ENERGY CONNECTS
System Studies on
integration of
Superconducting cables
in power grids
Alex Geschiere
Maarten van Riet
Irina Melnik
ENERGY CONNECTS
Challenges:
 Capacity
 Short circuit currents
 Voltage fluctuations
 Reactive power
 Limited space
Energy transition and
economic welfare
ENERGY CONNECTS
New technologies are needed
HV grid
MV grid
LV grid
➢European back bone
➢Off-shore infrastructure
➢HVDC
➢Smart grids
➢IT
Superconducting
cables
Superconducting
cables
ENERGY CONNECTS
Superconductivity – the future
for the Netherlands
 Same or even higher power transmission at lower voltage level
 150 kV superconducting cables can become the workhorse of the
Netherlands
 Reduced number of substations
 Less complex to find a site for power facilities
 Reduction of cost for buying land & No additional construction costs
 Underground. No heating / cooling of the soil.
 CO2- emission reduction
Extremely low AC losses and stable voltage profile
No need for transferring to high voltage levels
to be able to transport more power
ENERGY CONNECTS
Cooperation of Alliander, Ultera and TU Delft
6 km 50 kV FCL HTS cable system in the Netherlands
R&D program of Alliander –
a push for the HTS technology
CryostatFormer
Phase 2 HTS Phase 3 HTS
Dielectric Dielectric Dielectric
Phase 1 HTS Copper Neutral
LN
LN
CryostatFormerFormer
Phase 2 HTSPhase 2 HTS Phase 3 HTSPhase 3 HTS
Dielectric Dielectric DielectricDielectricDielectric DielectricDielectric DielectricDielectric
Phase 1 HTSPhase 1 HTS Copper NeutralCopper Neutral
LNLN
LNLN
ENERGY CONNECTS
 Challenge: limiting the difference between
maximum and minimum temperature in
long cables
 Challenge: cooling stations only at the ends of the cable
L [m]
T[K]
Go
Return
Tmax
Aim: long length HTS cable
with FCL property


   
  
 
GO
RETURN
GO
RETURN
§ Long length cables
§ Cooling systems integrated in substations
§ Low maintenance


   
  
 
GO
RETURN
GO
RETURN
§ Long length cables
§ Cooling systems integrated in substations
§ Low maintenance
ENERGY CONNECTS
Measured record at 77 K:
AC losses: 0.11 W/m at 3 kA rms
Achieved: reduced AC-losses
 An optimal angle of the conductor layers
 Minimized gaps between the HTS tapes
 Narrow HTS tapes
ENERGY CONNECTS
Record:
Cryostat heat leak
0.5 W/m
Achieved:
Improved cryostat design
 Improved cryostat insulation
 Design for low friction
Measured record: pressure loss is only
5 mbar in the test setup
ENERGY CONNECTS
Long length FCL HTS cable
is possible!
The fault current is
limited to the range of
10-16 kApk!
 FCL modelling
 Simulated temperature of a 6 km HTS cable
Temperature profile is
sufficiently stable
ENERGY CONNECTS
Very low impedance of superconducting cables
 Reduced loading on parallel lines and equipment
 Reduced voltage fluctuations
 Low energy losses
Advantageous behavior of HTS
cables in power grids
Study case: Transmission of 750 MVA at 150 kV
150 kV HTS 3xsingle phase cable
I nom 3000 A
AC loss 0,15 kW/km/phase
Cryostat loss 3 x 0,5 kW/km
Efficiency of coolers 1:15
Termination
Loss 1 kW
ENERGY CONNECTS
150 kV
750 MVA
21
150 kV
150 kV
3 x XLPE cable
3 x 250 MVA
750 MVA
21
150 kV
750 MVA
150 kV
HTS cable
780 MVA
21
150 kV
Tot. loss (MWh)
14522
30067
46962
9851
29714
19745
6861
4662
2462
0
10000
20000
30000
40000
50000
10 20 30 km
3 x OHL
3 Pow er cables
HTS
ΔU (kV)
2,38
5,09
8,18
1,01
1,93
2,77
0,44 0,610,24
0,00
2,25
4,50
6,75
9,00
10 20 30 km
3 x OHL
3 Pow er cables
HTS
3 x OHL vs 3 x XLPE HTS cablevs
3 x OHL
3 x 250 MVA
Transmission of 750 MVA
a) Variant without redundancy (n-0)
ENERGY CONNECTS
4 x OHL
Transmission of 750 MVA
b) Variant with redundancy (n-1)
vs
4 x OHL
4 x 250 MVA
750 MVAI = 25 %
I = 25 %
I = 25 %
I = 25 %150 kV
2
150 kV
1
I = 17 %
3 x OHL
3 x 250 MVA
750 MVA
150 kV
2
150 kV
1
HTS cable
780 MVA
I = 83 %
ΔU (kV)
1,76
3,68
0,22 0,41 0,57
5,79
0,0
1,5
3,0
4,5
6,0
10 20 30 km
4 x OHL
HTS + 3xOHL
HTS cable parallel to 3 x OHL
Tot. loss (MWh)
22129
10801
34099
2781
5297 7808
0
7000
14000
21000
28000
35000
10 20 30 km
4 x OHL
HTS + 3xOHL
ENERGY CONNECTS
Transmission of 750 MVA
c) Variant with redundancy (n-1)
4 x XLPE cable
4 x 250 MVA
750 MVAI = 25 %
I = 25 %
I = 25 %
I = 25 %150 kV
2
150 kV
1
I = 39 %
3 x XLPE cable
3 x 250 MVA
750 MVA
150 kV
2
150 kV
1
HTS cable
780 MVA
I = 61 %
Tot. loss (MWh)
7337
3840
14622
21908
7386
10918
0
5000
10000
15000
20000
25000
10 20 30 km
4 Pow er cables
HTS+3xPow er cable
ΔU (kV)
0,74
0,23
0,45
1,37
1,91
0,38
0,0
0,5
1,0
1,5
2,0
10 20 30 km
4 Pow er cables
HTS+3xPow er cable
4 x XLPE vs HTS cable parallel to 3 x XLPE
ENERGY CONNECTS
Transmission of 750 MVA
d) Variant with redundancy (n-1)
4 x XLPE cable
4 x 250 MVA
750 MVA
150 kV
2
150 kV
1
150 kV
4 x OHL
4 x 250 MVA
750 MVA
2
150 kV
1
150 kV
2 x HTS cable
2x 780 MVA
750 MVA21
150 kV
Tot. loss (MWh)
10801
7337
14622
21908
12694
34099
22129
8638
4582
0,0
7000,0
14000,0
21000,0
28000,0
35000,0
10 20 30 km
4 x OHL
4x XLPE
2 x HTS
ΔU (kV)
1,76
0,74
1,37
1,91
0,19
5,79
3,68
0,170,11
0,0
2,0
4,0
6,0
10 20 30 km
4 x OHL
4x XLPE
2 x HTS
4 x OHL vs 4 x XLPE 2 x HTSvs
ENERGY CONNECTS
Conclusions from the study case
 The performed studies demonstrate a good parallel behavior of superconducting cables in
electrical grids.
 By parallel connection of an HTS cable to conventional cables or lines most of the load
flows through the superconducting cable, it allows:
– To unload existent circuits and to improve the voltage grid performance
– To decrease drastically the total energy losses.
ENERGY CONNECTS
Fault current limiting (FCL)
 Low energy losses
 Stable voltage profile
 Low impedance
 Short circuit currents
limiting during faults
 High impedance
0
Super -
conductivity
Normal
Ic Current I
Resistance R
0
Super -
conductivity
Normal
conductivity
Ic
Critical current
ENERGY CONNECTS
FCL simulations
(f ile sc_inif inite_grid_zonder_f cl.pl4; x-v ar t) c:X0002A-X0013A
0,00 0,05 0,10 0,15 0,20 0,25
-10
-5
0
5
10
15
*103
13,67 kA
(f ile sc_inif inite_grid.pl4; x-v ar t) c:X0005A-X0017A
0,00 0,05 0,10 0,15 0,20 0,25
-10
-5
0
5
10
15
*103
7,66 kA
Grid
XLPE cable
Ik peak
Grid
HTS cable
Ik peak
Ikpeak,kA
Ikpeak,kA
After one
cycle: 6,7 kA
ENERGY CONNECTS
Conclusions
 Advantages in using the HTS cable technology :
➢ Greatly increased power transmission capacity. Same or even higher power
transmission at lower voltage level
➢ Reduced loading on parallel lines and equipment
➢ Reduced voltage fluctuations
➢ Less reactive power production
➢ Low energy losses
➢ Fault current limiting
 As the AC losses of the HTS cable are very low, the cryostat losses and the termination
losses together with the cooling efficiency determine the total losses in the HTS cable
system.
 Transport of low amounts of power to short distances with HTS cables has a lower
efficiency. A considerable reduction of power losses can be achieved by using of HTS
cables for transport of sizeable power load.
ENERGY CONNECTS
Questions?

More Related Content

PPTX
Ehv line design
DOCX
A 12 μw to 1.1-m w aim piezoelectric energy harvester for time-varying vibrat...
PDF
Analysis and Modeling of Transformerless Photovoltaic Inverter Systems
PPTX
Mechanical Design of Transmission Line (In context of Nepal)
PDF
POWER LOSS REDUCTION IN ELECTRICAL DISTRIBUTION SYSTEMS USING CAPACITOR PLACE...
PDF
Le.h insulation coordination - Digsilent
PPTX
Three core extra high voltage cable – a global innovation
PPT
LE Calculations 2
Ehv line design
A 12 μw to 1.1-m w aim piezoelectric energy harvester for time-varying vibrat...
Analysis and Modeling of Transformerless Photovoltaic Inverter Systems
Mechanical Design of Transmission Line (In context of Nepal)
POWER LOSS REDUCTION IN ELECTRICAL DISTRIBUTION SYSTEMS USING CAPACITOR PLACE...
Le.h insulation coordination - Digsilent
Three core extra high voltage cable – a global innovation
LE Calculations 2

What's hot (20)

PDF
The sheath voltage_limiter
PPT
Substation overview
PPTX
Ppt of ehv ac transmission
PPT
Supply system (Electrical Power System)
PPT
Max demand
PDF
Optimal Cable Sizing in PV Systems: Case Study
PDF
Substation design-guideliness
PPTX
Superconductors
PDF
109X- angeli2016.pdf
PPTX
Bundle conductors in transmission line
PDF
Inverter selection
DOCX
A multi input bridgeless resonant ac-dc converter for electromagnetic energy ...
PDF
Modeling and analysis of power transformers under ferroresonance phenomenon
DOCX
EHV AC
PDF
Superconducting Generators
PPTX
Yunasko sc berlin-2013
PDF
Principles of Cable Sizing
PPT
Center for Superconducting and Magnetic Materials (CSMM), Research and Facili...
PPTX
electrical system
PDF
UPS Electrical Design and Installation
The sheath voltage_limiter
Substation overview
Ppt of ehv ac transmission
Supply system (Electrical Power System)
Max demand
Optimal Cable Sizing in PV Systems: Case Study
Substation design-guideliness
Superconductors
109X- angeli2016.pdf
Bundle conductors in transmission line
Inverter selection
A multi input bridgeless resonant ac-dc converter for electromagnetic energy ...
Modeling and analysis of power transformers under ferroresonance phenomenon
EHV AC
Superconducting Generators
Yunasko sc berlin-2013
Principles of Cable Sizing
Center for Superconducting and Magnetic Materials (CSMM), Research and Facili...
electrical system
UPS Electrical Design and Installation
Ad

Similar to System Studies on interaction of HTS cables with power grids (20)

PPTX
Line upgrade
PPTX
Extra High Voltage AC Transmission line(Subhamoy Das).pptx
PDF
ppt- of- ehv-ac-transmission-pdf (1).pdf
PDF
Effect of the Cable Capacitance of Long Control Cables on the Actuation of Co...
PDF
THD ANALYSIS OF LFAC TRANSMISSION SYSTEM
PDF
ppt-of-ehv-ac-transmission-pdf.pdf and dc
PDF
Micro-alloyed copper overhead line conductors - PowerGrid International Augus...
PPTX
ppt-of-ehv-ac-transmission-pdf.pptx
PPT
Distributed Generation By Roland Desouza
PDF
System design-engineering-j jicable11-0279_final-evolution-in-method-performa...
PPTX
High Voltage Direct Current(Hvdc) transmission
PDF
International Journal of Engineering Research and Development (IJERD)
PPTX
Ppt kashish
PPTX
High Voltage Engineering Presentation for graduate
PDF
Smart Grid in Europe Presentation, IET Power in Unity Conference.
PPTX
315564438 hvdc-transmission-ppt
PDF
Advances in Ultra High Voltage (UHV) Transmission and Distribution Systems.pdf
PDF
Darkawi_et_al_CEIDP_2012_VF_IEEE
PPTX
Emergingtrends
Line upgrade
Extra High Voltage AC Transmission line(Subhamoy Das).pptx
ppt- of- ehv-ac-transmission-pdf (1).pdf
Effect of the Cable Capacitance of Long Control Cables on the Actuation of Co...
THD ANALYSIS OF LFAC TRANSMISSION SYSTEM
ppt-of-ehv-ac-transmission-pdf.pdf and dc
Micro-alloyed copper overhead line conductors - PowerGrid International Augus...
ppt-of-ehv-ac-transmission-pdf.pptx
Distributed Generation By Roland Desouza
System design-engineering-j jicable11-0279_final-evolution-in-method-performa...
High Voltage Direct Current(Hvdc) transmission
International Journal of Engineering Research and Development (IJERD)
Ppt kashish
High Voltage Engineering Presentation for graduate
Smart Grid in Europe Presentation, IET Power in Unity Conference.
315564438 hvdc-transmission-ppt
Advances in Ultra High Voltage (UHV) Transmission and Distribution Systems.pdf
Darkawi_et_al_CEIDP_2012_VF_IEEE
Emergingtrends
Ad

More from Dutch Power (20)

PDF
6. Presentatie Klaas Hommes - session 6.pdf
PDF
5. Edward Coster - Hugo Vergnes - session 5.pdf
PDF
4. Rene Troost - Huug Brinkers - session 4.pdf
PDF
3e. Leoni Winschermann - session 3 pitch.pdf
PDF
3d. Alejandra Jimenz Rosales - Session 3 pitch.pdf
PDF
3C. Ensieh Hosseini - session 3 pitch.pdf
PDF
3b. Jur Erbrink - session 3 pitch.pdf Presentatie CIRED Voorbereidingsdag
PDF
3A. Alain Stuivenvolt - session 3 pitch.pdf
PDF
2. Tim Slangen - Jeroen van Waes - session 2.pdf
PDF
1. Martin Binnendijk - Rory Leich - Daniel Woldendorp - Session 1.pdf
PDF
Tessa Hillen - Octopus Energy Dutch Power Event “Kijkje in andermans keuken: ...
PDF
Jan-Willem van Kempen - Hoogheemraad waterschappen Dutch Power Event “Kijkje ...
PDF
Niels Hoffmann - Maasstad ziekenhuis Dutch Power Event “Kijkje in andermans k...
PDF
Walter Koens - Marsaki Dutch Power Event “Kijkje in andermans keuken: Laat je...
PDF
Tjeerd Broersma Enexis Dutch Power Event
PDF
Ronald van Prinsenbeek Enexis en Hanno van Maanen Alfen
PDF
Arnoud Brouwer Enexis en Henk Telman Connectens.pdf
PDF
Christiaan Oosterhof - Taskforce Elektra.pdf
PDF
Rik de Nooijer - gemeente Rotterdam Dutch Power
PDF
Geert heidekamp Enexis en Marco Klein Paste Siers.pdf
6. Presentatie Klaas Hommes - session 6.pdf
5. Edward Coster - Hugo Vergnes - session 5.pdf
4. Rene Troost - Huug Brinkers - session 4.pdf
3e. Leoni Winschermann - session 3 pitch.pdf
3d. Alejandra Jimenz Rosales - Session 3 pitch.pdf
3C. Ensieh Hosseini - session 3 pitch.pdf
3b. Jur Erbrink - session 3 pitch.pdf Presentatie CIRED Voorbereidingsdag
3A. Alain Stuivenvolt - session 3 pitch.pdf
2. Tim Slangen - Jeroen van Waes - session 2.pdf
1. Martin Binnendijk - Rory Leich - Daniel Woldendorp - Session 1.pdf
Tessa Hillen - Octopus Energy Dutch Power Event “Kijkje in andermans keuken: ...
Jan-Willem van Kempen - Hoogheemraad waterschappen Dutch Power Event “Kijkje ...
Niels Hoffmann - Maasstad ziekenhuis Dutch Power Event “Kijkje in andermans k...
Walter Koens - Marsaki Dutch Power Event “Kijkje in andermans keuken: Laat je...
Tjeerd Broersma Enexis Dutch Power Event
Ronald van Prinsenbeek Enexis en Hanno van Maanen Alfen
Arnoud Brouwer Enexis en Henk Telman Connectens.pdf
Christiaan Oosterhof - Taskforce Elektra.pdf
Rik de Nooijer - gemeente Rotterdam Dutch Power
Geert heidekamp Enexis en Marco Klein Paste Siers.pdf

Recently uploaded (20)

PDF
Climate and Adaptation MCQs class 7 from chatgpt
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
CRP102_SAGALASSOS_Final_Projects_2025.pdf
PPTX
Module on health assessment of CHN. pptx
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
Journal of Dental Science - UDMY (2020).pdf
PDF
Literature_Review_methods_ BRACU_MKT426 course material
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
IP : I ; Unit I : Preformulation Studies
PDF
Empowerment Technology for Senior High School Guide
PDF
Complications of Minimal Access-Surgery.pdf
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PDF
Journal of Dental Science - UDMY (2021).pdf
PDF
Hazard Identification & Risk Assessment .pdf
PDF
Race Reva University – Shaping Future Leaders in Artificial Intelligence
PPTX
Climate Change and Its Global Impact.pptx
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
Climate and Adaptation MCQs class 7 from chatgpt
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
CRP102_SAGALASSOS_Final_Projects_2025.pdf
Module on health assessment of CHN. pptx
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Journal of Dental Science - UDMY (2020).pdf
Literature_Review_methods_ BRACU_MKT426 course material
Share_Module_2_Power_conflict_and_negotiation.pptx
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
IP : I ; Unit I : Preformulation Studies
Empowerment Technology for Senior High School Guide
Complications of Minimal Access-Surgery.pdf
Cambridge-Practice-Tests-for-IELTS-12.docx
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
Journal of Dental Science - UDMY (2021).pdf
Hazard Identification & Risk Assessment .pdf
Race Reva University – Shaping Future Leaders in Artificial Intelligence
Climate Change and Its Global Impact.pptx
FORM 1 BIOLOGY MIND MAPS and their schemes

System Studies on interaction of HTS cables with power grids

  • 1. ENERGY CONNECTS System Studies on integration of Superconducting cables in power grids Alex Geschiere Maarten van Riet Irina Melnik
  • 2. ENERGY CONNECTS Challenges:  Capacity  Short circuit currents  Voltage fluctuations  Reactive power  Limited space Energy transition and economic welfare
  • 3. ENERGY CONNECTS New technologies are needed HV grid MV grid LV grid ➢European back bone ➢Off-shore infrastructure ➢HVDC ➢Smart grids ➢IT Superconducting cables Superconducting cables
  • 4. ENERGY CONNECTS Superconductivity – the future for the Netherlands  Same or even higher power transmission at lower voltage level  150 kV superconducting cables can become the workhorse of the Netherlands  Reduced number of substations  Less complex to find a site for power facilities  Reduction of cost for buying land & No additional construction costs  Underground. No heating / cooling of the soil.  CO2- emission reduction Extremely low AC losses and stable voltage profile No need for transferring to high voltage levels to be able to transport more power
  • 5. ENERGY CONNECTS Cooperation of Alliander, Ultera and TU Delft 6 km 50 kV FCL HTS cable system in the Netherlands R&D program of Alliander – a push for the HTS technology CryostatFormer Phase 2 HTS Phase 3 HTS Dielectric Dielectric Dielectric Phase 1 HTS Copper Neutral LN LN CryostatFormerFormer Phase 2 HTSPhase 2 HTS Phase 3 HTSPhase 3 HTS Dielectric Dielectric DielectricDielectricDielectric DielectricDielectric DielectricDielectric Phase 1 HTSPhase 1 HTS Copper NeutralCopper Neutral LNLN LNLN
  • 6. ENERGY CONNECTS  Challenge: limiting the difference between maximum and minimum temperature in long cables  Challenge: cooling stations only at the ends of the cable L [m] T[K] Go Return Tmax Aim: long length HTS cable with FCL property            GO RETURN GO RETURN § Long length cables § Cooling systems integrated in substations § Low maintenance            GO RETURN GO RETURN § Long length cables § Cooling systems integrated in substations § Low maintenance
  • 7. ENERGY CONNECTS Measured record at 77 K: AC losses: 0.11 W/m at 3 kA rms Achieved: reduced AC-losses  An optimal angle of the conductor layers  Minimized gaps between the HTS tapes  Narrow HTS tapes
  • 8. ENERGY CONNECTS Record: Cryostat heat leak 0.5 W/m Achieved: Improved cryostat design  Improved cryostat insulation  Design for low friction Measured record: pressure loss is only 5 mbar in the test setup
  • 9. ENERGY CONNECTS Long length FCL HTS cable is possible! The fault current is limited to the range of 10-16 kApk!  FCL modelling  Simulated temperature of a 6 km HTS cable Temperature profile is sufficiently stable
  • 10. ENERGY CONNECTS Very low impedance of superconducting cables  Reduced loading on parallel lines and equipment  Reduced voltage fluctuations  Low energy losses Advantageous behavior of HTS cables in power grids Study case: Transmission of 750 MVA at 150 kV 150 kV HTS 3xsingle phase cable I nom 3000 A AC loss 0,15 kW/km/phase Cryostat loss 3 x 0,5 kW/km Efficiency of coolers 1:15 Termination Loss 1 kW
  • 11. ENERGY CONNECTS 150 kV 750 MVA 21 150 kV 150 kV 3 x XLPE cable 3 x 250 MVA 750 MVA 21 150 kV 750 MVA 150 kV HTS cable 780 MVA 21 150 kV Tot. loss (MWh) 14522 30067 46962 9851 29714 19745 6861 4662 2462 0 10000 20000 30000 40000 50000 10 20 30 km 3 x OHL 3 Pow er cables HTS ΔU (kV) 2,38 5,09 8,18 1,01 1,93 2,77 0,44 0,610,24 0,00 2,25 4,50 6,75 9,00 10 20 30 km 3 x OHL 3 Pow er cables HTS 3 x OHL vs 3 x XLPE HTS cablevs 3 x OHL 3 x 250 MVA Transmission of 750 MVA a) Variant without redundancy (n-0)
  • 12. ENERGY CONNECTS 4 x OHL Transmission of 750 MVA b) Variant with redundancy (n-1) vs 4 x OHL 4 x 250 MVA 750 MVAI = 25 % I = 25 % I = 25 % I = 25 %150 kV 2 150 kV 1 I = 17 % 3 x OHL 3 x 250 MVA 750 MVA 150 kV 2 150 kV 1 HTS cable 780 MVA I = 83 % ΔU (kV) 1,76 3,68 0,22 0,41 0,57 5,79 0,0 1,5 3,0 4,5 6,0 10 20 30 km 4 x OHL HTS + 3xOHL HTS cable parallel to 3 x OHL Tot. loss (MWh) 22129 10801 34099 2781 5297 7808 0 7000 14000 21000 28000 35000 10 20 30 km 4 x OHL HTS + 3xOHL
  • 13. ENERGY CONNECTS Transmission of 750 MVA c) Variant with redundancy (n-1) 4 x XLPE cable 4 x 250 MVA 750 MVAI = 25 % I = 25 % I = 25 % I = 25 %150 kV 2 150 kV 1 I = 39 % 3 x XLPE cable 3 x 250 MVA 750 MVA 150 kV 2 150 kV 1 HTS cable 780 MVA I = 61 % Tot. loss (MWh) 7337 3840 14622 21908 7386 10918 0 5000 10000 15000 20000 25000 10 20 30 km 4 Pow er cables HTS+3xPow er cable ΔU (kV) 0,74 0,23 0,45 1,37 1,91 0,38 0,0 0,5 1,0 1,5 2,0 10 20 30 km 4 Pow er cables HTS+3xPow er cable 4 x XLPE vs HTS cable parallel to 3 x XLPE
  • 14. ENERGY CONNECTS Transmission of 750 MVA d) Variant with redundancy (n-1) 4 x XLPE cable 4 x 250 MVA 750 MVA 150 kV 2 150 kV 1 150 kV 4 x OHL 4 x 250 MVA 750 MVA 2 150 kV 1 150 kV 2 x HTS cable 2x 780 MVA 750 MVA21 150 kV Tot. loss (MWh) 10801 7337 14622 21908 12694 34099 22129 8638 4582 0,0 7000,0 14000,0 21000,0 28000,0 35000,0 10 20 30 km 4 x OHL 4x XLPE 2 x HTS ΔU (kV) 1,76 0,74 1,37 1,91 0,19 5,79 3,68 0,170,11 0,0 2,0 4,0 6,0 10 20 30 km 4 x OHL 4x XLPE 2 x HTS 4 x OHL vs 4 x XLPE 2 x HTSvs
  • 15. ENERGY CONNECTS Conclusions from the study case  The performed studies demonstrate a good parallel behavior of superconducting cables in electrical grids.  By parallel connection of an HTS cable to conventional cables or lines most of the load flows through the superconducting cable, it allows: – To unload existent circuits and to improve the voltage grid performance – To decrease drastically the total energy losses.
  • 16. ENERGY CONNECTS Fault current limiting (FCL)  Low energy losses  Stable voltage profile  Low impedance  Short circuit currents limiting during faults  High impedance 0 Super - conductivity Normal Ic Current I Resistance R 0 Super - conductivity Normal conductivity Ic Critical current
  • 17. ENERGY CONNECTS FCL simulations (f ile sc_inif inite_grid_zonder_f cl.pl4; x-v ar t) c:X0002A-X0013A 0,00 0,05 0,10 0,15 0,20 0,25 -10 -5 0 5 10 15 *103 13,67 kA (f ile sc_inif inite_grid.pl4; x-v ar t) c:X0005A-X0017A 0,00 0,05 0,10 0,15 0,20 0,25 -10 -5 0 5 10 15 *103 7,66 kA Grid XLPE cable Ik peak Grid HTS cable Ik peak Ikpeak,kA Ikpeak,kA After one cycle: 6,7 kA
  • 18. ENERGY CONNECTS Conclusions  Advantages in using the HTS cable technology : ➢ Greatly increased power transmission capacity. Same or even higher power transmission at lower voltage level ➢ Reduced loading on parallel lines and equipment ➢ Reduced voltage fluctuations ➢ Less reactive power production ➢ Low energy losses ➢ Fault current limiting  As the AC losses of the HTS cable are very low, the cryostat losses and the termination losses together with the cooling efficiency determine the total losses in the HTS cable system.  Transport of low amounts of power to short distances with HTS cables has a lower efficiency. A considerable reduction of power losses can be achieved by using of HTS cables for transport of sizeable power load.