SlideShare a Scribd company logo
Sparsity Based Spectral Embedding: 
Application to Multi-Atlas 
Echocardiography Segmentation! 
Ozan Oktay, Wenzhe Shi, Jose Caballero, ! 
Kevin Keraudren, and Daniel Rueckert! 
! 
! 
! 
! 
! 
Department 
of 
Compu.ng 
Imperial 
College 
London 
Second International Workshop on! 
Sparsity Techniques in Medical Imaging! 
14th September 2014!
2! 
STMI’14 – September 2014! 
Problem Definition and Literature Review! 
Problem:! 
Left ventricle (LV) endocardium segmentation in 3D Echo 
Images ! 
! 
Motivation:! 
Estimation of clinical indices: (1) ejection fraction, ! 
(2) stroke volume, and (3) cardiac motion! 
! 
The existing work in the literature:! 
1. B-spline based active surfaces [Barbosa et al., 2013]! 
2. Statistical-shape models [Butakoff et al., 2011]! 
3. Edge based level-set segmentation [Rajpoot et al., 2011]! 
! 
RA! 
RV! 
LA! 
LV!
3! 
STMI’14 – September 2014! 
Multi-Atlas Image Segmentation! 
§ It uses the manually labeled atlases to 
segment the target organ.! 
§ It does not require any training or prior 
estimation.! 
§ It is more flexible in segmenting images 
with different left ventricle anatomy.! 
§ Successfully applied in ! 
i. Brain MRI Segmentation! 
![Aljabar et al. 2009 NeuroImage]! 
! 
ii. Cardiac MRI Segmentation ! 
! ![Isgum et al. 2009 TMI]! 
Atlas-1! 
Linear and! 
deformable 
registration! 
Propagate the labels 
& majority voting! 
Atlas-2! 
Atlas-3,4,5! 
Target! 
image!
4! 
Proposed Segmentation Framework! 
Image 
Registration! 
Segmentation 
Output! 
STMI’14 – September 2014! 
Target! 
Image! 
Speckle 
Reduction! 
Structural 
Representation! 
Atlas! 
Image! 
Speckle 
Reduction! 
Structural 
Representation!
STMI’14 – September 2014! 5! 
Patch Based Spectral Representation! 
1. Wachinger C. and Navab N.: “Entropy 
and Laplacian images: Structural 
representations for multi-modal 
registration” ! 
Medical Image Analysis 2012. ! 
20 40 60 80 100 120 
20 
40 
60 
80 
100 
120 
140 
160 
180 
20 40 60 80 100 120 
20 
40 
60 
80 
100 
120 
140 
160 
180 
20 40 60 80 100 120 
20 
40 
60 
80 
100 
120 
140 
160 
180 
20 40 60 80 100 120 
20 
40 
60 
80 
100 
120 
140 
160 
180 
§ Structural image representation! 
§ Unsupervised learning of shape 
and contextual information. ! 
§ Laplacian Eigenmaps.! 
§ Useful for echo images since 
intensity data does not explicitly 
reveal the structural 
information.! 
Input image! Patch matrix! 
Lower dimensional! 
embedding! 
Manifold! 
Structural representation!
6! 
STMI’14 – September 2014! 
Dictionary Based Spectral Representation! 
Training! 
Images! 
Dictionary! 
Learning! 
Spectral Embedding 
of Dictionary Atoms! 
What is the main motivation for the sparsity and dictionary learning ?! 
! 
§ Computationally efficient due to elimination of redundancy! 
§ Large number of images can be mapped to the same embedding 
space!
7! 
STMI’14 – September 2014! 
Dictionary Based Spectral Representation! 
Training! 
Images! 
Dictionary! 
Learning! 
Spectral Embedding 
of Dictionary Atoms! 
Sparse and 
Local Coding ! 
Spectral 
Representation! 
Query Image! 
Patches! 
Mapping to 
the manifold 
space!
8! 
20 40 60 80 100 120 140 160 
20 
40 
60 
80 
100 
120 
140 
160 
Dictionary KSVD 
min 
C,X kY − CXk2 s.t. min 
C,X kY − CXk2 s.t. 8i , kxik0  T0. 
Input Image! Dictionary Learning! 
2 4 6 8 10 12 
2 
4 
6 
8 
10 
12 
2 4 6 8 10 12 
2 
4 
6 
8 
10 
12 
2 4 6 8 10 12 
2 
4 
6 
8 
10 
12 
2 4 6 8 10 12 
2 
4 
6 
8 
10 
12 
Dictionary KSVD 
Dictionary Atoms! 
Spectral Embedding! 
Laplacian Graph! 
L = D W 
Eigen decomposition! 
L = V⇤V 
STMI’14 – September 2014! 
Dictionary Based Spectral Representation!
9! 
STMI’14 – September 2014! 
Sparse and Local Coding for Spectral 
Representation! 
2 
20 40 60 80 100 120 140 160 
2 4 6 8 10 12 
4 
6 
8 
10 
12 
Locality constrained linear coding! 
min 
X 
NP 
n=1 kyn − C˜xnk2 +  kbn # ˜xnk2 s.t. 8n ,1˜xn = 1 
b(n,m) = exp( k(yn − cmk2 /  ) 
bn = [b(n,1), . . . , b(n,M)] 
1. K. Yu et al. : “Nonlinear learning using local coordinate coding” NIPS 2009! 
2. J. Wang et al. : “Locality-constrained linear coding for image classification” CVPR 2010! 
20 
40 
60 
80 
100 
120 
140 
160 
Input Image! 
Query Patch! 
2 4 6 8 10 12 
2 
4 
6 
8 
10 
12 
2 4 6 8 10 12 
2 
4 
6 
8 
10 
12 
2 4 6 8 10 12 
2 
4 
6 
8 
10 
12 
Atom 1! Atom 2! Atom 3! 
= 
b1× 
+ 
b2× 
+ 
b3×
10! 
STMI’14 – September 2014! 
Dictionary Based Spectral Representation! 
20 40 60 80 100 120 140 160 
20 
40 
60 
80 
100 
120 
140 
160 
20 40 60 80 100 120 140 160 
20 
40 
60 
80 
100 
120 
140 
160 
20 40 60 80 100 120 140 160 
20 
40 
60 
80 
100 
120 
140 
160 
First Spectral Mode! 
Second Spectral Mode! 
Input Image!
11! 
Registration Strategy! 
Atlas Image! Target Image! 
Mode 1! 
.! 
.! 
.! 
Mode K! 
Mode 1! 
.! 
.! 
.! 
Mode K! 
STMI’14 – September 2014! 
XK 
k=1 
kSAk ( T (p) ) − STk (p)k2 +  R(p) 
p 2 R3 , T : R37! R3 
§ B-spline free-form deformations. 
[Rueckert et al. TMI 99]! 
§ Sum of squared differences similarity 
measure.! 
§ Number of modes K = 4.! 
T 
T 
T 
(SAK) (STK) 
Single deformation field (T ) 
for all 3D-3D spectral image pairs
12! 
STMI’14 – September 2014! 
The Proposed Segmentation Framework! 
Training ! 
dataset 
(atlases)! 
Dictionary! 
learning! 
Spectral 
embedding! 
Speckle 
reduction! 
Target! 
image! 
Locality 
constrained 
sparse coding! 
Target ! 
image shape 
representation! 
Multi-atlas 
segmentation! 
Atlas shape 
representations!
13! 
Validation Dataset! 
STMI’14 – September 2014! 
1. Training Dataset (Atlases) (15 Patients)! 
• 3D+T echo scans.! 
• Cross-validation is performed on the training dataset.! 
• Ground-truth segmentations are available for ED and ES frames.! 
2. Testing Dataset (15 Patients)! 
• 3D+T echo scans, obtained from different view angles.! 
• Only the ED and ES frames are segmented!
14! 
Other Image Representations! 
Original echo image! Local phase image [2]! 
Boundary Image [1]! Spectral Representation! 
Intensity and phase features! 
! 
• Encodes only the tissue 
boundary information.! 
• It is not sufficient for image 
analysis applications! 
Spectral representation! 
! 
• Encodes the contextual 
information! 
1. Rajpoot, K. et al.: ISBI 2009 ! 
2. Zhuang, X. et al.: ISBI 2010 ! 
! 
STMI’14 – September 2014!
15! 
STMI’14 – September 2014! 
Surface to Surface Distance Errors! 
4.5 
1.0 
4.0 
3.5 
0.8 
3.0 
2.5 
2.0 
0.6 
13 
0.4 
12 
11 
10 
0.2 
9 
8 
7 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 
Mesh Surface Distance Errors (mm) 
Testing Dataset Training Dataset (Cross-validation) 
1.5 
Mean Surface Distance 
Unprocessed Images 
Speckle Reduced Images 
Phase Symmetry Images 
Local Phase Images 
Spectral Representation 
Testing Dataset Training Dataset (Cross-validation) 
6 
Maximum Surface Distance
16! 
STMI’14 – September 2014! 
Estimation of Clinical Indices! 
1.0 
1.0 
Unprocessed Images 
Speckle Reduced Images 
Phase Symmetry Images 
Local Phase Images 
Spectral Representation 
Ejection Fraction and Stroke Volume Correlation with Reference Values 
Percentage Agreement with the Ground Truth Values Testing Dataset Training Dataset (Cross-validation) 
0.9 
0.8 
0.8 
0.7 
0.6 
0.6 
0.5 
1.00 
0.4 
0.95 
0.90 
0.2 
0.85 
0.80 
0.75 
Testing EF Testing SV Training EF Training SV 
Dice Coefficient 
0.0 0.2 0.4 0.6 0.8 1.0 0.0
17! 
Qualitative Results! 
Segmentation using the 
proposed spectral representation 
Segmentation using 
local phase image 
Testing Dataset 
Training Dataset 
Ground-truth 
segmentation 
STMI’14 – September 2014!
18! 
Comparison against the state-of-the-art 
echocardiographic image segmentation methods ! 
Table 1: Comparison of the proposed multi-atlas approach (A) against the 
state-of-the-art echocardiogaphy segmentation: active surfaces [1] and active 
shape model [2]. Estimated ejection fraction (EF) and end-diastolic volume 
(EDV ) are compared against their reference values. The correlation accuracy 
is reported in terms of Pearson’s coecient (R) and Bland-Altman’s limit of 
agreement (BA). 
Mean (mm) REF BAEF (μ ± 2) REDV BAEDV (μ ± 2) # of Patients 
(A) 2.32±0.78 0.923 -0.74±6.26 0.926 12.88±35.71 15 
[1] - 0.907 -2.4±23 0.971 -24.60±21.80 24 
[2] 1.84±1.86 - 0±19 - 3.06±46.86 10 
1. Barbosa, D., et al.: Fast and fully automatic 3-D echocardiographic segmentation using B-spline 
explicit active surfaces. Ultrasound in medicine and biology (2013) ! 
2. Butakoff, C., et al: Order statistic based cardiac boundary detection in 3D+T echocardiograms. FIMH. 
Springer (2011) !
19! 
Accuracy of the Derived Clinical Indices! 
Table 2: This table shows the accuracy of the derived clinical indices for the 
training (Patient 1 to 15) and testing datasets (Patient 16 to 30). Pearson’s 
correlation coecient (PCC) and Bland-Altman’s limit of agreement (μ±1.96) 
values are given for the following indices: ejection fraction, stroke volume, end-systolic 
volume, and end-diastolic volume. 
Testing dataset PCC LOA (μ ± 1.96) 
ED volume (ml) 0.926 12.81±33.77 
ES volume (ml) 0.936 -7.77±28.27 
Ejection fraction (%) 0.923 0.74±7.58 
Stroke volume (ml) 0.832 -5.05±12.49 
Training dataset PCC LOA (μ ± 1.96) 
ED volume (ml) 0.983 9.80±45.66 
ES volume (ml) 0.961 11.21±56.91 
Ejection fraction (%) 0.787 -1.07±18.52 
Stroke volume (ml) 0.856 -1.38±27.08
20! 
Conclusion! 
§ Summary! 
• Multi-atlas approaches can achieve state-of-the-art segmentation 
accuracy for echocardiographic images.! 
• Spectral representation is an effective ultrasound image feature.! 
• Spectral representation can be well approximated using sparse 
coding and dictionary learning.! 
§ Future work! 
• Other application areas! 
- Multi-modal image registration using spectral features.! 
- Echocardiography strain analysis.! 
• Method improvements! 
- Use of gradient information in spectral coordinate mapping.!

More Related Content

PDF
Multi Atlas-Based Segmentation with Data Driven Refinement
PDF
A 3-D Riesz-Covariance Texture Model for the Prediction of Nodule Recurrence ...
PDF
Left Ventricle Volume Measurement on Short Axis MRI Images Using a Combined R...
PPT
Thesis seminar
PDF
Olga Senyukova - Machine Learning Applications in Medicine
PPTX
Why Big Image Analytics is essential for Imaging Biobanks: An Osteoporosis Ra...
PDF
Lec13: Clustering Based Medical Image Segmentation Methods
PDF
Lec12: Shape Models and Medical Image Segmentation
Multi Atlas-Based Segmentation with Data Driven Refinement
A 3-D Riesz-Covariance Texture Model for the Prediction of Nodule Recurrence ...
Left Ventricle Volume Measurement on Short Axis MRI Images Using a Combined R...
Thesis seminar
Olga Senyukova - Machine Learning Applications in Medicine
Why Big Image Analytics is essential for Imaging Biobanks: An Osteoporosis Ra...
Lec13: Clustering Based Medical Image Segmentation Methods
Lec12: Shape Models and Medical Image Segmentation

Similar to Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation (20)

PDF
Active Shape Model based On A Spatio-Temporal A Priori Knowledge: Applied To ...
PDF
Framework for progressive segmentation of chest radiograph for efficient diag...
PDF
Density Driven Image Coding for Tumor Detection in mri Image
PPTX
Modelling Probability Distributions using Neural Networks: Applications to Me...
PDF
Mri image registration based segmentation framework for whole heart
PDF
Spectral Density Oriented Feature Coding For Pattern Recognition Application
PDF
An Investigation on Human Organ Localization in Medical Images
PDF
Introduction to compressed sensing MRI
PDF
Lung diseases detection caused by smoking using support vector machine
PPTX
Tissue Engineering introduction for physicists - Lecture three
PPTX
TB detection using modified Local Binary Pattern features
PDF
Hierarchical Vertebral Body Segmentation Using Graph Cuts and Statistical Sha...
PPTX
Automatic left ventricle segmentation
PDF
Classification with Random Forest Based on Local Tangent Space Alignment and ...
PPTX
[NS][Lab_Seminar_240812]GraphEcho: Graph-Driven Unsupervised Domain Adaptatio...
PDF
Building Compatible Bases on Graphs, Images, and Manifolds
PPTX
HEART1_SLIDES.pptx
PDF
Classification of pathologies on digital chest radiographs using machine lear...
PDF
Deep Generative model-based quality control for cardiac MRI segmentation
PDF
Sparse representation based classification of mr images of brain for alzheime...
Active Shape Model based On A Spatio-Temporal A Priori Knowledge: Applied To ...
Framework for progressive segmentation of chest radiograph for efficient diag...
Density Driven Image Coding for Tumor Detection in mri Image
Modelling Probability Distributions using Neural Networks: Applications to Me...
Mri image registration based segmentation framework for whole heart
Spectral Density Oriented Feature Coding For Pattern Recognition Application
An Investigation on Human Organ Localization in Medical Images
Introduction to compressed sensing MRI
Lung diseases detection caused by smoking using support vector machine
Tissue Engineering introduction for physicists - Lecture three
TB detection using modified Local Binary Pattern features
Hierarchical Vertebral Body Segmentation Using Graph Cuts and Statistical Sha...
Automatic left ventricle segmentation
Classification with Random Forest Based on Local Tangent Space Alignment and ...
[NS][Lab_Seminar_240812]GraphEcho: Graph-Driven Unsupervised Domain Adaptatio...
Building Compatible Bases on Graphs, Images, and Manifolds
HEART1_SLIDES.pptx
Classification of pathologies on digital chest radiographs using machine lear...
Deep Generative model-based quality control for cardiac MRI segmentation
Sparse representation based classification of mr images of brain for alzheime...
Ad

More from Kevin Keraudren (17)

PDF
Automatic Localisation of the Brain in Fetal MRI (Miccai 2013 poster)
PDF
Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction (...
PDF
Automated Localization of Fetal Organs in MRI Using Random Forests with Steer...
PDF
Automated Localization of Fetal Organs in MRI Using Random Forests with Steer...
PDF
Automatic Localisation of the Brain in Fetal MRI (Miccai 2013)
PDF
Segmenting Epithelial Cells in High-Throughput RNAi Screens (Miaab 2011)
PDF
Keraudren-K-2015-PhD-Thesis
PDF
PhD viva - 11th November 2015
PDF
PyData London 2015 - Localising Organs of the Fetus in MRI Data Using Python
PDF
Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction
PDF
Endocardial 3D Ultrasound Segmentation using Autocontext Random ForestsPresen...
PDF
Faceccrumbs: Manifold Learning on 1M Face Images, MSc group project
PDF
Slides on Photosynth.net, from my MSc at Imperial
PDF
Slides presented at the Steiner Unit, Hammersmith Hospital, 08/06/2012
PDF
Reading group - 22/05/2013
PDF
Introduction to cython: example of GCoptimization
PDF
Segmenting Epithelial Cells in High-Throughput RNAi Screens (MIAAB 2011)
Automatic Localisation of the Brain in Fetal MRI (Miccai 2013 poster)
Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction (...
Automated Localization of Fetal Organs in MRI Using Random Forests with Steer...
Automated Localization of Fetal Organs in MRI Using Random Forests with Steer...
Automatic Localisation of the Brain in Fetal MRI (Miccai 2013)
Segmenting Epithelial Cells in High-Throughput RNAi Screens (Miaab 2011)
Keraudren-K-2015-PhD-Thesis
PhD viva - 11th November 2015
PyData London 2015 - Localising Organs of the Fetus in MRI Data Using Python
Automated Fetal Brain Segmentation from 2D MRI Slices for Motion Correction
Endocardial 3D Ultrasound Segmentation using Autocontext Random ForestsPresen...
Faceccrumbs: Manifold Learning on 1M Face Images, MSc group project
Slides on Photosynth.net, from my MSc at Imperial
Slides presented at the Steiner Unit, Hammersmith Hospital, 08/06/2012
Reading group - 22/05/2013
Introduction to cython: example of GCoptimization
Segmenting Epithelial Cells in High-Throughput RNAi Screens (MIAAB 2011)
Ad

Recently uploaded (20)

PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
Microbiology with diagram medical studies .pptx
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PPTX
microscope-Lecturecjchchchchcuvuvhc.pptx
PDF
HPLC-PPT.docx high performance liquid chromatography
PDF
diccionario toefl examen de ingles para principiante
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PPTX
2. Earth - The Living Planet earth and life
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PDF
The scientific heritage No 166 (166) (2025)
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PDF
MIRIDeepImagingSurvey(MIDIS)oftheHubbleUltraDeepField
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
Classification Systems_TAXONOMY_SCIENCE8.pptx
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Microbiology with diagram medical studies .pptx
Comparative Structure of Integument in Vertebrates.pptx
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
microscope-Lecturecjchchchchcuvuvhc.pptx
HPLC-PPT.docx high performance liquid chromatography
diccionario toefl examen de ingles para principiante
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
2. Earth - The Living Planet earth and life
7. General Toxicologyfor clinical phrmacy.pptx
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
The scientific heritage No 166 (166) (2025)
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
Biophysics 2.pdffffffffffffffffffffffffff
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
MIRIDeepImagingSurvey(MIDIS)oftheHubbleUltraDeepField
Taita Taveta Laboratory Technician Workshop Presentation.pptx

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation

  • 1. Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation! Ozan Oktay, Wenzhe Shi, Jose Caballero, ! Kevin Keraudren, and Daniel Rueckert! ! ! ! ! ! Department of Compu.ng Imperial College London Second International Workshop on! Sparsity Techniques in Medical Imaging! 14th September 2014!
  • 2. 2! STMI’14 – September 2014! Problem Definition and Literature Review! Problem:! Left ventricle (LV) endocardium segmentation in 3D Echo Images ! ! Motivation:! Estimation of clinical indices: (1) ejection fraction, ! (2) stroke volume, and (3) cardiac motion! ! The existing work in the literature:! 1. B-spline based active surfaces [Barbosa et al., 2013]! 2. Statistical-shape models [Butakoff et al., 2011]! 3. Edge based level-set segmentation [Rajpoot et al., 2011]! ! RA! RV! LA! LV!
  • 3. 3! STMI’14 – September 2014! Multi-Atlas Image Segmentation! § It uses the manually labeled atlases to segment the target organ.! § It does not require any training or prior estimation.! § It is more flexible in segmenting images with different left ventricle anatomy.! § Successfully applied in ! i. Brain MRI Segmentation! ![Aljabar et al. 2009 NeuroImage]! ! ii. Cardiac MRI Segmentation ! ! ![Isgum et al. 2009 TMI]! Atlas-1! Linear and! deformable registration! Propagate the labels & majority voting! Atlas-2! Atlas-3,4,5! Target! image!
  • 4. 4! Proposed Segmentation Framework! Image Registration! Segmentation Output! STMI’14 – September 2014! Target! Image! Speckle Reduction! Structural Representation! Atlas! Image! Speckle Reduction! Structural Representation!
  • 5. STMI’14 – September 2014! 5! Patch Based Spectral Representation! 1. Wachinger C. and Navab N.: “Entropy and Laplacian images: Structural representations for multi-modal registration” ! Medical Image Analysis 2012. ! 20 40 60 80 100 120 20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 20 40 60 80 100 120 140 160 180 § Structural image representation! § Unsupervised learning of shape and contextual information. ! § Laplacian Eigenmaps.! § Useful for echo images since intensity data does not explicitly reveal the structural information.! Input image! Patch matrix! Lower dimensional! embedding! Manifold! Structural representation!
  • 6. 6! STMI’14 – September 2014! Dictionary Based Spectral Representation! Training! Images! Dictionary! Learning! Spectral Embedding of Dictionary Atoms! What is the main motivation for the sparsity and dictionary learning ?! ! § Computationally efficient due to elimination of redundancy! § Large number of images can be mapped to the same embedding space!
  • 7. 7! STMI’14 – September 2014! Dictionary Based Spectral Representation! Training! Images! Dictionary! Learning! Spectral Embedding of Dictionary Atoms! Sparse and Local Coding ! Spectral Representation! Query Image! Patches! Mapping to the manifold space!
  • 8. 8! 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 Dictionary KSVD min C,X kY − CXk2 s.t. min C,X kY − CXk2 s.t. 8i , kxik0  T0. Input Image! Dictionary Learning! 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 Dictionary KSVD Dictionary Atoms! Spectral Embedding! Laplacian Graph! L = D W Eigen decomposition! L = V⇤V STMI’14 – September 2014! Dictionary Based Spectral Representation!
  • 9. 9! STMI’14 – September 2014! Sparse and Local Coding for Spectral Representation! 2 20 40 60 80 100 120 140 160 2 4 6 8 10 12 4 6 8 10 12 Locality constrained linear coding! min X NP n=1 kyn − C˜xnk2 + kbn # ˜xnk2 s.t. 8n ,1˜xn = 1 b(n,m) = exp( k(yn − cmk2 / ) bn = [b(n,1), . . . , b(n,M)] 1. K. Yu et al. : “Nonlinear learning using local coordinate coding” NIPS 2009! 2. J. Wang et al. : “Locality-constrained linear coding for image classification” CVPR 2010! 20 40 60 80 100 120 140 160 Input Image! Query Patch! 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 Atom 1! Atom 2! Atom 3! = b1× + b2× + b3×
  • 10. 10! STMI’14 – September 2014! Dictionary Based Spectral Representation! 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 First Spectral Mode! Second Spectral Mode! Input Image!
  • 11. 11! Registration Strategy! Atlas Image! Target Image! Mode 1! .! .! .! Mode K! Mode 1! .! .! .! Mode K! STMI’14 – September 2014! XK k=1 kSAk ( T (p) ) − STk (p)k2 + R(p) p 2 R3 , T : R37! R3 § B-spline free-form deformations. [Rueckert et al. TMI 99]! § Sum of squared differences similarity measure.! § Number of modes K = 4.! T T T (SAK) (STK) Single deformation field (T ) for all 3D-3D spectral image pairs
  • 12. 12! STMI’14 – September 2014! The Proposed Segmentation Framework! Training ! dataset (atlases)! Dictionary! learning! Spectral embedding! Speckle reduction! Target! image! Locality constrained sparse coding! Target ! image shape representation! Multi-atlas segmentation! Atlas shape representations!
  • 13. 13! Validation Dataset! STMI’14 – September 2014! 1. Training Dataset (Atlases) (15 Patients)! • 3D+T echo scans.! • Cross-validation is performed on the training dataset.! • Ground-truth segmentations are available for ED and ES frames.! 2. Testing Dataset (15 Patients)! • 3D+T echo scans, obtained from different view angles.! • Only the ED and ES frames are segmented!
  • 14. 14! Other Image Representations! Original echo image! Local phase image [2]! Boundary Image [1]! Spectral Representation! Intensity and phase features! ! • Encodes only the tissue boundary information.! • It is not sufficient for image analysis applications! Spectral representation! ! • Encodes the contextual information! 1. Rajpoot, K. et al.: ISBI 2009 ! 2. Zhuang, X. et al.: ISBI 2010 ! ! STMI’14 – September 2014!
  • 15. 15! STMI’14 – September 2014! Surface to Surface Distance Errors! 4.5 1.0 4.0 3.5 0.8 3.0 2.5 2.0 0.6 13 0.4 12 11 10 0.2 9 8 7 0.0 0.2 0.4 0.6 0.8 1.0 0.0 Mesh Surface Distance Errors (mm) Testing Dataset Training Dataset (Cross-validation) 1.5 Mean Surface Distance Unprocessed Images Speckle Reduced Images Phase Symmetry Images Local Phase Images Spectral Representation Testing Dataset Training Dataset (Cross-validation) 6 Maximum Surface Distance
  • 16. 16! STMI’14 – September 2014! Estimation of Clinical Indices! 1.0 1.0 Unprocessed Images Speckle Reduced Images Phase Symmetry Images Local Phase Images Spectral Representation Ejection Fraction and Stroke Volume Correlation with Reference Values Percentage Agreement with the Ground Truth Values Testing Dataset Training Dataset (Cross-validation) 0.9 0.8 0.8 0.7 0.6 0.6 0.5 1.00 0.4 0.95 0.90 0.2 0.85 0.80 0.75 Testing EF Testing SV Training EF Training SV Dice Coefficient 0.0 0.2 0.4 0.6 0.8 1.0 0.0
  • 17. 17! Qualitative Results! Segmentation using the proposed spectral representation Segmentation using local phase image Testing Dataset Training Dataset Ground-truth segmentation STMI’14 – September 2014!
  • 18. 18! Comparison against the state-of-the-art echocardiographic image segmentation methods ! Table 1: Comparison of the proposed multi-atlas approach (A) against the state-of-the-art echocardiogaphy segmentation: active surfaces [1] and active shape model [2]. Estimated ejection fraction (EF) and end-diastolic volume (EDV ) are compared against their reference values. The correlation accuracy is reported in terms of Pearson’s coecient (R) and Bland-Altman’s limit of agreement (BA). Mean (mm) REF BAEF (μ ± 2) REDV BAEDV (μ ± 2) # of Patients (A) 2.32±0.78 0.923 -0.74±6.26 0.926 12.88±35.71 15 [1] - 0.907 -2.4±23 0.971 -24.60±21.80 24 [2] 1.84±1.86 - 0±19 - 3.06±46.86 10 1. Barbosa, D., et al.: Fast and fully automatic 3-D echocardiographic segmentation using B-spline explicit active surfaces. Ultrasound in medicine and biology (2013) ! 2. Butakoff, C., et al: Order statistic based cardiac boundary detection in 3D+T echocardiograms. FIMH. Springer (2011) !
  • 19. 19! Accuracy of the Derived Clinical Indices! Table 2: This table shows the accuracy of the derived clinical indices for the training (Patient 1 to 15) and testing datasets (Patient 16 to 30). Pearson’s correlation coecient (PCC) and Bland-Altman’s limit of agreement (μ±1.96) values are given for the following indices: ejection fraction, stroke volume, end-systolic volume, and end-diastolic volume. Testing dataset PCC LOA (μ ± 1.96) ED volume (ml) 0.926 12.81±33.77 ES volume (ml) 0.936 -7.77±28.27 Ejection fraction (%) 0.923 0.74±7.58 Stroke volume (ml) 0.832 -5.05±12.49 Training dataset PCC LOA (μ ± 1.96) ED volume (ml) 0.983 9.80±45.66 ES volume (ml) 0.961 11.21±56.91 Ejection fraction (%) 0.787 -1.07±18.52 Stroke volume (ml) 0.856 -1.38±27.08
  • 20. 20! Conclusion! § Summary! • Multi-atlas approaches can achieve state-of-the-art segmentation accuracy for echocardiographic images.! • Spectral representation is an effective ultrasound image feature.! • Spectral representation can be well approximated using sparse coding and dictionary learning.! § Future work! • Other application areas! - Multi-modal image registration using spectral features.! - Echocardiography strain analysis.! • Method improvements! - Use of gradient information in spectral coordinate mapping.!