, specify the transaction-manager attribute described below. Default is auto. transaction-manager A reference to an external PlatformTransactionManager (typically an XA-based transaction coordinator, e.g. Spring's JtaTransactionManager). If not specified, native acknowledging will be used (see "acknowledge" attribute). concurrency The number of concurrent sessions/consumers to start for each listener. Can either be a simple number indicating the maximum number (e.g. "5") or a range indicating the lower as well as the upper limit (e.g. "3-5"). Note that a specified minimum is just a hint and might be ignored at runtime. Default is 1; keep concurrency limited to 1 in case of a topic listener or if queue ordering is important; consider raising it for general queues. prefetch The maximum number of messages to load into a single session. Note that raising this number might lead to starvation of concurrent consumers! Configuring a JCA-based listener container with the "jms" schema support is very similar. <jms:jca-listener-container resource-adapter="myResourceAdapter" destination-resolver="myDestinationResolver" transaction-manager="myTransactionManager" concurrency="10"> <jms:listener destination="queue.orders" ref="myMessageListener"/> </jms:jca-listener-container> Spring Framework (2.5.6) 454
  • 455. JMS (Java Message Service) The available configuration options for the JCA variant are described in the following table: Table 19.3. Attributes of the JMS <jca-listener-container/> element Attribute Description resource-adapter A reference to the JCA ResourceAdapter bean (the default bean name is 'resourceAdapter'). activation-spec-factory A reference to the JmsActivationSpecFactory. The default is to autodetect the JMS provider and its ActivationSpec class (see DefaultJmsActivationSpecFactory) destination-resolver A reference to the DestinationResolver strategy for resolving JMS Destinations. message-converter A reference to the MessageConverter strategy for converting JMS Messages to listener method arguments. Default is a SimpleMessageConverter. destination-type The JMS destination type for this listener: queue, topic or durableTopic. The default is queue. client-id The JMS client id for this listener container. Needs to be specified when using durable subscriptions. acknowledge The native JMS acknowledge mode: auto, client, dups-ok or transacted. A value of transacted activates a locally transacted Session. As an alternative, specify the transaction-manager attribute described below. Default is auto. transaction-manager A reference to a Spring JtaTransactionManager or a javax.transaction.TransactionManager for kicking off an XA transaction for each incoming message. If not specified, native acknowledging will be used (see the "acknowledge" attribute). concurrency The number of concurrent sessions/consumers to start for each listener. Can either be a simple number indicating the maximum number (e.g. "5") or a range indicating the lower as well as the upper limit (e.g. "3-5"). Note that a specified minimum is just a hint and will typically be ignored at runtime when using a JCA listener container. Default is 1. prefetch The maximum number of messages to load into a single session. Note that raising this number might lead to starvation of concurrent consumers! Spring Framework (2.5.6) 455
  • 456. Chapter 20. JMX 20.1. Introduction The JMX support in Spring provides you with the features to easily and transparently integrate your Spring application into a JMX infrastructure. JMX? This chapter is not an introduction to JMX... it doesn't try to explain the motivations of why one might want to use JMX (or indeed what the letters JMX actually stand for). If you are new to JMX, check out the section entitled Section 20.8, “Further Resources” at the end of this chapter. Specifically, Spring's JMX support provides four core features: • The automatic registration of any Spring bean as a JMX MBean • A flexible mechanism for controlling the management interface of your beans • The declarative exposure of MBeans over remote, JSR-160 connectors • The simple proxying of both local and remote MBean resources These features are designed to work without coupling your application components to either Spring or JMX interfaces and classes. Indeed, for the most part your application classes need not be aware of either Spring or JMX in order to take advantage of the Spring JMX features. 20.2. Exporting your beans to JMX The core class in Spring's JMX framework is the MBeanExporter. This class is responsible for taking your Spring beans and registering them with a JMX MBeanServer. For example, consider the following class: package org.springframework.jmx; public class JmxTestBean implements IJmxTestBean { private String name; private int age; private boolean isSuperman; public int getAge() { return age; } public void setAge(int age) { this.age = age; } public void setName(String name) { this.name = name; } public String getName() { return name; } public int add(int x, int y) { Spring Framework (2.5.6) 456
  • 457. JMX return x + y; } public void dontExposeMe() { throw new RuntimeException(); } } To expose the properties and methods of this bean as attributes and operations of an MBean you simply configure an instance of the MBeanExporter class in your configuration file and pass in the bean as shown below: <beans> <!-- this bean must not be lazily initialized if the exporting is to happen --> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter" lazy-init="false"> <property name="beans"> <map> <entry key="bean:name=testBean1" value-ref="testBean"/> </map> </property> </bean> <bean id="testBean" class="org.springframework.jmx.JmxTestBean"> <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> </beans> The pertinent bean definition from the above configuration snippet is the exporter bean. The beans property tells the MBeanExporter exactly which of your beans must be exported to the JMX MBeanServer. In the default configuration, the key of each entry in the beans Map is used as the ObjectName for the bean referenced by the corresponding entry value. This behavior can be changed as described in the section entitled Section 20.4, “Controlling the ObjectNames for your beans”. With this configuration the testBean bean is exposed as an MBean under the ObjectName bean:name=testBean1. By default, all public properties of the bean are exposed as attributes and all public methods (bar those inherited from the Object class) are exposed as operations. 20.2.1. Creating an MBeanServer The above configuration assumes that the application is running in an environment that has one (and only one) MBeanServer already running. In this case, Spring will attempt to locate the running MBeanServer and register your beans with that server (if any). This behavior is useful when your application is running inside a container such as Tomcat or IBM WebSphere that has itss own MBeanServer. However, this approach is of no use in a standalone environment, or when running inside a container that does not provide an MBeanServer. To address this you can create an MBeanServer instance declaratively by adding an instance of the org.springframework.jmx.support.MBeanServerFactoryBean class to your configuration. You can also ensure that a specific MBeanServer is used by setting the value of the MBeanExporter's server property to the MBeanServer value returned by an MBeanServerFactoryBean; for example: <beans> <bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean"/> <!-- this bean needs to be eagerly pre-instantiated in order for the exporting to occur; this means that it must not be marked as lazily initialized --> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> Spring Framework (2.5.6) 457
  • 458. JMX <property name="beans"> <map> <entry key="bean:name=testBean1" value-ref="testBean"/> </map> </property> <property name="server" ref="mbeanServer"/> </bean> <bean id="testBean" class="org.springframework.jmx.JmxTestBean"> <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> </beans> Here an instance of MBeanServer is created by the MBeanServerFactoryBean and is supplied to the MBeanExporter via the server property. When you supply your own MBeanServer instance, the MBeanExporter will not attempt to locate a running MBeanServer and will use the supplied MBeanServer instance. For this to work correctly, you must (of course) have a JMX implementation on your classpath. 20.2.2. Reusing an existing MBeanServer If no server is specified, the MBeanExporter tries to automatically detect a running MBeanServer. This works in most environment where only one MBeanServer instance is used, however when multiple instances exist, the exporter might pick the wrong server. In such cases, one should use the MBeanServer agentId to indicate which instance to be used: <beans> <bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean"> <!-- indicate to first look for a server --> <property name="locateExistingServerIfPossible" value="true"/> <!-- search for the MBeanServer instance with the given agentId --> <property name="agentId" value="<MBeanServer instance agentId>"/> </bean> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="server" ref="mbeanServer"/> ... </bean> </beans> For platforms/cases where the existing MBeanServer has a dynamic (or unknown) agentId which is retrieved through lookup methods, one should use factory-method: <beans> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="server"> <!-- Custom MBeanServerLocator --> <bean class="platform.package.MBeanServerLocator" factory-method="locateMBeanServer"/> </property> <!-- other beans here --> </bean> </beans> 20.2.3. Lazy-initialized MBeans If you configure a bean with the MBeanExporter that is also configured for lazy initialization, then the MBeanExporter will not break this contract and will avoid instantiating the bean. Instead, it will register a proxy with the MBeanServer and will defer obtaining the bean from the container until the first invocation on the proxy occurs. Spring Framework (2.5.6) 458
  • 459. JMX 20.2.4. Automatic registration of MBeans Any beans that are exported through the MBeanExporter and are already valid MBeans are registered as-is with the MBeanServer without further intervention from Spring. MBeans can be automatically detected by the MBeanExporter by setting the autodetect property to true: <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="autodetect" value="true"/> </bean> <bean name="spring:mbean=true" class="org.springframework.jmx.export.TestDynamicMBean"/> Here, the bean called spring:mbean=true is already a valid JMX MBean and will be automatically registered by Spring. By default, beans that are autodetected for JMX registration have their bean name used as the ObjectName. This behavior can be overridden as detailed in the section entitled Section 20.4, “Controlling the ObjectNames for your beans”. 20.2.5. Controlling the registration behavior Consider the scenario where a Spring MBeanExporter attempts to register an MBean with an MBeanServer using the ObjectName 'bean:name=testBean1'. If an MBean instance has already been registered under that same ObjectName, the default behavior is to fail (and throw an InstanceAlreadyExistsException). It is possible to control the behavior of exactly what happens when an MBean is registered with an MBeanServer. Spring's JMX support allows for three different registration behaviors to control the registration behavior when the registration process finds that an MBean has already been registered under the same ObjectName; these registration behaviors are summarized on the following table: Table 20.1. Registration Behaviors Registration behavior Explanation REGISTRATION_FAIL_ON_EXISTING This is the default registration behavior. If an MBean instance has already been registered under the same ObjectName, the MBean that is being registered will not be registered and an InstanceAlreadyExistsException will be thrown. The existing MBean is unaffected. REGISTRATION_IGNORE_EXISTING If an MBean instance has already been registered under the same ObjectName, the MBean that is being registered will not be registered. The existing MBean is unaffected, and no Exception will be thrown. This is useful in settings where multiple applications want to share a common MBean in a shared MBeanServer. REGISTRATION_REPLACE_EXISTING If an MBean instance has already been registered under the same ObjectName, the existing MBean that was previously registered will be unregistered and the new MBean will be registered in its place (the new MBean Spring Framework (2.5.6) 459
  • 460. JMX Registration behavior Explanation effectively replaces the previous instance). The above values are defined as constants on the MBeanRegistrationSupport class (the MBeanExporter class derives from this superclass). If you want to change the default registration behavior, you simply need to set the value of the registrationBehaviorName property on your MBeanExporter definition to one of those values. The following example illustrates how to effect a change from the default registration behavior to the REGISTRATION_REPLACE_EXISTING behavior: <beans> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="beans"> <map> <entry key="bean:name=testBean1" value-ref="testBean"/> </map> </property> <property name="registrationBehaviorName" value="REGISTRATION_REPLACE_EXISTING"/> </bean> <bean id="testBean" class="org.springframework.jmx.JmxTestBean"> <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> </beans> 20.3. Controlling the management interface of your beans In the previous example, you had little control over the management interface of your bean; all of the public properties and methods of each exported bean was exposed as JMX attributes and operations respectively. To exercise finer-grained control over exactly which properties and methods of your exported beans are actually exposed as JMX attributes and operations, Spring JMX provides a comprehensive and extensible mechanism for controlling the management interfaces of your beans. 20.3.1. The MBeanInfoAssembler Interface Behind the scenes, the MBeanExporter delegates to an implementation of the org.springframework.jmx.export.assembler.MBeanInfoAssembler interface which is responsible for defining the management interface of each bean that is being exposed. The default implementation, org.springframework.jmx.export.assembler.SimpleReflectiveMBeanInfoAssembler, simply defines a management interface that exposes all public properties and methods (as you saw in the previous examples). Spring provides two additional implementations of the MBeanInfoAssembler interface that allow you to control the generated management interface using either source-level metadata or any arbitrary interface. 20.3.2. Using source-Level metadata Using the MetadataMBeanInfoAssembler you can define the management interfaces for your beans using source level metadata. The reading of metadata is encapsulated by the org.springframework.jmx.export.metadata.JmxAttributeSource interface. Out of the box, Spring JMX provides support for two implementations of this interface: org.springframework.jmx.export.metadata.AttributesJmxAttributeSource for Commons Attributes and org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource for JDK 5.0 annotations. Spring Framework (2.5.6) 460
  • 461. JMX The MetadataMBeanInfoAssembler must be configured with an implementation instance of the JmxAttributeSource interface for it to function correctly (there is no default). For the following example, we will use the Commons Attributes metadata approach. To mark a bean for export to JMX, you should annotate the bean class with the ManagedResource attribute. In the case of the Commons Attributes metadata approach this class can be found in the org.springframework.jmx.metadata package. Each method you wish to expose as an operation must be marked with the ManagedOperation attribute and each property you wish to expose must be marked with the ManagedAttribute attribute. When marking properties you can omit either the annotation of the getter or the setter to create a write-only or read-only attribute respectively. The example below shows the JmxTestBean class that you saw earlier marked with Commons Attributes metadata: package org.springframework.jmx; /** * @@org.springframework.jmx.export.metadata.ManagedResource * (description="My Managed Bean", objectName="spring:bean=test", * log=true, logFile="jmx.log", currencyTimeLimit=15, persistPolicy="OnUpdate", * persistPeriod=200, persistLocation="foo", persistName="bar") */ public class JmxTestBean implements IJmxTestBean { private String name; private int age; /** * @@org.springframework.jmx.export.metadata.ManagedAttribute * (description="The Age Attribute", currencyTimeLimit=15) */ public int getAge() { return age; } public void setAge(int age) { this.age = age; } /** * @@org.springframework.jmx.export.metadata.ManagedAttribute * (description="The Name Attribute", currencyTimeLimit=20, * defaultValue="bar", persistPolicy="OnUpdate") */ public void setName(String name) { this.name = name; } /** * @@org.springframework.jmx.export.metadata.ManagedAttribute * (defaultValue="foo", persistPeriod=300) */ public String getName() { return name; } /** * @@org.springframework.jmx.export.metadata.ManagedOperation * (description="Add Two Numbers Together") */ public int add(int x, int y) { return x + y; } public void dontExposeMe() { throw new RuntimeException(); } } Spring Framework (2.5.6) 461
  • 462. JMX Here you can see that the JmxTestBean class is marked with the ManagedResource attribute and that this ManagedResource attribute is configured with a set of properties. These properties can be used to configure various aspects of the MBean that is generated by the MBeanExporter, and are explained in greater detail later in section entitled Section 20.3.4, “Source-Level Metadata Types”. You will also notice that both the age and name properties are annotated with the ManagedAttribute attribute, but in the case of the age property, only the getter is marked. This will cause both of these properties to be included in the management interface as attributes, but the age attribute will be read-only. Finally, you will notice that the add(int, int) method is marked with the ManagedOperation attribute whereas the dontExposeMe() method is not. This will cause the management interface to contain only one operation, add(int, int), when using the MetadataMBeanInfoAssembler. The code below shows how you configure the MBeanExporter to use the MetadataMBeanInfoAssembler: <beans> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="beans"> <map> <entry key="bean:name=testBean1" value-ref="testBean"/> </map> </property> <property name="assembler" ref="assembler"/> </bean> <bean id="testBean" class="org.springframework.jmx.JmxTestBean"> <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> <bean id="attributeSource" class="org.springframework.jmx.export.metadata.AttributesJmxAttributeSource"> <property name="attributes"> <bean class="org.springframework.metadata.commons.CommonsAttributes"/> </property> </bean> <bean id="assembler" class="org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler"> <property name="attributeSource" ref="attributeSource"/> </bean> </beans> Here you can see that an MetadataMBeanInfoAssembler bean has been configured with an instance of the AttributesJmxAttributeSource class and passed to the MBeanExporter through the assembler property. This is all that is required to take advantage of metadata-driven management interfaces for your Spring-exposed MBeans. 20.3.3. Using JDK 5.0 Annotations To enable the use of JDK 5.0 annotations for management interface definition, Spring provides a set of annotations that mirror the Commons Attribute attribute classes and an implementation of the JmxAttributeSource strategy interface, the AnnotationsJmxAttributeSource class, that allows the MBeanInfoAssembler to read them. The example below shows a bean where the management interface is defined by the presence of JDK 5.0 annotation types: package org.springframework.jmx; import org.springframework.jmx.export.annotation.ManagedResource; import org.springframework.jmx.export.annotation.ManagedOperation; Spring Framework (2.5.6) 462
  • 463. JMX import org.springframework.jmx.export.annotation.ManagedAttribute; @ManagedResource(objectName="bean:name=testBean4", description="My Managed Bean", log=true, logFile="jmx.log", currencyTimeLimit=15, persistPolicy="OnUpdate", persistPeriod=200, persistLocation="foo", persistName="bar") public class AnnotationTestBean implements IJmxTestBean { private String name; private int age; @ManagedAttribute(description="The Age Attribute", currencyTimeLimit=15) public int getAge() { return age; } public void setAge(int age) { this.age = age; } @ManagedAttribute(description="The Name Attribute", currencyTimeLimit=20, defaultValue="bar", persistPolicy="OnUpdate") public void setName(String name) { this.name = name; } @ManagedAttribute(defaultValue="foo", persistPeriod=300) public String getName() { return name; } @ManagedOperation(description="Add two numbers") @ManagedOperationParameters({ @ManagedOperationParameter(name = "x", description = "The first number"), @ManagedOperationParameter(name = "y", description = "The second number")}) public int add(int x, int y) { return x + y; } public void dontExposeMe() { throw new RuntimeException(); } } As you can see little has changed, other than the basic syntax of the metadata definitions. <beans> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="assembler" ref="assembler"/> <property name="namingStrategy" ref="namingStrategy"/> <property name="autodetect" value="true"/> </bean> <bean id="jmxAttributeSource" class="org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/> <!-- will create management interface using annotation metadata --> <bean id="assembler" class="org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler"> <property name="attributeSource" ref="jmxAttributeSource"/> </bean> <!-- will pick up the ObjectName from the annotation --> <bean id="namingStrategy" class="org.springframework.jmx.export.naming.MetadataNamingStrategy"> <property name="attributeSource" ref="jmxAttributeSource"/> </bean> <bean id="testBean" class="org.springframework.jmx.AnnotationTestBean"> <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> </beans> Spring Framework (2.5.6) 463
  • 464. JMX 20.3.4. Source-Level Metadata Types The following source level metadata types are available for use in Spring JMX: Table 20.2. Source-Level Metadata Types Purpose Commons Attributes JDK 5.0 Annotation Attribute / Annotation Attribute Type Mark all instances of a ManagedResource @ManagedResource Class Class as JMX managed resources Mark a method as a JMX ManagedOperation @ManagedOperation Method operation Mark a getter or setter as ManagedAttribute @ManagedAttribute Method (only getters and one half of a JMX setters) attribute Define descriptions for ManagedOperationParameter Method @ManagedOperationParameter operation parameters and @ManagedOperationParameters The following configuration parameters are available for use on these source-level metadata types: Table 20.3. Source-Level Metadata Parameters Parameter Description Applies to ObjectName Used by MetadataNamingStrategy ManagedResource to determine the ObjectName of a managed resource description Sets the friendly description of the ManagedResource, resource, attribute or operation ManagedAttribute, ManagedOperation, ManagedOperationParameter currencyTimeLimit Sets the value of the ManagedResource, currencyTimeLimit descriptor ManagedAttribute field defaultValue Sets the value of the defaultValue ManagedAttribute descriptor field log Sets the value of the log descriptor ManagedResource field logFile Sets the value of the logFile ManagedResource descriptor field persistPolicy Sets thevalue of the ManagedResource persistPolicy descriptor field Spring Framework (2.5.6) 464
  • 465. JMX Parameter Description Applies to persistPeriod Sets the value of the ManagedResource persistPeriod descriptor field persistLocation Sets thevalue of the ManagedResource persistLocation descriptor field persistName Sets the value of the persistName ManagedResource descriptor field name Sets the display name of an ManagedOperationParameter operation parameter index Sets the index of an operation ManagedOperationParameter parameter 20.3.5. The AutodetectCapableMBeanInfoAssembler interface To simplify configuration even further, Spring introduces the AutodetectCapableMBeanInfoAssembler interface which extends the MBeanInfoAssembler interface to add support for autodetection of MBean resources. If you configure the MBeanExporter with an instance of AutodetectCapableMBeanInfoAssembler then it is allowed to "vote" on the inclusion of beans for exposure to JMX. Out of the box, the only implementation of the AutodetectCapableMBeanInfo interface is the MetadataMBeanInfoAssembler which will vote to include any bean which is marked with the ManagedResource attribute. The default approach in this case is to use the bean name as the ObjectName which results in a configuration like this: <beans> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <!-- notice how no 'beans' are explicitly configured here --> <property name="autodetect" value="true"/> <property name="assembler" ref="assembler"/> </bean> <bean id="testBean" class="org.springframework.jmx.JmxTestBean"> <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> <!-- (for Commons Attributes-based metadata) --> <bean id="attributeSource" class="org.springframework.jmx.export.metadata.AttributesJmxAttributeSource"> <property name="attributes"> <bean class="org.springframework.metadata.commons.CommonsAttributes"/> </property> </bean> <!-- (for Java 5+ annotations-based metadata) --> <!-- <bean id="attributeSource" class="org.springframework.jmx.export.annotation.AnnotationJmxAttributeSource"/> --> <bean id="assembler" class="org.springframework.jmx.export.assembler.MetadataMBeanInfoAssembler"> <property name="attributeSource" ref="attributeSource"/> </bean> </beans> Spring Framework (2.5.6) 465
  • 466. JMX Notice that in this configuration no beans are passed to the MBeanExporter; however, the JmxTestBean will still be registered since it is marked with the ManagedResource attribute and the MetadataMBeanInfoAssembler detects this and votes to include it. The only problem with this approach is that the name of the JmxTestBean now has business meaning. You can address this issue by changing the default behavior for ObjectName creation as defined in the section entitled Section 20.4, “Controlling the ObjectNames for your beans”. 20.3.6. Defining management interfaces using Java interfaces In addition to the MetadataMBeanInfoAssembler, Spring also includes the InterfaceBasedMBeanInfoAssembler which allows you to constrain the methods and properties that are exposed based on the set of methods defined in a collection of interfaces. Although the standard mechanism for exposing MBeans is to use interfaces and a simple naming scheme, the InterfaceBasedMBeanInfoAssembler extends this functionality by removing the need for naming conventions, allowing you to use more than one interface and removing the need for your beans to implement the MBean interfaces. Consider this interface that is used to define a management interface for the JmxTestBean class that you saw earlier: public interface IJmxTestBean { public int add(int x, int y); public long myOperation(); public int getAge(); public void setAge(int age); public void setName(String name); public String getName(); } This interface defines the methods and properties that will be exposed as operations and attributes on the JMX MBean. The code below shows how to configure Spring JMX to use this interface as the definition for the management interface: <beans> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="beans"> <map> <entry key="bean:name=testBean5" value-ref="testBean"/> </map> </property> <property name="assembler"> <bean class="org.springframework.jmx.export.assembler.InterfaceBasedMBeanInfoAssembler"> <property name="managedInterfaces"> <value>org.springframework.jmx.IJmxTestBean</value> </property> </bean> </property> </bean> <bean id="testBean" class="org.springframework.jmx.JmxTestBean"> <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> </beans> Spring Framework (2.5.6) 466
  • 467. JMX Here you can see that the InterfaceBasedMBeanInfoAssembler is configured to use the IJmxTestBean interface when constructing the management interface for any bean. It is important to understand that beans processed by the InterfaceBasedMBeanInfoAssembler are not required to implement the interface used to generate the JMX management interface. In the case above, the IJmxTestBean interface is used to construct all management interfaces for all beans. In many cases this is not the desired behavior and you may want to use different interfaces for different beans. In this case, you can pass InterfaceBasedMBeanInfoAssembler a Properties instance via the interfaceMappings property, where the key of each entry is the bean name and the value of each entry is a comma-separated list of interface names to use for that bean. If no management interface is specified through either the managedInterfaces or interfaceMappings properties, then the InterfaceBasedMBeanInfoAssembler will reflect on the bean and use all of the interfaces implemented by that bean to create the management interface. 20.3.7. Using MethodNameBasedMBeanInfoAssembler The MethodNameBasedMBeanInfoAssembler allows you to specify a list of method names that will be exposed to JMX as attributes and operations. The code below shows a sample configuration for this: <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="beans"> <map> <entry key="bean:name=testBean5" value-ref="testBean"/> </map> </property> <property name="assembler"> <bean class="org.springframework.jmx.export.assembler.MethodNameBasedMBeanInfoAssembler"> <property name="managedMethods"> <value>add,myOperation,getName,setName,getAge</value> </property> </bean> </property> </bean> Here you can see that the methods add and myOperation will be exposed as JMX operations and getName(), setName(String) and getAge() will be exposed as the appropriate half of a JMX attribute. In the code above, the method mappings apply to beans that are exposed to JMX. To control method exposure on a bean-by-bean basis, use the methodMappings property of MethodNameMBeanInfoAssembler to map bean names to lists of method names. 20.4. Controlling the ObjectNames for your beans Behind the scenes, the MBeanExporter delegates to an implementation of the ObjectNamingStrategy to obtain ObjectNames for each of the beans it is registering. The default implementation, KeyNamingStrategy, will, by default, use the key of the beans Map as the ObjectName. In addition, the KeyNamingStrategy can map the key of the beans Map to an entry in a Properties file (or files) to resolve the ObjectName. In addition to the KeyNamingStrategy, Spring provides two additional ObjectNamingStrategy implementations: the IdentityNamingStrategy that builds an ObjectName based on the JVM identity of the bean and the MetadataNamingStrategy that uses source level metadata to obtain the ObjectName. 20.4.1. Reading ObjectNames from Properties You can configure your own KeyNamingStrategy instance and configure it to read ObjectNames from a Spring Framework (2.5.6) 467
  • 468. JMX Properties instance rather than use bean key. The KeyNamingStrategy will attempt to locate an entry in the Properties with a key corresponding to the bean key. If no entry is found or if the Properties instance is null then the bean key itself is used. The code below shows a sample configuration for the KeyNamingStrategy: <beans> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="beans"> <map> <entry key="testBean" value-ref="testBean"/> </map> </property> <property name="namingStrategy" ref="namingStrategy"/> </bean> <bean id="testBean" class="org.springframework.jmx.JmxTestBean"> <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> <bean id="namingStrategy" class="org.springframework.jmx.export.naming.KeyNamingStrategy"> <property name="mappings"> <props> <prop key="testBean">bean:name=testBean1</prop> </props> </property> <property name="mappingLocations"> <value>names1.properties,names2.properties</value> </property> </bean </beans> Here an instance of KeyNamingStrategy is configured with a Properties instance that is merged from the Properties instance defined by the mapping property and the properties files located in the paths defined by the mappings property. In this configuration, the testBean bean will be given the ObjectName bean:name=testBean1 since this is the entry in the Properties instance that has a key corresponding to the bean key. If no entry in the Properties instance can be found then the bean key name is used as the ObjectName. 20.4.2. Using the MetadataNamingStrategy The MetadataNamingStrategy uses the objectName property of the ManagedResource attribute on each bean to create the ObjectName. The code below shows the configuration for the MetadataNamingStrategy: <beans> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="beans"> <map> <entry key="testBean" value-ref="testBean"/> </map> </property> <property name="namingStrategy" ref="namingStrategy"/> </bean> <bean id="testBean" class="org.springframework.jmx.JmxTestBean"> <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> <bean id="namingStrategy" class="org.springframework.jmx.export.naming.MetadataNamingStrategy"> <property name="attributeSource" ref="attributeSource"/> </bean> <bean id="attributeSource" Spring Framework (2.5.6) 468
  • 469. JMX class="org.springframework.jmx.export.metadata.AttributesJmxAttributeSource"/> </beans> If no objectName has been provided for the ManagedResource attribute, then an ObjectName will be created with the following format: [fully-qualified-package-name]:type=[short-classname],name=[bean-name]. For example, the generated ObjectName for the following bean would be: com.foo:type=MyClass,name=myBean. <bean id="myBean" class="com.foo.MyClass"/> 20.4.3. The <context:mbean-export/> element If you are using at least Java 5, then a convenience subclass of MBeanExporter is available: AnnotationMBeanExporter. When defining an instance of this subclass, the namingStrategy, assembler, and attributeSource configuration is no longer needed, since it will always use standard Java annotation-based metadata (autodetection is always enabled as well). In fact, an even simpler syntax is supported with the inclusion of Spring's 'context' namespace in Spring 2.5. Rather than defining an MBeanExporter bean, provide this single element: <context:mbean-export/> You can provide a reference to a particular MBean server if necessary, and the defaultDomain attribute (a property of AnnotationMBeanExporter) accepts an alternate value for the generated MBean ObjectNames' domains. This would be used in place of the fully qualified package name as described in the previous section on MetadataNamingStrategy. <context:mbean-export server="myMBeanServer" default-domain="myDomain"/> . Note Do not use interface-based AOP proxies in combination with autodetection of JMX annotations in your bean classes. Interface-based proxies 'hide' the target class, which also hides the JMX managed resource annotations. Hence, use target-class proxies in that case: through setting the 'proxy-target-class' flag on <aop:config/>, <tx:annotation-driven/>, etc. Otherwise, your JMX beans might be silently ignored at startup... 20.5. JSR-160 Connectors For remote access, Spring JMX module offers two FactoryBean implementations inside the org.springframework.jmx.support package for creating both server- and client-side connectors. 20.5.1. Server-side Connectors To have Spring JMX create, start and expose a JSR-160 JMXConnectorServer use the following configuration: <bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactoryBean"/> Spring Framework (2.5.6) 469
  • 470. JMX By default ConnectorServerFactoryBean creates a JMXConnectorServer bound to "service:jmx:jmxmp://localhost:9875". The serverConnector bean thus exposes the local MBeanServer to clients through the JMXMP protocol on localhost, port 9875. Note that the JMXMP protocol is marked as optional by the JSR 160 specification: currently, the main open-source JMX implementation, MX4J, and the one provided with J2SE 5.0 do not support JMXMP. To specify another URL and register the JMXConnectorServer itself with the MBeanServer use the serviceUrl and ObjectName properties respectively: <bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactoryBean"> <property name="objectName" value="connector:name=rmi"/> <property name="serviceUrl" value="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/myconnector"/> </bean> If the ObjectName property is set Spring will automatically register your connector with the MBeanServer under that ObjectName. The example below shows the full set of parameters which you can pass to the ConnectorServerFactoryBean when creating a JMXConnector: <bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactoryBean"> <property name="objectName" value="connector:name=iiop"/> <property name="serviceUrl" value="service:jmx:iiop://localhost/jndi/iiop://localhost:900/myconnector"/> <property name="threaded" value="true"/> <property name="daemon" value="true"/> <property name="environment"> <map> <entry key="someKey" value="someValue"/> </map> </property> </bean> Note that when using a RMI-based connector you need the lookup service (tnameserv or rmiregistry) to be started in order for the name registration to complete. If you are using Spring to export remote services for you via RMI, then Spring will already have constructed an RMI registry. If not, you can easily start a registry using the following snippet of configuration: <bean id="registry" class="org.springframework.remoting.rmi.RmiRegistryFactoryBean"> <property name="port" value="1099"/> </bean> 20.5.2. Client-side Connectors To create an MBeanServerConnectionto a remote JSR-160 enabled MBeanServer use the MBeanServerConnectionFactoryBean as shown below: <bean id="clientConnector" class="org.springframework.jmx.support.MBeanServerConnectionFactoryBean"> <property name="serviceUrl" value="service:jmx:rmi://localhost:9875"/> </bean> 20.5.3. JMX over Burlap/Hessian/SOAP JSR-160 permits extensions to the way in which communication is done between the client and the server. The examples above are using the mandatory RMI-based implementation required by the JSR-160 specification (IIOP and JRMP) and the (optional) JMXMP. By using other providers or JMX implementations (such as Spring Framework (2.5.6) 470
  • 471. JMX MX4J) you can take advantage of protocols like SOAP, Hessian, Burlap over simple HTTP or SSL and others: <bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactoryBean"> <property name="objectName" value="connector:name=burlap"/> <property name="serviceUrl" value="service:jmx:burlap://localhost:9874"/> </bean> In the case of the above example, MX4J 3.0.0 was used; see the official MX4J documentation for more information. 20.6. Accessing MBeans via Proxies Spring JMX allows you to create proxies that re-route calls to MBeans registered in a local or remote MBeanServer. These proxies provide you with a standard Java interface through which you can interact with your MBeans. The code below shows how to configure a proxy for an MBean running in a local MBeanServer: <bean id="proxy" class="org.springframework.jmx.access.MBeanProxyFactoryBean"> <property name="objectName" value="bean:name=testBean"/> <property name="proxyInterface" value="org.springframework.jmx.IJmxTestBean"/> </bean> Here you can see that a proxy is created for the MBean registered under the ObjectName: bean:name=testBean. The set of interfaces that the proxy will implement is controlled by the proxyInterfaces property and the rules for mapping methods and properties on these interfaces to operations and attributes on the MBean are the same rules used by the InterfaceBasedMBeanInfoAssembler. The MBeanProxyFactoryBean can create a proxy to any MBean that is accessible via an MBeanServerConnection. By default, the local MBeanServer is located and used, but you can override this and provide an MBeanServerConnection pointing to a remote MBeanServer to cater for proxies pointing to remote MBeans: <bean id="clientConnector" class="org.springframework.jmx.support.MBeanServerConnectionFactoryBean"> <property name="serviceUrl" value="service:jmx:rmi://remotehost:9875"/> </bean> <bean id="proxy" class="org.springframework.jmx.access.MBeanProxyFactoryBean"> <property name="objectName" value="bean:name=testBean"/> <property name="proxyInterface" value="org.springframework.jmx.IJmxTestBean"/> <property name="server" ref="clientConnector"/> </bean> Here you can see that we create an MBeanServerConnection pointing to a remote machine using the MBeanServerConnectionFactoryBean. This MBeanServerConnection is then passed to the MBeanProxyFactoryBean via the server property. The proxy that is created will forward all invocations to the MBeanServer via this MBeanServerConnection. 20.7. Notifications Spring's JMX offering includes comprehensive support for JMX notifications. 20.7.1. Registering Listeners for Notifications Spring's JMX support makes it very easy to register any number of NotificationListeners with any number of MBeans (this includes MBeans exported by Spring's MBeanExporter and MBeans registered via some other Spring Framework (2.5.6) 471
  • 472. JMX mechanism). By way of an example, consider the scenario where one would like to be informed (via a Notification) each and every time an attribute of a target MBean changes. package com.example; import javax.management.AttributeChangeNotification; import javax.management.Notification; import javax.management.NotificationFilter; import javax.management.NotificationListener; public class ConsoleLoggingNotificationListener implements NotificationListener, NotificationFilter { public void handleNotification(Notification notification, Object handback) { System.out.println(notification); System.out.println(handback); } public boolean isNotificationEnabled(Notification notification) { return AttributeChangeNotification.class.isAssignableFrom(notification.getClass()); } } <beans> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="beans"> <map> <entry key="bean:name=testBean1" value-ref="testBean"/> </map> </property> <property name="notificationListenerMappings"> <map> <entry key="bean:name=testBean1"> <bean class="com.example.ConsoleLoggingNotificationListener"/> </entry> </map> </property> </bean> <bean id="testBean" class="org.springframework.jmx.JmxTestBean"> <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> </beans> With the above configuration in place, every time a JMX Notification is broadcast from the target MBean (bean:name=testBean1), the ConsoleLoggingNotificationListener bean that was registered as a listener via the notificationListenerMappings property will be notified. The ConsoleLoggingNotificationListener bean can then take whatever action it deems appropriate in response to the Notification. You can also use straight bean names as the link between exported beans and listeners: <beans> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="beans"> <map> <entry key="bean:name=testBean1" value-ref="testBean"/> </map> </property> <property name="notificationListenerMappings"> <map> <entry key="testBean"> <bean class="com.example.ConsoleLoggingNotificationListener"/> </entry> </map> </property> </bean> <bean id="testBean" class="org.springframework.jmx.JmxTestBean"> Spring Framework (2.5.6) 472
  • 473. JMX <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> </beans> If one wants to register a single NotificationListener instance for all of the beans that the enclosing MBeanExporter is exporting, one can use the special wildcard '*' (sans quotes) as the key for an entry in the notificationListenerMappings property map; for example: <property name="notificationListenerMappings"> <map> <entry key="*"> <bean class="com.example.ConsoleLoggingNotificationListener"/> </entry> </map> </property> If one needs to do the inverse (that is, register a number of distinct listeners against an MBean), then one has to use the notificationListeners list property instead (and in preference to the notificationListenerMappings property). This time, instead of configuring simply a NotificationListener for a single MBean, one configures NotificationListenerBean instances... a NotificationListenerBean encapsulates a NotificationListener and the ObjectName (or ObjectNames) that it is to be registered against in an MBeanServer. The NotificationListenerBean also encapsulates a number of other properties such as a NotificationFilter and an arbitrary handback object that can be used in advanced JMX notification scenarios. The configuration when using NotificationListenerBean instances is not wildly different to what was presented previously: <beans> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="beans"> <map> <entry key="bean:name=testBean1" value-ref="testBean"/> </map> </property> <property name="notificationListeners"> <list> <bean class="org.springframework.jmx.export.NotificationListenerBean"> <constructor-arg> <bean class="com.example.ConsoleLoggingNotificationListener"/> </constructor-arg> <property name="mappedObjectNames"> <list> <value>bean:name=testBean1</value> </list> </property> </bean> </list> </property> </bean> <bean id="testBean" class="org.springframework.jmx.JmxTestBean"> <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> </beans> The above example is equivalent to the first notification example. Lets assume then that we want to be given a handback object every time a Notification is raised, and that additionally we want to filter out extraneous Notifications by supplying a NotificationFilter. (For a full discussion of just what a handback object is, and indeed what a NotificationFilter is, please do consult that section of the JMX specification (1.2) Spring Framework (2.5.6) 473
  • 474. JMX entitled 'The JMX Notification Model'.) <beans> <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter"> <property name="beans"> <map> <entry key="bean:name=testBean1" value-ref="testBean1"/> <entry key="bean:name=testBean2" value-ref="testBean2"/> </map> </property> <property name="notificationListeners"> <list> <bean class="org.springframework.jmx.export.NotificationListenerBean"> <constructor-arg ref="customerNotificationListener"/> <property name="mappedObjectNames"> <list> <!-- handles notifications from two distinct MBeans --> <value>bean:name=testBean1</value> <value>bean:name=testBean2</value> </list> </property> <property name="handback"> <bean class="java.lang.String"> <constructor-arg value="This could be anything..."/> </bean> </property> <property name="notificationFilter" ref="customerNotificationListener"/> </bean> </list> </property> </bean> <!-- implements both the NotificationListener and NotificationFilter interfaces --> <bean id="customerNotificationListener" class="com.example.ConsoleLoggingNotificationListener"/> <bean id="testBean1" class="org.springframework.jmx.JmxTestBean"> <property name="name" value="TEST"/> <property name="age" value="100"/> </bean> <bean id="testBean2" class="org.springframework.jmx.JmxTestBean"> <property name="name" value="ANOTHER TEST"/> <property name="age" value="200"/> </bean> </beans> 20.7.2. Publishing Notifications Spring provides support not just for registering to receive Notifications, but also for publishing Notifications. Note Please note that this section is really only relevant to Spring managed beans that have been exposed as MBeans via an MBeanExporter; any existing, user-defined MBeans should use the standard JMX APIs for notification publication. The key interface in Spring's JMX notification publication support is the NotificationPublisher interface (defined in the org.springframework.jmx.export.notification package). Any bean that is going to be exported as an MBean via an MBeanExporter instance can implement the related NotificationPublisherAware interface to gain access to a NotificationPublisher instance. The NotificationPublisherAware interface simply supplies an instance of a NotificationPublisher to the implementing bean via a simple setter method, which the bean can then use to publish Notifications. Spring Framework (2.5.6) 474
  • 475. JMX As stated in the Javadoc for the NotificationPublisher class, managed beans that are publishing events via the NotificationPublisher mechanism are not responsible for the state management of any notification listeners and the like ... Spring's JMX support will take care of handling all the JMX infrastructure issues. All one need do as an application developer is implement the NotificationPublisherAware interface and start publishing events using the supplied NotificationPublisher instance. Note that the NotificationPublisher will be set after the managed bean has been registered with an MBeanServer. Using a NotificationPublisher instance is quite straightforward... one simply creates a JMX Notification instance (or an instance of an appropriate Notification subclass), populates the notification with the data pertinent to the event that is to be published, and one then invokes the sendNotification(Notification) on the NotificationPublisher instance, passing in the Notification. Find below a simple example... in this scenario, exported instances of the JmxTestBean are going to publish a NotificationEvent every time the add(int, int) operation is invoked. package org.springframework.jmx; import org.springframework.jmx.export.notification.NotificationPublisherAware; import org.springframework.jmx.export.notification.NotificationPublisher; import javax.management.Notification; public class JmxTestBean implements IJmxTestBean, NotificationPublisherAware { private String name; private int age; private boolean isSuperman; private NotificationPublisher publisher; // other getters and setters omitted for clarity public int add(int x, int y) { int answer = x + y; this.publisher.sendNotification(new Notification("add", this, 0)); return answer; } public void dontExposeMe() { throw new RuntimeException(); } public void setNotificationPublisher(NotificationPublisher notificationPublisher) { this.publisher = notificationPublisher; } } The NotificationPublisher interface and the machinery to get it all working is one of the nicer features of Spring's JMX support. It does however come with the price tag of coupling your classes to both Spring and JMX; as always, the advice here is to be pragmatic... if you need the functionality offered by the NotificationPublisher and you can accept the coupling to both Spring and JMX, then do so. 20.8. Further Resources This section contains links to further resources about JMX. • The JMX homepage at Sun • The JMX specification (JSR-000003) • The JMX Remote API specification (JSR-000160) • The MX4J homepage (an Open Source implementation of various JMX specs) Spring Framework (2.5.6) 475
  • 476. JMX • Getting Started with JMX - an introductory article from Sun. Spring Framework (2.5.6) 476
  • 477. Chapter 21. JCA CCI 21.1. Introduction J2EE provides a specification to standardize access to enterprise information systems (EIS): the JCA (Java Connector Architecture). This specification is divided into several different parts: • SPI (Service provider interfaces) that the connector provider must implement. These interfaces constitute a resource adapter which can be deployed on a J2EE application server. In such a scenario, the server manages connection pooling, transaction and security (managed mode). The application server is also responsible for managing the configuration, which is held outside the client application. A connector can be used without an application server as well; in this case, the application must configure it directly (non-managed mode). • CCI (Common Client Interface) that an application can use to interact with the connector and thus communicate with an EIS. An API for local transaction demarcation is provided as well. The aim of the Spring CCI support is to provide classes to access a CCI connector in typical Spring style, leveraging the Spring Framework's general resource and transaction management facilities. Note The client side of connectors doesn't alway use CCI. Some connectors expose their own APIs, only providing JCA resource adapter to use the system contracts of a J2EE container (connection pooling, global transactions, security). Spring does not offer special support for such connector-specific APIs. 21.2. Configuring CCI 21.2.1. Connector configuration The base resource to use JCA CCI is the ConnectionFactory interface. The connector used must provide an implementation of this interface. To use your connector, you can deploy it on your application server and fetch the ConnectionFactory from the server's JNDI environment (managed mode). The connector must be packaged as a RAR file (resource adapter archive) and contain a ra.xml file to describe its deployment characteristics. The actual name of the resource is specified when you deploy it. To access it within Spring, simply use Spring's JndiObjectFactoryBean to fetch the factory by its JNDI name. Another way to use a connector is to embed it in your application (non-managed mode), not using an application server to deploy and configure it. Spring offers the possibility to configure a connector as a bean, through a provided FactoryBean (LocalConnectionFactoryBean). In this manner, you only need the connector library in the classpath (no RAR file and no ra.xml descriptor needed). The library must be extracted from the connector's RAR file, if necessary. Once you have got access to your ConnectionFactory instance, you can inject it into your components. These components can either be coded against the plain CCI API or leverage Spring's support classes for CCI access (e.g. CciTemplate). Spring Framework (2.5.6) 477
  • 478. JCA CCI Note When you use a connector in non-managed mode, you can't use global transactions because the resource is never enlisted / delisted in the current global transaction of the current thread. The resource is simply not aware of any global J2EE transactions that might be running. 21.2.2. ConnectionFactory configuration in Spring In order to make connections to the EIS, you need to obtain a ConnectionFactory from the application server if you are in a managed mode, or directly from Spring if you are in a non-managed mode. In a managed mode, you access a ConnectionFactory from JNDI; its properties will be configured in the application server. <bean id="eciConnectionFactory" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiName" value="eis/cicseci"/> </bean> In non-managed mode, you must configure the ConnectionFactory you want to use in the configuration of Spring as a JavaBean. The LocalConnectionFactoryBean class offers this setup style, passing in the ManagedConnectionFactory implementation of your connector, exposing the application-level CCI ConnectionFactory. <bean id="eciManagedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory"> <property name="serverName" value="TXSERIES"/> <property name="connectionURL" value="tcp://localhost/"/> <property name="portNumber" value="2006"/> </bean> <bean id="eciConnectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean"> <property name="managedConnectionFactory" ref="eciManagedConnectionFactory"/> </bean> Note You can't directly instantiate a specific ConnectionFactory. You need to go through the corresponding implementation of the ManagedConnectionFactory interface for your connector. This interface is part of the JCA SPI specification. 21.2.3. Configuring CCI connections JCA CCI allow the developer to configure the connections to the EIS using the ConnectionSpec implementation of your connector. In order to configure its properties, you need to wrap the target connection factory with a dedicated adapter, ConnectionSpecConnectionFactoryAdapter. So, the dedicated ConnectionSpec can be configured with the property connectionSpec (as an inner bean). This property is not mandatory because the CCI ConnectionFactory interface defines two different methods to obtain a CCI connection. Some of the ConnectionSpec properties can often be configured in the application server (in managed mode) or on the corresponding local ManagedConnectionFactory implementation. public interface ConnectionFactory implements Serializable, Referenceable { ... Connection getConnection() throws ResourceException; Connection getConnection(ConnectionSpec connectionSpec) throws ResourceException; ... Spring Framework (2.5.6) 478
  • 479. JCA CCI } Spring provides a ConnectionSpecConnectionFactoryAdapter that allows for specifying a ConnectionSpec instance to use for all operations on a given factory. If the adapter's connectionSpec property is specified, the adapter uses the getConnection variant without argument, else the one with the ConnectionSpec argument. <bean id="managedConnectionFactory" class="com.sun.connector.cciblackbox.CciLocalTxManagedConnectionFactory"> <property name="connectionURL" value="jdbc:hsqldb:hsql://localhost:9001"/> <property name="driverName" value="org.hsqldb.jdbcDriver"/> </bean> <bean id="targetConnectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean"> <property name="managedConnectionFactory" ref="managedConnectionFactory"/> </bean> <bean id="connectionFactory" class="org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter"> <property name="targetConnectionFactory" ref="targetConnectionFactory"/> <property name="connectionSpec"> <bean class="com.sun.connector.cciblackbox.CciConnectionSpec"> <property name="user" value="sa"/> <property name="password" value=""/> </bean> </property> </bean> 21.2.4. Using a single CCI connection If you want to use a single CCI connection, Spring provides a further ConnectionFactory adapter to manage this. The SingleConnectionFactory adapter class will open a single connection lazily and close it when this bean is destroyed at application shutdown. This class will expose special Connection proxies that behave accordingly, all sharing the same underlying physical connection. <bean id="eciManagedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory"> <property name="serverName" value="TEST"/> <property name="connectionURL" value="tcp://localhost/"/> <property name="portNumber" value="2006"/> </bean> <bean id="targetEciConnectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean"> <property name="managedConnectionFactory" ref="eciManagedConnectionFactory"/> </bean> <bean id="eciConnectionFactory" class="org.springframework.jca.cci.connection.SingleConnectionFactory"> <property name="targetConnectionFactory" ref="targetEciConnectionFactory"/> </bean> Note This ConnectionFactory adapter cannot directly be configured with a ConnectionSpec. Use an intermediary ConnectionSpecConnectionFactoryAdapter that the SingleConnectionFactory talks to if you require a single connection for a specific ConnectionSpec. 21.3. Using Spring's CCI access support Spring Framework (2.5.6) 479
  • 480. JCA CCI 21.3.1. Record conversion One of the aims of the JCA CCI support is to provide convenient facilities for manipulating CCI records. The developer can specify the strategy to create records and extract datas from records, for use with Spring's CciTemplate. The following interfaces will configure the strategy to use input and output records if you don't want to work with records directly in your application. In order to create an input Record, the developer can use a dedicated implementation of the RecordCreator interface. public interface RecordCreator { Record createRecord(RecordFactory recordFactory) throws ResourceException, DataAccessException; } As you can see, the createRecord(..) method receives a RecordFactory instance as parameter, which corresponds to the RecordFactory of the ConnectionFactory used. This reference can be used to create IndexedRecord or MappedRecord instances. The following sample shows how to use the RecordCreator interface and indexed/mapped records. public class MyRecordCreator implements RecordCreator { public Record createRecord(RecordFactory recordFactory) throws ResourceException { IndexedRecord input = recordFactory.createIndexedRecord("input"); input.add(new Integer(id)); return input; } } An output Record can be used to receive data back from the EIS. Hence, a specific implementation of the RecordExtractor interface can be passed to Spring's CciTemplate for extracting data from the output Record. public interface RecordExtractor { Object extractData(Record record) throws ResourceException, SQLException, DataAccessException; } The following sample shows how to use the RecordExtractor interface. public class MyRecordExtractor implements RecordExtractor { public Object extractData(Record record) throws ResourceException { CommAreaRecord commAreaRecord = (CommAreaRecord) record; String str = new String(commAreaRecord.toByteArray()); String field1 = string.substring(0,6); String field2 = string.substring(6,1); return new OutputObject(Long.parseLong(field1), field2); } } 21.3.2. The CciTemplate The CciTemplate is the central class of the core CCI support package (org.springframework.jca.cci.core). It simplifies the use of CCI since it handles the creation and release of resources. This helps to avoid common errors like forgetting to always close the connection. It cares for the lifecycle of connection and interaction objects, letting application code focus on generating input records from application data and extracting application data from output records. Spring Framework (2.5.6) 480
  • 481. JCA CCI The JCA CCI specification defines two distinct methods to call operations on an EIS. The CCI Interaction interface provides two execute method signatures: public interface javax.resource.cci.Interaction { ... boolean execute(InteractionSpec spec, Record input, Record output) throws ResourceException; Record execute(InteractionSpec spec, Record input) throws ResourceException; ... } Depending on the template method called, CciTemplate will know which execute method to call on the interaction. In any case, a correctly initialized InteractionSpec instance is mandatory. CciTemplate.execute(..) can be used in two ways: • With direct Record arguments. In this case, you simply need to pass the CCI input record in, and the returned object be the corresponding CCI output record. • With application objects, using record mapping. In this case, you need to provide corresponding RecordCreator and RecordExtractor instances. With the first approach, the following methods of the template will be used. These methods directly correspond to those on the Interaction interface. public class CciTemplate implements CciOperations { public Record execute(InteractionSpec spec, Record inputRecord) throws DataAccessException { ... } public void execute(InteractionSpec spec, Record inputRecord, Record outputRecord) throws DataAccessException { ... } } With the second approach, we need to specify the record creation and record extraction strategies as arguments. The interfaces used are those describe in the previous section on record conversion. The corresponding CciTemplate methods are the following: public class CciTemplate implements CciOperations { public Record execute(InteractionSpec spec, RecordCreator inputCreator) throws DataAccessException { ... } public Object execute(InteractionSpec spec, Record inputRecord, RecordExtractor outputExtractor) throws DataAccessException { ... } public Object execute(InteractionSpec spec, RecordCreator creator, RecordExtractor extractor) throws DataAccessException { ... } } Unless the outputRecordCreator property is set on the template (see the following section), every method will call the corresponding execute method of the CCI Interaction with two parameters: InteractionSpec and input Record, receiving an output Record as return value. CciTemplate also provides methods to create IndexRecord and MappedRecord outside a RecordCreator implementation, through its createIndexRecord(..) and createMappedRecord(..) methods. This can be used within DAO implementations to create Record instances to pass into corresponding CciTemplate.execute(..) methods. Spring Framework (2.5.6) 481
  • 482. JCA CCI public class CciTemplate implements CciOperations { public IndexedRecord createIndexedRecord(String name) throws DataAccessException { ... } public MappedRecord createMappedRecord(String name) throws DataAccessException { ... } } 21.3.3. DAO support Spring's CCI support provides a abstract class for DAOs, supporting injection of a ConnectionFactory or a CciTemplate instances. The name of the class is CciDaoSupport: It provides simple setConnectionFactory and setCciTemplate methods. Internally, this class will create a CciTemplate instance for a passed-in ConnectionFactory, exposing it to concrete data access implementations in subclasses. public abstract class CciDaoSupport { public void setConnectionFactory(ConnectionFactory connectionFactory) { ... } public ConnectionFactory getConnectionFactory() { ... } public void setCciTemplate(CciTemplate cciTemplate) { ... } public CciTemplate getCciTemplate() { ... } } 21.3.4. Automatic output record generation If the connector used only supports the Interaction.execute(..) method with input and output records as parameters (that is, it requires the desired output record to be passed in instead of returning an appropriate output record), you can set the outputRecordCreator property of the CciTemplate to automatically generate an output record to be filled by the JCA connector when the response is received. This record will be then returned to the caller of the template. This property simply holds an implementation of the RecordCreator interface, used for that purpose. The RecordCreator interface has already been discussed in the section entitled Section 21.3.1, “Record conversion”. The outputRecordCreator property must be directly specified on the CciTemplate. This could be done in the application code like so: cciTemplate.setOutputRecordCreator(new EciOutputRecordCreator()); Or (recommended) in the Spring configuration, if the CciTemplate is configured as a dedicated bean instance: <bean id="eciOutputRecordCreator" class="eci.EciOutputRecordCreator"/> <bean id="cciTemplate" class="org.springframework.jca.cci.core.CciTemplate"> <property name="connectionFactory" ref="eciConnectionFactory"/> <property name="outputRecordCreator" ref="eciOutputRecordCreator"/> </bean> Note As the CciTemplate class is thread-safe, it will usually be configured as a shared instance. 21.3.5. Summary Spring Framework (2.5.6) 482
  • 483. JCA CCI The following table summarizes the mechanisms of the CciTemplate class and the corresponding methods called on the CCI Interaction interface: Table 21.1. Usage of Interaction execute methods CciTemplate method signature CciTemplate execute method called on the outputRecordCreator property CCI Interaction Record execute(InteractionSpec, not set Record execute(InteractionSpec, Record) Record) Record execute(InteractionSpec, set boolean execute(InteractionSpec, Record) Record, Record) void execute(InteractionSpec, not set void execute(InteractionSpec, Record, Record) Record, Record) void execute(InteractionSpec, set void execute(InteractionSpec, Record, Record) Record, Record) Record execute(InteractionSpec, not set Record execute(InteractionSpec, RecordCreator) Record) Record execute(InteractionSpec, set void execute(InteractionSpec, RecordCreator) Record, Record) Record execute(InteractionSpec, not set Record execute(InteractionSpec, Record, RecordExtractor) Record) Record execute(InteractionSpec, set void execute(InteractionSpec, Record, RecordExtractor) Record, Record) Record execute(InteractionSpec, not set Record execute(InteractionSpec, RecordCreator, RecordExtractor) Record) Record execute(InteractionSpec, set void execute(InteractionSpec, RecordCreator, RecordExtractor) Record, Record) 21.3.6. Using a CCI Connection and Interaction directly CciTemplate also offers the possibility to work directly with CCI connections and interactions, in the same manner as JdbcTemplate and JmsTemplate. This is useful when you want to perform multiple operations on a CCI connection or interaction, for example. The interface ConnectionCallback provides a CCI Connection as argument, in order to perform custom operations on it, plus the CCI ConnectionFactory which the Connection was created with. The latter can be useful for example to get an associated RecordFactory instance and create indexed/mapped records, for example. public interface ConnectionCallback { Object doInConnection(Connection connection, ConnectionFactory connectionFactory) throws ResourceException, SQLException, DataAccessException; } The interface InteractionCallback provides the CCI Interaction, in order to perform custom operations on Spring Framework (2.5.6) 483
  • 484. JCA CCI it, plus the corresponding CCI ConnectionFactory. public interface InteractionCallback { Object doInInteraction(Interaction interaction, ConnectionFactory connectionFactory) throws ResourceException, SQLException, DataAccessException; } Note InteractionSpec objects can either be shared across multiple template calls or newly created inside every callback method. This is completely up to the DAO implementation. 21.3.7. Example for CciTemplate usage In this section, the usage of the CciTemplate will be shown to acces to a CICS with ECI mode, with the IBM CICS ECI connector. Firstly, some initializations on the CCI InteractionSpec must be done to specify which CICS program to access and how to interact with it. ECIInteractionSpec interactionSpec = new ECIInteractionSpec(); interactionSpec.setFunctionName("MYPROG"); interactionSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE); Then the program can use CCI via Spring's template and specify mappings between custom objects and CCI Records. public class MyDaoImpl extends CciDaoSupport implements MyDao { public OutputObject getData(InputObject input) { ECIInteractionSpec interactionSpec = ...; OutputObject output = (ObjectOutput) getCciTemplate().execute(interactionSpec, new RecordCreator() { public Record createRecord(RecordFactory recordFactory) throws ResourceException { return new CommAreaRecord(input.toString().getBytes()); } }, new RecordExtractor() { public Object extractData(Record record) throws ResourceException { CommAreaRecord commAreaRecord = (CommAreaRecord)record; String str = new String(commAreaRecord.toByteArray()); String field1 = string.substring(0,6); String field2 = string.substring(6,1); return new OutputObject(Long.parseLong(field1), field2); } }); return output; } } As discussed previously, callbacks can be used to work directly on CCI connections or interactions. public class MyDaoImpl extends CciDaoSupport implements MyDao { public OutputObject getData(InputObject input) { ObjectOutput output = (ObjectOutput) getCciTemplate().execute( new ConnectionCallback() { public Object doInConnection(Connection connection, ConnectionFactory factory) throws ResourceException { // do something... Spring Framework (2.5.6) 484
  • 485. JCA CCI } }); } return output; } } Note With a ConnectionCallback, the Connection used will be managed and closed by the CciTemplate, but any interactions created on the connection must be managed by the callback implementation. For a more specific callback, you can implement an InteractionCallback. The passed-in Interaction will be managed and closed by the CciTemplate in this case. public class MyDaoImpl extends CciDaoSupport implements MyDao { public String getData(String input) { ECIInteractionSpec interactionSpec = ...; String output = (String) getCciTemplate().execute(interactionSpec, new InteractionCallback() { public Object doInInteraction(Interaction interaction, ConnectionFactory factory) throws ResourceException { Record input = new CommAreaRecord(inputString.getBytes()); Record output = new CommAreaRecord(); interaction.execute(holder.getInteractionSpec(), input, output); return new String(output.toByteArray()); } }); return output; } } For the examples above, the corresponding configuration of the involved Spring beans could look like this in non-managed mode: <bean id="managedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory"> <property name="serverName" value="TXSERIES"/> <property name="connectionURL" value="local:"/> <property name="userName" value="CICSUSER"/> <property name="password" value="CICS"/> </bean> <bean id="connectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean"> <property name="managedConnectionFactory" ref="managedConnectionFactory"/> </bean> <bean id="component" class="mypackage.MyDaoImpl"> <property name="connectionFactory" ref="connectionFactory"/> </bean> In managed mode (that is, in a J2EE environment), the configuration could look as follows: <bean id="connectionFactory" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiName" value="eis/cicseci"/> </bean> <bean id="component" class="MyDaoImpl"> <property name="connectionFactory" ref="connectionFactory"/> </bean> Spring Framework (2.5.6) 485
  • 486. JCA CCI 21.4. Modeling CCI access as operation objects The org.springframework.jca.cci.object package contains support classes that allow you to access the EIS in a different style: through reusable operation objects, analogous to Spring's JDBC operation objects (see JDBC chapter). This will usually encapsulate the CCI API: an application-level input object will be passed to the operation object, so it can construct the input record and then convert the received record data to an application-level output object and return it. Note: This approach is internally based on the CciTemplate class and the RecordCreator / RecordExtractor interfaces, reusing the machinery of Spring's core CCI support. 21.4.1. MappingRecordOperation MappingRecordOperation essentially performs the same work as CciTemplate, but represents a specific, pre-configured operation as an object. It provides two template methods to specify how to convert an input object to a input record, and how to convert an output record to an output object (record mapping): • createInputRecord(..) to specify how to convert an input object to an input Record • extractOutputData(..) to specify how to extract an output object from an output Record Here are the signatures of these methods: public abstract class MappingRecordOperation extends EisOperation { ... protected abstract Record createInputRecord(RecordFactory recordFactory, Object inputObject) throws ResourceException, DataAccessException { ... } protected abstract Object extractOutputData(Record outputRecord) throws ResourceException, SQLException, DataAccessException { ... } ... } Thereafter, in order to execute an EIS operation, you need to use a single execute method, passing in an application-level input object and receiving an application-level output object as result: public abstract class MappingRecordOperation extends EisOperation { ... public Object execute(Object inputObject) throws DataAccessException { ... } As you can see, contrary to the CciTemplate class, this execute(..) method does not have an InteractionSpec as argument. Instead, the InteractionSpec is global to the operation. The following constructor must be used to instantiate an operation object with a specific InteractionSpec: InteractionSpec spec = ...; MyMappingRecordOperation eisOperation = new MyMappingRecordOperation(getConnectionFactory(), spec); ... 21.4.2. MappingCommAreaOperation Some connectors use records based on a COMMAREA which represents an array of bytes containing parameters to send to the EIS and data returned by it. Spring provides a special operation class for working Spring Framework (2.5.6) 486
  • 487. JCA CCI directly on COMMAREA rather than on records. The MappingCommAreaOperation class extends the MappingRecordOperation class to provide such special COMMAREA support. It implicitly uses the CommAreaRecord class as input and output record type, and provides two new methods to convert an input object into an input COMMAREA and the output COMMAREA into an output object. public abstract class MappingCommAreaOperation extends MappingRecordOperation { ... protected abstract byte[] objectToBytes(Object inObject) throws IOException, DataAccessException; protected abstract Object bytesToObject(byte[] bytes) throws IOException, DataAccessException; ... } 21.4.3. Automatic output record generation As every MappingRecordOperation subclass is based on CciTemplate internally, the same way to automatically generate output records as with CciTemplate is available. Every operation object provides a corresponding setOutputRecordCreator(..) method. For further information, see the section entitled Section 21.3.4, “Automatic output record generation”. 21.4.4. Summary The operation object approach uses records in the same manner as the CciTemplate class. Table 21.2. Usage of Interaction execute methods MappingRecordOperation method MappingRecordOperation execute method called on the signature outputRecordCreator property CCI Interaction Object execute(Object) not set Record execute(InteractionSpec, Record) Object execute(Object) set boolean execute(InteractionSpec, Record, Record) 21.4.5. Example for MappingRecordOperation usage In this section, the usage of the MappingRecordOperation will be shown to access a database with the Blackbox CCI connector. Note The original version of this connector is provided by the J2EE SDK (version 1.3), available from Sun. Firstly, some initializations on the CCI InteractionSpec must be done to specify which SQL request to execute. In this sample, we directly define the way to convert the parameters of the request to a CCI record and the way to convert the CCI result record to an instance of the Person class. public class PersonMappingOperation extends MappingRecordOperation { Spring Framework (2.5.6) 487
  • 488. JCA CCI public PersonMappingOperation(ConnectionFactory connectionFactory) { setConnectionFactory(connectionFactory); CciInteractionSpec interactionSpec = new CciConnectionSpec(); interactionSpec.setSql("select * from person where person_id=?"); setInteractionSpec(interactionSpec); } protected Record createInputRecord(RecordFactory recordFactory, Object inputObject) throws ResourceException { Integer id = (Integer) inputObject; IndexedRecord input = recordFactory.createIndexedRecord("input"); input.add(new Integer(id)); return input; } protected Object extractOutputData(Record outputRecord) throws ResourceException, SQLException { ResultSet rs = (ResultSet) outputRecord; Person person = null; if (rs.next()) { Person person = new Person(); person.setId(rs.getInt("person_id")); person.setLastName(rs.getString("person_last_name")); person.setFirstName(rs.getString("person_first_name")); } return person; } } Then the application can execute the operation object, with the person identifier as argument. Note that operation object could be set up as shared instance, as it is thread-safe. public class MyDaoImpl extends CciDaoSupport implements MyDao { public Person getPerson(int id) { PersonMappingOperation query = new PersonMappingOperation(getConnectionFactory()); Person person = (Person) query.execute(new Integer(id)); return person; } } The corresponding configuration of Spring beans could look as follows in non-managed mode: <bean id="managedConnectionFactory" class="com.sun.connector.cciblackbox.CciLocalTxManagedConnectionFactory"> <property name="connectionURL" value="jdbc:hsqldb:hsql://localhost:9001"/> <property name="driverName" value="org.hsqldb.jdbcDriver"/> </bean> <bean id="targetConnectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean"> <property name="managedConnectionFactory" ref="managedConnectionFactory"/> </bean> <bean id="connectionFactory" class="org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter"> <property name="targetConnectionFactory" ref="targetConnectionFactory"/> <property name="connectionSpec"> <bean class="com.sun.connector.cciblackbox.CciConnectionSpec"> <property name="user" value="sa"/> <property name="password" value=""/> </bean> </property> </bean> <bean id="component" class="MyDaoImpl"> <property name="connectionFactory" ref="connectionFactory"/> </bean> In managed mode (that is, in a J2EE environment), the configuration could look as follows: Spring Framework (2.5.6) 488
  • 489. JCA CCI <bean id="targetConnectionFactory" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiName" value="eis/blackbox"/> </bean> <bean id="connectionFactory" class="org.springframework.jca.cci.connection.ConnectionSpecConnectionFactoryAdapter"> <property name="targetConnectionFactory" ref="targetConnectionFactory"/> <property name="connectionSpec"> <bean class="com.sun.connector.cciblackbox.CciConnectionSpec"> <property name="user" value="sa"/> <property name="password" value=""/> </bean> </property> </bean> <bean id="component" class="MyDaoImpl"> <property name="connectionFactory" ref="connectionFactory"/> </bean> 21.4.6. Example for MappingCommAreaOperation usage In this section, the usage of the MappingCommAreaOperation will be shown: accessing a CICS with ECI mode with the IBM CICS ECI connector. Firstly, the CCI InteractionSpec needs to be initialized to specify which CICS program to access and how to interact with it. public abstract class EciMappingOperation extends MappingCommAreaOperation { public EciMappingOperation(ConnectionFactory connectionFactory, String programName) { setConnectionFactory(connectionFactory); ECIInteractionSpec interactionSpec = new ECIInteractionSpec(), interactionSpec.setFunctionName(programName); interactionSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE); interactionSpec.setCommareaLength(30); setInteractionSpec(interactionSpec); setOutputRecordCreator(new EciOutputRecordCreator()); } private static class EciOutputRecordCreator implements RecordCreator { public Record createRecord(RecordFactory recordFactory) throws ResourceException { return new CommAreaRecord(); } } } The abstract EciMappingOperation class can then be subclassed to specify mappings between custom objects and Records. public class MyDaoImpl extends CciDaoSupport implements MyDao { public OutputObject getData(Integer id) { EciMappingOperation query = new EciMappingOperation(getConnectionFactory(), "MYPROG") { protected abstract byte[] objectToBytes(Object inObject) throws IOException { Integer id = (Integer) inObject; return String.valueOf(id); } protected abstract Object bytesToObject(byte[] bytes) throws IOException; String str = new String(bytes); String field1 = str.substring(0,6); String field2 = str.substring(6,1); String field3 = str.substring(7,1); return new OutputObject(field1, field2, field3); } }); return (OutputObject) query.execute(new Integer(id)); } } Spring Framework (2.5.6) 489
  • 490. JCA CCI The corresponding configuration of Spring beans could look as follows in non-managed mode: <bean id="managedConnectionFactory" class="com.ibm.connector2.cics.ECIManagedConnectionFactory"> <property name="serverName" value="TXSERIES"/> <property name="connectionURL" value="local:"/> <property name="userName" value="CICSUSER"/> <property name="password" value="CICS"/> </bean> <bean id="connectionFactory" class="org.springframework.jca.support.LocalConnectionFactoryBean"> <property name="managedConnectionFactory" ref="managedConnectionFactory"/> </bean> <bean id="component" class="MyDaoImpl"> <property name="connectionFactory" ref="connectionFactory"/> </bean> In managed mode (that is, in a J2EE environment), the configuration could look as follows: <bean id="connectionFactory" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiName" value="eis/cicseci"/> </bean> <bean id="component" class="MyDaoImpl"> <property name="connectionFactory" ref="connectionFactory"/> </bean> 21.5. Transactions JCA specifies several levels of transaction support for resource adapters. The kind of transactions that your resource adapter supports is specified in its ra.xml file. There are essentially three options: none (for example with CICS EPI connector), local transactions (for example with a CICS ECI connector), global transactions (for example with an IMS connector). <connector> <resourceadapter> <!-- <transaction-support>NoTransaction</transaction-support> --> <!-- <transaction-support>LocalTransaction</transaction-support> --> <transaction-support>XATransaction</transaction-support> <resourceadapter> <connector> For global transactions, you can use Spring's generic transaction infrastructure to demarcate transactions, with JtaTransactionManager as backend (delegating to the J2EE server's distributed transaction coordinator underneath). For local transactions on a single CCI ConnectionFactory, Spring provides a specific transaction management strategy for CCI, analogous to the DataSourceTransactionManager for JDBC. The CCI API defines a local transaction object and corresponding local transaction demarcation methods. Spring's CciLocalTransactionManager executes such local CCI transactions, fully compliant with Spring's generic PlatformTransactionManager abstraction. <bean id="eciConnectionFactory" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiName" value="eis/cicseci"/> </bean> <bean id="eciTransactionManager" class="org.springframework.jca.cci.connection.CciLocalTransactionManager"> <property name="connectionFactory" ref="eciConnectionFactory"/> Spring Framework (2.5.6) 490
  • 491. JCA CCI </bean> Both transaction strategies can be used with any of Spring's transaction demarcation facilities, be it declarative or programmatic. This is a consequence of Spring's generic PlatformTransactionManager abstraction, which decouples transaction demarcation from the actual execution strategy. Simply switch between JtaTransactionManager and CciLocalTransactionManager as needed, keeping your transaction demarcation as-is. For more information on Spring's transaction facilities, see the chapter entitled Chapter 9, Transaction management. Spring Framework (2.5.6) 491
  • 492. Chapter 22. Email 22.1. Introduction Library dependencies The following additional jars to be on the classpath of your application in order to be able to use the Spring Framework's email library. • The JavaMail mail.jar library • The JAF activation.jar library All of these libraries are available in the Spring-with-dependencies distribution of the Spring Framework (in addition to also being freely available on the web). The Spring Framework provides a helpful utility library for sending email that shields the user from the specifics of the underlying mailing system and is responsible for low level resource handling on behalf of the client. The org.springframework.mail package is the root level package for the Spring Framework's email support. The central interface for sending emails is the MailSender interface; a simple value object encapsulating the properties of a simple mail such as from and to (plus many others) is the SimpleMailMessage class. This package also contains a hierarchy of checked exceptions which provide a higher level of abstraction over the lower level mail system exceptions with the root exception being MailException. Please refer to the Javadocs for more information on the rich mail exception hierarchy. The org.springframework.mail.javamail.JavaMailSender interface adds specialized JavaMail features such as MIME message support to the MailSender interface (from which it inherits). JavaMailSender also provides a callback interface for preparation of JavaMail MIME messages, called org.springframework.mail.javamail.MimeMessagePreparator 22.2. Usage Let's assume there is a business interface called OrderManager: public interface OrderManager { void placeOrder(Order order); } Let us also assume that there is a requirement stating that an email message with an order number needs to be generated and sent to a customer placing the relevant order. 22.2.1. Basic MailSender and SimpleMailMessage usage import org.springframework.mail.MailException; import org.springframework.mail.MailSender; import org.springframework.mail.SimpleMailMessage; Spring Framework (2.5.6) 492
  • 493. Email public class SimpleOrderManager implements OrderManager { private MailSender mailSender; private SimpleMailMessage templateMessage; public void setMailSender(MailSender mailSender) { this.mailSender = mailSender; } public void setTemplateMessage(SimpleMailMessage templateMessage) { this.templateMessage = templateMessage; } public void placeOrder(Order order) { // Do the business calculations... // Call the collaborators to persist the order... // Create a thread safe "copy" of the template message and customize it SimpleMailMessage msg = new SimpleMailMessage(this.templateMessage); msg.setTo(order.getCustomer().getEmailAddress()); msg.setText( "Dear " + order.getCustomer().getFirstName() + order.getCustomer().getLastName() + ", thank you for placing order. Your order number is " + order.getOrderNumber()); try{ this.mailSender.send(msg); } catch(MailException ex) { // simply log it and go on... System.err.println(ex.getMessage()); } } } Find below the bean definitions for the above code: <bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl"> <property name="host" value="mail.mycompany.com"/> </bean> <!-- this is a template message that we can pre-load with default state --> <bean id="templateMessage" class="org.springframework.mail.SimpleMailMessage"> <property name="from" value="customerservice@mycompany.com"/> <property name="subject" value="Your order"/> </bean> <bean id="orderManager" class="com.mycompany.businessapp.support.SimpleOrderManager"> <property name="mailSender" ref="mailSender"/> <property name="templateMessage" ref="templateMessage"/> </bean> 22.2.2. Using the JavaMailSender and the MimeMessagePreparator Here is another implementation of OrderManager using the MimeMessagePreparator callback interface. Please note in this case that the mailSender property is of type JavaMailSender so that we are able to use the JavaMail MimeMessage class: import javax.mail.Message; import javax.mail.MessagingException; import javax.mail.internet.InternetAddress; import javax.mail.internet.MimeMessage; import javax.mail.internet.MimeMessage; import org.springframework.mail.MailException; import org.springframework.mail.javamail.JavaMailSender; import org.springframework.mail.javamail.MimeMessagePreparator; public class SimpleOrderManager implements OrderManager { Spring Framework (2.5.6) 493
  • 494. Email private JavaMailSender mailSender; public void setMailSender(JavaMailSender mailSender) { this.mailSender = mailSender; } public void placeOrder(final Order order) { // Do the business calculations... // Call the collaborators to persist the order... MimeMessagePreparator preparator = new MimeMessagePreparator() { public void prepare(MimeMessage mimeMessage) throws Exception { mimeMessage.setRecipient(Message.RecipientType.TO, new InternetAddress(order.getCustomer().getEmailAddress())); mimeMessage.setFrom(new InternetAddress("mail@mycompany.com")); mimeMessage.setText( "Dear " + order.getCustomer().getFirstName() + " " + order.getCustomer().getLastName() + ", thank you for placing order. Your order number is " + order.getOrderNumber()); } }; try { this.mailSender.send(preparator); } catch (MailException ex) { // simply log it and go on... System.err.println(ex.getMessage()); } } } Note The mail code is a crosscutting concern and could well be a candidate for refactoring into a custom Spring AOP aspect, which then could be executed at appropriate joinpoints on the OrderManager target. The Spring Framework's mail support ships with two MailSender implementations. The standard JavaMail implementation and the implementation on top of Jason Hunter's MailMessage class that is included in the com.oreilly.servlet package. Please refer to the relevant Javadocs for more information. 22.3. Using the JavaMail MimeMessageHelper A class that comes in pretty handy when dealing with JavaMail messages is the org.springframework.mail.javamail.MimeMessageHelper class, which shields you from having to use the verbose JavaMail API. Using the MimeMessageHelper it is pretty easy to create a MimeMessage: // of course you would use DI in any real-world cases JavaMailSenderImpl sender = new JavaMailSenderImpl(); sender.setHost("mail.host.com"); MimeMessage message = sender.createMimeMessage(); MimeMessageHelper helper = new MimeMessageHelper(message); helper.setTo("test@host.com"); helper.setText("Thank you for ordering!"); sender.send(message); Spring Framework (2.5.6) 494
  • 495. Email 22.3.1. Sending attachments and inline resources Multipart email messages allow for both attachments and inline resources. Examples of inline resources would be be images or a stylesheet you want to use in your message, but that you don't want displayed as an attachment. 22.3.1.1. Attachments The following example shows you how to use the MimeMessageHelper to send an email along with a single JPEG image attachment. JavaMailSenderImpl sender = new JavaMailSenderImpl(); sender.setHost("mail.host.com"); MimeMessage message = sender.createMimeMessage(); // use the true flag to indicate you need a multipart message MimeMessageHelper helper = new MimeMessageHelper(message, true); helper.setTo("test@host.com"); helper.setText("Check out this image!"); // let's attach the infamous windows Sample file (this time copied to c:/) FileSystemResource file = new FileSystemResource(new File("c:/Sample.jpg")); helper.addAttachment("CoolImage.jpg", file); sender.send(message); 22.3.1.2. Inline resources The following example shows you how to use the MimeMessageHelper to send an email along with an inline image. JavaMailSenderImpl sender = new JavaMailSenderImpl(); sender.setHost("mail.host.com"); MimeMessage message = sender.createMimeMessage(); // use the true flag to indicate you need a multipart message MimeMessageHelper helper = new MimeMessageHelper(message, true); helper.setTo("test@host.com"); // use the true flag to indicate the text included is HTML helper.setText("<html><body><img src='cid:identifier1234'></body></html>", true); // let's include the infamous windows Sample file (this time copied to c:/) FileSystemResource res = new FileSystemResource(new File("c:/Sample.jpg")); helper.addInline("identifier1234", res); sender.send(message); Warning Inline resources are added to the mime message using the specified Content-ID (identifier1234 in the above example). The order in which you are adding the text and the resource are very important. Be sure to first add the text and after that the resources. If you are doing it the other way around, it won't work! 22.3.2. Creating email content using a templating library Spring Framework (2.5.6) 495
  • 496. Email The code in the previous examples explicitly has been creating the content of the email message, using methods calls such as message.setText(..). This is fine for simple cases, and it is okay in the context of the aforementioned examples, where the intent was to show you the very basics of the API. In your typical enterprise application though, you are not going to create the content of your emails using the above approach for a number of reasons. • Creating HTML-based email content in Java code is tedious and error prone • There is no clear separation between display logic and business logic • Changing the display structure of the email content requires writing Java code, recompiling, redeploying... Typically the approach taken to address these issues is to use a template library such as FreeMarker or Velocity to define the display structure of email content. This leaves your code tasked only with creating the data that is to be rendered in the email template and sending the email. It is definitely a best practice for when the content of your emails becomes even moderately complex, and with the Spring Framework's support classes for FreeMarker and Velocity becomes quite easy to do. Find below an example of using the Velocity template library to create email content. 22.3.2.1. A Velocity-based example To use Velocity to create your email template(s), you will need to have the Velocity libraries available on your classpath. You will also need to create one or more Velocity templates for the email content that your application needs. Find below the Velocity template that this example will be using... as you can see it is HTML-based, and since it is plain text it can be created using your favorite HTML editor without recourse to having to know Java. # in the com/foo/package <html> <body> <h3>Hi ${user.userName}, welcome to the Chipping Sodbury On-the-Hill message boards!</h3> <div> Your email address is <a href="mailto:${user.emailAddress}">${user.emailAddress}</a>. </div> </body> </html> Find below some simple code and Spring XML configuration that makes use of the above Velocity template to create email content and send email(s). package com.foo; import org.apache.velocity.app.VelocityEngine; import org.springframework.mail.javamail.JavaMailSender; import org.springframework.mail.javamail.MimeMessageHelper; import org.springframework.mail.javamail.MimeMessagePreparator; import org.springframework.ui.velocity.VelocityEngineUtils; import javax.mail.internet.MimeMessage; import java.util.HashMap; import java.util.Map; public class SimpleRegistrationService implements RegistrationService { private JavaMailSender mailSender; private VelocityEngine velocityEngine; public void setMailSender(JavaMailSender mailSender) { Spring Framework (2.5.6) 496
  • 497. Email this.mailSender = mailSender; } public void setVelocityEngine(VelocityEngine velocityEngine) { this.velocityEngine = velocityEngine; } public void register(User user) { // Do the registration logic... sendConfirmationEmail(user); } private void sendConfirmationEmail(final User user) { MimeMessagePreparator preparator = new MimeMessagePreparator() { public void prepare(MimeMessage mimeMessage) throws Exception { MimeMessageHelper message = new MimeMessageHelper(mimeMessage); message.setTo(user.getEmailAddress()); message.setFrom("webmaster@csonth.gov.uk"); // could be parameterized... Map model = new HashMap(); model.put("user", user); String text = VelocityEngineUtils.mergeTemplateIntoString( velocityEngine, "com/dns/registration-confirmation.vm", model); message.setText(text, true); } }; this.mailSender.send(preparator); } } <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl"> <property name="host" value="mail.csonth.gov.uk"/> </bean> <bean id="registrationService" class="com.foo.SimpleRegistrationService"> <property name="mailSender" ref="mailSender"/> <property name="velocityEngine" ref="velocityEngine"/> </bean> <bean id="velocityEngine" class="org.springframework.ui.velocity.VelocityEngineFactoryBean"> <property name="velocityProperties"> <value> resource.loader=class class.resource.loader.class=org.apache.velocity.runtime.resource.loader.ClasspathResourceLoader </value> </property> </bean> </beans> Spring Framework (2.5.6) 497
  • 498. Chapter 23. Scheduling and Thread Pooling 23.1. Introduction The Spring Framework features integration classes for scheduling support. Currently, Spring supports the Timer, part of the JDK since 1.3, and the Quartz Scheduler (http://www.opensymphony.com/quartz/). Both schedulers are set up using a FactoryBean with optional references to Timer or Trigger instances, respectively. Furthermore, a convenience class for both the Quartz Scheduler and the Timer is available that allows you to invoke a method of an existing target object (analogous to the normal MethodInvokingFactoryBean operation). Spring also features classes for thread pooling that abstract away differences between Java SE 1.4, Java SE 5 and Java EE environments. 23.2. Using the OpenSymphony Quartz Scheduler Quartz uses Trigger, Job and JobDetail objects to realize scheduling of all kinds of jobs. For the basic concepts behind Quartz, have a look at http://www.opensymphony.com/quartz. For convenience purposes, Spring offers a couple of classes that simplify the usage of Quartz within Spring-based applications. 23.2.1. Using the JobDetailBean JobDetail objects contain all information needed to run a job. The Spring Framework provides a JobDetailBean that makes the JobDetail more of an actual JavaBean with sensible defaults. Let's have a look at an example: <bean name="exampleJob" class="org.springframework.scheduling.quartz.JobDetailBean"> <property name="jobClass" value="example.ExampleJob" /> <property name="jobDataAsMap"> <map> <entry key="timeout" value="5" /> </map> </property> </bean> The job detail bean has all information it needs to run the job (ExampleJob). The timeout is specified in the job data map. The job data map is available through the JobExecutionContext (passed to you at execution time), but the JobDetailBean also maps the properties from the job data map to properties of the actual job. So in this case, if the ExampleJob contains a property named timeout, the JobDetailBean will automatically apply it: package example; public class ExampleJob extends QuartzJobBean { private int timeout; /** * Setter called after the ExampleJob is instantiated * with the value from the JobDetailBean (5) */ public void setTimeout(int timeout) { this.timeout = timeout; } protected void executeInternal(JobExecutionContext ctx) throws JobExecutionException { // do the actual work } } Spring Framework (2.5.6) 498
  • 499. Scheduling and Thread Pooling All additional settings from the job detail bean are of course available to you as well. Note: Using the name and group properties, you can modify the name and the group of the job, respectively. By default, the name of the job matches the bean name of the job detail bean (in the example above, this is exampleJob). 23.2.2. Using the MethodInvokingJobDetailFactoryBean Often you just need to invoke a method on a specific object. Using the MethodInvokingJobDetailFactoryBean you can do exactly this: <bean id="jobDetail" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean"> <property name="targetObject" ref="exampleBusinessObject" /> <property name="targetMethod" value="doIt" /> </bean> The above example will result in the doIt method being called on the exampleBusinessObject method (see below): public class ExampleBusinessObject { // properties and collaborators public void doIt() { // do the actual work } } <bean id="exampleBusinessObject" class="examples.ExampleBusinessObject"/> Using the MethodInvokingJobDetailFactoryBean, you don't need to create one-line jobs that just invoke a method, and you only need to create the actual business object and wire up the detail object. By default, Quartz Jobs are stateless, resulting in the possibility of jobs interfering with each other. If you specify two triggers for the same JobDetail, it might be possible that before the first job has finished, the second one will start. If JobDetail classes implement the Stateful interface, this won't happen. The second job will not start before the first one has finished. To make jobs resulting from the MethodInvokingJobDetailFactoryBean non-concurrent, set the concurrent flag to false. <bean id="jobDetail" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean"> <property name="targetObject" ref="exampleBusinessObject" /> <property name="targetMethod" value="doIt" /> <property name="concurrent" value="false" /> </bean> Note By default, jobs will run in a concurrent fashion. 23.2.3. Wiring up jobs using triggers and the SchedulerFactoryBean We've created job details and jobs. We've also reviewed the convenience bean that allows to you invoke a method on a specific object. Of course, we still need to schedule the jobs themselves. This is done using Spring Framework (2.5.6) 499
  • 500. Scheduling and Thread Pooling triggers and a SchedulerFactoryBean. Several triggers are available within Quartz. Spring offers two subclassed triggers with convenient defaults: CronTriggerBean and SimpleTriggerBean. Triggers need to be scheduled. Spring offers a SchedulerFactoryBean that exposes triggers to be set as properties. SchedulerFactoryBean schedules the actual jobs with those triggers. Find below a couple of examples: <bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean"> <!-- see the example of method invoking job above --> <property name="jobDetail" ref="jobDetail" /> <!-- 10 seconds --> <property name="startDelay" value="10000" /> <!-- repeat every 50 seconds --> <property name="repeatInterval" value="50000" /> </bean> <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="exampleJob" /> <!-- run every morning at 6 AM --> <property name="cronExpression" value="0 0 6 * * ?" /> </bean> Now we've set up two triggers, one running every 50 seconds with a starting delay of 10 seconds and one every morning at 6 AM. To finalize everything, we need to set up the SchedulerFactoryBean: <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers"> <list> <ref bean="cronTrigger" /> <ref bean="simpleTrigger" /> </list> </property> </bean> More properties are available for the SchedulerFactoryBean for you to set, such as the calendars used by the job details, properties to customize Quartz with, etc. Have a look at the SchedulerFactoryBean Javadoc for more information. 23.3. Using JDK Timer support The other way to schedule jobs in Spring is to use JDK Timer objects. You can create custom timers or use the timer that invokes methods. Wiring timers is done using the TimerFactoryBean. 23.3.1. Creating custom timers Using the TimerTask you can create customer timer tasks, similar to Quartz jobs: public class CheckEmailAddresses extends TimerTask { private List emailAddresses; public void setEmailAddresses(List emailAddresses) { this.emailAddresses = emailAddresses; } public void run() { // iterate over all email addresses and archive them } } Spring Framework (2.5.6) 500
  • 501. Scheduling and Thread Pooling Wiring it up is simple: <bean id="checkEmail" class="examples.CheckEmailAddress"> <property name="emailAddresses"> <list> <value>test@springframework.org</value> <value>foo@bar.com</value> <value>john@doe.net</value> </list> </property> </bean> <bean id="scheduledTask" class="org.springframework.scheduling.timer.ScheduledTimerTask"> <!-- wait 10 seconds before starting repeated execution --> <property name="delay" value="10000" /> <!-- run every 50 seconds --> <property name="period" value="50000" /> <property name="timerTask" ref="checkEmail" /> </bean> Note that letting the task only run once can be done by changing the period property to 0 (or a negative value). 23.3.2. Using the MethodInvokingTimerTaskFactoryBean Similar to the Quartz support, the Timer support also features a component that allows you to periodically invoke a method: <bean id="doIt" class="org.springframework.scheduling.timer.MethodInvokingTimerTaskFactoryBean"> <property name="targetObject" ref="exampleBusinessObject" /> <property name="targetMethod" value="doIt" /> </bean> The above example will result in the doIt method being called on the exampleBusinessObject (see below): public class BusinessObject { // properties and collaborators public void doIt() { // do the actual work } } Changing the timerTask reference of the ScheduledTimerTask example to the bean doIt will result in the doIt method being executed on a fixed schedule. 23.3.3. Wrapping up: setting up the tasks using the TimerFactoryBean The TimerFactoryBean is similar to the Quartz SchedulerFactoryBean in that it serves the same purpose: setting up the actual scheduling. The TimerFactoryBean sets up an actual Timer and schedules the tasks it has references to. You can specify whether or not daemon threads should be used. <bean id="timerFactory" class="org.springframework.scheduling.timer.TimerFactoryBean"> <property name="scheduledTimerTasks"> <list> <!-- see the example above --> <ref bean="scheduledTask" /> </list> </property> </bean> Spring Framework (2.5.6) 501
  • 502. Scheduling and Thread Pooling 23.4. The Spring TaskExecutor abstraction 23.4. The Spring TaskExecutor abstraction Spring 2.0 introduces a new abstraction for dealing with executors. Executors are the Java 5 name for the concept of thread pools. The "executor" naming is due to the fact that there is no guarantee that the underlying implementation is actually a pool; an executor may be single-threaded or even synchronous. Spring's abstraction hides implementation details between Java SE 1.4, Java SE 5 and Java EE environments. Spring's TaskExecutor interface is identical to the java.util.concurrent.Executor interface. In fact, its primary reason for existence is to abstract away the need for Java 5 when using thread pools. The interface has a single method execute(Runnable task) that accepts a task for execution based on the semantics and configuration of the thread pool. The TaskExecutor was originally created to give other Spring components an abstraction for thread pooling where needed. Components such as the ApplicationEventMulticaster, JMS's AbstractMessageListenerContainer, and Quartz integration all use the TaskExecutor abstraction to pool threads. However, if your beans need thread pooling behavior, it is possible to use this abstraction for your own needs. 23.4.1. TaskExecutor types There are a number of pre-built implementations of TaskExecutor included with the Spring distribution. In all likelihood, you shouldn't ever need to implement your own. • SimpleAsyncTaskExecutor This implementation does not reuse any threads, rather it starts up a new thread for each invocation. However, it does support a concurrency limit which will block any invocations that are over the limit until a slot has been freed up. If you're looking for true pooling, keep scrolling further down the page. • SyncTaskExecutor This implementation doesn't execute invocations asynchronously. Instead, each invocation takes place in the calling thread. It is primarily used in situations where mutlithreading isn't necessary such as simple test cases. • ConcurrentTaskExecutor This implementation is a wrapper for a Java 5 java.util.concurrent.Executor. There is an alternative, ThreadPoolTaskExecutor, that exposes the Executor configuration parameters as bean properties. It is rare to need to use the ConcurrentTaskExecutor but if the ThreadPoolTaskExecutor isn't robust enough for your needs, the ConcurrentTaskExecutor is an alternative. • SimpleThreadPoolTaskExecutor This implementation is actually a subclass of Quartz's SimpleThreadPool which listens to Spring's lifecycle callbacks. This is typically used when you have a threadpool that may need to be shared by both Quartz and non-Quartz components. • ThreadPoolTaskExecutor Spring Framework (2.5.6) 502
  • 503. Scheduling and Thread Pooling It is not possible to use any backport or alternate versions of the java.util.concurrent package with this implementation. Both Doug Lea's and Dawid Kurzyniec's implementations use different package structures which will prevent them from working correctly. This implementation can only be used in a Java 5 environment but is also the most commonly used one in that environment. It exposes bean properties for configuring a java.util.concurrent.ThreadPoolExecutor and wraps it in a TaskExecutor. If you need something advanced such as a ScheduledThreadPoolExecutor, it is recommended that you use a ConcurrentTaskExecutor instead. • TimerTaskExecutor This implementation uses a single TimerTask as its backing implementation. It's different from the SyncTaskExecutor in that the method invocations are executed in a separate thread, although they are synchronous in that thread. • WorkManagerTaskExecutor CommonJ is a set of specifications jointly developed between BEA and IBM. These specifications are not Java EE standards, but are standard across BEA's and IBM's Application Server implementations. This implementation uses the CommonJ WorkManager as its backing implementation and is the central convenience class for setting up a CommonJ WorkManager reference in a Spring context. Similar to the SimpleThreadPoolTaskExecutor, this class implements the WorkManager interface and therefore can be used directly as a WorkManager as well. 23.4.2. Using a TaskExecutor Spring's TaskExecutor implementations are used as simple JavaBeans. In the example below, we define a bean that uses the ThreadPoolTaskExecutor to asynchronously print out a set of messages. import org.springframework.core.task.TaskExecutor; public class TaskExecutorExample { private class MessagePrinterTask implements Runnable { private String message; public MessagePrinterTask(String message) { this.message = message; } public void run() { System.out.println(message); } } private TaskExecutor taskExecutor; public TaskExecutorExample(TaskExecutor taskExecutor) { this.taskExecutor = taskExecutor; } public void printMessages() { for(int i = 0; i < 25; i++) { taskExecutor.execute(new MessagePrinterTask("Message" + i)); Spring Framework (2.5.6) 503
  • 504. Scheduling and Thread Pooling } } } As you can see, rather than retrieving a thread from the pool and executing yourself, you add your Runnable to the queue and the TaskExecutor uses its internal rules to decide when the task gets executed. To configure the rules that the TaskExecutor will use, simple bean properties have been exposed. <bean id="taskExecutor" class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor"> <property name="corePoolSize" value="5" /> <property name="maxPoolSize" value="10" /> <property name="queueCapacity" value="25" /> </bean> <bean id="taskExecutorExample" class="TaskExecutorExample"> <constructor-arg ref="taskExecutor" /> </bean> Spring Framework (2.5.6) 504
  • 505. Chapter 24. Dynamic language support 24.1. Introduction Why only these languages? The supported languages were chosen because a) the languages have a lot of traction in the Java enterprise community, b) no requests were made for other languages within the Spring 2.0 development timeframe, and c) the Spring developers were most familiar with them. There is nothing stopping the inclusion of further languages though. If you want to see support for <insert your favourite dynamic language here>, you can always raise an issue on Spring's JIRA page (or implement such support yourself). Spring 2.0 introduces comprehensive support for using classes and objects that have been defined using a dynamic language (such as JRuby) with Spring. This support allows you to write any number of classes in a supported dynamic language, and have the Spring container transparently instantiate, configure and dependency inject the resulting objects. The dynamic languages currently supported are: • JRuby 0.9 / 1.0 • Groovy 1.0 / 1.5 • BeanShell 2.0 Fully working examples of where this dynamic language support can be immediately useful are described in the section entitled Section 24.4, “Scenarios”. Note: Only the specific versions as listed above are supported in Spring 2.5. In particular, JRuby 1.1 (which introduced many incompatible API changes) is not supported at this point of time. 24.2. A first example This bulk of this chapter is concerned with describing the dynamic language support in detail. Before diving into all of the ins and outs of the dynamic language support, let's look at a quick example of a bean defined in a dynamic language. The dynamic language for this first bean is Groovy (the basis of this example was taken from the Spring test suite, so if you want to see equivalent examples in any of the other supported languages, take a look at the source code). Find below the Messenger interface that the Groovy bean is going to be implementing, and note that this interface is defined in plain Java. Dependent objects that are injected with a reference to the Messenger won't know that the underlying implementation is a Groovy script. package org.springframework.scripting; public interface Messenger { String getMessage(); } Spring Framework (2.5.6) 505
  • 506. Dynamic language support Here is the definition of a class that has a dependency on the Messenger interface. package org.springframework.scripting; public class DefaultBookingService implements BookingService { private Messenger messenger; public void setMessenger(Messenger messenger) { this.messenger = messenger; } public void processBooking() { // use the injected Messenger object... } } Here is an implementation of the Messenger interface in Groovy. // from the file 'Messenger.groovy' package org.springframework.scripting.groovy; // import the Messenger interface (written in Java) that is to be implemented import org.springframework.scripting.Messenger // define the implementation in Groovy class GroovyMessenger implements Messenger { String message } Finally, here are the bean definitions that will effect the injection of the Groovy-defined Messenger implementation into an instance of the DefaultBookingService class. Note To use the custom dynamic language tags to define dynamic-language-backed beans, you need to have the XML Schema preamble at the top of your Spring XML configuration file. You also need to be using a Spring ApplicationContext implementation as your IoC container. Using the dynamic-language-backed beans with a plain BeanFactory implementation is supported, but you have to manage the plumbing of the Spring internals to do so. For more information on schema-based configuration, see Appendix A, XML Schema-based configuration. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:lang="http://www.springframework.org/schema/lang" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-2.5.xsd"> <!-- this is the bean definition for the Groovy-backed Messenger implementation --> <lang:groovy id="messenger" script-source="classpath:Messenger.groovy"> <lang:property name="message" value="I Can Do The Frug" /> </lang:groovy> <!-- an otherwise normal bean that will be injected by the Groovy-backed Messenger --> <bean id="bookingService" class="x.y.DefaultBookingService"> <property name="messenger" ref="messenger" /> </bean> </beans> Spring Framework (2.5.6) 506
  • 507. Dynamic language support The bookingService bean (a DefaultBookingService) can now use its private messenger member variable as normal because the Messenger instance that was injected into it is a Messenger instance. There is nothing special going on here, just plain Java and plain Groovy. Hopefully the above XML snippet is self-explanatory, but don't worry unduly if it isn't. Keep reading for the in-depth detail on the whys and wherefores of the above configuration. 24.3. Defining beans that are backed by dynamic languages This section describes exactly how you define Spring managed beans in any of the supported dynamic languages. Please note that this chapter does not attempt to explain the syntax and idioms of the supported dynamic languages. For example, if you want to use Groovy to write certain of the classes in your application, then the assumption is that you already know Groovy. If you need further details about the dynamic languages themselves, please consult the section entitled Section 24.6, “Further Resources” at the end of this chapter. 24.3.1. Common concepts The steps involved in using dynamic-language-backed beans are as follows: 1. Write the test for the dynamic language source code (naturally) 2. Then write the dynamic language source code itself :) 3. Define your dynamic-language-backed beans using the appropriate <lang:language/> element in the XML configuration (you can of course define such beans programmatically using the Spring API - although you will have to consult the source code for directions on how to do this as this type of advanced configuration is not covered in this chapter). Note this is an iterative step. You will need at least one bean definition per dynamic language source file (although the same dynamic language source file can of course be referenced by multiple bean definitions). The first two steps (testing and writing your dynamic language source files) are beyond the scope of this chapter. Refer to the language specification and / or reference manual for your chosen dynamic language and crack on with developing your dynamic language source files. You will first want to read the rest of this chapter though, as Spring's dynamic language support does make some (small) assumptions about the contents of your dynamic language source files. 24.3.1.1. The <lang:language/> element XML Schema All of the configuration examples in this chapter make use of the new XML Schema support that was added in Spring 2.0. It is possible to forego the use of XML Schema and stick with the old-style DTD based validation of your Spring XML files, but then you lose out on the convenience offered by the <lang:language/> element. See the Spring test suite for examples of the older style configuration that doesn't require XML Schema-based validation (it is quite verbose and doesn't hide any of the underlying Spring implementation from you). Spring Framework (2.5.6) 507
  • 508. Dynamic language support The final step involves defining dynamic-language-backed bean definitions, one for each bean that you want to configure (this is no different to normal Java bean configuration). However, instead of specifying the fully qualified classname of the class that is to be instantiated and configured by the container, you use the <lang:language/> element to define the dynamic language-backed bean. Each of the supported languages has a corresponding <lang:language/> element: • <lang:jruby/> (JRuby) • <lang:groovy/> (Groovy) • <lang:bsh/> (BeanShell) The exact attributes and child elements that are available for configuration depends on exactly which language the bean has been defined in (the language-specific sections below provide the full lowdown on this). 24.3.1.2. Refreshable beans One of the (if not the) most compelling value adds of the dynamic language support in Spring is the 'refreshable bean' feature. A refreshable bean is a dynamic-language-backed bean that with a small amount of configuration, a dynamic-language-backed bean can monitor changes in its underlying source file resource, and then reload itself when the dynamic language source file is changed (for example when a developer edits and saves changes to the file on the filesystem). This allows a developer to deploy any number of dynamic language source files as part of an application, configure the Spring container to create beans backed by dynamic language source files (using the mechanisms described in this chapter), and then later, as requirements change or some other external factor comes into play, simply edit a dynamic language source file and have any change they make reflected in the bean that is backed by the changed dynamic language source file. There is no need to shut down a running application (or redeploy in the case of a web application). The dynamic-language-backed bean so amended will pick up the new state and logic from the changed dynamic language source file. Note Please note that this feature is off by default. Let's take a look at an example to see just how easy it is to start using refreshable beans. To turn on the refreshable beans feature, you simply have to specify exactly one additional attribute on the <lang:language/> element of your bean definition. So if we stick with the example from earlier in this chapter, here's what we would change in the Spring XML configuration to effect refreshable beans: <beans> <!-- this bean is now 'refreshable' due to the presence of the 'refresh-check-delay' attribute --> <lang:groovy id="messenger" refresh-check-delay="5000" <!-- switches refreshing on with 5 seconds between checks --> script-source="classpath:Messenger.groovy"> <lang:property name="message" value="I Can Do The Frug" /> </lang:groovy> <bean id="bookingService" class="x.y.DefaultBookingService"> <property name="messenger" ref="messenger" /> </bean> </beans> Spring Framework (2.5.6) 508
  • 509. Dynamic language support That really is all you have to do. The 'refresh-check-delay' attribute defined on the 'messenger' bean definition is the number of milliseconds after which the bean will be refreshed with any changes made to the underlying dynamic language source file. You can turn off the refresh behavior by assigning a negative value to the 'refresh-check-delay' attribute. Remember that, by default, the refresh behavior is disabled. If you don't want the refresh behavior, then simply don't define the attribute. If we then run the following application we can exercise the refreshable feature; please do excuse the 'jumping-through-hoops-to-pause-the-execution' shenanigans in this next slice of code. The System.in.read() call is only there so that the execution of the program pauses while I (the author) go off and edit the underlying dynamic language source file so that the refresh will trigger on the dynamic-language-backed bean when the program resumes execution. import org.springframework.context.ApplicationContext; import org.springframework.context.support.ClassPathXmlApplicationContext; import org.springframework.scripting.Messenger; public final class Boot { public static void main(final String[] args) throws Exception { ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml"); Messenger messenger = (Messenger) ctx.getBean("messenger"); System.out.println(messenger.getMessage()); // pause execution while I go off and make changes to the source file... System.in.read(); System.out.println(messenger.getMessage()); } } Let's assume then, for the purposes of this example, that all calls to the getMessage() method of Messenger implementations have to be changed such that the message is surrounded by quotes. Below are the changes that I (the author) make to the Messenger.groovy source file when the execution of the program is paused. package org.springframework.scripting class GroovyMessenger implements Messenger { private String message = "Bingo" public String getMessage() { // change the implementation to surround the message in quotes return "'" + this.message + "'" } public void setMessage(String message) { this.message = message } } When the program executes, the output before the input pause will be I Can Do The Frug. After the change to the source file is made and saved, and the program resumes execution, the result of calling the getMessage() method on the dynamic-language-backed Messenger implementation will be 'I Can Do The Frug' (notice the inclusion of the additional quotes). It is important to understand that changes to a script will not trigger a refresh if the changes occur within the window of the 'refresh-check-delay' value. It is equally important to understand that changes to the script are not actually 'picked up' until a method is called on the dynamic-language-backed bean. It is only when a method is called on a dynamic-language-backed bean that it checks to see if its underlying script source has changed. Any exceptions relating to refreshing the script (such as encountering a compilation error, or finding that the script file has been deleted) will result in a fatal exception being propagated to the calling code. The refreshable bean behavior described above does not apply to dynamic language source files defined using Spring Framework (2.5.6) 509
  • 510. Dynamic language support the <lang:inline-script/> element notation (see the section entitled Section 24.3.1.3, “Inline dynamic language source files”). Additionally, it only applies to beans where changes to the underlying source file can actually be detected; for example, by code that checks the last modified date of a dynamic language source file that exists on the filesystem. 24.3.1.3. Inline dynamic language source files The dynamic language support can also cater for dynamic language source files that are embedded directly in Spring bean definitions. More specifically, the <lang:inline-script/> element allows you to define dynamic language source immediately inside a Spring configuration file. An example will perhaps make the inline script feature crystal clear: <lang:groovy id="messenger"> <lang:inline-script> package org.springframework.scripting.groovy; import org.springframework.scripting.Messenger class GroovyMessenger implements Messenger { String message } </lang:inline-script> <lang:property name="message" value="I Can Do The Frug" /> </lang:groovy> If we put to one side the issues surrounding whether it is good practice to define dynamic language source inside a Spring configuration file, the <lang:inline-script/> element can be useful in some scenarios. For instance, we might want to quickly add a Spring Validator implementation to a Spring MVC Controller. This is but a moment's work using inline source. (See the section entitled Section 24.4.2, “Scripted Validators” for such an example.) Find below an example of defining the source for a JRuby-based bean directly in a Spring XML configuration file using the inline: notation. (Notice the use of the &lt; characters to denote a '<' character. In such a case surrounding the inline source in a <![CDATA[]]> region might be better.) <lang:jruby id="messenger" script-interfaces="org.springframework.scripting.Messenger"> <lang:inline-script> require 'java' include_class 'org.springframework.scripting.Messenger' class RubyMessenger &lt; Messenger def setMessage(message) @@message = message end def getMessage @@message end end </lang:inline-script> <lang:property name="message" value="Hello World!" /> </lang:jruby> 24.3.1.4. Understanding Constructor Injection in the context of dynamic-language-backed beans There is one very important thing to be aware of with regard to Spring's dynamic language support. Namely, it is not (currently) possible to supply constructor arguments to dynamic-language-backed beans (and hence constructor-injection is not available for dynamic-language-backed beans). In the interests of making this Spring Framework (2.5.6) 510
  • 511. Dynamic language support special handling of constructors and properties 100% clear, the following mixture of code and configuration will not work. // from the file 'Messenger.groovy' package org.springframework.scripting.groovy; import org.springframework.scripting.Messenger class GroovyMessenger implements Messenger { GroovyMessenger() {} // this constructor is not available for Constructor Injection GroovyMessenger(String message) { this.message = message; } String message String anotherMessage } <lang:groovy id="badMessenger" script-source="classpath:Messenger.groovy"> <!-- this next constructor argument will *not* be injected into the GroovyMessenger --> <!-- in fact, this isn't even allowed according to the schema --> <constructor-arg value="This will *not* work" /> <!-- only property values are injected into the dynamic-language-backed object --> <lang:property name="anotherMessage" value="Passed straight through to the dynamic-language-backed object" / </lang> In practice this limitation is not as significant as it first appears since setter injection is the injection style favored by the overwhelming majority of developers anyway (let's leave the discussion as to whether that is a good thing to another day). 24.3.2. JRuby beans The JRuby library dependencies The JRuby scripting support in Spring requires the following libraries to be on the classpath of your application. (The versions listed just happen to be the versions that the Spring team used in the development of the JRuby scripting support; you may well be able to use another version of a specific library.) • jruby.jar • cglib-nodep-2.1_3.jar From the JRuby homepage... “ JRuby is an 100% pure-Java implementation of the Ruby programming language. ” In keeping with the Spring philosophy of offering choice, Spring's dynamic language support also supports beans defined in the JRuby language. The JRuby language is based on the quite intuitive Ruby language, and has support for inline regular expressions, blocks (closures), and a whole host of other features that do make solutions for some domain problems a whole lot easier to develop. Spring Framework (2.5.6) 511
  • 512. Dynamic language support The implementation of the JRuby dynamic language support in Spring is interesting in that what happens is this: Spring creates a JDK dynamic proxy implementing all of the interfaces that are specified in the 'script-interfaces' attribute value of the <lang:ruby> element (this is why you must supply at least one interface in the value of the attribute, and (accordingly) program to interfaces when using JRuby-backed beans). Let us look at a fully working example of using a JRuby-based bean. Here is the JRuby implementation of the Messenger interface that was defined earlier in this chapter (for your convenience it is repeated below). package org.springframework.scripting; public interface Messenger { String getMessage(); } require 'java' class RubyMessenger include org.springframework.scripting.Messenger def setMessage(message) @@message = message end def getMessage @@message end end # this last line is not essential (but see below) RubyMessenger.new And here is the Spring XML that defines an instance of the RubyMessenger JRuby bean. <lang:jruby id="messageService" script-interfaces="org.springframework.scripting.Messenger" script-source="classpath:RubyMessenger.rb"> <lang:property name="message" value="Hello World!" /> </lang:jruby> Take note of the last line of that JRuby source ('RubyMessenger.new'). When using JRuby in the context of Spring's dynamic language support, you are encouraged to instantiate and return a new instance of the JRuby class that you want to use as a dynamic-language-backed bean as the result of the execution of your JRuby source. You can achieve this by simply instantiating a new instance of your JRuby class on the last line of the source file like so: require 'java' include_class 'org.springframework.scripting.Messenger' # class definition same as above... # instantiate and return a new instance of the RubyMessenger class RubyMessenger.new If you forget to do this, it is not the end of the world; this will however result in Spring having to trawl (reflectively) through the type representation of your JRuby class looking for a class to instantiate. In the grand scheme of things this will be so fast that you'll never notice it, but it is something that can be avoided by simply having a line such as the one above as the last line of your JRuby script. If you don't supply such a line, or if Spring Framework (2.5.6) 512
  • 513. Dynamic language support Spring cannot find a JRuby class in your script to instantiate then an opaque ScriptCompilationException will be thrown immediately after the source is executed by the JRuby interpreter. The key text that identifies this as the root cause of an exception can be found immediately below (so if your Spring container throws the following exception when creating your dynamic-language-backed bean and the following text is there in the corresponding stacktrace, this will hopefully allow you to identify and then easily rectify the issue): org.springframework.scripting.ScriptCompilationException: Compilation of JRuby script returned '' To rectify this, simply instantiate a new instance of whichever class you want to expose as a JRuby-dynamic-language-backed bean (as shown above). Please also note that you can actually define as many classes and objects as you want in your JRuby script; what is important is that the source file as a whole must return an object (for Spring to configure). See the section entitled Section 24.4, “Scenarios” for some scenarios where you might want to use JRuby-based beans. 24.3.3. Groovy beans The Groovy library dependencies The Groovy scripting support in Spring requires the following libraries to be on the classpath of your application. • groovy-1.5.5.jar • asm-2.2.2.jar • antlr-2.7.6.jar From the Groovy homepage... “ Groovy is an agile dynamic language for the Java 2 Platform that has many of the features that people like so much in languages like Python, Ruby and Smalltalk, making them available to Java developers using a Java-like syntax. ” If you have read this chapter straight from the top, you will already have seen an example of a Groovy-dynamic-language-backed bean. Let's look at another example (again using an example from the Spring test suite). package org.springframework.scripting; public interface Calculator { int add(int x, int y); } Here is an implementation of the Calculator interface in Groovy. // from the file 'calculator.groovy' package org.springframework.scripting.groovy class GroovyCalculator implements Calculator { int add(int x, int y) { x + y } Spring Framework (2.5.6) 513
  • 514. Dynamic language support } <-- from the file 'beans.xml' --> <beans> <lang:groovy id="calculator" script-source="classpath:calculator.groovy"/> </beans> Lastly, here is a small application to exercise the above configuration. package org.springframework.scripting; import org.springframework.context.ApplicationContext; import org.springframework.context.support.ClassPathXmlApplicationContext; public class Main { public static void Main(String[] args) { ApplicationContext ctx = new ClassPathXmlApplicationContext("beans.xml"); Calculator calc = (Calculator) ctx.getBean("calculator"); System.out.println(calc.add(2, 8)); } } The resulting output from running the above program will be (unsurprisingly) 10. (Exciting example, huh? Remember that the intent is to illustrate the concept. Please consult the dynamic language showcase project for a more complex example, or indeed the section entitled Section 24.4, “Scenarios” later in this chapter). It is important that you do not define more than one class per Groovy source file. While this is perfectly legal in Groovy, it is (arguably) a bad practice: in the interests of a consistent approach, you should (in the opinion of this author) respect the standard Java conventions of one (public) class per source file. 24.3.3.1. Customising Groovy objects via a callback The GroovyObjectCustomizer interface is a callback that allows you to hook additional creation logic into the process of creating a Groovy-backed bean. For example, implementations of this interface could invoke any required initialization method(s), or set some default property values, or specify a custom MetaClass. public interface GroovyObjectCustomizer { void customize(GroovyObject goo); } The Spring Framework will instantiate an instance of your Groovy-backed bean, and will then pass the created GroovyObject to the specified GroovyObjectCustomizer if one has been defined. You can do whatever you like with the supplied GroovyObject reference: it is expected that the setting of a custom MetaClass is what most folks will want to do with this callback, and you can see an example of doing that below. public final class SimpleMethodTracingCustomizer implements GroovyObjectCustomizer { public void customize(GroovyObject goo) { DelegatingMetaClass metaClass = new DelegatingMetaClass(goo.getMetaClass()) { public Object invokeMethod(Object object, String methodName, Object[] arguments) { System.out.println("Invoking '" + methodName + "'."); return super.invokeMethod(object, methodName, arguments); } }; metaClass.initialize(); goo.setMetaClass(metaClass); } } Spring Framework (2.5.6) 514
  • 515. Dynamic language support A full discussion of meta-programming in Groovy is beyond the scope of the Spring reference manual. Consult the relevant section of the Groovy reference manual, or do a search online: there are plenty of articles concerning this topic. Actually making use of a GroovyObjectCustomizer is easy if you are using the Spring 2.0 namespace support. <!-- define the GroovyObjectCustomizer just like any other bean --> <bean id="tracingCustomizer" class="example.SimpleMethodTracingCustomizer" /> <!-- ... and plug it into the desired Groovy bean via the 'customizer-ref' attribute --> <lang:groovy id="calculator" script-source="classpath:org/springframework/scripting/groovy/Calculator.groovy" customizer-ref="tracingCustomizer" /> If you are not using the Spring 2.0 namespace support, you can still use the GroovyObjectCustomizer functionality. <bean id="calculator" class="org.springframework.scripting.groovy.GroovyScriptFactory"> <constructor-arg value="classpath:org/springframework/scripting/groovy/Calculator.groovy"/> <!-- define the GroovyObjectCustomizer (as an inner bean) --> <constructor-arg> <bean id="tracingCustomizer" class="example.SimpleMethodTracingCustomizer" /> </constructor-arg> </bean> <bean class="org.springframework.scripting.support.ScriptFactoryPostProcessor"/> 24.3.4. BeanShell beans The BeanShell library dependencies The BeanShell scripting support in Spring requires the following libraries to be on the classpath of your application. • bsh-2.0b4.jar • cglib-nodep-2.1_3.jar All of these libraries are available in the Spring-with-dependencies distribution of Spring (in addition to also being freely available on the web). From the BeanShell homepage... “ BeanShell is a small, free, embeddable Java source interpreter with dynamic language features, written in Java. BeanShell dynamically executes standard Java syntax and extends it with common scripting conveniences such as loose types, commands, and method closures like those in Perl and JavaScript. ” In contrast to Groovy, BeanShell-backed bean definitions require some (small) additional configuration. The implementation of the BeanShell dynamic language support in Spring is interesting in that what happens is this: Spring creates a JDK dynamic proxy implementing all of the interfaces that are specified in the 'script-interfaces' attribute value of the <lang:bsh> element (this is why you must supply at least one interface in the value of the attribute, and (accordingly) program to interfaces when using BeanShell-backed beans). This means that every method call on a BeanShell-backed object is going through the JDK dynamic proxy invocation mechanism. Let's look at a fully working example of using a BeanShell-based bean that implements the Messenger interface Spring Framework (2.5.6) 515
  • 516. Dynamic language support that was defined earlier in this chapter (repeated below for your convenience). package org.springframework.scripting; public interface Messenger { String getMessage(); } Here is the BeanShell 'implementation' (the term is used loosely here) of the Messenger interface. String message; String getMessage() { return message; } void setMessage(String aMessage) { message = aMessage; } And here is the Spring XML that defines an 'instance' of the above 'class' (again, the term is used very loosely here). <lang:bsh id="messageService" script-source="classpath:BshMessenger.bsh" script-interfaces="org.springframework.scripting.Messenger"> <lang:property name="message" value="Hello World!" /> </lang:bsh> See the section entitled Section 24.4, “Scenarios” for some scenarios where you might want to use BeanShell-based beans. 24.4. Scenarios The possible scenarios where defining Spring managed beans in a scripting language would be beneficial are, of course, many and varied. This section describes two possible use cases for the dynamic language support in Spring. 24.4.1. Scripted Spring MVC Controllers One group of classes that may benefit from using dynamic-language-backed beans is that of Spring MVC controllers. In pure Spring MVC applications, the navigational flow through a web application is to a large extent determined by code encapsulated within your Spring MVC controllers. As the navigational flow and other presentation layer logic of a web application needs to be updated to respond to support issues or changing business requirements, it may well be easier to effect any such required changes by editing one or more dynamic language source files and seeing those changes being immediately reflected in the state of a running application. Remember that in the lightweight architectural model espoused by projects such as Spring, you are typically aiming to have a really thin presentation layer, with all the meaty business logic of an application being contained in the domain and service layer classes. Developing Spring MVC controllers as dynamic-language-backed beans allows you to change presentation layer logic by simply editing and saving text files; any changes to such dynamic language source files will (depending on the configuration) automatically be reflected in the beans that are backed by dynamic language source files. Spring Framework (2.5.6) 516
  • 517. Dynamic language support Note In order to effect this automatic 'pickup' of any changes to dynamic-language-backed beans, you will have had to enable the 'refreshable beans' functionality. See the section entitle Section 24.3.1.2, “Refreshable beans” for a full treatment of this feature. Find below an example of an org.springframework.web.servlet.mvc.Controller implemented using the Groovy dynamic language. // from the file '/WEB-INF/groovy/FortuneController.groovy' package org.springframework.showcase.fortune.web import org.springframework.showcase.fortune.service.FortuneService import org.springframework.showcase.fortune.domain.Fortune import org.springframework.web.servlet.ModelAndView import org.springframework.web.servlet.mvc.Controller import javax.servlet.http.HttpServletRequest import javax.servlet.http.HttpServletResponse class FortuneController implements Controller { @Property FortuneService fortuneService ModelAndView handleRequest( HttpServletRequest request, HttpServletResponse httpServletResponse) { return new ModelAndView("tell", "fortune", this.fortuneService.tellFortune()) } } <lang:groovy id="fortune" refresh-check-delay="3000" script-source="/WEB-INF/groovy/FortuneController.groovy"> <lang:property name="fortuneService" ref="fortuneService"/> </lang:groovy> 24.4.2. Scripted Validators Another area of application development with Spring that may benefit from the flexibility afforded by dynamic-language-backed beans is that of validation. It may be easier to express complex validation logic using a loosely typed dynamic language (that may also have support for inline regular expressions) as opposed to regular Java. Again, developing validators as dynamic-language-backed beans allows you to change validation logic by simply editing and saving a simple text file; any such changes will (depending on the configuration) automatically be reflected in the execution of a running application and would not require the restart of an application. Note Please note that in order to effect the automatic 'pickup' of any changes to dynamic-language-backed beans, you will have had to enable the 'refreshable beans' feature. See the section entitled Section 24.3.1.2, “Refreshable beans” for a full and detailed treatment of this feature. Find below an example of a Spring org.springframework.validation.Validator implemented using the Groovy dynamic language. (See the section entitled Section 5.2, “Validation using Spring's Validator Spring Framework (2.5.6) 517
  • 518. Dynamic language support interface” for a discussion of the Validator interface.) import org.springframework.validation.Validator import org.springframework.validation.Errors import org.springframework.beans.TestBean class TestBeanValidator implements Validator { boolean supports(Class clazz) { return TestBean.class.isAssignableFrom(clazz) } void validate(Object bean, Errors errors) { if(bean.name?.trim()?.size() > 0) { return } errors.reject("whitespace", "Cannot be composed wholly of whitespace.") } } 24.5. Bits and bobs This last section contains some bits and bobs related to the dynamic language support. 24.5.1. AOP - advising scripted beans It is possible to use the Spring AOP framework to advise scripted beans. The Spring AOP framework actually is unaware that a bean that is being advised might be a scripted bean, so all of the AOP use cases and functionality that you may be using or aim to use will work with scripted beans. There is just one (small) thing that you need to be aware of when advising scripted beans... you cannot use class-based proxies, you must use interface-based proxies. You are of course not just limited to advising scripted beans... you can also write aspects themselves in a supported dynamic language and use such beans to advise other Spring beans. This really would be an advanced use of the dynamic language support though. 24.5.2. Scoping In case it is not immediately obvious, scripted beans can of course be scoped just like any other bean. The scope attribute on the various <lang:language/> elements allows you to control the scope of the underlying scripted bean, just as it does with a regular bean. (The default scope is singleton, just as it is with 'regular' beans.) Find below an example of using the scope attribute to define a Groovy bean scoped as a prototype. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:lang="http://www.springframework.org/schema/lang" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-2.5.xsd"> <lang:groovy id="messenger" script-source="classpath:Messenger.groovy" scope="prototype"> <lang:property name="message" value="I Can Do The RoboCop" /> </lang:groovy> <bean id="bookingService" class="x.y.DefaultBookingService"> <property name="messenger" ref="messenger" /> </bean> </beans> Spring Framework (2.5.6) 518
  • 519. Dynamic language support See the section entitled Section 3.4, “Bean scopes” in Chapter 3, The IoC container for a fuller discussion of the scoping support in the Spring Framework. 24.6. Further Resources Find below links to further resources about the various dynamic languages described in this chapter. • The JRuby homepage • The Groovy homepage • The BeanShell homepage Some of the more active members of the Spring community have also added support for a number of additional dynamic languages above and beyond the ones covered in this chapter. While it is possible that such third party contributions may be added to the list of languages supported by the main Spring distribution, your best bet for seeing if your favourite scripting language is supported is the Spring Modules project. Spring Framework (2.5.6) 519
  • 520. Chapter 25. Annotations and Source Level Metadata Support 25.1. Introduction Source-level metadata is the addition of attributes or annotations to program elements - usually, classes and/or methods. For example, we might add metadata to a class as follows: /** * Normal comments here * @@org.springframework.transaction.interceptor.DefaultTransactionAttribute() */ public class PetStoreImpl implements PetStoreFacade, OrderService { We could add metadata to a method as follows: /** * Normal comments here * @@org.springframework.transaction.interceptor.RuleBasedTransactionAttribute() * @@org.springframework.transaction.interceptor.RollbackRuleAttribute(Exception.class) * @@org.springframework.transaction.interceptor.NoRollbackRuleAttribute("ServletException") */ public void echoException(Exception ex) throws Exception { .... } Both of these examples use Jakarta Commons Attributes syntax. Source-level metadata was introduced to the mainstream by XDoclet (in the Java world) and by the release of Microsoft's .NET platform, which uses source-level attributes to control transactions, pooling and other behavior. The value in this approach has been recognized in the J2EE community. For example, it's much less verbose than the traditional XML deployment descriptors used exclusively by EJB. While it is desirable to externalize some things from program source code, some important enterprise settings - notably transaction characteristics - arguably belong in program source. Contrary to the assumptions of the EJB spec, it seldom makes sense to modify the transactional characteristics of a method (although parameters like transaction timeouts might change!). Although metadata attributes are typically used mainly by framework infrastructure to describe the services application classes require, it should also be possible for metadata attributes to be queried at runtime. This is a key distinction from solutions such as XDoclet, which view metadata primarily as a way of generating code such as EJB artefacts. There are a number of solutions in this space, including: • Standard Java Annotations: the standard Java metadata implementation (developed as JSR-175 and available in Java 5). Spring has specific Java 5 annotations for transactional demarcation, JMX, and aspects (to be precise they are AspectJ annotations). However, since Spring supports Java 1.4 as well, a solution for said JVM versions is needed too. Spring metadata support provides such a solution. • XDoclet: well-established solution, primarily intended for code generation. Spring Framework (2.5.6) 520
  • 521. Annotations and Source Level Metadata Support • Various open source attribute implementations, for Java 1.4, of which Commons Attributes is the most complete implementation. All these require a special pre- or post-compilation step. 25.2. Spring's metadata support In keeping with its provision of abstractions over important concepts, Spring provides a facade to metadata implementations, in the form of the org.springframework.metadata.Attributes interface. Such a facade adds value for several reasons: • Even though Java 5 provides metadata support at language level, there will still be value in providing such an abstraction: • Java 5 metadata is static. It is associated with a class at compile time, and cannot be changed in a deployed environment (annotation state can actually be changed at runtime using reflection, but doing so would really be a bad practice). There is a need for hierarchical metadata, providing the ability to override certain attribute values in deployment - for example, in an XML file. • Java 5 metadata is returned through the Java reflection API. This makes it impossible to mock during test time. Spring provides a simple interface to allow this. • There will be a need for metadata support in 1.3 and 1.4 applications for at least two years. Spring aims to provide working solutions now; forcing the use of Java 5 is not an option in such an important area. • Current metadata APIs, such as Commons Attributes (used by Spring 1.0-1.2) are hard to test. Spring provides a simple metadata interface that is much easier to mock. The Spring Attributes interface looks like this: public interface Attributes { Collection getAttributes(Class targetClass); Collection getAttributes(Class targetClass, Class filter); Collection getAttributes(Method targetMethod); Collection getAttributes(Method targetMethod, Class filter); Collection getAttributes(Field targetField); Collection getAttributes(Field targetField, Class filter); } This is a lowest common denominator interface. JSR-175 offers more capabilities than this, such as attributes on method arguments. Note that this interface offers Object attributes, like .NET. This distinguishes it from attribute systems such as that of Nanning Aspects, which offer only String attributes. There is a significant advantage in supporting Object attributes, namely that it enables attributes to participate in class hierarchies and allows such attributes to react intelligently to their configuration parameters. With most attribute providers, attribute classes are configured via constructor arguments or JavaBean properties. Commons Attributes supports both. As with all Spring abstraction APIs, Attributes is an interface. This makes it easy to mock attribute implementations for unit tests. Spring Framework (2.5.6) 521
  • 522. Annotations and Source Level Metadata Support 25.3. Annotations The Spring Framework ships with a number of custom Java 5+ annotations. 25.3.1. @Required The @Required annotation in the org.springframework.beans.factory.annotation package can be used to mark a property as being 'required-to-be-set' (i.e. an annotated (setter) method of a class must be configured to be dependency injected with a value), else an Exception will be thrown by the container at runtime. The best way to illustrate the usage of this annotation is to show an example: public class SimpleMovieLister { // the SimpleMovieLister has a dependency on the MovieFinder private MovieFinder movieFinder; // a setter method so that the Spring container can 'inject' a MovieFinder @Required public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // business logic that actually 'uses' the injected MovieFinder is omitted... } Hopefully the above class definition reads easy on the eye. Any and all BeanDefinitions for the SimpleMovieLister class must be provided with a value. Let's look at an example of some XML configuration that will not pass validation. <bean id="movieLister" class="x.y.SimpleMovieLister"> <!-- whoops, no MovieFinder is set (and this property is @Required) --> </bean> At runtime the following message will be generated by the Spring container (the rest of the stack trace has been truncated). Exception in thread "main" java.lang.IllegalArgumentException: Property 'movieFinder' is required for bean 'movieLister'. There is one last little (small, tiny) piece of Spring configuration that is required to actually 'switch on' this behavior. Simply annotating the 'setter' properties of your classes is not enough to get this behavior. You need to enable a component that is aware of the @Required annotation and that can process it appropriately. This component is the RequiredAnnotationBeanPostProcessor class. This is a special BeanPostProcessor implementation that is @Required-aware and actually provides the 'blow up if this required property has not been set' logic. It is very easy to configure; simply drop the following bean definition into your Spring XML configuration. <bean class="org.springframework.beans.factory.annotation.RequiredAnnotationBeanPostProcessor"/> Finally, one can configure an instance of the RequiredAnnotationBeanPostProcessor class to look for another Annotation type. This is great if you already have your own @Required-style annotation. Simply plug it into the definition of a RequiredAnnotationBeanPostProcessor and you are good to go. Spring Framework (2.5.6) 522
  • 523. Annotations and Source Level Metadata Support By way of an example, let's suppose you (or your organization / team) have defined an attribute called @ Mandatory. You can make a RequiredAnnotationBeanPostProcessor instance @Mandatory-aware like so: <bean class="org.springframework.beans.factory.annotation.RequiredAnnotationBeanPostProcessor"> <property name="requiredAnnotationType" value="your.company.package.Mandatory"/> </bean> Here is the source code for the @Mandatory annotation. You will need to ensure that your custom annotation type is itself annotated with appropriate annotations for its target and runtime retention policy. package your.company.package; import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; @Retention(RetentionPolicy.RUNTIME) @Target(ElementType.METHOD) public @interface Mandatory { } 25.3.2. Other @Annotations in Spring Annotations are also used in a number of other places throughout Spring. Rather than being described here, these annotations are described in that section or chapter of the reference documentation to which they are most relevant. • Section 9.5.6, “Using @Transactional” • Section 6.8.1, “Using AspectJ to dependency inject domain objects with Spring” • Section 6.2, “@AspectJ support” • Section 3.11, “Annotation-based configuration” • Section 3.12, “Classpath scanning for managed components” 25.4. Integration with Jakarta Commons Attributes Presently Spring supports only Jakarta Commons Attributes out of the box, although it is easy to provide implementations of the org.springframework.metadata.Attributes interface for other metadata providers. Commons Attributes 2.2 (http://jakarta.apache.org/commons/attributes/) is a capable attributes solution. It supports attribute configuration via constructor arguments and JavaBean properties, which offers better self-documentation in attribute definitions. (Support for JavaBean properties was added at the request of the Spring team.) We've already seen two examples of Commons Attributes attributes definitions. In general, we will need to express: • The name of the attribute class. This can be a fully qualified name (FQN), as shown above. If the relevant attribute class has already been imported, the FQN isn't required. It's also possible to specify "attribute packages" in attribute compiler configuration. Spring Framework (2.5.6) 523
  • 524. Annotations and Source Level Metadata Support • Any necessary parameterization. This is done via constructor arguments or JavaBean properties. Bean properties look as follows: /** * @@MyAttribute(myBooleanJavaBeanProperty=true) */ It's possible to combine constructor arguments and JavaBean properties (as in Spring IoC). Because, unlike Java 1.5 attributes, Commons Attributes is not integrated with the Java language, it is necessary to run a special attribute compilation step as part of the build process. To run Commons Attributes as part of the build process, you will need to do the following: 1. Copy the necessary library jars to $ANT_HOME/lib. Four Jars are required, and all are distributed with Spring: • the Commons Attributes compiler jar and API jar • xJavadoc.jar from XDoclet • commons-collections.jar from Jakarta Commons 2. Import the Commons Attributes ant tasks into your project build script, as follows: <taskdef resource="org/apache/commons/attributes/anttasks.properties"/> 3. Next, define an attribute compilation task, which will use the Commons Attributes attribute-compiler task to "compile" the attributes in the source. This process results in the generation of additional sources, to a location specified by the destdir attribute. Here we show the use of a temporary directory for storing the generated files: <target name="compileAttributes"> <attribute-compiler destdir="${commons.attributes.tempdir}"> <fileset dir="${src.dir}" includes="**/*.java"/> </attribute-compiler> </target> The compile target that runs javac over the sources should depend on this attribute compilation task, and must also compile the generated sources, which we output to our destination temporary directory. If there are syntax errors in your attribute definitions, they will normally be caught by the attribute compiler. However, if the attribute definitions are syntactically plausible, but specify invalid types or class names, the compilation of the generated attribute classes may fail. In this case, you can look at the generated classes to establish the cause of the problem. Commons Attributes also provides Maven support. Please refer to Commons Attributes documentation for further information. While this attribute compilation process may look complex, in fact it's a one-off cost. Once set up, attribute compilation is incremental, so it doesn't usually noticeably slow the build process. And once the compilation process is set up, you may find that use of attributes as described in this chapter can save you a lot of time in other areas. If you require attribute indexing support (only currently required by Spring for attribute-targeted web Spring Framework (2.5.6) 524
  • 525. Annotations and Source Level Metadata Support controllers, discussed below), you will need an additional step, which must be performed on a jar file of your compiled classes. In this additional step, Commons Attributes will create an index of all the attributes defined on your sources, for efficient lookup at runtime. The step looks like this: <attribute-indexer jarFile="myCompiledSources.jar"> <classpath refid="master-classpath"/> </attribute-indexer> See the /attributes directory of the Spring JPetStore sample application for an example of this build process. You can take the build script it contains and modify it for your own projects. If your unit tests depend on attributes, try to express the dependency on the Spring Attributes abstraction, rather than Commons Attributes. Not only is this more portable - for example, your tests will still work if you switch to Java 1.5 attributes in future - it simplifies testing. Also, Commons Attributes is a static API, while Spring provides a metadata interface that you can easily mock. 25.5. Metadata and Spring AOP autoproxying The most important uses of metadata attributes are in conjunction with Spring AOP. This provides a .NET-like programming model, where declarative services are automatically provided to application objects that declare metadata attributes. Such metadata attributes can be supported out of the box by the framework, as in the case of declarative transaction management, or can be custom. 25.5.1. Fundamentals This builds on the Spring AOP autoproxy functionality. Configuration might look like this: <bean class="org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/> <bean class="org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor"> <property name="transactionInterceptor" ref="txInterceptor" /> </bean> <bean id="txInterceptor" class="org.springframework.transaction.interceptor.TransactionInterceptor"> <property name="transactionManager" ref="transactionManager" /> <property name="transactionAttributeSource"> <bean class="org.springframework.transaction.interceptor.AttributesTransactionAttributeSource"> <property name="attributes" ref="attributes" /> </bean> </property> </bean> <bean id="attributes" class="org.springframework.metadata.commons.CommonsAttributes" /> The basic concepts here should be familiar from the discussion of autoproxying in the AOP chapter. The most important bean definitions are the auto-proxy creator and the advisor. Note that the actual bean names are not important; what matters is their class. The bean definition of class org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator will automatically advise ("auto-proxy") all bean instances in the current factory based on matching advisor implementations. This class knows nothing about attributes, but relies on advisors' pointcuts matching. The pointcuts, however, do know about attributes. Thus we simply need an AOP advisor that will provide declarative transaction management based on attributes. Spring Framework (2.5.6) 525
  • 526. Annotations and Source Level Metadata Support It is possible to add arbitrary custom advisor implementations as well, and they will also be evaluated and applied automatically. (You can use advisors whose pointcuts match on criteria besides attributes in the same autoproxy configuration, if necessary.) Finally, the attributes bean is the Commons Attributes Attributes implementation. Replace it with another implementation of the org.springframework.metadata.Attributes interface to source attributes from a different source. 25.5.2. Declarative transaction management The most common use of source-level attributes is to provide declarative transaction management. Once the bean definitions shown above are in place, you can define any number of application objects requiring declarative transactions. Only those classes or methods with transaction attributes will be given transaction advice. You need to do nothing except define the required transaction attributes. Please note that you can specify transaction attributes at either class or method level. Class-level attributes, if specified, will be "inherited" by all methods whereas method attributes will wholly override any class-level attributes. Spring Framework (2.5.6) 526
  • 527. Appendix A. XML Schema-based configuration A.1. Introduction This appendix details the XML Schema-based configuration introduced in Spring 2.0. DTD support? Authoring Spring configuration files using the older DTD style is still fully supported. Nothing will break if you forego the use of the new XML Schema-based approach to authoring Spring XML configuration files. All that you lose out on is the opportunity to have more succinct and clearer configuration. Regardless of whether the XML configuration is DTD- or Schema-based, in the end it all boils down to the same object model in the container (namely one or more BeanDefinition instances). The central motivation for moving to XML Schema based configuration files was to make Spring XML configuration easier. The 'classic' <bean/>-based approach is good, but its generic-nature comes with a price in terms of configuration overhead. From the Spring IoC containers point-of-view, everything is a bean. That's great news for the Spring IoC container, because if everything is a bean then everything can be treated in the exact same fashion. The same, however, is not true from a developer's point-of-view. The objects defined in a Spring XML configuration file are not all generic, vanilla beans. Usually, each bean requires some degree of specific configuration. Spring 2.0's new XML Schema-based configuration addresses this issue. The <bean/> element is still present, and if you wanted to, you could continue to write the exact same style of Spring XML configuration using only <bean/> elements. The new XML Schema-based configuration does, however, make Spring XML configuration files substantially clearer to read. In addition, it allows you to express the intent of a bean definition. The key thing to remember is that the new custom tags work best for infrastructure or integration beans: for example, AOP, collections, transactions, integration with 3rd-party frameworks such as Mule, etc., while the existing bean tags are best suited to application-specific beans, such as DAOs, service layer objects, validators, etc. The examples included below will hopefully convince you that the inclusion of XML Schema support in Spring 2.0 was a good idea. The reception in the community has been encouraging; also, please note the fact that this new configuration mechanism is totally customisable and extensible. This means you can write your own domain-specific configuration tags that would better represent your application's domain; the process involved in doing so is covered in the appendix entitled Appendix B, Extensible XML authoring. A.2. XML Schema-based configuration A.2.1. Referencing the schemas Spring Framework (2.5.6) 527
  • 528. XML Schema-based configuration To switch over from the DTD-style to the new XML Schema-style, you need to make the following change. <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN" "http://www.springframework.org/dtd/spring-beans-2.0.dtd"> <beans> <!-- <bean/> definitions here --> </beans> The equivalent file in the XML Schema-style would be... <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <!-- <bean/> definitions here --> </beans> Note The 'xsi:schemaLocation' fragment is not actually required, but can be included to reference a local copy of a schema (which can be useful during development). The above Spring XML configuration fragment is boilerplate that you can copy and paste (!) and then plug <bean/> definitions into like you have always done. However, the entire point of switching over is to take advantage of the new Spring 2.0 XML tags since they make configuration easier. The section entitled Section A.2.2, “The util schema” demonstrates how you can start immediately by using some of the more common utility tags. The rest of this chapter is devoted to showing examples of the new Spring XML Schema based configuration, with at least one example for every new tag. The format follows a before and after style, with a before snippet of XML showing the old (but still 100% legal and supported) style, followed immediately by an after example showing the equivalent in the new XML Schema-based style. A.2.2. The util schema First up is coverage of the util tags. As the name implies, the util tags deal with common, utility configuration issues, such as configuring collections, referencing constants, and suchlike. To use the tags in the util schema, you need to have the following preamble at the top of your Spring XML configuration file; the emboldened text in the snippet below references the correct schema so that the tags in the util namespace are available to you. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:util="http://www.springframework.org/schema/util" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util-2.5.xsd"> <!-- <bean/> definitions here --> Spring Framework (2.5.6) 528
  • 529. XML Schema-based configuration </beans> A.2.2.1. <util:constant/> Before... <bean id="..." class="..."> <property name="isolation"> <bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE" class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean" /> </property> </bean> The above configuration uses a Spring FactoryBean implementation, the FieldRetrievingFactoryBean, to set the value of the 'isolation' property on a bean to the value of the 'java.sql.Connection.TRANSACTION_SERIALIZABLE' constant. This is all well and good, but it is a tad verbose and (unneccessarily) exposes Spring's internal plumbing to the end user. The following XML Schema-based version is more concise and clearly expresses the developer's intent ('inject this constant value'), and it just reads better. <bean id="..." class="..."> <property name="isolation"> <util:constant static-field="java.sql.Connection.TRANSACTION_SERIALIZABLE"/> </property> </bean> A.2.2.1.1. Setting a bean property or constructor arg from a field value FieldRetrievingFactoryBean is a FactoryBean which retrieves a static or non-static field value. It is typically used for retrieving public static final constants, which may then be used to set a property value or constructor arg for another bean. Find below an example which shows how a static field is exposed, by using the staticField property: <bean id="myField" class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean"> <property name="staticField" value="java.sql.Connection.TRANSACTION_SERIALIZABLE"/> </bean> There is also a convenience usage form where the static field is specified as the bean name: <bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE" class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean"/> This does mean that there is no longer any choice in what the bean id is (so any other bean that refers to it will also have to use this longer name), but this form is very concise to define, and very convenient to use as an inner bean since the id doesn't have to be specified for the bean reference: <bean id="..." class="..."> <property name="isolation"> <bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE" class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean" /> </property> </bean> It is also possible to access a non-static (instance) field of another bean, as described in the API documentation for the FieldRetrievingFactoryBean class. Spring Framework (2.5.6) 529
  • 530. XML Schema-based configuration Injecting enum values into beans as either property or constructor arguments is very easy to do in Spring, in that you don't actually have to do anything or know anything about the Spring internals (or even about classes such as the FieldRetrievingFactoryBean). Let's look at an example to see how easy injecting an enum value is; consider this JDK 5 enum: package javax.persistence; public enum PersistenceContextType { TRANSACTION, EXTENDED } Now consider a setter of type PersistenceContextType: package example; public class Client { private PersistenceContextType persistenceContextType; public void setPersistenceContextType(PersistenceContextType type) { this.persistenceContextType = type; } } .. and the corresponding bean definition: <bean class="example.Client"> <property name="persistenceContextType" value="TRANSACTION" /> </bean> This works for classic type-safe emulated enums (on JDK 1.4 and JDK 1.3) as well; Spring will automatically attempt to match the string property value to a constant on the enum class. A.2.2.2. <util:property-path/> Before... <!-- target bean to be referenced by name --> <bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype"> <property name="age" value="10"/> <property name="spouse"> <bean class="org.springframework.beans.TestBean"> <property name="age" value="11"/> </bean> </property> </bean> <!-- will result in 10, which is the value of property 'age' of bean 'testBean' --> <bean id="testBean.age" class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/> The above configuration uses a Spring FactoryBean implementation, the PropertyPathFactoryBean, to create a bean (of type int) called 'testBean.age' that has a value equal to the 'age' property of the 'testBean' bean. After... <!-- target bean to be referenced by name --> <bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype"> <property name="age" value="10"/> <property name="spouse"> Spring Framework (2.5.6) 530
  • 531. XML Schema-based configuration <bean class="org.springframework.beans.TestBean"> <property name="age" value="11"/> </bean> </property> </bean> <!-- will result in 10, which is the value of property 'age' of bean 'testBean' --> <util:property-path id="name" path="testBean.age"/> The value of the 'path' attribute of the <property-path/> tag follows the form 'beanName.beanProperty'. A.2.2.2.1. Using <util:property-path/> to set a bean property or constructor-argument PropertyPathFactoryBean is a FactoryBean that evaluates a property path on a given target object. The target object can be specified directly or via a bean name. This value may then be used in another bean definition as a property value or constructor argument. Here's an example where a path is used against another bean, by name: // target bean to be referenced by name <bean id="person" class="org.springframework.beans.TestBean" scope="prototype"> <property name="age" value="10"/> <property name="spouse"> <bean class="org.springframework.beans.TestBean"> <property name="age" value="11"/> </bean> </property> </bean> // will result in 11, which is the value of property 'spouse.age' of bean 'person' <bean id="theAge" class="org.springframework.beans.factory.config.PropertyPathFactoryBean"> <property name="targetBeanName" value="person"/> <property name="propertyPath" value="spouse.age"/> </bean> In this example, a path is evaluated against an inner bean: <!-- will result in 12, which is the value of property 'age' of the inner bean --> <bean id="theAge" class="org.springframework.beans.factory.config.PropertyPathFactoryBean"> <property name="targetObject"> <bean class="org.springframework.beans.TestBean"> <property name="age" value="12"/> </bean> </property> <property name="propertyPath" value="age"/> </bean> There is also a shortcut form, where the bean name is the property path. <!-- will result in 10, which is the value of property 'age' of bean 'person' --> <bean id="person.age" class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/> This form does mean that there is no choice in the name of the bean. Any reference to it will also have to use the same id, which is the path. Of course, if used as an inner bean, there is no need to refer to it at all: <bean id="..." class="..."> <property name="age"> <bean id="person.age" class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/> </property> </bean> Spring Framework (2.5.6) 531
  • 532. XML Schema-based configuration The result type may be specifically set in the actual definition. This is not necessary for most use cases, but can be of use for some. Please see the Javadocs for more info on this feature. A.2.2.3. <util:properties/> Before... <!-- creates a java.util.Properties instance with values loaded from the supplied location --> <bean id="jdbcConfiguration" class="org.springframework.beans.factory.config.PropertiesFactoryBean"> <property name="location" value="classpath:com/foo/jdbc-production.properties"/> </bean> The above configuration uses a Spring FactoryBean implementation, the PropertiesFactoryBean, to instantiate a java.util.Properties instance with values loaded from the supplied Resource location). After... <!-- creates a java.util.Properties instance with values loaded from the supplied location --> <util:properties id="jdbcConfiguration" location="classpath:com/foo/jdbc-production.properties"/> A.2.2.4. <util:list/> Before... <!-- creates a java.util.List instance with values loaded from the supplied 'sourceList' --> <bean id="emails" class="org.springframework.beans.factory.config.ListFactoryBean"> <property name="sourceList"> <list> <value>pechorin@hero.org</value> <value>raskolnikov@slums.org</value> <value>stavrogin@gov.org</value> <value>porfiry@gov.org</value> </list> </property> </bean> The above configuration uses a Spring FactoryBean implementation, the ListFactoryBean, to create a java.util.List instance initialized with values taken from the supplied 'sourceList'. After... <!-- creates a java.util.List instance with values loaded from the supplied 'sourceList' --> <util:list id="emails"> <value>pechorin@hero.org</value> <value>raskolnikov@slums.org</value> <value>stavrogin@gov.org</value> <value>porfiry@gov.org</value> </util:list> You can also explicitly control the exact type of List that will be instantiated and populated via the use of the 'list-class' attribute on the <util:list/> element. For example, if we really need a java.util.LinkedList to be instantiated, we could use the following configuration: <util:list id="emails" list-class="java.util.LinkedList"> <value>jackshaftoe@vagabond.org</value> <value>eliza@thinkingmanscrumpet.org</value> <value>vanhoek@pirate.org</value> <value>d'Arcachon@nemesis.org</value> </util:list> Spring Framework (2.5.6) 532
  • 533. XML Schema-based configuration If no 'list-class' attribute is supplied, a List implementation will be chosen by the container. Finally, you can also control the merging behavior using the 'merge' attribute of the <util:list/> element; collection merging is described in more detail in the section entitled Section 3.3.2.4.1, “Collection merging”. A.2.2.5. <util:map/> Before... <!-- creates a java.util.Map instance with values loaded from the supplied 'sourceMap' --> <bean id="emails" class="org.springframework.beans.factory.config.MapFactoryBean"> <property name="sourceMap"> <map> <entry key="pechorin" value="pechorin@hero.org"/> <entry key="raskolnikov" value="raskolnikov@slums.org"/> <entry key="stavrogin" value="stavrogin@gov.org"/> <entry key="porfiry" value="porfiry@gov.org"/> </map> </property> </bean> The above configuration uses a Spring FactoryBean implementation, the MapFactoryBean, to create a java.util.Map instance initialized with key-value pairs taken from the supplied 'sourceMap'. After... <!-- creates a java.util.Map instance with values loaded from the supplied 'sourceMap' --> <util:map id="emails"> <entry key="pechorin" value="pechorin@hero.org"/> <entry key="raskolnikov" value="raskolnikov@slums.org"/> <entry key="stavrogin" value="stavrogin@gov.org"/> <entry key="porfiry" value="porfiry@gov.org"/> </util:map> You can also explicitly control the exact type of Map that will be instantiated and populated via the use of the 'map-class' attribute on the <util:map/> element. For example, if we really need a java.util.TreeMap to be instantiated, we could use the following configuration: <util:map id="emails" map-class="java.util.TreeMap"> <entry key="pechorin" value="pechorin@hero.org"/> <entry key="raskolnikov" value="raskolnikov@slums.org"/> <entry key="stavrogin" value="stavrogin@gov.org"/> <entry key="porfiry" value="porfiry@gov.org"/> </util:map> If no 'map-class' attribute is supplied, a Map implementation will be chosen by the container. Finally, you can also control the merging behavior using the 'merge' attribute of the <util:map/> element; collection merging is described in more detail in the section entitled Section 3.3.2.4.1, “Collection merging”. A.2.2.6. <util:set/> Before... <!-- creates a java.util.Set instance with values loaded from the supplied 'sourceSet' --> <bean id="emails" class="org.springframework.beans.factory.config.SetFactoryBean"> <property name="sourceSet"> <set> <value>pechorin@hero.org</value> <value>raskolnikov@slums.org</value> <value>stavrogin@gov.org</value> <value>porfiry@gov.org</value> </set> Spring Framework (2.5.6) 533
  • 534. XML Schema-based configuration </property> </bean> The above configuration uses a Spring FactoryBean implementation, the SetFactoryBean, to create a java.util.Set instance initialized with values taken from the supplied 'sourceSet'. After... <!-- creates a java.util.Set instance with values loaded from the supplied 'sourceSet' --> <util:set id="emails"> <value>pechorin@hero.org</value> <value>raskolnikov@slums.org</value> <value>stavrogin@gov.org</value> <value>porfiry@gov.org</value> </util:set> You can also explicitly control the exact type of Set that will be instantiated and populated via the use of the 'set-class' attribute on the <util:set/> element. For example, if we really need a java.util.TreeSet to be instantiated, we could use the following configuration: <util:set id="emails" set-class="java.util.TreeSet"> <value>pechorin@hero.org</value> <value>raskolnikov@slums.org</value> <value>stavrogin@gov.org</value> <value>porfiry@gov.org</value> </util:set> If no 'set-class' attribute is supplied, a Set implementation will be chosen by the container. Finally, you can also control the merging behavior using the 'merge' attribute of the <util:set/> element; collection merging is described in more detail in the section entitled Section 3.3.2.4.1, “Collection merging”. A.2.3. The jee schema The jee tags deal with JEE (Java Enterprise Edition)-related configuration issues, such as looking up a JNDI object and defining EJB references. To use the tags in the jee schema, you need to have the following preamble at the top of your Spring XML configuration file; the emboldened text in the following snippet references the correct schema so that the tags in the jee namespace are available to you. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:jee="http://www.springframework.org/schema/jee" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/jee http://www.springframework.org/schema/jee/spring-jee-2.5.xsd"> <!-- <bean/> definitions here --> </beans> A.2.3.1. <jee:jndi-lookup/> (simple) Before... <bean id="dataSource" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiName" value="jdbc/MyDataSource"/> </bean> Spring Framework (2.5.6) 534
  • 535. XML Schema-based configuration <bean id="userDao" class="com.foo.JdbcUserDao"> <!-- Spring will do the cast automatically (as usual) --> <property name="dataSource" ref="dataSource"/> </bean> After... <jee:jndi-lookup id="dataSource" jndi-name="jdbc/MyDataSource"/> <bean id="userDao" class="com.foo.JdbcUserDao"> <!-- Spring will do the cast automatically (as usual) --> <property name="dataSource" ref="dataSource"/> </bean> A.2.3.2. <jee:jndi-lookup/> (with single JNDI environment setting) Before... <bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiName" value="jdbc/MyDataSource"/> <property name="jndiEnvironment"> <props> <prop key="foo">bar</prop> </props> </property> </bean> After... <jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource"> <jee:environment>foo=bar</jee:environment> </jee:jndi-lookup> A.2.3.3. <jee:jndi-lookup/> (with multiple JNDI environment settings) Before... <bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiName" value="jdbc/MyDataSource"/> <property name="jndiEnvironment"> <props> <prop key="foo">bar</prop> <prop key="ping">pong</prop> </props> </property> </bean> After... <jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource"> <!-- newline-separated, key-value pairs for the environment (standard Properties format) --> <jee:environment> foo=bar ping=pong </jee:environment> </jee:jndi-lookup> A.2.3.4. <jee:jndi-lookup/> (complex) Before... <bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean"> Spring Framework (2.5.6) 535
  • 536. XML Schema-based configuration <property name="jndiName" value="jdbc/MyDataSource"/> <property name="cache" value="true"/> <property name="resourceRef" value="true"/> <property name="lookupOnStartup" value="false"/> <property name="expectedType" value="com.myapp.DefaultFoo"/> <property name="proxyInterface" value="com.myapp.Foo"/> </bean> After... <jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource" cache="true" resource-ref="true" lookup-on-startup="false" expected-type="com.myapp.DefaultFoo" proxy-interface="com.myapp.Foo"/> A.2.3.5. <jee:local-slsb/> (simple) The <jee:local-slsb/> tag configures a reference to an EJB Stateless SessionBean. Before... <bean id="simple" class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean"> <property name="jndiName" value="ejb/RentalServiceBean"/> <property name="businessInterface" value="com.foo.service.RentalService"/> </bean> After... <jee:local-slsb id="simpleSlsb" jndi-name="ejb/RentalServiceBean" business-interface="com.foo.service.RentalService"/> A.2.3.6. <jee:local-slsb/> (complex) <bean id="complexLocalEjb" class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean"> <property name="jndiName" value="ejb/RentalServiceBean"/> <property name="businessInterface" value="com.foo.service.RentalService"/> <property name="cacheHome" value="true"/> <property name="lookupHomeOnStartup" value="true"/> <property name="resourceRef" value="true"/> </bean> After... <jee:local-slsb id="complexLocalEjb" jndi-name="ejb/RentalServiceBean" business-interface="com.foo.service.RentalService" cache-home="true" lookup-home-on-startup="true" resource-ref="true"> A.2.3.7. <jee:remote-slsb/> The <jee:remote-slsb/> tag configures a reference to a remote EJB Stateless SessionBean. Before... Spring Framework (2.5.6) 536
  • 537. XML Schema-based configuration <bean id="complexRemoteEjb" class="org.springframework.ejb.access.SimpleRemoteStatelessSessionProxyFactoryBean"> <property name="jndiName" value="ejb/MyRemoteBean"/> <property name="businessInterface" value="com.foo.service.RentalService"/> <property name="cacheHome" value="true"/> <property name="lookupHomeOnStartup" value="true"/> <property name="resourceRef" value="true"/> <property name="homeInterface" value="com.foo.service.RentalService"/> <property name="refreshHomeOnConnectFailure" value="true"/> </bean> After... <jee:remote-slsb id="complexRemoteEjb" jndi-name="ejb/MyRemoteBean" business-interface="com.foo.service.RentalService" cache-home="true" lookup-home-on-startup="true" resource-ref="true" home-interface="com.foo.service.RentalService" refresh-home-on-connect-failure="true"> A.2.4. The lang schema The lang tags deal with exposing objects that have been written in a dynamic language such as JRuby or Groovy as beans in the Spring container. These tags (and the dynamic language support) are comprehensively covered in the chapter entitled Chapter 24, Dynamic language support. Please do consult that chapter for full details on this support and the lang tags themselves. In the interest of completeness, to use the tags in the lang schema, you need to have the following preamble at the top of your Spring XML configuration file; the emboldened text in the following snippet references the correct schema so that the tags in the lang namespace are available to you. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:lang="http://www.springframework.org/schema/lang" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-2.5.xsd"> <!-- <bean/> definitions here --> </beans> A.2.5. The jms schema The jms tags deal with configuring JMS-related beans such as Spring's MessageListenerContainers. These tags are detailed in the section of the JMS chapter entitled Section 19.6, “JMS Namespace Support”. Please do consult that chapter for full details on this support and the jms tags themselves. In the interest of completeness, to use the tags in the jms schema, you need to have the following preamble at the top of your Spring XML configuration file; the emboldened text in the following snippet references the correct schema so that the tags in the jms namespace are available to you. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:jms="http://www.springframework.org/schema/jms" Spring Framework (2.5.6) 537
  • 538. XML Schema-based configuration xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/jms http://www.springframework.org/schema/jms/spring-jms-2.5.xsd"> <!-- <bean/> definitions here --> </beans> A.2.6. The tx (transaction) schema The tx tags deal with configuring all of those beans in Spring's comprehensive support for transactions. These tags are covered in the chapter entitled Chapter 9, Transaction management. Tip You are strongly encouraged to look at the 'spring-tx-2.5.xsd' file that ships with the Spring distribution. This file is (of course), the XML Schema for Spring's transaction configuration, and covers all of the various tags in the tx namespace, including attribute defaults and suchlike. This file is documented inline, and thus the information is not repeated here in the interests of adhering to the DRY (Don't Repeat Yourself) principle. In the interest of completeness, to use the tags in the tx schema, you need to have the following preamble at the top of your Spring XML configuration file; the emboldened text in the following snippet references the correct schema so that the tags in the tx namespace are available to you. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <!-- <bean/> definitions here --> </beans> Note Often when using the tags in the tx namespace you will also be using the tags from the aop namespace (since the declarative transaction support in Spring is implemented using AOP). The above XML snippet contains the relevant lines needed to reference the aop schema so that the tags in the aop namespace are available to you. A.2.7. The aop schema The aop tags deal with configuring all things AOP in Spring: this includes Spring's own proxy-based AOP framework and Spring's integration with the AspectJ AOP framework. These tags are comprehensively covered in the chapter entitled Chapter 6, Aspect Oriented Programming with Spring. In the interest of completeness, to use the tags in the aop schema, you need to have the following preamble at the top of your Spring XML configuration file; the emboldened text in the following snippet references the correct schema so that the tags in the aop namespace are available to you. Spring Framework (2.5.6) 538
  • 539. XML Schema-based configuration <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd"> <!-- <bean/> definitions here --> </beans> A.2.8. The context schema The context tags deal with ApplicationContext configuration that relates to plumbing - that is, not usually beans that are important to an end-user but rather beans that do a lot of grunt work in Spring, such as BeanfactoryPostProcessors. The following snippet references the correct schema so that the tags in the context namespace are available to you. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.x <!-- <bean/> definitions here --> </beans> Note The context schema was only introduced in Spring 2.5. A.2.8.1. <property-placeholder/> This element activates the replacement of ${...} placeholders, resolved against the specified properties file (as a Spring resource location). This element is a convenience mechanism that sets up a PropertyPlaceholderConfigurer for you; if you need more control over the PropertyPlaceholderConfigurer, just define one yourself explicitly. A.2.8.2. <annotation-config/> Activates the Spring infrastructure for various annotations to be detected in bean classes: Spring's @Required and @Autowired, as well as JSR 250's @PostConstruct, @PreDestroy and @Resource (if available), and JPA's @PersistenceContext and @PersistenceUnit (if available). Alternatively, you can choose to activate the individual BeanPostProcessors for those annotations explictly. Note This element does not activate processing of Spring's @Transactional annotation. Use the <tx:annotation-driven/> element for that purpose. A.2.8.3. <component-scan/> Spring Framework (2.5.6) 539
  • 540. XML Schema-based configuration This element is detailed in the section entitled Section 3.11, “Annotation-based configuration”. A.2.8.4. <load-time-weaver/> This element is detailed in the section entitled Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework”. A.2.8.5. <spring-configured/> This element is detailed in the section entitled Section 6.8.1, “Using AspectJ to dependency inject domain objects with Spring”. A.2.8.6. <mbean-export/> This element is detailed in the section entitled Section 20.4.3, “The <context:mbean-export/> element”. A.2.9. The tool schema The tool tags are for use when you want to add tooling-specific metadata to your custom configuration elements. This metadata can then be consumed by tools that are aware of this metadata, and the tools can then do pretty much whatever they want with it (validation, etc.). The tool tags are not documented in this release of Spring as they are currently undergoing review. If you are a third party tool vendor and you would like to contribute to this review process, then do mail the Spring mailing list. The currently supported tool tags can be found in the file 'spring-tool-2.5.xsd' in the 'src/org/springframework/beans/factory/xml' directory of the Spring source distribution. A.2.10. The beans schema Last but not least we have the tags in the beans schema. These are the same tags that have been in Spring since the very dawn of the framework. Examples of the various tags in the beans schema are not shown here because they are quite comprehensively covered in the section entitled Section 3.3.2, “Dependencies and configuration in detail” (and indeed in that entire chapter). One thing that is new to the beans tags themselves in Spring 2.0 is the idea of arbitrary bean metadata. In Spring 2.0 it is now possible to add zero or more key / value pairs to <bean/> XML definitions. What, if anything, is done with this extra metadata is totally up to your own custom logic (and so is typically only of use if you are writing your own custom tags as described in the appendix entitled Appendix B, Extensible XML authoring). Find below an example of the <meta/> tag in the context of a surrounding <bean/> (please note that without any logic to interpret it the metadata is effectively useless as-is). <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean id="foo" class="x.y.Foo"> <meta key="cacheName" value="foo"/> <property name="name" value="Rick"/> </bean> </beans> Spring Framework (2.5.6) 540
  • 541. XML Schema-based configuration In the case of the above example, you would assume that there is some logic that will consume the bean definition and set up some caching infrastructure using the supplied metadata. A.3. Setting up your IDE This final section documents the steps involved in setting up a number of popular Java IDEs to effect the easier editing of Spring's XML Schema-based configuration files. If your favourite Java IDE or editor is not included in the list of documented IDEs, then please do raise an issue and an example with your favorite IDE/editor may be included in the next release. A.3.1. Setting up Eclipse The following steps illustrate setting up Eclipse to be XSD-aware. The assumption in the following steps is that you already have an Eclipse project open (either a brand new project or an already existing one). Note The following steps were created using Eclipse 3.2. The setup will probably be the same (or similar) on an earlier or later version of Eclipse. 1. Step One Create a new XML file. You can name this file whatever you want. In the example below, the file is named 'context.xml'. Copy and paste the following text into the file so that it matches the screenshot. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:util="http://www.springframework.org/schema/util" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util-2.5.xsd"> </beans> 2. Step Two As can be seen in the above screenshot (unless you have a customised version of Eclipse with the correct plugins) the XML file will be treated as plain text. There is no XML editing support out of the box in Eclipse, and as such there is not even any syntax highlighting of elements and attributes. To address this, Spring Framework (2.5.6) 541
  • 542. XML Schema-based configuration you will have to install an XML editor plugin for Eclipse... Table A.1. Eclipse XML editors XML Editor Link http://www.eclipse.org/webtools/ The Eclipse Web Tools Platform (WTP) http://eclipse-plugins.2y.net/eclipse/plugins.jsp?category=XML A list of Eclipse XML plugins Contributing documentation... Patches showing how to configure an Eclipse XML editor are welcomed. Any such contributions are best submitted as patches via the Spring Framework JIRA Issue Tracker and may be featured in the next release. Unfortunately, precisely because there is no standard XML editor for Eclipse, there are (bar the one below) no further steps showing you how to configure XML Schema support in Eclipse... each XML editor plugin would require its very own dedicated section, and this is Spring reference documentation, not Eclipse XML editor documentation. You will have to read the documentation that comes with your XML editor plugin (good luck there) and figure it out for yourself. 3. Spring IDE There is a dedicated Spring Framework plugin for Eclipse called Spring IDE and it is pretty darn cool. (There's a considered and non-biased opinion for you!) This plugin makes using Spring even easier, and it has more than just support for the core Spring Framework... Spring Web Flow is supported too. Details of how to install Spring IDE can be found on the Spring IDE installation page. Spring Framework (2.5.6) 542
  • 543. XML Schema-based configuration 4. Web Tools Platform (WTP) for Eclipse If you are using the Web Tools Platform (WTP) for Eclipse, you don't need to do anything other than open a Spring XML configuration file using the WTP platform's XML editor. As can be seen in the screenshot below, you immediately get some slick IDE-level support for autocompleting tags and suchlike. Spring Framework (2.5.6) 543
  • 544. XML Schema-based configuration A.3.2. Setting up IntelliJ IDEA The following steps illustrate setting up the IntelliJ IDEA IDE to be XSD-aware. The assumption in the following steps is that you already have an IDEA project open (either a brand new project or an already existing one). Repeat as required for setting up IDEA to reference the other Spring XSD files. 1. Step One Create a new XML file (you can name this file whatever you want). In the example below, the file is named 'context.xml'. Copy and paste the following text into the file so that it matches the screenshot. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:util="http://www.springframework.org/schema/util" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5. http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util-2.5.xsd </beans> 2. Step Two As can be seen in the above screenshot, the XML file has a number of nasty red contextual error markers. To rectify this, IDEA has to be made aware of the location of the referenced XSD namespace(s). To do this, simply position the cursor over the squiggly red area (see the screenshot below); then press the Alt-Enter keystroke combination, and press the Enter key again when the popup becomes active to fetch the external resource. 3. Step Three Spring Framework (2.5.6) 544
  • 545. XML Schema-based configuration If the external resource could not be fetched (maybe no active Internet connection is available), you can manually configure the resource to reference a local copy of the XSD file. Simply open up the 'Settings' dialog (using the Ctrl-A-S keystroke combination or via the 'File|Settings' menu), and click on the 'Resources' button. 4. Step Four As can be seen in the following screenshot, this will bring up a dialog that allows you to add an explicit reference to a local copy of the util schema file. (You can find all of the various Spring XSD files in the 'src' directory of the Spring distribution.) Spring Framework (2.5.6) 545
  • 546. XML Schema-based configuration 5. Step Five Clicking the 'Add' button will bring up another dialog that allows you to explicitly to associate a namespace URI with the path to the relevant XSD file. As can be seen in the following screenshot, the 'http://www.springframework.org/schema/util' namespace is being associated with the file resource 'C:benchspringsrcorgspringframeworkbeansfactoryxmlspring-util-2.5.xsd'. 6. Step Six Exiting out of the nested dialogs by clicking the 'OK' button will then bring back the main editing window, and as can be seen in the following screenshot, the contextual error markers have disappeared; typing the '<' character into the editing window now also brings up a handy dropdown box that contains all of the imported tags from the util namespace. Spring Framework (2.5.6) 546
  • 547. XML Schema-based configuration A.3.3. Integration issues This final section details integration issues that may arise when you switch over to using the above XSD-style for Spring 2.0 configuration. This section is quite small at the moment (and hopefully it will stay that way). It has been included in the Spring documentation as a convenience to Spring users so that if you encounter an issue when switching over to the XSD-style in some specific environment you can refer to this section for the authoritative answer. A.3.3.1. XML parsing errors in the Resin v.3 application server If you are using the XSD-style for Spring 2.0 XML configuration and deploying to v.3 of Caucho's Resin application server, you will need to set some configuration options prior to startup so that an XSD-aware parser is available to Spring. Please do read this resource, http://www.caucho.com/resin-3.0/xml/jaxp.xtp#xerces, for further details. Spring Framework (2.5.6) 547
  • 548. Appendix B. Extensible XML authoring B.1. Introduction Since version 2.0, Spring has featured a mechanism for schema-based extensions to the basic Spring XML format for defining and configuring beans. This section is devoted to detailing how you would go about writing your own custom XML bean definition parsers and integrating such parsers into the Spring IoC container. To facilitate the authoring of configuration files using a schema-aware XML editor, Spring's extensible XML configuration mechanism is based on XML Schema. If you are not familiar with Spring's current XML configuration extensions that come with the standard Spring distribution, please first read the appendix entitled Appendix A, XML Schema-based configuration. Creating new XML configuration extensions can be done by following these (relatively) simple steps: 1. Authoring an XML schema to describe your custom element(s). 2. Coding a custom NamespaceHandler implementation (this is an easy step, don't worry). 3. Coding one or more BeanDefinitionParser implementations (this is where the real work is done). 4. Registering the above artifacts with Spring (this too is an easy step). What follows is a description of each of these steps. For the example, we will create an XML extension (a custom XML element) that allows us to configure objects of the type SimpleDateFormat (from the java.text package) in an easy manner. When we are done, we will be able to define bean definitions of type SimpleDateFormat like this: <myns:dateformat id="dateFormat" pattern="yyyy-MM-dd HH:mm" lenient="true"/> (Don't worry about the fact that this example is very simple; much more detailed examples follow afterwards. The intent in this first simple example is to walk you through the basic steps involved.) B.2. Authoring the schema Creating an XML configuration extension for use with Spring's IoC container starts with authoring an XML Schema to describe the extension. What follows is the schema we'll use to configure SimpleDateFormat objects. <!-- myns.xsd (inside package org/springframework/samples/xml) --> <?xml version="1.0" encoding="UTF-8"?> <xsd:schema xmlns="http://www.mycompany.com/schema/myns" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:beans="http://www.springframework.org/schema/beans" targetNamespace="http://www.mycompany.com/schema/myns" elementFormDefault="qualified" attributeFormDefault="unqualified"> <xsd:import namespace="http://www.springframework.org/schema/beans"/> <xsd:element name="dateformat"> Spring Framework (2.5.6) 548
  • 549. Extensible XML authoring <xsd:complexType> <xsd:complexContent> <xsd:extension base="beans:identifiedType"> <xsd:attribute name="lenient" type="xsd:boolean"/> <xsd:attribute name="pattern" type="xsd:string" use="required"/> </xsd:extension> </xsd:complexContent> </xsd:complexType> </xsd:element> </xsd:schema> (The emphasized line contains an extension base for all tags that will be identifiable (meaning they have an id attribute that will be used as the bean identifier in the container). We are able to use this attribute because we imported the Spring-provided 'beans' namespace.) The above schema will be used to configure SimpleDateFormat objects, directly in an XML application context file using the <myns:dateformat/> element. <myns:dateformat id="dateFormat" pattern="yyyy-MM-dd HH:mm" lenient="true"/> Note that after we've created the infrastructure classes, the above snippet of XML will essentially be exactly the same as the following XML snippet. In other words, we're just creating a bean in the container, identified by the name 'dateFormat' of type SimpleDateFormat, with a couple of properties set. <bean id="dateFormat" class="java.text.SimpleDateFormat"> <constructor-arg value="yyyy-HH-dd HH:mm"/> <property name="lenient" value="true"/> </bean> Note The schema-based approach to creating configuration format allows for tight integration with an IDE that has a schema-aware XML editor. Using a properly authored schema, you can use autocompletion to have a user choose between several configuration options defined in the enumeration. B.3. Coding a NamespaceHandler In addition to the schema, we need a NamespaceHandler that will parse all elements of this specific namespace Spring encounters while parsing configuration files. The NamespaceHandler should in our case take care of the parsing of the myns:dateformat element. The NamespaceHandler interface is pretty simple in that it features just three methods: • init() - allows for initialization of the NamespaceHandler and will be called by Spring before the handler is used • BeanDefinition parse(Element, ParserContext) - called when Spring encounters a top-level element (not nested inside a bean definition or a different namespace). This method can register bean definitions itself and/or return a bean definition. • BeanDefinitionHolder decorate(Node, BeanDefinitionHolder, ParserContext) - called when Spring encounters an attribute or nested element of a different namespace. The decoration of one or more bean definitions is used for example with the out-of-the-box scopes Spring 2.0 supports. We'll start by highlighting a simple example, without using decoration, after which we will show decoration in a somewhat Spring Framework (2.5.6) 549
  • 550. Extensible XML authoring more advanced example. Although it is perfectly possible to code your own NamespaceHandler for the entire namespace (and hence provide code that parses each and every element in the namespace), it is often the case that each top-level XML element in a Spring XML configuration file results in a single bean definition (as in our case, where a single <myns:dateformat/> element results in a single SimpleDateFormat bean definition). Spring features a number of convenience classes that support this scenario. In this example, we'll make use the NamespaceHandlerSupport class: package org.springframework.samples.xml; import org.springframework.beans.factory.xml.NamespaceHandlerSupport; public class MyNamespaceHandler extends NamespaceHandlerSupport { public void init() { registerBeanDefinitionParser("dateformat", new SimpleDateFormatBeanDefinitionParser()); } } The observant reader will notice that there isn't actually a whole lot of parsing logic in this class. Indeed... the NamespaceHandlerSupport class has a built in notion of delegation. It supports the registration of any number of BeanDefinitionParser instances, to which it will delegate to when it needs to parse an element in its namespace. This clean separation of concerns allows a NamespaceHandler to handle the orchestration of the parsing of all of the custom elements in its namespace, while delegating to BeanDefinitionParsers to do the grunt work of the XML parsing; this means that each BeanDefinitionParser will contain just the logic for parsing a single custom element, as we can see in the next step B.4. Coding a BeanDefinitionParser A BeanDefinitionParser will be used if the NamespaceHandler encounters an XML element of the type that has been mapped to the specific bean definition parser (which is 'dateformat' in this case). In other words, the BeanDefinitionParser is responsible for parsing one distinct top-level XML element defined in the schema. In the parser, we'll have access to the XML element (and thus its subelements too) so that we can parse our custom XML content, as can be seen in the following example: package org.springframework.samples.xml; import org.springframework.beans.factory.support.BeanDefinitionBuilder; import org.springframework.beans.factory.xml.AbstractSingleBeanDefinitionParser; import org.springframework.util.StringUtils; import org.w3c.dom.Element; import java.text.SimpleDateFormat; public class SimpleDateFormatBeanDefinitionParser extends AbstractSingleBeanDefinitionParser { ‚ protected Class getBeanClass(Element element) { return SimpleDateFormat.class; ƒ } protected void doParse(Element element, BeanDefinitionBuilder bean) { // this will never be null since the schema explicitly requires that a value be supplied String pattern = element.getAttribute("pattern"); bean.addConstructorArg(pattern); // this however is an optional property String lenient = element.getAttribute("lenient"); if (StringUtils.hasText(lenient)) { bean.addPropertyValue("lenient", Boolean.valueOf(lenient)); } } } Spring Framework (2.5.6) 550
  • 551. Extensible XML authoring ‚ We use the Spring-provided AbstractSingleBeanDefinitionParser to handle a lot of the basic grunt work of creating a single BeanDefinition. ƒ We supply the AbstractSingleBeanDefinitionParser superclass with the type that our single BeanDefinition will represent. In this simple case, this is all that we need to do. The creation of our single BeanDefinition is handled by the AbstractSingleBeanDefinitionParser superclass, as is the extraction and setting of the bean definition's unique identifier. B.5. Registering the handler and the schema The coding is finished! All that remains to be done is to somehow make the Spring XML parsing infrastructure aware of our custom element; we do this by registering our custom namespaceHandler and custom XSD file in two special purpose properties files. These properties files are both placed in a 'META-INF' directory in your application, and can, for example, be distributed alongside your binary classes in a JAR file. The Spring XML parsing infrastructurewill automatically pick up your new extension by consuming these special properties files, the formats of which are detailed below. B.5.1. 'META-INF/spring.handlers' The properties file called 'spring.handlers' contains a mapping of XML Schema URIs to namespace handler classes. So for our example, we need to write the following: http://www.mycompany.com/schema/myns=org.springframework.samples.xml.MyNamespaceHandler (The ':' character is a valid delimiter in the Java properties format, and so the ':' character in the URI needs to be escaped with a backslash.) The first part (the key) of the key-value pair is the URI associated with your custom namespace extension, and needs to match exactly the value of the 'targetNamespace' attribute as specified in your custom XSD schema. B.5.2. 'META-INF/spring.schemas' The properties file called 'spring.schemas' contains a mapping of XML Schema locations (referred to along with the schema declaration in XML files that use the schema as part of the 'xsi:schemaLocation' attribute) to classpath resources. This file is needed to prevent Spring from absolutely having to use a default EntityResolver that requires Internet access to retrieve the schema file. If you specify the mapping in this properties file, Spring will search for the schema on the classpath (in this case 'myns.xsd' in the 'org.springframework.samples.xml' package): http://www.mycompany.com/schema/myns/myns.xsd=org/springframework/samples/xml/myns.xsd The upshot of this is that you are encouraged to deploy your XSD file(s) right alongside the NamespaceHandler and BeanDefinitionParser classes on the classpath. B.6. Using a custom extension in your Spring XML configuration Using a custom extension that you yourself have implemented is no different from using one of the 'custom' Spring Framework (2.5.6) 551
  • 552. Extensible XML authoring extensions that Spring provides straight out of the box. Find below an example of using the custom <dateformat/> element developed in the previous steps in a Spring XML configuration file. <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:myns="http://www.mycompany.com/schema/myns" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.mycompany.com/schema/myns http://www.mycompany.com/schema/myns/myns.xsd"> <!-- as a top-level bean --> <myns:dateformat id="defaultDateFormat" pattern="yyyy-MM-dd HH:mm" lenient="true"/> <bean id="jobDetailTemplate" abstract="true"> <property name="dateFormat"> <!-- as an inner bean --> <myns:dateformat pattern="HH:mm MM-dd-yyyy"/> </property> </bean> </beans> B.7. Meatier examples Find below some much meatier examples of custom XML extensions. B.7.1. Nesting custom tags within custom tags This example illustrates how you might go about writing the various artifacts required to satisfy a target of the following configuration: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:foo="http://www.foo.com/schema/component" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.foo.com/schema/component http://www.foo.com/schema/component/component.xsd"> <foo:component id="bionic-family" name="Bionic-1"> <foo:component name="Sport-1"/> <foo:component name="Rock-1"/> </foo:component> </beans> The above configuration actually nests custom extensions within each other. The class that is actually configured by the above <foo:component/> element is the Component class (shown directly below). Notice how the Component class does not expose a setter method for the 'components' property; this makes it hard (or rather impossible) to configure a bean definition for the Component class using setter injection. package com.foo; import java.util.ArrayList; import java.util.List; public class Component { private String name; private List components = new ArrayList(); // mmm, there is no setter method for the 'components' public void addComponent(Component component) { this.components.add(component); Spring Framework (2.5.6) 552
  • 553. Extensible XML authoring } public List getComponents() { return components; } public String getName() { return name; } public void setName(String name) { this.name = name; } } The typical solution to this issue is to create a custom FactoryBean that exposes a setter property for the 'components' property. package com.foo; import org.springframework.beans.factory.FactoryBean; import java.util.Iterator; import java.util.List; public class ComponentFactoryBean implements FactoryBean { private Component parent; private List children; public void setParent(Component parent) { this.parent = parent; } public void setChildren(List children) { this.children = children; } public Object getObject() throws Exception { if (this.children != null && this.children.size() > 0) { for (Iterator it = children.iterator(); it.hasNext();) { Component childComponent = (Component) it.next(); this.parent.addComponent(childComponent); } } return this.parent; } public Class getObjectType() { return Component.class; } public boolean isSingleton() { return true; } } This is all very well, and does work nicely, but exposes a lot of Spring plumbing to the end user. What we are going to do is write a custom extension that hides away all of this Spring plumbing. If we stick to the steps described previously, we'll start off by creating the XSD schema to define the structure of our custom tag. <?xml version="1.0" encoding="UTF-8" standalone="no"?> <xsd:schema xmlns="http://www.foo.com/schema/component" xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.foo.com/schema/component" elementFormDefault="qualified" attributeFormDefault="unqualified"> <xsd:element name="component"> <xsd:complexType> <xsd:choice minOccurs="0" maxOccurs="unbounded"> <xsd:element ref="component"/> Spring Framework (2.5.6) 553
  • 554. Extensible XML authoring </xsd:choice> <xsd:attribute name="id" type="xsd:ID"/> <xsd:attribute name="name" use="required" type="xsd:string"/> </xsd:complexType> </xsd:element> </xsd:schema> We'll then create a custom NamespaceHandler. package com.foo; import org.springframework.beans.factory.xml.NamespaceHandlerSupport; public class ComponentNamespaceHandler extends NamespaceHandlerSupport { public void init() { registerBeanDefinitionParser("component", new ComponentBeanDefinitionParser()); } } Next up is the custom BeanDefinitionParser. Remember that what we are creating is a BeanDefinition describing a ComponentFactoryBean. package com.foo; import org.springframework.beans.factory.support.AbstractBeanDefinition; import org.springframework.beans.factory.support.BeanDefinitionBuilder; import org.springframework.beans.factory.support.ManagedList; import org.springframework.beans.factory.xml.AbstractBeanDefinitionParser; import org.springframework.beans.factory.xml.ParserContext; import org.springframework.util.xml.DomUtils; import org.w3c.dom.Element; import java.util.List; public class ComponentBeanDefinitionParser extends AbstractBeanDefinitionParser { protected AbstractBeanDefinition parseInternal(Element element, ParserContext parserContext) { BeanDefinitionBuilder factory = BeanDefinitionBuilder.rootBeanDefinition(ComponentFactoryBean.class); BeanDefinitionBuilder parent = parseComponent(element); factory.addPropertyValue("parent", parent.getBeanDefinition()); List childElements = DomUtils.getChildElementsByTagName(element, "component"); if (childElements != null && childElements.size() > 0) { parseChildComponents(childElements, factory); } return factory.getBeanDefinition(); } private static BeanDefinitionBuilder parseComponent(Element element) { BeanDefinitionBuilder component = BeanDefinitionBuilder.rootBeanDefinition(Component.class); component.addPropertyValue("name", element.getAttribute("name")); return component; } private static void parseChildComponents(List childElements, BeanDefinitionBuilder factory) { ManagedList children = new ManagedList(childElements.size()); for (int i = 0; i < childElements.size(); ++i) { Element childElement = (Element) childElements.get(i); BeanDefinitionBuilder child = parseComponent(childElement); children.add(child.getBeanDefinition()); } factory.addPropertyValue("children", children); } } Lastly, the various artifacts need to be registered with the Spring XML infrastructure. # in 'META-INF/spring.handlers' http://www.foo.com/schema/component=com.foo.ComponentNamespaceHandler Spring Framework (2.5.6) 554
  • 555. Extensible XML authoring # in 'META-INF/spring.schemas' http://www.foo.com/schema/component/component.xsd=com/foo/component.xsd B.7.2. Custom attributes on 'normal' elements Writing your own custom parser and the associated artifacts isn't hard, but sometimes it is not the right thing to do. Consider the scenario where you need to add metadata to already existing bean definitions. In this case you certainly don't want to have to go off and write your own entire custom extension; rather you just want to add an additional attribute to the existing bean definition element. By way of another example, let's say that the service class that you are defining a bean definition for a service object that will (unknown to it) be accessing a clustered JCache, and you want to ensure that the named JCache instance is eagerly started within the surrounding cluster: <bean id="checkingAccountService" class="com.foo.DefaultCheckingAccountService" jcache:cache-name="checking.account"> <!-- other dependencies here... --> </bean> What we are going to do here is create another BeanDefinition when the 'jcache:cache-name' attribute is parsed; this BeanDefinition will then initialize the named JCache for us. We will also modify the existing BeanDefinition for the 'checkingAccountService' so that it will have a dependency on this new JCache-initializing BeanDefinition. package com.foo; public class JCacheInitializer { private String name; public JCacheInitializer(String name) { this.name = name; } public void initialize() { // lots of JCache API calls to initialize the named cache... } } Now onto the custom extension. Firstly, the authoring of the XSD schema describing the custom attribute (quite easy in this case). <?xml version="1.0" encoding="UTF-8" standalone="no"?> <xsd:schema xmlns="http://www.foo.com/schema/jcache" xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.foo.com/schema/jcache" elementFormDefault="qualified"> <xsd:attribute name="cache-name" type="xsd:string"/> </xsd:schema> Next, the associated NamespaceHandler. package com.foo; import org.springframework.beans.factory.xml.NamespaceHandlerSupport; public class JCacheNamespaceHandler extends NamespaceHandlerSupport { public void init() { Spring Framework (2.5.6) 555
  • 556. Extensible XML authoring super.registerBeanDefinitionDecoratorForAttribute("cache-name", new JCacheInitializingBeanDefinitionDecorator()); } } Next, the parser. Note that in this case, because we are going to be parsing an XML attribute, we write a BeanDefinitionDecorator rather than a BeanDefinitionParser. package com.foo; import org.springframework.beans.factory.config.BeanDefinitionHolder; import org.springframework.beans.factory.support.AbstractBeanDefinition; import org.springframework.beans.factory.support.BeanDefinitionBuilder; import org.springframework.beans.factory.xml.BeanDefinitionDecorator; import org.springframework.beans.factory.xml.ParserContext; import org.w3c.dom.Attr; import org.w3c.dom.Node; import java.util.ArrayList; import java.util.Arrays; import java.util.List; public class JCacheInitializingBeanDefinitionDecorator implements BeanDefinitionDecorator { private static final String[] EMPTY_STRING_ARRAY = new String[0]; public BeanDefinitionHolder decorate( Node source, BeanDefinitionHolder holder, ParserContext ctx) { String initializerBeanName = registerJCacheInitializer(source, ctx); createDependencyOnJCacheInitializer(holder, initializerBeanName); return holder; } private void createDependencyOnJCacheInitializer(BeanDefinitionHolder holder, String initializerBeanName) { AbstractBeanDefinition definition = ((AbstractBeanDefinition) holder.getBeanDefinition()); String[] dependsOn = definition.getDependsOn(); if (dependsOn == null) { dependsOn = new String[]{initializerBeanName}; } else { List dependencies = new ArrayList(Arrays.asList(dependsOn)); dependencies.add(initializerBeanName); dependsOn = (String[]) dependencies.toArray(EMPTY_STRING_ARRAY); } definition.setDependsOn(dependsOn); } private String registerJCacheInitializer(Node source, ParserContext ctx) { String cacheName = ((Attr) source).getValue(); String beanName = cacheName + "-initializer"; if (!ctx.getRegistry().containsBeanDefinition(beanName)) { BeanDefinitionBuilder initializer = BeanDefinitionBuilder.rootBeanDefinition(JCacheInitializer.class); initializer.addConstructorArg(cacheName); ctx.getRegistry().registerBeanDefinition(beanName, initializer.getBeanDefinition()); } return beanName; } } Lastly, the various artifacts need to be registered with the Spring XML infrastructure. # in 'META-INF/spring.handlers' http://www.foo.com/schema/jcache=com.foo.JCacheNamespaceHandler # in 'META-INF/spring.schemas' http://www.foo.com/schema/jcache/jcache.xsd=com/foo/jcache.xsd B.8. Further Resources Spring Framework (2.5.6) 556
  • 557. Extensible XML authoring Find below links to further resources concerning XML Schema and the extensible XML support described in this chapter. • The XML Schema Part 1: Structures Second Edition • The XML Schema Part 2: Datatypes Second Edition Spring Framework (2.5.6) 557
  • 558. Appendix C. spring-beans-2.0.dtd <!-- Spring XML Beans DTD, version 2.0 Authors: Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu, Rob Harrop This defines a simple and consistent way of creating a namespace of JavaBeans objects, managed by a Spring BeanFactory, read by XmlBeanDefinitionReader (with DefaultBeanDefinitionDocumentReader). This document type is used by most Spring functionality, including web application contexts, which are based on bean factories. Each "bean" element in this document defines a JavaBean. Typically the bean class is specified, along with JavaBean properties and/or constructor arguments. A bean instance can be a "singleton" (shared instance) or a "prototype" (independent instance). Further scopes can be provided by extended bean factories, for example in a web environment. References among beans are supported, that is, setting a JavaBean property or a constructor argument to refer to another bean in the same factory (or an ancestor factory). As alternative to bean references, "inner bean definitions" can be used. Singleton flags of such inner bean definitions are effectively ignored: Inner beans are typically anonymous prototypes. There is also support for lists, sets, maps, and java.util.Properties as bean property types or constructor argument types. For simple purposes, this DTD is sufficient. As of Spring 2.0, XSD-based bean definitions are supported as more powerful alternative. XML documents that conform to this DTD should declare the following doctype: <!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN" "http://www.springframework.org/dtd/spring-beans-2.0.dtd"> --> <!-- The document root. A document can contain bean definitions only, imports only, or a mixture of both (typically with imports first). --> <!ELEMENT beans ( description?, (import | alias | bean)* )> <!-- Default values for all bean definitions. Can be overridden at the "bean" level. See those attribute definitions for details. --> <!ATTLIST beans default-lazy-init (true | false) "false"> <!ATTLIST beans default-autowire (no | byName | byType | constructor | autodetect) "no"> <!ATTLIST beans default-dependency-check (none | objects | simple | all) "none"> <!ATTLIST beans default-init-method CDATA #IMPLIED> <!ATTLIST beans default-destroy-method CDATA #IMPLIED> <!ATTLIST beans default-merge (true | false) "false"> <!-- Element containing informative text describing the purpose of the enclosing element. Always optional. Used primarily for user documentation of XML bean definition documents. --> <!ELEMENT description (#PCDATA)> <!-- Specifies an XML bean definition resource to import. --> <!ELEMENT import EMPTY> Spring Framework (2.5.6) 558
  • 559. spring-beans-2.0.dtd <!-- The relative resource location of the XML bean definition file to import, for example "myImport.xml" or "includes/myImport.xml" or "../myImport.xml". --> <!ATTLIST import resource CDATA #REQUIRED> <!-- Defines an alias for a bean, which can reside in a different definition file. --> <!ELEMENT alias EMPTY> <!-- The name of the bean to define an alias for. --> <!ATTLIST alias name CDATA #REQUIRED> <!-- The alias name to define for the bean. --> <!ATTLIST alias alias CDATA #REQUIRED> <!-- Allows for arbitrary metadata to be attached to a bean definition. --> <!ELEMENT meta EMPTY> <!-- Specifies the key name of the metadata parameter being defined. --> <!ATTLIST meta key CDATA #REQUIRED> <!-- Specifies the value of the metadata parameter being defined as a String. --> <!ATTLIST meta value CDATA #REQUIRED> <!-- Defines a single (usually named) bean. A bean definition may contain nested tags for constructor arguments, property values, lookup methods, and replaced methods. Mixing constructor injection and setter injection on the same bean is explicitly supported. --> <!ELEMENT bean ( description?, (meta | constructor-arg | property | lookup-method | replaced-method)* )> <!-- Beans can be identified by an id, to enable reference checking. There are constraints on a valid XML id: if you want to reference your bean in Java code using a name that's illegal as an XML id, use the optional "name" attribute. If neither is given, the bean class name is used as id (with an appended counter like "#2" if there is already a bean with that name). --> <!ATTLIST bean id ID #IMPLIED> <!-- Optional. Can be used to create one or more aliases illegal in an id. Multiple aliases can be separated by any number of spaces, commas, or semi-colons (or indeed any mixture of the three). --> <!ATTLIST bean name CDATA #IMPLIED> <!-- Each bean definition must specify the fully qualified name of the class, except if it pure serves as parent for child bean definitions. --> <!ATTLIST bean class CDATA #IMPLIED> <!-- Optionally specify a parent bean definition. Will use the bean class of the parent if none specified, but can Spring Framework (2.5.6) 559
  • 560. spring-beans-2.0.dtd also override it. In the latter case, the child bean class must be compatible with the parent, i.e. accept the parent's property values and constructor argument values, if any. A child bean definition will inherit constructor argument values, property values and method overrides from the parent, with the option to add new values. If init method, destroy method, factory bean and/or factory method are specified, they will override the corresponding parent settings. The remaining settings will always be taken from the child definition: depends on, autowire mode, dependency check, scope, lazy init. --> <!ATTLIST bean parent CDATA #IMPLIED> <!-- The scope of this bean: typically "singleton" (one shared instance, which will be returned by all calls to getBean() with the id), or "prototype" (independent instance resulting from each call to getBean(). Default is "singleton". Singletons are most commonly used, and are ideal for multi-threaded service objects. Further scopes, such as "request" or "session", might be supported by extended bean factories (for example, in a web environment). Note: This attribute will not be inherited by child bean definitions. Hence, it needs to be specified per concrete bean definition. Inner bean definitions inherit the singleton status of their containing bean definition, unless explicitly specified: The inner bean will be a singleton if the containing bean is a singleton, and a prototype if the containing bean has any other scope. --> <!ATTLIST bean scope CDATA #IMPLIED> <!-- Is this bean "abstract", i.e. not meant to be instantiated itself but rather just serving as parent for concrete child bean definitions. Default is "false". Specify "true" to tell the bean factory to not try to instantiate that particular bean in any case. Note: This attribute will not be inherited by child bean definitions. Hence, it needs to be specified per abstract bean definition. --> <!ATTLIST bean abstract (true | false) #IMPLIED> <!-- If this bean should be lazily initialized. If false, it will get instantiated on startup by bean factories that perform eager initialization of singletons. Note: This attribute will not be inherited by child bean definitions. Hence, it needs to be specified per concrete bean definition. --> <!ATTLIST bean lazy-init (true | false | default) "default"> <!-- Indicates whether or not this bean should be considered when looking for candidates to satisfy another beans autowiring requirements. --> <!ATTLIST bean autowire-candidate (true | false) #IMPLIED> <!-- Optional attribute controlling whether to "autowire" bean properties. This is an automagical process in which bean references don't need to be coded explicitly in the XML bean definition file, but Spring works out dependencies. There are 5 modes: 1. "no" The traditional Spring default. No automagical wiring. Bean references must be defined in the XML file via the <ref> element. We recommend this in most cases as it makes documentation more explicit. 2. "byName" Autowiring by property name. If a bean of class Cat exposes a dog property, Spring will try to set this to the value of the bean "dog" in the current factory. Spring Framework (2.5.6) 560
  • 561. spring-beans-2.0.dtd If there is no matching bean by name, nothing special happens; use dependency-check="objects" to raise an error in that case. 3. "byType" Autowiring if there is exactly one bean of the property type in the bean factory. If there is more than one, a fatal error is raised, and you can't use byType autowiring for that bean. If there is none, nothing special happens; use dependency-check="objects" to raise an error in that case. 4. "constructor" Analogous to "byType" for constructor arguments. If there isn't exactly one bean of the constructor argument type in the bean factory, a fatal error is raised. 5. "autodetect" Chooses "constructor" or "byType" through introspection of the bean class. If a default constructor is found, "byType" gets applied. The latter two are similar to PicoContainer and make bean factories simple to configure for small namespaces, but doesn't work as well as standard Spring behaviour for bigger applications. Note that explicit dependencies, i.e. "property" and "constructor-arg" elements, always override autowiring. Autowire behavior can be combined with dependency checking, which will be performed after all autowiring has been completed. Note: This attribute will not be inherited by child bean definitions. Hence, it needs to be specified per concrete bean definition. --> <!ATTLIST bean autowire (no | byName | byType | constructor | autodetect | default) "default"> <!-- Optional attribute controlling whether to check whether all this beans dependencies, expressed in its properties, are satisfied. Default is no dependency checking. "simple" type dependency checking includes primitives and String; "objects" includes collaborators (other beans in the factory); "all" includes both types of dependency checking. Note: This attribute will not be inherited by child bean definitions. Hence, it needs to be specified per concrete bean definition. --> <!ATTLIST bean dependency-check (none | objects | simple | all | default) "default"> <!-- The names of the beans that this bean depends on being initialized. The bean factory will guarantee that these beans get initialized before. Note that dependencies are normally expressed through bean properties or constructor arguments. This property should just be necessary for other kinds of dependencies like statics (*ugh*) or database preparation on startup. Note: This attribute will not be inherited by child bean definitions. Hence, it needs to be specified per concrete bean definition. --> <!ATTLIST bean depends-on CDATA #IMPLIED> <!-- Optional attribute for the name of the custom initialization method to invoke after setting bean properties. The method must have no arguments, but may throw any exception. --> <!ATTLIST bean init-method CDATA #IMPLIED> <!-- Optional attribute for the name of the custom destroy method to invoke on bean factory shutdown. The method must have no arguments, but may throw any exception. Note: Only invoked on beans whose lifecycle is under full control of the factory - which is always the case for singletons, but not guaranteed for any other scope. --> <!ATTLIST bean destroy-method CDATA #IMPLIED> <!-- Optional attribute specifying the name of a factory method to use to Spring Framework (2.5.6) 561
  • 562. spring-beans-2.0.dtd create this object. Use constructor-arg elements to specify arguments to the factory method, if it takes arguments. Autowiring does not apply to factory methods. If the "class" attribute is present, the factory method will be a static method on the class specified by the "class" attribute on this bean definition. Often this will be the same class as that of the constructed object - for example, when the factory method is used as an alternative to a constructor. However, it may be on a different class. In that case, the created object will *not* be of the class specified in the "class" attribute. This is analogous to FactoryBean behavior. If the "factory-bean" attribute is present, the "class" attribute is not used, and the factory method will be an instance method on the object returned from a getBean call with the specified bean name. The factory bean may be defined as a singleton or a prototype. The factory method can have any number of arguments. Autowiring is not supported. Use indexed constructor-arg elements in conjunction with the factory-method attribute. Setter Injection can be used in conjunction with a factory method. Method Injection cannot, as the factory method returns an instance, which will be used when the container creates the bean. --> <!ATTLIST bean factory-method CDATA #IMPLIED> <!-- Alternative to class attribute for factory-method usage. If this is specified, no class attribute should be used. This should be set to the name of a bean in the current or ancestor factories that contains the relevant factory method. This allows the factory itself to be configured using Dependency Injection, and an instance (rather than static) method to be used. --> <!ATTLIST bean factory-bean CDATA #IMPLIED> <!-- Bean definitions can specify zero or more constructor arguments. This is an alternative to "autowire constructor". Arguments correspond to either a specific index of the constructor argument list or are supposed to be matched generically by type. Note: A single generic argument value will just be used once, rather than potentially matched multiple times (as of Spring 1.1). constructor-arg elements are also used in conjunction with the factory-method element to construct beans using static or instance factory methods. --> <!ELEMENT constructor-arg ( description?, (bean | ref | idref | value | null | list | set | map | props)? )> <!-- The constructor-arg tag can have an optional index attribute, to specify the exact index in the constructor argument list. Only needed to avoid ambiguities, e.g. in case of 2 arguments of the same type. --> <!ATTLIST constructor-arg index CDATA #IMPLIED> <!-- The constructor-arg tag can have an optional type attribute, to specify the exact type of the constructor argument. Only needed to avoid ambiguities, e.g. in case of 2 single argument constructors that can both be converted from a String. --> <!ATTLIST constructor-arg type CDATA #IMPLIED> <!-- A short-cut alternative to a child element "ref bean=". --> <!ATTLIST constructor-arg ref CDATA #IMPLIED> <!-- A short-cut alternative to a child element "value". --> Spring Framework (2.5.6) 562
  • 563. spring-beans-2.0.dtd <!ATTLIST constructor-arg value CDATA #IMPLIED> <!-- Bean definitions can have zero or more properties. Property elements correspond to JavaBean setter methods exposed by the bean classes. Spring supports primitives, references to other beans in the same or related factories, lists, maps and properties. --> <!ELEMENT property ( description?, meta*, (bean | ref | idref | value | null | list | set | map | props)? )> <!-- The property name attribute is the name of the JavaBean property. This follows JavaBean conventions: a name of "age" would correspond to setAge()/optional getAge() methods. --> <!ATTLIST property name CDATA #REQUIRED> <!-- A short-cut alternative to a child element "ref bean=". --> <!ATTLIST property ref CDATA #IMPLIED> <!-- A short-cut alternative to a child element "value". --> <!ATTLIST property value CDATA #IMPLIED> <!-- A lookup method causes the IoC container to override the given method and return the bean with the name given in the bean attribute. This is a form of Method Injection. It's particularly useful as an alternative to implementing the BeanFactoryAware interface, in order to be able to make getBean() calls for non-singleton instances at runtime. In this case, Method Injection is a less invasive alternative. --> <!ELEMENT lookup-method EMPTY> <!-- Name of a lookup method. This method should take no arguments. --> <!ATTLIST lookup-method name CDATA #IMPLIED> <!-- Name of the bean in the current or ancestor factories that the lookup method should resolve to. Often this bean will be a prototype, in which case the lookup method will return a distinct instance on every invocation. This is useful for single-threaded objects. --> <!ATTLIST lookup-method bean CDATA #IMPLIED> <!-- Similar to the lookup method mechanism, the replaced-method element is used to control IoC container method overriding: Method Injection. This mechanism allows the overriding of a method with arbitrary code. --> <!ELEMENT replaced-method ( (arg-type)* )> <!-- Name of the method whose implementation should be replaced by the IoC container. If this method is not overloaded, there's no need to use arg-type subelements. If this method is overloaded, arg-type subelements must be used for all override definitions for the method. --> <!ATTLIST replaced-method name CDATA #IMPLIED> <!-- Bean name of an implementation of the MethodReplacer interface in the current or ancestor factories. This may be a singleton or prototype bean. If it's a prototype, a new instance will be used for each method replacement. Singleton usage is the norm. Spring Framework (2.5.6) 563
  • 564. spring-beans-2.0.dtd --> <!ATTLIST replaced-method replacer CDATA #IMPLIED> <!-- Subelement of replaced-method identifying an argument for a replaced method in the event of method overloading. --> <!ELEMENT arg-type (#PCDATA)> <!-- Specification of the type of an overloaded method argument as a String. For convenience, this may be a substring of the FQN. E.g. all the following would match "java.lang.String": - java.lang.String - String - Str As the number of arguments will be checked also, this convenience can often be used to save typing. --> <!ATTLIST arg-type match CDATA #IMPLIED> <!-- Defines a reference to another bean in this factory or an external factory (parent or included factory). --> <!ELEMENT ref EMPTY> <!-- References must specify a name of the target bean. The "bean" attribute can reference any name from any bean in the context, to be checked at runtime. Local references, using the "local" attribute, have to use bean ids; they can be checked by this DTD, thus should be preferred for references within the same bean factory XML file. --> <!ATTLIST ref bean CDATA #IMPLIED> <!ATTLIST ref local IDREF #IMPLIED> <!ATTLIST ref parent CDATA #IMPLIED> <!-- Defines a string property value, which must also be the id of another bean in this factory or an external factory (parent or included factory). While a regular 'value' element could instead be used for the same effect, using idref in this case allows validation of local bean ids by the XML parser, and name completion by supporting tools. --> <!ELEMENT idref EMPTY> <!-- ID refs must specify a name of the target bean. The "bean" attribute can reference any name from any bean in the context, potentially to be checked at runtime by bean factory implementations. Local references, using the "local" attribute, have to use bean ids; they can be checked by this DTD, thus should be preferred for references within the same bean factory XML file. --> <!ATTLIST idref bean CDATA #IMPLIED> <!ATTLIST idref local IDREF #IMPLIED> <!-- Contains a string representation of a property value. The property may be a string, or may be converted to the required type using the JavaBeans PropertyEditor machinery. This makes it possible for application developers to write custom PropertyEditor implementations that can convert strings to arbitrary target objects. Note that this is recommended for simple objects only. Configure more complex objects by populating JavaBean properties with references to other beans. --> <!ELEMENT value (#PCDATA)> <!-- Spring Framework (2.5.6) 564
  • 565. spring-beans-2.0.dtd The value tag can have an optional type attribute, to specify the exact type that the value should be converted to. Only needed if the type of the target property or constructor argument is too generic: for example, in case of a collection element. --> <!ATTLIST value type CDATA #IMPLIED> <!-- Denotes a Java null value. Necessary because an empty "value" tag will resolve to an empty String, which will not be resolved to a null value unless a special PropertyEditor does so. --> <!ELEMENT null (#PCDATA)> <!-- A list can contain multiple inner bean, ref, collection, or value elements. Java lists are untyped, pending generics support in Java 1.5, although references will be strongly typed. A list can also map to an array type. The necessary conversion is automatically performed by the BeanFactory. --> <!ELEMENT list ( (bean | ref | idref | value | null | list | set | map | props)* )> <!-- Enable/disable merging for collections when using parent/child beans. --> <!ATTLIST list merge (true | false | default) "default"> <!-- Specify the default Java type for nested values. --> <!ATTLIST list value-type CDATA #IMPLIED> <!-- A set can contain multiple inner bean, ref, collection, or value elements. Java sets are untyped, pending generics support in Java 1.5, although references will be strongly typed. --> <!ELEMENT set ( (bean | ref | idref | value | null | list | set | map | props)* )> <!-- Enable/disable merging for collections when using parent/child beans. --> <!ATTLIST set merge (true | false | default) "default"> <!-- Specify the default Java type for nested values. --> <!ATTLIST set value-type CDATA #IMPLIED> <!-- A Spring map is a mapping from a string key to object. Maps may be empty. --> <!ELEMENT map ( (entry)* )> <!-- Enable/disable merging for collections when using parent/child beans. --> <!ATTLIST map merge (true | false | default) "default"> <!-- Specify the default Java type for nested entry keys. --> <!ATTLIST map key-type CDATA #IMPLIED> <!-- Specify the default Java type for nested entry values. Spring Framework (2.5.6) 565
  • 566. spring-beans-2.0.dtd --> <!ATTLIST map value-type CDATA #IMPLIED> <!-- A map entry can be an inner bean, ref, value, or collection. The key of the entry is given by the "key" attribute or child element. --> <!ELEMENT entry ( key?, (bean | ref | idref | value | null | list | set | map | props)? )> <!-- Each map element must specify its key as attribute or as child element. A key attribute is always a String value. --> <!ATTLIST entry key CDATA #IMPLIED> <!-- A short-cut alternative to a "key" element with a "ref bean=" child element. --> <!ATTLIST entry key-ref CDATA #IMPLIED> <!-- A short-cut alternative to a child element "value". --> <!ATTLIST entry value CDATA #IMPLIED> <!-- A short-cut alternative to a child element "ref bean=". --> <!ATTLIST entry value-ref CDATA #IMPLIED> <!-- A key element can contain an inner bean, ref, value, or collection. --> <!ELEMENT key ( (bean | ref | idref | value | null | list | set | map | props) )> <!-- Props elements differ from map elements in that values must be strings. Props may be empty. --> <!ELEMENT props ( (prop)* )> <!-- Enable/disable merging for collections when using parent/child beans. --> <!ATTLIST props merge (true | false | default) "default"> <!-- Element content is the string value of the property. Note that whitespace is trimmed off to avoid unwanted whitespace caused by typical XML formatting. --> <!ELEMENT prop (#PCDATA)> <!-- Each property element must specify its key. --> <!ATTLIST prop key CDATA #REQUIRED> Spring Framework (2.5.6) 566
  • 567. Appendix D. spring.tld D.1. Introduction One of the view technologies you can use with the Spring Framework is Java Server Pages (JSPs). To help you implement views using Java Server Pages the Spring Framework provides you with some tags for evaluating errors, setting themes and outputting internationalized messages. Please note that the various tags generated by this form tag library are compliant with the XHTML-1.0-Strict specification and attendant DTD. This appendix describes the spring.tld tag library. • Section D.2, “The bind tag” • Section D.3, “The escapeBody tag” • Section D.4, “The hasBindErrors tag” • Section D.5, “The htmlEscape tag” • Section D.6, “The message tag” • Section D.7, “The nestedPath tag” • Section D.8, “The theme tag” • Section D.9, “The transform tag” D.2. The bind tag Provides BindStatus object for the given bind path. The HTML escaping flag participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape" context-param in web.xml). Table D.1. Attributes Attribute Required? Runtime Expression? htmlEscape false true ignoreNestedPath false true path true true D.3. The escapeBody tag Spring Framework (2.5.6) 567
  • 568. spring.tld Escapes its enclosed body content, applying HTML escaping and/or JavaScript escaping. The HTML escaping flag participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape" context-param in web.xml). Table D.2. Attributes Attribute Required? Runtime Expression? htmlEscape false true javaScriptEscape false true D.4. The hasBindErrors tag Provides Errors instance in case of bind errors. The HTML escaping flag participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape" context-param in web.xml). Table D.3. Attributes Attribute Required? Runtime Expression? htmlEscape false true name true true D.5. The htmlEscape tag Sets default HTML escape value for the current page. Overrides a "defaultHtmlEscape" context-param in web.xml, if any. Table D.4. Attributes Attribute Required? Runtime Expression? defaultHtmlEscape true true D.6. The message tag Retrieves the message with the given code, or text if code isn't resolvable. The HTML escaping flag participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape" context-param in web.xml). Spring Framework (2.5.6) 568
  • 569. spring.tld Table D.5. Attributes Attribute Required? Runtime Expression? arguments false true argumentSeparator false true code false true htmlEscape false true javaScriptEscape false true message false true scope false true text false true var false true D.7. The nestedPath tag Sets a nested path to be used by the bind tag's path. Table D.6. Attributes Attribute Required? Runtime Expression? path true true D.8. The theme tag Retrieves the theme message with the given code, or text if code isn't resolvable. The HTML escaping flag participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape" context-param in web.xml). Table D.7. Attributes Attribute Required? Runtime Expression? arguments false true Spring Framework (2.5.6) 569
  • 570. spring.tld Attribute Required? Runtime Expression? argumentSeparator false true code false true htmlEscape false true javaScriptEscape false true message false true scope false true text false true var false true D.9. The transform tag Provides transformation of variables to Strings, using an appropriate custom PropertyEditor from BindTag (can only be used inside BindTag). The HTML escaping flag participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a 'defaultHtmlEscape' context-param in web.xml). Table D.8. Attributes Attribute Required? Runtime Expression? htmlEscape false true scope false true value true true var false true Spring Framework (2.5.6) 570
  • 571. Appendix E. spring-form.tld E.1. Introduction One of the view technologies you can use with the Spring Framework is Java Server Pages (JSPs). To help you implement views using Java Server Pages the Spring Framework provides you with some tags for evaluating errors, setting themes and outputting internationalized messages. Please note that the various tags generated by this form tag library are compliant with the XHTML-1.0-Strict specification and attendant DTD. This appendix describes the spring-form.tld tag library. • Section E.2, “The checkbox tag” • Section E.3, “The checkboxes tag” • Section E.4, “The errors tag” • Section E.5, “The form tag” • Section E.6, “The hidden tag” • Section E.7, “The input tag” • Section E.8, “The label tag” • Section E.9, “The option tag” • Section E.10, “The options tag” • Section E.11, “The password tag” • Section E.12, “The radiobutton tag” • Section E.13, “The radiobuttons tag” • Section E.14, “The select tag” • Section E.15, “The textarea tag” E.2. The checkbox tag Renders an HTML 'input' tag with type 'checkbox'. Table E.1. Attributes Attribute Required? Runtime Expression? accesskey false true Spring Framework (2.5.6) 571
  • 572. spring-form.tld Attribute Required? Runtime Expression? cssClass false true cssErrorClass false true cssStyle false true dir false true disabled false true htmlEscape false true id false true label false true lang false true onblur false true onchange false true onclick false true ondblclick false true onfocus false true onkeydown false true onkeypress false true onkeyup false true onmousedown false true onmousemove false true onmouseout false true onmouseover false true onmouseup false true Spring Framework (2.5.6) 572
  • 573. spring-form.tld Attribute Required? Runtime Expression? path true true tabindex false true title false true value false true E.3. The checkboxes tag Renders multiple HTML 'input' tags with type 'checkbox'. Table E.2. Attributes Attribute Required? Runtime Expression? accesskey false true cssClass false true cssErrorClass false true cssStyle false true delimiter false true dir false true disabled false true element false true htmlEscape false true id false true itemLabel false true items true true itemValue false true Spring Framework (2.5.6) 573
  • 574. spring-form.tld Attribute Required? Runtime Expression? lang false true onblur false true onchange false true onclick false true ondblclick false true onfocus false true onkeydown false true onkeypress false true onkeyup false true onmousedown false true onmousemove false true onmouseout false true onmouseover false true onmouseup false true path true true tabindex false true title false true E.4. The errors tag Renders field errors in an HTML 'span' tag. Table E.3. Attributes Attribute Required? Runtime Expression? Spring Framework (2.5.6) 574
  • 575. spring-form.tld Attribute Required? Runtime Expression? cssClass false true cssStyle false true delimiter false true dir false true element false true htmlEscape false true id false true lang false true onclick false true ondblclick false true onkeydown false true onkeypress false true onkeyup false true onmousedown false true onmousemove false true onmouseout false true onmouseover false true onmouseup false true path false true tabindex false true title false true Spring Framework (2.5.6) 575
  • 576. spring-form.tld E.5. The form tag Renders an HTML 'form' tag and exposes a binding path to inner tags for binding. Table E.4. Attributes Attribute Required? Runtime Expression? acceptCharset false true action false true autocomplete false true commandName false true cssClass false true cssStyle false true dir false true enctype false true htmlEscape false true id false true lang false true method false true modelAttribute false true name false true onclick false true ondblclick false true onkeydown false true onkeypress false true onkeyup false true Spring Framework (2.5.6) 576
  • 577. spring-form.tld Attribute Required? Runtime Expression? onmousedown false true onmousemove false true onmouseout false true onmouseover false true onmouseup false true onreset false true onsubmit false true target false true title false true E.6. The hidden tag Renders an HTML 'input' tag with type 'hidden' using the bound value. Table E.5. Attributes Attribute Required? Runtime Expression? htmlEscape false true id false true path true true E.7. The input tag Renders an HTML 'input' tag with type 'text' using the bound value. Table E.6. Attributes Attribute Required? Runtime Expression? accesskey false true Spring Framework (2.5.6) 577
  • 578. spring-form.tld Attribute Required? Runtime Expression? alt false true autocomplete false true cssClass false true cssErrorClass false true cssStyle false true dir false true disabled false true htmlEscape false true id false true lang false true maxlength false true onblur false true onchange false true onclick false true ondblclick false true onfocus false true onkeydown false true onkeypress false true onkeyup false true onmousedown false true onmousemove false true Spring Framework (2.5.6) 578
  • 579. spring-form.tld Attribute Required? Runtime Expression? onmouseout false true onmouseover false true onmouseup false true onselect false true path true true readonly false true size false true tabindex false true title false true E.8. The label tag Renders a form field label in an HTML 'label' tag. Table E.7. Attributes Attribute Required? Runtime Expression? cssClass false true cssErrorClass false true cssStyle false true dir false true for false true htmlEscape false true id false true lang false true Spring Framework (2.5.6) 579
  • 580. spring-form.tld Attribute Required? Runtime Expression? onclick false true ondblclick false true onkeydown false true onkeypress false true onkeyup false true onmousedown false true onmousemove false true onmouseout false true onmouseover false true onmouseup false true path true true tabindex false true title false true E.9. The option tag Renders a single HTML 'option'. Sets 'selected' as appropriate based on bound value. Table E.8. Attributes Attribute Required? Runtime Expression? cssClass false true cssErrorClass false true cssStyle false true dir false true Spring Framework (2.5.6) 580
  • 581. spring-form.tld Attribute Required? Runtime Expression? disabled false true htmlEscape false true id false true label false true lang false true onclick false true ondblclick false true onkeydown false true onkeypress false true onkeyup false true onmousedown false true onmousemove false true onmouseout false true onmouseover false true onmouseup false true tabindex false true title false true value true true E.10. The options tag Renders a list of HTML 'option' tags. Sets 'selected' as appropriate based on bound value. Table E.9. Attributes Spring Framework (2.5.6) 581
  • 582. spring-form.tld Attribute Required? Runtime Expression? cssClass false true cssErrorClass false true cssStyle false true dir false true disabled false true htmlEscape false true id false true itemLabel false true items true true itemValue false true lang false true onclick false true ondblclick false true onkeydown false true onkeypress false true onkeyup false true onmousedown false true onmousemove false true onmouseout false true onmouseover false true onmouseup false true tabindex false true Spring Framework (2.5.6) 582
  • 583. spring-form.tld Attribute Required? Runtime Expression? title false true E.11. The password tag Renders an HTML 'input' tag with type 'password' using the bound value. Table E.10. Attributes Attribute Required? Runtime Expression? accesskey false true alt false true autocomplete false true cssClass false true cssErrorClass false true cssStyle false true dir false true disabled false true htmlEscape false true id false true lang false true maxlength false true onblur false true onchange false true onclick false true ondblclick false true Spring Framework (2.5.6) 583
  • 584. spring-form.tld Attribute Required? Runtime Expression? onfocus false true onkeydown false true onkeypress false true onkeyup false true onmousedown false true onmousemove false true onmouseout false true onmouseover false true onmouseup false true onselect false true path true true readonly false true showPassword false true size false true tabindex false true title false true E.12. The radiobutton tag Renders an HTML 'input' tag with type 'radio'. Table E.11. Attributes Attribute Required? Runtime Expression? accesskey false true Spring Framework (2.5.6) 584
  • 585. spring-form.tld Attribute Required? Runtime Expression? cssClass false true cssErrorClass false true cssStyle false true dir false true disabled false true htmlEscape false true id false true label false true lang false true onblur false true onchange false true onclick false true ondblclick false true onfocus false true onkeydown false true onkeypress false true onkeyup false true onmousedown false true onmousemove false true onmouseout false true onmouseover false true onmouseup false true Spring Framework (2.5.6) 585
  • 586. spring-form.tld Attribute Required? Runtime Expression? path true true tabindex false true title false true value false true E.13. The radiobuttons tag Renders multiple HTML 'input' tags with type 'radio'. Table E.12. Attributes Attribute Required? Runtime Expression? accesskey false true cssClass false true cssErrorClass false true cssStyle false true delimiter false true dir false true disabled false true element false true htmlEscape false true id false true itemLabel false true items true true itemValue false true Spring Framework (2.5.6) 586
  • 587. spring-form.tld Attribute Required? Runtime Expression? lang false true onblur false true onchange false true onclick false true ondblclick false true onfocus false true onkeydown false true onkeypress false true onkeyup false true onmousedown false true onmousemove false true onmouseout false true onmouseover false true onmouseup false true path true true tabindex false true title false true E.14. The select tag Renders an HTML 'select' element. Supports databinding to the selected option. Table E.13. Attributes Attribute Required? Runtime Expression? Spring Framework (2.5.6) 587
  • 588. spring-form.tld Attribute Required? Runtime Expression? accesskey false true cssClass false true cssErrorClass false true cssStyle false true dir false true disabled false true htmlEscape false true id false true itemLabel false true items false true itemValue false true lang false true multiple false true onblur false true onchange false true onclick false true ondblclick false true onfocus false true onkeydown false true onkeypress false true onkeyup false true onmousedown false true Spring Framework (2.5.6) 588
  • 589. spring-form.tld Attribute Required? Runtime Expression? onmousemove false true onmouseout false true onmouseover false true onmouseup false true path true true size false true tabindex false true title false true E.15. The textarea tag Renders an HTML 'textarea'. Table E.14. Attributes Attribute Required? Runtime Expression? accesskey false true cols false true cssClass false true cssErrorClass false true cssStyle false true dir false true disabled false true htmlEscape false true id false true Spring Framework (2.5.6) 589
  • 590. spring-form.tld Attribute Required? Runtime Expression? lang false true onblur false true onchange false true onclick false true ondblclick false true onfocus false true onkeydown false true onkeypress false true onkeyup false true onmousedown false true onmousemove false true onmouseout false true onmouseover false true onmouseup false true onselect false true path true true readonly false true rows false true tabindex false true title false true Spring Framework (2.5.6) 590