This document presents a new method for diagnosing coronary artery disease (CAD) using genetic algorithm (GA) wrapped Bayes naive (BN) feature selection. The method uses a GA to generate feature subsets that are evaluated using BN classification. Over multiple iterations, the GA selects the feature subset that provides the highest accuracy. The algorithm is tested on a CAD dataset containing 13 features and achieves 85.5% classification accuracy. This performance is compared to other machine learning algorithms like SVM, MLP and C4.5 decision trees, which achieve lower accuracies of 83.5%, 83.16% and 80.85% respectively. The proposed method is also compared to other feature selection techniques like best first search and sequential floating forward search wrapped
Related topics: